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Abstract

Road network maps facilitate a great number of applications in our everyday life. However, their auto-
matic creation is a difficult task, and so far, published methodologies cannot provide reliable solutions.
The common and most recent approach is to design a road detection algorithm from remote sensing im-
agery based on a Convolutional Neural Network (CNN), followed by a result refinement post-processing
step. In this project I proposed a deep learning model that utilized the Multi-Task Learning (MTL) tech-
nique to improve the performance of the road detection task by incorporating prior knowledge con-
straints. MTL is a mechanism whose objective is to improve a model’s generalization performance by
exploiting information retrieved from the training signals of related tasks as an inductive bias, and, as
its name suggests, solve multiple tasks simultaneously. Carefully selecting which tasks will be jointly
solved favors the preservation of specific properties of the target object, in this case, the road network.
My proposed model is a Multi-Task Learning U-Net with a ResNet34 encoder, pre-trained on the Im-
ageNet dataset, that solves for the tasks of Road Detection Learning, Road Orientation Learning, and
Road Intersection Learning. Combining the capabilities of the U-Net model, the ResNet encoder and
the constrained MTL mechanism, my model achieved better performance both in terms of image seg-
mentation and topology preservation against the baseline single-task solving model. The project was
based on the publicly available SpaceNet Roads Dataset.
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1 Introduction

1.1 Motivation

The road network is the core and essential mode of transportation in our society. The possession of
detailed and reliable digital road network datasets can support a wide number of applications, such
as traffic management, road monitoring, vehicle navigation, urban planning, updating of geographic
information systems, crisis response, disaster management and many more.

Digital road network datasets (example shown in Figure 1.1) are usually created by manual extraction
[50]. It is a time consuming, expensive and labor-intensive procedure. As a consequence, it is unfeasible
to satisfy the needs of modern times with manual work, given the popularity of location-based services
and applications. In order for those activities to maintain their continuous functionality, an automated
method is needed to acquire and update digital datasets of the dynamic road network structure.

Technological advances in the field of remote sensing offer the opportunity for spatial information ex-
traction from an abundance of high-resolution image data that faithfully depict the earth’s surface [58].
Although scientists have been trying to solve the problem of road detection for more than 30 years
now [3], there hasn’t been a flawless software that can generalize the desired output under all different
situations that occur in the built environment. The reason is that road networks are intricate structures.
Their observation in remote sensing imagery can be either locally blocked by a variety of objects, like
trees, buildings, cars and other street furniture or confused by a neighboring location that has similar
texture. Furthermore, their intensity pixel values can vary due to the difference in atmospheric condi-
tions, seasonality of data acquisition and shadows of objects. A plethora of factors and their interrelation
has to be taken into consideration to create a robust road detection algorithm.

Figure 1.1: Road map of region Amersfoort, Netherlands
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1 Introduction

Recently, as a state-of-the-art machine learning technique, deep learning [42] made a major break-
through in conventional computer vision tasks such as image classification, object detection, semantic
segmentation and instance segmentation [78, 56, 28, 57, 24, 25, 71, 89, 12, 11, 10, 37, 59, 64, 55]. As a
result, a large number of researchers started using deep learning techniques to solve remote sensing
problems [48], including the road detection task [81]. Because of its supremacy of modeling complex
nonlinear relationships between variables, deep learning surpassed conventional road detection algo-
rithms [75]. However, the entire automation of the road extraction procedure is still not feasible. Ex-
tracted road networks using deep learning techniques frequently contain noise, artifacts, isolated road
segments or miss information, making them inadequate for real-world applications [5].

Figure 1.2: Semantic segmentation on an image from the Cityscapes dataset

Road extraction using deep learning techniques and remote sensing data is usually posed as either a
semantic segmentation task (Figure 1.2), where each pixel of a remote sensing image is classified ac-
cording to the class that it belongs -road or non-road-, or as a road centerline vector graph extraction,
both followed by post-processing steps to refine their results. The main advantage of semantic segmen-
tation approaches is the preservation of geometric properties of the road network, since every classified
road image pixel corresponds to a specific spatial extent, while the main advantage of vector graph ex-
traction approaches is the preservation of topological properties, owing to their design to preserve road
connectivity. Apart from the aforementioned difficulties and properties of the road network structure
that complicate the procedure of road detection, inaccuracies using deep learning techniques appear for
two more, but very important reasons. First, because topology is generally ignored during the pixel-
wise semantic segmentation task, meaning that every pixel is handled individually and second, be-
cause ground truth or reference data used to train the deep learning models contain inaccuracies (label
scarcity, omission, noise) [67, 53], which unfortunately confuse neural networks into making incorrect
estimations.

Road networks are structures for which prior knowledge exists. For example, it is known that roads
have locally consistent width, concrete as their surface material and are continuous (i.e. any location of
the network should be able to be reached from any other location of the network). My focus on this study
is to utilize as much prior knowledge or as many properties of the road network as possible meliorating
current road detection algorithms. The collection of each property is equally important and essential for
all applications. When combined, they can provide a structured and detailed representation of the road
network, useful for safe localization and movement planning. In order to achieve that, I created a novel
deep learning model inspired by the MTL mechasnism [46], that improves the task of road detection by
sharing representations among related tasks and incorporating constraints. Enriching the amount of
context that a deep learning model receives for its training leads to an improvement of precedent road
detection results.

2



1.2 Problem Formulation

1.2 Problem Formulation

Before introducing more difficult concepts, the definition of the road detection task is given, allowing the
reader to understand the fundamental concept and aim of this work. Therefore, let I be a remote sensing
image, either a satellite or an aerial image (usually an RGB color image), and M its pairing road map
image. M(i, j) is equal to 1 whenever I(i, j) corresponds to a road pixel and 0 otherwise. The purpose of
a semantic segmentation deep learning model designed to detect the road network locations in a remote
sensing image is to compute Wk, a set of learnable 2-D filters of size k, or else, a set of weights, that define
the transformation UWk : I → M (Figure 1.3). Deep learning models are not infallible. The output of a
deep learning model computes a transformation U′Wk

: I → M′, where W ′k 6= Wk and M 6= M′. M′ is
the prediction probability matrix, or otherwise, the model’s output. During the procedure of a model’s
training, the goal is to minimize the differences between M and M′ to obtain the optimal road map.

Figure 1.3: Transformation of a remote sensing image to a road map image

As stated in Section 1.1, two main categories of road detection methods exist. The technique de-
scribed above belongs to the category of semantic segmentation approaches. The second category
involves road centerline vector graph extraction approaches. Although many methods from the sec-
ond cateogory exist, in the majority of published studies, researchers first exploited the capabilities of
semantic segmentation, retrieving a byproduct, that would then be used by vector graph extraction
techniques [77, 4, 44, 83, 49], finally yielding a vector graph that depicts the road network. Therefore,
since semantic segmentation is the cornerstone of most studies, I decided to focus my research primarily
on developing a novel model that utilizes the method of semantic segmentation and investigate how to
improve its capabilities.

Apart from what it is shown in Figure 1.3, there are other ways to represent the road network with an
image. For instance, the width of the road could be wider or narrower (e.g. only depicting its centerline),
and could be represented with a constant or a non-constant width. A common and successful approach
in most of the related work is to use a constant two meter wide road representation [21], mainly due to
the lack of highly detailed ground truth for the whole extent of the road network and the differences
that occur in every region. In my project I followed the same approach. The road network can also
be represented with a vector graph, mainly consisting of line segments and nodes. A vector graph
representation is outside the scope of this study.
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1 Introduction

1.3 Research Questions

The goal of this research is to examine how road network prior knowledge can assist the remote sens-
ing task of road detection using deep learning techniques. In order to do that, a new deep learning
model was designed, following the MTL paradigm, a system able to exchange and leverage additional
information between related sub-tasks, thereby benefiting from the capabilities of each sub-task.

The main research question for this study is:

To which extent is it possible to utilize road properties to improve road detection from remote
sensing imagery using deep learning techniques?

Underlying elements of the main research question are highlighted by the following sub-questions:

• Can prior knowledge be incorporated as a constraint into a deep learning model? If yes, how?

• What are the limitations of a model that combines concepts of different models into one, unified model?

• Can prior knowledge improve road detection?

Figure 1.4: Example of Road Detection with Semantic Segmentation over a region in the Netherlands

1.4 Thesis Overview

This thesis consists of five chapters. Chapter 2 is a record of scientific research related to the subject; in
particular, road detection from remote sensing imagery -satellite or aerial imagery- using conventional
methods or deep learning techniques and recently published work involving MTL deep learning models
applied in various domains. Chapter 3 contains the proposed methodology. That includes explanations
about the new Multi-Task Learning model and its building blocks, the creation of the learning tasks and
the task-weighting scheme that was used. In Chapter 4, results derived from multiple experiments are
presented and then used to assess the capabilities and performance of the proposed model. The thesis
concludes with a discussion in Chapter 5, where research questions are answered and recommendations
for future work are given.
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2 Related work

As pointed out in the previous chapter, numerous algorithms have been developed in the past years to
extract road networks from remote sensing imagery. In the first section of the current chapter, conven-
tional methods for road extraction, as well as previous studies which explored deep learning techniques
and are the current state of knowledge on the topic of road detection, are presented. Next, the concept
of MTL is defined, accompanied with study projects that exploited it in various fields.

2.1 Road Detection

Classical methods for road detection can be classified into classification-based methods, knowledge-
based methods, mathematical morphology methods, active contour model methods, and dynamic pro-
gramming approaches. The scope of the literature review was confined only to the most referred works
that utilized conventional methods and was more focused on previous studies using deep learning tech-
niques, as the effectiveness and superiority of deep learning over traditional methods have already been
demonstrated. For a more complete review of conventional road extraction methods, read [75].

2.1.1 Conventional Methods

Song et al. [68] created a two-step road extraction method. During the first stage, a support-vector
machine was used to do a binary classification of the input image. The two output classes were the
road class and the non-road class. During the second stage, a region growing algorithm was used to
segment the road pixels to geometrically homogeneous objects based on a similarity criterion, giving
higher importance to the objects’ shapes rather than their spectral information. Post-processing steps of
thresholding and thinning operations were used to refine the end results. Zhang et al. [85] focused on
solving the misclassification issue of roads and parking lots by proposing an integrated approach that
first segments the input images using a traditional k-means clustering algorithm and then automatically
identifies the road cluster using a fuzzy logic classifier. A post-processing step to refine the result was
applied here as well. They used shape descriptors of angular texture signature to differentiate objects
that were mistakenly classified as road objects. Wegner et al. [76] used higher-order conditional random
fields to reconstruct the road network by first segmenting overhead images into superpixels, and then
identifying paths to connect these superpixels (Figure 2.1).

Figure 2.1: From Left to Right: aerial image of Graz, aerial image overlaid with the superpixel segmen-
tation result, the density image of network cliques and the density image of junction cliques. The red
color depicts higher density values and blue low density values. Retrieved from Wegner et al. [76]
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2 Related work

Das et al. [18] also created a multi-stage algorithm to extract roads from remote sensing images. They
exploited two principal features of roads, namely, distinct spectral contrast and locally linear trajectory,
and utilized multiple techniques, like the Medial-Axis-Transformation, to refine their end result. Hu et
al. [32] presented another two-step approach. They detect road footprints with a shape classification
technique and combine them into a road tree, until no other candidate road footprints can be added. Af-
terwards, using a Bayes decision model, paths leaking outside of the road network are pruned. Laptev
et al. [41] proposed a road detection model, only with a few parameters, based on the multi-scale detec-
tion of the road network, assisted by edge extraction using snakes. The output is created after extracting
road intersections and combining them into a functional network (Figure 2.2). Hinz et al. [31] proposed a
road detection technique for urban areas, integrating knowledge about the road network utilizing scale-
dependent models. The implemented a strategy that automatically decides when and how context and
road knowledge are optimally exploited.

Figure 2.2: Road Intersection extraction. From Left to Right: Selection of starting hypothesis, approxi-
mation of the intersection, verification of geometry and connectivity, re-construction. Retrieved from
Laptev et al. [41]

2.1.2 Deep Learning Methods

Cheng et al. [14] created a cascaded end-to-end CNN that both detects and extracts road center-lines.
Their method is divided into two networks, one dealing with the road detection and one with the center-
line extraction exploiting information collected during the inferring process of the first network. In
the final step, a thinning algorithm is applied to refine the extracted center-line network. Mattyus et
al. [49] created a method that improves road connectivity with post-processing steps after the prediction
stage, which is based on a CNN segmentation, applying heuristics to missing connections or isolated
road segments. Although it is a method that produces excellent results when the prediction output is
accurate, it doesn’t perform well when it has many errors, which is the usual case due to occlusion,
shadows and reasons explained above (Figure 2.3).
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2.1 Road Detection

Figure 2.3: Connection hypotheses generated by the A∗ search during the post-processing step in Deep-
RoadMapper. Retrieved from Mattyus et al. [49]

Zhang et al. [86] created a Deep Residual U-Net model, by extending the U-Net architecture [59], adding
short-cut connections between the CNN layers, producing a semantic segmentation output depicting
the road network. Mosinska et al. [54] proposed a topology-aware loss function to assist the regular
pixel-wise loss function (e.g. cross entropy loss), which is incapable of maintaining topological struc-
tures. Instead of creating a function that computes and compares topology, they used the response of
chosen filters from a pre-trained VGG network [66] to construct it. The chosen filters favor elongated
shapes, a property that decreases broken connections. However, it is very difficult to generalize this
method to more complicated scenes with connections of random shapes and, even when their loss func-
tion is zeroed, their segmentation does not guarantee optimal topology. Alshehhi et al. [2] created a
modified patch-based CNN architecture. Their model classifies every image pixel by using the sliding
window technique, leading to direct extraction of roads and buildings. Even though CNN-based model
perform adequately, the inefficiency of the sliding window approach makes them unsuitable for the
road segmentation task. Bastani et al. [4] created an algorithm that directly constructs a graph repre-
sentation of the road network using an iterative search procedure controlled by a CNN-based decision
function. The construction of the road network graph starts from a seed location known to be on the
road network, and sequential points are added according to the search procedure. The decision func-
tion is invoked at each step of the search to figure out the next best action to take: either add and walk
towards a new node to the road network, or return to the previous node and continue from there. Their
algorithm tends to fail at complex road intersections and on roads with high length or curvature. Once
the CNN-based decision function makes a mistake, it is really hard to correct it and proceed with a valid
road vector graph (Figure 2.4).

Figure 2.4: Exploring a junction with a CNN-based decision function. Retrieved from Bastani et al. [4]
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Costea et al. [43] designed a three-step process to extract the road network in remote sensing images. In
the first step, they combined multiple U-Nets to extract the initial road results. Then, they used a CNN to
regain the details of the output results from the first step. In the final and third step, they refined isolated
road segments by reasoning to improve the road extraction accuracy. Another study that utilized the U-
Net architecture is the work of Sun et al. [69], who created a model using stacked U-Nets with multiple
outputs. They also incorporated a hybrid loss function to confront the issue of unbalanced classes of
training data. To improve performance, they also implemented post-processing steps, like shortest path
search with hierarchical thresholds. Zhou et al. [88] designed a semantic segmentation model, called
D-LinkNet, based on an encoder-decoder structure, dilated convolution to enlarge the receptive field
of the feature points, maintaining resolution and pre-trained encoder, especially for the road detection
task (Figure 2.5). The D-LinkNet was the winner of the DeepGlobe 2018 road challenge [19].

Figure 2.5: The D-LinkNet architecture. Retrieved from Zhou et al. [88]

Ventura et al. [73] designed a similar method to that of [4]. They constructed an iterative graph construc-
tion approach that adds segments to the network via a series of steps in a search process. On every step,
a CNN determines whether a new node should be connected with the current graph and towards which
direction. Both methods, [4] and [73], can improve connectivity despite their weaknesses, but they are
also an order of magnitude slower than semantic segmentation approaches. Buslaev et al. [8] proposed
a fully convolutional neural network consisting of a ResNet-34 pre-trained on ImageNet encoder and
a decoder similar to that from a vanilla U-Net model. Additionally, they designed a loss function that
simultaneously considers binary cross entropy loss and intersection over union (IoU) loss to improve
their predictions, applied data augmentation and emphasized the importance of high quality ground
truth masks in order to reach high prediction accuracy (Figure 2.6).

Li et al. [44] proposed PolyMapper, an algorithm for direct extraction of topological maps as a col-
lection of building footprints and roads, using raw aerial imagery. They combined the principle of a
maze solving algorithm, commonly known as the left-hand or right-hand rule, with a CNN-RNN deep
learning model that first detects the points of interest, like intersection points or seed points, and then
sequentially connects them according to their conditional probability distribution to belong to the road
network. Batra et al. [5] developed a two stage road detection method to enhance the connectivity
of the extracted road network. During the first stage, a joint learning module by stacking multi-branch
encoder-decoder structure is implemented, aiming to allow the flow of information between two related
tasks, those of per-pixel road segmentation and road orientation. During the second stage, a connectiv-
ity refinement model is applied, to connect small gaps and remove false positive occurrences.
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2.1 Road Detection

Figure 2.6: A Fully Convolutional Segmentation network. It follows a U-Net like architecture with a
pre-trained ResNet-34 encoder. Each box in the figure corresponds to a multi-channel feature map.
Retrieved from Buslaev et al. [8]

Yang et al. [82] created the RCNN unit and integrated it into the U-Net architecture, forming the RCN-
NUNet. This unit keeps detailed low-level spatial characteristics and improves inaccuracies caused by
occlusion, complex background or noise. Wei et al. [77] also created a road network graph extraction
that benefited from both segmentation and tracing methods to achieve better results. They proposed
multiple starting points to avoid loss of connectivity in unreached areas. He et al. [27] improved road
extraction by incorporating atrous spatial pyramid pooling (ASPP) with an encoder-decoder network.
ASPP has the ability to extract multi-scale features, and, in combination with the Encoder-Decoder ar-
chitecture, it can extract detailed features. They additionally implemented a structural similarity (SSIM)
loss function and metric (Figure 2.7). Xu et al. [80] created a complete pipeline to extract a road network
vector graph from satellite imagery of urban locations. They based their method on an architecture sim-
ilar to the SegNeXt architecture [23], added a novel loss function and finally, a post-processing step to
vectorize their segmentation result. Their method performs on par with other vector graph extraction
methods.

Figure 2.7: The improved U-net with an integrated atrous spatial pyramid pooling (ASPP). Retrieved
from He et al. [27]
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2.2 Multi-Task Learning

In common machine learning problems, the aim is to learn one task at a time and optimize for a partic-
ular metric. By doing so, information contained in the training signals of other tasks drawn from the
same domain is neglected. As mentioned in Chapter 1, the goal of this project is to utilize as much prior
knowledge as possible to assist the remote sensing task of road detection. One technique to accomplish
that is the MTL approach, that uses information retrieved from related tasks to improve generalization,
transferring knowledge as an inductive bias. This is achieved by learning tasks in parallel, using a
shared representation. Sharing knowledge obtained for each task can assist other tasks improve their
performance [9].

MTL is used in many disciplines, such as computer vision [46, 38, 52], natural language processing [47,
17], speech processing [79, 63] and reinforcement learning [36, 62]. There are two main ways of building
a MTL system, hard parameter sharing and soft parameter sharing. In a hard parameter sharing model,
hidden layers are shared across all tasks, but the model maintains separate task-specific output layers
(e.g. fully-connected layers), as shown in Figure 2.8a. The most important limitation of this technique is
that most often the final layers are responsible for learning representations that have to satisfy the needs
of every participating task, which is rather difficult to optimize [60]. In a typical soft parameter sharing
network each task has its own model with its own parameters, as shown in figure 2.8b. Representations
are shared across different tasks with direct connections. The biggest limitation of this architecture is
that the model’s complexity grows linearly by increasing the number of participating tasks, leading to
a less computationally efficient model [39]. Apart from improving generalization, MTL models have
additional benefits. Because of their design, they reduce the amount of data required for training (all
participating tasks use the same input), they can solve multiple tasks at once and, finally, they offer the
possibility to avoid over-fitting [6].

(a) A Hard parameter sharing example model. (b) A Soft parameter sharing example model.

Figure 2.8: Examples of Multi-Task Learning architectures

Although the fundamental concept of MTL models offers the possibility to achieve higher performance, it
also comes with a cost. In a common MTL architecture, the objective loss function of every task is added
into a unified loss function, which is optimized for the whole network, considering all participating
tasks equal components of the network with a linear combination of each loss. Furthermore, especially
in soft parameter sharing networks, it is difficult to understand which layers or which features should
be shared and which are harmful for the network’s performance. In order to overcome these issues,
weights can be applied to the individual losses to distinguish which tasks are more important and
reduce the amount a task influences the network to update the gradients towards a false direction or a
representation learning scheme can be constructed that decides which layers won’t compete each other
and will contribute to a better outcome. Selecting these weights or constructing such a scheme can
be difficult and expensive [52] (Figure 2.9). One of the early studies is the work of Kendall et al. [16],
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Figure 2.9: Cross-stitch networks for solving two tasks. Retrieved from Misra et al. [52]

who weighed the losses of a MTL model according to the homoscedastic uncertainty of each task (Figure
2.10).

A different weighting approach is the work of Chen et al. [13]. They chose to automatically balance the
procedure of training by dynamically tuning gradient magnitudes. In other direction, Guo et al. [26]
designed a method where more difficult tasks were prioritized. Zhao et al. [87] noticed that when two
participating tasks in a MTL model have weak relevance, they might divert each other during parallel
training and lead to a performance decline. As a solution they proposed a general modulation module
to encourage feature sharing of related tasks and discourage the learning of unrelated tasks.

Figure 2.10: Multi-Task deep learning model with a Multi-Task Loss that combines multiple regression
and classification loss functions. Retrieved from Cipolla et al. [16]

11





3 Methodology

Road network detection from remote sensing imagery is challenging due to the fact that road features
visible in imagery are affected by multiple factors, such as the image collecting sensor type, image
spectral and spatial resolution, weather conditions, light variations, landscape characteristics and many
more. As a consequence, road networks are too difficult to be retrieved or modeled using a general
procedural model. In order to build a system that reliably detects road networks, it is essential to analyze
and understand what is considered as a road feature in remote sensing imagery.

In the work of Vosselman and Knecht [74], it is explained that road features in remote sensing imagery
can be divided into 4 categories. The first category describes the geometric features. Roads are depicted
as elongated elements with consistent width, that can only gradually change and their intersections
have predefined geometric shapes, enforcing road construction rules. Another geometric road feature
or property is the ratio between the road length and width, which is significantly large. The second
category describes the photometric or spectral features. Road pixels have mainly gray intensity values
(in urban environments, where dust roads are not present), are also consistent and can change slowly.
Their edge gradient is most frequently larger, especially when adjacent non-road areas or objects are
vegetation, cars and so on. The third category describes topological road properties. Generally, a road
network consists of multiple road objects that interconnect and the transition from any point within the
road network to another is feasible or not interrupted. The fourth and last category describes the texture
features, which in image processing are considered patterns in an image. Translated into road detection,
it means identifying the spatial distribution of road pixels in an area.

Many road detection algorithms use more than just one road feature in their implementation (see Chap-
ter 2). Despite this, shadows, occlusion, difference in lighting and a plethora of other reasons impede the
identification of the aforementioned road properties, making the task of road detection even more diffi-
cult (Figure 3.1). The focus of this study is to utilize as many road features as possible to create a more
efficient road detection algorithm and propose ideas for further improvements in future work. In this
chapter, the proposed deep learning model for detecting roads in remote sensing imagery is illustrated,
together with its building blocks.

Figure 3.1: Landscapes with ambiguous semantics where road detection is difficult
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3 Methodology

3.1 Building blocks of Proposed Model

As mentioned both in Chapters 1 and 2, the proposed methodology of this research project includes the
construction of a MTL model to solve the task of road network detection. Therefore, a model architecture
is needed to be used as a basis, able to take advantage of the profitable capabilities of the MTL technique.
In the following sections, a detailed description of the U-Net model with a ResNet34 encoder is given,
which was chosen as the cornerstone model of this project due to its proven effectiveness. Further ex-
planations and details about the model’s capabilities and why it was selected are given in the following
sections.

3.1.1 U-Net Architecture

The U-Net is a CNN created for biomedical imagery segmentation at the Computer Science Department
of the University of Freiburg, Germany [59], and together with its variants, it is considered a standard
model for semantic segmentation tasks. The U-Net architecture consists of a contracting path that cap-
tures context and a symmetric expanding path that enables precise localization. This sequence creates
a u-shaped graph, which was the inspiration for the model’s naming. The contracting or downsam-
pling path is a CNN with repeated convolutions, carried on by a Rectified Linear Unit (ReLU) and a max
pooling layer. During the contracting or downsampling path, spatial information is lessened and fea-
ture information is risen. The expansive or up-sampling path fuses information through a succession of
up-convolutions and concatenations with high-resolution features from the corresponding levels of the
contracting path.

Figure 3.2: An example U-net model. Retrieved from Ronneberger et al. [59]

3.1.2 Residual Block

Neural networks with many hidden layers are capable of achieving higher performance on a chosen
task than shallower networks. However, they are more complex and difficult to train. To address this
problem, He et al. [29] introduced a deep residual learning framework, consisting of many stacked
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residual blocks and won the 1st place on the ILSVRC 2015 classification task [61]. Each residual block
can be expressed as a sequence of the following equations:

yl = h(xl) + F(xl , Wl) (3.1)

xl+1 = f (yl) (3.2)

where xl and xl+1 are the input and the output of the l − th block, F is a residual function, h(xl) is an
identity mapping function and f is a ReLU function. The main idea behind this sequence is to learn the
additive residual function F with respect to the h(xl), taking advantage of an identity mapping function
h(xl) = xl . To make this happen, a skip connection or a ’shortcut’ is attached.

The same group of researchers published another paper later that year [30], where they further analyzed
deep residual networks and discovered that information propagation within residual blocks, but also
to the rest of the network becomes easier if both h(xl) and f (yl) are identity mappings. To formulate
an identity mapping f (yl) = yl they considered activation functions ReLU and Batch Normalization
(BN) [35] as the ’pre-activation’ of the weight layers, while traditional techniques considered them as
’post-activation’. As a result they designed a new residual block, shown in Figure 3.3, and achieved
even better results on the ImageNet challenge.

Figure 3.3: Left: original Residual Block. Right: improved Residual Block. Retrieved from He et al. [30]

3.1.3 U-Net with a ResNet34 Encoder

To take advantage of the capabilities of both previous techniques, many researchers replaced convolu-
tions in U-Net on each level with Residual Blocks and achieved greater performance than with plain
U-Net architecture [86]. In this project, I created a U-Net with a ResNet34 encoder as a baseline model.
This network receives an RGB image as input and produces either a binary or a multi-class single-
channel output of the same size. The model’s architecture begins with a convolution with a kernel size
of 7x7 and stride of 2 to decrease the resolution of the input by half, followed by a BN, a ReLU and a
max-pooling layer with a stride of 2. After that, stacked residual blocks execute the down-sampling
path of the network. Each residual block consists of a double sequence of a convolution layer, a BN
layer and a ReLU layer. The decoder part of the network consists of repeating up-sampling and regular
U-Net convolutional blocks without ”local” skip connections, that double the spatial resolution of the
activation’s output and decrease the number of feature channels by half. The final layer consists of a
fully connecting layer with an activation function. Depending on the number of the output classes, it
can either be a sigmoid or a softmax activation function.
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Figure 3.4: A U-net with a ResNet34 encoder. Each rectangle portrays a multi-channel feature map.
The height of each rectangle symbolizes the resolution of a feature map, while its width the number
of channels (also written bellow the rectangle). The pink arrows represent skip-connections, where
information is shared from the encoder to the corresponding decoder level.

This network is efficient for numerous reasons. First, all convolutional operations are operated with a
3x3 filter and with the SAME padding, keeping the size of the feature maps the same at the same levels
of the contracting and corresponding expanding path. The SAME padding boundary information is
preserved and more convolutions can be added. Furthermore, because the feature size remains the same
at a specific level for both the down-sampling and up-sampling paths, there is no need for cropping of
the feature map before concatenating, and hence, no information is lost. Apart from the ”long” skip
connections between every level of contracting and expanding paths, ”local” skip connections between
convolutions on each level assist on receiving smooth loss curves and avoid gradient disappearance or
explosion, like in the work of He et al. [30].

3.2 Proposed model: Multi-Task U-Net with a ResNet34 Encoder

In recent years, the development of deep learning and CNN achieved great performance in the field of
computer vision [70, 33]. The common approach is to construct a neural network aiming to solve for a
particular task using a case-specific architecture that usually cannot generalize good results under dif-
ferent circumstances. However, there are tasks, like visual scene understanding, that require outputs of
more than just one network to accomplish that. MTL is a machine learning technique that solves multi-
ple tasks simultaneously and overcomes this limitation, making it a rather popular technique in recent
years. The second reason why it is useful is that it often achieves higher performance on a particular
task, than regular single-task solving networks. This is happening because of the intrinsic dependencies
of related tasks that are shared during training and operate as an inductive bias (see Chapter 2).

This study explores the usefulness of MTL to solve the problem of road network detection making good
use of its second advantage. Therefore, a MTL model was constructed, using the neural network de-
scribed in 3.1.3 as a building block model. The proposed model is a Multi-Task U-Net with a ResNet34
Encoder, able to solve 2, 3 or 4 tasks simultaneously. The architecture is similar to the U-Net with a
ResNet34 Encoder until the beginning of the decoder path, where it splits into multiple branches ac-
cording to the number of tasks it solves, forming its up-sampling paths. If two tasks are solved in
parallel, then two upsampling branches will be created. If three tasks are solved in parallel, then three
upsampling branches will be created, and so on. Each branch becomes the decoder of the selected task.
To maintain the advantages of the baseline method, long skip connections were attached between the
encoder path and the corresponding levels of the decoder path of every branch to share representa-
tions. The selection of the U-Net with a ResNet34 Encoder model as the building block of the proposed
methodology was based on the fact that a variation of this architecture won the SpaceNet Road Detec-
tion and Routing Challenge [22] and is considered one of the state-of-the-art architectures.

16



3.2 Proposed model: Multi-Task U-Net with a ResNet34 Encoder

C
on

v2
D

 7
x7

3

M
ax

-P
oo

lin
g2

D

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

64 64 64

x 3
C

on
v2

D
 3

x3

C
on

v2
D

 3
x3

128 128

x 4

C
on

v2
D

 3
x3

256 256

x 6

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

512

C
on

v2
D

 3
x3

x 3

512

512256

256 128

128 64
64 64

32

Ac
tiv
at
io
n

C
on

v2
D

 3
x3

116

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

U
pS

am
pl

in
g2

D

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

U
pS

am
pl
in
g2
D

U
pS

am
pl
in
g2
D

U
pS

am
pl

in
g2

D

Skip Connection

In
pu

t I
m

ag
e

512256

256 128

128 64
64 64

32

Ac
tiv
at
io
n

C
on

v2
D

 3
x3

116

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

U
pS

am
pl

in
g2

D

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

C
on

v2
D

 3
x3

U
pS

am
pl
in
g2
D

U
pS

am
pl
in
g2
D

U
pS

am
pl

in
g2

D

64

Sk
ip

 C
on

ne
ct

io
n

Sk
ip

 C
on

ne
ct

io
n

Skip Connection

Sk
ip

 C
on

ne
ct

io
n

Sk
ip

 C
on

ne
ct

io
n

Skip Connection

Skip Connection

Upsampling

Upsam
pling

Downsam
pling

Figure 3.5: An example of the proposed Multi-Task U-Net model with a ResNet34 Encoder that solves
two tasks. Each rectangle portrays a multi-channel feature map. The height of each box symbolizes
the resolution of a feature map, while its width the number of channels (also written next to each
rectangle). The pink arrows represent skip-connections, where information is shared from the shared
encoder to each decoder branch of each task.

Figure 3.6: Illustration of the training procedure of an example of the proposed Multi-Task U-Net model
with a ResNet34 Encoder solving 3 tasks simultaneously
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3 Methodology

3.2.1 Learning Tasks

According to relevant studies, when neural networks are used to detect the road network in remote
sensing imagery, they mainly learn from geometric, photometric and texture features, such as pixel in-
tensity values, road shapes and patterns. The features that are less obvious in an image to learn are the
topological properties, like connectivity. Creating tasks that favor the preservation of topological prop-
erties, in combination with tasks that incorporate geometrical, photometrical and texture features, can
cope with this weakness and boost performance. Therefore, I created four tasks related to the problem of
road detection from the same ground truth graphs of the input dataset and trained numerous combina-
tions of tasks with the proposed MTL model to investigate which combinations enhance the performance
of the road detection task. The created tasks are presented bellow.

• Constant two meter wide Road Detection Learning task (TWO). The selection of the road width is
a controversial topic. Depending on the landscape that an image dataset depicts, the selected road
width can either be too wide to constrain a deep learning model into identifying useful features
or too thin, making it inefficient to noise or pixel variety. A two meter road buffer seems to be
suitable for the purposes of this project, since it satisfies the needs of every city included in the
used dataset (described in section 4.1.1).

Figure 3.7: Constant two meter wide Road Detection Learning task. From Left to Right: satellite image,
corresponding ground truth mask

• Road Orientation Learning task (ORIENTATION). The creation of this task is inspired by the work
of Batra et al. [5]. Learning road orientation poses a connectivity constraint in the encoded rep-
resentation. To create the orientation ground truth masks, the linear strings of the input vector
road network were used, computing a unit vector between every consecutive pair of nodes and
converting it into the polar coordinate system to acquire the orientation angles. The ground truth
masks contain 36 orientation angles (a different orientation class for every 10 degrees turn) and a
background class for the pixels that don’t belong to the surface of the road.

Figure 3.8: Road Orientation Learning task. From Left to Right: satellite image, corresponding ground
truth mask
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3.2 Proposed model: Multi-Task U-Net with a ResNet34 Encoder

• Road Intersection Learning task (INTERSECTION). Road junctions or intersections can improve the
preservation of the road network’s connectivity by forcing the network to learn topologically im-
portant locations. To create the ground truth masks for this task, a sliding window algorithm
was used to identify which locations satisfy the requirement of an intersection, a dead-end or a
perpendicular turn in a 3x3 kernel window.

Figure 3.9: Road Intersection Learning task. From Left to Right: satellite image, corresponding ground
truth mask

• Gaussian Road Mask Learning task (GAUSSIAN). This task helps improve semantic segmentation
accuracy at locations where the road boundaries are ambiguous (e.g, dirt roads blending into
concrete roads) [7]. Ground truth masks are computed by a distance transformation from the
vector reference road data.

Figure 3.10: Gaussian Road Mask Learning task. From Left to Right: satellite image, corresponding
ground truth mask

3.2.2 Multi-Task weighting

In this work, a simple uniform loss weighting scheme was applied. Due to the complexity of the topic
of multi-task loss weighting and the time limitations of the current project, it wasn’t attempted to incor-
porate state-of-the-art task weighting schemes, except for investigating the possibilities to improve the
capabilities of the proposed model, as mentioned in Chapter 2.
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To investigate the capabilities of the proposed method, MTL with specially designed learning tasks, ex-
tensive experiments to detect roads from remote sensing images have been conducted using the dataset
created for the SpaceNet Challenge: Road Extraction and Routing [22], described in this Chapter. I com-
pared my proposed method with the baseline single-task solving architecture. The experimental setup,
results and analysis are illustrated in the following sections.

4.1 Experimental Settings

4.1.1 Dataset

In this study, the SpaceNet 3 Road Dataset is used, created for the SpaceNet Challenge: Road Extraction
and Routing [22]. The dataset contains 2567 satellite images, collected by DigitalGlobe’s satellite from
four different cities: Paris, Las Vegas, Shanghai, and Khartoum. Their format is GeoTiff (16-bit), with
size 1300 x 1300 pixels and ground resolution of 30cm/pixel. Their corresponding road network ground
truth data is provided in the form of vector GeoJson file data (line-strings), representing the center line of
roads. Furthermore, the road labels correspond to different road types (Motorway, Primary, Secondary,
Tertiary, Residential, Unclassified, Cart Tracks) from the four cities. Each image may have multiple line-
strings and each line-string consists of pixel coordinates X Y depicting road center line points in the 2D
image plane, assuming top-left corner as the origin.

For this study, the dataset was divided into splits for training, validation and testing, after converting all
images from 16-bit to 8-bit format. The division of the dataset was done in a way that each city would
equally contribute to training, validation and testing (80% -10% -10% respectively). To artificially enrich
the dataset with multiple images, initial images were clipped into samples with a size of 256 x 256 pixels
with 50% overlap with their neighboring samples. The vector road network information was rasterized
to create ground truth masks creating pairs with the image crops.

Figure 4.1: Example Images from the SpaceNet 3 Road Dataset [22]
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4.1.2 Implementation details

All networks were trained using the Adam optimizer [40] with learning rate 0.001, which was reduced
when performance would stop improving after two consecutive epochs by a factor of 0.1. The models
were trained with a batch size of 15 images, the most that the available GPU could handle. Because
the chosen dataset has a limited size and the ground truth vector linear strings contained many errors,
the evaluation of the prediction during training using metrics such as Intersection over Union (IoU) is
not totally representative with a model’s capabilities, and as a result, fruitful callbacks were ineffectual.
ResNet34 was initialized pre-trained on the ImageNet dataset. In previous studies, it has been proven
that transfer learning can accelerate network convergence and improve network performance [34].

All experiments were performed on a cluster of Linux compute servers with a lot of processing power
and memory for running large or long jobs, provided by the Intelligent Systems Department of Delft
University of Technology. More specifically, all models were trained on an NVIDIA GeForce GTX 1080 Ti
GPU paired with 11 GB GDDR5X memory. The deep learning framework that was used was Keras [15]
using the TensorFlow backend [1].

4.1.3 Evaluation Methods

To evaluate the road detection results, the classical pixel-wise segmentation metrics with Precision (P),
Recall (R), F1 Score (F1) and IoU were followed as well as the clDice metric (clDice) designed for topology
preservation evaluation. A brief explanation of those metrics is given in the following sections. How-
ever, it is worth noting that visual inspection remains the main method to perform assessment and for
that reason, dozens of images were randomly selected from every region to be examined against the
predictions of every tested model.

Confusion Matrix

A confusion matrix calculates the classification performance of a classification model or a classifier with
respect to a set of test data with known true values. It is a two-dimensional matrix, where one dimension
represents the instances of the predicted class and the second dimension the instances of the actual or
ground truth values [72]. Although the confusion matrix is not a performance measure itself, it is used
by many performance measurements, and especially, as it is described in the following sections, its
individual cell values.

Figure 4.2: An example of a two-class confusion matrix
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Precision, Recall and F1 Score

The definitions of the associated terms within the Confusion Matrix that are used for the computation
of the metrics of P, R and F1 are the following:
True Positives (TP): cases when both the prediction and the actual class are equal to 1 (True)
True Negatives (TN): cases when both the prediction and the actual class are equal to 0 (False)
False Positives (FP): cases when the actual class is 0 (False) but the prediction is 1 (True)
False Negatives (FN): cases when the actual class is 1 (True) but the prediction is 0 (False)

A ”perfect” classifier should give 0 FP and 0 FN, but in real life there hasn’t been a model that was 100%
accurate all the times, under any circumstances.

P expresses the proportion of pixels that were classified as road and truly belong to the road class (their
ground truth is also road) and can be computed as:

P =
TP

TP + FP
(4.1)

On the other hand, R expresses the proportion of pixels that actually belong to the road class and were
predicted as road class. It can be computed with:

R =
TP

TP + FN
(4.2)

It is obvious that if the aim is to minimize FN, R should be maximized and if the aim is to minimize the FP,
P should be maximized. Usually, by increasing one, the other one suffers. This is the fundamental trade-
off between precision and recall. When building a classifier, both measures should be considered and
the correct balance between precision and recall should be determined according to the characteristics
of the problem.

F1 is a metric that kind of represents both P and R with a single score. It is a balanced score metric because
it utilizes the harmonic mean. As a consequence, if one number between precision and recall is really
small, the F1 metric will get closer to the smaller value than the bigger one, giving a more representative
score rather than what the arithmetic mean of precision and recall would give. The F1 score metric can
be computed with the following formula:

F1 =
2PR

P + R
(4.3)

Intersection over Union

The IoU metric, also referred to as the Jaccard index, is an additional metric that quantifies the proportion
of overlap between the prediction image and its corresponding ground truth image. Essentially, it mea-
sures the similarity between the two finite sample sets of prediction images and ground truth images,
using the number of ”common” pixels within the ground truth and the prediction images that describe
the road surface divided by the total amount of pixels that describe the road in both images. It can be
computed using the following formula:

IoU =
prediction ∩ ground truth
prediction ∪ ground truth

(4.4)

23



4 Results and Analysis

clDice metric

Accurate pixel-wise segmentation of network-like structures, like roads, is relevant to many fields of
research. For such structures, topology or connectivity is their most important characteristic. In the
paper [65], a novel similarity metric named centerline-in-mask-dice-coefficient or clDice was introduced,
prooving to be a reliable evaluation metric for topological correctness. It is computed on the intersection
of the segmentation masks and their morphological skeletons.

To be more specific, assuming there are two binary masks: a ground truth mask (GT) and its corre-
sponding prediction mask (PR). In the first step of the computation, the skeletons SGT and SPR are
created from GT and PR respectively. Next, the fraction of SPR that falls withing GT is computed,
which the authors called Topology Precision or Tprec(SPR, GT), and vice-a-versa, the Topology Sensitivity
or Tsens(SGT , PR) and finally clDice is defined as:

clDice(GT, PR) = 2 ∗ Tprec(SPR, GT) ∗ Tsens(SGT , PR)
Tprec(SPR, GT) + Tsens(SGT , PR)

(4.5)

4.1.4 Loss Function

The task of road detection belongs to the category of unbalanced classification problems. In imbalanced
classification problems, the distribution of examples across the known classes is unequal, as the name
suggests. Usually roads occupy a very small part of the whole extent of an image, as roads are most often
very thin objects in comparison to buildings, city squares, forests, etc. There are two common ways to
cope with this issue. The first solution is to ”balance” the dataset by modifying what the network sees
during training (e.g. feed the network only with images that have a higher road representation ratio
than a chosen threshold). The second solution is the mindful selection of the loss function[20].

Semantic segmentation is usually practiced with a pixel-level cross-entropy loss, which compares the
class prediction of each individual pixel with its ground truth and averages the result of the whole.
Every pixel is separately and equally evaluated. In the task of road detection, the training dataset
is heavily unbalanced, and the class considered as ’background’ is trained a lot more times than the
’road’ class, resulting in parameters that favor the ’background’ class every time. To deal with this,
I tested several common semantic segmentation loss functions and discovered that categorical cross-
entropy loss function in combination with the IoU metric is the most beneficial solution for almost all the
tasks tested. Other loss functions, such as Dice loss [51], Focal loss [45] or other variations, are shown
in the next section in tables generated for quantitative assessment to assist the loss function selection
procedure. Bellow, you can find a short description of the selected loss function.

The Cross-Entropy Loss is defined by the following formula:

CE = −
C

∑
i

ti log(si) (4.6)

,where ti and si are the ground truth and the prediction result of class C respectively. According to
the number of classes of each task, the Cross-Entropy Loss was converted to either Categorical Cross-
Entropy (CCE) Loss with a Softmax activation function or Binary Cross-Entropy (BCE) Loss with a
Sigmoid activation function. The formulas of both losses are presented bellow:

CCE = −log

(
esp

∑C
j esj

)
(4.7)

BCE = −
C′=2

∑
i=1

tilog( f (si)) = −t1log( f (s1))− (1− t1)log(1− f (s1)) (4.8)
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,where sp is the prediction score of the positive class and f (si) refers to the activation function used.

To combine one of these loss functions with the IoU presented above, I added the sum of 1− IoU as a
second term in the loss function, defining the final loss function as:

Loss = λ1 ∗ CE + λ2 ∗ (1− IoU) (4.9)

,where CE refers to the Cross-Entropy Loss used according to the task under optimization, IoU refers
to the IoU , and λ1, λ2 refer to the weight parameters which was set equal to 1 for both instances. Due to
the time limitation of the numerous tests performed, different loss weighting values were not tested.

4.2 Results and Analysis

4.2.1 Single-Task solving models

The first stage of the experimentation contains the training of each individual task on its own and the
analysis of its accuracy. By doing so, it is easier to understand the limitations of each proposed task and
decide how they can be combined in a MTL model.

The first task that was tested was the task of ORIENTATION. The results show (see Figure 4.3) that it
can indeed be a useful task, since the predictions contain valuable information of the road network. In
many cases, it would even be sufficient to train only for the task of ORIENTATION, because merging all the
pixels from every orientation angle class in the prediction output would produce a fine segmentation
result of the road network. Although the IoU and F1 scores in Table 4.1 show excellent performance, it is
worth noting that these measures do not represent the actual capabilities of the corresponding model.
Road Orientation Learning ground truth masks contain 37 classes (36 orientation angles and 1 class for
background), but only a maximum of 7 or 8 orientation angle classes are usually present per image.
The remaining classes have 0% representation in images, which means that if the prediction image does
not contain them, it will be evaluated with a perfect score for these classes, leading to an increase of
the metric. The efficiency of the model was therefore evaluated mainly using visual inspection of the
prediction results. A second important note is that a trained model on the task of ORIENTATION learns to
predict better orientation angles than what the ground truth masks of this task depict, which is a factor
that also affects the final estimation of the model’s accuracy. The limitation of this task is that it tends to
fail in wide areas, where it is possible to expand into multiple different orientations.

Table 4.1: Performance of the Road Orientation Learning task with different loss functions on a small
subset of the dataset. Bold letters represent the selected loss function. For more information about the
loss function read 4.1.4

Loss function IoU Score F1-Score
CCE 0.926 0.930
CCE + IoU 0.889 0.895
CCE + Dice 0.855 0.862
Dice + Focal 0.923 0.925

The second task investigated was the task of GAUSSIAN. The results show (see Figure 4.4) that it can be
a useful task as well. Although the metrics have very low scores, meaningful information useful for
the task of road detection is expressed in the prediction masks. A model trained for the Gaussian Road
Mask Learning task, learns how to predict output masks with a gradual convergence to road centerlines,
failing to specifically predict the final classes that mainly belong to road centerlines (see Figure 4.4),
leading to low evaluation metrics. Getting advantage of pixels that belong to classes closer to the road
centerline can produce a fine image segmentation that includes the biggest portion of the road network.
Weak predictions occur on locations where the scene depicted on an image is mostly covered by concrete
or wide drivable surfaces, like parking lots, public squares or highway intersections. Another limitation
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Table 4.2: Performance of the Gaussian Road Mask Learning task with different loss functions on a small
subset of the dataset. Bold letters represent the selected loss function. For more information about the
loss function read 4.1.4

Loss function IoU Score F1-Score
CCE 0.166 0.167
CCE + Dice 0.179 0.190
CCE + IoU 0.180 0.191
Dice + Focal 0.194 0.222

of this task occurs when roads are intersecting in an ambiguous or unique way (that has never been
seen as an example inside the dataset). Under these circumstances, the prediction output stops sharply,
because there are numerous ways to produce an output, and the model cannot decide which one is the
optimal.

The third task investigated was the task of INTERSECTION. The results show (see Figure 4.5) that they
contain meaningful information relevant to road detection. The biggest advantage of this task is that
the model learns to detect reliable seed points on the image boundaries in almost every situation. On
the other hand, it doesn’t predict intersection points very accurately. One reason for that is that the
ground truth masks are not suitable to describe what the model needs to learn. They are constructed
from the provided road vector linear strings using a sliding window algorithm, aiming to detect points
that satisfy the topology of crossroads, dead-ends or perpendicular turns. Unfortunately, the dataset
contains errors, and therefore, there are many ground truth masks that also contain ambiguities or
incorrect intersection nodes. Results of poor quality occur on locations with big openings or wide road
areas where the location of an intersection is uncertain.

Table 4.3: Performance of the Road Intersection Learning task with different loss functions on a small
subset of the dataset. Bold letters represent the selected loss function. For more information about the
loss function read 4.1.4

Loss function IoU Score F1-Score
CCE 0.718 0.770
CCE + Dice 0.724 0.782
CCE + IoU 0.734 0.790
Dice + Focal 0.733 0.790

The last task investigated was the task of TWO, where the road is depicted with a constant rasterized
line of two meter width. This task is the primary task that is attempted to be optimized by being
jointly trained with related sub-tasks to improve its final segmentation output. According to the results
(see Figure 4.6), when it is trained on its own it suffers from common errors and limitations of the
road detection task, as described in Chapter 2. Isolated road segments, missing information, inaccurate
geometries and false predictions are shown in the prediction results.

Table 4.4: Performance of the Road Detection Learning task with different loss functions on a small
subset of the dataset. Bold letters represent the selected loss function. For more information about the
loss function read 4.1.4

Loss function IoU Score F1-Score
CCE 0.700 0.759
CCE + Dice 0.719 0.784
CCE + IoU 0.723 0.787
Dice + Focal 0.715 0.782
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Figure 4.3: Example results of the Road Orientation Learning task. From Left to Right: original image,
ground truth image, prediction image
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Figure 4.4: Example results of the Road Gaussian Mask Learning task. From Left to Right: original
image, ground truth image, prediction image

28



4.2 Results and Analysis

Figure 4.5: Example results of the Road Intersection Learning task. From Left to Right: original image,
ground truth image, prediction image
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Figure 4.6: Example results of the Constant two meter wide Road Detection Learning task. From Left to
Right: original image, ground truth image, prediction image
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4.2.2 Comparison with Proposed Multi-Task solving models

To compare the performance of the proposed method with the performance of the single-task solving
model, all combinations of tasks were trained with the proposed MTL architecture using the same hyper-
parameters and loss functions as the best performing single-task solving model. The evaluation metric
scores of each model are shown in table 4.5. The proposed MTL model that combines three tasks, namely
the TWO, the INTERSECTION and ORIENTATION, performs better than the baseline single-tasked model solv-
ing for road detection. Both in terms of image segmentation and topology preservation, the proposed
MTL model outperforms the single-task model. In the same table, almost all the other combinations of
MTL models perform either on par with the single-task model or have worse performance.

Both types of models, single-tasked or MTL models, favor from the symmetric ’U’ shape architecture and
the residual blocks, effectively learning how to output acceptable predictions in most of the landscapes
that don’t include ambiguous or unique combinations of road objects. The MTL method with the highest
metric scores provides better predictions on intersections, preserving the road network’s connectivity,
increasing the clDice by almost 3 %, and usually, provides also a more complete road surface segmen-
tation result. An improved segmentation and topology output translates into a better road detection
algorithm, with a smaller need for output refinement post-processing procedures.

The limitation of the proposed methodology is that it fails to predict or produces less accurate predic-
tions than the single-task trained model, in cases where the auxiliary tasks cannot provide a realistic
solution. For example, in the case of the model with the highest metric scores, whenever the prediction
fails to provide accurate intersection locations or accurate orientation angles, the road detection task also
tends to provide weak predictions. Another limitation of the proposed methodology is that it requires
more time to train than the single-task model, since the MTL model consists of more parameters than
the single-task model. In addition, modifying a MTL network is twice as hard as modifying a single-task
solving network. In the proposed model, long skip connections had to be connected from the encoder
path of the network to each decoder path of every participating task. A more complex modification will
increase the complexity factor during implementation or design.

Table 4.5 contains the proof that the MTL method works, even without a sophisticated task-weighting
scheme or a specially designed representation sharing network. Relevant literature proved that with
the addition of an advanced enhancement, these results could achieve even higher rates (see Chapter
2). An additional benefit of the proposed methodology is the fact that related tasks to the task of TWO
also managed to increase their performance by being trained in parallel with other tasks. The increase
of their performance is highlighted in the tables 4.6, 4.8 and 4.7.

Table 4.5: Assessment of the Road Detection Learning task. Comparative evaluation of the proposed
Multi-Task Learning models and the baseline Single-Task Learning model. The results are computed
using all the images in the test set. A higher value indicates a better performance.

TWO INTERSECTION ORIENTATION GAUSSIAN Mean IoU Mean F1 Mean clDice
X - - - 0.684 0.732 0.671
X X - - 0.677 0.725 0.661
X - - X 0.679 0.726 0.661
X - X - 0.680 0.729 0.676
X X X - 0.691 0.740 0.698
X X - X 0.681 0.727 0.657
X - X X 0.668 0.712 0.621
X X X X 0.673 0.716 0.621
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Figure 4.7: Example results of the best-performing proposed Multi-Task Learning model. From Left to
Right: original image, ground truth image of Road Detection Learning task, ground truth image of
Road Intersection Learning task, ground truth image of Road Orientation Learning task, prediction
image of Road Detection Learning task, prediction image of Road Intersection Learning task, predic-
tion image of Road Orientation Learning task.
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Figure 4.8: Visual inspection of the proposed model’s performance. From left to right: satellite image,
ground truth mask, single-task Road Detection Prediction, Multi-Task Road Detection Prediction
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Figure 4.9: Visual inspection of the proposed model’s performance. From left to right: satellite image,
ground truth mask, single-task Road Detection Prediction, Multi-Task Road Detection Prediction
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Table 4.6: Assessment of the Gaussian Road Mask Learning task. Comparative evaluation of the pro-
posed Multi-Task Learning models and the baseline Single-Task Learning model. The results are
computed using all the images in the test set. A higher value indicates a better performance.

ORIENTATION TWO GAUSSIAN INTERSECTION Mean IoU Score Mean F1 Score
X - - - 0.891 0.896
X X - - 0.680 0.729
X X - X 0.886 0.890
X X X - 0.894 0.898
X X X X 0.896 0.900

Table 4.7: Assessment of the Road Orientation Learning task. Comparative evaluation of the proposed
Multi-Task Learning models and the baseline Single-Task Learning model. The results are computed
using all the images in the test set. A higher value indicates a better performance.

GAUSSIAN TWO ORIENTATION INTERSECTION Mean IoU Score Mean F1 Score
X - - - 0.681 0.720
X X - - 0.687 0.728
X X X - 0.691 0.729
X X - X 0.697 0.739
X X X X 0.601 0.603

Table 4.8: Assessment of the Road Intersection Learning task. Comparative evaluation of the proposed
Multi-Task Learning models and the baseline Single-Task Learning model. The results are computed
using all the images in the test set. A higher value indicates a better performance.

INTERSECTION TWO ORIENTATION GAUSSIAN Mean IoU Score Mean F1 Score
X - - - 0.681 0.720
X X - - 0.687 0.728
X X - X 0.691 0.729
X X X - 0.697 0.739
X X X X 0.601 0.603
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5 Conclusions

In this project, I proposed a novel deep learning method to solve the task of road detection. Essentially, I
proposed a MTL U-Net variation model for image semantic segmentation proposing specially designed
auxiliary learning tasks. Jointly training multiple related tasks, combining both the capabilities of the
U-Net model with the capabilities of the MTL paradigm, lead to an improved accuracy of road detection.
Extensive experiments were conducted based on a publicly available dataset and the results demon-
strated that my proposed method achieved better performance on all the evaluation metrics against
the baseline single-task solving model. Multiple image examples depict its superiority both in terms
of image segmentation and topology preservation. An additional finding is that MTL also affected the
performance of the proposed auxiliary related tasks, which were also improved after joint training. The
analysis of the experiments showed that the model can benefit from a more reliable input dataset and a
task-weighting scheme and provide even better output predictions.

5.1 Discussion

In the following paragraphs, I review the research questions defined in Section 1.3. A short answer is
given for each question, supported by experimental results presented in Chapter 4.

a. Can prior knowledge be incorporated as a constraint into a deep learning model? If yes, how?

It is possible to incorporate prior knowledge as a constraint (or multiple constraints) into a deep
learning model by enforcing it to solve tasks that preserve a desired property or element. In the
present study, multiple experiments were held to examine the performance of every proposed task
related to the problem of road detection by solving it individually. The results of the experiments
showed that the goal of the task determines the properties of the target object that will be kept. For
example, the task of ORIENTATION verified that it favors the preservation of the road’s connectivity.
The task of INTERSECTION had a similar effect.

b. Can prior knowledge improve road detection?

Yes. As demonstrated in Chapter 4, a neural network was trained to maintain different road prop-
erties by being jointly trained on multiple tasks (task of TWO, ORIENTATION, task of INTERSECTION,
etc.). Each task urged the model on modifying its parameters to improve its predictions, resulting
in a selection of weights that is capable on solving multiple problems at once, or otherwise, gen-
eralize better in all tasks simultaneously. If one task aims on preserving property A and a second
task aims on preserving property B, a model capable on solving both tasks at once is capable of
maintaining both properties.

c. What are the limitations of a model that combines concepts of different models into one, unified
model?

The biggest limitation of a neural network that combines concepts of multiple and/or different
models is the increased level of complexity. Training a neural network requires time and increasing
its performance requires experience and complete understanding of its functionality. The more
complex a neural network is, the more difficult it is to fine-tune it. In the present case, a more
complex model required more hours for implementation, training and fine-tuning.
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d. To which extent is it possible to utilize road properties to improve road detection from remote
sensing imagery using deep learning techniques?

The present study shows that by incorporating road properties as constraints during a neural
network’s training, a better solution in the problem of road detection can be provided. However,
it does not eliminate every error or limitation of the road detection problem. According to relevant
literature, the accuracy of the proposed network can be further enhanced by integrating modules
that increase the performance of MTL neural networks, which couldn’t be applied due to time
limitations of the project. However, it is important to clarify that a constraint cannot guarantee a
flawless preservation of a desired property. Bibliography shows that a property-preserving loss
function or a specially-designed neural network architecture (or a combination of all the above)
can be more effective.

5.2 Future Work

An experiment using the proposed model usually requires more than two days to finish a complete run.
Therefore, due to lack of time, many ideas and tests were not implemented. In this section, I propose
different mechanisms and approaches for future work, that according to my experience, point towards
the right direction to improve the current methodology.

For example, one suggestion is to investigate if there are any other related learning tasks to the task of
TWO, that could be used to assist the training procedure and further improve the model’s performance,
like the degree of a road’s connectivity proposed by Sun et al [69]. Apart from further exploiting the
input dataset and creating new learning tasks, it would be valuable to understand if different combina-
tions of related tasks are more beneficial for a specific landscape. Moreover, as stated in the thesis, the
selection of a constant road width value is a controversial topic. As a result, it would be interesting to
investigate the effect of different road widths in the prediction result.

In the current project, training images had a size of 256x256 pixels. Different input image sizes might
affect the performance of the network, as the receptive field of the model would be enlarged. Related
to the previous suggestion, it would also be more beneficial to enrich the dataset using more data aug-
mentation techniques, such as image rotations, flips and bigger overlap percentages. Although it is not
considered as a model’s enhancement, test time augmentation could further improve the final segmen-
tation result.

MTL systems are complex and difficult to implement. Related literature has proved that it is not rare
to use MTL and end up with worse results than what a single-task solving model can achieve, due to
”competing” learning tasks, unweighted loss functions or learning tasks or even due to the inability of a
neural network architecture to capture the necessary representations and features. The integration of a
task-weighting or loss function weighting scheme (or a task-priority training method) that optimizes the
MTL mechanism could provide better generalization than what the proposed method achieved. Accom-
panied with the previous proposal, an investigation of whether other neural network architectures are
more suitable to make good use of auxiliary tasks for road network detection would be advantageous
as well.

Lastly, if the goal is to only preserve the road network’s connectivity, a methodology completely trans-
ferred to the vector domain should be preferred. For example, a procedural model that receives the
outputs of the proposed model as input and provides a vector road network by looking for ”confident”
junctions and road segments that satisfy adjacency rules, connecting them through a shortest path algo-
rithm could maximize connectivity, resulting in a vector graph of the road network. Inspiration for this
idea came from the work of Marcos et al. [84]
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A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

The Reproducibility scores of my research project, according to the criteria chosen above, are shown in
Table A.1.

Table A.1: Assessment of Reproducibility criteria
Criterion Score
Input Data 3
Preprocessing 2
Methods 2
Computational environment 2
Results 2
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A Reproducibility self-assessment

A.2 Self-reflection

All my project is hosted on the following Github repository page: https://github.com/ntelo007/

road_detection_mtl.git. I used the publicly available SpaceNet 3 Dataset, which is a corpus of com-
mercial satellite imagery and labeled training data offered to be used for machine learning research. It
is currently hosted as an Amazon Web Services (AWS) Public Dataset. All the scripts used for data pre-
processing, model creation, training, and testing are well-documented with easy-to-follow instructions
for execution. The Python virtual environment used can also be found inside the repository, contain-
ing its dependencies. Apart from that, a requirements.txt file is also provided, specifying what python
packages are required to run the project. Example results are given to describe the capabilities of the
proposed methodology. Finally, weights of the trained model are also offered to avoid re-training the
model and save up time.
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B Multi-Task Learning Models

Figure B.1: Illustration of the training procedure of an example of the proposed Multi-Task U-Net model
with a ResNet34 Encoder solving 2 tasks simultaneously

Figure B.2: Illustration of the training procedure of an example of the proposed Multi-Task U-Net model
with a ResNet34 Encoder solving 4 tasks simultaneously
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C Additional Results

Figure C.1: Additional results for visual inspection of the proposed model’s performance. From left to
right: satellite image, ground truth mask, single-task learning model prediction, Multi-Task learning
model prediction
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C Additional Results

Figure C.2: Additional results for visual inspection of the proposed model’s performance. From left to
right: satellite image, ground truth mask, single-task learning model prediction, Multi-Task learning
model prediction
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Figure C.3: Additional results for visual inspection of the proposed model’s performance. From left to
right: satellite image, ground truth mask, single-task learning model prediction, Multi-Task learning
model prediction
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C Additional Results

Figure C.4: Additional results for visual inspection of the proposed model’s performance. From left to
right: satellite image, ground truth mask, single-task learning model prediction, Multi-Task learning
model prediction
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Figure C.5: Additional results for visual inspection of the proposed model’s performance. From left to
right: satellite image, ground truth mask, single-task learning model prediction, Multi-Task learning
model prediction
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