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Flocculation between inorganic sediment, salt ions and microscopic organic

matter present in the marine environment might play an important role in the

dynamics of turbidity currents. The ability to predict, understand, and potentially

leverage the effect of flocculation on turbidity currents will help tominimize the

impact of human interventions such as dredging, trenching, and deep-sea

mining. To better characterize the effect of flocculation on the benthic turbidity

currents generated by these activities, a series of laboratory experiments were

performed. Turbidity currents were created by means of lock exchange

experiments. The present work focuses on the flocculation of clays that are

representative for abyssal regions where deep-sea mining is performed, but

most of the conclusions of this work are generic and can be applied to other

types of benthic flows, occuring in harbours and channels. The effect of salt and

organicmaterial as flocculant agent was investigated. Various concentrations of

clay and organic flocculant were tested. Video analysis was used to determine

the head velocity of the plume. Samples at different run-out lengths were

collected at the end of the lock exchange experiments for particle size and

settling velocity measurements. The velocities of the turbidity currents in fresh

and saline water (when no organicmatter was present) were found to be similar,

which was expected considering the timescales of salt-induced flocculation

(about 30 min or more compared to the duration of lock exchange

experiment <60 s). It was however demonstrated that, in presence of

organic matter, flocculation occurred during the short time (30–60 s) of the

experiment, leading to a reduced current propagation and a significant change

in floc sizes (from 20 to 1,000 µm) and settling velocities (from 1 to 60mm s−1).

Salt ions contributed to flocculation in the sense that flocculation with organic

matter was improved in the presence of salt.
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1 Introduction

Dredging is commonly used for land reclamation, creating or

deepening ports and waterways, and extracting minerals from

underwater deposits. Over the last decade, the interest to the

latter has substantially increased since the demand for minerals

and metals has grown as the results of the World’s population

and economic activity surge. Dredging activities produce

sediment plumes that lead to an increase in suspended solids

concentration, potentially impacting benthic ecosystems. It is the

most frequent causes of disturbance deep sea environments

(Hobbs, 2002; Gates and Jones, 2012; Puig et al., 2012; Harris,

2014; Sharma, 2015). There is increasing interest in metals,

particularly those critical for a successful renewable energy

transition (e.g. wind turbines, solar panels and electric car

storage batteries) (Hein et al., 2020). Precious metals such as

manganese, nickel, cobalt are mined from terrestrial mining,

however Deep Sea Mining (DSM) might be an alternative to fill

the demand for precious metals. Polymetallic nodules, which

contain significant amounts of these precious metals, are found

in abundance on the abyssal plains in the deep sea. These nodules

are distinguished from terrestrial deposits by the presence of

many metals in a single deposit; for example, nodules from the

Clarion–Clipperton Zone (CCZ) which is a large area with

polymetallic nodules, contain cobalt, nickel, copper, and

manganese in a single ore (Gillard, 2019; ISA, 2019; Harbour

et al., 2020; Hein et al., 2020). In nodule mining, the Seafloor

Mining Tool (SMT) collects nodules from the seafloor and

separates them from excess water and fine sediments. The

excess water and fine sediment are released behind the mining

vehicle on the seafloor (Figure 1). There are four key areas of

interest in the horizontal discharge of a sediment-water mixture

from an SMT as shown in Figure 1 (Elerian et al., 2021).

1. Discharge source: This includes the preliminary conditions,

including momentum, suspended sediment content, and

z-distance from the sea bed. The SMT’s design affects the

physical parameters.

FIGURE 1
Schematic representation of how the sediment-water mixture discharged from a PNMT evolves (nearfield area). (A) Top view of the discharge
process from a polymetallic nodule mining tool (PNMT) (Elerian et al., 2022) (B) Right-side view of the discharge process from a PNMT (Elerian et al.,
2021).
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2. Jet or Plume regime: Depending on the flow discharge

parameters in this area, the flow may take the form of a jet

or plume. Later, when buoyancy force takes over, the flow

transforms into a plume.

3. Impingement region: This area is situated on the ocean floor.

Due to the direct connection with the seafloor in this location,

the negative buoyant plume changes direction. Within this

region, sediment deposition and potential sea bed erosion are

anticipated to occur.

4. Turbidity current: This current originates outside the area of

impingement. The generated turbidity current’s behavior is

governed by the interaction between the discharge and the

seabed (Rutkowska et al., 2014; Global Sea Mineral Resources,

2018; Hage et al., 2019; Ouillon et al., 2021). Its principal

characteristics are determined by the hydraulic characteristics

previous to the impingement region.

In the near-field region, many flow regimes (such as jet,

plume, and turbidity current) are anticipated, and they rely on

the discharge characteristics. The focus of this work is on

turbidity current. It is estimated that the turbidity current

generated from the discharge at the back of the mining

vehicle can spread over large distances (9–13 km (Gillard,

2019)) and remain suspended for an extended period of time

(Blue Nodules, 2020; Hein et al., 2020; Haalboom et al., 2022).

The sediment plume generated by mining activity can severely

affect the deep sea flora and fauna. The settling of the sediment

plume and subsequent blanketing can bury benthic species,

obstruct the respiratory surfaces of filter feeders, and

contaminate the food source for the majority of benthic

organisms (Vanreusel et al., 2016; Gollner et al., 2017; Jones

et al., 2017). Limiting plume dispersion could help to lower the

environmental impact caused by human activities (Weaver et al.,

2022).

Particle size distribution (PSD) is an important factor that

determines how far deep-sea sediment plumes spread (Gillard

et al., 2019; Spearman et al., 2020). The coarse nodule debris settle

quickly but the clay-sized mineral particles (Tables 1 and 2) stay

in suspension for long periods of time which leads to a wider

plume dispersion (Sharma, 2015). Since aggregated particles

(flocs) settle quicker, flocculation has been shown to

potentially limit plume dispersion (Manning and Dyer, 2002;

Smith and Friedrichs, 2011; Gillard et al., 2019; Spearman et al.,

2019, 2020). The size, density, shape, settling velocity and

strength of flocs vary over time. These properties are

influenced by the medium in which the particles are

suspended (salinity, organic matter content, sediment

concentration, hydrodynamics) (Manning and Dyer, 2002;

Mietta et al., 2009; Smith and Friedrichs, 2011; Chassagne,

2020). The deep-sea environment is in principle favourable

for flocculation because of its high salinity and concentration

of organic matter (Mewes et al., 2014; ISA, 2015; Fettweis and

Baeye, 2015; Volz et al., 2018). The availability of fresh organic

matter on the top layer of the deep sea varies substantially

because organic matter gradually degrades and remineralizes

with depth. With increasing water depth, the flux of organic

matter to the seabed often decreases. Less than 0.5 percent of the

sediment bulk is made up of carbon in the top few centimeters of

TABLE 1Mineral group percentages in deep-sea sediment: Inter OceanMetal joint organization (IOM) data (Zawadzki et al., 2020), Global SeaMineral
Resources (GSR) data (Global Sea Mineral Resources, 2018), Sites A-C (Bisschof et al., 1979). It is worth noting that for IOM 1, 2, and 3, claymineral
percent is given relative to total sediment. Clay mineral percent is only relative to the sum of clay minerals at Sites A, B, C, and GSR.

IOM 1 IOM 2 IOM 3 Site A Site B Site C GSR IOM

Smectite (%) 12.71 17.33 16.49 52 38 40 36.41 16.3

Illite (%) 13.82 12.05 14.52 31 42 50 48.34 13.2

Kaolinite (%) 0.65 0.43 0.54 17 20 10 10.33 1

Chlorite (%) 1.70 1.85 2.35 4.92 1.5

Amorphic (%) 50.47 47.09 44.42

TABLE 2 Sediment fraction distribution: GSR andNTNUdata (Lang et al., 2019), IOMdata (Zawadzki et al., 2020). GSR provides averaged data based on
the Belgium license area in the CCZ, while NTNU data is data of specific box-cores of the GSR data average. The IOM data is based on data from
the CCZ’s IOM license area.

Fraction Diameter range
(um)

GSR data
average (%)

NTNU data
BC062 (%)

NTNU data
BC064 (%)

IOM data
average (%)

Gillard et al.
(2019)

Clay <2 12.0 11.3 14.5 23.24 25.3

Silt 2–63 76.2 85.7 82.5 70.36 52.11

Sand 63–2000 11.8 3 3 6.13 22.5
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the CCZ sediment. This decreases to 0.1 percent of the sediment’s

mass below 30 cm (Volz et al., 2018). The present work aims to

demonstrate the mechanisms that, in the presence of organic

matter, can help reduce the extension of the turbidity currents.

Flocculation has been shown to occur at very short timescales (in

the order of few minutes) in natural environments in the

presence of (microscopic) organic matter (Deng et al., 2019;

Safar et al., 2019; Shakeel et al., 2020). The current lab-scale work

uses a series of lock exchange experiments to generate a turbidity

current and studies the impact of flocculation in short time scales.

Properties such as time and distance of turbidity currents’

propagation, particle size, and settling velocities are measured.

This article is organized as follows. Section 2 gives an overview of

the materials used and the experimental setups. Section 3

presents relevant results and discussion. Finally, the

conclusions are presented in Section 4.

2 Material and methods

2.1 Clay

Two types of clays were used for the experiments. Initial

experiments were conducted by using illite since illite is one of

the dominant clay minerals (Table 2) found of the top layer of

the Clarion–Clipperton Zone (CCZ) sediment where Deep

Sea Mining (DSM) is performed (ISA, 2015; Helmons et al.,

2022). The illite used in the experiments (purchased from

Argiletz laboratoires) was obtained as a dry powder. The d50
of illite particles was found to be around 5 µm by static light

scattering (Figure 2). A lab-made artificial clay with a

composition similar to CCZ clay was also used and will be

referred to as Artificial CCZ (ACCZ) (Enthoven, 2021; Ali

et al., 2022). We use this material as a substitute for deep-sea

sediment, as CCZ clay could not be supplied in sufficient

quantities for lock-exchange experiments. The ACCZ mixture

consists of two materials: i) Sibelco FT-S1 (Abidichte Ton)

consisting of 64% kaolinite, 10% illite, 19% quartz, and 7%

other minerals; ii) Cebo OMCA Betonite consisting of 17%

kaolinite, 17% illite and 66% montmorillonite. The precise

proportions of these two materials are unknown. The clay was

created so that its rheological/mechanical properties match

the ones of CCZ clay (Enthoven, 2021). The wet ACCZ clay

was dried for 24 h at 105°C to determine its dry density, which

was found to be 2,600 kg m−3. This clay has an average particle

size of 10–20 μm, as found by static light scattering device

(Figure 2).

2.2 Flocculant

The organic matter found in the deep-sea region is expected

to act as a flocculating agent for the sediment plume (Jones et al.,

2017; Gillard et al., 2019; Spearman et al., 2020; Jones et al., 2021).

It was impossible, at this stage, to fully characterize or obtain this

flocculant, which is expected to be composed in parts of

polyssacharides. As was done in previous studies (Shakeel

et al., 2020), a synthetic flocculant was used as a proxy for

organic matter content. The flocculant chosen was an anionic

polyacrylamide, referenced Zetag 4,120 (BASF company) of

medium anionic charge with high molecular weight.

Polyelectrolytes with a high molecular weight will better

promote flocculation compared to polyelectrolytes with a low

molecular weight (Bergaya and Lagaly, 2013).

2.3 Lock exchange setup

Turbidity currents have been studied extensively in the

laboratory through lock exchange experiments (Helena et al.,

2013; Baker et al., 2017; Craig et al., 2020). Lock-exchange

experiments or fixed volume turbidity currents are caused by

the release of dense material in a fixed volume. The front

propagation in a traditional lock-release turbidity current is

equivalent to the front propagation in the turbidity current

generated by a moving source (Ouillon et al., 2021).

Lock exchange experiments were performed in both fresh

and saline water. The saline water was produced bymixing 10 mM

of CaCl2 to freshwater. The experiments were conducted for three

distinct clay concentrations (10 g L−1, 30 gL−1 and 100 g L−1) with

illite and two different concentrations with ACCZ (10 g L−1 and

30 g L−1). Handling andmixing the higher concentration of ACCZ

and eventually getting a fully dispersed sample was difficult

therefore 100 g L−1 was not used. 30 g L−1 is the mean case, and

10 g L−1 and 100 g L−1 are considered to assess whether the design

FIGURE 2
Particle size distribution of illite and ACCZ.
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should aim for lower or higher concentrations to identify if and

when flocculation has a more significant effect (Blue Nodules,

2020). Two different flocculant dosages (0.25 mg g−1 and 0.75 mg

g−1 of clay) were used for flocculation based on preliminary

studies and are significantly below the optimum flocculant

dosage (2.5 mg g−1). The dry clay was mixed in water in the

lock exchange’s mixing section for an hour before the lock gate

was opened. This mixing ensured that homogeneous suspensions

with a well-defined mean particle size could be obtained. The

initial clay size obtained by such a process might not be similar to

that obtained through the DSM operation, in which the sediment

passes through the SMT for a brief period of time exposed to high

shear rates. In experiments with flocculant, the flocculant was

added and stirred for 30 s before opening the lock. The turbidity

flow was filmed with a Navitar 17 mm lens on an IL5HM8512D:

Fastec high-speed camera. The camera was set 4.75 m from the

lens to the front wall of the tank, and it recorded at a rate of

130 frames per second. The camera captured the 2.40 m to the

left of the lock. Samples were collected from four locations

(L1, L2, L3, L4 in Figure 3A) at the end of the experiments

from the collection points located at the bottom of the lock

exchange.

2.4 Particle/flocs size distribution

Particle Size Distribution (PSD) analysis was conducted on the

obtained samples using a Malvern Master Sizer 2000 (Figure 3B), a

technique based on static light scattering (SLS). With this set-up,

within a few seconds a full PSD can be recorded. The measurements

were carried out in a JLT6 jar setup supplied by VELP Scientifica,

Italy. The size of the jar was 95 mm in diameter and 110 mm in

height. The suspension was stirred using a single rectangular paddle.

The paddle was 25 mm in height and 75 mm in diameter and was

positioned in the suspension 10 mmabove the bottomof the jar. The

suspension was pumped through the Malvern Master Sizer

2000 from the mixing jar to the Mastersizer and then back to

the mixing jar using a peristaltic pump (Figure 3B). The lowest

possible discharge rate of the pump was used (1.37 ml s−1 (112 s−1)).

2.5 Floc settling analysis

The FLOCCAM device is based on video microscopy and can

be used to estimate PSD’s (>20 µm) and settling velocities of flocs

samples (Shakeel et al., 2021; Ye et al., 2020; Manning et al., 2007;

FIGURE 3
(A) Schematic representation of the Lock exchange setup. The samples are taken at L1, L2, L3 and L4 locations. (B) Schematic representation of
the Malvern master Sizer 2000 for particle size measurement. (C) Schematic representation of the FLOCCAM setup.
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Mietta et al., 2009). Figure 3C shows a schematic representation

of the equipment. The PSD, shape, and settling velocity of the

flocs are calculated from recorded videos of settling flocs in a

settling column using a software package called Safas (MacIver,

2019).

3 Results and discussion

3.1 Distance travelled by plume heads

The 10, 30, and 100 g L−1 illite experiments are displayed

in Figure 4 in terms of the distance traveled by the turbidity

current within the video recording range. When no flocculant

is used, there is no significant difference observed between

experiments conducted in fresh and saltwater and the

turbidity current without added flocculant reached the lock

exchange’s end in all experiments. The current’s head velocity

scales as the square root of the plume density, as is expected

(Huppert, 2006). Salt induced flocculation time is in the order

of 15–30 min even under ideal shear circumstances (Mietta,

2010). Therefore, no significant effect was observed over the

experimental period of the current study (<1 min). Similar

results were obtained for both 10 and 30 g L−1 experiments

done with ACCZ (see Figure 5).

Due to the effect of flocculation, the distance traveled in

saltwater experiments with flocculant for all clay concentrations

was reduced considerably. Figures 4, 5 show results for the

experiments 0.75 mg/g flocculant where the sediment plume

did not reach the lock exchange’s endpoint and settled inside

FIGURE 4
Change in distance as a function of time for 10 g L−1 (A), 30 g L−1 (B) and 100 g L−1 (C) of illite. Black lines represent experiments done in
freshwater and red lines show experiments done in saltwater. Only results with 0.75 mg g−1 of flocculant are shown in these figures.

FIGURE 5
Change in distance as a function of time for 10 g L−1 (A) and 30 g L−1 (B) of ACCZ (Ali et al., 2022). Black lines represent experiments done in
freshwater and red lines show experiments done in saltwater. Only results with 0.75 mg g−1 of flocculant are shown in these figures.
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the outflow section. For the experiment done in freshwater with

flocculant, the sediment plume reached the end of the outflow

section or nearly half of the outflow section. The weak

flocculation in freshwater accounts for this difference between

fresh and saline water experiments. Even though both clay and

flocculant have a negative charge, making flocculation difficult,

freshwater contains enough cations to promote flocculation

(Ibanez Sanz, 2018). The cation concentration in saltwater

promotes flocculation, especially as the cation chosen (Ca2+) is

divalent (Shakeel et al., 2020; Chassagne, 2020). For 100 g L−1

experiment with illite, it is observed that the system did not

properly flocculate as in all cases the sediment plume reached the

end of the outflow section with the same speed, and flocculation

had little to no effect on macroscopic scale.

The results using 0.25 mg g−1 flocculant are given in

(Supplementary Figures S1, S2), and in all cases (illite or

ACCZ), the sediment plume reached the end of outflow

section except for one case (10 g L−1 ACCZ in saltwater). The

results in the 0.25 mg g−1 case hint that the low concentration of

flocculant has less impact on the plume propagation.

FIGURE 6
Hydrodynamic diameter of illite flocs for 100 g L−1 experiments at L1-L4 locations of the lock exchange. Figure (A), results obtained by SLS and
figure (B), results obtained from FLOCCAM. Black and red lines represent experiments done in freshwater and saltwater, respectively. Only results
with 0.75 mg g−1 of flocculant are shown.

FIGURE 7
Hydrodynamic diameter of ACCZ flocs for 30 g L−1 experiments at L1-L4 locations of the lock exchange (Ali et al., 2022). Figure (A), results
obtained by SLS and figure (B), results obtained from FLOCCAM. Black and red lines represent experiments done in freshwater and saltwater,
respectively. Only results with 0.75 mg g−1 of flocculant are shown.
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FIGURE 8
Figures (A,D) snapshots of the videos; Figures (B,E): Settling velocity and particle size analysis of the samples collected at location L1 and
L4 during lock exchange experiments with 100 g L−1 illite and 0.75 mg g−1 of flocculant in freshwater. Settling velocity is derived as a function of
equivalent spherical diameter, with diagonal dashed lines representing the contours of effective density calculated by using Stokes equation (from
left to right: 1600, 160, 16 (kgm−3)). Figures (C,F) show floc size range and mean settling velocity.

FIGURE 9
Figures (A,D) snapshots of the videos; Figures (B,E): Settling velocity and particle size analysis of the samples collected at location L1 and
L4 during lock exchange experiments with 100 g L−1 illite and 0.75 mg g−1 of flocculant in saltwater. Settling velocity is derived as a function of
equivalent spherical diameter, with diagonal dashed lines representing the contours of effective density calculated by using Stokes equation (from
left to right: 1600, 160, 16 (kgm−3)). Figures (C,F) show floc size range and mean settling velocity.
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3.2 Mean floc size as function of travel
distance

Figure 6 (Illite) and Figure 7ACCZ show the mean floc size

of the samples taken at locations L1–L4. No flocculation

occurred without the flocculant in both fresh and saltwater,

as for each location, the d50 was found equal to the mean clay

size. For both experiments with illite, d50 was found to be

around 5 μm at all locations, whereas for experiment with

ACCZ, it was found to be between 12 and 20 µm. These sizes

are in line with the d50 found by SLS (5 and 10–20 µm

respectively, see section 2.1). The bars given in Figure 6

and Figure 7A represent the standard deviation around the

mean floc size based on SLS device, whereas the box plots in

Figure 6 and Figure 7B represent the median particle sizes

with interquartile range and outliers based on FLOCCAM. In

the presence of flocculant, it was found that freshwater flocs

were larger than saltwater flocs. Because of the electrostatic

repulsion between the charged groups on the polymeric

flocculant backbones, the flocculant in freshwater is less

coiled in fresh than in salt water (Chassagne, 2020). As a

result of shear during propagation, it is observed that the d50
of flocs created in saltwater with illite clay reduced as function

of travel distance. This difference is not observed for the

ACCZ clay (Figure 6 and Figure 7).

The results obtained with 0.25 mg g−1 flocculant are shown in

(Supplementary Figures S3, S4), where the difference in flocs size

in fresh and salt water is not significant.

3.3 Settling velocity distributions as
function of size and travel distance

Figures 8, 9 show the settling velocities and particle size for

100 g L−1 illite with 0.75 mg g−1 flocculant at L1 and L4 for

freshwater and saltwater, respectively. Figures 10, 11 show the

settling velocities and particle size for 30 g L−1 ACCZ with

0.75 mg g−1 of flocculant at sites L1 and L4 (for freshwater)

and L1 and L2 (for saltwater), respectively. At the point when

the turbidity current settles down, on average the settling

velocities in freshwater are smaller than in saltwater. This is

due to the fact that the flocculant is less coiled in freshwater

than in saltwater (Chassagne, 2020), where flocs are denser

and have a faster settling velocity. This was confirmed by the

video images (see Figure 8 and Figures 9A,D). The settling

velocities increased in the case of saltwater for 100 g L−1 illite

between L1 and L4, as a result of coiling, flocs got compacted

right after opening the lock (Figure 9). In the case of 30 g L−1

ACCZ, the settling behavior and floc size for the saltwater

sample did not change between L1 and L2, indicating that

FIGURE 10
Figures (A,D) snapshots of the videos; Figures (B,E): Settling velocity and particle size analysis of the samples collected at location L1 and
L4 during lock exchange experiments with 30 g L−1 ACCZ and 0.75 mg g−1 of flocculant in freshwater (Ali et al., 2022). Settling velocity is derived as a
function of equivalent spherical diameter, with diagonal dashed lines representing the contours of effective density calculated by using Stokes
equation (from left to right: 1600, 160, 16 (kgm−3)). Figures (C,F) show floc size range and mean settling velocity.
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optimum flocculation (i.e. flocs cannot grow any further) has

occurred in the mixing tank. The bridging between anionic

polyelectrolyte and clay is complete because of saltwater

cations. The flocculation in the mixing tank for the

freshwater sample is most likely incomplete due to the

scarcity of cations. Flocs, clay particles, and unbounded

flocculant are released when the lock is opened. Freshwater

containing cations comes into contact with the clay particles

and unbounded flocculant. Because polyelectrolyte

flocculation is quick (on the scale of seconds) (Ibanez Sanz,

2018; Shakeel et al., 2020; Ali and Chassagne, 2022), these

cations can act as a binding agent, inducing flocculation. As a

result, flocs form, resulting in a particle size change, as shown

between L1 and L4. Several flocs formed during the

propagation of the sediment plume in 30 g L−1 ACCZ

experiment in freshwater are observed to be elongated,

resulting in flocs with larger equivalent diameters (shown

by the red circle in Figure 10D). Because they are formed

of low density uncoiled flocculant with some clay linked to it,

these big flocs have a very slow settling velocity. These flocs

were unable to catch more clay particles and coil due to their

limited residence period in the water column. Coiling of flocs

happens over longer periods of time when turbulent shear

causes the polyelectrolyte’s dangling ends to fall onto the floc.

The flocs get rounder and denser as a result (Shakeel et al.,

2020). Our experiments show that the amount of flocculant

needed correlates to clay concentration. In addition, the

results obtained with 30 g L−1 with 0.75 mg g−1 combination

results in a turbidity current that settles faster than other

combinations. The results with 0.25 mg g−1 of flocculant are

shown in Supplementary Figures S5-S8.

4 Conclusion

Understanding the changes in the propagation of turbidity

currents created by human interventions, such as dredging,

trenching and deep-sea mining is crucial for anticipating,

predicting and where possible reducing the related

environmental impact. Understanding is also crucial for

engineers to know in what way the equipment and

processes could be optimized to minimize plume

dispersion. Previous studies have demonstrated that the

flocculation of organic matter to clay occurs in less than

1 min in series of laboratory experiments. In this work, the

influence of flocculation on turbidity currents was studied

inside a lock exchange, where the current propagation time

was of the same order of magnitude. It was shown that in the

presence of an organic flocculating agent (anionic

polyelectrolyte) flocculation was promoted. It was found

FIGURE 11
Figures (A,D) snapshots of the videos; Figures (B,E): Settling velocity and particle size analysis of the samples collected at location L1 and
L2 during lock exchange experiments with 30 g L−1 ACCZ and 0.75 mg g−1 of flocculant in saltwater (Ali et al., 2022). Settling velocity is derived as a
function of equivalent spherical diameter, with diagonal dashed lines representing the contours of effective density calculated by using Stokes
equation (from left to right: 1600, 160, 16 (kgm−3)). Figures (C,F) show floc size range and mean settling velocity.
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that in both fresh and saltwater, flocs can be formed in a

matter of seconds with the flocculant used in this study. As a

result, the sediment plume was able to settle more quickly. The

synthetic flocculant used is a proxy for organic matter found

in marine environments (usually also negatively charged). It

remains to be investigated if the type of flocculant has a

significant impact on flocculation. This will be possible

once the organic matter found in our area of interest (i.e.

the Clarion-Clipperton Zone) has been fully characterized.

The results presented in this article are generic, thus apply to a

wide range of turbidity currents. We demonstrated that

flocculation may occur even in freshwater, where

flocculation is supposed to be difficult because of the

electrostatic repulsion between organic matter and clay.

This means that flocculation should be accounted for in

turbidity current models. The obtained results demonstrate

that flocculation is a relevant phenomenon that may already

be contributing in the near field. Building experience with

more conventional sediments allows us to better understand

and design experiments with real CCZ sediment, which is the

next step.
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