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Abstract

This research considers using center of mass (CoM) height variation as an input for balance
control on a humanoid robot. Traditional balance strategies for humanoid robots are taking
a step, control of the center of pressure (CoP) location, a result of the ‘ankle strategy’,
and changing the angular momentum about the CoM, for example by a ‘hip strategy’. For
humanoid robots, a common assumption behind these strategies is that the CoM height is
predefined. However, CoM height changes can be used as an input for balance control, as for
example can be observed during the landing of an athlete after a long jump.

The first contributions of this work are bounds on the initial states for the variable height
inverted pendulum (VHIP) from which convergence is possible to a stopped state, also known
as capture regions. First, only a unilateral contact constraint is considered; negative CoM ac-
celeration cannot be smaller than gravitational acceleration. Second, CoM height constraints
are added to the model, after which a capture region can still be computed in closed-form.
Third, vertical force constraints are added, after which capture regions are computed numer-
ically using a bang-bang control law. The last capture region bridges the transition to the
applied part of this work.

The second contribution is a control law on vertical acceleration, suitable for application on
a humanoid robot using a momentum-based control framework. Push recovery is tested on
NASA’s Valkyrie humanoid robot while the robot is standing. In simulation, an increase in
recoverable push of 9% can be observed when comparing to a controller that only uses CoP,
when pushing the back of the robot. On hardware, an average increase of 7% can be observed
for this push direction using a load sensor. Additionally, tests are conducted on hardware on
Boston Dynamics’ Atlas using a medicine ball on a rope, but no improvement in recovery is
observed. The control method for standing push recovery is also extended for use while the
robot is walking. For Valkyrie in simulation, recovery improved the most compared with a
predefined height approach for a push applied in the first part of the single support state for
rear and frontal push directions. Additionally, a hardware result on Atlas while walking is
briefly presented.
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“Playing soccer is very simple, but the hardest thing there is, is playing soccer in
a simple way.”
— Johan Cruyff





Chapter 1

Introduction

Humans are often exposed to dangerous tasks. This is the case, for example, in disaster
response: exploring a radioactive environment to help people after a nuclear disaster, or
entering a building on fire to save a life. Another example is an exploration space mission to
Mars, where a human committing to such a task is in risk of harm, but also costs a lot of time
and money. In all these situations, the physical versatility of the human, such as the ability
to grasp with hands and to walk over uneven terrain, is needed. Substitution of a human-like
machine in such scenarios, which has similar benefits as a human, could be very beneficial.

Replacing the physical human with a machine is not a new topic. There already exist ancient
texts, that describe a human-like machine [1]. As technology became more advanced, the topic
of humanoid robotics became more popular in the last decades. However, a humanoid robot
that has the same physical capabilities as an average human being still does not exist. One of
those physical capabilities is maintaining balance. Humans are capable of not falling over in
various terrains, configurations and subject to disturbances, while robots are frequently not.
Commonly used balancing strategies for humanoid robots are taking a step, control of the
center of pressure (CoP) (‘ankle strategies’) and, to a lesser extent, change of body angular
momentum (for example: ‘hip strategies’).

A common assumption behind these strategies is that the center of mass (CoM) height of
the robot is predefined and not to be used in balancing tasks. By constraining the height,
a degree of freedom of the system is defined and the dynamics of the system are known.
Furthermore, if height changes are small, the system can be approximated with a linear
inverted pendulum (LIP) model [2] in the generation of a dynamic reference plan for the
robot. An important advantage of this model is that, by its linearity, closed-form solutions
exist to the dynamics, as for example the LIP orbital energy [3]. The linear dynamics of
the LIP are a saddle point with one stable eigenvalue and one unstable eigenvalue. The
unstable mode has been referred to as the LIP capture point (LIPCP) [4], the instantaneous
capture point (ICP) [5], the extrapolated center of mass [6] and the divergent component of
motion (DCM) [7], which all relate to the LIP orbital energy.
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2 Introduction

1-1 Center of Mass Height Variation

In addition to a LIP-based dynamical plan, CoM height reference trajectories for the robot
are traditionally generated for kinematic feasibility [8, 9] or more human-like motion, but
are disturbances on the LIP model considered in dynamic planning. These disturbances
are commonly rejected with the traditional balance control strategies. Efforts have been
made in incorporating CoM height variation in the dynamic reference plan. Examples are
the variable height inverted pendulum (VHIP) orbital energy [10], the three-dimensional
space (3D) DCM [11] and the time-varying DCM [12]. The presented methods either introduce
artificial constraints [10] or cope with larger computation times [12].

Recently, the use of the CoM height variation came in sight with the particular goal to improve
balance control. Using a VHIP model, height changes of the pendulum tip can influence the
horizontal dynamics, which can be used as a control input for balance. Some work has
considered this control input by formulating a model predictive control (MPC) law [13, 14]
for computing capture trajectories: trajectories that will result in the point-mass to stop. In
both publications, the objective is to let the point-mass converge within the current ground
contact without taking additional steps, based on the initial configuration and velocity. This
is also known as ‘0-step’ capture [5]. In MPC, fast computation times are even more needed
than in dynamic planning, as a reference trajectory is evaluated every control tick. Control
rates are commonly between 200 [Hz] and 800 [Hz] on humanoid robots [8, 9]. The methods
therefore introduce artificial constraints to solve the problem online.

Relying on the mentioned work, no hardware results have been shown yet in using CoM
height variation for balance control. Also, if a method is proposed, no comparison is made
with constant height approaches in simulation. Therefore, it is difficult to judge the differences
in performance between the proposed control law and for example a LIP-based controller in
an applied setting. In this report, comparison between predefined height approaches and
approaches that use CoM height variation for balance will be central in the evaluation of the
presented theory and methods.

1-2 Research Objective

The objective of this work is to improve balance of a humanoid robot using vertical CoM
motion. To measure ‘improving balance’, a high-level differentiation is made between:

• Theory: analysis of the variable height inverted pendulum (VHIP) and comparison
with the linear inverted pendulum (LIP).

• Application: comparison of results obtained after application of a control law on a
robot, using a commonly used control framework to transcribe pendulum-based control
commands to the joints of the robot. In this control law, fast computation times are
required.
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1-3 Contributions 3

1-3 Contributions

The contributions of this work are novel capture regions for the variable height inverted
pendulum (VHIP) model, which addresses the theoretical part of the research objective.
Also, results are presented on hardware using CoM height variation for balance control, which
addresses the applied part of the research objective. More specifically, relating to theoretical
contribution, this work presents:

• VHIP capture regions: bounds on the initial states of a VHIP model, from which
convergence of the unstable mode to a stopped state is possible. The regions are ob-
tained by incrementally adding constraints to the VHIP model. First, only unilateral
contact constraints are considered. After this, height constraints are added and finally,
vertical force constraints are added.

• Kinematically constrained orbital energy trajectories: a MPC law that takes
kinematic constraints into account, extending the method presented in [13]. This
method is not further used in application, as the polynomial function used in the control
law is found to be overly constraining the VHIP dynamics.

Relating to the objective of comparison of applied results, this work presents:

• A method that uses CoM height variation for balancing while standing. This
is a bang-bang control law on vertical acceleration. Push recovery tests are conducted on
NASA’s Valkyrie humanoid robot and Boston Dynamics’ Atlas. Results are compared
with results of a constant CoM height control approach.

• A method that uses CoM height variation for balancing while walking. This
is an extension of the standing method for walking scenarios. This method is tested
on Valkyrie in simulation and is compared with a predefined CoM height approach.
Additionally, one hardware result on Atlas is presented.

1-4 Thesis Outline

The remainder of this thesis is structured as follows. In Chapter 2, a brief background is
given on commonly used expressions in legged systems research, on humanoid robotics at the
Institute for Human and Machine Cognition (IHMC) and on related work to CoM height
variation. In Chapter 3, capture regions are derived for the VHIP model. In Chapter 4, a
two-dimensional space (2D) MPC law is derived, which is not further used in application. In
Chapter 5, a control law is presented and push recovery is tested on NASA’s Valkyrie while
the robot is standing, with additional results shown on Boston Dynamics’ Atlas. In Chapter
6, this control law is extended for the use during walking and push recovery is tested on
Valkyrie during walking in simulation. Additionally, a hardware result on Atlas is presented.
The final chapter, Chapter 7, presents the conclusion and recommendations for future work.
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Chapter 2

Background

In this chapter, a brief background is given on legged systems, humanoid robotics at the
Institute for Human and Machine Cognition (IHMC) and related work to center of mass
(CoM) height variation.

2-1 Legged System Preliminaries

In this section, commonly used expressions and background related to legged systems are
briefly presented.

2-1-1 Human Balance Strategies

As humanoid robots are a derivation of humans, human balance strategies are briefly dis-
cussed. In Figure 2-1, balance strategies are shown for a standing human. The ‘ankle strat-
egy’, ‘hip strategy’ and stepping strategy are most commonly considered as a balance strategy.
However, the figure includes the ‘suspensory strategy’ [15], which is less commonly consid-
ered. With the ‘suspensory strategy’, the human is in a slightly lower configuration with bent
knees to have more control authority of the ankles.

For balancing, height variation is often not considered for a standing human. A reason for
this might be that often the assumption is made that the legs are straight [16]. The goal of
the ‘suspensory strategy’ however, gives an interesting insight to the problem. Using height
changes for balancing, the control authority of the ankles will change. Therefore, height
variations for balance control could be a trade-off between the application of additional force
and the gain in height.

For dynamic cases, like walking or jumping, CoM height variations for balance on a human
can be observed in the landing after a long jump. Bending the legs and lowering the height
is crucial for not falling backwards and to land above the feet.
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6 Background

Figure 2-1: Balance strategies for a standing human; (A) shows the ‘ankle strategy’, (B) shows
the ‘hip strategy’, (C) shows the ‘suspensory strategy’ and (D) shows the stepping strategy.
Adopted from [15].

2-1-2 Ground Reference Points

In biped locomotion, the dynamics of the system are often simplified by considering the forces
resulting from ground contact, the CoM location and the angular moment about the CoM.
The contact forces are commonly summed up in a single ground reaction force (GRF), coming
from a point of application in the supporting area of the system. Ground reference points are
used to describe the dynamics of the system in a single point, using GRF and CoM states.

Zero Moment Point & Center of Pressure

The point on the ground where the resulting GRF does not produce any moment in the
horizontal plane at the point of application, is referred to as the zero moment point (ZMP)
[17]. By definition, this is the point where the part of the GRF that does not cause angu-
lar momentum about the CoM intersects with the ground surface. The ZMP was initially
introduced in [18]. The ZMP is formulated as:

rzmp = cxy −
Fgr,xy

Fgr,z
z + τ c

Fgr,z
, (2-1)

where rzmp = [xzmp, yzmp]T is the ZMP location, Fgr,xy = [Fgr,x, Fgr,y]T and Fgr,z are the
horizontal and vertical components of the GRF respectively, cxy = [x, y]T and z are the
components of the CoM Cartesian position and τ c = [−τy, τx]T is the torque about the CoM.
In Figure 2-2, the location of the ZMP is visualized for two modeling choices, using both a
connection between the ankle and the CoM as a prismatic joint. In Figure 2-2a, no inertia is
considered about the CoM and the GRF Fgr coming from the ZMP intersect with the mass
m. The difference in position between the ankle location and the ZMP is affected by the
ankle torque τ ankle. In Figure 2-2b, body inertia of the system is approximated by adding a
flywheel with inertia I = [Iy, Ix]T to the model. The GRF, coming from the ZMP, is pointed
away from the CoM by using the body torque τ c as input. The dynamics of m are depending
on Fgr and g = [0, 0,−g]T , which is the gravity vector with g the gravitational constant.
The center of pressure (CoP) coincides during walking over flat ground with the ZMP [19].
The two points however are not equal in more complex environments. The CoP is restricted
to be located in the support polygon, while the ZMP is restricted to be located on the ground
plane [17]. Traditionally, the CoP is a measured quantity from a force pressure plate under
the foot. In this thesis, the CoP location is denoted as rcop = [xcop, ycop]T and considered
equal to rzmp, as a flat contact surface is used as reference.

B.J. van Hofslot Master of Science Thesis
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(a) (b)

Figure 2-2: Ground reference points for different modeling choices. (a) The blue diamond points
out the ZMP/CoP location. As no angular momentum is considered in the model, this point is
also the centroidal moment pivot (CMP). (b) A flywheel with inertia is added to the model, the
blue circle with cross points out the CMP location and the blue diamond the ZMP/CoP location.

Centroidal Moment Pivot

The centroidal moment pivot (CMP) includes, unlike the ZMP and CoP, angular momentum
about the CoM [20]. This is defined as the point where a line passing through the CoM,
parallel to the GRF intersects with the ground surface. Unlike the CoP, the CMP is not
constrained to lie inside the support polygon. The CMP is defined as:

rcmp = cxy −
Fgr,xy

Fgr,z
z, (2-2)

where rcmp = [xcmp, ycmp]T is the CMP location. In Figure 2-2b, the difference between
the ZMP and CMP is graphically explained. Without body inertia in the model, the points
coincide, as is depicted in Figure 2-2a. Equivalently, if τ c = 0, the points coincide as well.

2-1-3 Inverted Pendulum-Based Models

The line between a ground reference point and the CoM can be modeled as an inverted
pendulum. In this thesis, this line is also called the virtual leg.

Linear Inverted Pendulum Model

For its fast, closed-form solutions, the linear inverted pendulum (LIP) model [2] is widely
used in walking research and especially in legged robotics. The LIP equations of motion are:

c̈xy = g

l
cxy, (2-3)

where c̈xy is the horizontal CoM acceleration. At any horizontal position, a constant leg
length is considered and the motion is at a constant height l = z0. In Figure 2-3, the three-
dimensional space (3D) motion is visualized if the CoM is relatively far from the base. The
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Figure 2-3: The 3D motion of a LIP model.

pendulum base lies in the origin. Because the LIP assumption holds, the vertical component
of Fgr cancels out gravity acceleration: Fgr,z = mg.

To model body inertia of the robot, sometimes a flywheel is added to the LIP [4, 21, 5]. By
controlling the torque applied on the flywheel, a control authority over the CoM dynamics
becomes available.

Height Varying Models

Unlike the LIP, height variation of the CoM can be included in modeling of the virtual leg.
Three examples of such models are:

• The, not linearized, inverted pendulum model [16];

• The spring-loaded inverted pendulum (SLIP) model [22];

• A pendulum with prismatic joint, not constrained to maintain a constant height: the
variable height inverted pendulum (VHIP) [10].

The inverted pendulum model is often used in human motion research, as in [16]. The
advantages of a LIP, like fast, closed-form solutions to the dynamics, are often not needed, as
there is no dynamic planning and control involved. The SLIP model originates from hopping
and running robots [23]. Deviations from the nominal height or pendulum length are modeled
as mass-spring dynamics.

Throughout this report, special focus is given to the VHIP. In Figure 2-4, the VHIP is
depicted. The dynamics of the point-mass can be written in two ways. One is as a function
of the GRF in two-dimensional space (2D):

mẍ = Fgr,2D
x√

x2 + z2
, (2-4)

mz̈ = Fgr,2D
z√

x2 + z2
−mg, (2-5)
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2-1 Legged System Preliminaries 9

Figure 2-4: The 3D motion of a VHIP model.

where Fgr,2D = [Fgr,x, Fgr,z]T is the GRF of the 2D model. Work that uses this equation are,
for example, [10] and [13].

Another way of writing the dynamics of the VHIP is as a function of the vertical acceleration
z̈:

c̈ = g + z̈

z
c + g. (2-6)

This dynamical equation can be seen as a linear time-varying system. Examples of work
that uses the latter dynamical description for the VHIP are [12] and [14]. Note that the two
models are identical in 2D.

2-1-4 Orbital Energy & the Capture Problem

An advantage of the LIP is that closed-form solutions to the dynamics exist. The LIP orbital
energy is an example of such a closed-form solution. This energy can be used to determine
the ability of the pendulum to converge to its unstable equilibrium: the capture problem [4],
[5].

Linear Inverted Pendulum Orbital Energy

The LIP orbital energy is originally derived in [3] and shows one of the main advantages of
the use of a LIP model. This energy reads as follows:

ELIP =
∫

(ẍ− g

z0
x)ẋdt = 1

2 ẋ
2 − g

2z0
x2, (2-7)

where ELIP is the LIP orbital energy. This orbital energy is a conserved quantity if no
contact change occurs. Note that the expression resembles kinetic and potential energy: one
term depends on velocity, the other on position. If ELIP > 0, the point-mass will cross
the horizontal position of the pendulum base with its current velocity. If ELIP < 0, the
point-mass will not cross the pendulum base and will have a turning point where the velocity
changes direction.
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Figure 2-5: Visualization of the path to the LIPCP.

Capture Point & Capture Region

More than a decade later than the first mention of the LIP orbital energy, the LIP capture
point (LIPCP) was presented in [4]. Setting ELIP = 0 and taking the square root of Equation
(2-7) gives:

xcp,lip =
√
z0
g
ẋ, (2-8)

where xcp,lip is the ‘capture point’, in this thesis referred to as the LIPCP. If the CoP is held
constant at the LIPCP, the velocity of the point-mass will be exactly driven to zero when it
is above the CoP. In Figure 2-5, a 2D visual explanation is given of this point. Because of the
LIP model, the trajectory is at a constant height z0. The LIPCP will be used for comparison
with the novel VHIP capture regions presented later in this report.
A capture region will traditionally appear if the LIP plus flywheel model is used [4, 21, 5].
As the control authority over the flywheel can change the CoM dynamics, a set of capture
points become reachable, which is referred to as the capture region in [4].

Instantaneous Capture Point

The instantaneous capture point (ICP) was introduced in [5], which gives a slightly different
description of the LIPCP:

ξ = cxy +
√
z0
g

ċxy, (2-9)

where ξ = [ξx, ξy]T is the ICP. In this way, the LIPCP is written in environmental coordinates
and can be seen as a point where to step in the environment to come to a stop. Other
expressions similar to the ICP are the extrapolated center of mass [6] and the divergent
component of motion (DCM) [7].

For planning and control, the time derivative is often taken of the ICP: the ICP dynamics [5].
This time derivative can be written as a function of the current ICP location and a ground
reference point:

ξ̇ =
√
g

z0
(ξ − r), (2-10)
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(a) (b)

Figure 2-6: (a) Atlas [28] and (b) Valkyrie [29] walking over an uneven cinder block field at
IHMC.

where ξ̇ is the ICP velocity and r is a ground reference point, depending on modeling choices
as discussed in Section 2-1-2. If angular momentum is included, the CMP is often used [24]
and if not, the CoP or ZMP can be used [25].

Orbital Energy with Height Variation

Allowing height variation of the CoM, an expression for orbital energy is more difficult to
derive than its linear counterpart. Examples of attempts to include CoM height variations in
the solution to the dynamics are the time-varying DCM [12], the VHIP orbital energy under
a virtual constraint [10] and the height varying boundedness condition [14]. This work is
discussed in Section 2-3, since they are highly related to the research of focus.

2-2 Humanoid Robotics at IHMC

To support the methods and results presented later in this thesis, this section presents a
brief background on humanoid robotics at IHMC. Most algorithms are written in Java and
simulations are run in Simulation Construction Set (SCS) [26].

2-2-1 Robots

There are two humanoid robots present at the institute at the moment of writing: Boston
Dynamics’ Atlas [8, 9] and NASA’s Valkyrie [27]. An important difference between the two
robots is that Atlas is hydraulically actuated, while Valkyrie relies on electric series elastic
actuators. The actuation of Atlas is in general more powerful, which allows the robot to take
higher steps. Valkyrie on the other hand has more precise torque sensing, which is important
for torque control on the robot. This ties to a similarity between the robots: both robots are
torque controlled. Using a control framework, the actuators of the robots can be controlled
using measured and reference torques. In Figure 2-6, the two robots are shown.
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2-2-2 Planning

In contrary to running, with walking there is a state in every cycle with two feet in contact
with the ground. This is the double support state and the state where only one leg is on
the ground is the single support state. Additionally, other states within either the double
support or single support state are considered, like toe-off in the transition from double to
single support. In single support, the leg in contact with ground is the support leg and the
foot taking a step is the swing leg. The transition between those states and the duration in
each state play an important role in the generation of a dynamic plan. Planning of the robots
motion is conducted by separating footstep planning from dynamic planning. The dynamic
plan in this case is an ICP reference trajectory [24].

Footstep Planning

Footstep planning is the generation of a sequence of footsteps for the robot to follow. A Light
Detection and Ranging sensor on the head of the robot provides terrain information. One
way to generate a footstep plan is to let the user define each footstep via a graphical user
interface [8]. Via relatively simple algorithmic checks on for example kinematic reachability,
the user interface can show whether a footstep is feasible or not. To make this process more
autonomous, recently developments have been made in the creation of a footstep planner
based on an A* search algorithm.

Instantaneous Capture Point Planning

The generation of a dynamic reference plan for the robot is conducted by computing an ICP
reference trajectory. This trajectory relies on the solution to the linear differential equation
of the ICP dynamics of Equation (2-10):

ξ(t) = eω0t(ξ0 − r0) + r0, (2-11)

where ω0 =
√

g
z0

is the natural frequency of the LIP and ξ0 and r0 are the initial ICP and
ground reference point location, also called the knot-points. This equation assumes that the
location of the ground reference point is constant.
Under the assumption of constant ground reference point locations, the ground reference
knot-points, multiple methods have been developed over the years and improvements are still
being made. The most traditional ICP reference trajectory is calculated with a single ZMP
knot-point for each footstep [25]. For each ZMP knot-point, an ICP knot-point is computed
by integrating the ICP dynamics backwards in time from the last footstep to the first. Using
Equation (2-11), the local ICP reference value can be computed at any time instance within
the plan.
The above mentioned method is extended in [30], where multiple CMP knot-points per
foothold are considered and single support and double support transitions are interpolated us-
ing splines. In the most recent improvements, continous CMP reference trajectories are used
for the generation of the ICP plan [24]. An estimate of the angular momentum generated
during the walking motion is incorporated in the generation of the CMP reference trajectory.
At the time of writing, the latter method is the one currently in use at IHMC, and which is
used for the experiments in Chapter 6.
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2-2-3 Instantaneous Capture Point Control

Based on a CMP and ICP reference trajectory, the following proportional control law is used
to generate a desired CMP [8]:

rcmp,d = rcmp,r + kξ(ξ − ξr), (2-12)

where rcmp,d is the desired CMP, rcmp,r and ξr are the reference CMP and ICP from the ICP
planner respectively, ξ is the estimated ICP and kξ is the ICP gain. From rcmp,d, the desired
horizontal linear momentum rate of change is computed:

l̇d,xy = cxy − rcmp,d
z0

mg, (2-13)

where l̇d,xy is the desired horizontal linear momentum rate of change, which is the desired
horizontal force on the CoM of the robot. Note that this value is computed based on the LIP
equations of motion. This value is sent to the whole-body quadratic program (QP).

2-2-4 Momentum-Based Whole-Body Control

The desired horizontal linear momentum rate of change l̇d,xy, the output of ICP control, is one
of the inputs for the the whole-body QP. The whole-body QP finds desired joint accelerations
and desired GRFs, which are translated to desired joint torques by a Newton-Euler inverse
dynamics algorithm.

Centroidal Dynamics

The constraint on the dynamics of the robot in the whole-body QP is based on centroidal
dynamics [31]. Centroidal dynamics describe the dynamics on and about the CoM of the
robot as a result of external forces like gravity and GRF. To explain the CoM dynamics
of the robotic chain of the humanoid, a short introduction is given to joint to end-effector
mapping. The mapping between joint velocities and end-effector motion plays a crucial role
in any robotic system:

T =
[
ω
υ

]
= J(q)q̇ ∈ R6, (2-14)

where q̇ are the joint velocities, J(q) is the Jacobian that maps joint velocities to the end-
effector twist T. The twist consist of the angular velocity ω ∈ R3 and the linear velocity
υ ∈ R3. A basis for momentum-based whole-body control is the use of centroidal momentum:

h =
[
k
l

]
= A(q)q̇ ∈ R6, (2-15)

where A = IJ, as introduced in [31], is the inertia matrix I times the Jacobian. The centroidal
momentum h consists of the angular part k ∈ R3 and the linear part l ∈ R3. The time
derivative of the centroidal momentum, the centroidal momentum rate of change, is the
constraint on the dynamics of the robot in the QP currently in use [8]:

ḣ =
[
k̇
l̇

]
= Aq̈ + Ȧq̇ = Wg +

∑
i

Wgr,i +
∑
i

Wext,i, (2-16)
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Figure 2-7: Approximation of the wrench cone with basis vectors βij for ground contact point
i. The linear part of the ground reaction wrench, fi in the drawing, is a positive multiplication of
the basis vectors and lies inside the wrench cone. Adopted from [8].

where Wg is the gravitational wrench and
∑
i Wgr,i the wrench exerted by the total GRF, as

a sum of the wrenches of each ground contact point considered. The other external wrenches∑
i Wext,i are caused by other contacts than ground. These are considered zero in this thesis:∑
i Wext,i = 0.

Whole-Body Quadratic Program

The whole-body QP [8] optimizes between momentum rate objectives and motion objectives
to find desired joint accelerations and desired GRF. The optimization is formulated as follows:

min
q̈d,ρ

Jḣd + JJm + Jρ + Jq̈d ,

s.t. Aq̈d + Ȧq̇ = Wg + Qρ+
∑
i Wext,i,

ρmin ≤ ρ,
q̈min ≤ q̈d ≤ q̈max,

(2-17)

where q̈d are the desired joint accelerations, Qρ =
∑
i Wgr,i is the basis vector matrix Q

times the basis vector multiplier ρ. The basis vector matrix Q consists of all basis vectors
of the wrench cones from each ground contact point. In Figure 2-7, the wrench cone for a
single ground contact point is visually explained. Currently, there are 4 ground contact points
considered for each foot of the robot. The minimum ρmin has to be at least zero, because of
the unilateral contact constraint; the robot can only push with its feet on the ground. The
total cost J is composed of the following cost terms:

Momentum rate objective: Jḣd = Rḣd ||Aq̈d + Ȧq̇ − ḣd||2,
Motion objective: JJm = RJm ||Jmq̈d − p||2,

Contact force regularization: Jρ = Rρ||ρ||2,
Joint acceleration regularization: Jq̈d = Rq̈d ||q̈d||2,

where the weighting terms R can have a selecting function as well. For example, the cen-
troidal momentum rate of change objective Jḣd only consists of the linear part and is only
affected by the desired linear momentum rate of change l̇d. The motion task Jacobian
Jm = [JT1 ... JTN ]T consists of all N concatenated Jacobians that map either joint acceler-
ation to end-effector motion, as in Equation (2-14), or joint acceleration to joint acceleration.
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2-3 Related Work 15

Figure 2-8: High-level overview of the control framework. Adopted from [8].

The motion objective vector p = [pT1 ... pTN ]T consists of PD controlled desired accelera-
tions, coming for example from trajectory tracking of the swing leg or maintaining the upper
body orientation.

An important note considering the research of focus is the generation of vertical CoM motion
of the robot. The desired linear momentum rate of change l̇d consists, next to its horizontal
component of Equation (2-13), of a vertical component:

l̇d,z = m(kp(zr − z)− kdż), (2-18)

where kp and kd are the PD height control gains and zr is the reference height coming
from a reference trajectory. Decision variables for this trajectory are, for example, kinematic
reachability and height changes in terrain, but maintaining the robot’s balance is not a part
of those decision variables.

Inverse Dynamics

To translate desired joint accelerations and end-effector wrenches to desired joint torques,
a recursive Newton-Euler inverse dynamics algorithm is used. Desired joint torques τ d are
calculated using the solution of whole-body QP, q̈d and ρ, as follows:

τ d = M(q)q̈d + C(q, q̇)q̇ + G(q) + JTWgr. (2-19)

These desired joint torques are used by the torque controllers for each actuator.

A high-level overview of the control framework is shown in Figure 2-8. The ‘high level
controller’ block consists, for example, of the ICP controller presented in Section 2-2-3 and
the height control law of Equation (2-18).

2-3 Related Work

In this short literature survey, the scope is not limited to only the use of vertical CoM motion
in balance control. Other goals of improvement, like improving dynamic planning for motions
over rough terrain or for more human-like motions, are discussed as well. The methods used
for dynamic planning can be closely related to model predictive control (MPC) and can be
insightful for the problem considered in this thesis.

Master of Science Thesis B.J. van Hofslot



16 Background

Traditionally, vertical CoM motion is generated through PD control as in Equation (2-18)
[32, 8]. A dynamic reference plan exists, often based on the LIP model, and height variations
are considered as disturbances on the model used in the dynamical plan. Reasons to use
height variations here include the guarantee of kinematic feasibility: height variation allows
the robot to step up platforms, and allows the robot to take larger steps. A noteworthy,
more unique, example of height variation in non-predictive control is walking with straighter
legs as in [33]. The motivation in this work is to let the robot walk more human-like, which
could have more underlying benefits, such as kinematic reachability and metabolic energy
consumption [34].

2-3-1 Dynamic Planning

Because the constant height assumption of the LIP is constraining the dynamics of the robotic
system, efforts have been made to incorporate CoM height variation in the generation of a
dynamic plan. Instead of using a LIP model, a more complicated model is used. Expected
height variations of the CoM can be incorporated in the dynamic planning problem, which
improves the dynamic feasibility of the plan. In theory, the reference dynamics are closer to
the real dynamics of the robot. Deviations from the LIP in the CoM reference trajectory can
be incorporated in the plan. These deviations can come, for example, from an uneven terrain
or a human-like walking pattern.
An example of incorporating height variations in terrain in the dynamic planning problem
can be found in [11], which is an extension of ICP planning as in Section 2-2-2. Additional
reference points, similar to ground reference points as in Section 2-1-2, are designed and used
in the planning method. The drawback of this method is that still a linearized model is
considered and the trajectories between footsteps for the dynamical plan are constrained to
be straight lines.
In [12], this latter aspect is improved by introducing the time-varying DCM. The natu-
ral frequency of the LIP was made time-varying, such that the DCM became time-varying.
However, a closed-form solution using this method was not available anymore, requiring the
dynamic plan to be computed numerically.
The methods presented in [35] and [36] also show the objectives of walking with straighter
legs in the dynamic planning problem. The objective in the optimization in [35] is to let
the robot walk with the straightest legs as possible at any time. In [36], a 2D walking
pattern is generated for walking with straighter legs. The third dimension is added, under the
assumption that the dynamics in the sagittal plane and the coronal plane can be decoupled.

2-3-2 Balance Control

Instead of coping with height variations in the dynamic planning problem, the use of CoM
height variation was recently considered as an input for online disturbance rejection. Unlike
dynamic planning, in which trajectories are computed in advance, with balance control a
control input needs to be computed within the control rate. When going from the LIP to the
VHIP, the problem arises of losing the explicit solution to the dynamics. Therefore, especially
in MPC, computation times are a challenge, as reference trajectories have to be replanned
every control tick.
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In this section, the following three publications that consider CoM height variation as control
input for balance are discussed. The work proposed by: Koolen, Posa & Tedrake [13], Gao,
Jia & Fu [37] and Caron & Mallein [14].

Koolen et al. [13] propose a 2D MPC law, based on the VHIP orbital energy proposed in
[10]. This energy reads as follows:

EV HIP = 1
2 ẋ

2f̄2(x) + gx2f(x)− 3g
∫ x

xf

f(ξ)ξdξ = 1
2 ẋ

2
f f̄

2(xf ) + gx2
ff(xf ), (2-20)

where EV HIP is the VHIP orbital energy under a virtual constraint. The virtual constraint
z = f(x) is used to make a closed-form solution possible for the energy. Furthermore, f̄(x) =
f(x)− f ′(x)x. Unlike its LIP cousin, this 2D orbital energy allows for CoM height variation.
Note that filling in a constant value for the function, f(x) = z0, rewrites to the LIP orbital
energy.

The function f(x) is constrained to be a cubic polynomial by Koolen et al. [13]. Using
this description, four constraints are presented, which are used in a matrix to solve for the
polynomial constants. There is one constraint on the final height, one constraint on the initial
height, one on the initial direction and one constraint on conservation of EV HIP . The final
position of the polynomial trajectory is above the CoP and the final velocity is zero, such
that the resulting polynomial trajectory is a capture trajectory: the trajectory that results in
the system to come to a stop.

Comparable with the LIP-based ‘capture regions’ in [4, 5] and ‘stable regions’ in [21], Koolen
et al. investigate ‘regions of attraction’ for the MPC law. Traditional ‘capture regions’
consider inertia about the CoM to control the LIP. The VHIP ‘regions of attraction’ use
CoM height variation as a control input. The ‘regions of attraction’ show an interesting
insight in capture regions of the VHIP model. By constraining the height trajectory to be a
polynomial function, the MPC law has an explicit solution. However, this comes at the cost of
the trajectories, and thus also the control inputs, to be constrained to the polynomial shape.
Therefore, also the regions of attraction are constrained to the polynomial shape, which can
affect the regions. Furthermore, no kinematic constraints, such as a minimum and maximum
height, are considered in the problem. Therefore, the control law is not implementable on a
real robot without modification.

Gao et al. [37] present different 2D multi-step strategies to use vertical motion in balance
control. An example is lowering the CoM height in the current step, to exert more force and
raise the CoM in the next step. In this way, the pendulum can stop closer to the current
position than with a LIP trajectory. To account for the vertical CoM motion, the natural
frequency of the LIP is adjusted with the added vertical acceleration. To make the dynamical
model closed-form solvable, a constant height is considered, as the deviations from the initial
height are considered to be relatively small.

Caron & Mallein [14] propose a 3D MPC law, based on a height varying version of the
boundedness condition from [38]. In [38], the boundedness condition is based on the LIP and
presents a similar expression as the ICP, but takes a time-varying ground reference point
trajectory into account. By using a time varying natural frequency of the pendulum ω(t),
Caron & Mallein [14] combine the boundedness condition with the time-varying DCM of
[12]. By the nonlinearity of the problem, it is initially hard to solve real-time. The problem
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function is reformulated and written as a function of an inverse of time, rather than as a
function of forward time. Also, the capture trajectory is divided in 10 segments, which are
considered to have a piece-wise time-invariant natural frequency. The resulting problem is
solved using a nonlinear solver.

Even though the work presented in [14] is the closest to application (3D control law, kinematic
and force constraints), no applied results are shown. Additionally, for the presented control
laws, no comparison is made with a traditional constant height control law. Therefore, the
question remains what the advantages are of the presented MPC law compared to using a
LIP-based proportional controller for example. In Chapter 5 and Chapter 6 of this report,
CoM height variations in balance control are compared with constant height approaches on
humanoid robots.

Comparable with the ‘regions of attraction’ [13], capture regions are presented for the VHIP
model in the next chapter. Like in the approach presented in [14], constraints on the kine-
matics and dynamics of the system are approximated with constraints on vertical position
and vertical acceleration.

B.J. van Hofslot Master of Science Thesis



Chapter 3

Variable Height Inverted Pendulum
Capture Regions

Using simple models for a walking humanoid robot, it has been a common approach to
study point-foot placements where it is possible to come to a stop [4, 21, 5]. Such a point-
foot location is referred to as a capture point in [4]. In the case of the linear inverted
pendulum (LIP) model, only one capture point exists: the LIP capture point (LIPCP). If a
torque controlled flywheel is added to this model, a control input is available and reaching
a set of capture points will become possible. This set of capture points is referred to as a
capture region, also called a stability region in [21]. A control input however can also become
available without addition of a flywheel to the LIP.

Taking away the height constraint of the LIP, results in the variable height inverted pendulum
(VHIP). Height variations can be used to influence the capture region. Equation (2-6), written
in two-dimensional space (2D), reads as follows:

ẍ = g + z̈

z
x. (3-1)

In this chapter, capture regions are derived by adding constraints to the model above. Re-
covery is considered within the current step, which is equivalent to ‘0-step’ capture [5]. A
capture point is denoted as a positive value, while the initial state of the above model is set
to x0 < 0, z0 > 0 and ẋ0 > 0. Thus, if x0 is a capture point, this is denoted as xcp = −x0. For
comparison with the LIP and for simplicity, the initial vertical velocity is set to zero: ż0 = 0.

3-1 Unilateral Contact Constraint

The assumption is made that the robot can only push on the ground with its legs. This
introduces a constraint of contact unilaterality. The downward acceleration of the point-mass
is constrained by gravity acceleration, and the constraint z̈ ≥ −g is added to the VHIP model
of Equation (3-1).
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20 Variable Height Inverted Pendulum Capture Regions

Neglecting torque limits, the velocity of the point-mass can be instantly changed by an impact
of the VHIP. Writing Equation (3-1) in terms of an instant velocity change gives:

δẋI = δżI
z
x, (3-2)

where δẋI and δżI are the horizontal and vertical velocity change, resulting from an impact
by the VHIP.
To find the first bound on the unilateral contact constrained capture region, the closest
possible capture point is explored. Using Equation (3-2), if an initial impact of the leg
directly stops the horizontal motion of the mass, ẋ0 + δẋI is zero. Using this, the first bound
on the region is found by considering an infinite impact of the leg:

lim
δżI→∞

xcp,uni,1 = z0
δżI

ẋ0 = 0,
Unilateral Contact Constrained First Bound

(3-3)

where xcp,uni,1 is the first bound on the unilateral contact constrained capture region. When,
in the horizontal plane, the point-mass approaching the base is infinitely close to the base,
an infinite vertical impact by the VHIP is needed to stop the horizontal motion.
For the second bound on the region, the minimum possible vertical acceleration of z̈ = −g is
used. With this vertical acceleration, the dynamics of the point-mass depend on gravitational
forces only: the point-mass follows a ballistic trajectory. After this ballistic trajectory, the
mass can be stopped by an impact of the VHIP just before z = 0. The time after which the
point-mass touches the ground is:

tbal =
√

2z0
g
. (3-4)

The horizontal location at this time is:

xbal = ẋ0tbal = ẋ0

√
2z0
g
, (3-5)

where xbal is the ballistic touchdown point. This point is the second bound on the unilateral
contact constrained capture region. In theory, the VHIP can apply an impact just before
the point-mass touches the ground, assuming the VHIP is aligned with the velocity of the
point-mass at that moment. Also, this point has a special relationship with the LIPCP:

xcp,uni,2 = xbal =
√

2z0
g
ẋ0 =

√
2xcp,lip,

Unilateral Contact Constrained Second Bound

(3-6)

where xcp,uni,2 is the second bound on the unilateral contact constrained capture region.
The capture region spanned between these two bounds reads as follows:

xcp,uni ∈
(

0,
√

2z0
g
ẋ0

)
, (3-7)

where xcp,uni is a unilateral contact constrained capture position. In Figure 3-1, this region
and the LIPCP are visualized. With gray plots, made with the method presented in [13],
possible intermediate trajectories are shown. It can be observed how the trajectories can
become very high, when approaching the left side of the bound.
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3-1 Unilateral Contact Constraint 21

Figure 3-1: Visualization of feasible final point-mass locations for the unilateral contact con-
strained capture region (gray area). The values ẋ0 = 1.0 [m/s], z0 = 1.0 [m], ż0 = 0.0 [m/s] and
g = 9.81 [m/s2] are used. The thin black lines are made with the method presented in [13] and
visualize possible intermediate trajectories.
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22 Variable Height Inverted Pendulum Capture Regions

3-2 Height Constraints

To further constrain the VHIP model, kinematic constraints are taken into account. Under the
assumption that kinematic limits of the robotic system can be approximated with a minimum
and maximum center of mass (CoM) height, in this section a minimum and maximum height
constraint are added to the unilateral contact constrained capture region of the previous
section. The capture points that will be presented are a combination of impacts, ballistic
trajectories and LIP capture trajectories, such that closed-form solutions become available.

3-2-1 Maximum Height

With an initial vertical impact by the leg of such magnitude that the resulting apex of
the point-mass does not violate the maximum height constraint, a capture position under a
maximum height constraint can be derived. This capture point is computed using the velocity
change by the vertical impact first, followed by a ballistic trajectory, after which the LIPCP
at the maximum height is used.

To calculate the allowed size of the initial impact, the following equality of kinetic and po-
tential energy is used:

1
2mδż

2
I = mgδzmax, (3-8)

δżI =
√

2gδzmax, (3-9)

where δzmax = zmax−z0 is the difference between the current height and the maximum height
zmax. The initial horizontal velocity is influenced at the moment of the impact as follows:

ẋ0,I = ẋ0 −
xcp,zmax
z0

δżI , (3-10)

where ẋ0,I is the remaining horizontal velocity after the impact and xcp,zmax is the capture
position following the maximum height constraint, to be determined. Note that at the moment
when z reaches zmax for the first time after the ballistic trajectory, ẋ0,I is unchanged as no
virtual leg force is used. The duration of this ballistic trajectory is given by:

tż>0 = δżI
g
, (3-11)

where tż>0 is the time that the height velocity is greater than zero. The capture position
under the maximum height constraint is calculated as follows:

xcp,zmax =
(
tż>0 +

√
zmax
g

)
ẋ0,I , (3-12)

=
(
δżI
g

+
√
zmax
g

)(
ẋ0 −

xcp,zmax
z0

δżI

)
. (3-13)
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3-2 Height Constraints 23

Taking xcp,zmax to the left-hand side leads to:(
1 +

(
δżI
g

+
√
zmax
g

)
δżI
z0

)
xcp,zmax =

(
δżI
g

+
√
zmax
g

)
ẋ0, (3-14)

xcp,zmax =

(
δżI
g +

√
zmax
g

)
1 +

(
δżI
g +

√
zmax
g

)
δżI
z0

ẋ0. (3-15)

Finally, writing this point in terms of the initial state gives:

xcp,zmax =

√
2gδzmax
g +

√
zmax
g

1 +
(√2gδzmax

g +
√

zmax
g

)√2gδzmax
z0

ẋ0. (3-16)

Simplifying leads to:

xcp,zmax =
z0(
√

2δzmax +√zmax)
√
g(z0 + 2δzmax +

√
2zmaxδzmax)

ẋ0.

Maximum Height Constrained Capture Point

(3-17)

3-2-2 Minimum Height

First the impact influenced capture point is presented, which is used to formulate a capture
point following the minimum height constraint.

Impact Influenced Capture Point

Temporarily, the constraint on zero initial vertical velocity is neglected and the initial vertical
velocity is set to a negative value. Under the assumption that this vertical velocity is directly
driven to zero after an impact of the leg, the resulting capture position is computed as follows:

xcp,I =
√
z

g
(ẋ0 + δẋI), (3-18)

where xcp,I is the impact influenced capture point. Writing the added velocity δẋI in terms
of added vertical velocity gives:

xcp,I =
√
z0
g

(
ẋ0 −

xcp,I
z0

δżI
)
. (3-19)

Under the assumption that the vertical velocity is driven to zero instantaneously by the
impact, δżI = −ż0. Taking xcp,I to the left-hand side leads to:

xcp,I =

√
z0
g

1 + δżI
z0

√
z0
g

ẋ0, (3-20)

and simplifying gives:

xcp,I = z0√
z0g − ż0

ẋ0.

Impact Influenced Capture Point

(3-21)
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24 Variable Height Inverted Pendulum Capture Regions

Minimum Height Constrained Capture Point

Considering a minimum height constraint on the CoM, a point can be computed that follows
a ballistic trajectory initially, after which the impact influenced capture point is computed at
the minimum height. Using Equation (3-4), the vertical velocity after a ballistic fall until the
minimum height constraint reads as follows:

żzmin = −gtbal,zmin = −g
√

2δzmin
g

= −
√

2gδzmin, (3-22)

where tbal,zmin and żzmin are the time and vertical velocity at the minimum height constraint
and δzmin = z0 − zmin. The impact influenced capture point of Equation (3-20) after the
ballistic fall reads as follows:

xcp,I(zmin, żzmin) = zmin√
zming +

√
2gδzmin

ẋ0. (3-23)

The horizontal position after the ballistic fall is x =
√

2δzmin
g ẋ0. Using this and Equation

(3-23), the capture point following the minimum height constraint is computed as follows:

xcp,zmin =
(√

2δzmin
g

+ zmin√
zming +

√
2gδzmin

)
ẋ0,

Minimum Height Constrained Capture Point

(3-24)

where xcp,zmin is the capture point following the minimum height constraint.

3-2-3 Bounds on Region

The capture positions xcp,zmax and xcp,zmin are also the outer bounds on the height constrained
capture region.

Lemma 1. Considering the VHIP dynamics of Equation (2-6), ż0 = 0, minimum height
constraint zmin and maximum height constraint zmax, xcp,zmin and xcp,zmax are the outer
bounds on the height constrained capture region.

Proof. For any capture position xcp, xẋ < 0 [13] and 0 > x0 ≥ −xbal from Equation (3-7).
The configuration is used that x ≤ 0, ∀t and x → 0 along any trajectory. From the VHIP
dynamical equation, and z > 0, it follows that any z̈ > −g will slow ẋ down. Showing that
x
z → 0, ∀t will prove that z̈ = −g for the longest possible time t will lead to the farthest
capture point xcp, and a maximum z̈ at the earliest possible t will lead to the closest xcp.

For z̈ = 0, z remains constant and x
z → 0. For z̈ > 0, z will grow and x

z → 0. If z̈ < 0, it can
be shown with the derivative of xz that this is always increasing:

dxz
dt

= zẋ− xż
z2 , (3-25)
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3-3 Vertical Force Constraints 25

where x ≤ 0 and zẋ ≥ 0. Taking the extreme case z̈ = −g leads to:

zẋ− xż = (z0 −
1
2gt

2)ẋ0 + (x0 + ẋ0t)gt, (3-26)

= (z0 + 1
2gt

2)ẋ0 + x0gt. (3-27)

Noting that all terms are positive except for x0, which has the largest negative value for
x0 = −xbal. Filling this in gives:

(z0 + 1
2gt

2)ẋ0 −
√

2z0
g
ẋ0gt = ẋ0

(√1
2gt−

√
z0

)2
, (3-28)

which is always greater than or equal to zero for all t. Therefore, xcp,zmax is the first bound
and xcp,zmin is the second bound on the height constrained capture region.

In Figure 3-2, the discussed capture regions are visualized. The LIP capture point lies inside
the height constrained capture region, which lies inside the unilateral contact constrained
capture region. Again, possible intermediate trajectories are shown with the method presented
in [13] and show that the final points are located inside the height constrained capture region,
if the same minimum and maximum height constraints zmin and zmax are considered.

3-3 Vertical Force Constraints

Because the height constrained capture region does not take joint torque limits into account,
the VHIP dynamics can be further constrained to narrow the gap between model and robot.
Under the assumption that the robot specific limitations on joint torques can be approximated
with a minimum and maximum vertical force on the CoM, constraints on the minimum
and maximum vertical acceleration are added to the VHIP dynamics. From Lemma 1, any
vertical acceleration extremum at the earliest convenience will lead to staying closer to a
height constrained bound, which makes the capture region larger. Therefore, a bang-bang
control law on vertical acceleration is introduced.

In [4, 21, 5], a bang-bang control law is used to regulate the angular momentum in the body of
model. Instead of using this strategy, a bang-bang control law is used to regulate the vertical
acceleration:

z̈ = z̈c,1H(t)− (z̈c,1 − z̈c,2)H(t− t1)− z̈c,2H(t− t2), (3-29)

where z̈c,1 is the first and z̈c,2 the second constant control input of the bang-bang law and
have opposite signs. H(·) is the Heaviside step function and

t1 =

√√√√√2(zconst − z0)

z̈c,1 −
z̈2
c,1
z̈c,2

, (3-30)

which is the solution of:
z0 + 1

2 z̈c,1t
2
1 −

1
2

(z̈c,1t1)2

z̈c,2
= zconst, (3-31)
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26 Variable Height Inverted Pendulum Capture Regions

Figure 3-2: Visualization of feasible final point-mass locations for the analytic capture regions.
The values ẋ0 = 1.0 [m/s], z0 = 1.0 [m], ż0 = 0.0 [m/s] and g = 9.81 [m/s2] are used. The
light gray area shows the feasible final points in the unilateral contact constrained capture region
(Section 3-7). The dark gray area shows the feasible final points in the height constrained capture
region (Lemma 1) for 0.7 < z < 1.1 [m]. The dotted plots are made with the orbital energy
controller of [13] and show that the final points are inside the height constrained region.
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3-4 Capturability Comparison 27

Figure 3-3: Vertical force constrained capture positions relative to the height constrained bounds.
The acceleration z̈c = |z̈c,1| = |z̈c,2| if z̈c ≤ g and else the negative ‘bang’ is set to −g. The
values ẋ0 = 1.0 [m/s], z0 = 1.0 [m], ż0 = 0.0 [m/s] and g = 9.81 [m/s2] are used.

where zconst = zmin if z̈c,1 < 0 and zconst = zmax otherwise. The time t2 = (1− z̈c,1
z̈c,2

)t1, as the
second ‘bang’ needs to drive the vertical velocity resulting from the first bang to zero.

By inserting a constraint on vertical acceleration, the dynamical solution of the VHIP is
found via numerical integration. A capture position is found using a optimization similar to a
binary search. In this optimization, instead of finding an index, the search is stopped when a
specified cost function is below a certain threshold. There is iterated over the initial position,
given the initial velocity. The cost function used is x2 at the time instance that ẋ = 0. If
ẋ is never zero, which happens when the point-mass crosses the pendulum base, the cost is
set to a high value. The authors of [37] present analytic solutions using vertical acceleration,
but consider a constant height in the model. For comparison with applied results later in this
thesis, this constant height assumption is not considered.

In Figure 3-3, simulation results are shown in perspective with the earlier presented capture
regions. Note that when the bang-bang control inputs z̈c are larger, both trajectory and
capture position come closer to the height constrained bounds.

3-4 Capturability Comparison

In this section, a comparison is made between the presented capture positions and the LIPCP,
as well as a comparison with the LIP plus flywheel capture regions. As in [4, 21, 5], a
dimensional analysis [39] is performed when comparing the capture regions. The following
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28 Variable Height Inverted Pendulum Capture Regions

parameters are used for dimensionless position and velocity:

x′ = x

z0
, ẋ′ = 1

√
gz0

ẋ. (3-32)

The following dimensionless height and vertical acceleration are used for the VHIP:

z′ = z

z0
, z̈′ = z̈

g
, (3-33)

and the following dimensionless inertia and CoM torque are used for the LIP plus flywheel
model:

I ′y = Iy
mz2

0
, τ ′y = τy

mgz0
. (3-34)

Instead of the CoM torque, a dimensionless centroidal moment pivot (CMP) offset is used:

x′cmp = xcmp
z0

= x′cop + δx′cmp, (3-35)

δx′cmp = τ ′y, (3-36)

where δx′cmp is the dimensionless CMP offset. The dimensionless center of pressure (CoP)
x′cop is assumed to be saturated and at a constant location.

3-4-1 Comparison without Angular Momentum

A comparison is made between the LIPCP, the height constrained capture positions and
the vertical force constrained capture positions. The dimensionless vertical accelerations of
each ‘bang’ for the vertical force constrained capture positions are set to equal dimensionless
magnitude z̈′c. For comparison, a rough estimate is made of realistic values of vertical forces
that are achievable on both humans and robots.

First, an approximation is made of what would be achievable for a human being. A human
jumping vertically with maximum effort generates approximately 2mg ground reaction force
[40]. If the assumption is made that this value can also be used in recovery, the value z̈′c = 1
can be taken for a human. Second, an approximation is made of what is possible on robots.
On hardware experiments on NASA’s Valkyrie in Chapter 6 is found that z̈′c = 1

4 is near the
maximum what is applicable on Valkyrie. Larger accelerations would result in the robot to
shake and did not improve recovery. On hardware experiments on Boston Dynamics’ Atlas,
accelerations of approximately z̈′c = 1

2 are still applicable.

In the left plot in Figure 3-4, the height constrained bounds are shown, together with the
approximations of realistic vertical acceleration constraints on humans and on Valkyrie and
Atlas for the vertical force constrained capture positions. The vertical force constrained
capture positions are computed for every dimensionless height change δz′ = 0.02. Deviations
from z′ = 1 show which values for the constraints z′min and z′max are used in the computation of
the capture points. Note how the capture positions relate differently under a minimum height
constraint than under a maximum height constraint. Also note how the capture positions
linking to the approximation of allowed vertical acceleration for the robots, seem to approach
a minimum and maximum value quite soon after changing height. The point [1, 1] in the plot
is the LIPCP.
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Figure 3-4: Reachable dimensionless capture positions for ẋ′
0 = 1 (left) and capture velocities

for x′
0 = 1 (right) without angular momentum. Deviations from z′ = 1 show which minimum or

maximum height constraint is used in the computation of the capture points, z′
0 = 1.

In the right plot, the capture velocity is shown. This is the initial velocity, after which the
resulting capture point is equal to the LIPCP. This is an inverse capture problem: instead of
finding a point-foot location where the point-mass would come to a stop, an initial velocity
is found that will come to a stop for a fixed point-foot location. The differences between the
capture velocities of the regions that consider height variation and the capture velocity of the
LIP can be seen as a difference in robustness for an applied disturbance. The capture velocity
is used later in this report for comparison with applied results, where push recovery is tested
on Valkyrie and Atlas.

3-4-2 Comparison with Angular Momentum

An estimation of the effects of angular momentum strategies can be performed as in [5].
Angular momentum strategies, like a ‘hip strategy’, have a pay back time; any angular velocity
generated by the strategy has to be driven back to zero before a physical limit is reached.
Therefore, the body torque can be estimated with a bang-bang control law. Considering a
LIP plus flywheel model, as proposed in the work mentioned, the following bang-bang control
law is used to account for angular momentum:

δx′cmp = (1− 2e−δt
′
bang + e−2δt′bang)δx′cmp,max, (3-37)
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30 Variable Height Inverted Pendulum Capture Regions

Figure 3-5: Comparison of capture region with angular momentum versus vertical force con-
strained capture. The height constraints are set equal, δz′

min = δz′
max and I ′

y = 1
6 . The solid

plots show the first bound on the region and the dotted plots the second bound.

where δx′cmp,max is the maximum dimensionless offset of the CMP with the CoP and δt′bang is
the time of each ‘bang’ of the control law. The average dimensionless CMP offset to account
for in computation of the LIPCP is δx′cmp. The time δt′bang can be determined by:

δt′bang =
√

I ′yθmax

δx′cmp,max
, (3-38)

where θmax the maximum allowed body lunge relative to the vertical. Note that I ′y = 0 for a
point-mass and I ′y = 1 for a disc with all its mass on the edge, with its radius equal to the
CoM height above the ground.
A rough estimate is made of the dimensionless inertia of a standing human or robot used
in recovery. The assumption is made that the hip is the CoM position [41] and that the
total body length is two times the CoM height. Furthermore, only the body above the hip is
assumed to be used in recovery, which is modeled as a beam with half the total body mass
rotating around the hip. The inertia of this beam is Ibeam = 1

3(1
2m)L2. Note that the length

L is equal to the CoM height z0. Those assumptions result in the following dimensionless
inertia:

I ′y =
1
3(1

2m)z2
0

mz2
0

= 1
6 . (3-39)

Even though the inertia used in recovery is approximated with a calculation based on a beam,
still a flywheel model is assumed. Rotation of a beam around its end would change the CoM
height of the system and would violate the LIP model.
In Figure 3-5, vertical force constrained capture regions are compared with LIP plus flywheel
capture regions. The maximum allowed vertical CoM height change δz′max = 0.065 is approx-
imately the same value as is used on NASA’s Valkyrie later in this report. The range for
δx′cmp,max is commonly used at the Institute for Human and Machine Cognition (IHMC) [42].
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3-5 Discussion

Chapter 3 presented capture positions and capture regions for the variable height inverted
pendulum (VHIP) model, by adding constraints to the VHIP model. By comparing the
capture positions, it can be observed that addition of constraints to the model affect the
capture region. Comparisons were made with the LIPCP and a high-level comparison is
made with angular momentum strategies, which bring CoM height variations for balance in
perspective with other balancing strategies.

The unilateral contact and height constrained capture regions consider impacts of the VHIP.
This has some resemblance with the work presented in [16], where the influences of impacts
on the energetics of the inverted pendulum are investigated. The impact influenced capture
point presented in this chapter, shows how an impact influences the LIPCP instead of the
inverted pendulum.

For the vertical force constrained capture regions, joint torque limits of the robot are approxi-
mated with a constant constraint on minimum and maximum vertical force. This approxima-
tion of the torque limit can be closer to the real torque limit if height changes are relatively
small, as the change in configuration of the robotic chain is relatively small. For large changes
in height, a more complicated function might be worth considering as constraint on vertical
force over time. Additionally, it could be interesting to explore closed-form solutions for the
vertical force constrained capture points. In this chapter, the points were found numerically.
A closed-form expression allows for faster computation times, which could allow for the use
in control.

A constraint that was not considered in this chapter is a constraint on ground friction. The
unilateral contact constraint constrains the vertical component of the ground reaction force
(GRF) to be larger than zero. The vertical force constraint limits the magnitude of the GRF.
However, a constraint on the direction of the GRF, like a friction cone constraint, was not
considered. As no inertia is used in the model however, the direction of the GRF is just
depending on the VHIP configuration.

However, if CoM height variation and angular momentum strategies would be combined, a
constraint on ground friction might be worth considering. A VHIP plus flywheel model can
be formulated as follows:

ẍ = g + z̈

z
x− 1

mz
τy. (3-40)

If the input torque τy would be used during a ballistic trajectory, where z̈ = −g, the GRF
would become parallel to the ground plane. This would require infinite ground friction, which
is in practice never the case.

Also, this chapter presented ‘0-step’ capture regions, unlike the work presented in [5, 37],
where multiple steps are considered in the computation of the capture region. However,
in a similar manner the capture points in this chapter were derived, expressions can be
derived for multi-step strategies. Using a combination of impacts, ballistic trajectories and
LIP trajectories, a multi-step strategy can be computed closed-form.

In the next chapter, the height constrained capture point zmax is used to compute the step
size for a model predictive control (MPC) law.
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Chapter 4

Kinematically Constrained Orbital
Energy Trajectories

The height constrained capture bounds cannot be used directly in control, as they consider
impacts with no constraints on force. The force constrained bang-bang control law has to
be integrated numerically to obtain future state information. Therefore, it is interesting to
explore an additional method that has knowledge over future states, without the drawback
of numerical integration. This chapter proposes an extension to the work of Koolen, Posa &
Tedrake [13], which relies for an important part on the work by Pratt & Drakunov [10]: the
orbital energy of the variable height inverted pendulum (VHIP).

4-1 Constraint Matrix with Final Velocity

In [13], the final horizontal velocity ẋf is set to zero, as this leads to a capture trajectory:
a trajectory that leads to convergence of the unstable equilibrium of the VHIP. However,
the trajectories have no constraints on kinematics and can become unrealistically high above
the ground, as shown in Figure 3-1. To take kinematic limits of the system into account,
constraints on the configuration of the VHIP have to be added. In this section, the final
horizontal velocity of the VHIP orbital energy is left undetermined, which is used to add
kinematic constraints to the orbital energy trajectory.

First, the orbital energy is derived for nonzero final velocity. Using the VHIP orbital energy
of Equation (2-20), but setting the final horizontal position xf zero gives:

1
2 ẋ

2f̄2(x) + gx2f(x)− 3g
∫ x

0
f(ξ)ξdξ = 1

2 ẋ
2
f f̄

2(0). (4-1)

Note that f̄2(0) = (f(0)− f ′(0) · 0)2 = f(0)2. The additional nonzero term on the right-hand
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side can be added in the constraint matrix presented in [13]. The constraint matrix reads as:
1 0 0 0
1 x0 x2

0 x3
0

0 1 2x0 3x2
0

3
2gx

2
0 gx3

0
3
4gx

4
0

3
5gx

5
0


︸ ︷︷ ︸

A


c0
c1
c2
c3


︸ ︷︷ ︸

c

=


zf
z0
ż0
ẋ0
k


︸ ︷︷ ︸

b

, (4-2)

where A is the constraint matrix, c is the vector containing the polynomial constants and
b is the constraint vector, giving a constraint on final height, initial height, initial direction
and conservation of orbital energy respectively. The parameter k in b is derived as follows.
The integral term in the orbital energy equation, written as a cubic polynomial, read as:
3g
∫ x

0 f(ξ)ξdξ = 3g
∑3
i=0

1
i+2cix

i+2
0 . The last constraint of Equation (4-2) reads after addition

of the final velocity term as:

3g
∫ x0

0
f(ξ)ξdξ = 1

2 ẋ
2
0f̄

2(x0) + gx2
0f(x0)− 1

2 ẋ
2
f f̄

2(0), (4-3)

and in terms of the cubic polynomial as:

3g
3∑
i=0

1
i+ 2cix

i+2
0 = 1

2(ẋ0z0 − ẋ0x0)2 + gx2
0z0 −

1
2z

2
f ẋ

2
f , (4-4)

= k, (4-5)

where k is the last entry of vector b.

Using the polynomial description and having a nonzero final velocity ẋf , the final height
constraint zf results in a final vertical velocity żf relative to the gradient of the polynomial
at xf = 0:

f ′(0) = żf
ẋf
, (4-6)

żf = f ′(0)ẋf . (4-7)

It could be undesirable that żf is depending on ẋf . When ẋf 6= 0, additional future actions
have to be taken to come to a stop, like taking a step. High vertical velocities can result in,
for example, high impacts, which can be undesirable. Therefore, it could be useful to have
zero vertical velocity at this point. The constraint f(0) = zf in the first row in Equation
(4-2) can be replaced with the following constraint on the final gradient:


0 1 0 0
1 x0 x2

0 x3
0

0 1 2x0 3x2
0

3
2gx

2
0 gx3

0
3
4gx

4
0

3
5gx

5
0


︸ ︷︷ ︸

A


c0
c1
c2
c3


︸ ︷︷ ︸

c

=


żf
ẋf

z0
ż0
ẋ0
k


︸ ︷︷ ︸

b

. (4-8)

Note that zf still appear in k. For the results presented in the following sections, zf is set
equal to the constraint on maximum height or maximum leg length.
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4-1-1 Maximum Height Constraint

Using the previous two descriptions of the problem constraints with an undetermined final
velocity ẋf , Equation (4-2) and Equation (4-8), a height constraint is added to the problem.
Algorithm 1 shows how the polynomial values can be found under this constraint. The
maximum height of the trajectory being optimized over is at location xzpeak , which is the
location in the trajectory where the derivative of the polynomial is zero. The initial guess
for the final horizontal velocity is determined based on the linear inverted pendulum (LIP)
orbital energy.

In Figure 4-1, two resulting polynomials are shown from Algorithm 1: one with the final
height constraint and one for the constraint on the final gradient. Notice that the maximum
of f(x) in both plots lies on the highest x-value of the extrema of the polynomial functions.
Therefore, in Algorithm 1, the solution corresponding to this peak is used in the computation
of the location xzpeak of the maximum height in the trajectory. In the figure, the entire
polynomial is shown for explanatory reasons. In control however, only the part depicted with
a solid line would be used, as this is the part of the function after the initial condition.

Algorithm 1 Find cubic polynomial constants under height constraint

1: ẋf ←
√
ẋ2

0 −
g
z0
x2

0 . Initial guess based on ELIP
2: repeat
3: c← A−1b(ẋf ) . Find polynomial constants

4: xzpeak ←
−2c2−

√
4c2

2−12c3c1
6c3

. Traj. peak lies on highest x
5: zpeak ← c0 + c1xzpeak + c2x

2
zpeak

+ c3x
3
zpeak

. Corresponding height
6: ẋf ← ẋf + α . Velocity increment
7: until zpeak < zmax
8: return c

It is challenging to find a local gradient of the function ẋf for optimization purposes. There-
fore, there is not chosen to determine the size of increment α based on the gradient of ẋf .
Using the final velocity of the LIP orbital energy and a final velocity after the influence of an
impact as in xcp,zmax , an increment can be derived. The final velocity according to the LIP
orbital energy is:

ẋf,lip =
√
ẋ2

0 −
g

z0
x2

0, (4-9)

where ẋf,lip is the final velocity according to the LIP model. The final velocity of a height
constrained bound as in xcp,zmax can be calculated as follows:

ẋf,zmax =
√
ẋ2

0,I −
g

zmax
(x0 + żI

g
ẋ0,I)2, (4-10)

where ẋ0,I = ẋ0 + x0
z0
żI is the initial horizontal velocity influenced by the impact by the VHIP

and żI =
√

2g(zmax − z0) is the vertical velocity resulting from the impact of the leg such
that the constraint zmax is not violated. The velocity ẋf,zmax is the final velocity when a
similar trajectory as in xcp,zmax would be followed. The increment α is calculated by a linear
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Figure 4-1: Resulting polynomials as output from Algorithm 1 with two different constraints
on the final value. The dash-dotted line shows the height constraint zmax = 1.1 [m]. Initial
conditions are x0 = −0.25 [m], ẋ0 = 1.0 [m/s], z0 = 1.0 [m] and ż0 = 0 [m/s]. Blue plot:
ẋf = 0.552 [m/s], red plot: ẋf = 0.576 [m/s], g = 9.81 [m/s2].

interpolation of the velocity differences:

α = ẋf,lip − ẋf,zmax
N

, (4-11)

where the value N = 30 resulted in reasonable precision, as shown in for example Figure 4-1.
Also, this value resulted in an average computation time of 0.51 [ms] in Java, which could
be suitable for a controller running on 250 [Hz] as is used at the Institute for Human and
Machine Cognition (IHMC).

4-1-2 Maximum Leg Length Constraint

Instead of a constraint on the height of the VHIP, also a constraint on the length can be
added, which can simulate the maximum leg length. The virtual leg length as a function of
x can be expressed using the Pythagorean theorem:

l2(x) = f(x)2 + x2, (4-12)

where l is the length of the VHIP. The solution to f(x)2 is:

f(x)2 = (
3∑

n=0
cnx

n)2 =
3∑

n=0
c2
nx

2n + 2
5∑

n=1
i+j=n
i<j

cicjx
n. (4-13)

However, as the gradient of l2(x) needs to be computed to obtain the locations of the maxima,
f(x)2 is approximated with:

f(x)2 ≈
3∑

n=0
c2
nx

2n.
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Figure 4-2: Resulting polynomials as output from Algorithm 2 with two different initial values
under the final height constraint zf = 1.0. The dash-dotted line shows the length constraint
lmax = 1.15 [m]. Other initial conditions are ẋ0 = 1.4 [m/s], z0 = 1.0 [m] and ż0 = 0.0 [m/s].
Blue plot: ẋf = 1.107 [m/s], red plot: ẋf = 0.724 [m/s], g = 9.81 [m/s2].

With this formulation of the squared function, the squared horizontal position x2
lpeak

in l(x)2

where the approximated maximum pendulum length lpeak lies, is computed as follows:

d(f(xlpeak)2 + x2
lpeak

)
dx

= 0, (4-14)

d(f(xlpeak)2 + x2
lpeak

)
dx

1
xlpeak

= 0, (4-15)

6c2
3x

4
lpeak

+ 4c2
2x

2
lpeak

+ 2 + 2c2
1 = 0, (4-16)

6c2
3(x2

lpeak
)2 + 4c2

2(x2
lpeak

) + 2 + 2c2
1 = 0, (4-17)

where x2
lpeak

is the squared location of the approximated maximum pendulum length lpeak.

Again, the value of the peak lies on the highest x value of the two locations where the gradient
is zero, this time in l(x)2. Algorithm 2 shows how the polynomial constants can be found
under the leg length constraint. In Figure 4-2, it can be seen that the resulting polynomials
do not violate the maximum length constraint.

4-2 Discussion

Chapter 4 presented a a method for finding VHIP orbital energy trajectories under kinematic
constraints, extending the work in [13]. The horizontal velocity of the orbital energy at
the final position xf = 0 was left undetermined, such that this could be used as a variable
in a search. Choosing the search increment using the knowledge obtained in Chapter 3,
constrained trajectories could be generated in a time that is suitable for online use.
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Algorithm 2 Find cubic polynomial constants under leg length constraint

1: ẋf ←
√
ẋ2

0 −
g
z0
x2

0 . Initial guess based on ELIP
2: repeat
3: c← A−1b(ẋf ) . Find polynomial constants

4: x2
lpeak

← −4c2
2+
√

16c4
2−24c2

3(2+2c2
1)

12c2
3

. d(f(x)2 + x2)/dx = 0
5: xlpeak ← −|

√
xl2
peak
| . Complex solutions

6: l2peak ← x2
lpeak

+ (c0 + c1xlpeak + c2x
2
lpeak

+ c3x
3
lpeak

)2

7: ẋf ← ẋf + α . Velocity increment
8: until l2peak < l2max
9: return c

Figure 4-3: Position plot (left) versus the resulting vertical acceleration (right) with x0 = −0.3
[m], z0 = 1.0 [m], ẋ0 = 1.0 [m/s], ż0 = 0.0 [m/s] and g = 9.81 [m/s2].

Noticeable is that the final gradient constraint gives a higher final velocity ẋf compared to
the default height constraint in Figure 4-1. This is caused by the polynomial shapes, as the
blue plot, under constraint zf , has a steeper gradient in the first part of the trajectory after
x0. This is the crucial part in the trajectory for an acceleration or deceleration action in
x-direction, as is proven in the previous chapter.

Another drawback of the constraint of the polynomial shape is that derivatives of the function,
and thus also accelerations, depend on the function itself. In Figure 4-3, two trajectories are
shown for ẋf = 0 [m/s], together with a corresponding plot of the vertical accelerations. The
vertical acceleration has a shape that is desirable for a stopping behavior: high acceleration
in the beginning of the trajectory and lower later. However, the acceleration in the beginning
of the trajectory is unrealistically high, assuming the approximations of possible vertical
acceleration on humans and robots in the previous chapter. This is even the case for the
initial position that is relatively close to the LIP capture point (LIPCP): x0 = −0.3 [m], as
in the example figure. Also, the vertical acceleration barely goes below zero. Therefore, there
is no high deceleration in the trajectory, which could result in more height change than for
example the vertical acceleration profile of the bang-bang control law for the vertical force
constrained capture region presented in the previous chapter.

For those reasons, the methods proposed in this chapter are not used in application in Chapter
5 and Chapter 6.
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Chapter 5

Application: Standing

In this chapter, a bang-bang control law on vertical acceleration is implemented in the
momentum-based control framework and tested on NASA’s Valkyrie [27] humanoid robot.
Push recovery is tested while the robot is standing. To measure the improvement in balance
control, there is compared with a controller that uses a constant reference height. Addi-
tionally, results are presented using an alternative test setup using Boston Dynamics’ Atlas
humanoid robot.

5-1 Method

As the polynomial trajectories of the previous chapter are constraining the vertical acceler-
ation, these are not used in application. Instead, a bang-bang control law for vertical accel-
eration is designed, similar to the bang-bang control law for the vertical force constrained
capture positions in Section 3-3.

The bang-bang control law is activated when the use of center of pressure (CoP) is saturated.
This the case if the CoP is on the polygon edge. The desired centroidal moment pivot (CMP)
rcmp,d of Equation (2-12) is constrained to be inside the support polygon. Therefore, it is
assumed that the angular momentum rate of change is zero, k̇y = 0 [Nm], and that rcmp,d
coincides with a desired CoP rcop,d. The center of mass (CoM) height is initially controlled
using the default CoM height PD control law of Equation (2-18). While the robot is standing
still, the control law controls to the default, nominal height:

z̈d = kp(z0 − z)− kdż, (5-1)

where z̈d is the desired vertical acceleration.

Because rcop,d is proportionally controlled based on the instantaneous capture point (ICP)
error ξe, the bang-bang controller is activated when ξe is larger than a minimum ICP error
threshold ξe,min, which can be used for tuning. For the development of a controller for a
standing robot, the initial ‘bang’ is always upward, as rcop,d can be placed in the direction of
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the ICP error. This placement of rcop,d is possible, as the CoM is inside the support polygon
while the robot is standing, and thus when the push will be applied.
The first and the second acceleration ‘bang’ of the control law are jerk limited, unlike the
control law for the vertical force constrained capture positions in Section 3-3. Also, the
duration of each ‘bang’ is not predefined, but determined online. Determining the duration
online, allows for more control of the vertical dynamics, as the current state can be constantly
evaluated on violation of the maximum height constraint. A predefined duration as in Section
3-3 does not use any feedback and is strictly feedfoward. In relation to these differences in
control design, the following parameters are used:

• ...
z max: maximum allowed vertical CoM jerk;

• αˆ̈zc : parameter to scale down expected z̈c for the second ‘bang’, due to jerk limits.

The control sequence for the bang-bang control law reads as follows. For the first ‘bang’, the
desired acceleration is set to z̈d = z̈c. The transition from the first ‘bang’ to the second is if
the predicted CoM height violates the maximum height constraint zmax. This prediction of
violation of the constraint is computed as follows, using a conservation of energy:

mĝz + sgn(ż)1
2 ż

2 > mĝzmax, (5-2)

z + sgn(ż)1
2
ż2

ĝ
> zmax, (5-3)

where ĝ is the predicted downward acceleration of the second ‘bang’. Using the acceleration
constant z̈c of the second bang and the scale down parameter αˆ̈zc for the predicted downward
acceleration, gives:

z + sgn(ż)1
2

ż2

αˆ̈zc z̈c
> zmax. (5-4)

When this condition is met, the second ‘bang’ is activated and z̈d = −z̈c. The second ‘bang’
continues until the vertical velocity changes direction: ż < 0. This results in the CoM height
to be controlled to zmax until the controller turns off:

z̈d = kp(zmax − z)− kdż. (5-5)
Controlling to zmax allows the robot to apply more force on the ground, compared to con-
trolling directly to z0 again. The controller turns off if the ICP error ξe is at a small value,
a measure for stability. If the controller is turned off, the CoM height is controlled to the
default height and the reference height is set to zr = z0. Finally, the rate of z̈d is limited
with the maximum allowed jerk ...

z max and the desired vertical momentum rate is computed
as l̇d,z = mz̈d. The desired horizontal linear momentum rate is adjusted for the added vertical
acceleration as follows:

l̇d,xy = cxy − rcop,d
z

(mg + l̇d,z). (5-6)

In the remainder of this chapter, this control law will be compared with the default, constant
height, control law that uses CoP only. The two control setups will be referred to as:

• Vertical motion: the control law presented in this section. Results are depicted in
blue, unless stated different.

• Default: the control law as presented in Section 2-2. Results are depicted in black,
unless stated different.
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5-2 Results

Tests are conducted by applying a push at chest height on Valkyrie. The control framework
parameters and settings used for the tests on Valkyrie can be found in Appendix A. Addi-
tionally, hardware tests are conducted on Atlas, but no clear improvement in push recovery
is observed. To measure the impulse applied on the robot, a normalized impulse i is used:

i =
∫
Fpushdtpush
mrobot

, (5-7)

where Fpush is the push force and mrobot the robot mass.

5-2-1 Valkyrie Simulation

For Valkyrie in simulation, the push duration is set to tpush = 0.15 [s], as on hardware tests
it is found that approximately the same push duration can be applied. The push force profile
in simulation is constant. The ICP error parameter is set to ξe,min = 0.03 [m], as with this
error rcop,d is near the polygon edge. A value of z̈c = 2.4 [m/s2] and ...

z max = 80.0 [m/s3]
are used, as this was also found to work well on hardware. A value of αˆ̈zc = 0.4 is used for
the prediction of the vertical CoM motion. An initial height of z0 = 1.0 [m] is used and a
maximum height of zmax = 1.065 [m]. Valkyrie has a total mass of mrobot = 127.3 [kg].

Maximum Recoverable Push

A search is used in simulation to find the maximum push force where the robot could still
recover from. This search is conducted every 5 degrees change in horizontal push direction.
In Figure 5-1, a polar plot is shown for the maximum recoverable impulses i for the default
setup and the vertical motion controller. A push in the back corresponds with 0 degrees and
a frontal push with 180 degrees.
The recovery improved when using the vertical motion controller after the default controller
in push directions coming from the back or the side of the robot. Remarkably, push recovery
is worse for push directions coming from the front of the robot. According to the variable
height inverted pendulum (VHIP)-linear inverted pendulum (LIP) comparison, the direction
of the disturbance should not make a difference. Compared to the default setup, the vertical
motion controller recovered of a 9% higher impulse for a push direction coming from the
back of the robot, a 4% higher impulse for a push direction coming from the side and a 7%
lower impulse for a push direction coming from the front. The improvement in maximum
recoverable push is the best for a push coming from the back. Also, it is relatively easy to
apply a push in the back on the real robot, compared to other parts of the robot. Valkyrie
has a hard, flat back surface, which can handle larger impacts than other body parts. For
those reasons, there is chosen to make a deeper evaluation of the specific push direction of 0
degrees, a back push, in simulation too.

Comparison of Equal Push

To evaluate the responses after a push in the back of the robot, pushes of equal magnitudes are
applied on both control setups. In Figure 5-2, a phase plot is shown for the horizontal CoM
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Figure 5-1: Polar plot of maximum recoverable pushes with an increment of 5 degrees. 0 degrees
is a push from the back. The radius is the normalized impulse i.

state in the sagittal plane. One impulse is the maximum recoverable push for the default
setup, the other for the vertical motion controller. The area covered by the phase plot is
smaller for the vertical motion controller for a push of i = 0.271 [m/s]. With the larger push
of i = 0.295 [m/s], the default control setup does not manage to stabilize and diverges, while
the vertical motion controlled setup recovers.

In Figure 5-3, time response plots are shown for a push of i = 0.271 [m/s]. ‘Achieved’ is the
value after the quadratic program (QP) found a solution. For the vertical linear momentum
rate l̇z, the achieved tracks the desired fairly well. There is a larger difference between the
desired and achieved horizontal linear momentum rate l̇x for both control setups. If the
achieved is compared between the two setups, the vertical motion controller achieves almost
double the amount l̇x of what the default control setup achieves from 0.1 [s] until 0.25 [s].
There is a small difference in achieved angular momentum rate observable. However, if there
is looked at the pelvis error θpel,y and the torso error θtorso,y in the fifth and sixth row, the
vertical motion controller has a little less rotation error than the default setup. This indicates
no additional use of angular momentum strategies.

In the right column of the figure, from the ankle pitch torque τak,y, knee pitch torque τkn,y, hip
pitch torque τhp,y and back pitch torque τbk,y, the difference in ankle and knee torque between
both setups is the most noteworthy. The ankle torque of the vertical motion controller has a
higher peak. Also, the ankle torque returns to the steady state value earlier than the default
control setup. Similarly, the desired and measured CoP returns to the steady state value
earlier. This may be an indication of an increase in robustness for the push, as is observed in
the phase plot as well. The knee torque is on average lower for the vertical motion controller.
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Figure 5-2: Phase plot of horitzontal CoM motion in the sagittal plane for a push of i = 0.271
[m/s] (solid) and a push of i = 0.295 [m/s] (dotted).

On average, the ICP error ξe,x is smaller, which indicates again an increase in robustness for
the applied push.

5-2-2 Valkyrie Hardware

Hardware tests on Valkyrie are conducted by applying a push in the back at chest height on
the physical robot. An iLoad Pro Digital load censor [43] is used to measure the impulse of
the push. The load sensor is mounted to an aluminum stick. On the other side of the load cell,
a steel plate with a rubber surface is mounted, which prevents the robot from being damaged.
In Figure 5-4a, the end of the push stick with the load sensor is depicted. In Figure 5-4b, the
test setup is shown, where the author is about to apply a push using the stick. A value of
αˆ̈zc = 0.8 is used for the prediction of the vertical dynamics. The remaining parameters are
set to the same values as used in simulation.

Maximum Recoverable Push

To find the maximum recoverable push on hardware, a dozen test results are averaged where
the CoM of the robot came closer than 5 [mm] from the polygon edge, but the robot still
recovered. In Figure 5-5a, the average force profile with the standard deviation of the 12
pushes is depicted for the default setup. The average impulse is 35.3 [Ns], which equals a
normalized impulse of i = 35.3

127.3 = 0.277 [m/s]. This is a slightly higher value than the impulse
recoverable in simulation for this setup. In Figure 5-5b, the average force profile with the
standard deviation is depicted for the vertical motion controller. The average impulse is 37.6
[Ns], which equals i = 0.295 [m/s], which is an increase in recoverable push of approximately
7% compared to the default setup.

Comparison of Equal Push

By selecting a force profile from each setup where the integrated force is approximately
equal and the force profiles have a comparable shape, a comparison is made between both
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Figure 5-3: Time response plots for a push of i = 0.271 [m/s] for the default setup (black) and
the vertical motion controller (blue). ‘Achieved’ is the value of the variable after the QP found a
solution. The gray area is where the push is applied.
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(a) (b)

Figure 5-4: (a) Push head of push stick with a rubber surface, steel plate, load sensor and
aluminum stick. (b) Tests setup, where the author applies a push using the push stick on Valkyrie.

(a) (b) (c)

Figure 5-5: Average impulse of 12 pushes, where the CoM came closer than 5 [mm] from the
polygon edge for the (a) default setup and (b) vertical motion controller. (c) Two picks of pushes,
where the force profile and integrated force applied on both setups were similar.

Figure 5-6: Phase plot of sagittal CoM motion for a push of i = 0.261 [m/s].
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a b c d e f g

Figure 5-7: Time-lapse of Valkyrie recovering from a push using vertical motion (top row) and
using the default controller setup (bottom row). The letters below the columns match with the
letters next to the yellow lines in Figure 5-8. The push rod tip is encircled in red.

control setups under a similar disturbance. In Figure 5-5c, the two compared force profiles
are shown. Both profiles have an integrated force of 33.2 [Ns], which is equal to i = 0.261
[m/s]. In Figure 5-6, a phase plot for the sagittal horizontal CoM motion is depicted. Like in
simulation, the vertical motion covers a smaller area.

In Figure 5-7, a time-lapse is shown for both control setups after these pushes. The letters
under each column match with the letters next to the vertical yellow lines in Figure 5-8. In
Figure 5-8, time response plots are shown for the pushes of i = 0.261 [m/s]. Note how the
vertical lines leave the gray area, when in Figure 5-7 the red encircled push head loses contact
with the robot.

Also note how the timing of each ‘bang’, visible in the vertical linear momentum rate l̇z,
is different compared to the results observed in simulation. This might be a reason why a
different value of αˆ̈zc had to chosen for tuning of the maximum CoM height. The l̇x plots
are comparable with the simulation results. The achieved angular momentum rate k̇y of the
vertical motion controller has a relatively larger overshoot than in simulation. However, the
resulting pelvis and torso rotation errors are not larger for the vertical motion controller com-
pared to the default setup, which indicates no additional use of angular momentum strategies,
like in simulation.

In the right column of the figure, the torques have a desired and a measured value, as the
torques of the robot are PD controlled with electrical current as input. Like in simulation,
the differences in ankle torque and knee torque between the default setup and the vertical
motion controller are the most noteworthy. For the vertical motion controller, the ankle
torque has a higher peak, but returns quicker to steady-state, like in simulation. The CoP
also returns earlier to steady state, which shows a slight increase in robustness for the applied
push. Equivalently, the average ICP error is again smaller for the vertical motion controller.
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Figure 5-8: Time response plots for a push of i = 0.261 [m/s] for the default setup (black) and
the vertical motion controller (blue). All joint torques, except for the back, are the average over
left and right.
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Figure 5-9: Experimental setup for hardware tests on Atlas.

5-2-3 Atlas Hardware

Next to the Valkyrie tests, tests are conducted on Boston Dynamics’ Atlas humanoid robot
(mrobot = 155.9 [kg]). An alternative experimental setup is used to test push recovery on
hardware. A medicine ball with mass mball = 13.6 [kg] is hung from the ceiling at the
robotics lab of the Institute for Human and Machine Cognition (IHMC). To push the robot,
the ball is released from a certain distance. The impulse on the robot is assumed to be only
depending on the difference in potential energy of the ball between release height and its
lowest position. To protect the robot from the impact of the ball, a wooden plate is mounted
on the frame of the robot. In Figure 5-9, the test setup is depicted. The length lball from the
horizontal release location to the dead point of the pendulum is used to calculate the impulse
applied on the robot. To release the ball, a simple mechanism is made in an attempt to get
a more constant initial ball position. This mechanism is depicted in Figure 5-10. By pulling
the aluminum pin, the loop on the rope will slide off the pin.

Maximum Recoverable Push

More than 60 experiments are conducted, but no clear improvement in recovery compared
to the default controller could be observed. Different initial heights for the robot are tried,
by gradually lowering the default initial height of z0 = 1.12 [m] down to z0 = 1.05 [m].
Lowering the initial height made the relative increase in recoverable push compared to the
default setup larger in simulation, but recovery on hardware did not improve. The increase in
recoverable push compared to the default controller for these initial heights in simulation are
in the range from 6% to 10%. In another attempt to improve recovery, the foot polygon size
for the whole-body QP was enlarged as well. The robot would recover from larger impulses,
but the difference observed between the two control setups was still neglectable.

Additionally, in an attempt to improve recovery for the vertical motion controller, a gain
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Figure 5-10: Release mechanism for the medicine ball tests.

for joint torque control is tuned. From the data collected from earlier tests, it was observed
that the measured CoP had a relatively large tracking error with rcop,d, especially during the
second ‘bang’ of the control law. The joint torques on Atlas are controlled using an input
current I and are computed as follows [8]:

I = Iτ + Iq̇, (5-8)
Iτ = kffτ τd + kτ (τd − τ), (5-9)

Iq̇ = kffq̇ q̇ + kq̇

(∫
q̈ddt− q̇

)
, (5-10)

where kffτ and kτ are a feedforward and feedback gain on tracking of desired joint torques
respectively. The gain kffq̇ is a feedforward gain to compensate the oil flow in the cylinder
as the actuator is moving. The gain kq̇ is a feedback gain on desired joint velocity, where
the desired joint velocity is computed by integration of the desired joint acceleration q̈d, an
output of the whole-body QP. For the tests, CoP tracking improved by increasing the gain
kq̇ from 15.0 to 40.0. In Figure 5-11, the difference in CoP tracking between the two gain
values is depicted during the two ‘bangs’ of the control law using a vertical acceleration of
z̈c = 3.2 [m/s2]. Note how tracking improved during the second ‘bang’ after increasing the
gain. Unfortunately, push recovery did not noticeably improve.

Comparison of Equal Push

For an initial height of z0 = 1.10 [m], a maximum height of zmax = 1.17 [m] and a vertical
acceleration of z̈c = 5.0 [m/s2], a series of 20 tests for each control setup are conducted
to investigate the responses after an equal push. The increase in recoverable push for these
parameters in simulation is approximately 8%, which indicates that there could be a noticeable
difference in performance between the two control setups for this configuration. For the
hardware tests, an initial ball position of lball = 2.54 [m] is used. The medicine ball height
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Figure 5-11: CoP tracking during the two ‘bangs’ of the vertical motion control law. In the
left column, kq̇ = 15.0. In the right column, kq̇ = 40.0. For illustration of the ‘bangs’, l̇d,z is
graphed.

difference δzball is computed as follows:

δzball = lrope −
√
l2rope − l2ball = 6.12−

√
6.122 − 2.542 = 0.543 [m], (5-11)

where lrope is the length of the rope between the ceiling attachment point and the ball. The
impulse applied on the robot is calculated as:

mballẋball = mball

√
2gδzball = 13.6

√
2 · 9.81 · 0.543 = 44.4 [Ns], (5-12)

where ẋball is the velocity of the ball. Normalizing the impulse, like with the Valkyrie tests,
results in a value of i = 44.4

155.9 = 0.285 [m/s]. From the logging camera it is observed that the
push duration is between 0.03 [s] and 0.05 [s].
In Figure 5-12, phase plots are shown for these tests. The thin transparent lines show the
responses after each individual test. The bold plots show the averages of all results. The
average phase plot for the vertical motion controller covers a slightly smaller area. However,
the individual responses have a wider distribution, which shows a less predictable behavior.
The wider distribution was also visible on the robot, as sometimes the robot would visibly
almost fall over, and sometimes recover relatively quick. A reason for this could be that the
robot moves when using height variation, which might cause larger sensing and actuation
errors. Also, for the vertical motion controller, there is a slight increase in velocity observable
after approximately x = 0.06 [m] in the upper half of the phase plot. Assuming no angular
momentum change in the robot, an increase in velocity can be caused by the CoP still tracking
poorly. A reason for this could be that, for the tests in the phase plot, a vertical acceleration
of z̈c = 5.0 [m/s2] was used, instead of the z̈c = 3.2 [m/s2] used in the tuning of the gain kq̇,
which might have made CoP tracking worse.
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Figure 5-12: Phase plots of 20 Atlas hardware tests for each setup (thin transparent) with the
averaged data for each setup (bold).

5-2-4 Comparison with Capture Regions

If is assumed that the difference in recovery between the default setup and the vertical motion
controller is equal to the difference between the LIP and the VHIP, a comparison can be made
between the push recovery tests and the VHIP capture regions presented in Chapter 3.

Considering this assumption, the results on Atlas and Valkyrie are compared with the vertical
force constrained capture region with the same z̈c in the bang-bang control law. The following
dimensionless vertical acceleration and maximum height are used for both robots:

• Valkyrie: z̈c = 2.4 [m/s2] → z̈′c = 1
4 , z′max = 1.065[m]

1.0[m] = 1.065;

• Atlas: z̈c = 5 [m/s2] → z̈′c = 1
2 , z′max = 1.17[m]

1.10[m] = 1.064.

In Figure 5-13, the increase in recoverable push for both robots are plotted in a zoomed-in
version of the capture velocity plot of Figure 3-4. Unlike for Valkyrie, for Atlas in simulation
only rear push recovery results are shown, as other directions are not discussed in this chapter.
The difference in push recovery differs from the VHIP-LIP difference for both robots. For
Atlas, the simulation result is located on the height constrained bound and the hardware
result shows no increase in recoverable push.

Note how the simulation rear push recovery for Valkyrie even lies outside the height con-
strained bound in this plot. The average improvement on hardware for Valkyrie lies just
inside the height constrained bound. The increase in recovery for the side push in simulation
is about equal to the comparable force constrained capture position of z̈′c = 1

4 . The frontal
push recovers worse than the default control setup and is not comparable with the capture
regions presented in Chapter 3.
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Figure 5-13: Difference in recovery of Valkyrie and Atlas in simulation and on hardware between
the vertical motion controller and the default setup, plotted in the capture velocity plot in Figure 3-
4.

5-3 Discussion

Chapter 5 presented a simple control law that activates a bang-bang action on vertical ac-
celeration if a predefined threshold is met. Using the bang-bang controller, the vertical CoM
dynamics are explicitly solvable and can be computed every tick. Also, hardware results were
presented, which have not earlier been shown considering the research topic.

A difference between the related work in Section 2-3 is that most other existing control
strategies use model predictive control (MPC). With MPC however, the problem formulation
is very important for the performance of the controller. Caron & Mallein [14] present a
method that generates capture trajectories based on the current CoM position and velocity,
and the support polygon information. The objective is to minimize height variations, which
results in the robot to only use vertical CoM motion if the desired zero moment point (ZMP)
is placed on the polygon edge. Using this problem formulation though, the resulting capture
trajectory is always under the assumption that the previously applied disturbance stopped
disturbing. In the case of a push though, the increase in error is not an instant event and
happens over time.

The control law presented in this chapter considers a different approach to the problem.
Comparing with the method presented in [14], which has a constraint on minimum and
maximum vertical acceleration in the MPC law, the bang-bang controller in this chapter
can be seen as the extremum of what the MPC would output. Therefore, depending on the
selection of the threshold when to activate the controller, the method presented in this chapter
will in some cases use more, not necessarily needed, height variation than the control law of
[14]. However, by using the additional height variation, the method might be more robust for
longer push durations. The MPC law in [14] computes capture trajectories based on current
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velocity differences and does not take expected future disturbances into account.
There were two push recovery test setups considered in this chapter for testing the controller
on hardware while the robot is standing. An advantage of the tests with the stick is that
the force data from the load cell could be measured with an accuracy of 0.25% at a record
frequency of 100 [Hz] [43]. However, many tests had to be conducted to obtain the results
of the maximum recoverable pushes, as the person pushing the robot was not always capable
of applying the exact same force. With the medicine ball tests, the maximum recoverable
push could be found more easily and fewer tests were needed. However, no measurement data
was available of the applied push force. Also, the push duration could not be manipulated.
Furthermore, stretch in the rope, a changing CoM position in the ball and energy loss of the
impact of the ball can all influence the impulse applied on the robot.
Testing push recovery, Valkyrie and Atlas showed a similar behavior in simulation. In
Simulation Construction Set (SCS), a ground stiffness and damping is modeled, where the
robot is in contact with the ground with 4 ground contact points per foot. Also, a joint
torque damping is simulated. Therefore, the differences in Atlas and Valkyrie in simulation
are predominantly related to the differences in the multi-body structures of the robots.
On hardware however, larger differences were observed when comparing the responses of
Valkyrie and Atlas. Valkyrie matched the simulation data with more accuracy, which could
be a cause of the torque sensing of the series elastic actuators. However, while performing
the tests, it is observed that Valkyrie is more sensitive to tuning of the maximum vertical
acceleration, maximum jerk and foot polygon size used in the whole-body QP. With careless
tuning, Valkyrie could stand on its toes when recovering from a push. Also, the actuators
could turn in a state of over-excitation which resulted in the need to restart the robot. Using
Atlas, less care had to be taken for tuning and the robot performed well in all tests in terms
of internal stability. The less accurate sensing and the stiction in the hydraulic system on
Atlas could be a cause that the differences observed between hardware and simulation were
larger than on Valkyrie. For the future, it could be interesting to improve sensing and state
estimation on Atlas, as this might improve push recovery of the vertical motion control law.
To analyze the responses on hardware, phase plots of the horizontal CoM state of the robots
and different time responses were evaluated. The phase plots show the development of velocity
over position and give insight in the ability of the robot to return to the desired steady state
configuration. The time response plots show the behavior of momentum rates, joint pitch
torques and CoP and ICP positions over time. However, no traditional system evaluations
were conducted, such as a bode plot or other frequency analysis methods. A reason for this
is that in the control method, the eigenvalue of the system is time-variant. For additional
analysis, it may be interesting to measure the energy consumption of the robots using both
control strategies, using the input current and voltage. The energy consumption can, for
example, introduce an additional decision variable to choose between balance strategies.
On most tests, the improvement in recovery of the vertical motion control law versus the
default control setup differed from the difference in the LIP capture point (LIPCP) and the
vertical force constraint capture points. Reasons for this could include numerical integration in
simulation, unmodeled dynamics such as ground contact, sensing errors, actuation limitations
or a bug in the software.
Furthermore, the control strategy presented in this chapter is a two-dimensional space (2D)
strategy. The third dimension is controlled with the rcop,d orthogonal to the push direction,
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already existing in the control framework. When the robot is walking however, this 2D
strategy does not always improve balance, as the CoM is not always in the center of the
support polygon if the push is applied. Therefore, the control strategy presented in this
chapter is extended in the next chapter for the use while the robot is walking.
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Chapter 6

Application: Walking

The control strategy for a static, standing case presented in the previous chapter is two-
dimensional. If the robot is walking, the horizontal center of mass (CoM) position can be
located outside the support polygon. The result of this is that the desired center of pressure
(CoP) cannot always be placed in line with the instantaneous capture point (ICP) error. In
this chapter, the control law presented in Chapter 5 is extended for the use while the robot
is walking.

6-1 Experimental Setup

In this section, to determine when to activate a similar control action as in the previous
chapter, tests are conducted preliminary to developing a controller. In these tests, a push is
applied in the beginning of single support while the robot is walking. The stepping parameters
used for the tests are given in Table 6-1, which are the default stepping parameters while
testing in simulation. In Figure 6-1, the test setup in simulation is shown. The limited foothold
options display that footstep location adjustment is not available as a balance strategy and
that other balance strategies, such as CoM height variation, might be needed to recover.
In Figure 6-2, the ICP reference trajectory, the centroidal moment pivot (CMP) reference
trajectory and the measured CoM trajectory are made visible for the right foothold, where
the push will be applied.

Table 6-1: Stepping parameters for the walking tests.

Parameter Value Unit
Step legth 0.5 [m]
Step width 0.25 [m]

Single support time 0.6 [s]
Double support time 0.25 [s]
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Figure 6-1: Test setup for push recovery during walking in simulation. The limited foothold
options show that footstep adjustment is not available as a balance strategy.

Figure 6-2: Trajectories during single support in the horizontal plane (gray dotted lines). The
gray area is the current, right, footstep position where the push will be applied.

The following properties are observed, when applying pushes in different directions at the
start of single support:

1. The direction of the ICP error stays often approximately the same until transition to
double support;

2. If the ICP error is directed in the sagittal plane, the desired CMP often remains some-
what in the same location;

3. If the ICP error is directed in the coronal plane, the desired CMP slides from back to
the front of the foot;

4. The configuration and velocity near transition to double support affect the robots ability
to put its swing leg down at the desired time.

These properties are used as assumptions in the development of a control law.
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6-2 Method

The control law of the previous chapter is first adjusted for desired CMP positions outside
the support polygon to make a high-level comparison with angular momentum strategies.
Second, decision variables are introduced for activating control actions. Third, control actions
are presented, which are activated based on violation of thresholds of the presented control
variables.

6-2-1 Avoiding Generating Additional Angular Momentum Rate

In the previous chapter, rcmp,d is constrained to be inside the support polygon. Therefore,
this point is assumed to coincide with rcop,d. In this section, the computation of the desired
linear momentum rate is adjusted for rcmp,d positions outside the support polygon. If rcmp,d
is outside the polygon, rcop,d is obtained by projecting rcmp,d on the polygon edge. For
comparability with the default setup, the goal is to request little to no additional angular
momentum rate from the robot to achieve the desired linear momentum rate. Therefore,
the vertical motion controller generates an added desired linear momentum rate on top of the
default control law if rcmp,d is outside the support polygon. First, the desired horizontal linear
momentum rate of change, as used in the previous chapter, is written in terms of rcmp,d. The
assumption is made that the difference in body torque τ c is directly related to the difference
between rcmp,d and rcop,d:

l̇d,xy = cxy − rcmp,d
z

(mg + l̇d,z), (6-1)

=
cxy −

(
rcop,d − τc

(mg+l̇d,z)

)
z

(mg + l̇d,z), (6-2)

= cxy − rcop,d
z

(mg + l̇d,z) + τ c
z
. (6-3)

Writing τ c in rcmp,d again, but only for the linear inverted pendulum (LIP) part of this
equation (and assuming a constant height z0 for this part), gives the following expression:

l̇d,xy = cxy − rcmp,d
z0

mg︸ ︷︷ ︸
l̇d,xy,lip

+ cxy − rcop,d
z

l̇d,z︸ ︷︷ ︸
l̇d,xy,z̈d

, (6-4)

where l̇d,xy,z̈d is the additional desired horizontal linear momentum rate from the vertical
motion controller and l̇d,xy,lip the desired horizontal linear momentum rate from the default
control law.

In Figure 6-3, it is visually explained how this computation of l̇d,xy will not require additional
angular momentum rate from the robot, as the scalar offset a in the figure is the same for
both setups. If CoM height variation would be used based on the location of rcmp,d, a different
angular momentum rate compared to the default setup would be needed to achieve the desired
linear momentum rate. However, using this modified desired linear momentum rate with both
rcmp,d and rcop,d, the resulting CMP will be different then rcmp,d, as shown in the image.
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Figure 6-3: Explanatory drawing of the ground reaction force (GRF) resulting from the default
desired momentum rate (black) versus the modified desired momentum rate for CoM height
variation (red). The thin arrows show the part of the GRF that intersects with the CoM, which is
used for height changes. The equal scalar offset a shows that the same angular momentum rate
will be requested about the CoM.

6-2-2 Decision Variables

If the CoM is outside the support polygon, the local virtual leg between rcop,d and the hori-
zontal CoM location cxy may not be aligned with direction of the ICP error ξe. This results
in the leg applying force in a different direction than is desired to cancel the error, which can
result in additional error in another direction. Also, if cxy is close to the polygon edge, the
distance with rcop,d might be very small, such that height changes have little to no effect as
the local variable height inverted pendulum (VHIP) is close to upright. To take these two
aspects into account, the following variables are introduced, which will be used to determine
when to use CoM height variation for balance:

• Alignment angle φ: the angle in the horizontal plane between the virtual leg rcop,d−cxy
and the ICP error ξe;

• Effective distance δ: the distance in the horizontal plane between rcop,d and cxy in
the direction of the ICP error ξe.

In Figure 6-4a-b, the two variables are graphically explained using the right stance foot
position and configuration of Figure 6-2. The desired CMP rcmp,d is allowed to move a small
distance outside the polygon. In Figure 6-4a, the angle φ is zero and the distance δ is relatively
large. This is a relatively suitable error for height control, as the alignment angle is small and
the local VHIP tip is relatively far from the base. In Figure 6-4b, the angle φ is 90 degrees
and therefore the distance δ is zero. In this configuration, CoM height variation would not
help drive the error back. Furthermore, an additional error would be caused, orthogonal
to the current ξe, when using additional CoM height variation. Therefore, this error is not
considered suitable for using CoM height variation for balance control.
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(a) (b)

(c) (d)

(e) (f)

Figure 6-4: Explanatory visualizations of φ and δ for the configuration at start of single support
with different ICP error directions.

6-2-3 Actions

The vertical motion control law is activated if a minimum threshold for ξe is met, like in the
previous chapter. The alignment angle φ and the effective distance δ will be used to select a
control action. From the assumptions of the preliminary observations 1 and 2, it is assumed
that the angle φ will be dependent on the current ξe and rcop,d throughout single support if
ξe is directed in the sagittal plane. Therefore, the additional variables δf and φf are used,
which are the expected alignment and distance in the end of single support, based on the
planned CoM location coming from the ICP planner. Also, from assumption 3, φ is not used
if a push is in the coronal plane, because throughout single support the foot length is available
for future rcmp,d placements that could correct any additional error. The sagittal or coronal
plane error direction is determined based on the nearest polygon edge to rcop,d. Near the left
or right edge shows a push in the coronal plane, near the front or back edge shows a push
in the sagittal plane. Based on the discussed variables, the following three actions can be
selected:

• Positive alignment: At the current control tick, φ is relatively small and δ relatively
large for a push in the sagittal plane, or δ is relatively large for a push in the coronal
plane. Also, φ has to be smaller than 1

2π [rad], as the virtual leg must be in direction
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of the ICP error to make additional force effective. A bang-bang action is activated,
similar to the control law of the previous chapter. The thresholds related to this action
are φmin < φ < φmax (for a push in the sagittal direction) and δ > δmin, where φmin,
φmax and δmin are parameters for the minimum and maximum φ and minimum δ.

• Prepare: At the current control tick, φ is relatively large or δ is relatively small, but
φf and δf are at values suitable for the positive alignment action. The CoM height is
gradually lowered to the minimum height, after which a positive ‘bang’ is used. The
thresholds related to this action are φmin < φf < φmax and δf > δmin.

• Default: All decisions variables φ, δ, φf and δf are at such values that vertical CoM
motion does not improve recovery. The default height control law is used and no ad-
ditional height changes are considered. The threshold related to this action is if the
prepare and the positive alignment thresholds do not hold.

In Figure 6-4, six cases of ICP errors are shown to explain which actions will be used. In
Figure 6-4a, the positive alignment action is used, as the δ is relatively large and φ relatively
small. In Figure 6-4b, the default action is introduced, as δ is zero and φ is misaligned. In
Figure 6-4c, the error is a result of a back push. A positive alignment action is introduced,
as φ is relatively small and δ relatively large. In Figure 6-4d, a push is applied frontally on
the robot. The prepare action is used, as δf and φf are more suitable for height control. In
Figure 6-4e, the robot is pushed from the left. The positive alignment action is used, as the
current δ is relatively large. In Figure 6-4f, the error is a result from a push from the right.
The default action is activated, as δ is small throughout single support.

The bang-bang control law considered in the actions is similar to the control law presented in
the previous chapter. However, the height constraints are slightly modified. For the maximum
height constraint zmax, the same constant value as for the standing tests is used in the first half
of single support. In the second half, the maximum height constraint is linearly interpolated
between the maximum height constraint for standing and a maximum height constraint at the
end of single support. For the minimum height constraint zmin, a constant value is considered
throughout single support. The height constraints are visually explained in Figure 6-5.

Positive Alignment Action

Using zmax as specified above, a similar bang-bang control law as in the previous chapter
is introduced with the positive alignment action. After the second ‘bang’, the height is not
controlled to the maximum height zmax, but is given a feedforward downward acceleration
computed based on a circle around the ankle. Using the circle acceleration, the stance leg
singularity can be approximated and the downward velocity at touchdown will not be as high
as after a free fall, which takes point 4 of the preliminary observations into account.

Consider the distance from the ankle of the robot to the sagittal CoM position xankle and
the maximum leg length lmax. If is assumed that the CoM height z is located at the hip, the
horizontal position relates to the vertical position as:

z2 = l2max − x2
ankle. (6-5)
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Figure 6-5: Height constraints throughout single support for the vertical motion controller while
the robot is walking.

The vertical velocity resulting from this function reads as:

ż = − xankleẋ√
l2max − x2

ankle

. (6-6)

The resulting vertical acceleration reads as:

z̈ =

√
l2max − x2

ankle(−ẋ2 − xankleẍ)− x2
ankleẋ

2
√
l2max−x2

ankle

l2max − x2
ankle

. (6-7)

Assuming the sagittal acceleration ẍ is zero, the desired vertical acceleration is computed as:

z̈d = − ẋ2√
l2max − x2

ankle

− x2
ankleẋ

2

(l2max − x2
ankle)

1 1
2
. (6-8)

Prepare Action

When the future errors are more suitable for using vertical CoM motion for balance, the CoM
height is prepared for applying more force later by being lowered. The control action uses
the time it takes to accelerate from the minimum height constraint to the maximum height
constraint. This time uses the kinetic and potential energy:

zmin + 1
2 z̈ct

2
zmin→zmax + 1

2
(z̈ctzmin→zmax)2

αˆ̈zc z̈c
= zmax, (6-9)

where tzmin→zmax is the time from the minimum height constraint to the maximum height
constraint, considering a zero initial vertical velocity. The solution for this time reads as:

tzmin→zmax =
√√√√2(zmax − zmin)

z̈c + z̈c
αˆ̈zc

. (6-10)
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This time is used to determine when the first ‘bang’ should be activated, after the CoM
height is lowered. The known remaining time in single support tr (the total single support
time minus the time already spent in single support) is shortened by tzmin→zmax :

tz→zmin = tr − tzmin→zmax , (6-11)

where tz→zmin is the time available to move from the current height z to the minimum height
zmin. Using this time, at every control tick the desired acceleration z̈d is computed by using
the equation:

z + żtz→zmin + 1
2 z̈dt

2
z→zmin −

1
2

(z̈dtz→zmin + ż)2

αˆ̈zc z̈c
= zmin, (6-12)

−1
2
t2z→zmin
αˆ̈zc z̈c︸ ︷︷ ︸
a

z̈2
d + (1

2 t
2
z→zmin −

tz→zmin
αˆ̈zc z̈c

ż)︸ ︷︷ ︸
b

z̈d + z − zmin + żtz→zmin −
1
2

ż2

αˆ̈zc z̈d︸ ︷︷ ︸
c

= 0, (6-13)

which has the negative solution:

z̈d = −b+
√
b2 − 4ac

2a . (6-14)

This value for z̈d is used until tz→zmin < 0, after which the positive ‘bang’ is activated.

6-3 Results

To test the presented control actions used by the vertical motion controller, push recovery
is tested on Valkyrie in simulation. Additionally, the positive alignment action is tested on
Atlas on hardware.

6-3-1 Valkyrie Simulation

The results on Valkyrie in simulation are obtained by pushing the robot in single support
when the right foot is the support foot, as in the previous sections. Initially, the robot is
pushed at entrance of single support. To test if the robot recovered, there are four more
steps taken after the current step, and checked if the robot did not fall over. Additionally,
pushes are applied in different moments in single support, using the notation ∆push,SS for the
fraction of the swing time when the push is applied. To have a more instant change in error,
a push duration of tpush = 0.03 is chosen. The following parameters are used for the control
law:

• ξe,min = 0.03 [m], the same value as is used for the standing tests;

• φmin = −0.85 [rad], φmax = 0.85 [rad] and δmin = 0.04 [m], which are selected based
on results obtained after searching for maximum recoverable pushes at the beginning of
single support using different values for the parameters;

• z̈c = 5.0 [m/s2] and ...
z max = 200 [m/s3], to have a more reactive response than on the

standing tests.
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Maximum Recoverable Push

Like in the previous chapter, the maximum recoverable pushes are searched for every 5 degrees
and the normalized impulse i =

∫
Fpushdtpush
mrobot

is used. The results for both control setups are
shown in Figure 6-6, with the radial lines showing the push directions and actions used by
the vertical motion controller. The right foot is the support foot. For the push directions,
0 degrees is a rear push, 90 degrees is a push from the right, 180 degrees is a frontal push
and 270 degrees is a push from the left. For these results, rcmp,d is constrained to be inside
the support polygon and is assumed to coincide with rcop,d. It can be observed that the
actions have less effect when the push is applied later in single support, and often result in
worse recovery than the default setup at ∆push,SS = 0.5. The recovery for a push around 200
degrees is worse when the vertical motion control law is enabled when ∆push,SS > 0.0.

In Figure 6-7, the maximum recoverable pushes are shown when rcmp,d is constrained to be
inside the polygon, like in the previous figure, and when rcmp,d is allowed to leave the polygon
0.05 [m]. This distance outside the polygon is commonly used at the Institute for Human
and Machine Cognition (IHMC) [42]. Allowing rcmp,d to leave the polygon requests angular
momentum rate from the robot to achieve the desired linear momentum rate. However, how
much of the desired linear momentum rate is achieved is highly depending on the weights
used in the whole-body quadratic program (QP), which are presented in Appendix A. Note
how the plots with larger possible rcmp,d locations seem to match shape with the plots where
rcmp,d is constrained to be inside the polygon. Also note how for push directions coming
from the back, the recovery is similar for the default controller with larger rcmp,d locations
compared with the vertical motion controller with rcmp,d constrained to be inside the polygon
for push moments until ∆push,SS = 0.3.

Comparison of Equal Push

A deeper evaluation is again made for the responses after an equal push for certain push
directions. A rear and frontal push at the start of single support are chosen to make a deeper
evaluation of. The default setup has a recoverable impulse of i = 0.156 [m/s] and 0.315
[m/s] respectively for these push directions. In Figure 6-8, time responses are shown for these
applied impulses for both control setups. For the vertical motion controller, the positive
alignment action is used for the rear push and the prepare action is used for the frontal push,
which can also be observed in Figure 6-6.

For the rear push, the desired vertical linear momentum rate l̇d,z from a circle is clearly visible
after the second ‘bang’ of the vertical motion controller. The maximum height violates the
maximum allowed height for the controller slightly halfway single support. In the sagittal
reference and estimated ICP plots, it is visible that the ICP error of the vertical motion
controller remains smaller after the push is applied, compared to the default setup.

For the frontal push, the positive ‘bang’ near the end of single support is clearly visible in l̇d,z
when enabling the vertical motion controller. Note that after the frontal push, l̇d,z has fairly
low negative values near the end of single support with the default setup. The minimum
height of the trajectory stays above the minimum height constraint, when using the vertical
motion control law. From the reference and measured ICP in the sagittal direction, it can
again be observed that the final ICP error is smaller for the vertical motion controller.
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Figure 6-6: Polar plots of the maximum recoverable impulses i (radius) for the default controller
(black) and the vertical motion controller (blue) for pushes applied at different moments in single
support. The right foot is the support foot and 0 degrees corresponds with a push from the back.
The colors of the radial lines show the actions used by the vertical motion control law.
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Figure 6-7: Polar plots of the maximum recoverable impulses i (radius) for the default controller
(black) and vertical motion controller (blue). The right foot is the support foot and 0 degrees
corresponds with a rear push. A comparison is shown for when the desired CMP is constrained
to be inside the polygon, and when the desired CMP is allowed to leave the polygon 0.05 [m].
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Figure 6-8: Time responses after a rear push of i = 0.156 [m/s] and a frontal push of 0.315
[m/s] are applied on Valkyrie for the default setup (black) and the vertical motion controller
(blue). The push is applied in the dark gray area and the light gray area shows when the robot
is in double support.

6-3-2 Atlas Hardware

Additionally, some hardware tests on Atlas are conducted during walking, triggering the
positive alignment action. These tests are conducted on Atlas, as Atlas is able to walk faster
than Valkyrie due to its more powerful actuation. Walking faster allows for CoM positions at
further horizontal distance from the CoP positions, in which CoM height variations can have
more effect on balance control. Unlike in the Valkyrie simulations, a step length of 0.4 [m] is
used. The same single support and double support times as in the Valkyrie simulations are
used, which are about the maximum what the robot could do. Longer step lengths or shorter
step times resulted in the hydraulic pump to fail in generating the desired fluid pressure,
which resulted in the robot to fall.

In Figure 6-9, a three-dimensional space (3D) plot of the walking pattern and a time response
plot of l̇d,z are depicted for one test result. Intermediate local pendulums between rcmp,d and
the CoM are depicted in the walking pattern after the push is applied with a constant time
interval of 0.2 [s]. The yellow lines show the projections on the xz-plane of the pendulums.
The letters above the yellow lines match with letters below the images in Figure 6-10; the
pendulums are the rcmp,d− c configurations for the images. At a the push is applied and at b
released. The height change and the bang-bang control law of the positive alignment action
are clearly visible. Instead of using the acceleration from a circle after the second ‘bang’,
a constant feedforward value is used on desired acceleration, because this was found to be
simpler for tuning on the robot.
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Figure 6-9: Visualization in 3D of the CoM and rcmp,d trajectory during the walking push
recovery test (top). The yellow lines are the pendulums projected on the xz-plane. The letters
above the yellow lines correspond with the letters below the images in Figure 6-10 and show the
rcmp,d-c configurations. At a, the push is applied and at b the push is released. Also, l̇d,z over
time is shown (bottom).
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d c b a

h g f e

l k j i

Figure 6-10: Time-lapse of Atlas recovering from a push using the positive alignment action.
The letters below the images match with the corresponding letters above the yellow lines in
Figure 6-10. The push rod tip is encircled in red.
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6-4 Discussion

Chapter 6 presented a control law for the use during walking, extending the method intro-
duced in Chapter 5. This control law uses predefined strategies, that can be heuristically
be selected. These strategies rely on the predefined step time and step location used in the
control framework. Like in the previous chapter, control actions are chosen based on the
violation of certain thresholds.

The effective distance δ and the alignment angle φ allow for making a heuristic decision for the
use of CoM height variation for balance control in different configurations. These variables are
depending on the already existing ICP control law. Based on these variables, a control action
is selected. Any misalignment with the error would result in additional error when using CoM
height variation for balance. This error is controlled with with future rcmp,d positions. For
the future, it could be interesting to already adjust for these additional errors by modifying
rcmp,d in advance.

From the results obtained for the step time and length considered, it seemed that the proposed
control actions in the beginning of single support resulted in the most improvement compared
to strategies that do not use CoM height variation for balance. The vertical motion controller
performs worse than the default setup around the 200 degree push direction for all push
moments in swing considered. This may be a results of the chosen control actions based on
the thresholds φmin, φmax and δmin, which are constant during the swing phase.

For the Atlas tests on hardware, the control law was difficult to compare with the default
setup, and therefore the choice was made to only show one example of a result using the
vertical motion controller. For the standing tests in Chapter 5, it was assumed that the
direction orthogonal to the push is constrained and the recovery problem is in two-dimensional
space (2D). For the walking tests, the CoM is located outside the support polygon if the push
is applied and can also move orthogonal to the push direction. Furthermore, the robot is
moving while the push is applied during walking. Any small difference in the moment when
the push is applied, the push location or the push direction can make a large difference in
how the robot recovers. Therefore, a reliable comparison with the default setup on hardware
for the walking tests could not be made and might be interesting to consider in the future.
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Chapter 7

Conclusion

The objective of this work was to improve balance control of a humanoid robot using center
of mass (CoM) height variation. In this work, novel capture regions for the variable height
inverted pendulum (VHIP) model were proposed and compared with the linear inverted pen-
dulum (LIP) model, which addressed the theoretical part of the research objective. Further-
more, control actions that use CoM height variation for balance were presented and results
were shown on hardware on humanoid robots in comparison with predefined CoM height
approaches. For Valkyrie, it was observed that balance was improved using CoM height
variation, which addressed the applied part of the research objective.

For the VHIP model, capture regions were proposed in Chapter 3 considering a unilateral
contact constraint, after which height constraints and force constraints were added. It was
observed that the capture region becomes smaller after addition of constraints. Also, a com-
parison with the LIP and LIP plus flywheel capture regions was made, which gives a high-level
measure of the potential effects of CoM height variation. The presented capture regions were
derived under the assumption that kinematic limits and joint torque limits of the robot can be
approximated with a constraint on minimum and maximum height and vertical acceleration
respectively.

Because the vertical force constrained capture regions are computed numerically, there was
experimented with another control law, a model predictive control (MPC) law, in Chapter 4.
Based on the shape of the control input of the MPC however, which is constrained to be a
polynomial function, there was chosen to not use this control law in applications in Chapter
5 and Chapter 6.

Similar to the control law used to compute the vertical force constrained capture regions, a
bang-bang control law was designed for implementation in a momentum-based whole-body
control framework in Chapter 5. This control law is activated when a predefined threshold
is met. With this control law, push recovery tests were conducted on NASA’s Valkyrie
and Boston Dynamics’ Atlas, while the robots were standing. The results for Valkyrie in
simulation showed that push recovery improved 9% when pushing the robot in the back and
4% when pushing from the side when the bang-bang control law on vertical CoM motion
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was used. Remarkably, push recovery was 7% worse after a frontal push when enabling
the bang-bang controller. The rear push tests were also conducted on hardware, using a
push stick and a load sensor, where an average of 7% increase in maximum recoverable push
was observed. The vertical force constrained capture position for the same height change
and vertical acceleration differed approximately 4% from the LIP capture point (LIPCP), so
differences were observed between the VHIP model and the results on Valkyrie. Additional
hardware tests were conducted on Atlas using a medicine ball on a rope. However, recovery
did not improve noticeably. Different initial heights for the robot were tried, as well as a
tuning of a joint torque control gain, which had no noticeable effect. In simulation however,
recovery did improve for Atlas when enabling the bang-bang control action.

Similar to the bang-bang control action, three actions were proposed for the use during
walking in Chapter 6. Using the two presented variables, the alignment angle and the effective
distance, a control action was chosen heuristically based on outputs of instantaneous capture
point (ICP) control. Compared to a constant height control approach, recovery improved the
most when pushing the robot in the back or from the front in the first part of the swing phase.
On hardware, evaluation of the proposed control law was difficult, because of the additional
uncertainties compared to the standing tests. Therefore, only an example was shown for a
control action on hardware on Atlas while the robot is walking.

7-1 Recommendations

The results presented in this work have demonstrated that CoM height variations can improve
balance control. There are however shortcomings, both on the theoretical as well as the
applied side of the proposed research. In the following sections, recommendations for future
work are presented. First, recommendations for extension of the proposed approaches are
presented, after which a broader outlook on future work is briefly presented.

7-1-1 Extending the Proposed Approach

In this section, opportunities for improvement of the presented theory, tests and results are
presented.

Extension of Capture Regions

The unilateral contact and height constrained capture regions give bounds on the capture
region. However, these cannot directly be used in a control law, as impacts are considered in
the computation. The vertical force constrained capture points can be used in control, but
use numerical integration to find future state information. It would be interesting to explore
closed-form solutions for a force constrained capture problem, without overly constraining the
VHIP like in [10] and [13]. With a closed-form solution for example, the control law used in
application in this thesis could be predictive, as a vertical force constrained capture position
could be computed on every time instance.
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Improving Push Recovery Tests

Balance control of the robots was tested in this work by testing push recovery. The push
stick with load sensor [43] measures push force accurately, but a person pushing the robot is
in general not able to apply a desired force precisely. With the tests with the medicine ball,
the ball location could be put relatively precise. However, the push duration on the robot
using these tests cannot be adjusted and is quite short, which resulted in high impacts on
the robot. Furthermore, stretch in the rope and in the ball can change the CoM height of
the ball. Also, the transfer of the energy of the ball to the robot depends on the damping
properties of the ball and the robot. For future push recovery tests, it could be interesting to
use a device that can accurately apply force according to a desired profile over time.

Improving State Estimation and Center of Pressure Control

Applying the methods presented in this thesis requires good state estimation and control of
the center of pressure (CoP). In some experiments on Atlas it was found that performance did
not improve when applying the presented control law, even though performance could improve
according to the VHIP model and the obtained simulation results. This lack of performance
could be related to a CoP error, which could be caused by the additional movement of the
robot when the presented method was used. By improving state estimation and CoP control,
the theoretically predicted improvements could potentially be better achieved in practice.

Standing Tests for Lowering Center of Mass Height

The standing push recovery tests presented in this work all use an increase in CoM height
for balance control, as the initial CoM position of the robot was inside the support polygon
at the moment the push was applied. With the walking tests, the CoM height was lowered.
However, the walking tests were difficult to test on hardware, because of the increased number
of uncertainties. It could be interesting to find a test setup, where the robot should lower
the CoM height to balance to a standing configuration. The robot can be given an initial
velocity when the CoM is outside the support polygon, that lowering the CoM height would
be needed to balance. This test setup would be comparable with a human landing after a
long jump.

Analysis of Results

In this work, the data obtained from the robots was predominantly analyzed based on time
response and phase plots. It could be interesting to perform additional analysis, as for example
analyzing the energy consumption on the robot when using the different control strategies.
The energy consumption could be determined by measuring the electric current and voltage
going to the robot. Energy consumption can, for example, be an additional decision variable
for choosing between balancing strategies.
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7-1-2 Outlook

This work contributes merely a small part to balancing strategies for humanoid robots. For
the future, it could be interesting to analyze CoM height variations in legged systems further.
It would be interesting to investigate when humans use height variation, and why the strategy
is chosen instead of the ‘hip strategy’ in such scenarios for example. Furthermore, it would be
interesting to see different balancing strategies combined with height variation on humanoid
robots. The decision making in balancing strategies, under the constraints of kinematic limits,
force limits, disturbances and terrain remains a broad research area to explore.
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Appendix A

Test Parameters

In Table A-1, control framework parameters are shown which are used on the Valkyrie tests.
If the weights are denoted as a vector, the entries are the xyz-components. The wrench cone
basis vector multiplier ρ is used to compute the desired ground reaction force (GRF), as
explained in Section 2-2.

Table A-1: Control framework parameters for the Valkyrie tests.

Task group Task Gains Weights
ICP control - kξ = 2 -
Height control - kp = 50, kd = 14 -
Centroidal momentum rate Linear - [0.05, 0.05, 0.01]
Motion angular Pelvis kp = 100, kd = 16 [5.0, 5.0, 5.0]
Motion angular Chest kp = 100, kd = 16 [15.0, 10.0, 5.0]
Motion angular Foot stance kp = 200, kd = 28 [2.0 2.0 2.0]
Motion linear Foot stance kp = 0, kd = 0 [80.0 80.0 80.0]
Motion angular Foot swing kp = 200, kd = 20 [2.0 2.0 2.0]
Motion linear Foot swing kp = 150, kd = 17 [80.0 80.0 80.0]
Motion joint Spine kp = 50, kd = 11 10.0
Regularization Joint acceleration - 5 · 10−3

Regularization Joint jerk - 1.6 · 10−6

Regularization ρ - 1.0 · 10−5

Regularization ρ rate - 5.0 · 10−8
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Appendix B

2D Analysis from Model to Robot

Contributing to this thesis, the paper included in the following pages is submitted for publi-
cation in IEEE Robotics and Automation Letters (RA-L) with the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) option on January 6, 2019. The con-
tributions in the paper are closely related to the work presented in Chapter 3 and Chapter
5.
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Balancing using Vertical Center of Mass Motion:
A 2D Analysis from Model to Robot

Boris J. van Hofslot1,2, Robert Griffin1, Sylvain Bertrand1, and Jerry Pratt1

Abstract— Balancing strategies for humanoid robots often
include center of pressure control (‘ankle’ strategies), change
of body angular momentum (e.g., ‘hip’ strategies) and taking
a step. In this work, we propose using vertical center of mass
motion as an additional input for balance control. We walk
through the process of analyzing simple 2D models, after which
we analyze the effects of those models after application on
a real robot. First, we specify analytic, theoretical capture
regions under unilateral contact and height constraints only.
Second, we add a vertical acceleration constraint and come to
a simple control law for implementation. Third, we implement
the control law in our momentum-based whole-body control
framework. We test push recovery while standing on NASA’s
Valkyrie humanoid robot and compare with a constant height
controller, and show that recovery can be improved using
vertical motion. Furthermore, we discuss the differences that
can be observed after application of a simple model on a robot.

I. INTRODUCTION

Keeping balance is a fundamental problem in humanoid
robotics. Throughout the years, many conditions and expres-
sions have emerged for analyzing the ability of the robot to
stabilize. Examples are the capture point and capture region
[1], [2], stability regions [3], the divergent component of
motion [4] and the boundedness condition [5], which all link
to the energetics of the pendulum-based model and its ability
to converge.

These conditions commonly rely on a linear inverted
pendulum (LIP) model, with optionally a mass with inertia
to model the robots angular momentum. The LIP model
provides fast, closed-form solutions when integrating over
time. This results in the center of mass (CoM) height usually
to be fixed in the dynamic planning problem. Vertical center
of mass motions are considered as pre-defined and deviations
from the dynamic model are considered as disturbances.
Those disturbances are commonly controlled with ‘ankle’
strategies, i.e., moving the center of pressure (CoP) or
pendulum base, and to a lesser extent, with ‘hip’ strategies:
change of body angular momentum. These strategies can
be generated by using, e.g., a momentum-based whole-body
control framework [6], [7], [8], which determines center of
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University of Technology, Mekelweg 2, 2628 CD Delft, Netherlands
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Fig. 1. Visualization of the idea in this paper.

pressure position and angular momentum rate by optimizing
between desired momenta and motion objectives.

Although the use of a predefined height trajectory has
advantages, it can be overly constraining. In cases where
traditional balancing strategies are saturated and the robot
is in risk of falling, it is interesting to explore additional
methods for the robot to recover. Vertical CoM motion can
be used to generate additional horizontal force on the CoM,
which can improve balance.

Recently, efforts have been made to use vertical CoM
motions for balance control. In [9], an analytic model pre-
dictive controller is derived in 2D from the orbital energy
proposed in [10]. Regions of attraction for this controller are
investigated, as well as limitations on the region in which
recovery is possible for a variable height inverted pendulum
model under the constraint of unilateral contact only. In [11],
different 2D strategies are proposed for multi-step recovery
using vertical CoM motion. In [12], a model predictive
control law for 3D capture trajectories is proposed using a
nonlinear solver. The authors manage to solve the nonlinear
control problem online using a variable height inverted
pendulum model. However, applied results on hardware are
not shown yet.

In this paper, we analyze capture regions of a simple 2D
model. Subsequently, we implement a control law based on
this model on NASA’s Valkyrie and test push recovery (see
Fig. 1). We propose capture regions by adding constraints
to a base model. We add a contact unilaterality constraint,
followed by height constraints, from which we derive ana-
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lytic capture regions. We add a vertical force constraint and
formulate a bang-bang control law on vertical acceleration,
after which the solution to a capture region needs to be com-
puted numerically. Furthermore, we analyze the differences
between the capture regions. Finally, we implement the bang-
bang control law in our momentum-based control framework
[8]. We test push-recovery on NASA’s Valkyrie [13] and
compare with a setup that has a constant height objective and
only uses CoP. Furthermore, we discuss the differences that
we observe when going from a simple model to application
on a robot.

The remainder of the paper is structured as follows. In
Section II, we give a short overview of balancing strategies
and capture. In Section III, we derive capture regions for a
pendulum with variable height. We test balancing on NASA’s
Valkyrie by applying pushes in Section IV. Finally, in Section
V, we conclude and give our outlook on balance control for
humanoids.

II. MODEL & CAPTURE

Throughout the paper, we disregard stepping and focus on
comparing ‘0-step’ capture [2]. Our goal is to explore the
effects of height variation in balancing tasks, and how these
compare to constant height control approaches. To consider
vertical motions, we use a variable height inverted pendulum
model, which has the following dynamics:

ẍ =
x

z
u, (1)

where u = g + z̈ is the normalized vertical force, x is the
position of the point-mass relative to the CoP and z the height
of the mass.

In this paper, we use the term capture region [1] to describe
the set of CoP locations where balance can be achieved. Also,
the capture point as introduced by Pratt et al. is considered,
only this is for comparison denoted as:

xcp,lip =

√
z0
g
ẋ0, (2)

where z0 is the initial height and ẋ0 the initial horizontal ve-
locity. To avoid confusion, we use the term capture position
to describe a point where the current state and the resulting
trajectory will lead to convergence of the pendulum-based
model. We denote a capture position as a positive value:

xcp = |x0|, if xf = 0 and ẋf = 0, (3)

where xcp is the capture position, xf the final horizontal
position and ẋf the final horizontal velocity. We use an initial
horizontal velocity of greater than zero and that xẋ < 0 for
any capture trajectory [9].

III. CAPTURE REGIONS

This section proposes bounds on the capture position (3).
The dynamics of (1) are considered. For simplicity and
comparison with the LIP capture point (2), we take the
initial vertical velocity ż0 = 0. In each subsection, we add
constraints to come to a more realistic model.

A. Unilateral Contact Constraint

Considering the constraint of contact unilaterality only, the
capture region is bounded by the current position and the
ballistic touchdown point:

xcp,unilateral ∈ (0, xbal], ∀u ≥ 0, (4)

where xbal is the ballistic touchdown point. This is the
location where the point-mass would intersect with the
ground plane after a free fall. xcp,unilateral is the capture
position under unilateral contact constraint only. The proof
for this region is given in [9]. For the zero initial vertical
velocity, the ballistic touchdown point reads as:

xbal = tẋ0 =

√
2z0
g
ẋ0 =

√
2xcp,lip. (5)

The region can be interpreted as follows. At an infinites-
imally small distance on the side of CoM in the direction
of its horizontal velocity, there exists an infinite impact of
the leg that stops the horizontal motion of the CoM. On the
other side of the capture region, the leg, without constraints
on height, can apply an impact when the mass is at ground
height that stops the motion of the mass.

B. Addition of Height Constraints

To take kinematic limits of the robot into account, we
derive capture positions under a minimum and maximum
height constraint respectively. We consider a combination of
impacts of the leg, the LIP capture trajectory and the ballistic
trajectory, such that analytic capture positions can be found.

Preliminary, we temporally set ż0 6= 0 to calculate the
influence of an impact on xcp,lip. We can use this in the
next paragraph to derive a capture position under a minimum
height constraint. Considering an initial negative vertical
velocity ż0 < 0 that is driven to zero by a vertical impact,
the influence on the LIP capture point is:

xcp,I =

√
z0
g

(
ẋ0 +

xcp,I
z0

ż0

)
, (6)

=
z0√

gz0 − ż0
ẋ0, (7)

where xcp,I is the impact influenced capture point from an
initial impact that results in ż = 0.

1) Minimum height: Under a minimum height constraint
zmin, we can find a capture position from which the trajec-
tory ‘just’ touches the constraint. We first let the mass follow
the ballistic trajectory, after which it is vertically stopped by
the impact influenced capture point:

xcp,zmin = xbal(δzmin) + xcp,I(zmin, żzmin), (8)

where xcp,zmin
is the capture position over the mini-

mum height constraint, xbal(δzmin) the horizontal posi-
tion after the ballistic fall δzmin = z0 − zmin and
xcp,impact(zmin, żzmin ) is xcp,impact after the ballistic fall.
The velocity at the moment the ballistic trajectory hits the
constraint is:

żzmin = −
√

2gδzmin, (9)
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where żzmin
is the vertical velocity at zmin. Using (5), (7),

(8) and (9), the capture position over the minimum height
constraint becomes:

xcp,zmin
=

(√
2δzmin

g
+

zmin√
gzmin +

√
2gδzmin

)
ẋ0. (10)

2) Maximum height: Also under a maximum height con-
straint zmax, an analytic capture position can be found. We
consider a vertical impact by the leg at the initial position
x = x0. This impact is of such magnitude, that the mass is
exactly at the maximum height constraint, if it is at its apex.
After the vertical velocity of the mass is driven to zero by
gravity, we apply xcp,lip. This point reads as:

xcp,zmax
=

(
tż>0 +

√
zmax
g

)
ẋ0,I , (11)

where xcp,zmax
is the capture position following the maxi-

mum height constraint, tż>0 is the time ż > 0 and ẋ0,I is
the initial velocity influenced by the impact of the leg. The
vertical velocity resulting from the impact that lets the mass
just touch zmax is:

żI =
√

2gδzmax , (12)

where δzmax = zmax−z0. Noting that tż>0 = żI
g and filling

in (11) gives:

xcp,zmax
=

(
żI
g

+

√
zmax
g

)(
ẋ0 −

xcp,zmax

z0
żI

)
. (13)

Bringing xcp,zmax
to the left-hand side and filling in (12)

gives:

xcp,zmax =

żI
g +

√
zmax

g

1 +
(
żI
g +

√
zmax

g

)
żI
z0

ẋ0, (14)

=
z0(
√

2δzmax
+
√
zmax)√

g(z0 + 2δzmax
+
√

2zmaxδzmax
)
ẋ0. (15)

3) Bounds: We will show that the capture positions
xcp,zmin

and xcp,zmax
are also the outer bounds on the

capture region.
Lemma 1: Considering the dynamics of (1), ż0 = 0, mini-

mum height constraint zmin and maximum height constraint
zmax, xcp,zmin

and xcp,zmax
are the outer bounds on the

capture region.
Proof: For any capture position xcp, xẋ < 0 [9] and

0 > x0 ≥ −xbal (4). We use that x ≤ 0,∀t and x→ 0 along
any trajectory. From (1), and z > 0, it follows that any input
u will slow ẋ down. Showing that xz → 0,∀t will prove that
u = 0 for the longest possible time t will lead to the farthest
xcp, and a maximum u at the earliest possible t will lead to
the closest xcp.

For u = g, z remains constant and x
z → 0. For u > g,

z will grow and x
z → 0. If u < g, we can show with the

derivative of x
z that this is always increasing:

dxz
dt

=
zẋ− xż
z2

, (16)

Fig. 2. Visualization of the analytic capture regions for ẋ0 = 1 [m/s] and
ż0 = 0 [m/s]. The light gray area shows the unilateral contact constrained
capture region (4). The dark gray area shows the height constrained capture
region (Lemma 1) for 0.7 < z < 1.1 [m]. The dotted plots are made with
the orbital energy controller of [9] and show that the final points are inside
the height constrained region.

where x ≤ 0 and zẋ ≥ 0. Taking the extreme case u = 0
leads to:

zẋ− xż = (z0 −
1

2
gt2)ẋ0 + (x0 + ẋ0t)gt, (17)

= (z0 +
1

2
gt2)ẋ0 + x0gt. (18)

Noting that all terms are positive except for x0, which has
the largest negative value for x0 = −xbal:

(z0 +
1

2
gt2)ẋ0 −

√
2z0
g
ẋ0gt = ẋ0

(√
1

2
gt−√z0

)2

, (19)

which is always greater than or equal to zero for all t.
In Fig. 2, the discussed capture regions are visualized. The

LIP capture point lies inside the height constrained region,
which lies inside the unilateral contact constrained region.
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C. Addition of Vertical Force Constraints

We assume that the robot specific limitations on joint
torques can be approximated with a minimum and maximum
vertical force on the CoM. In doing so, we add constraints
on the minimum and maximum vertical acceleration to the
dynamics (1). From Lemma 1, any vertical acceleration ex-
tremum at the earliest convenience will lead to staying closer
to a height constrained bound. By inserting a constraint
on vertical acceleration, an analytic solution for a capture
position is not available anymore and needs to be solved
numerically1.

In [1], [3], [2], a bang-bang control law is used to regulate
the angular momentum in the body of model. Instead, we use
a bang-bang control law on the input u (1) to regulate the
vertical dynamics:

u = g + z̈c,1H(t)− (z̈c,1 − z̈c,2)H(t− t1)
− z̈c,2H(t− t2), (20)

where [z̈c,1, z̈c,2] are the first and second constant control
inputs and have opposite signs. H(·) is the Heaviside step
function and

t1 =

√√√√2(zconst − z0)
z̈c,1 − z̈2c,1

z̈c,2

, (21)

which is the solution of:

z0 +
1

2
z̈c,1t

2
1 −

1

2

(z̈c,1t1)
2

z̈c,2
= zconst, (22)

where zconst = zmin if z̈c,1 < 0 and zconst = zmax
otherwise. The time t2 = (1− z̈c,1

z̈c,2
)t1, as the second ‘bang‘

needs to drive the vertical velocity resulting from the first
bang to zero.

We use a binary search to find the capture positions with
this control law. In Fig. 3, simulation results are shown in
perspective with the height constrained bounds. Note that
when the bang-bang control inputs are larger, both trajectory
and capture position come closer to the height constrained
bounds.

D. Comparison

We make a high-level comparison with the LIP, the
height constrained bounds and the force constrained capture
positions. We use a dimensional analysis as in [1], [3] and
[2]. The following parameters are used for dimensionless
position and height:

x′ =
x

z0
, z′ =

z

z0
, (23)

and horizontal velocity:

ẋ′ =
1√
gz0

ẋ. (24)

In this comparison, we take z̈c = |z̈c,1| = |z̈c,2| for the
vertical force constraint.

1The authors of [11] give analytic solutions using vertical acceleration,
but consider a constant height in the model. For comparison later in this
paper, we do not consider this constant height assumption.

Fig. 3. Simulation results for the vertical force constrained capture positions
for ẋ0 = 1 [m/s], ż0 = 0 [m/s] and δzmax = δzmin = 0.065 [m]. The
constant acceleration z̈c = |z̈c,1| = |z̈c,2| if z̈c ≤ g and otherwise the
constant with negative sign is set to −g; units are in [m/s2]. The dashed
vertical lines mark the capture positions. Closer to the height constrained
bound means a higher value of z̈c.

For comparison, we make a rough estimate of realistic
values of vertical forces that are achievable on both human
and robot.

First, we would like to see what would be achievable for
a human being. A human jumping vertically with maximum
effort generates approximately 2mg ground reaction force
[14]. If we assume this value can also be used in recovery,
we can take z̈c = g = 9.8 [m/s2] for a human. Second,
we want to see what is possible on the robot. We found on
hardware experiments on NASA’s Valkyrie in Section IV-
D that z̈c = 2.4 [m/s2] was a well working value. Larger
accelerations would result in the robot to shake and did not
improve recovery. In Fig. 4, the height constrained bounds
are shown, together with our approximations of what is
realistic for vertical acceleration constraints on a human
and on the robot. Note how the capture positions relate
differently under a minimum height constraint than under
a maximum height constraint. Also note how the capture
position linking to our approximation for a robot, seems to
approach a minimum and maximum value quite soon after
changing height.

IV. PUSH RECOVERY ON NASA’S VALKYRIE

In this section we apply a simple controller that uses
vertical motion for balance on Valkyrie while standing. The
motivation in control design is, instead of using a model
predictive controller, to develop a controller that applies the
maximum acceleration possible in a worst-case scenario to
avoid falling. We compare with CoP control with constant
height.

A. Control Law

Our default control law is based on instantaneous capture
point (ICP) [2] control:

xcop,d = xcop,r + kξξx,e, (25)
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Fig. 4. Plot of reachable dimensionless capture positions for ẋ′0 = 1.

where xcop,d is the desired CoP, xcop,r the reference CoP,
kξ the ICP control gain and ξx,e is the ICP error between
the reference ICP and the current ICP. For this particular
test case, we assume a constant xcop,r, in the center of the
support polygon. Also, xcop,d is constrained to be inside
the polygon, such that we can make the assumption that no
angular momentum is used in recovery.

The robot is controlled with a momentum-based control
framework [8]. Our framework makes use of centroidal
momentum [15], the angular and linear momentum about
the CoM of the robot. A desired centroidal momentum rate,
along with motion objectives, is sent to a quadratic program,
which optimizes over desired joint accelerations and desired
ground reaction forces. Desired joint torques are finally
computed using an inverse-dynamics algorithm. We typically
only select the linear part of the desired momentum rate for
control, allowing the controller to use angular momentum
rate as needed. The desired horizontal linear momentum rate
is computed as:

l̇d,x =
x− xcop,d

z

(
mg + l̇d,z

)
, (26)

where l̇d ∈ R3 is the desired linear momentum rate of
change. Note that with little vertical motion, l̇d,z is small.

Normally while standing, the height is controlled to a
default constant reference height. In this experiment, we use
a similar control law for vertical acceleration as the bang-
bang controller in Section III-C. The following parameters
are used for the controller in addition to the already discussed
constraints:
•

...
zmax: maximum allowed vertical CoM jerk;

• αˆ̈zc
: parameter to scale down expected z̈c for the second

‘bang’, due to jerk limits.
The control sequence we use for the bang-bang controller

reads as follows. The controller is activated when xcop,d
touches the polygon edge, an event that determines the worst-
case scenario. The controller turns off if ξx,e is at a small

value, a measure for stability. For the first ‘bang’: the desired
acceleration z̈d = z̈c. The transition from the first ‘bang’ to
the second is if:

z + sign(ż)
1

2

ż2

αˆ̈zc
z̈c
> zmax, (27)

in the case of approaching a maximum height. This results
in z̈d = −z̈c until ż < 0, after which the height is controlled
to zmax until the controller turns off:

z̈d = kp(zr − z)− kdż, (28)

where [kp, kd] = [50.0, 14.0] are the PD-control gains and
reference height zr = zmax. If the controller is turned off,
the height is controlled to the default height and zr = z0.
Finally, the rate of z̈d is limited with the maximum allowed
jerk and l̇d,z = mz̈d.

B. Experimental Setup

We test push recovery on Valkyrie (m = 127.3 [kg]) while
the robot is standing, by applying a push from the back at
chest height. Note that with this setup the resulting motion
is always upward, as xcop,d can be placed on the other side
of the CoM compared to the direction of l̇d,x. The following
parameter values are chosen to work with:
• z0 = 1.0 [m], our default reference CoM height while

the robot is standing;
• zmax = 1.065 [m], the maximum CoM height while

standing, such that the legs are not in singular configu-
ration and the feet are still in contact with the ground;

•
...
zmax = 80.0 [m/s3];

• z̈c = 2.4 [m/s2], a value that we found to work ‘well’ on
hardware. E.g., higher values would result in the robot
to shake.

Additionally, whole-body controller parameters relevant to
the test are given in Table I. The term basis vector multiplier
in the table refers to the optimization variable to calculate the
ground reaction forces. This variable multiplies the four basis
vectors of the friction cone for each ground contact point.
For the angular motion objectives, the desired is generated
with PD-control about a constant reference with [kp, kd] =
[100.0, 16.0]. The quadratic program uses an active-set solver
[16].

TABLE I
RELEVANT WHOLE-BODY CONTROL PARAMETERS

Task group Task Weight
Momentum rate linear X 5 · 10−2

Momentum rate linear Z 1 · 10−2

Motion angular Chest Y 1.5 · 101
Motion angular Pelvis Y 5 · 100
Motion angular Support foot Y 5 · 100
Regularization Basis vector multiplier 1 · 10−5

Regularization Basis vector multiplier rate 5 · 10−8

Regularization Joint acceleration 5 · 10−3

Regularization Joint jerk 1.6 · 10−6
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Fig. 5. Phase plot of a push of 34.5 [Ns] (solid) and a push of 37.6 [Ns]
(dotted).

C. Simulation Results

For simulation tests, we used a value of αˆ̈zc
= 0.4 for

the influence of jerk limitations. We used a push duration of
0.15 [s], as we were able to apply approximately the same
push duration on hardware. We compare our default control
setup with the controller that uses vertical motion.

1) Analysis: The maximum recoverable push for the
default control setup is 34.5 [Ns] for the given push duration.
The vertical motion controller still recovered after a push of
37.6 [Ns]. In Fig. 5, a phase plot is shown for the two push
magnitudes for both control setups. The default setup loses
stability after the larger push. With the smaller push, the
vertical motion controller encircles a considerably smaller
area than the default control setup.

We analyzed the differences in resulting joint torques and
noticed that the difference in ankle torque is the largest
amount. Furthermore, we found it interesting to compare the
maximum rotation error of the pelvis and torso. Angular
momentum strategies commonly result in rotation of the
upper body. We want to include this rotation in our analysis,
as not rotating the body can be one of the advantages of
vertical motion compared to angular momentum strategies.

In Fig. 6, centroidal momentum rate, CoM height and
ankle torque plots over time are shown. The achieved vertical
linear momentum rates have a little overshoot for both
controllers. This may also be a reason for the overshoot
in height in the fourth graph in the figure. Conversely, the
achieved horizontal linear momentum rate is lower than the
desired for both controllers. In the time frame 0.10 − 0.25
[s], the vertical motion controller achieves almost double the
horizontal momentum rate compared to the default controller.
The differences in achieved angular momentum rate are
relatively small. We measured a maximum rotation error of
[−0.052,−0.072] radians for pelvis and torso respectively
for the default setup and [−0.051,−0.069] radians for the
vertical motion controller. The resulting rotation errors in the
upper body are a little less for the vertical motion controller.
The ankle torque has a higher peak with the vertical motion
controller, but returns to steady state earlier than the default
setup.

2) Comparison with Capture Regions: The average re-
coverable push is about 9% higher for the vertical motion
controller compared to the default control setup. Comparing
this with the capture regions: the force constrained capture
position for the same z̈c and zmax is only about 4% closer

Fig. 6. Comparison of push recovery between the default setup (black)
versus the vertical motion controller (blue) for a push of 34.5 [Ns]. The
gray area is where the push is applied. ‘Achieved’ is the value after the
quadratic program found a solution. k̇y is the angular momentum rate.

than the LIP capture point, as can be seen in Fig. 4.

From the results obtained, we assume that a difference
in angular momentum between the two Valkyrie tests is
not a reason for this difference in capturability between
model and robot. Also, we noticed that joint angle limits
and joint acceleration limits were not violated during the
tests. However, the difference in the achieved horizontal
momentum rate is large. Note that this can be a result
of the momentum-based control framework. Generation of
horizontal linear momentum rate may conflict with other
objectives, such as keeping the upper body straight, and
maintaining a certain height. We also tried commanding the
l̇d,x of the vertical motion controller, while using l̇d,z of the
default controller, to see if the difference in recovery is just a
result of additional desired horizontal linear momentum rate.
However, the maximum recoverable push with this setup was
the same as with the default setup.

The difference between the increase of the capture region
of the model and the increase of recovery of the robot shows
that a model-based expectation can differ a lot from results
observed on the robot.
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Fig. 7. Average push force profiles of 12 pushes where the CoM went
closer than 5.0 [mm] from the polygon edge, the gray area is the standard
deviation above and below the graph (top). Load sensor on stick with rubber
surface (bottom left). Two pushes with approximately the same integrated
force (bottom right).

Fig. 8. Phase plot of push recovery on hardware. This is a pick of our
data, where both pushes were of magnitude 33.2 [Ns].

D. Hardware Results

We tested the same two control setups on hardware as in
simulation. We used a value of αˆ̈zc

= 0.8, which appeared
to be a better ‘estimate’ for reaching the maximum height
for the vertical motion controller. We compared two times a
dozen test samples that the robot ‘just’ recovered from the
applied push, which we define as the CoM coming closer
than 5.0 [mm] from the polygon edge. We measured the push
force with an iLoad Pro Digital load sensor at its maximum
record frequency of 100 [Hz], see Fig. 7 (bottom left). In Fig.
7 (top), the average force profiles with standard deviation for
both control setups are made visible, as well as an image
of the load cell. The default setup still recovered with an
average push of 35.3 [Ns] and the vertical motion controller
with 37.6 [Ns], showing a slight robustness increase. The
values for the integrated push force are very similar to the
simulation results. However, the measured force profiles on
hardware are different from the profile of the constant force
applied in simulation.

We take an example case for comparison where the
integrated push force on both setups was 33.2 [Ns]. In
Fig. 7 (bottom right), the profiles for these two pushes are
graphed. Note that this is a rough approximation of a similar
disturbance, as other aspects like the force profile, record
frequency and measurement noise of the load sensor also

Fig. 9. Time plot of push recovery on hardware. This is a pick of our
data, where both pushes were of magnitude 33.2 [Ns]. τak,y is the average
of the left and right ankle pitch torque. The letters next to the yellow lines
match with the columns in Fig. 10.

play a role in differences observed on the robot. In Fig 8, a
phase plot is shown for this push on both setups. A slight
increase in robustness for the applied push can be observed.

In Fig. 9, the same variables over time are shown as
in the previous section. We found the differences in the
length of each ‘bang’ interesting, compared to simulation.
This likely also is a reason why a higher value of αˆ̈zc

was
possible on hardware. Also notice the difference in resulting
angular momentum rate. For this push on hardware, we
measured [−0.055,−0.074] radians of maximum pelvis and
torso rotation error on the default setup and [−0.045,−0.058]
radians on the vertical motion controller, which is again less
resulting body rotation with the vertical motion controller.
The averaged ankle pitch torque over left and right has a
higher peak for the vertical motion controller, as expected.
Also, the ankle torque of the vertical motion controller
returns to steady state earlier.

In Fig. 10, a time-lapse image is shown of Valkyrie
recovering from a push using the vertical motion controller,
and using the default controller setup. The letters below the
columns correspond with the numbers next to the yellow
lines in Fig. 9. Note how there is no contact of the push
head, when the yellow lines are outside the gray area.
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Fig. 10. Time-lapse of Valkyrie recovering from a push using vertical motion (top row) and using the default controller setup (bottom row). The letters
below the columns match with the letters next to the yellow lines in Fig. 9. The push rod tip is encircled in red.

V. CONCLUSION
To increase the reliability, it is important that humanoid

robots improve their balancing behavior. In this paper, we
studied the effectiveness of vertical CoM motion in balance
control in 2D. We derived capture regions for varying CoM
height on a commonly used, simple model. We showed on
Valkyrie in simulation and on hardware that balance can be
improved using vertical CoM motions. Using this model-to-
robot analysis, we showed differences that can be observed
when going from a model-based expectation to the real
result.

For the future, we are interested in 3D and multi-step
strategies for the robot to balance using CoM height vari-
ation. Also, we are interested in the coupled effects of, e.g.,
combining vertical CoM motion with angular momentum
strategies. We believe in building a portfolio of balancing
strategies, as in [17], which can be used by the robot
depending on the situation.
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List of Acronyms

IHMC the Institute for Human and Machine Cognition

ICP instantaneous capture point

LIPCP linear inverted pendulum (LIP) capture point

DCM divergent component of motion

ZMP zero moment point

CoP center of pressure

CoM center of mass

CMP centroidal moment pivot

LIP linear inverted pendulum

VHIP variable height inverted pendulum

2D two-dimensional space

3D three-dimensional space

MPC model predictive control

SCS Simulation Construction Set

SLIP spring-loaded inverted pendulum

GRF ground reaction force

QP quadratic program
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