
Improving Dynamic Route
Optimisation by making use
of Historical Data

Jelmer Alexander van Lochem

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t

IMPROVING DYNAMIC ROUTE
OPTIMISATION BY MAKING USE OF

HISTORICAL DATA

by

Jelmer Alexander van Lochem

in partial fulfillment of the requirements for the degree of

Master of Science
in Systems & Control

at the Delft University of Technology,
to be defended publicly on Monday April 1st, 2019 at 12:30 PM.

Supervisor: Dr. J. Alonso-Mora TU Delft
External supervisor: Dr. Ir. P. van ’t Hof ORTEC
Thesis committee: Prof. dr. ir. J. Hellendoorn TU Delft

Dr. B. Atasoy TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ABSTRACT

In the dynamic world we live in, the transportation of people and goods in a reliable, efficient and timely
manner has grown to be more important than ever. Roads and cities are becoming more congested and
the impact of greenhouse gasses can already be observed. The need for controlling transportation systems,
and specifically fleets of vehicles, more efficiently is therefore now higher than ever. Few methods exist in
the literature which utilise historical data to increase the efficiency of dynamic fleets of vehicles. This work
therefore proposes a novel anticipatory insertion method which incorporates a set of predicted requests to
beneficially adjust the routes of a fleet of vehicles, in real-time. This set of predicted requests is derived, in
advance, from historical data by clustering comparable requests and predicting similar requests when as-
sumed patterns in their occurrence are present. This method is combined with a developed dynamic vehicle
routing solver which makes use of a range of heuristics and adaptive large neighbourhood search. The pro-
posed method is evaluated using numerical simulations on a range of real-world problem instances with up
to 1.655 requests per day. These instances represent dynamic multi-depot capacitated pickup and deliver
vehicle routing problems with time windows. The method is compared with several other approaches and
in order to quantify the added value of making use of historical data, the method is benchmarked against
a comparable reactive approach which also makes use of adaptive large neighbourhood search. It is shown
that, by making use of the proposed method, on average, 4,58% less distance is required to be travelled by a
fleet vehicles while additionally 3,35% fewer vehicles are required to fulfil the same set of requests.

i

PREFACE

I would like to thank my daily supervisor at ORTEC, Pim van ’t Hof, for guiding me during my thesis. You have
provided me with loads of feedback and have helped me tremendously during the past year. I enjoyed our
sometimes lengthy meetings and talks, not only about vehicle routing, but also about research in general and
a variety of other topics.

Furthermore I would like to thank Javier Alonso-Mora, my supervisor at the TU Delft for his guidance and
the introduction to the subject of vehicle routing. I believe our meetings and your feedback really took my
work to the next level.

Finally I would like to thank my parents for giving me the opportunity to pursue this study. And last but
not least, my friends and family for making the remaining spare-time very enjoyable. Thank you all for your
support during the past year.

Jelmer van Lochem
Rotterdam, March 2019

iii

CONTENTS

Abstract i

Preface iii

List of Figures ix

List of Tables xiii

1 Introduction 1
1.1 Research Objective . 1
1.2 Contributions . 2
1.3 Chapter Overview . 2

2 Related Work 3
2.1 Vehicle Routing Problem . 3

2.1.1 Problem Variations. 4
2.1.2 Problem Complexity . 4
2.1.3 Solution Methods . 4

2.2 Dynamic Vehicle Routing . 8
2.2.1 Degree of Dynamism. 8
2.2.2 Performance Evaluation . 9
2.2.3 Solution Methods . 9

2.3 Anticipatory Routing . 9
2.3.1 Anticipatory Insertion . 9
2.3.2 Multiple Scenario Approach . 10
2.3.3 Waiting- and Relocation Strategies . 10

3 Preliminaries 13
3.1 Problem Definition . 13

3.1.1 Static Problem . 13
3.1.2 Dynamic Problem . 15

3.2 Method Overview . 16

4 Predicting Requests 19
4.1 Generating Request Types. 19

4.1.1 Choosing a Clustering Method . 19
4.1.2 Hierarchical Agglomerative Complete Linkage Clustering 20
4.1.3 Improving Clustering Speed . 21
4.1.4 Clustering on Multiple Levels . 21
4.1.5 Clustering Parameters . 22

4.2 Generating Requests . 22
4.2.1 Choosing a Prediction Model . 22
4.2.2 Relative Frequency of Occurrence . 23
4.2.3 Predicting the Number of Occurrences. 24
4.2.4 Creating Representations . 24

4.3 Horizon and Frequency . 24

5 Incorporating Predicted Requests 27
5.1 Adding Predicted Requests . 27
5.2 Replacing Predicted Requests . 27
5.3 Removing Predicted Requests . 28

5.3.1 Made Known Removal . 29
5.3.2 To be Realised Removal . 29

v

vi CONTENTS

6 Vehicle Routing Solver 31
6.1 Considerations . 31
6.2 Design . 31

6.2.1 Construction. 32
6.2.2 Local Search . 33
6.2.3 Ruin-And-Recreate. 34
6.2.4 Reducing Routes . 36

6.3 Validation . 37
6.3.1 Experimental Setup . 37
6.3.2 Results . 38

6.4 Visualisation . 39

7 Evaluation 41
7.1 Experimental Set-Up . 41

7.1.1 Instances. 41
7.1.2 Historical Data Analysis . 42
7.1.3 Method Parameters . 45
7.1.4 Strategies . 47
7.1.5 Implementation . 48
7.1.6 Simulation . 48
7.1.7 Hardware . 49

7.2 Sensitivity to Simulation Speed . 49
7.3 Sensitivity to Minimum Relative Frequency of Occurrence . 50
7.4 Sensitivity to Clustering Parameters. 51
7.5 Comparing Strategies . 53
7.6 Discussion . 55

8 Conclusions 59
8.1 Recommendations . 60

9 Acronyms 61

Bibliography 63

Appendices 67

A Implementation of the Vehicle Routing Solver 69
A.1 Insertion . 69

A.1.1 General Components . 69
A.1.2 Sequential Cheapest Insertion . 71
A.1.3 Parallel Cheapest Insertion. 71
A.1.4 Regret Insertion . 72
A.1.5 Cluster Insertion . 72

A.2 Local Search . 74
A.3 Ruin & Recreate . 75
A.4 Reducing Routes . 76

A.4.1 Performance Improvements . 77

B Scalability of Clustering Implementations 79

C Results on Li & Lim PDPTW instances 81
C.1 Instances with approximately 50 requests. 81
C.2 Instances with approximately 100 requests . 82
C.3 Instances with approximately 200 requests . 83
C.4 Instances with approximately 300 requests . 85
C.5 Instances with approximately 400 requests . 86
C.6 Instances with approximately 500 requests . 88

D Remaining results on Comparing Strategies 91
D.1 Instance A. 91
D.2 Instance B. 92
D.3 Instance C. 92
D.4 Instance D . 93
D.5 Instance E. 93
D.6 Instance G . 94
D.7 Instance H . 94
D.8 Instance J . 95
D.9 Instance B - Real-time. 96
D.10 Instance H - Real-time . 97

LIST OF FIGURES

2.1 An instance of a Travelling Salesman Problem . 3
2.2 Process and cost of inserting a request into an existing route . 5
2.3 Process and cost of removing a request from an existing route . 6
2.4 Example of the effect of the shift local search operator on existing routes 6
2.5 Example of the effect of the rearrange local search operator on an existing route 6
2.6 Example of the effect of the exchange local search operator on two existing routes 7
2.7 Example of the effect of the 2-opt local search operator on an existing route 7

3.1 Dynamic problem structure . 16
3.2 Method overview . 17

4.1 Visualisation of hierarchical clustering. The tree structure is called a dendogram. The red
dashed line visualises the chosen measure of (dis)similarity at which the dendogram is ’cut off’
which determines the number and composition of clusters . 21

4.2 Clustering multidimensional data on multiple levels. To small remaining subsets of the data
may be ignored at different levels. This is visualised with red crosses. 22

6.1 Phases of the developed vehicle routing solver. Each block represents a process. Vertically
stacked blocks are processes that are executed in parallel. The Ruin & Recreate phase is par-
allelised to use modern hardware to its full potential. 32

6.2 Performance comparison of different construction heuristics. On the left the obtained relative
differences in the number of routes as compared to the best known solutions, for instances of
approximately 500 requests, when only using different construction methods. On the right the
obtained relative differences in the distance travelled as compared to the best known solutions,
for instances of approximately 500 requests, when only using different construction methods. . 33

6.3 Performance comparison of different construction heuristics. Distributions of the required
computation time, for instances of approximately 500 requests, when only using construction
methods. On the left including regret insertion. On the right without regret insertion to better
show the differences between the remaining methods. 33

6.4 On the left the obtained relative differences in the number of routes as compared to the best
known solutions, for instances of approximately 500 requests, when going through different
phases. On the right the obtained relative differences in the distance travelled as compared
to the best known solutions, for instances of approximately 500 requests, when going through
different phases. 34

6.5 The required computation time, for instances of approximately 500 requests, when going through
different phases. 34

6.6 Phases of the developed vehicle routing solver when the main objective is to reduce the number
of routes. 37

6.7 Summary of the results available in Appendix C. On the left the obtained relative differences in
the number of routes as compared to the best known solutions, for all sets of instances, when
solving for 60 seconds, are shown. On the right the obtained relative differences in the distance
travelled as compared to the best known solutions, for all sets of instances, when solving for 60
seconds, are shown. 38

6.8 Summary of the results available in Appendix C. On the left the obtained relative differences
in the number of routes as compared to the best known solutions, for instances with approxi-
mately 500 requests, when solving for 60 and 600 seconds, are shown. On the right the obtained
relative differences in the distance travelled as compared to the best known solutions, for in-
stances with approximately 500 requests, when solving for 60 and 600 seconds, are shown. . . . 39

ix

x LIST OF FIGURES

6.9 Zoomed-out timetable view of the visualisation tool. Time is listed on the x-axis. Each row
represents a vehicle. The grey blocks indicate that a vehicle is travelling. The blue blocks indi-
cate that a vehicle is fulfilling a task. The visualised solution is the best known (found) solution
belonging to the lc1_10_1 problem instance which belongs to the set of SINTEF benchmark in-
stances described in Section 6.3.1. This instance contains 527 requests and the solution requires
100 vehicles. 40

6.10 Routes view of the visualisation tool. Time is represented by the vertical z axis. Space is rep-
resented by the x and y axes. Each line represents the route of a vehicle through space and
time. The vertical line segments indicate that a vehicle is stationary for a certain amount of
time which suggests that it is fulfilling a task. The visualised solution is the best known (found)
solution belonging to the lc1_10_1 problem instance which belongs to the set of SINTEF bench-
mark instances described in Section 6.3.1. This instance contains 527 requests and the solution
requires 100 vehicles. The depot location of this instance (where all vehicles start and end) is
located in the middle of the x and y axes. 40

7.1 Pickup and deliver locations of all requests within the combined historical data-set of instances
A and F (as described in Section 7.1.1) . 43

7.2 Total number of requests occurring each day within the historical data-sets of instances A and
F (as described in Section 7.1.1). Left: historical data belonging to instance A. Right: historical
data belonging to instance F. 44

7.3 Histogram of the time of the day at which requests are made known within the historical data-
sets of instances A and F (as described in Section 7.1.1). Left: historical data belonging to in-
stance A. Right: historical data belonging to instance F. 44

7.4 Histogram of the length of the pickup time windows of requests within the historical data-sets
of instances A and F (as described in Section 7.1.1). Left: historical data belonging to instance
A. Right: historical data belonging to instance F. 45

7.5 Histogram of the amount of time present between the moment requests become known and
the moment their pickup time windows start. These requests belong to the historical data-sets
of instances A and F (as described in Section 7.1.1). Left: historical data belonging to instance
A. Right: historical data belonging to instance F. 45

7.6 Histogram of the request quantity within the historical data-sets of instances A and F (as de-
scribed in Section 7.1.1). Left: historical data belonging to instance A. Right: historical data
belonging to instance F. 45

7.7 Schematic overview of the structure of the vehicle routing solver and simulation process 48
7.8 Distributions of the final objective value (the total distance travelled by all vehicles) when solv-

ing instance A (as described in Table 7.1) using both the reactive- and the anticipatory strategy,
at different simulation speeds . 50

7.9 Distributions of the final objective value (the total distance travelled by all vehicles) when solv-
ing instance A (as described in Table 7.1) using the anticipatory method when different rfo ’s are
used. 51

7.10 Distributions of the final objective value (the total distance travelled by all vehicles) when solv-
ing instance A (as described in Table 7.1) using the anticipatory method when the clustering
parameters are used as listed in Table 7.5 are used. 52

7.11 Performance of different optimisation strategies on instance F. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 53

7.12 Performance of different optimisation strategies on instance I. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 54

7.13 Relative difference in average distance that is required to be travelled for three strategies as com-
pared to the full information strategy, on all instances. 54

7.14 Visualising the quality of the prediction for instance A which is obtained using the anticipatory
method. 56

LIST OF FIGURES xi

7.15 Performance of different optimisation strategies on instance F. On the left it is shown how the
number of vehicles that is planned to be used during the entire day evolves throughout the day
for each strategy. Each separate line represents a single simulation. On the right the distribu-
tions of the number of used vehicles during the day for each strategy are shown. 57

B.1 Scalability of clustering implementations (2019; https://hdbscan.readthedocs.io/en/latest/
performance_and_scalability.html) . 79

D.1 Performance of different optimisation strategies on instance A. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 91

D.2 Performance of different optimisation strategies on instance B. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 92

D.3 Performance of different optimisation strategies on instance C. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 92

D.4 Performance of different optimisation strategies on instance D. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 93

D.5 Performance of different optimisation strategies on instance E. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 93

D.6 Performance of different optimisation strategies on instance G. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 94

D.7 Performance of different optimisation strategies on instance H. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 94

D.8 Performance of different optimisation strategies on instance J. On the left it is shown how the
distance that is planned to be travelled during the entire day evolves during the day for each
strategy. Each separate line represents a single simulation. On the right the distributions of the
total distance travelled at the end of the day for each strategy are shown. 95

D.9 Performance of different optimisation strategies on instance B when using a simulation speed
equal to 1. On the left it is shown how the distance that is planned to be travelled during the
entire day evolves during the day for each strategy. Each separate line represents a single simu-
lation. On the right the distributions of the total distance travelled at the end of the day for each
strategy are shown. 96

D.10 Performance of different optimisation strategies on instance H when using a simulation speed
equal to 1. On the left it is shown how the distance that is planned to be travelled during the
entire day evolves during the day for each strategy. Each separate line represents a single simu-
lation. On the right the distributions of the total distance travelled at the end of the day for each
strategy are shown. 97

https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html

LIST OF TABLES

3.1 Symbols used in the vehicle flow formulation . 15

4.1 Parameters to be defined at each clustering level . 22
4.3 Example of how the rfo is determined based on historical time frames T−4 until T−1. In the first

four columns the number of occurrences of requests, belonging to a single request type, are
listed. In the last column the number of expected requests within a certain future time frame
T−0 is listed. On each row the rfo for the additionally predicted request is listed in the fifth
column. Left: determining the rfo of the first predicted request. Middle: determining the rfo

of the second predicted request. Right: determining the rfo of the third and final predicted
request. 24

6.1 Removal methods used in the Ruin & Recreate procedure . 36
6.3 Insertion methods used in the Ruin & Recreate procedure . 36

7.1 Created problem instances . 42
7.2 Available columns in historical data . 43
7.4 Levels and their parameters used in clustering requests. The last column states the calculated

threshold for Instance A (as described in Section) . 47
7.5 Different sets of clustering parameters that are used in the experiment to determine the sensi-

tivity of the anticipatory method to different clustering parameters. The listed percentages at
each level replace the percentages listed in Table 7.4 which are used in the calculation of the
threshold at each level. The results of the experiment are shown in Figure 7.10. 52

7.6 Relative difference in the average distance that is required to be travelled and the number of
vehicles that are utilised when using the anticipatory method as compared to the reactive ap-
proach, on all instances. 55

7.7 Derived prediction quality on all instances. The actual row states the number of requests that
are actually made known. The predicted row states the number of predicted requests. The over-
lap indicates what percentage of the predicted requests are also actually made known according
to the measure derived using the request classifier. This percentage gives an indication of the
quality of the prediction. 55

A.1 Possibilities for the ordering of the tasks of two requests to determine if R2 is related to R1 73

C.1 Results on Li & Lim PDPTW benchmark instances with approximately 50 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/100-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 81

C.2 Results on Li & Lim PDPTW benchmark instances with approximately 100 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/200-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 82

xiii

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/200-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/200-customers/

xiv LIST OF TABLES

C.3 Results on Li & Lim PDPTW benchmark instances with approximately 200 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/400-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 84

C.4 Results on Li & Lim PDPTW benchmark instances with approximately 300 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/600-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 85

C.5 Results on Li & Lim PDPTW benchmark instances with approximately 400 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/400-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 86

C.6 Results on Li & Lim PDPTW benchmark instances with approximately 500 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/1000-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 88

C.7 Results on Li & Lim PDPTW benchmark instances with approximately 500 requests. The column
R [#] states the number of requests within the problem instance. The column V [#]states number
of vehicles that are used in the found solution. The column D [-] states the distance travelled
by all vehicles in the found solution. A bold type face indicates that the best known solution
was found. The columns Vbk [#] and Dbk [-] state the same objective values for the best known
solution as of 17-09-2018 gathered from https://www.sintef.no/projectweb/top/pdptw/
li-lim-benchmark/1000-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions. 89

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/600-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/600-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/

1
INTRODUCTION

In an ever more dynamic world the transportation of people and goods in a reliable, efficient and timely
manner has grown to be more important than ever. Logistics has become the backbone of manufacturing,
food, e-commerce and public transportation industries. As a result expenditures on transportation activities
have risen with economic growth, passing over 1426 billion dollars in 2012, in the United States alone [1].

Due to the scale of these operations, suppliers and distributors have recognised the importance of effi-
cient distribution strategies in order to reduce operational cost and increase the level of service to customers.

Simultaneously, numerous technological advances in the field of communication and information pro-
cessing have been made which have the potential to benefit the transportation industry. Especially, the ability
to quickly process vast quantities of data, real-time wireless communication and the tracking of assets using
the global positioning system (GPS) have enabled coordinated real-time transportation. Mainly due to these
technological advances the transportation industry and specifically urban transportation are going through
rapid and significant changes.

First of all an explosive growth of on-demand transportation of passengers, performed by for example
Uber, Lyft and Grab, can be observed across the globe. These services try to use the mentioned technologies
to their full potential and are creating a connected and more centrally controlled transportation network. By
using such networks they are able to control their fleets of vehicles more efficiently while offering a higher
level of service to customers as compared to their (more traditional) competitors.

Second, e-commerce sales have doubled [2] over the past five years which demands far more from parcel
delivery and courier express service providers within cities. This increased demand does not only consists
of additional volume but a trend towards tighter and same-day delivery time windows can also be observed.
In addition to this a variety of meal and grocery delivery services have been introduced during recent years,
both increasing the number of fleets of vehicles inside and around cities even further.

Finally, even though the increase in transportation has offered many comforts, a significant price is also
being payed. For example, the cost of traffic congestion in the United States alone is estimated at 300 billion
dollar per year [3]. Furthermore, one third of all CO2 gasses is released in traffic and transport, whereof 80% by
vehicles [4]. Without a doubt it can therefore be concluded that controlling fleets of vehicles more efficiently
is a topic which has many relatively new applications, is under active development but above all appears to
be a necessity in and around ever more congested cities worldwide.

1.1. RESEARCH OBJECTIVE
The objective of this work is therefore to develop an algorithm which is able to more efficiently control a
fleet of vehicles in a situation where additional customers may request service while vehicles are already
driving. The focus is on improving the efficiency of the fleet of vehicles by making use of historical data. The
primary performance indicator while doing this is the total distance travelled by all vehicles while fulfilling
all requests. Furthermore, for wide applicability, the focus is on being able to handle relatively large arbitrary
problem instances. Specifically, the evaluated instances represent dynamic multi-depot capacitated pickup
and deliver vehicle routing problems with time windows of multiple hours. Two clear goals are identified:

• Determine how a state of the art reactive approach performs on large dynamic real-world problem
instances.

1

2 1. INTRODUCTION

• Determine if historical data can be used to improve upon a purely reactive approach when solving large
dynamic real-world problem instances.

1.2. CONTRIBUTIONS
The contributions presented in this work are related to a new developed method for anticipatory routing.
Four contributions can be identified, namely:

• A method, based on anticipatory insertion, is proposed which does not rely on assumed arrival proba-
bilities of future requests but instead derives a set of predicted requests purely from historical data.

• The proposed method is evaluated on real-world problem instances with up to 1.655 requests per day.
These instances are multiple times larger than the instances which are generally solved in the literature
related to anticipatory routing.

• The added value of including historical data using the proposed method is quantified and put into
perspective by comparing it with a dynamic state of the art reactive method and comparable static full
information approach.

• It is shown that, by making use of historical data and the proposed method, the comparable state of the
art reactive approach can be outperformed on large real-world problem instances without any detri-
mental side effects.

1.3. CHAPTER OVERVIEW
This work is composed as follows. First, in Chapter 2 an overview of the existing related literature is presented.
Chapter 3 formally describes the problem in mathematical terms and gives an overview of the proposed
method. In Chapter 4, a method for predicting requests based on a set of historical requests is presented.
In Chapter 5 it is described how the set of predicted requests can be incorporated into a dynamic vehicle
routing problem. In Chapter 6 the design of a developed vehicle routing solver, which makes use of heuris-
tics, is described. In Chapter 7 the proposed method is evaluated and compared to several other optimisation
approaches. Finally, in Chapter 8 conclusions and recommendations for future work are presented.

2
RELATED WORK

In this chapter related work is presented in three different sections. First litature related to the Vehicle Routing
Problem (VRP) is introduced in Section 2.1. Then, several concepts related to the Dynamic Vehicle Routing
Problem are covered in Section 2.2. Finally, literature related to anticipatory routing is covered in Section 2.3.

2.1. VEHICLE ROUTING PROBLEM
The goal of the Vehicle Routing Problem (VRP) is to determine the set of routes for a fleet of vehicles to opti-
mally serve a set of customers. This problem was first introduced by Dantzig and Ramser in 1959 to improve
the delivery of petrol to gas-stations [5]. Now, over 50 years later, the problem is one of the most researched
combinatorial optimisation problems with countless variations

The vehicle routing problem is a generalisation of the Travelling Salesman Problem (TSP) which was for-
mulated by the Irish mathematician W.R. Hamilton in the 1800s. The goal of the TSP is to find the shortest
possible route along a given set of cities with known distances between them. Each city can only be passed
once and the route should end at the same city from which it started. An instance of a TSP can be seen in
Figure 2.1.

(a) Input of the problem (b) The solution

Figure 2.1: An instance of a Travelling Salesman Problem

3

4 2. RELATED WORK

2.1.1. PROBLEM VARIATIONS
The VRP has numerous variations, amongst others, the Capacitated Vehicle Routing Problem, the Vehicle
Routing Problem with Time Windows and the Pickup and Delivery Vehicle Routing Problem. These variations
are briefly described below.

CAPACITATED VEHICLES

The Capacitated Vehicle Routing Problem (CVRP) is the most researched variation of the vehicle routing
problem [6]. This variation poses a capacity constraint on the vehicles that have to serve customers. This
constraint is either modelled as a finite amount of customers that a single vehicle can visit or as a maximum
amount of load that it can carry at any point during its route execution. Furthermore, it assumes the presence
of a depot from which vehicles start and return to. Also, it is assumed that the fleet of vehicles is homogeneous,
or in others words, that vehicles all have the same capacity. Two ways to model the problem have recently
been presented by Borcinova [7]. In Section 3.1 the problem definition used in this work, which contains
capacitated vehicles, is presented.

TIME WINDOWS

The Vehicle Routing Problem with Time Windows (VRPTW) includes time windows which stem from the
fact that customers impose deadlines on earliest and latest service [6]. These constraints add a temporal
scheduling aspect to the, generally only spatial, vehicle routing problem. Because of this extra dimension
the problem complexity also increases. Numerous variations of time constrained vehicle routing problems
exist in literature. Amongst these variations, an important distinction can be made in the "hardness" of the
time windows. Hard time windows can, under no circumstance, be violated whereas soft time windows can
often be violated at the cost of a certain penalty. Regardless of hardness, time constraints at any location i
are generally defined by an earliest start of service ei and latest start of service li [8]. Furthermore, generally,
a restriction is also posed on the total route duration of a vehicle k by a certain maximum allowable duration
Tk . For more on time window constrained routing and scheduling problems the reader is referred to an
extensive survey by Solomon and Desrosiers [8]. The problem definition, presented in Section 3.1, states that
both customers and vehicles have limited availability caused by time windows.

PICKUP AND DELIVERY

The Pickup and Delivery Vehicle Routing Problem (PDVRP) expands on the "regular" CVRP by allowing pick-
ups to occur at other locations than at a single depot [6]. This generally means capacity constraints can be
met more easily as not all load is required to be present in the vehicle at the start of a route. However, it
should be noted that, a pickup should always occur before its corresponding delivery as the load is required
to be in the vehicle. The problem definition, presented in Section 3.1, describes requests wich consist of both
a pickup and deliver task.

2.1.2. PROBLEM COMPLEXITY
The TSP has been categorised as an NP-hard problem [9]. This means it is highly unlikely that instances of
this problem can be solved within polynomial time (polynomial in the size of the problem instance). Further-
more, the TSP can be seen as a variation of the more general CVRP. This because when the vehicle capacity
is set sufficiently large the CVRP is in essence equal to the TSP [5]. As a result the CVRP belongs to the same
category of problem complexity. In addition to this, Savelsbergh [10] showed that when time windows are in-
troduced the complexity increases even further. It was proven that even finding a feasible solution for a TSP
with time windows is an NP-complete problem in itself. Because of this exact algorithms are rarely able to
solve problem instances with more than a few dozen or hundreds of customers and vehicles (depending on
the problem variation) [11]. Therefore, heuristics are often used to solve larger real-world (or rich) problem
instances. These and other solution methods are described in the following Section 2.1.3.

2.1.3. SOLUTION METHODS
Several categories of solution methods exist for most variations of the vehicle routing problem. A clear sep-
aration between four kinds of methods can be identified. This is the separation between exact methods,
classical heuristics, meta-heuristics and neural networks. These categories of methods are be covered below.

EXACT METHODS

Exact solution methods distinct themselves by the ability to find the provable optimal solution to an optimi-
sation problem. The downside of these kinds of methods is that they generally do not scale well. This means

2.1. VEHICLE ROUTING PROBLEM 5

even for medium sized problems (containing several hundreds of customers) the required computation time
increases drastically and is generally not acceptable in real-world applications. To illustrate this, Pecin et.
al [12] recently have shown that even with a start of the art branch and bound based method, often several
hours are required to solve problems containing only 360 customers.

However, it is worth mentioning that, when faced with the appropriate problem, results on large problem
instances may still be obtained within a small amount of computation time when using exact methods. For
example in ride-sharing for passenger transport often very tight time constraints need to be met. Because of
these constraints the number of possible solutions is severely reduced. By making use of this fact Alonso et. al
[13] have shown to be able to solve instances with hundreds of requests within seconds using exact methods.
For more on exact methods for solving vehicle routing problems the reader is referred to several extensive
surveys written by Laporte et al. [14, 15].

CLASSICAL HEURISTICS

A heuristic can be defined as an approach to solve a certain problem by using a practical method which is
not guaranteed to yield an optimal solution but is sufficient for reaching an immediate goal. In vehicle rout-
ing research this immediate goal is often finding the best possible solution, according to a certain objective,
within a given amount of computation time. Heuristics distinct themselves by the ability to do this for rela-
tively large instances of rich problem variations. The downside of these methods however is that an optimal
solution cannot be guaranteed.

According to Laporte et al. [16] and a more recent review paper by Braekers et al. [17] classical heuristics
have the distinctive property that they do not allow the intermediate deterioration of the solution during the
process of finding a better solution. Classical heuristics can roughly be separated into construction heuristics
and local search heuristics. In this section these heuristics are presented in way specifically for the problem
variation described in Section 3.1. However they are, in general, also applicable to solving other variations of
the vehicle routing problem.

Construction heuristics are used to create an initial solution to a vehicle routing problem. The goal of
every construction heuristic is therefore to insert unscheduled requests into an existing (empty) solution.
The process and cost of adding a request into an existing route is visualised in Figure 2.2.

The most famous construction heuristic is the Clarke and Wright Savings heuristic [18]. The Clarke and
Wright Savings heuristics works by inserting each request into its own route and then sequentially combining
routes which result in the largest saving in the primary objective (often the total distance travelled). Also the
sequential and parallel cheapest insertion heuristics [19] are often used. The sequential cheapest insertion
heuristic works by computing all insertion possibilities for a request into a single solution and then realising
the possibility which results in the smallest increase in the primary objective. The parallel cheapest insertion
heuristic expands on this by computing all possibilities for all unscheduled requests and thus, besides choos-
ing the ’cheapest’ possibility, also chooses the ’cheapest’ request to insert first. The regret insertion heuristic
again expands on the parallel cheapest insertion heuristic by computing, for each request, the possible in-
crease in insertion cost (the regret of not inserting it right away) and bases the order by which requests are
inserted on this metric [20].

Route

P D

Inserted pickup node Inserted deliver node Vehicle start- or endpointNode

Route

P D

+ +

-

+ +

-

Smaller travelling distanceAdditional travelling distance

Figure 2.2: Process and cost of inserting a request into an existing route

6 2. RELATED WORK

Inserted pickup node Inserted deliver node Vehicle start- or endpointNode

Route

P D

- -

+

- -

+

Lesser travelling distanceAdditional travelling distance

Route

P D

Figure 2.3: Process and cost of removing a request from an existing route

Local Search (LS) operators perform relatively simple actions in an attempt to improve the quality of a
solution. Some of the most widely used LS methods are the shift, rearrange, 2-opt and exchange operators
[21]. How these operators work has been visualised in Figures 2.4 - 2.7. For more on local search heuristics
and their implementation we refer the reader to a survey by Groër et al. [22].

Route 1

Route 2

P D

Route 1

Route 2

P D

Shifted pickup node Shifted deliver node Vehicle start- or endpointNode

Figure 2.4: Example of the effect of the shift local search operator on existing routes

Route

P D

Rearranged pickup node Deliver node Vehicle start- or endpointNode

Route

P D

Figure 2.5: Example of the effect of the rearrange local search operator on an existing route

2.1. VEHICLE ROUTING PROBLEM 7

Route 1

Route 2

P D

Route 1

Route 2

P D

Exchanged pickup node Exchanged deliver node Vehicle start- or endpointNode

Figure 2.6: Example of the effect of the exchange local search operator on two existing routes

Route

2-Opt affected node Vehicle start- or endpointNode

Route

Figure 2.7: Example of the effect of the 2-opt local search operator on an existing route

META-HEURISTICS

Meta-heuristics form a different category of solution methods which, generally, make use of classical heuris-
tics. They are in essence higher-level methods which try to select certain classical heuristics that are able to
provide a good solution to the problem at hand. In an attempt to improve on a single heuristic and to achieve
the best results both in terms of solution quality and computation time, generally, multiple heuristics are
used. Several ways to do this have been developed over the past decades.

Simulated Annealing (SA) is an optimisation method inspired by the annealing of metals [23]. In material
science this is a technique which basically encompasses the heating of a metal after which it is slowly cooled
back down. During the heating process molecules are able to reorder or re-orientate themselves which in-
creases the size of the crystalline structures in the material. This is generally seen as improvement of the
quality of the material. While cooling it back down, the molecules slowly become fixed and the new (better)
material structure persists. In optimisation the solution is analogue to the molecules of the material. Clas-
sical heuristics or a set of mathematical operations represents the heat which is used to alter the solution
(or the molecules). Furthermore the value of the temperature is analogue to the degree by which solutions
with deteriorating performance are accepted. Therefore, the higher the temperature the more likely it is that
these sets of operations which result in solutions with a worse objective value are accepted. This, initially
high, decaying probability of the acceptance of worse solutions yields a minima-escaping behaviour which
will eventually converge to a (local) optimum as the temperature decreases.

Tabu Search (TS) is a meta-heuristic which was developed by the mathematician Fred. W. Glover [24].
It also builds upon classical heuristics as it uses them to modify a provided initial solution. However, it dif-
ferentiates itself from LS methods in two ways. First of all, it allows for worsening solutions to be accepted
when no improvement can be found. Secondly, from where it lends it name, it remembers previously visited
solutions and marks these as a tabu. This basically means it prevents itself from visiting these solutions again.
With these two properties TS is able to remember and escape previously visited local minima. For more on
TS and several examples of implementations for dynamic vehicle routing the reader is referred to an article
by Branchini et al. [25].

8 2. RELATED WORK

Genetic Algorithms (GA) are meta-heuristics inspired by the process of natural selection. They originate
from the work done by the American psychology professor John Holland [26]. These methods basically con-
sists of three parts, namely: initialisation, selection and reproduction. During the first step a set of solutions
is (randomly) generated. These solutions form the initial population. Then each solution is rated using a
certain fitness function. In vehicle routing this might be the total distance travelled by all vehicles. Now, as
happens in natural selection, only the best performing solutions survive (or are chosen) during the selection
step. Using the obtained subset, new solutions are generated by combining parts of the different remaining
solutions and adding some random permutations (as also happens with genomes in nature). The selection
and reproduction steps are then repeated until a certain predefined stopping criterion is reached. For more
on GA and their application to vehicle routing the reader is referred to an article by Hanshar and Ombuki-
Berman [27].

Large Neighbourhood Search (LNS) is a meta-heuristic which was introduced by Shaw in 1997 [28]. As the
name suggests this method tries to increase the search neighbourhood as compared to LS methods. It does
this by relaxing a certain part of the decision variables in the solution when no further improvements can
be found. This basically means that a certain part of the solution remains the same and the other part may
completely be changed. This new problem is then re-optimised. When a better solution is found the process
restarts. When the solution did not improve the method reverts back to the best known solution and selects
a new neighbourhood to modify.

Some of the best results for vehicle routing problems, in terms of quality of the obtained solutions, have
been found using a kind of LNS called Ruin & Recreate (R&R). To illustrate, in the year 2000 Schrimpf et. al [29]
broke several records by combining a R&R approach with SA. A year later Li and Lim [30] introduced sets of
PDPTW instances which they solved using a method which combined LS, SA and TS but did not make use of
R&R. Since then records on these instances have been broken multiple times by methods which do make use
of R&R. First notably in 2004 by Ropke and Pisinger [19] by using a R&R method which makes use of multiple
removal and construction heuristics and a variable search neighbourhood. Then, again in 2006 by Bent and
Van Hentenryck, [31] by combining LNS and SA. Finally, in 2016 and 2019, Christiaens and Berghe [32, 33]
have shown to be able break almost every record by implementing a range of heuristics and introducing a
new kind of removal method called string-removal.

NEURAL NETWORKS

During recent years, neural networks, belonging to the field of research called machine-learning, have re-
ceived a lot of attention. Primarily because they have outperformed classic approaches in speech recogni-
tion, machine translation and image captioning [34]. A unique property of this category of methods is that
it imposes and requires little to no structure of the problem at hand. Instead this method tries to learn it by
itself. This has both advantages and disadvantages. Advantages are that the learning process itself requires
little human interaction and that it is almost instantaneous in run-time. Disadvantages are that it can be hard
to "mold" the data in to a format which can be used to train a neural network and that the learning process
requires a lot of computation power. Furthermore, for vehicle routing, in terms of solution quality it does
not seem to rival with conventional solution methods. However, a recent preprint by Kool et al. does show
promising results in terms of solving a TSP with up to a 100 nodes [35].

2.2. DYNAMIC VEHICLE ROUTING
The Dynamic Vehicle Routing Problem (DVRP) is a variation of the vehicle routing problem which has re-
ceived considerably more attention over the last three decades [36]. In contrary to static variations the dy-
namic vehicle routing problem tries to adapt to changing conditions (which in reality often happen every
day). Since the first paper by Wilson and Colvin [37] numerous problem variations and solutions methods
have been developed to handle all kinds of problems. This work focuses on additional customers requesting
service vehicles are driving. Several concepts related to the DVRP are covered below.

2.2.1. DEGREE OF DYNAMISM
Dynamic vehicle routing problems can be classified according to a widely accepted measure, namely the
Degree of Dynamism (DOD). This measure is the number of initially unknown or immediate requests ni mm

as a fraction of the total number of requests ntot [38, 39]. The Effective Degree of Dynamism (eDOD) expands
on this definition by taking into account how far ahead information becomes known before it should be acted
upon [39, 40]. In this definition the time each immediate request becomes known is denoted as ti and the
entire planning horizon stretches from [0,T]. The eDOD is then defined as denoted by Equation 2.1.

2.3. ANTICIPATORY ROUTING 9

eDOD =
∑ni mm

i=1
ti
T

ntot
(2.1)

For problems with time windows the eDOD can be expanded to the eDOD t w by defining the available
response time ri as a fraction of of the planning horizon. The response time is defined as ri = li − ti . Here li

is the end of the time window. The eDOD t w is then defined as denoted by Equation 2.2.

eDOD t w =
∑ni mm

i=1 1− ri
T

ntot
(2.2)

2.2.2. PERFORMANCE EVALUATION
The performance of solution methods for DVRP’s can be evaluated using competitive analysis. This method
was first introduced by Sleator and Tarjan [41]. In this method, online algorithm performance is evaluated by
comparing it to the performance of an offline algorithm which directly has all information available. More
formally, let P be a minimisation problem and S a set of instances of P . Let c∗(Ioff) be the optimal cost for the
offline instance Ioff which holds for I ∈ S. In creating a solution for Ioff all dynamic and stochastic information
is available. This in contrary to an algorithm A used for DVRP’s to which this information is revealed in real-
time. Furthermore, let xA(I) be the final solution to instance I , generated by this algorithm A. Then, similar
to the optimal cost, the cost to this solution can be defined as cA(I) = c(xA(I)). Now, the competitive ratio cr

of an algorithm A is defined by Equation 2.3 [39].

cr = cA(I)

c∗(Ioff)
∀ I ∈ S (2.3)

This ratio basically quantifies the loss of efficiency stemming from the fact there is not full information.
It is worth mentioning that this ratio requires the optimal solution c∗(Ioff) which is therefore required to be
solved using an exact method. This renders comparison impossible for many real-life instances as these are
generally unsolvable using these methods.

To overcome this problem, often, a slightly modified ratio is used namely the ratio of value of information
VA(I). This ratio is defined as stated in Equation 2.4.

VA(I) = cA(I)− cA(Ioff)

cA(Ioff)
∗100 ∀ I ∈ S (2.4)

This ratio, expressed as a percentage, describes the relative loss in solution quality as compared to the in-
stance which had all information available from the start. In this work competitive analysis is used in Chapter
7 for the evaluation of the proposed method.

2.2.3. SOLUTION METHODS
A wide range of solution methods, ranging from linear programming techniques to meta-heuristics, as cov-
ered in Section 2.1.3, are used in the literature to solve DVRP’s. [42–45]. However, depending on the degree of
dynamism, maximum allowable computation time and scale of the problem instance certain methods might
be more suitable than others. Unfortunately, no definitive conclusions have previously be drawn regard-
ing an optimal solution method for certain problems. It can however, be stated that when dealing with large,
loosely constrained problem instances which have to be solved within a limited amount of computation time,
heuristics might be more suitable as compared to exact methods.

2.3. ANTICIPATORY ROUTING
Anticipatory routing describes a field of research related to the VRP where an attempt is made to anticipate
additional requests and routes are adjusted according to the expectation. Three categories of methods are
identified in the literature, namely anticipatory insertion, the multiple scenario approach and waiting- and
relocation strategies. The three categories are described in the following subsections.

2.3.1. ANTICIPATORY INSERTION
The idea of anticipatory insertion is to change routes in advance by incorporating a representation of ex-
pected requests that will become known in the future.

10 2. RELATED WORK

An example is the method proposed by Hemert and La Poutre [46] which defines regions where requests
are likely to occur as fruitful regions. By selectively routing vehicles trough these regions they modify existing
routes and end up with different solution as compared to not doing this. They show that by using this method
they are able to improve upon a purely reactive approach. It worth mentioning that their problem instances
are constructed in such a way that they indeed contain fruitful regions, which their method is specifically
designed to work on. Furthermore, additional requests are also assumed to arrive according to the same
distribution which is used by their method to assess which regions should be routed through. Finally, for
optimisation, they use a GA which solely makes use of an exchange LS operator for the mutation of solutions.

A slightly different method is proposed by Ghiani et al. [43]. They propose sampling requests from an
assumed future arrival distribution and than adding these sampled requests to the current problem defini-
tion. This problem is then solved. Where additional requests should then be inserted is based on the solution
which includes the sampled requests instead of on the one which does not. For optimisation they use se-
quential cheapest insertion and the shift and rearrange LS operators. They report "dramatic" improvements
upon a purely reactive approach on synthesised problem instances with up to 300 customers. Finally it is
worth mentioning that they "have assumed that the requests arrive according to a known stochastic process"
and that "Future work should be aimed at verifying how robust our approach is whereas demand sampling is
based on an approximation of the arrival process".

2.3.2. MULTIPLE SCENARIO APPROACH
The Multiple Scenario Approach (MSA) is a method proposed by Bent and Van Hentenryck [47] which ex-
pands upon anticipatory insertion methods. They propose a method which creates different scenarios by
sampling requests from an assumed future arrival distribution multiple times. In each scenario a different set
of requests is assumed to arrive in the (near) future and is added to the problem definition. These scenar-
ios are then seperatly optimised in parallel. When an additional request arrives, the best insertion location
within all scenarios is determined. The insertion location which is best most frequently, amongst 50 scenar-
ios (according to a consensus function), is then chosen. For optimisation they make use of an unspecified
local search method. On synthesised problem instances with up to 100 customers they report "dramatic" im-
provements upon purely reactive approaches. It is worth mentioning that, in obtaining these results, again
the actual arrival distributions of future requests are used by the proposed method.

More recently Ghiani et al. [48] compared the performance of anticipatory insertion to the multiple sce-
nario approach in solving the dynamic and stochastic TSP. They concluded that anticipatory insertion offers
comparable performance to MSA while requiring less computational resources.

Finally, Saint-Guillain et al. [49] expand on the MSA with their Global Stochastic Assessment (GSA) ap-
proach which, instead of computing a set of solutions, creates a single solution which best suits all scenarios.
They conclude that this method produces competitive results with respect to MSA. However they also report
that their stochastic evaluation over 150 scenarios is approximately 103 more expensive (in terms of required
computational resources) as their reactive approach which makes use of LS and SA.

2.3.3. WAITING- AND RELOCATION STRATEGIES
The idea of waiting strategies is to let vehicle wait at certain locations when it is estimated that additional re-
quests will be made known near the current location of the vehicle. In such a situation it may be more appro-
priate to idle for a certain amount of time than to move away from the specific location and having to return to
it at a later time. Thomas [50] shows that in a single vehicle case, on instances with up to 50 customers, wait-
ing strategies which make use of stochastic information can improve upon strategies which do not. Branke
et al. [51] show, that for the one and two vehicle case and instances with up to 200 customers, making use of
the appropriate waiting strategy can significantly increase the probability of being able to service additional
customers while, at the same time, reducing the average required detour for servicing customers. Ichoua et
al. [44] show comparable results on relatively larger problem instances with up to 6 vehicles and 200 cus-
tomers. To determine the waiting locations they segment space and time into cubes which each receive their
own Poisson arrival distribution. When the probability of arrival within a cube is high enough, and vehicle
currently resides within this cube, a "dummy" customer is generated which forces the vehicle to wait at that
specific location. For optimisation they make use of TS which makes use of the cross exchange LS operator
for the modification of existing solutions. They show a reactive approach can be improved upon, especially in
the case of "critical" situations involving a small fleet size and high requests arrival rates. Finally, in obtaining
these results, again the actual arrival distributions of future requests are used by the proposed method.

The idea of relocation strategies is to move vehicle to locations where requests are expected and no ve-

2.3. ANTICIPATORY ROUTING 11

hicles are available. These strategies are used in urgent problem contexts (where time windows are narrow),
often to be able to service more customers as compared to not using them. Given that relocation causes ad-
ditional distance to be travelled, employing this strategy often works contradictory to reducing operational
cost. These strategies find their origin in ambulance dispatching. A variety of ambulance dispatching and
relocation methods are covered by Andersson and Värbrand [52]. More recently, these methods have also
found applications in other problem contexts such as the rebalancing of empty taxi’s to be able to better ser-
vice future demand [53]. It is worth mentioning that, for relocation, the method requires vehicles to be idle.
Depending on the length of time windows of requests this may or may not ever happen.

3
PRELIMINARIES

In this preliminary chapter the solved problem is formulated in mathematical terms in Section 3.1. Further-
more, an overview of the proposed method is presented in Section 3.2.

3.1. PROBLEM DEFINITION
In this section the definition of the problem that is solved is covered. This is done in two parts. First, the
static problem definition is described in Section 3.1.1. Second, the actual problem, the dynamic problem, is
described in Section 3.1.2 by making use of the static problem definition.

3.1.1. STATIC PROBLEM
Formally, the static problem can be defined as follows. Let G = (N , A) be a directed graph where A defines a
set of arcs and N = P ∪D∪S∪E defines a set of nodes. Let P define a set of pickup nodes, D define a set of the
corresponding deliver nodes, S defines a set of vehicle starting nodes and E define a set of vehicle end nodes.
Furthermore, R defines a set of requests of length n where each request ri is defined by the pickup node
Ni and deliver node Nn+i . Each pickup node Ni has an associated positive load qi which should be picked
up at that node. This load is required to be delivered to its corresponding deliver node Nn+i which means its
associated load qn+i has the same value, only negative. All pickup and deliver nodes also have a non-negative
service duration di which defines for how long a vehicle should stay at node Ni before it is considered to be
serviced. The service of each node Ni should start within a uniquely configurable time window starting at
ei and ending at li . Let V define a set of vehicles of length m where each vehicle Vk should start its route at
starting node N2n+k (or Sk) and end its route at end node N2n+m+k (or Ek). Furthermore each vehicle VK has
a limited capacity equal to Qk . Indirectly, each vehicle Vk also has a time window during which it is able to
service pickup and deliver nodes. This time window is defined by the time windows of the start and end node
of the route. More specifically, vehicles may only depart from their starting node N2n+k (or Sk) after a time
e2n+k and should be at their end node before a time l2n+m+k (or Ek). Lastly, all arcs in A from node Ni to node
N j are defined by an associated travel cost ci , j and travel time ti , j .

The objective of the problem is to find a circuit, of minimal travelling cost, servicing all pickup and de-
liver nodes while meeting all constraints. The problem, using a three-index vehicle flow formulation, can be
defined as denoted by Equation 3.1. In this formulation all symbols are defined as listed in Table 3.1.

The objective function denoted by Equation 3.1a calculates the total travelling cost. The total travelling
cost is a summation over the routing cost of all possible arcs multiplied by a corresponding binary variable
xk

i , j which indicates whether the arc is traversed or not. Specifically, the set of binary variables xk
i , j (i ∈ N , j ∈

N ,k ∈ K) indicate which arcs from node Ni to node N j are performed by each vehicle Vk . This objective
function is subject to multiple constraints to ensure the problem definition is obeyed.

The first set of constraints 3.1b ensures that the set of variables xk
i , j can only be binary. Constraints 3.1c

ensure that all arcs have different starting and end nodes. Constraints 3.1d ensure that each pickup is serviced
a single time by a single vehicle. Constraints 3.1e ensure that each individual pickup and deliver node have
as many arcs towards it as there are arcs originating from it. Constraints 3.1f ensure that the number of arcs
originating from a deliver node by a vehicle is equal to the number of arcs originating from its corresponding
pickup node by that same vehicle. Together constraints 3.1d, 3.1e and 3.1f ensure that each pickup is assigned

13

14 3. PRELIMINARIES

to a single vehicle, that the corresponding deliver is assigned to the same vehicle and that continuous routes
are formed.

Constraints 3.1g ensure that the starting node for each vehicle can only be serviced by its appropriate
vehicle. Similarly, constraints 3.1h ensure that the end node for each vehicle can only be serviced by its
appropriate vehicle. Constraints 3.1i, 3.1j ensure that a single arc originates from each start node and no arcs
go towards them, forcing them to be the starting node for each route. Similarly, constraints 3.1k, 3.1l ensure
that a single arc goes towards each end node and no arcs originate from them, forcing them to be the end
node for each route.

Constraints 3.1m ensures that the time between the start of service of two nodes, when an arc occurs, is
at least equal to the travelling time between the two nodes and the service duration of the first node. These
constraints also ensure subtours are eliminated. Constraints 3.1n ensures that each pickup node is serviced
before its corresponding deliver node. Constraints 3.1o ensure that the start of service for each node is within
its defined time window. Constraints 3.1p ensure that the load on board of each vehicle after servicing a node
is at least equal to the load it had on board at the previous node plus the load of the node it just serviced.
Together with constraints 3.1q this ensures that the upper and lower bounds on the capacity of each vehicle
are not exceeded.

This three-index vehicle flow formulation is basically the same as described by Laporte and Cordeau [54],
however additionally, this formulation allows vehicles to have unique start and end locations, different from
a single depot.

Finally, it is worth mentioning that even though this problem formulation can be used in conjunction
with one of many available mixed-integer programming solvers, a solution method based on heuristics will
be used during the evaluation in Section 7. This is because exact methods do not scale as has been described
in Section 2.1.3. The latter means that this formulation is merely used as a way to convey the specifics of the
static problem.

min
xi , j

∑
k∈K

∑
i∈N

∑
j∈N

ck
i , j xk

i , j (3.1a)

subject to xk
i , j ∈ 0,1 (i ∈ N , j ∈ N ,k ∈ K) (3.1b)

xk
i ,i = 0 (i ∈ N ,k ∈ K) (3.1c)∑

k∈K

∑
j∈N

xk
i , j = 1 (i ∈ P) (3.1d)

∑
j∈N

xk
j ,i −

∑
j∈N

xk
i , j = 0 (i ∈ P ∪D,k ∈ K) (3.1e)

∑
j∈N

xk
i , j −

∑
j∈N

xk
n+i , j = 0 (i ∈ P,k ∈ K) (3.1f)

xk
2n+l , j = 0 (k ∈ K , l ∈ K 6= k, j ∈ N) (3.1g)

xk
i ,2n+m+l = 0 (k ∈ K , l ∈ K 6= k, i ∈ N) (3.1h)∑

j∈N
xk

2n+k, j = 1 (k ∈ K) (3.1i)

∑
j∈N

xk
j ,2n+k = 0 (k ∈ K) (3.1j)

∑
i∈N

xk
i ,2n+m+k = 1 (k ∈ K) (3.1k)∑

j∈N
xk

2n+m+k, j = 0 (k ∈ K) (3.1l)

B k
j ≥ (B k

i +di + ti , j)xk
i , j (i ∈ N , j ∈ N ,k ∈ K) (3.1m)

B k
i +di + ti ,n+i ≤ B k

n+i (i ∈ P,k ∈ K) (3.1n)

ei ≤ B k
i ≤ li (i ∈ N ,k ∈ K) (3.1o)

Qk
j ≥ (Qk

i +q j)xk
i , j (i ∈ N , j ∈ N ,k ∈ K) (3.1p)

max(0, qi) ≤Qk
i ≤ min(Qk ,Qk +qi) (i ∈ N ,k ∈ K) (3.1q)

3.1. PROBLEM DEFINITION 15

Table 3.1: Symbols used in the vehicle flow formulation

Symbol Description

V Set of vehicles
Vk Vehicle in set V
m Number of vehicles in set V
Qk Capacity of vehicle Vk
G Undirected graph consisting of nodes N and arcs A
N Set of nodes in graph G
R Set of requests
Ri Request in set R
n Number of requests in set R
P Subset of N containing all nodes where a load needs to be picked up
D Subset of N containing all nodes where a load needs to be delivered to
S Subset of N containing a single starting node for each vehicle in V .
E Subset of N containing a single end node for each vehicle in V .
Ni Node in set N
xk

i , j Boolean which indicates the presence of an arc in the solution from node Ni to node N j performed by
vehicle Vk

A Set of arcs from nodes Ni to nodes N j in graph G which are represented by their associated routing cost
ci , j and travel time ti , j

qi Load being picked up or delivered at node Ni
di Non-negative service duration at node Ni
ci , j Travel cost from node Ni to node N j
ti , j Travel time from node Ni to node N j
ei Earliest starting time at which service may start at node Ni
li Latest starting time at which service may start at node Ni
[ei , li] Time window for start of service at node Ni
Bk

i Time at which vehicle k started servicing node Ni

Qk
i Load of vehicle Vk after servicing node Ni

ki Time at which request i becomes known
S Solution
Rs Set of scheduled requests in solution S
ns = |Rs | Number of scheduled requests
ri ,s Request i from set of scheduled requests
Rus Set of unscheduled requests
nus = |Rus | Number of unscheduled requests
ri ,us Request i from set of unscheduled requests
W Set of routes
wk Route belonging to set W fulfilled by vehicle k
Zk Sequence of tasks (or nodes) fulfilled by route wk
zk = |Zk | Number of tasks (or nodes) fulfilled by route wk
zk,l Task at position l in sequence Zk fulfilled by route wk
esk,l Earliest possible start of task at position l in sequence Zk fulfilled by route wk
l sk,l Latest possible start of task at position l in sequence Zk fulfilled by route wk
T Time
Ra Dynamic stream of additional requests that are made known at a certain time
R f Dynamic stream of requests that are (being) fulfilled at a certain time

3.1.2. DYNAMIC PROBLEM
The static problem described in Section 3.1.1 becomes dynamic with the introduction of, for each request, a
time ki at which the request becomes known and a time dimension along which these events occur. While
progressing along this time dimension, because of the time at which requests become known, the set of re-
quests R will become larger. This means the previously described static problem definition will change at
discrete time events. Because of this, many updated static problem variations are required to be solved con-
secutively.

Furthermore, while the time T progresses, the time window during which a vehicle is available may start.

16 3. PRELIMINARIES

It may also happen that, as a result of solving a previous static problem variation, a solution is found where
this vehicle is required to service several nodes. This means that a vehicle may already be driving around and
may already have started servicing nodes. It is assumed that once service has started, it can not be undone
(or it is not efficient to do so). This means that while time progresses and nodes are being serviced, additional
constraints are being put on the solutions of future static problem definitions based on the solutions which
were previously obtained and are being executed.

More specifically, the presence of an arc (xk
i , j = 1) within future solutions is required when a vehicle has

already started servicing the node the arc is going towards (thus if T ≥ B k
j). Furthermore it is also assumed

that once a vehicle has started driving towards a node, the arc towards that node is also required to be present
(thus if T ≥ B k

j − ti , j). Given that requests consist of both a pickup and a deliver task which are required to

be serviced by the same vehicle, an arc towards the deliver node is also required to occur, when a vehicle
is constrained to service the corresponding pickup task. However, because of the structure of the problem
formulation listed in Equation 3.1, this constraint will be met when an arc towards the pickup node is required
to be present.

Because of the effects described in the previous two paragraphs, the structure of the dynamic problem,
regardless of the used solution method, is as visualised in Figure 3.1. In this visualisation it can be seen that
time acts upon the world. As time progresses additional requests (Ra) become known. Furthermore, as time
progresses, vehicles are driving, which at discrete time events generates requests that are being fulfilled (R f).
These vehicles do this based on a previous solution (S) which is created using a solution method (or solver).
Based on the two information streams and the previous solution a new solution is required to be continuously
generated.

Additional requests

Solver
SRa

+
+

+

Rf

Ra Requests (being) fulfilledRf SolutionS

SRaRf

Figure 3.1: Dynamic problem structure

3.2. METHOD OVERVIEW
The related work presented in Chapter 2 shows that:

• Presented methods which incorporate historical data often require a significant amount of computa-
tional resources and have therefore only been evaluated on instances with up to 300 customers (and
are generally evaluated on problem instances with up to 100 customers) [43, 46–49].

• Instead of deriving an arrival probability for additional requests from historical data, often additional
requests are generated based on an assumed arrival probability which is also made available to the
used method [43, 46–49]. This is not possible in any real-world application.

• Solving large instances of VRP’s, with arbitrary time window lengths, to optimality, is currently not pos-
sible. However, using heuristics and a large amount of computational resources, relatively good results
can be obtained [19, 29, 31, 32, 55].

• Presented methods which incorporate historical data often use a relatively small set of heuristics as
compared to the state of the art in static and dynamic vehicle routing [43, 46–49].

In order to improve upon the current state to the art for solving large dynamic real-world problem in-
stances, while making use of historical data, we propose to:

• Develop an anticipatory insertion method which only makes use of a single representation of reality
and solely relies on historical data as input.

3.2. METHOD OVERVIEW 17

• Develop a dynamic vehicle routing solver which makes use of variable large neighbourhood search, a
state of the art method for solving vehicle routing problems.

Specifically, the proposed method for improving upon a purely reactive approach consists of two parts.
First, based on historical data, a representation for a set of requests which are predicted to occur later is
created in advance. Second, using this representation, the solution of the DVRP is adjusted so that requests
which actually appear later can be serviced more efficiently when they become known. How these two parts
affect the dynamic problem structure shown in Figure 3.1 is visualised in Figure 3.2. The two parts, creating
the representation (predicting requests) and adjusting the solution (incorporating predicted requests) are
covered in Chapters 4 and 5. The design of the solver, the remaining component, is covered in Chapter 6.

Additional requests

Solver
SRa

+
+

+

Rf

Ra Requests (being) fulfilledRf SolutionS

Incorporater
S’RaRf

Rh

Modified solutionS’

Historical requestsRh Predicted requestsRp

Predicter

Rp

SRaRf

Figure 3.2: Method overview

4
PREDICTING REQUESTS

The goal of predicting requests is to find a representation of a set of requests which are currently unknown,
will be made known and are required to be serviced within in a certain future time frame. As this representa-
tion will be used to steer routes of vehicles to specific locations at specific times, both the spatial and temporal
properties of predicted requests should, to a certain degree, match with the actual later appearing requests.

Existing methods used for clustering and time series forecasting are by themselves only able to solve part
of this problem. Therefore a structure, which combines several of these methods, is proposed. It is worth
mentioning that this structure can be used for the prediction of arbitrary multi-dimensional objects which
occur along a time dimension.

The general idea is to group historical requests which are similar so that it might be possible to reveal
patterns in their occurrence across the time dimension. The method consists of three parts. First, requests are
clustered on relevant dimensions to create groups named request types. Second, the number of occurrences
of each request type is predicted using a prediction model. Then, by creating the same number of requests
based on the requests belonging to a request type, predicted requests are generated. How request types are
exactly generated and how predicted requests are generated using these requests types will be described in
Sections 4.1 and 4.2. Finally, guidelines for how often such a prediction should be performed are covered in
Section 4.3.

4.1. GENERATING REQUEST TYPES
Request types are generated by making use of clustering. As a wide range of clustering methods exists, an
appropriate method should be chosen. Therefore an appropriate method for clustering multi-dimensional
objects which occur along a time dimension is first chosen in Section 4.1.1. This chosen clustering method is
briefly covered in Section 4.1.2. Specific measures that are used to improve the performance for the purpose
of clustering requests are covered in Sections 4.1.3 and 4.1.4. Finally which parameters should be chosen
when clustering is described in Section 4.1.5.

4.1.1. CHOOSING A CLUSTERING METHOD
To choose an appropriate method for clustering requests, several considerations should be taken into ac-
count. These considerations are as follows:

• When no knowledge about requests types or patterns within the data are available, supervised cluster-
ing methods can not be used. An unsupervised clustering method is therefore required.

• Given that the amount of request types that need to be generated is unknown, clustering methods
which require the number of clusters as a parameter can not be used. This means the relatively fast and
highly popular K-means clustering algorithm[56] or Ward clustering [57] are less appropriate.

• Requests may be called ’similar’ when values across most or all dimensions do not differ much. This
means that density-based clustering methods such as DBSCAN [58] or HDBSCAN [59], which allow
wide non-spherical clusters to be created, may be less appropriate. This is because, for example, re-
quests which have a very dissimilar pickup location may be clustered together. It may even be argued

19

20 4. PREDICTING REQUESTS

that, when clustering requests, it is preferred to specify a maximum allowable dissimilarity for all re-
quests belonging to the same cluster (or request type).

• To be able to cluster requests, the (dis)similarity of requests should be determined. Any implementa-
tion should either allow for the input of a (dis)similarity function so that values can be calculated while
clustering or should allow for the input of a (dis)similarity matrix so that values can be pre-computed.
However, when such a matrix is computed for hundreds of thousands of requests the available amount
of random-access memory within most computers is quickly exceeded. For example, when dealing
with a 100 thousand requests, an upper triangular (and therefore symmetrical) dissimilarity matrix con-
tains 5 billion values. As the storage of a double in C++ requires 8 bytes, storing such a matrix requires
at least 32,25 gigabytes of memory. Requiring this amount of memory makes handling such matrices
troublesome. Depending on the problem size, having an implementation available which allows to
input a custom (dis)similarity function is therefore preferable or the only viable option.

• When large sets of historical requests are required to be clustered, methods which have a relatively
low time complexity are preferred. It is worth mentioning that the number of methods which do scale
well is very limited, when only considering implementations available for Python, as can be seen in
Appendix B.

• When large sets of historical requests are required to be clustered, methods which already have been
implemented very efficiently are preferred.

When taking these considerations into account, Hierarchical Agglomerative Complete Linkage Clustering
(HACLC) is found to be most suitable for the purpose of clustering requests. This is because of the following
reasons:

• It is an unsupervised clustering method and thus no prior information is required about the data.

• It does not require the number of clusters (or request types) as an input parameter.

• It is possible to specify a maximum allowable dissimilarity for all requests belonging to the same cluster
(or request type).

• Even though the worst case time complexity of the implementation of O(n2log (n)), where n is the num-
ber of requests, is relatively high, several problem specific measures can be used, to improve clustering
speed, as is described in the following section.

• A fast C++ based implementation for Python is available within SciPy [60].

• The implementation allows for the input of a custom (dis)similarity function whereby a (dis)similarity
matrix, which might exceed random-access memory limits, does not have to be pre-computed.

The only real alternative, BIRCH clustering [61], is not chosen because the available implementations do
require the computation of a (dis)similarity matrix. Also, the clustering result depends on the order of the
inputted requests which is not favourable in terms of reproducibility.

4.1.2. HIERARCHICAL AGGLOMERATIVE COMPLETE LINKAGE CLUSTERING
In HACLC [62], at the beginning of the process, each object is assigned to its own cluster. Then, the two clus-
ters which have the minimum distance (or maximum similarity) according to a linkage method, are merged
into a new single cluster. For example, two requests which have similar pickup locations according to travel-
ling distance between may be clustered together. With this modified set of clusters the process is repeated,
when no stopping condition is supplied even until all objects belong to the same cluster.

The result of the clustering process can be visualised using a dendogram as shown Figure 4.1. It can be
seen that all objects start as individual clusters at the bottom and have been merged into a single cluster at
the top. Now, by defining a minimum similarity (or maximum dissimilarity), the number and composition of
clusters can be chosen. In Figure 4.1 this choice has been visualised using the red dashed line. In this example
six clusters are created.

Furthermore, complete linkage clustering states that the distance between two clusters is defined by the
maximum distance between two objects belonging to either one of the clusters. This means that two clusters

4.1. GENERATING REQUEST TYPES 21

will only be merged if the maximum distance between all objects in the resulting cluster is below the chosen
threshold.

Finally, with the mentioned time complexity and the fact that historical data-sets may quickly contain
more than hundreds of thousands of requests, the computation time required for clustering can quickly grow
beyond practically usable bounds. To overcome this problem, two measures to reduce the required compu-
tation time, are used. These measures are be covered in the following section.

Figure 4.1: Visualisation of hierarchical clustering. The tree structure is called a dendogram. The red dashed line visualises the chosen
measure of (dis)similarity at which the dendogram is ’cut off’ which determines the number and composition of clusters

4.1.3. IMPROVING CLUSTERING SPEED
To speed up clustering, two measures, which may reduce the number of requests that need to be clustered
simultaneously, are used. The first measure exploits the property of HACLC that the most ’similar’ clusters are
clustered into larger clusters initially. By only considering unique requests (and effectively already merging
duplicate requests) the number of requests that need to be clustered is reduced while maintaining the same
clustering result as compared to not doing this. It is worth mentioning that duplicate requests are not actually
removed from historical data but they simply receive the same cluster label. Second, to reduce the number of
requests that need to be clustered even further, clustering on multiple levels is used. This measure is covered
in the next section.

4.1.4. CLUSTERING ON MULTIPLE LEVELS
When clustering requests, similarity might not be scaled uniformly across all dimensions. To still be able to
cluster on these dimensions a custom function which scales certain dimensions for calculating the similarity
of requests can be used [63]. However, it could be that a dissimilarity in a leading dimension means two
requests are not similar, regardless of their similarity across other dimensions. For example, when the pickup
location of two requests are not close to each other it may already be concluded that two requests are not
similar, regardless of possibly similar deliver locations and time windows. To make use of this knowledge,
clustering on multiple levels is used. Depending on problem context, it might be beneficial to simultaneously
cluster on multiple dimensions, cluster sequentially on single dimensions or sequentially do a combination
of both.

When clustering on multiple levels, a set of requests is first clustered on a portion of the relevant dimen-
sions to separate the complete set into multiple subsets. These smaller subsets are then further separated.
This process has been visualised in Figure 4.2. In this figure a set of requests is first separated along the "x"
dimension where after individual subsets are then further separated along the "y" and "z" dimensions. By
using this method it is possible to create subsets of requests which show similarity across all dimensions.

An advantage of clustering on multiple levels is that the number of requests which are being clustered
simultaneously is (heavily) reduced at each level. This makes the usage of clustering methods with higher
time complexities viable or more efficient depending on the number of requests that need to be clustered.

A disadvantage of clustering on multiple levels is of course that when a separation has been made on
a higher level based on one dimension, requests will not be transferred to another subset even though this
might be more logical based on other dimensions at lower levels.

It is worth mentioning that when a set of requests is separated again and again, very few requests might
remain within certain subsets. When this happens it might be impossible to discover any pattern across the
time dimension, regardless of the used prediction model. As the problem allows for a partial prediction (in
the sense that only a certain part of the requests is predicted and others remain unexpected) it might be
beneficial to ignore these subsets, increasing computational efficiency. In Figure 4.2 ignoring these subsets,
possibly on different levels, has been visualised with red crosses.

22 4. PREDICTING REQUESTS

+

+

+

x y z

1

2

3

n

tRequest type

+ Ignored subset

Figure 4.2: Clustering multidimensional data on multiple levels. To small remaining subsets of the data may be ignored at different
levels. This is visualised with red crosses.

4.1.5. CLUSTERING PARAMETERS
The methods described in the previous sections have several unspecified parameters for the clustering of
requests. The first parameter is if requests should be clustered using multiple levels. Second, for each indi-
vidual cluster level several parameters should be specified. The required parameters for each cluster level are
as listed in Table 4.1.

Table 4.1: Parameters to be defined at each clustering level

Column Description

Dimensions Which dimensions or parameters of a request are used for clustering at this level
Distance function A function which defines how the dissimilarity is computed based on the parameter values along

the dimensions that are used for clustering. For example when a pickup location is expressed as
a latitude and longitude coordinate set, the distance between requests could be computed using
the great circle distance [64] between the two points on earth.

Threshold The maximum allowable dissimilarity to use while clustering at this level. The threshold should
be expressed in the same unit as the value which is computed by the distance function.

To set these parameters appropriately an analysis of the historical data and the context of the problem is
required. Therefore, no statements regarding setting cluster parameters are presented in this general method
description. However, a problem specific analysis, in which parameters are determined for the instances
described in Section 7.1.1, is presented in Sections 7.1.2 and 7.1.3. This analysis may serve as inspiration for
setting the described parameters appropriately in other problem contexts.

4.2. GENERATING REQUESTS
The process of generating requests using requests types consists of two parts. First, using a prediction model,
for each request type, the number of occurrences during a future time frame is predicted. Second, this num-
ber of representations is generated based on the requests belonging to the requests type. To do this, a pre-
diction model should first be chosen. How a prediction model is chosen is described in Section 4.2.1. The
chosen prediction model is described in Sections 4.2.2 and 4.2.3. Finally, how representations are created is
described in Section 4.2.4.

4.2.1. CHOOSING A PREDICTION MODEL
A prediction model is required to predict the total number of occurrences of requests, belonging to a certain
request type, within a future time frame. To do this all requests which belong to a certain object type are

4.2. GENERATING REQUESTS 23

grouped into comparable time frames. For example, when the goal is to predict the number of requests
occurring tomorrow, requests are grouped into days which yields a table of occurrences for each date. For
such data structures a variety of time-series forecasting methods are available to predict values for future
time frames. Amongst these methods are:

• Naive approach (where ŷt+1 = yt)

• Simple average

• Moving averages

• Holt-Winters Method [65]

• Autoregressive Moving Average (ARMA) models [66]

• Autoregressive Integrated Moving Average (ARIMA) models [66]

• Neural Networks [67] [68]

As can be experienced during rush-hour in any city, the amount of transportation is not constant during
the entire day. Something similar can be seen across the week, often, at least, the amount of transportation is
different during weekends. This means for a prediction of requests to be accurate it should probably make use
seasonality and should probably be able to deal with strongly varying time-series. Because of these reasons
the first three methods listed above can be ruled out.

Therefore only the Holt-Winters and ARIMA (which also can represent an ARMA model when the differ-
encing term is set to zero) are investigated further. When investigating seasonal ARIMA models it is found
that the quality of the prediction is determined by the autoregressive (P), differencing (D), moving average
(Q) terms and seasonality parameter (m). Even when the seasonality parameter is set to a weekly pattern
which appears to be present within the problem instances (described in Section 7.1.1), the other three are
still required to be chosen. Given that each request type requires its own model and thousands of request
types may be present, these parameters are required to be chosen fully automatically within a relatively small
amount of computation time. A method proposed by Hyndman and Khandakar [69] is used to do this by
making use of the implementation in the pmdarima package available for Python. The same is done for the
Holt-Winters model by making use of the exponential smoothing method available within the statsmodels
package. It is observed that both methods predict approximately three times the amount of request that are
actually made known. Even when rounding down the predicted amounts, in an attempt to make predictions
more conservative, still more than double the number of requests is predicted.

Furthermore, neural networks are not used as these methods also often also require a significant amount
of tuning and computation time before good results are obtained [68].

Therefore, even though the evaluated methods are being used very successfully in other problem con-
texts, it appears that results are not very promising when being used for the prediction of the number of
occurrences of individual request types without any human interference. Because of this it is chosen to use a
relatively straightforward prediction model which also has a parameter that allows for the conservativeness
of the prediction to be chosen. The method, which makes use of the Relative Frequency of Occurrence of
requests is described in the following sections.

4.2.2. RELATIVE FREQUENCY OF OCCURRENCE
The Relative Frequency of Occurrence (rfo), or also called empirical probability, is the ratio of the number of
outcomes in which a specified event occurs to the total number of trials. In predicting requests the number
of trials is determined by the number of comparable time frames available in historical data. For example,
when the goal is to predict the number of requests occurring tomorrow, historical data can be grouped into
days which would yield a table of occurrences for each date. The number of outcomes in which a specified
event occurs is then defined by the number of days a request of a specific request type occurred. For example,
if a request type occurred a single time on six days within a historical data set with a length of one week then
the rfo for the future time frame equals 6

7 ≈ 0,86.
Furthermore, a different rfo can be obtained by making use of assumed patterns within the data. For

example, when a weekly occurrence is assumed and the future time frame is a Thursday, the number of trails
may be limited to only contain previous Thursdays instead of all (week)days. If there is indeed a weekly
recurrence present this yields a much higher rfo . When using multiple patterns, multiple rfo ’s are obtained
whereof the maximum is chosen for each predicted request.

24 4. PREDICTING REQUESTS

T−4 T−3 T−2 T−1 rfo T−0
2 3 2 1 1.00 1

T−4 T−3 T−2 T−1 rfo T−0
2 3 2 1 1.00 1
1 2 1 0 0.75 2

T−4 T−3 T−2 T−1 rfo T−0
2 3 2 1 1.00 1
1 2 1 0 0.75 2
0 1 0 0 0.25 3
0 0 0 0 0.00 3

Table 4.3: Example of how the rfo is determined based on historical time frames T−4 until T−1. In the first four columns the number
of occurrences of requests, belonging to a single request type, are listed. In the last column the number of expected requests within a
certain future time frame T−0 is listed. On each row the rfo for the additionally predicted request is listed in the fifth column. Left:
determining the rfo of the first predicted request. Middle: determining the rfo of the second predicted request. Right: determining the
rfo of the third and final predicted request.

4.2.3. PREDICTING THE NUMBER OF OCCURRENCES
It may happen that historical time frames contain multiple occurrences of a single request type. When this
is the case, multiple occurrences of that request type should, ideally, also be predicted for the future time
frame. To enable this, the number of occurrences within historical time frames is updated each time an
additional request is predicted. More specifically, after each prediction, the number of occurrences within
each historical time frame is reduced by one. This means that the rfo for subsequent predicted requests
belonging to the same request type will eventually reach zero. When the rfo reaches zero, no further requests
are predicted. An example of this process has been shown in Table 4.3. In this example three requests are
predicted for a future time frame T−0 based on the occurrences within four historical time frames T−4 until
T−1. It can be seen that each predicted request receives a different rfo .

Therefore, by defining a minimum required rfo the number of predicted requests can be controlled. Hav-
ing this threshold allows for the prediction of a small number of requests which all have a relatively high rfo

or the prediction of a larger number of requests where some may have a relatively low rfo . Generally, lower-
ing this threshold allows to create predictions with more true positives but at the cost of having (even) more
false positives.

4.2.4. CREATING REPRESENTATIONS
After clustering a set of requests into a request type and predicting the number of occurrences for that request
type, actual predicted requests can be generated. Two simple methods for creating representations of request
types are:

• Taking the mean of all requests belonging to the request type

• Random sampling from the requests belonging to the request type

Given that HACLC creates clusters whereof all requests are within a certain specified distance from each
other, circular shaped clusters are created when using spatial data. As it can be argued that a circular shaped
cluster can be best represented by its centroid, the mean of all requests belonging to a request type is used
as a representation. However, as the obtained location might not be a node of the road network, the nearest
node or path of the road network is chosen for route calculation.

4.3. HORIZON AND FREQUENCY
The prediction horizon determines for how far into the future, requests should be predicted. The prediction
frequency determines how often this set of predicted requests is updated. Determining the ideal prediction
horizon and frequency depends on the specifics of the problem context. However, when choosing a long
prediction horizon, the time frame for which requests are being predicted naturally becomes longer.

When the used time frame is longer the method will basically look further ahead. This means an attempt
will be made to take into account requests which will become known in a relatively long time from now when
creating solutions for requests which are currently known.

It makes sense to assume that the further away requests become known in the future, the less effect their
presence will have on any routes in the near future. This means that, in general, increasing the prediction
horizon beyond a certain amount might not have any beneficial effect.

Even more so, when the arrival rate of additional requests is relatively high, increasing the length of the
prediction horizon means a relatively large amount of additional requests are taken into account simulta-
neously. If a large amount of requests is added to a vehicle routing problem, the complexity of solving the
problem increases tremendously. When dealing with limited available computation time this might cause a

4.3. HORIZON AND FREQUENCY 25

solver to come up with worse solutions as compared to taking a smaller number of predicted requests into ac-
count. Predicting a smaller number of requests and thus having a shorter prediction horizon might therefore
be beneficial (or might even be required to remain within solvable problem sizes in certain contexts).

For every problem context both the prediction horizon and prediction frequency should therefore be cho-
sen so that, at any point, a limited amount of predicted requests reside within the problem that is being
solved. This amount should roughly be in the order of a several hundred to a thousand requests given that
the current limit for solving a pickup and deliver vehicle routing problem (even in a static context, without
computation time constraints) is less than a few thousand requests.

5
INCORPORATING PREDICTED REQUESTS

This chapter will cover how the requests that were predicted, using the method described in Chapter 4, are
used to alter the solution of a DVRP so that later actually appearing requests can be served more efficiently
when they become known. As shown in Figure 3.2, this part of the method assumes that the current solution
(S), the additional requests (Ra), the fulfilled requests (R f) and the predicted requests (Rp) are available as
input. Transforming this input into the output composed of a modified solution (S′), a set of modified addi-
tional requests (R ′

a) and the unmodified set of requests which are (being) fulfilled (R f) consists of three parts.
These three steps will be described, more in detail, in the following sections.

5.1. ADDING PREDICTED REQUESTS
Each time requests are predicted these requests are all added to the set of additional requests to create the
modified set of additional requests (R ′

a = (Ra ,Rp)). By doing so, predicted requests are mixed together with
already made known requests which actually need to be fulfilled. Therefore, when the updated static problem
is solved by a vehicle routing solver, the predicted requests will be seen as ’regular’ requests. Because of this,
during the optimisation process, simply by the presence of these predicted requests, routes will be adjusted
so that these predicted requests can also be fulfilled efficiently.

5.2. REPLACING PREDICTED REQUESTS
The process of adding predicted requests works relatively straightforward as described in the previous sec-
tion. The process of, at some point, removing these predicted requests to accommodate for additional re-
quests which are actually made known is however less trivial.

Essentially, when the predicted requests would be removed after generating a solution, routes with room
for servicing additional requests would be obtained. However, when requests are removed from the problem
definition and any re-optimisation would be performed, this room and the structure of the previously ob-
tained routes would almost definitely be lost in the process of finding a better solution. Therefore, predicted
requests can not simply be removed at any time to accommodate for additional requests which are actually
made known. To prevent losing the structure of the solution imposed by the presence of the predicted re-
quests, each individual predicted request is preferably removed only when it can directly be replaced by a
similar additional request which was made known.

This poses a challenge as each time an additional request is made known, it should be determined if a
predicted request should be removed and if so, which one. In other words, it should be checked if a predicted
request, which is ’similar’, is part of the current solution and if so, this request should be removed. To enable
this operation, a request classifier is introduced.

This classifier makes use of the generated request types and cluster levels which were described in Section
4.1. Given that all request types are distinguishable and all predicted requests are based upon them, they can
be used to match additional requests to predicted requests.

The developed classifier, which tries to assign a request type label to an additional request, is listed in
Algorithm 1. The procedure starts with all generated request types being a candidate for matching with the
additional request. Then, while looping over all cluster levels, the procedure tries to narrow down the number
of candidate request types by removing them when the additional request is too dissimilar to the centroid of

27

28 5. INCORPORATING PREDICTED REQUESTS

a request type as defined by the distance function and threshold at each cluster level. It may happen that an
additional request is dissimilar to all request types. When this happens the additional request is considered to
not match with any predicted request and thus no predicted request is removed. When a single request type
remains as a candidate, a predicted request belonging to that request type is removed if one resides within
the current solution. If multiple request types remain as candidates, the one for which the centroid is closest
to the additional request is chosen as the final candidate. Only a request belonging to that final request type
is attempted to be removed.

Algorithm 1 Classifying additional requests

1: procedure CLASSIFYINGADDTIONALREQUESTS(requestTypes, clusterLevels, additionalRequest)
2: for clusterLevel ∈ clusterLevels do
3: for requestType ∈ requestTypes do
4: d ← distance(centroid(requestType),additionalRequest, dimensions(clusterLevel))
5: if d > 0.5 threshold(clusterLevel) then
6: requestTypes ← removeFrom(requestType, requestTypes)
7: end if
8: end for
9: end for

10: if length(requestTypes) == 0 then
11: return 0
12: else if length(requestTypes) == 1 then
13: return label(requestType[0])
14: else
15: return label(closest(requestTypes, additionalRequest))
16: end if
17: end procedure

If a predicted request is indeed removed, the corresponding additional request is directly inserted using
sequential cheapest insertion (a common insertion heuristic of which the implementation is covered in Sec-
tion A.1.2). This insertion creates a modified solution S′. Furthermore, the additional request is removed
from the modified set of additional requests R ′

a . Given that a predicted request which is similar to the corre-
sponding additional request was removed, it is likely that its pickup and deliver tasks will be inserted at the
locations whereof the predicted request was previously removed from. However, given that the two requests
are almost never exactly the same, an insertion at the described locations might not be feasible due to time
or capacity constraints. This means that even though a replacement is attempted, the inserted request might
sometimes still end up at a different location within the solution.

5.3. REMOVING PREDICTED REQUESTS
When predicted requests are only being replaced, a certain portion of them is likely to never be removed from
the created solution. This because it is unlikely that a prediction will, for each request type, contain not more
requests than additionally will be made known. In other words, some more requests of a specific request type
will often be predicted. Therefore, it is likely that some predicted requests will remain within the solution
when only using the two previously described methods for adding and replacing predicted requests.

If vehicles are made to realise a proposed solution this means that, at some point, a vehicle will be directed
to drive towards the pickup location of a predicted request. It can be both detrimental and beneficial to do
this depending on the fact if a similar additional request will still be made known while driving towards that
location.

When a similar additional request is made known, this request can directly be fulfilled which was con-
cluded to be most efficient according to previously performed optimisations. Even more so, when a request
has very narrow time constraints, being in the proximity of the pickup location might even be a requirement
for being able to fulfil the request at all. In such a situation a vehicle is essentially being relocated to allow
fulfilment of a future request. Deciding not to remove predicted requests can therefore be seen as a variation
upon the relocation strategies introduced by Bent and Van Hentenryck [70].

When a vehicle is relocated and an appropriate request is not made known, additional distance might be
driven for no reason. In this case the decision of not removing a predicted request results in behaviour that is

5.3. REMOVING PREDICTED REQUESTS 29

contradictory to the objective of minimising the total distance driven by all vehicles. Furthermore, it can be
argued that it makes little sense to prioritise a possibly occurring request over requests that might are already
be known and can possibly also be fulfilled by the same vehicle. Postponing fulfilling these requests may in
the end require additional vehicles to fulfil all requests within their time constraints. Again, the consequences
of doing so might be contradictory to the objective of minimising the total distance driven by all vehicles.

Choosing whether remaining predicted requests should be removed therefore depends on the specifics of
the problem context, the accuracy of the prediction and the reticence of the prediction. However, given that
the urgency of requests in the evaluated problem context is generally not very high (as will be described in
Section 7.1.2), it chosen to remove predicted requests. Both methods described in the following subsections
are used to do so.

5.3.1. MADE KNOWN REMOVAL
First, predicted requests can be removed when the current time exceeds the time at which they were supposed
to be made known (T ≥ ki). The reasoning behind this is as follows. A predicted request is supposed to be
similar to an additional request. This means that the time at which a predicted request is made known (even
though it is inserted earlier) is also similar to the time the additional request is estimated to be made known.

When no additional request will appear anymore it means the predicted request will be removed rela-
tively early. This means that possible commitments, that may have been made, due to the structure of the
solution imposed by the presence of the predicted request, may be kept to a minimum. Given that the solu-
tion is subject to constant re-optimisation this allows, relatively early, for a change in the solution structure
if beneficial. Even when such a change is made and an additional request is still made known a little later,
re-optimisation allows the solution to revert back to the previous structure. Naturally, this is only the case
when no obstructing commitments have been made in the mean time.

5.3.2. TO BE REALISED REMOVAL
Even when using made known removal in might still happen that a vehicle will be directed to drive towards the
pickup location of a predicted request. This may happen when the moment at which a request is made known
is close to the start of the pickup time window and the travel time towards the pickup location is relatively
long. To prevent this from happening, predicted requests are also removed when a vehicle is about to start
travelling towards its pickup location. When some additional slack is introduced and predicted requests are
removed even a little earlier, re-optimisation may still be possible so that requests sequenced after the to be
removed request may be scheduled more favourably.

6
VEHICLE ROUTING SOLVER

This chapter describes how a vehicle routing solver is designed specifically for the purpose of this research.
As shown in Figure 3.2 this solver represents one of the three components of the proposed method for solv-
ing the problem described in Chapter 3.1. First, some general design considerations are described in Section
6.1. Then, the actual design of the solver is described in Section 6.2. To check if the solver can be appropri-
ately used for one the three components in the proposed method, the performance of the implementation is
validated in Section 6.3. Finally, a developed visualisation tool for this vehicle routing solver is presented in
Section 6.4.

6.1. CONSIDERATIONS
As described in Section 2.1.3, some of the best solutions ever found for a range of vehicle routing problem
have been found by making use of Ruin & Recreate (R&R) methods [19, 29, 31, 32, 55]. It is therefore decided
to base the design of the developed solver on this method.

Given that the idea of R&R methods is to make (educated) guesses on which part of the solution should
be ruined and then reconstructed, there is generally no guarantee of obtaining a better solution during a
single iteration. However, it has been shown that when many of these iterations are performed often small
improvements can be found which gradually lead to some of the best solutions ever found for a range of
problem instances. One goal for a good DVRP solver, which makes use of R&R methods, should therefore be
to perform as many iterations as possible within the limited available computation time. As more iterations
are the only way towards better solution quality, speed is important.

Furthermore, some of the latest record breaking solutions for static vehicle routing problems have been
found by implementing a range of R&R heuristics [19, 29, 31, 32, 55]. In solving static problem variations it
therefore appears to be beneficial to implement different kinds of heuristics to be able to increase the chances
of being able to escape specific local minima. However, when solving dynamic problem variations, the avail-
able computation time is often in the range of seconds to several minutes instead of up to multiple hours.
This means there is simply not enough time to extensively let a wide variety of heuristics attempt to improve
a certain solution. Also, implementing additional heuristics, in a very computationally efficient manner, re-
quires a lot of time. Because of these reasons, it is decided to implement a limited range of construction, LS
and removal heuristics and to make these as fast as possible.

In that sense the design of the solver is chosen to be rather similar to the design as described by Ropke
and Pisinger [19]. However, their approach is improved upon or deviated from in several ways. The specifics
are covered in the following section which describes the design of the solver.

6.2. DESIGN
To solve VRP’s the solver goes through three phases namely construction, LS and R&R. Furthermore, the R&R
phase is parallelised to be able to perform as many iterations as possible on all modern hardware. Therefore,
the general structure of the solver is as shown in Figure 6.1. In this figure each block represents a process and
blocks stacked upon each other occur in parallel. Which methods are used during each individual process is
described in the following subsections.

31

32 6. VEHICLE ROUTING SOLVER

Construction Ruin & RecreateLocal Search

Computation time

Figure 6.1: Phases of the developed vehicle routing solver. Each block represents a process. Vertically stacked blocks are processes that
are executed in parallel. The Ruin & Recreate phase is parallelised to use modern hardware to its full potential.

6.2.1. CONSTRUCTION
A construction method is required to create an initial solution. All construction methods used by Ropke and
Pisinger [19], namely sequential cheapest insertion, parallel cheapest insertion and regret insertion are im-
plemented. Furthermore, a new construction heuristic is developed which makes use of the relatedness of
requests and tries to insert requests which are clustered together into a single route. Therefore, this method
is named cluster insertion. How this construction heuristic and the construction heuristics from the litera-
ture exactly work and are implemented is described in Section A.1. The often used Clarke and Wright Savings
[71] heuristic is not implemented because it is not compatible with the problem variation defined in Section
3.1. The heuristic is not compatible because vehicles are allowed to have different starting- and end loca-
tions. Finally, when using sequential cheapest insertion, unscheduled requests are first sorted from longest
to shortest travel distance (from the pickup to the deliver location) in an attempt to start with scheduling
the ’hardest’ requests first. The order of the unscheduled requests is not of importance for the other three
construction heuristics.

To determine the most appropriate default construction heuristic, the methods are compared. Given
that these methods are also required for the R&R procedure described in Section 6.2.3, spending a signifi-
cant amount of time to efficiently implement these methods can be justified which makes a relatively good
comparison possible. To compare the performance of the four construction heuristics both in terms of the
quality of the obtained solutions as in the amount of computation time that they require, several experiments
are ran on 58 instances with approximately 500 requests which require up to 100 vehicles. These instances
and the hardware that these experiments are run on are described in Section 6.3.1. The results of the experi-
ments are presented in Figures 6.2 and 6.3. The two sub figures in Figure 6.2 each show the distribution of the
percent deviation from the corresponding best known solutions for one of the two objectives, for each con-
struction heuristic. It can be seen that the sequential cheapest insertion heuristic performs worst in terms
of both objectives. The parallel cheapest insertion heuristic performs best in terms of the number of ob-
tained routes and distance travelled. However, cluster insertion closely matches the performance of parallel
cheapest insertion in terms of the distance travelled. When looking at computation times it can be seen that
sequential cheapest insertion and cluster insertion show comparable performance. The parallel cheapest in-
sertion heuristic is approximately 10 times slower and two regret insertion heuristic is approximately a 100
times slower.

Given that the main objective of the instances that are evaluated in Chapter 7 is to minimise the distance
travelled and the developed cluster insertion heuristic shows performance comparable to that of parallel
cheapest insertion while requiring approximately 10 times less computation time, this heuristic is chosen for
the construction phase. By merely using this construction heuristic solutions are obtained on average in 126
milliseconds. These solutions require, on average, 73,86% more distance to be travelled as compared to the
corresponding best known solutions.

6.2. DESIGN 33

Sequential Parallel Regret (2) Cluster
Construction Method

0

100

200

300

400

Re
lat

iv
e d

iff
er

en
ce

 in
 n

um
be

r o
f r

ou
tes

 [%
]

Sequential Parallel Regret (2) Cluster
Construction Method

Re
lat

iv
e d

iff
er

en
ce

 in
 d

ist
an

ce
 tr

av
ell

ed
 [%

]

Figure 6.2: Performance comparison of different construction heuristics. On the left the obtained relative differences in the number of
routes as compared to the best known solutions, for instances of approximately 500 requests, when only using different construction
methods. On the right the obtained relative differences in the distance travelled as compared to the best known solutions, for instances
of approximately 500 requests, when only using different construction methods.

Sequential Parallel Regret (2) Cluster
Construction Method

0

5000

10000

15000

20000

25000

30000

35000

Co
m
pu

tat
io
n
tim

e [
m
s]

Sequential Parallel Cluster
Construction Method

0

500

1000

1500

2000

2500

3000
Co

m
pu

tat
io
n
tim

e [
m
s]

Figure 6.3: Performance comparison of different construction heuristics. Distributions of the required computation time, for instances
of approximately 500 requests, when only using construction methods. On the left including regret insertion. On the right without regret
insertion to better show the differences between the remaining methods.

6.2.2. LOCAL SEARCH
Initially it was decided to recreate the solver developed by Ropke and Pisinger [19] given that is showed good
results while only using a relatively small range of heuristics. However, in an attempt to improve upon their
results it is decided to implement some LS operators as well (given that they did not make use of LS). In
choosing which LS operators should be implemented the required time for proper implementation and the
effect that operators might have on the quality of the obtained solutions are weighed. It is estimated that the
rearrange and shift operators (as visualised in Figures 2.5 and 2.4) may have a considerable impact on the
quality of the obtained solutions. This is because the relocation of individual requests is something that the
described R&R method is not able to do which means this operator may be able to improve certain solutions
where R&R might not be able to do so. Furthermore, given that methods for unscheduling and reschudeling
requests are also required to be efficiently implemented for the R&R procedure, this operator can be im-
plemented relatively easily by reusing certain parts of the implementation. The same holds for the two-opt
operator (as visualised in Figure 2.7) as only a section of a route is required to be reversed and feasibility of
the solution needs to be checked. Furthermore, the reversal of a set of nodes is also something which the R&R
procedure is not able to do except by unscheduling an entire route. The also popular exchange operator is
not implemented because the number of possibilities that is required to be considered during each iteration
is roughly n2 where n is equal to number of requests. Given that, in roughly the same amount of computation
time, thousands of R&R iterations may be be performed, which may result in the same exchange operations,
instead it is decided to put additional effort into making the implementation as fast as possible. How the LS
operators are exactly implemented is described in Section A.2.

To evaluate the effectiveness of the implemented LS operators the same experiments as described in Sec-

34 6. VEHICLE ROUTING SOLVER

tion 6.2.1 are run while now going through both the construction and LS phase. The results of the experiments
are shown in Figures 6.4 and 6.5. For comparison, the results obtained using cluster insertion are also added.
Again, the two sub figures in Figure 6.4 each show the distribution of the percent deviation from the cor-
responding best known solutions for one of the two objectives, after going through the two phases. It can
be seen that by using LS operators, solutions are obtained on average in 1544 milliseconds. These solutions
require, on average, 17,85% more distance to be travelled as compared to the corresponding best known so-
lutions. This means that by adding roughly a second worth of LS, much better solutions can be obtained
as compared to only using the slightly slower parallel cheapest insertion heuristic for construction (which
would require approximately the same amount of computation time). These results therefore justify the cho-
sen construction heuristic and appear to be worth the time used for the implementation of the local search
operators.

Construction Construction + Local Search
Performed phases

0

50

100

150

Re
lat

iv
e d

iff
er
en
ce
 in

 n
um

be
r o

f r
ou

tes
 [%

]

Construction Construction + Local Search
Performed phases

Re
lat

iv
e d

iff
er
en
ce
 in

 d
ist
an
ce
 tr
av
ell

ed
 [%

]

Figure 6.4: On the left the obtained relative differences in the number of routes as compared to the best known solutions, for instances of
approximately 500 requests, when going through different phases. On the right the obtained relative differences in the distance travelled
as compared to the best known solutions, for instances of approximately 500 requests, when going through different phases.

Construction Construction + Local Search
Performed phases

0

1000

2000

3000

4000

Co
m
pu

tat
io
n
tim

e [
m
s]

Figure 6.5: The required computation time, for instances of approximately 500 requests, when going through different phases.

6.2.3. RUIN-AND-RECREATE
The Ruin & Recreate (R&R) procedure is also inspired by the procedure described by Ropke and Pisinger [19].
However, in an attempt to improve upon their approach it is decided to deviate from their approach in several
ways, namely:

• Several additional removal methods are implemented to be able to escape from a larger range of local
minima. It is chosen to do this as Laporte et. al [55] have shown that this is beneficial. Because of this
the method makes use of 8 removal methods and 4 insertion methods. Both sets of methods are listed
in Tables 6.1 and 6.3.

• It is decided not to implement a procedure where certain removal methods are chosen more or less
frequently based on their performance during previous iterations. Given that Ropke and Pisinger [19]

6.2. DESIGN 35

showed that their preference for a certain removal method was at most 7 times as large as compared
to the least preferred removal method it is decided to instead put additional effort into making the
implementation as fast as possible. Given that it is likely that an efficient implementation may be sev-
eral orders of magnitude faster as compared to one which has not been implemented well, it appears
it might be more appropriate to spend additional time on the implementation than to add additional
complexity to the method.

• Similarly, amongst other reasons, it is also decided not to implement a SA approach which may accept
worsening solutions. It is decided to do so even though promising results have been obtained by using
this method on static VRP’s, as was described in Section 2.1.3. One of the reasons for doing this is that
when solving DVRP’s the static problem definition may often change which makes it hard to set an ap-
propriate rate by which the temperature should decrease and worsening solutions should be accepted.
Furthermore, as the problem definition changes often it might not make much sense to explore the
solution space around worse solutions when improvements may still be found near the current best
solution. Finally, there is less time available to be able to explore the solution space around worse solu-
tions because of the limited available computation time.

• It is decided to use a different procedure for the selection of insertion heuristics. Given that a differ-
ence of two orders of magnitude can be observed in the computation time used by different insertion
heuristics it is decided to use the relatively slow ones less frequent. As the time required for the re-
moval of requests is nearly negligible compared to the time required for the insertion of requests (using
any insertion method), the used insertion method dictates how many R&R iterations can be performed
within a certain amount of time. Therefore, for example, roughly a hundred R&R iterations can be per-
formed using sequential cheapest insertion in the same time a single iteration can be performed using
two-regret insertion. Because of this a method which adapatively selects insertion heuristics is used.
How this method works is described below.

To improve the solution as quickly as possible, initially only the relatively fast sequential cheapest inser-
tion heuristic (as described in Section A.1.2) is used. When no improvement can be found (for some itera-
tions) more time-consuming insertion heuristics are also used. Simultaneously, the search neighbourhood is
gradually enlarged with each iteration in which no solution improvement is found (or in other words, more
requests may be removed during the following iterations). When a solution improvement is eventually found,
there is no reason to assume that the obtained solution can also be seen as such a ’hard to get out of’ local
minima. Therefore, the procedure reverts back to the relatively fast sequential cheapest insertion heuristic
and the small search neighbourhood. How this procedure is exactly implemented is described in Section A.3

Finally, the R&R procedure is parallelised by letting multiple procedures run simultaneously. When any of
these procedures finds a solution improvement during an iteration, the improved solution is directly copied
to a global best solution shared by all procedures. As each procedure creates a copy of this global solution
during each iteration, the improved solution is immediately used to find further improvements. The ineffi-
ciency caused by the parallelised global solution update is thereby limited to, at most, a single iteration for
each separate procedure. Given that each procedure is able to perform several hundreds of iterations per
second (on problem instances with approximately 500 requests) the inefficiencies caused by parallelisation
are relatively small, even when multiple solution improvements are found per second.

36 6. VEHICLE ROUTING SOLVER

Table 6.1: Removal methods used in the Ruin & Recreate procedure

Name Description

randomRequests Sequentially unschedules n times a random request. The idea is to improve
the solution by ruining a different part of the solution virtually every time.

randomRoutes Sequentially unschedules n times all requests within a random route. The
idea is to improve the solution by reconstructing a set of routes in a dif-
ferent way virtually every time. Even though the same requests may be
removed, unscheduled requests are randomly ordered which means a dif-
ferent solution may be found when using a sequential insertion method.

routesWithLeastRequests Sequentially unschedules n times the route with the least number of
scheduled requests. The idea is to improve the solution by ruining routes
which contain the least number of requests so that less routes may be used.

mostCostlyRoutes Sequentially unschedules n times the route which has the largest travelling
distance. The idea is to improve the solution by ruining the most costly
routes so that a reconstruction may yield a less costly route.

mostCostlyRequests Sequentially unschedules n times the request which by itself causes the
largest increase in travelling distance. The cost is equal to the negative re-
moval cost visualised in Figure 2.3.

randomRequestAndRelatedToIt Unschedules a random request. Furthermore, the n requests which are
most related to this request (according to the measure described in Section
A.1.5) and at most n requests which are incompatible with this request are
also unscheduled. The idea is to improve the solution around a certain
request by ruining a relatively large neighbourhood around the request.

randomRouteAndRelatedToIt Unschedules all requests within a random route. Furthermore for each un-
scheduled request also the 2 requests most related to it (according to the
measure described in Section A.1.5) and up to 2 requests which are incom-
patible with it are unscheduled. The idea is to improve the solution around
a single route by also ruining a small neighbourhood around it.

mostCostlyRequestAndRelatedToIt Unschedules the requests which by itself causes the largest increase in trav-
elling distance. The cost is equal to the negative removal cost visualised in
Figure 2.3. Furthermore, the n requests which are most related to this re-
quest (according to the measure described in Section A.1.5) and at most n
requests which are incompatible with this request are also unscheduled.
The idea is to improve the solution around the most costly request by ruin-
ing a relatively large neighbourhood around the request.

Table 6.3: Insertion methods used in the Ruin & Recreate procedure

Name Description

sequentialCheapestInsertion Sequential cheapest insertion which is is implemented as described in Section
A.1.2.

parallelCheapestInsertion Parallel cheapest insertion which is implemented as described in Section A.1.3.
twoRegretInsertion Regret insertion which is implemented as described in Section A.1.4 where k = 2.
threeRegretInsertion Regret insertion which is implemented as described in Section A.1.4 where k = 3.

6.2.4. REDUCING ROUTES
A method for reducing the number of routes that is being used within a solution is also implemented. This
method is a variation upon a method introduced by Nagata and Bräysy [72]. The method basically makes
use of an ejection chain and tries to insert remaining unscheduled requests by removing easily insert-able
requests.

The procedure starts by removing a random route from the solution. Then, while no stopping condi-
tions is reached, each unscheduled request is attempted to be inserted using sequential cheapest insertion
(as described in Section A.1.2). When it is not possible to insert a request using this method, an attempt is

6.3. VALIDATION 37

made to insert the request using least hardest removal insertion. Least hardest removal insertion is a method
which attempts to make it possible to insert a certain request, into an existing solution, by removing a set
of scheduled requests which together have the smallest sum of a ’hardness’ parameter. To enable this, each
request has an own hardness integer value which is stored and initialised at zero. Each time it is not possible
to insert a request using both sequential cheapest insertion and least hardest removal insertion, the hardness
value for that request is incremented by one. By doing this, eventually, requests which are hard to insert will
get a relatively high hardness value and are therefore unlikely to be removed to allow the insertion of other
requests. If eventually all requests are inserted, an additional route is removed and the process starts again.

It is worth mentioning that this algorithm is only used by the developed solver when the main objective
is to reduce the number of routes. When this is the case the algorithm is used alternately with the Ruin &
Recreate procedure. The different phases the solver goes through are then as illustrated by Figure 6.6. How
this algorithm is implemented is described in Appendix A.4.

Construction Ruin & RecreateLocal Search

Computation time

Minimising routes

Figure 6.6: Phases of the developed vehicle routing solver when the main objective is to reduce the number of routes.

6.3. VALIDATION
To validate if the developed solver can be used as a tool to evaluate the proposed method to improve dynamic
route optimisation, both in terms of solution quality and speed, a large number of experiments is ran. The
setup of these experiments is covered in Section 6.3.1. The results of these experiments are presented in
Section 6.3.2.

6.3.1. EXPERIMENTAL SETUP
The experimental setup for assessing the performance of the solver is covered in the following subsections.
Given that currently no widely used benchmark instances for the dynamic PDPTW exist, static benchmark
instances are used to evaluate performance. These instances, the stopping conditions and hardware used in
these experiments are described in the following subsections.

INSTANCES

Experiments were ran on sets of instances consisting of approximately 50, 100, 200, 300, 400 and 500 requests.
These sets were originally introduced by Li and Lim [30] and designed to "have a variety of distribution prop-
erties". These instances can currently be regarded as a research benchmark for the PDPTW, mainly due to the
website of the Transportation Optimization Portal of SINTEF Applied Mathematics which holds frequently
updated tables of the currently best known solutions together with references to the related research in which
they were found. The primary objective of these instances (after scheduling all requests) is to minimise the
number of routes. The secondary objective is to minimise the total travelling distance.

STOPPING CONDITIONS

Two stopping conditions for the termination of each experiment are used. First, a maximum computation
time of 60 seconds is set. This to, in some degree, emulate the computation time constraints which have to
be dealt when solving DVRP’s. Second, the experiment is also terminated when the value, rounded to two
decimal places, for each objective is less than or equal to the corresponding objective value of the best known
solution. A strictly equal comparison is not used because the "SINTEF" website rounds objective values to
two decimal places for the determination of the best known solution. Furthermore, for possible reproduction,
the best known solutions which were available on September 17th 2018 are used for comparison.

38 6. VEHICLE ROUTING SOLVER

HARDWARE

These experiments are ran on an HP ZBook Studio x360 G5 Mobile Workstation with an Intel Core i7-8750H
Coffee Lake processor. This processor supports 12 parallel threads which are used by the parallelised R&R
and route reduction procedure.

6.3.2. RESULTS
In this section a summary of the results of the experiments for evaluating the performance of the imple-
mented vehicle routing solver is presented. Given that the tables with the individual results take up a con-
siderable amount of space these have been included in Appendix C. A summary of the performance in terms
of the quality of the obtained solutions is presented in Figure 6.7. The two sub figures each show the distri-
bution of the percent deviation from the corresponding best known solutions for one of the two objectives,
for all sets of instances. In other words, these figures summarise the last two columns of all tables listed in
Appendix C. It can be seen that for all instances with approximately 50 requests, all best known solutions are
found. The same be said for roughly half of the instances with approximately 100 requests.

50 100 200 300 400 500
Approximate number of requests ithin each instance [#]

−20

−10

0

10

20

Re
lat
iv
e d
iff
er
en
ce
 in
 n
um
be
r o
f r
ou
tes
 [%
]

50 100 200 300 400 500
Approximate number of requests ithin each instance [#]

Re
lat
iv
e d
iff
er
en
ce
 in
 d
ist
an
ce
 tr
av
ell
ed
 [%
]

Figure 6.7: Summary of the results available in Appendix C. On the left the obtained relative differences in the number of routes as
compared to the best known solutions, for all sets of instances, when solving for 60 seconds, are shown. On the right the obtained relative
differences in the distance travelled as compared to the best known solutions, for all sets of instances, when solving for 60 seconds, are
shown.

For larger problem instances often solutions are found which use more routes but require less distance
to be travelled. Because of the hierarchical objective structure it can at least be concluded that the route
reduction procedure (as described in Section 6.2.4) is not able to be on par with state-of-the-art methods
when allowed only 60 seconds of computation time. Given that this algorithm is merely a relatively easy
implementable variation upon a more extensive method described in the literature and is tested under severe
time constraints, this is not surprising. Also, given that route reduction is not an objective of the instances
described in Section 7.1.1, this is not seen as a problem.

Furthermore, it appears that solutions with fewer routes will generally require more distance to be trav-
elled. Because of this effect, it is hard to draw conclusions about the ability of the solver to find solutions with
a minimal distance travelled when a solution with the same number of routes is not obtained.

In an attempt to be able to draw such conclusions regarding solver performance, experiments on the
instances with approximately 500 requests were performed again, now with 600 seconds of available compu-
tation time. A summary of the quality of the obtained solutions as compared to having 60 seconds of available
computation is shown in Figure 6.8. Solutions with the same number of routes are now obtained for at least
20% of the problem instances. When only looking at these problem instances it can be seen that the relative
differences in terms of the distance travelled are more or less between 0 and 10% as compared to the best
known solutions which were found without any restrictions on the amount of available computation time.
In presenting these results it is worth mentioning that a large part of the 600 seconds is spent trying to re-
duce routes. The R&R procedure, which actually minimises distance, only operates during a relatively small
portion of the available computation time. Furthermore, on the majority of the instances the relative differ-
ence in distance travelled ranges roughly between +10 and -10% with a mean around zero. Therefore, when
looking at minimising the distance travelled, even though no hard conclusions may be drawn, it appears that
when using the developed solver at least solutions within 10% of the best known solutions can be found on

6.4. VISUALISATION 39

relatively large problem instances within the order of magnitude of seconds. Furthermore, every best known
solution found by Ropke and Pisinger [19] is found within 60 seconds of computation time.

Also, when specifically looking at computation times, it can be seen that all best known solutions for
instances with approximately 50 requests are, on average, found in 1052 milliseconds. When four outliers,
in terms of computation time, are neglected the average even becomes 139 milliseconds. This means that
the same or better results are obtained over 7400 times faster than reported by Li & Lim [30] and over 470
times faster than reported by Ropke and Pisinger [19]. In doing so it can be concluded that the developed
implementation is able to significantly outperform both implementations, even when Moore’s law is taken
into account which suggests that computational power must have grown by a factor 64 (26) over the past 12
years.

Finally, in presenting these results it is worth mentioning that the developed solver does not produce fully
deterministic results. This is caused by the parallelised R&R procedure which, depending on the run time of
individual threads, may sometimes find certain solutions improvements faster. Given that any solution im-
provement causes a global solution update which is used by all threads during following iterations, obtaining
a (slightly) different solution can steer the solver into a different direction within the solution space. This
often causes the solver to get stuck or terminate at a different location within the solution space. As at least
hundreds of solution improvements are generally found during each optimisation and hundreds of iterations
are performed per second, this behaviour is almost certain to occur which means that, with relative certainty,
it can be said that no two solutions will be the same when the best known (or optimal) solution is not found.
As in the literature the best results, after running the same experiment multiple times, are often presented
[33], the conclusions drawn in this section still hold even as each experiment is run only once.

60 600
Allowed computation time [s]

−10

0

10

20

Re
lat

iv
e d

iff
er
en
ce
 in

 n
um

be
r o

f r
ou

tes
 [%

]

60 600
Allowed computation time [s]

Re
lat

iv
e d

iff
er
en
ce
 in

 d
ist
an
ce
 tr
av
ell

ed
 [%

]

Figure 6.8: Summary of the results available in Appendix C. On the left the obtained relative differences in the number of routes as
compared to the best known solutions, for instances with approximately 500 requests, when solving for 60 and 600 seconds, are shown.
On the right the obtained relative differences in the distance travelled as compared to the best known solutions, for instances with
approximately 500 requests, when solving for 60 and 600 seconds, are shown.

6.4. VISUALISATION
A visualisation tool is developed to be able to visually inspect solutions. This tool is not only able to visualise
solutions after the optimisation is performed but is also able to dynamically visualise the global best solution
while an optimisation or simulation is actually running. The tool consists of two views namely the timetable
view and the routes view. Both views are visualised in Figures 6.9 and 6.10. It is worth mentioning that these
views, besides them being dynamic, can also be interacted with.

40 6. VEHICLE ROUTING SOLVER

Figure 6.9: Zoomed-out timetable view of the visualisation tool. Time is listed on the x-axis. Each row represents a vehicle. The grey
blocks indicate that a vehicle is travelling. The blue blocks indicate that a vehicle is fulfilling a task. The visualised solution is the best
known (found) solution belonging to the l c1_10_1 problem instance which belongs to the set of SINTEF benchmark instances described
in Section 6.3.1. This instance contains 527 requests and the solution requires 100 vehicles.

Figure 6.10: Routes view of the visualisation tool. Time is represented by the vertical z axis. Space is represented by the x and y axes. Each
line represents the route of a vehicle through space and time. The vertical line segments indicate that a vehicle is stationary for a certain
amount of time which suggests that it is fulfilling a task. The visualised solution is the best known (found) solution belonging to the
l c1_10_1 problem instance which belongs to the set of SINTEF benchmark instances described in Section 6.3.1. This instance contains
527 requests and the solution requires 100 vehicles. The depot location of this instance (where all vehicles start and end) is located in
the middle of the x and y axes.

7
EVALUATION

To evaluate the anticipatory method, a variety of experiments is required to be performed. To do this in a con-
trolled environment, where the contribution of the anticipatory method can be isolated, it is decided to use
numerical simulations. How these simulations are set-up, and which problem instances will be solved while
simulating, will be described in Section 7.1. Given that real-time simulations take a considerable amount of
time and running a variety of experiments is desired, the effect of the simulation speed is first investigated, in
Section 7.2, to determine if time-consuming experiments can be run using less computation time. The pre-
diction model of the anticipatory method has several parameters that are required to be set. To investigate
the sensitivity of the anticipatory method to these parameters two additional sets of experiments are covered
in Section 7.3 and Section 7.4. Finally, to meet both research goals and investigate how multiple strategies
perform on a range of problem instances, four strategies are compared in Section 7.5.

7.1. EXPERIMENTAL SET-UP
In this section the experimental set-up used to perform numerical simulations is covered. First, the real-
world problem instances and historical data that is used are described in Section 7.1.1. Second, an analysis
of the instances and the historical data is performed in Section 7.1.2. How, based on this analysis, several
method parameters are set is described in Section 7.1.3. Other optimisation strategies that are used to com-
pare the performance of the anticipatory method to, are described in Section 7.1.4. Then, how the multiple
required components for evaluation are implemented is described in Section 7.1.5. How these components
are combined in order to perform simulations is described in Section 7.1.6. Finally, the hardware used for
running these experiments is described in Section 7.1.7.

7.1.1. INSTANCES
Obtaining problem instances that meet all conditions required to be used for evaluation of the anticipatory
method is challenging. This is because not only a set of dynamic requests is required but also a much larger
set of historical requests is required. Because of the latter, the few synthesised Solomon-based benchmark
instances [73] available for dynamic pickup and deliver vehicle routing can not be used for evaluation.

This means either a large amount of effort should be put into synthesising data or data should be found
elsewhere. Given that the significance and objectivity of self synthesised data will always be questionable, es-
pecially when the goal is to find patterns in the occurrence of requests, it is decided not to synthesise problem
instances.

Instead it was decided, prior to this research, to collaborate with industry so that real-world instances
could be obtained. Therefore, this research is performed in collaboration with ORTEC. This collaboration has
made it possible to make use of data of one of their customers. The customer in question is a transportation
company who deals with the relatively urgent delivery of flowers to and from growers, distributors and auc-
tions in The Netherlands and Belgium. The company will be referred to as "the transportation company" for
the remainder of this thesis.

In creating problem instances using data from the transportation company, a significant amount of time
is spent on approximating the real-world problem as close as possible. Measures that are taken to do so are
described below.

41

42 7. EVALUATION

REQUESTS

Hundreds of thousands of actual historical requests are extracted from copies of production databases. Al-
most all request parameters are literally being used. The only parameters that are synthesised are the duration
of the pickup tasks and the duration of the deliver tasks. These durations are set to equal the request quantity,
only then in minutes. Given that the quantity of requests ranges from 1.0 to 43.0 (a full vehicle load), unload-
ing a full vehicle is estimated to take 43 minutes. These values are confirmed to roughly coincide with reality
by an ORTEC consultant. Finally, both the pickup and deliver time windows of all requests are required to end
later than 06:00:00 AM and should start before 18:00:00 PM to ensure that all requests can be fulfilled while
vehicles are available. Requests that do not meet these constraints are neglected.

VEHICLES

A sufficient number of a 100 vehicles is assumed to be available at each one of the five actual depot locations
of the transportation company. Each vehicle is required to return to the same depot location as it originated
from. Furthermore, vehicles are assumed to have a capacity of 43.0 in the unit of the to be transported goods,
just as is the case in reality. Finally, all vehicles are assumed to be available, each day, between 06:00:00 AM
and 23:59:59 PM.

DISTANCE AND TRAVEL TIME VALUES

To obtain realistic distance and travel time values, hundreds of thousands of addresses are geocoded using
ORTEC cloud services to obtain actual coordinates for all locations. Using these coordinates, tens of millions
of fastest path calculations are performed using ORTEC cloud services to obtain actually used distance and
travel time matrices specifically for the type of vehicles that is used by the transportation company.

DATES

Given that the available data sources contain requests up to 2018, all instances are created using request
data belonging to the year 2017. Furthermore, given that the transportation company dispatches vehicles
every single day, each day is seen as a separate possible problem instance. To circumvent having to deal
with historical data that is inconveniently stored in either winter or summer time, dates of instances were
chosen so that all data within the same historical data-set makes use of the same time zone. Furthermore, it
was chosen to use 8 weeks of historical data for each instance. The created problem instances are listed in
Table 7.1. For the remainder of this thesis, these instances will be referred to by their name as listed in the
first column of the table. Based on the start of the summer time (March 26th in 2017) and the fact that two
months worth of historical data are required, instances A through E are chosen to represent each day of the
work week of week 22. To have no overlapping data with the first set of instances, the instances F through J
are chosen to represent each day of the work week of week 32. The DOD of the described instances ranges
from 0,70 to 0,93.

Table 7.1: Created problem instances

Name Date Weekday Requests [#] Historical data used for prediction

A 2017-05-29 Monday 1.655 2017-04-02 UTAI 2017-05-28, 59.633 requests
B 2017-05-30 Tuesday 1.399 2017-04-03 UTAI 2017-05-29, 59.900 requests
C 2017-05-31 Wednesday 1.227 2017-04-04 UTAI 2017-05-30, 59.965 requests
D 2017-06-01 Thursday 1.179 2017-04-05 UTAI 2017-05-31, 60.498 requests
E 2017-06-02 Friday 949 2017-04-06 UTAI 2017-06-01, 61.489 requests
F 2017-08-07 Monday 1.251 2017-06-12 UTAI 2017-08-06, 38.699 requests
G 2017-08-08 Tuesday 821 2017-06-13 UTAI 2017-08-07, 38.400 requests
H 2017-08-09 Wednesday 840 2017-06-14 UTAI 2017-08-08, 38.147 requests
I 2017-08-10 Thursday 722 2017-06-15 UTAI 2017-08-09, 38.147 requests
J 2017-08-11 Friday 474 2017-06-16 UTAI 2017-08-10, 37.788 requests

7.1.2. HISTORICAL DATA ANALYSIS
After processing the raw data to create the instances described in Section 7.1.1, several tables of historical
data are obtained. The contents of these tables is as listed in Table 7.2. In an attempt to better understand the
data that needs to be dealt with, an analysis of the data is performed.

7.1. EXPERIMENTAL SET-UP 43

Table 7.2: Available columns in historical data

Column Description

pickupLocationX The longitude of the pickup location
pickupLocationY The latitude of the pickup location
deliverLocationX The longitude of the deliver location
deliverLocationY The latitude of the deliver location
quantity The quantity of load needed to be transported
pickupStart The start of the pickup time window
pickupEnd The end of the pickup time window
deliverStart The start of the deliver time window
deliverEnd The end of the deliver time window
madeKnown The moment at which a request was made known
pickupDuration The duration of the pickup task
deliverDuration The duration of the deliver task

First of all, to explore the spatial properties of the data, all pickup and deliver locations of all requests
belonging to the historical data set of instances A and F are plotted on a map. These plots are shown in
Figure 7.1. It can be seen that both the pickup and deliver locations are scattered across the Netherlands
and Belgium. Furthermore, it can be seen that there are more unique deliver locations than there are pickup
locations.

(a) Pickup locations (b) Deliver locations

Figure 7.1: Pickup and deliver locations of all requests within the combined historical data-set of instances A and F (as described in
Section 7.1.1)

Second, to have an indication of the amount of requests that need to be dealt with every day, the number
of occurring requests per day is plotted in Figure 7.2. It can be seen that during each workday between 400
and 2000 requests need be dealt with. Not entirely surprising, it can be seen that the number of occurring
requests is much higher during working days as compared to the weekend. Furthermore, a clear weekly
pattern can be observed. Besides for a single exception (2nd Easter Day), Mondays are the busiest days of the
week and towards the weekend the workload generally decreases each day. Also, it can be seen that instances
F till J represent days during a less busy period of the year as only about two-thirds of the requests need to be
dealt with as compared to the days which are represented by instances A till E.

44 7. EVALUATION

20
17

-0
4-
03

20
17

-0
4-
10

20
17

-0
4-
17

20
17

-0
4-
24

20
17

-0
5-
01

20
17

-0
5-
08

20
17

-0
5-
15

20
17

-0
5-
22

Date

0

500

1000

1500

2000

Re
qu

es
ts
pe
r d

ay
 [#

]

20
17

-0
6-
12

20
17

-0
6-
19

20
17

-0
6-
26

20
17

-0
7-
03

20
17

-0
7-
10

20
17

-0
7-
17

20
17

-0
7-
24

20
17

-0
7-
31

Date

Weekday
Weekend

Figure 7.2: Total number of requests occurring each day within the historical data-sets of instances A and F (as described in Section
7.1.1). Left: historical data belonging to instance A. Right: historical data belonging to instance F.

Histograms of the time of the day at which requests become known are shown in Figure 7.3. It can be
seen that only a relatively small portion of the requests is already known at 06:00 AM when vehicles may start
driving. Furthermore, requests keep arriving almost the entire workday with peaks at around 09:00 AM and
15:00 PM. Based on these histograms it can already be concluded that any initial solution that may be created
at 06:00 AM will most likely look a lot different as compared to a solution which has been created (and is
assumed to be realised) at the end of the day at 23:59:59 PM.

00:00 06:00 12:00 18:00
Hour of the day

0

2000

4000

6000

8000

10000

Re
qu

es
ts

[#
]

00:00 06:00 12:00 18:00
Hour of the day

Figure 7.3: Histogram of the time of the day at which requests are made known within the historical data-sets of instances A and F (as
described in Section 7.1.1). Left: historical data belonging to instance A. Right: historical data belonging to instance F.

Histograms of the length of the pickup time windows of requests are shown in Figure 7.4. It can be seen
that time windows range from less than an hour to almost 24 hours. Furthermore, a majority of them is
either around 6 or 14 hours long. The fact that these time windows are relatively long severely increases the
complexity of the problem given that these time windows allow for tasks to be scheduled in almost any order.
Finally, histograms, of the amount of time that is present between the moment requests become known and
the moment their pickup time windows starts, are shown in Figure 7.4. By using this figure together with the
histogram about time window length, conclusions about the urgency of requests can be drawn. Given that
most requests can directly be pickup up after they have become known and time windows are multiple hours
long, requests should generally be acted upon within several hours.

Finally, histograms of the request quantity are shown in Figure 7.4. It can be seen that the quantity of
requests ranges from 1.0 to 43.0. Furthermore, the majority of the requests has a quantity smaller or equal to
4.0 which means often 10 or more requests can be transported by the same vehicle simultaneously.

7.1. EXPERIMENTAL SET-UP 45

00:00 06:00 12:00 18:00
Pickup time window length [h]

0

1000

2000

3000

4000

5000

6000

Re
qu

es
ts
[#
]

00:00 06:00 12:00 18:00
Pickup time window length [h]

Figure 7.4: Histogram of the length of the pickup time windows of requests within the historical data-sets of instances A and F (as
described in Section 7.1.1). Left: historical data belonging to instance A. Right: historical data belonging to instance F.

00:00 06:00 12:00 18:00
Made known to start of pickup time window [h]

0

5000

10000

15000

20000

Re
qu

es
ts
[#
]

00:00 06:00 12:00 18:00
Made known to start of pickup time window [h]

Figure 7.5: Histogram of the amount of time present between the moment requests become known and the moment their pickup time
windows start. These requests belong to the historical data-sets of instances A and F (as described in Section 7.1.1). Left: historical data
belonging to instance A. Right: historical data belonging to instance F.

0 10 20 30 40 50
Quantity [-]

0

5000

10000

15000

20000

25000

Re
qu

es
ts

[#
]

0 10 20 30 40 50
Quantity [-]

Re
qu

es
ts

[#
]

Figure 7.6: Histogram of the request quantity within the historical data-sets of instances A and F (as described in Section 7.1.1). Left:
historical data belonging to instance A. Right: historical data belonging to instance F.

7.1.3. METHOD PARAMETERS
As described in Chapter 4, both the chosen clustering method as the prediction model require certain param-
eters to be set for the prediction of requests. How these parameters are set is described below.

46 7. EVALUATION

CLUSTERING PARAMETERS

To be able to fulfil additional requests efficiently, it is desired to drive as little additional distance as possible.
Vehicles should therefore be at the right place, within the defined time windows, while still having enough
remaining capacity. As it was shown, in Section 7.1.2, that time windows are generally multiple hours long, it
appears to be most important to be at the right place while having enough remaining capacity. Also, it was
shown that the number of unique pickup locations is much smaller than the number of unique deliver loca-
tions. Therefore, by first separating the data-set based on the pickup location, relatively little computational
effort is required while relatively important dimensions are addressed first.

Because of similar reasons it is chosen to then further separate requests based on the deliver location
and request quantity. Only after these three levels, the data is separated further based on time dimensions.
The used cluster levels and their parameters are therefore as listed in Table 7.4. The second column lists
the dimensions that are used for clustering on each level. The third column describes the function which
determines the (dis)similarity based on the values of requests along these dimensions. The fourth column
describes how the threshold is computed based on the data-set. Finally, to give an indication of the value
of these thresholds, the computed thresholds for instance A are listed in the fifth column. The sensitivity of
the anticipatory method to these thresholds is investigated in Section 7.4. The minimum number of requests
which are required for a request type to remain valid at each clustering level is set to four. This number was
chosen as, with eight weeks of historical data and a weekly pattern, theoretically, at least an rfo higher than
0.50 can be obtained for each predicted request.

It is worth mentioning that when attempting to cluster a relatively small amount of approximately 60.000
requests, on their pickup location, while making use of a great circle distance function, several hours of com-
putation time are required. However, when only considering unique locations, as proposed, merely seconds
are required by the used Python based implementation. Also, even though the (dis)similarity matrix for the
number of unique locations can probably be stored within random access memory it is still decided not to
compute this matrix so that the implementation may possibly also be used for clustering larger sets of re-
quests.

Finally, while clustering on multiple levels will probably not have any beneficial effects on the used com-
putation time after the data has already been separated multiple times, it is still decided to do so for the
sake of the simplicity of the implementation. This choice appears to be justifiable by the fact that very lit-
tle additional request types are formed at lower clustering levels which suggest that only after a few levels,
requests within the same request type are already very similar. The latter suggests that not a significantly dif-
ferent clustering result would be obtained when multiple dimensions would be clustered on simultaneously
or when clustering levels would be used in a different order.

7.1. EXPERIMENTAL SET-UP 47

Table 7.4: Levels and their parameters used in clustering requests. The last column states the calculated threshold for Instance A (as
described in Section)

Level Dimension(s) Distance function Threshold Inst. A

1 pickupLocationX,
pickupLocationY

The great circle distance between
both coordinate pairs.

10% of the median trip distance
(the great circle distance between
the pickup and the deliver loca-
tion) of all requests.

5.48 km

2 deliverLocationX,
deliverLocationY

The great circle distance between
both coordinate pairs.

10% of the median trip distance
(the great circle distance between
the pickup and the deliver loca-
tion) of all requests.

5.48 km

3 quantity Absolute difference 10% of the median vehicle capac-
ity

4.3

4 pickupEnd Absolute difference in time of the
day (in such a way that 23:59 PM
is also close to 00:01 AM)

10% of the median time pickup
time window length in seconds

4787 s

5 deliverEnd Absolute difference in time of the
day (in such a way that 23:59 PM
is also close to 00:01 AM)

10% of the median time deliver
time window length in seconds

4860 s

6 pickupStart Absolute difference in time of the
day (in such a way that 23:59 PM
is also close to 00:01 AM)

20% of the median time pickup
time window length in seconds

9574 s

7 deliverStart Absolute difference in time of the
day (in such a way that 23:59 PM
is also close to 00:01 AM)

20% of the median time deliver
time window length in seconds

9720 s

8 madeKnown Absolute difference in time of the
day (in such a way that 23:59 PM
is also close to 00:01 AM)

10% of the median time pickup
time window length in seconds

4787 s

9 pickupDuration Absolute difference 10% of the median vehicle capac-
ity in minutes

4.3 min

10 deliverDuration Absolute difference 10% of the median vehicle capac-
ity in minutes

4.3 min

PREDICTION MODEL PARAMETERS

Four parameters are required to be chosen for the used prediction model. These are the rfo , the assumed
patterns within the data for which the rfo is determined and the prediction frequency and horizon. The rfo

is initially set equal to 0.66 based on some very simple intial experiments. The sensitivity of the anticipatory
method to this parameter is investigated in Section 7.3. As a weekly pattern is found within the number of
occurring requests per day, a daily and a weekly pattern are assumed for the determination of the maximum
rfo of each request. Finally, given that the number of occurring requests per day lies within the bounds of the
problem sizes that can currently be solved, the entire problem can be solved at once and no separation into
multiple regions or time slices appears to be required. The number of predictions of requests can therefore
be minimised to a single prediction every single day. The prediction horizon is therefore set to 24 hours.

7.1.4. STRATEGIES
To perform a qualitative analysis of the performance of the anticipatory method (Anticipatory (A)), it is de-
cided to compare the implementation to three other optimisation strategies for solving DVRP’s. The imple-
mentations of these strategies make use of parts of the same solver as described in Chapter 6. This allows for
a relatively fair comparison which is not subject to quality of the implementation. The three other strategies
are:

• Reactive + Cheapest Insertion (CI) This strategy is added to serve as an upper bound (in terms of dis-
tance travelled) on the solutions which may be obtained. The strategy consists of creating an initial
solution based on the requests which are known at 06:00 AM. In creating this initial solution the solver
goes through the phases as visualised in Figure 6.1. To incorporate additional requests only the se-
quential cheapest insertion heuristic (as described in Section A.1.2) is used to insert requests into the
solution when they become known. No further re-optimisation is performed. This strategy is often also
referred to as a greedy approach.

• Reactive + Ruin & Recreate (RR) This strategy is added to serve as a close competitor to the anticipatory

48 7. EVALUATION

method. The strategy consists of creating an initial solution based on the requests which are known at
06:00 AM. In creating this initial solution the solver goes through the phases as visualised in Figure 6.1.
To incorporate dynamic requests the sequential cheapest insertion heuristic (as described in Section
A.1.2) is also used. However, in parallel R&R procedures are run which constantly try to re-optimise the
part of the global solution which has not yet been realised or is being realised. The entire approach is
therefore as visualised in Figure 7.7. This strategy is also referred to as the reactive approach.

• Full information (FI) This strategy is added to serve as a lower bound (in terms of distance travelled)
on the solutions which may be obtained. During this strategy it is assumed that all additional requests
are already known at 06:00 AM. The initial and final solution is therefore created based on all requests.
In creating this solution the solver goes through the phases as visualised in Figure 6.1.

7.1.5. IMPLEMENTATION
The components introduced in Section 3.2 and described in Chapters 4 till 6 are implemented in Python
and C++. Everything related to creating problem instances and the prediction of requests is implemented in
Python requiring over 5000 lines of code. The vehicle routing solver and problem simulator are implemented
in C++ using 43 classes consisting of 9200 lines of code.

7.1.6. SIMULATION
To evaluate the performance of the strategies (described in Section 7.1.4), simulations are run. For both
the reactive approach and the anticipatory method the schematic overview of the simulation is as shown in
Figure 7.7. In this figure each block represents a process and blocks stacked on top of each other occur in
parallel. Simulations consist of two steps namely creating an initial solution and handling dynamic requests.
What happens during both phases is described below. Finally, it is worth mentioning that when using the
greedy approach a similar simulation structure is used only no R&R procedures are run parallel to handling
the dynamic requests.

Construction Ruin & RecreateLocal Search

Computation time

Handling dynamic requests Vehicles are available

Figure 7.7: Schematic overview of the structure of the vehicle routing solver and simulation process

CREATING AN INITIAL SOLUTION

As a portion of the requests is already known at 06:00 AM, an initial solution can be created before vehicles
become available. The amount of computation time for creating an initial solution is chosen to be in the order
of magnitude of a few minutes to allow the solver to find relatively good solutions for problem instances with
up to several hundreds of requests. However, it is estimated that this amount of time might not be sufficient
to find very good solutions for problem instances with over a 1000 requests. As the anticipatory method
adds additional predicted requests to the problem, such larger problem instances are required to be solved.
Therefore, to evaluate the method in a situation where the odds are slightly stacked against the anticipatory
method, it is assumed that requests are already known at 5:55 AM and only 300 seconds are available to
create an initial solution based on the requests which were made known before 06:00 AM. In creating this
initial solution the solver goes through the phases shown in Figure 6.1. These steps are also visualised in the
entire simulation overview shown in Figure 7.7. Finally, in creating the initial (and final) solution for the full
information strategy, 15 minutes of computation time are allowed for creating a solution.

7.2. SENSITIVITY TO SIMULATION SPEED 49

HANDLING DYNAMIC REQUESTS

As described in the dynamic problem definition in Section 3.1.2, additional requests are required to be added
to the problem definition when they have become known. To simulate this, every 30 seconds, within the
simulation, it is checked if additional requests have become known and if so, these are added to the problem
definition. By doing so the difference in time at which requests are added to the problem definition and when
they actually have become known is at most 30 seconds.

Furthermore, during the same 30 second interval, the solution is fixed up to the current simulation time
incremented with 30 seconds. This means that at the start of each step, the solution is at least fixed up to
the end of that step. By doing so it is ensured that the part of the solution that is realised during the step
will not be affected by re-optimisation that runs in parallel to the step. Which part of the solution specifically
becomes fixed when time progresses is described in the problem definition covered in Section 3.1.2.

Finally, distance and travel time matrices are loaded into memory in advance which means that addi-
tional distance and travel time values are assumed to be available instantaneously when additional requests
become known. Even though this will not be the case in any real-world application, it is estimated that, with
additional engineering, these values may be made available within several hundreds of milliseconds. As this
would only slightly delay the moment at which requests become known it assumed that this deviation from
reality is negligible in evaluating the anticipatory method.

7.1.7. HARDWARE
All experiments are run on an HP ZBook Studio x360 G5 Mobile Workstation with an Intel Core i7-8750H
Coffee Lake processor. This processor supports 12 parallel threads which are used by the parallelised R&R
procedure. However, as handling dynamic requests requires a single thread, only 11 threads are effectively
being used.

7.2. SENSITIVITY TO SIMULATION SPEED
Simulations of an entire instance (or day) are required to be performed to assess the performance of a certain
optimisation strategy. As vehicles are available for 18 hours, each simulation requires 18 hours of computa-
tion time when simulations are run in real-time. However, it is desired to:

• Simulate multiple strategies to be able to compare performance.

• Simulate on multiple problem instances to ensure that possible differences in performance can be at-
tributed to the used strategy instead of to the structure of a particular problem instance.

• Simulate each strategy on each problem instance multiple times as the developed solver does not pro-
duce deterministic results and confidence intervals might overlap.

• Simulate with different parameter values in an attempt to determine the sensitivity to the parameters
on the considered problem instances.

This poses a problem as simply simulating all strategies on ten instances, all for ten times, already requires
over 200 days of computation time. It is therefore decided to first investigate the effect of the simulation speed
on the quality of the obtained solutions.

By increasing the simulation speed, time within the simulation actually runs faster than real-time. This
means each simulation can be performed using less computation time. As time progresses faster within
the simulation, amongst other things, vehicles will drive faster and requests are made known after a smaller
amount of time. However, the only thing that can not be scaled accordingly is the time in which the solver
is able to find better solutions. The solver is not able to do this as it runs in parallel with the scaled process
and it can not be made to work faster than it is already doing in real-time. This means that the solver has
relatively less time available to find better solutions before additional information becomes known and also a
larger part of the solution becomes fixed. As this means that relatively less R&R iterations can be performed,
on average, only worse solutions can be obtained.

To determine how much worse solutions become when the simulation speed is severely sped up a large
number of simulations is performed for both the anticipatory method and the reactive approach. Specifically,
instance A (as described in Section 7.1.1) is simulated 10 times using both strategies at simulation speeds 128,
64, 32, 16, 8 and 4. The method parameters are set as described in Section 7.1.3. The required computation

50 7. EVALUATION

time for running these simulations is roughly 8 days. The total distance that is required to be travelled when
using both strategies at different simulation speeds is summarised in Figure 7.8.

4 8 16 32 64 128
Simulation speed [# times faster than reality]

43000

44000

45000

46000

47000

48000

49000

50000
Di
sta

nc
e [

km
]

Reactive + Ruin & Recreate (RR)
Anticipatory (A)

Figure 7.8: Distributions of the final objective value (the total distance travelled by all vehicles) when solving instance A (as described in
Table 7.1) using both the reactive- and the anticipatory strategy, at different simulation speeds

First of all, it can be seen that the anticipatory method significantly outperforms the reactive approach, re-
gardless of the used simulation speed. Also, the relative difference in performance between the two methods
appears to be similar and in the range of 3 to 10%. Furthermore, it can be seen that both methods perform
approximately 8% worse when the simulation speed is set to 128 as compared to using a simulation speed
equal to four. As the differences between both methods, in terms of the quality of the obtained solutions, ap-
pear to be be relatively consistent and the absolute difference in the quality of the obtained solutions is in the
order of magnitude of a several percent, using a higher simulation speed to draw conclusions about relative
performances appears to be justifiable. It is therefore decided to use a simulation speed of 32 for further ex-
periments. In doing so it is assumed that the described effects are similar across all instances. Furthermore,
it is assumed that the absolute performance of both methods will be a few percent better when simulating in
real-time but the relative difference in performance will be similar. Finally, these assumptions are later vali-
dated again in Section 7.5 as a small number of experiments will also be run in real-time (with a simulation
speed equal to one).

7.3. SENSITIVITY TO MINIMUM RELATIVE FREQUENCY OF OCCURRENCE
In an attempt to investigate whether better results may be obtained by using a different rfo (other than 0.66
as mentioned in Section 7.1.3), an additional experiment is run. Again on instance A, with a simulation speed
equal to 32 and parameters values set as described in Section 7.1.3, four values for the rfo are evaluated.
Naturally, only the proposed strategy is used in these simulations. Finally each simulation is repeated 10 times
to obtain relatively trustworthy confidence intervals. The total required computation time is approximately
27 hours. The total distance that is required to be travelled when using different rfo ’s is summarised in Figure
7.9.

7.4. SENSITIVITY TO CLUSTERING PARAMETERS 51

0.33 0.5 0.66 0.75
Mininimum relative frequency of occurrence

43000

43500

44000

44500

45000

45500

46000

46500

47000
Di

sta
nc

e [
km

]

Figure 7.9: Distributions of the final objective value (the total distance travelled by all vehicles) when solving instance A (as described in
Table 7.1) using the anticipatory method when different rfo ’s are used.

It can be seen that using a rfo equal to 0.50 actually appears to best when having to choose from the four
evaluated options. This value therefore appears to result in the optimal balance in creating a prediction with
more true positives at the cost of having (even) more false positives (as also mentioned in Section 4.2.3).

It is decided not to evaluate more values as it is very likely that the rfo of each predicted request will be
a multiple of 0.125 given that there are eight weeks of historical data and a weekly pattern is assumed. It is
unlikely that the daily pattern will yield the highest rfo given that much less requests need to be dealt with
during the weekends (as shown in Figure 7.2). Furthermore, even if this would not be the case it can be argued
that determining the rfo up to two or three decimal places may be seen as overfitting a parameter to a single
problem instance. An rfo equal to 0.50 is therefore used in all remaining experiments.

7.4. SENSITIVITY TO CLUSTERING PARAMETERS
In an attempt to investigate whether better results may be obtained by using different clustering parameters
(other than those mentioned in Section 7.1.3), an additional experiment is run. Again on instance A, with
a simulation speed equal to 32, an rfo equal to 0.50 and clustering parameters set as listed in Table 7.5,
multiple simulations are run. Naturally, only the proposed strategy is used in these simulations. Finally
each simulation is repeated 10 times to obtain relatively trustworthy confidence intervals. The total required
computation time is approximately 34 hours. The total distance that is required to be travelled when using
different clustering parameters is summarised in Figure 7.10.

52 7. EVALUATION

Table 7.5: Different sets of clustering parameters that are used in the experiment to determine the sensitivity of the anticipatory method
to different clustering parameters. The listed percentages at each level replace the percentages listed in Table 7.4 which are used in the
calculation of the threshold at each level. The results of the experiment are shown in Figure 7.10.

Level Extra small Small Medium Large Larger

1 5% 10% 15% 20% 25%
2 5% 10% 15% 20% 25%
3 5% 10% 15% 20% 25%
4 5% 10% 15% 20% 25%
5 5% 10% 15% 20% 25%
6 10% 20% 30% 40% 50%
7 10% 20% 30% 40% 50%
8 5% 10% 15% 20% 25%
9 5% 10% 15% 20% 25%
10 5% 10% 15% 20% 25%

Extra small Small Medium Large Larger
Maximum allowed dissimilarity when clustering

43000

44000

45000

46000

47000

Di
sta

nc
e [

km
]

Figure 7.10: Distributions of the final objective value (the total distance travelled by all vehicles) when solving instance A (as described
in Table 7.1) using the anticipatory method when the clustering parameters are used as listed in Table 7.5 are used.

It can be seen that when using the small clustering parameters, the best results are obtained. This means
that the initial set of values was chosen relatively well (after some small initial experiments). It is observed
that when using the extra small clustering parameters, the number of request types and predicted requests is
smaller as compared to using the small clustering parameters. Furthermore, fewer request replacements (as
described in Section 5.2) are observed. This suggests that more requests types are ignored because these con-
tain to few requests which results in fewer predicted requests. Furthermore request types which are created
appear to be so specific that additional requests are often to dissimilar for a replacement to be attempted.
When using wider cluster parameters it appears that replacements are attempted more often but these ap-
pear to be less successful, more frequently, as a significant amount of additional distance is still required to be
travelled. It is decided not to evaluate more values as it appears that a local minima is found. The clustering
parameters as listed in Table 7.4 are therefore used in all remaining experiments.

7.5. COMPARING STRATEGIES 53

7.5. COMPARING STRATEGIES
To investigate how the anticipatory method performs on different problem instances and compares to the
other optimisation strategies (described in Section 7.1.4), a large number of experiments is run. Specifically,
all four strategies are simulated 10 times on the 10 instances (described in Section 7.1.1). All simulations are
performed using a simulation speed equal to 32. In these simulations the anticipatory method makes use
of the parameter values as described in Section 7.1.3 and those defined in the previous two sections. The
required computation time for running these simulations is approximately 10 days.

All results on each instance are summarised in separate figures. The results on the instances where the
anticipatory method performs best (instance F) and performs worst (instance I) as compared to the reactive
approach are shown in Figures 7.11 and 7.12. The remaining results are included in Appendix D. In each of
these figures, on the left, it is shown how the amount of distance that is planned to be travelled during the
entire day evolves during the day, for each strategy. Each line represents a single simulation. On the right the
distribution of the total distance that is required to be travelled by all vehicles is summarised for each strategy.

It can be seen that the full information approach always performs best as it requires the least amount of
distance to be travelled. The greedy approach always performs worst as the most distance is required to be
travelled. As only a relatively small portion of the requests is known at 06:00 AM, solutions of both the reactive
and greedy approach require relatively little distance to be travelled initially. As predicted requests are added
to the problem in the anticipatory method, the initial solution requires more distance to be travelled initially.

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure 7.11: Performance of different optimisation strategies on instance F. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

54 7. EVALUATION

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

5000

10000

15000

20000

25000

30000
Di

sta
nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure 7.12: Performance of different optimisation strategies on instance I. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

As the described problem instances can currently not be served to optimality, the results belonging to
the full information strategy are used as a benchmark. How the other three remaining strategies perform
compared to this benchmark, on average, on all instances, is shown in Figure 7.13. When using the greedy
approach, on average, 109,32 ± 9,09 % more distance is required to be travelled as compared to the full infor-
mation strategy. When using the reactive approach, on average, 15,40 ± 2,75 % more distance is required to
be travelled as compared to the full information strategy. When using the anticipatory method, on average,
only 10,07 ± 3,52 % more distance is required to be travelled as compared to the full information strategy.

A B C D E F G H I J
Instance

0

20

40

60

80

100

120

140

160

Re
lat

iv
e d

iff
er

en
ce

 in
 d

ist
an

ce
 tr

av
ell

ed
 [%

]

Reactive + Cheapest Insertion (CI)
Anticipatory (A)
Reactive + Ruin & Recreate (RR)

Figure 7.13: Relative difference in average distance that is required to be travelled for three strategies as compared to the full information
strategy, on all instances.

7.6. DISCUSSION 55

In comparing the performance of the reactive approach (with R&R) and the anticipatory method it can be
seen (from Figure 7.12) than even when the anticipatory method performs worst, on average, as compared to
the reactive approach, the confidence intervals appear to overlap completely and only a small difference in
the average distance travelled can be observed. It can therefore be concluded that, on the evaluated instances,
and when making use of the described solver, on average, the anticipatory method does not significantly
perform worse in any case. When the anticipatory method performs best however, on average, as compared
to the reactive approach, it can be seen (from Figure 7.11) that confidence intervals do not overlap at all and
the anticipatory method significantly outperforms the reactive approach. How the anticipatory method, on
average, performs as compared to the reactive approach is listed in Table 7.6. It can be seen that when using
the anticipatory method, on average, 4,58± 3,48% less distance is required to be travelled.

Table 7.6: Relative difference in the average distance that is required to be travelled and the number of vehicles that are utilised when
using the anticipatory method as compared to the reactive approach, on all instances.

Instance A B C D E F G H I J Avg.

Distance [%] -7,00 -5,50 -4,88 -3,05 -1,99 -8,19 -4,98 -11,04 0,69 0,14 -4.58
Vehicles [%] -3.82 -2.37 -1.87 -2.68 -3.94 -3.82 -3.87 -3.95 -3.87 -3.18 -3.34

Additionally, it is worth mentioning that the anticipatory method also requires less vehicles to fulfil all
requests. The relative difference in the number of vehicles that are required when using the anticipatory
method as compared the reactive approach is listed in Table 7.6. It can be seen that, on average, 3,34 ± 0,74%
less vehicles are required.

Finally, to validate again if comparable results are obtained when using a simulation speed equal to one,
some additional experiments are ran. Specifically, each strategy is simulated a single time on instances B and
H using a simulation speed equal to one. The required computation time for these experiments is roughly 5
days. The results are shown in Figures D.9 and D.10. It can be seen that both the reactive and the anticipatory
method produce results which are several percent better than the results which were obtained when simulat-
ing 32 times faster. Still, the anticipatory method outperforms the reactive approach, in terms of the distance
travelled, on instances B and H, by 8,14% and 5,95% respectively.

7.6. DISCUSSION
In this section, the obtained results are discussed. First, a difference in the added value of the anticipatory
method is observed, in Table 7.6, among instances A through E which represent days belonging to the same
work week. The added value of the anticipatory method decreases throughout the week just as the size of the
problem instances also decreases throughout the week. However, even though correlation may be observed
this naturally does not necessarily imply causality. For example, this effect may also be caused by the set of
requests, which has to be dealt with, becoming less predictable throughout the week. To validate this the
quality of the prediction is determined by labelling the additional requests using the classifier described in
Section 5.2. The quality of the prediction is then quantified by determining the overlap between the labels of
the predicted requests and the labels of the additional requests. For instance A the results are plotted against
the rfo of each predicted request in Figure 7.14. It can be seen that, for the majority of the predicted requests
a unique additional request, belonging to the same request type, actually becomes known. It can also be
seen that when the rfo is relatively high a larger portion of the predicted requests appears to be predicted
correctly. According to this measure 78% of the predicted requests for instance A are predicted correctly. For
instance E this is only 49%. It is observed that the number decreases throughout the week. The percentages
for all instances are listed in Table 7.7.

Table 7.7: Derived prediction quality on all instances. The actual row states the number of requests that are actually made known. The
predicted row states the number of predicted requests. The overlap indicates what percentage of the predicted requests are also actually
made known according to the measure derived using the request classifier. This percentage gives an indication of the quality of the
prediction.

Instance A B C D E F G H I J

Actual [#] 1377 1159 1095 1000 493 1068 821 753 717 430
Predicted [#] 876 845 630 510 403 782 549 442 388 336
Overlap [%] 78 68 57 54 49 80 73 78 41 40

56 7. EVALUATION

A similar effect in the quality of the prediction is observed for instances F till J. However, in addition to
this, it was found that the official summer holiday for the central and southern parts of the Netherlands also
started after the week which is represented by instances F till J. This may explain an even larger difference in
the obtained added value during the end of the week.

The difference in the added value of the anticipatory method therefore appears to be explainable by a
difference in the prediction quality. The prediction method is based on the assumption that similar requests
which previously have occurred according to certain patterns will also occur according to the same patterns
in the future. Therefore, when reality deviates from observed patterns, regardless of the cause, a relatively
worse prediction is generated.

The obtained percentages for the quality of the prediction also appear to be explaining why the antici-
patory method works at all. It can be concluded that a significant amount of information of relatively high
accuracy is provided to the solver in advance. It also shown that when all unknown information is provided
in advance, as is the case in the full information approach, even better results can be obtained.

Finally, the reduction in the number of used vehicles can partly be explained by the fact that less distance
is required to be travelled. However, after visually inspecting the solutions using the tool described in Section
6.4, it is observed that the presence of predicted requests also pushes fulfilling already known requests more
towards the beginning of the day whereby the workload of fulfilling requests appears to be distributed more
evenly along the workday. To illustrate this, how the number of vehicles that are planned to be used during
the entire day, evolves throughout the day, when using the different strategies (on instance F) is shown in
Figure 7.15.

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
Relative frequency of occurence

0

50

100

150

200

250

Nu
m
be
r o

f r
eq
ue
sts

Predicted but not happening
Predicted and actually happening

Figure 7.14: Visualising the quality of the prediction for instance A which is obtained using the anticipatory method.

7.6. DISCUSSION 57

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

20

40

60

80

Ve
hi
cle

s [
#]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure 7.15: Performance of different optimisation strategies on instance F. On the left it is shown how the number of vehicles that is
planned to be used during the entire day evolves throughout the day for each strategy. Each separate line represents a single simulation.
On the right the distributions of the number of used vehicles during the day for each strategy are shown.

8
CONCLUSIONS

The objective of this research was to develop an algorithm which is able to more efficiently control a fleet of
vehicles in a situation where additional customers may request service while vehicles are already driving. The
focus was put on attempting to improve the performance of the fleet of vehicles by making use of historical
data. To do this a new anticipatory insertion method was developed. This approach consists of three parts.

First, a new method for predicting requests based on historical data was introduced. This prediction
method assumes the presence of patterns within the occurrence of similar requests. An easily extendable
clustering method for grouping similar requests was introduced. By making use of intuitive clustering pa-
rameters at multiple levels this method can be tuned to a specific problem context with relative ease. In the
design of this clustering method a large scale application is kept in mind and several measures are taken
to improve the performance in terms of computational efficiency. As a result the proposed method is able
to handle at least hundreds of thousands, and possibly millions, of requests. An intuitive prediction model
which allows for the usage of multiple specific patterns was proposed. The prediction model furthermore
contains a parameter which allows for control over the degree by which patterns should be followed before
requests are actually predicted, essentially allowing control over the reticence of the prediction.

Second, methods for adding, replacing and removing predicted requests are introduced. These methods
ensure that any structure within the solution of a dynamic vehicle routing problem, imposed by the presence
of predicted requests, is preserved while re-optimisation can be performed to let the solution adapt to new
information. Especially the novel replacement method, which makes use of parts of the clustering method
used for predicting requests, is not seen in the literature before.

Third, a parallelised dynamic vehicle routing solver, which makes use of heuristics, was developed. It was
shown that this solver is able to find best known solutions on benchmark problem instances with up to sev-
eral hundreds of requests within seconds. In doing so the implementation is able to significantly outperform
one of the most cited methods in the literature [19] both in terms of solution quality and computation time.
Furthermore, by making use of this solver the research is also one of the first works which combines antici-
patory routing with an adaptive variable large neighbourhood search approach instead of merely using local
search methods which are known to produce significantly lesser solution quality.

Fourth, the entire method is tuned and extensively evaluated on 10 real-world problem instances with up
to 1.655 requests per day. These instances are multiple times larger than the instances which are generally
solved in the literature. It is shown that, on average, it possible to improve upon a competitive reactive ap-
proach by 4,58% in terms of the distance that is required to be travelled. Additionally, 3,35% fewer vehicles
are required to fulfil the same set of requests. It is worth mentioning that the competitive reactive approach
already performs only 15,40 % worse as compared to the also evaluated full information approach. Therefore,
by using the proposed method, merely 10,07% additional distance is required to be travelled as compared to
knowing about all requests in advance.

While doing so it can be concluded that it is indeed possible to improve upon a competitive reactive ap-
proach by making use of historical data. Furthermore, as simultaneously both the number of vehicles as the
total distance which is travelled by these vehicles is reduced, it can be concluded that this can be done with-
out any detrimental side effects, besides having to deal with a relatively more complicated implementation.

59

60 8. CONCLUSIONS

8.1. RECOMMENDATIONS
The presented results have shown that significant theoretical improvements can be achieved in terms of op-
erational efficiency for controlling a fleet of vehicles operated by a transportation company. These improve-
ments could contribute to lowering the cost of transportation and specifically the cost of last-mile delivery
over the road by requiring less distance to be travelled while also requiring fewer vehicles to fulfil the same
set of requests. However, even though this work may be seen a solid proof-of-concept, several shortcomings
and remaining opportunities for further research can still be identified.

A first opportunity is related to the evaluated problem instances. In this research 10 different problem
instances belonging to a transportation company were evaluated. Even though these instances show some
variance in terms of size and days of the week and months of the year that they represent, they still belong to
the same single transportation company. It would be interesting to see how the presented results generalise to
different comparable transportation companies and other problem contexts where the spatial and temporal
properties of requests may be very different. It is worth mentioning that even though a significant amount
of effort has been put into acquiring additional data-sets, only a single problem context could be obtained
as acquiring multiple consecutive weeks or months of request data was found to be relatively hard due to
privacy legislation.

Second, multiple opportunities for further improvement can also be identified related to the used predic-
tion model. First, as only relatively simple patterns were used, more complicated patterns such customers
requesting goods every other week or customers requesting goods every several days could be explored. Also
a prediction model which works on address level, in an attempt to predict individual customer behaviour,
may also yield better results in certain problem contexts. Essentially, further research should focus on de-
signing a more accurate prediction model, possibly by making use of neural networks and other tools related
to machine learning.

Third, the proposed methods for replacing and removing predicted requests could possibly also be im-
proved. For example, when replacing requests, neighbouring request types could also be explored when a re-
placement initially appears not be possible. Also the removal of predicted requests, could perhaps be delayed
by a certain amount so that an actual replacement might be made possible when there is a slight deviation
in the time at which requests become known. Additionally, a modified request classifier may be developed
which also takes the current solution into account and allows for the replacement of a slightly different pre-
dicted request when the solution severely benefits from doing this. However, as all these suggestions are
essentially methods to better deal with an inaccurate prediction, it is believed that the emphasis should lie
on creating a more accurate prediction.

Fourth, a shortcoming is found in the vehicle routing solver which, despite being very fast, appears to
get stuck in different local minima. Therefore, even though it was specifically decided not to do so, imple-
menting a method which also allows for deteriorating solution quality while trying to find a better solution
(such as simulated annealing) may be beneficial when the related challenges described in Section 6.1 can be
addressed.

Finally, a comparison of the proposed method with the Multiple Scenario Approach may also be pursued.
It would be interesting to see whether dividing and dedicating the available computational resources to sep-
arate scenarios, to better incorporate stochastic information, weighs up against being able to dedicate more
resources to the optimisation of a single scenario to achieve better solution quality. Before doing this it worth
mentioning that in Section 7.2 it was seen that when the simulation speed is increased by a factor 30 the solu-
tion quality deteriorates by approximately 10%. This suggests that when optimising 30 scenarios in parallel,
with the same amount of computational resources, using the MSA, the solution quality of each individual
scenario would also be approximately 10% worse as compared to the single scenario which would be used by
the proposed method.

9
ACRONYMS

rfo Relative Frequency of Occurrence. x, xiii, 23, 24, 23, 24, 46, 47, 50, 51, 55

ARIMA Autoregressive Integrated Moving Average. 23

ARMA Autoregressive Moving Average. 23

CVRP Capacitated Vehicle Routing Problem. 3, 4

DOD Degree of Dynamism. 8, 42

DVRP Dynamic Vehicle Routing Problem. 3, 8, 9, 17, 27, 31, 35, 37, 47

eDOD Effective Degree of Dynamism. 8

GA Genetic Algorithms. 7, 9

GSA Global Stochastic Assessment. 10

HACLC Hierarchical Agglomerative Complete Linkage Clustering. 20, 21, 24

LNS Large Neighbourhood Search. 8, 69

LS Local Search. 6, 7, 8, 9, 10, 31, 33, 69, 74, 77

MSA Multiple Scenario Approach. 10, 60

NRR Normalised Request Relatedness. 72, 73

PDPTW Capacitated Pickup and Deliver Vehicle Routing Problem with Time Windows. 8, 37

PDVRP Pickup and Delivery Vehicle Routing Problem. 3, 4

R&R Ruin & Recreate. ix, xiii, 8, 31, 32, 33, 34, 35, 36, 37, 38, 39, 47, 48, 49, 54, 69, 74, 75, 77

SA Simulated Annealing. 7, 8, 10, 35

TS Tabu Search. 7, 8, 10

TSP Travelling Salesman Problem. 3, 4, 10

UTAI Up to and including. 42

VRP Vehicle Routing Problem. 3, 9, 16, 31, 35, 71

VRPTW Vehicle Routing Problem with Time Windows. 3, 4

61

BIBLIOGRAPHY

[1] H. Zou and M. M. Dessouky, A look-ahead partial routing framework for the stochastic and dynamic
vehicle routing problem, Journal on Vehicle Routing Algorithms 1, 73 (2018).

[2] T. Rokicki, E-Commerce Market in Europe in B2C, Information Systems in Management 7, 133 (2018).

[3] M. Parry, O. Canziani, J. Palutikof, P. van der Linden, and C. Hanson, Climate Change 2007: Impacts,
Adaptation and Vulnerability, Tech. Rep. (2007).

[4] M. Barth and K. Boriboonsomsin, Real-World Carbon Dioxide Impacts of Traffic Congestion, Transporta-
tion Research Record 2058, 163 (2008).

[5] G. B. Dantzig and J. H. Ramser, The Truck Dispatching Problem, Management Science 6, 80 (1959).

[6] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Second Edition, MOS-SIAM
Series on Optimization (SIAM, 2014).

[7] Z. Borčinova, Two models of the capacitated vehicle routing problem, Croatian Operational Research Re-
view 8, 463 (2017).

[8] M. M. Solomon and J. Desrosiers, Survey Paper — Time Window Constrained Routing and Scheduling
Problems, Transportation Science 22 (1988), 10.1287/trsc.22.1.1.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Computers and Intractability 24, 90 (1979).

[10] M. W. P. Savelsbergh, Local search in routing problems with time windows, Annals of Operations Research
4, 285 (1985).

[11] D. Bertsimas, P. Jaillet, and S. Martin, Online Vehicle Routing: The Edge of Optimization in Large-Scale
Applications, Operations Research (2018).

[12] D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa, Improved branch-cut-and-price for capacitated vehicle rout-
ing, Mathematical Programming Computation 9, 61 (2017).

[13] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, On-demand high-capacity ride-
sharing via dynamic trip-vehicle assignment, Proceedings of the National Academy of Sciences 114, 462
(2017).

[14] G. Laporte, H. Mercure, and Y. Nobert, An exact algorithm for the asymmetrical capcitated vehicle routing
problem, Networks 16, 33 (1986).

[15] S. Martello, M. Minoux, C. Ribeiro, and G. Laporte, Surveys in Combinatorial Optimization, North-
Holland Mathematics Studies 31 (1987).

[16] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet, Classical and modern heuristics for the vehicle rout-
ing problem, International Transactions in Operational Research 7, 285 (2000).

[17] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, The vehicle routing problem: State of the art clas-
sification and review, Computers and Industrial Engineering 99, 300 (2016).

[18] J. Naoum-Sawaya, R. Cogill, B. Ghaddar, S. Sajja, R. Shorten, N. Taheri, P. Tommasi, R. Verago, and
F. Wirth, Stochastic optimization approach for the car placement problem in ridesharing systems, Trans-
portation Research Part B: Methodological 80, 173 (2015).

[19] S. Ropke and D. Pisinger, An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery
Problem with Time Windows, Transportation Science 40, 393 (2006).

63

http://dx.doi.org/10.1007/s41604-018-0006-5
http://dx.doi.org/10.3141/2058-20
http://dx.doi.org/10.3141/2058-20
http://dx.doi.org/10.1287/mnsc.6.1.80
https://books.google.nl/books?id=AoTTBQAAQBAJ
http://dx.doi.org/ 10.17535/crorr.2017.0029
http://dx.doi.org/ 10.17535/crorr.2017.0029
http://dx.doi.org/10.1287/trsc.22.1.1
http://dx.doi.org/10.1137/1024022
http://dx.doi.org/ 10.1007/BF02022044
http://dx.doi.org/ 10.1007/BF02022044
http://web.mit.edu/jaillet/www/general/online-routing-18.pdf
http://dx.doi.org/10.1007/s12532-016-0108-8
http://dx.doi.org/ 10.1073/pnas.1611675114
http://dx.doi.org/ 10.1073/pnas.1611675114
http://dx.doi.org/10.1016/S0969-6016(00)00003-4
http://dx.doi.org/10.1016/j.cie.2015.12.007
http://dx.doi.org/10.1016/j.trb.2015.07.001
http://dx.doi.org/10.1016/j.trb.2015.07.001

64 BIBLIOGRAPHY

[20] J. F. Cordeau, G. Laporte, M. W. Savelsbergh, and D. Vigo, Vehicle Routing, in Handbooks in Operations
Research and Management Science, Vol. 14 (2007) pp. 367–428, arXiv:arXiv:1011.1669v3 .

[21] O. Bräysy and M. Gendreau, Vehicle Routing Problem with Time Windows, Part I: Route Construction and
Local Search Algorithms, Transportation Science 39, 104 (2005).

[22] C. Groër, B. Golden, and E. Wasil, A library of local search heuristics for the vehicle routing problem,
Mathematical Programming Computation 2, 79 (2010).

[23] S. Kirkpatrick, C. D. J. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671
(1983).

[24] F. Glover, Tabu Search - Part I, ORSA Journal on Computing 1, 135 (1989), arXiv:arXiv:1011.1669v3 .

[25] R. Moretti Branchini, V. Amaral Armentano, and A. Løkketangen, Adaptive granular local search heuristic
for a dynamic vehicle routing problem, Computers and Operations Research 36, 2955 (2009).

[26] J. H. Holland, Genetic Algorithms, Scientific American 267, 66 (1992).

[27] F. T. Hanshar and B. M. Ombuki-Berman, Dynamic vehicle routing using genetic algorithms, Applied
Intelligence 27, 89 (2007).

[28] P. Shaw, A new local search algorithm providing high quality solutions to vehicle routing problems, (1997).

[29] G. Schrimpf, J. Schneider, H. Stamm-wilbrandt, and G. Dueck, Record Breaking Optimization Results
Using the Ruin and Recreate Principle, Journal of Computational Physics 159, 139 (2000).

[30] H. Li and A. Lim, A Metaheuristic for the Pickup and Delivery Problem with Time Windows, in 13th IEEE
International Conference on Tools with Artificial Intelligence (2001).

[31] R. Bent and P. V. Hentenryck, A Two-Stage Hybrid Algorithm for Pickup and Delivery Vehicle Routing
Problems with Time Windows, Computers and Operations Research 33, 875 (2006).

[32] J. Christiaens and G. V. Berghe, A Fresh Ruin & Recreate Implementation for the Capacitated Vehicle Rout-
ing Problem, Tech. Rep. (2016).

[33] J. Christiaens and G. V. Berghe, Slack Induction by String Removals for Vehicle Routing Problems, Tech.
Rep. (2018).

[34] S. Dreiseitl and L. Ohno-Machado, Logistic regression and artificial neural network classification models:
A methodology review, Journal of Biomedical Informatics 35, 352 (2002).

[35] W. W. M. Kool, H. C. Van Hoof, and M. Welling, Attention Solves Your TSP, (2018), arXiv:1803.08475 .

[36] H. N. Psaraftis, M. Wen, and C. A. Kontovas, Dynamic vehicle routing problems: Three decades and count-
ing, Networks 67, 3 (2016).

[37] N. H. M. Wilson and N. J. Colvin, Computer control of the Rochester dial-a-ride system (Massachusetts
Institute of Technology, Center for Transportation Studies, 1977).

[38] K. Lund, B. G. M. Oli, and J. M. Rygaard, Vehicle routing problems with varying degrees of dynamism,
Lyngby, Denmark: IMM, The Department of Mathematical Modelling, Technical University of Denmark
(1996).

[39] R. Baldacci, M. Battarra, and D. Vigo, Operations Research / Computer Science Interfaces Series, Vol. 43
(2008) pp. 3–27.

[40] G. Berbeglia, J. F. Cordeau, and G. Laporte, Dynamic pickup and delivery problems, European Journal of
Operational Research 202, 8 (2010).

[41] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update rules, in Proceedings of the sixteenth
annual ACM symposium on Theory of computing, Vol. 28 (1984) pp. 488–492.

http://dx.doi.org/10.1016/S0927-0507(06)14006-2
http://dx.doi.org/10.1016/S0927-0507(06)14006-2
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1287/trsc.1030.0056
http://dx.doi.org/ 10.1007/s12532-010-0013-5
http://dx.doi.org/10.1287/ijoc.2.1.4
http://arxiv.org/abs/arXiv:1011.1669v3
http://dx.doi.org/10.1016/j.cor.2009.01.014
http://dx.doi.org/10.1038/scientificamerican0792-66
http://dx.doi.org/ 10.1007/s10489-006-0033-z
http://dx.doi.org/ 10.1007/s10489-006-0033-z
http://dx.doi.org/ 10.1006/jcph.1999.6413
http://dx.doi.org/ 10.1109/ICTAI.2001.974461
http://dx.doi.org/ 10.1109/ICTAI.2001.974461
http://dx.doi.org/10.1016/S1532-0464(03)00034-0
http://arxiv.org/abs/1803.08475
http://arxiv.org/abs/1803.08475
http://dx.doi.org/10.1002/net.21628
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/ 10.1145/800057.808718
http://dx.doi.org/ 10.1145/800057.808718

BIBLIOGRAPHY 65

[42] M. Gendreau, G. Laporte, and R. Seguin, Stochastic vehicle routing, European Journal of Operational
Research .

[43] G. Ghiani, E. Manni, A. Quaranta, and C. Triki, Anticipatory algorithms for same-day courier dispatching,
Transportation Research Part E: Logistics and Transportation Review 45, 96 (2009).

[44] S. Ichoua, M. Gendreau, and J. Potvin, Exploiting Knowledge About Future Demands for Real-Time Vehi-
cle Dispatching, Transportation Science 40, 211 (2006).

[45] A. Larsen, O. B. G. Madsen, and M. M. Solomon, The A Priori Dynamic Traveling Salesman Problem with
Time Windows, Transportation Science 38, 459 (2004).

[46] J. van Hemert and J. La Poutre, Dynamic Routing Problems with Fruitful Regions: Models and Evolution-
ary Computation, Parallel Problem Solving from Nature - PPSN VIII , 692 (2004).

[47] R. W. Bent and P. Van Hentenryck, Scenario-Based Planning for Partially Dynamic Vehicle Routing with
Stochastic Customers, Operations Research 52, 977 (2004).

[48] G. Ghiani, E. Manni, and B. W. Thomas, A Comparison of Anticipatory Algorithms for the Dynamic and
Stochastic Traveling Salesman Problem, Transportation Science 46, 374 (2012).

[49] M. Saint-Guillain, Y. Deville, and C. Solnon, A Multistage Stochastic Programming Approach to the Dy-
namic and Stochastic VRPTW - Extended version, in Proceedings of the 12th International Conference on
Integration of AI and OR Techniques in Constraint Programming (2015) pp. 357–374.

[50] B. W. Thomas, Waiting Strategies for Anticipating Service Requests from Known Customer Locations,
Transportation Science 41, 319 (2007).

[51] J. Branke, M. Middendorf, G. Noeth, and M. Dessouky, Waiting Strategies for Dynamic Vehicle Routing,
Transportation Science 39, 298 (2005).

[52] T. Andersson and P. Värbrand, Decision support tools for ambulance dispatch and relocation, Journal of
the Operational Research Society 58, 195 (2007).

[53] A. Wallar, M. V. D. Zee, J. Alonso-Mora, and D. Rus, Vehicle Rebalancing for Mobility-on-Demand Systems
with Ride-Sharing, in IEEE Int. Conf. on Intelligent Transportation Systems (ITSC) (2018).

[54] G. Laporte and J.-F. Cordeau, The dial-a-ride problem: models and algorithms, Annals of Operations
Research 153, 29 (2007).

[55] G. Laporte, R. Musmanno, F. Vocaturo, G. Laporte, R. Musmanno, and F. Vocaturo, An Adaptive Large
Neighbourhood Search Heuristic for the Capacitated Arc-Routing Problem with Stochastic Demands,
Transportation Science 44, 125 (2010).

[56] H.-h. Bock, Origins and extensions of the k -means algorithm in cluster analysis, Electronic Journal for
History of Probability and Statistics 4, 1 (2008).

[57] J. Ward, Hierarchical Grouping to Optimize an Objective Function, Journal of the American Statistical
Association 58, 236 (1963).

[58] S. Zhou, A. Zhou, W. Jin, Y. Fan, and W. Qian, FDBSCAN: a fast DBSCAN algorithm, Ruan Jian Xue Bao
11, 735 (2000).

[59] L. McInnes, J. Healy, and S. Astels, hdbscan: Hierarchical density based clustering, The Journal of Open
Source Software 2, 205 (2017).

[60] E. Jones, T. Oliphant, P. Peterson, and Others, SciPy: Open source scientific tools for Python, .

[61] T. Zhang, R. Ramakrishnan, and M. Livny, BIRCH: an efficient data clustering method for very large
databases, in ACM Sigmod Record, Vol. 25 (ACM, 1996) pp. 103–114.

[62] D. Defays, An efficient algorithm for a complete link method, The Computer Journal 20, 364 (1977).

[63] F. Cox and A. Cox, Multidimensional Scaling, 2 (200).

http://dx.doi.org/10.1016/j.tre.2008.08.003
http://dx.doi.org/ 10.1287/trsc.1050.0114
http://dx.doi.org/ 10.1287/trsc.1030.0070
http://dx.doi.org/10.1007/978-3-540-30217-9
http://dx.doi.org/10.1287/opre.1040.0124
http://arxiv.org/abs/1502.01972
http://arxiv.org/abs/1502.01972
http://dx.doi.org/10.1287/trsc.1060.0183
http://dx.doi.org/10.1287/trsc.1040.0095
http://dx.doi.org/ 10.1057/palgrave.jors.2602174
http://dx.doi.org/ 10.1057/palgrave.jors.2602174
http://dx.doi.org/ 10.1007/s10479-007-0170-8
http://dx.doi.org/ 10.1007/s10479-007-0170-8
http://dx.doi.org/ 10.1287/trsc.1090.0290
http://www.scipy.org/

66 BIBLIOGRAPHY

[64] Admiralty Manual of Navigation, BR Series No. 1 (Stationery Office, 1997) pp. 10–11.

[65] C. Chatfield, The Holt-Winters Forecasting Procedure, Journal of the Royal Statistical Society 27, 264
(1978).

[66] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis (2015).

[67] N. Davey, S. P. Hunt, and R. J. Frank, Time Series Prediction and Neural Networks, Journal of intelligent
and robotic systems 1, 91 (2001).

[68] R. Adhikari, A neural network based linear ensemble framework for time series forecasting, Neurocom-
puting 157, 231 (2015).

[69] R. J. Hyndman and Y. Khandakar, Automatic Time Series Forecasting : The forecast Package for R, Journal
of Statistical Software 27 (2008).

[70] R. Bent and P. Van Hentenryck, Waiting and relocation strategies in online stochastic vehicle routing, in
Proceedings of IJCAI International Joint Conference on Artificial Intelligence (2007) pp. 1816–1821.

[71] G. Clarke and J. W. Wright, Scheduling of Vehicles from a Central Depot to a Number of Delivery Points,
Operations Research 12, 568 (1964).

[72] Y. Nagata and O. Bräysy, A powerful route minimization heuristic for the vehicle routing problem with
time windows, Operations Research Letters 37, 333 (2009).

[73] R. Krishnamurti and G. Laporte, Double-horizon based heuristics for the dynamic pickup and delivery
problem with time windows, Transportation Research Part B: Methodological 38, 669 (2004).

[74] M. M. Solomon, Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Con-
straints, Operations Researchr 35, 254 (1987).

[75] V. Jakubiuk and S. Popovic, Implementation and Performance Analysis of Hash Functions and Collision
Resolutions, (2012).

https://books.google.nl/books?id=xcy4K5BPyg4C
http://dx.doi.org/10.1016/j.neucom.2015.01.012
http://dx.doi.org/10.1016/j.neucom.2015.01.012
http://dx.doi.org/10.1016/j.orl.2009.04.006
http://dx.doi.org/10.1016/j.trb.2003.09.001

Appendices

67

A
IMPLEMENTATION OF THE VEHICLE

ROUTING SOLVER

This chapter will describe how the vehicle routing solver covered in Chapter 6 is implemented in C++, gener-
ally considered to be the fastest programming language available. As described there, to solve vehicle routing
problems the solver goes through three phases namely construction, Local Search and Ruin & Recreate (or
Large Neighbourhood Search). How each individual phase is implemented is covered in the following sec-
tions. Finally, all symbols in this chapter are defined as listed in Table 3.1.

A.1. INSERTION
Insertion heuristics are used to insert unscheduled requests into an existing (empty) solution. In this section
first some general components, which are used by all these insertion heuristics, will be covered in Section
A.1.1. Then three insertion heuristics are covered in sections A.1.2 till A.1.4. Finally, the self-developed inser-
tion heuristic, named "cluster insertion" is covered in Section A.1.5.

A.1.1. GENERAL COMPONENTS
All insertion heuristics make use of two general components. First, all insertion possibilities are computed.
Second, the feasibility of such an insertion possibility is required to be checked. How these two components
are implemented is described below.

COMPUTING INSERTION POSSIBILITIES

All insertion heuristics make use of lists of possibilities where a request can be inserted into an existing solu-
tion. Such a list is created by combining the lists of all possibilities for inserting the request into every existing
route. The number of possibilities for inserting a request into a route wk depends on the number of tasks
zk which are already being fulfilled by that route. The number of insertion possibilities for a pickup task,
belonging to a single request, within route wk is equal to zk +1. The number of insertion possibilities for a
deliver task depends on the insertion location of the pickup task as the deliver task is required to be fulfilled
after its corresponding pickup task. For each insertion possibility of a pickup task at location zk,i the num-
ber of insertion possibilities for the corresponding deliver task is therefore equal to (zk +1)− i . The number
of insertion possibilities |Pk | for a request into a route is therefore as defined by Equation 3.2a. For exam-
ple, a route which is already fulfilling a 100 requests (or contains 200 tasks), therefore has over 20 thousand
insertion possibilities for a single request.

|Pk | =
∑

i ∈0,1, ... (zk−1)
(zk +1)− i ≈ 1

2
z2

k (3.2a)

As the objective of the problem defined in Section 3.1 is to minimise the distance travelled by all vehicles,
the cost of each insertion possibility should reflect the corresponding change in this objective. To achieve
this the cost of each insertion possibility is defined by the sum of the distance of the additional arcs that need
to be traversed minus the sum of the distance of the arcs that do not have to be traversed any more after
inserting a request. For clarity, this sum has been visualised in Figure 2.2. It is worth mentioning that when

69

70 A. IMPLEMENTATION OF THE VEHICLE ROUTING SOLVER

both the pickup task and the deliver task are inserted at the same location, only three additional arcs are
traversed and only one arc does not have to be traversed any more. This means that for the calculation of the
cost of a single request insertion possibility, only 4 to 6 distance values need to be summed and subtracted. As
this is computationally a very cheap operation, all insertion possibilities are first computed (also unfeasible
possibilities) where after all possibilities are sorted and feasibility is only checked for possibilities that are
desired to be realised, minimising the required computational effort.

CHECKING FEASIBILITY OF AN INSERTION POSSIBILITY

For an insertion possibility to be feasible, no capacity and time constraints should be violated. To efficiently
check if time constraints are not violated a "push-forward" and "push-backward" method first described by
Solomon [74] is used. By looping forward over all tasks already scheduled within a route the earliest possible
start esk,l of each task zk,l at position l in task sequence Zk of route wk is computed using the procedure
listed in Algorithm 2. The corresponding latest start l sk,l is computed using the procedure listed in Algorithm
3. In these algorithms are symbols are as defined in Table 3.1. Using the earliest and latest start of two consec-
utive scheduled tasks surrounding an insertion location it can be determined if the two tasks can be shifted
apart far enough to accommodate one of the to-be inserted tasks belonging to a request. Furthermore it is
checked if the to-be inserted task can still start within the bounds of its own time window. To check if no time
constraints are violated when inserting the entire request ri ,us , consisting of both a pickup task and a deliver
task, into route wk , the procedure listed in Algorithm 4 is used. It is worth mentioning that checking the fea-
sibility of an insertion possibility is computationally a relatively expensive operation and should therefore be
performed as little as possible. To reduce the number of times it is performed, pre-checks can be used. These
are introduced in Section A.4.1.

Algorithm 2 Determining the earliest possible start of a scheduled task

1: procedure EARLIESTPOSSIBLESTART(zk,l , wk)
2: j ← getNodeIndexOf(zk,l)
3: if l = 0 then . If it is the first task in the route
4: v1 ← e2n+k + t2n+k, j . Start of the vehicle time window plus the required travel time for travelling

from the vehicle start location to the task location
5: else
6: i ← getNodeIndexOf(zk,l−1)
7: v1 ← esk,l−1 +di + ti , j . The earliest start of the previous task plus the duration of that task plus

the required travel time for travelling from the previous task location to the current task location
8: end if
9: v2 ← e j . The start of the time window of the task

10: return max(v1, v2)
11: end procedure

Algorithm 3 Determining the latest possible start of a scheduled task

1: procedure LATESTPOSSIBLESTART(zk,l , wk)
2: i ← getNodeIndexOf(zk,l)
3: if l = zk −1 then . If it is the last task in the route
4: v1 ← l2n+k − ti ,2n+m+k . End of the vehicle time window minus the required travel time for

travelling from the task location to the vehicle end location
5: else
6: j ← getNodeIndexOf(zk,l+1)
7: v1 ← esk,l+1 − ti , j −di . The latest start of the next task in the sequence Zk minus the required

travel time for travelling from the current task to the next task minus the duration of the current task
8: end if
9: v2 ← li . The end of the time window of the task

10: return min(v1, v2)
11: end procedure

A.1. INSERTION 71

Algorithm 4 Checking time constraints for an insertion possibility

1: procedure EARLIESTPOSSIBLESTART(zk,l , wk)
2: j ← getNodeIndexOf(zk,l)
3: if l = 0 then . If it is the first task in the route
4: v1 ← e2n+k + t2n+k, j . Start of the vehicle time window plus the required travel time for travelling

from the vehicle start location to the task location
5: else
6: i ← getNodeIndexOf(zk,l−1)
7: v1 ← esk,l−1 +di + ti , j . The earliest start of the previous task plus the duration of that task plus

the required travel time for travelling from the previous task location to the current task location
8: end if
9: v2 ← e j . The start of the time window of the task

10: return max(v1, v2)
11: end procedure

A.1.2. SEQUENTIAL CHEAPEST INSERTION
The sequential cheapest insertion heuristic, often also referred to as greedy insertion, is one of the simplest
and fastest heuristics to construct a solution to a VRP. For each unscheduled request it computes all inser-
tion possibilities within the current solution and realises the best possibility if there is one. As this is done
sequentially, for all unscheduled requests, the initial order of the unscheduled requests may impact the fi-
nally obtained solution. The procedure is listed in Algorithm 5. In this algorithm all symbols are as defined in
Section 3.1.

Algorithm 5 Sequential Cheapest Insertion

1: procedure SEQUENTIALCHEAPESTINSERTION(S , Rus)
2: for ri ,us ∈ Rus do
3: P ← computeInsertionPossibilities(ri ,us , S) . Returns a set of all possibilities
4: P ← sortBySmallestToLargestCost(P)
5: p ← findFirstFeasiblePossibility(P) . Returns a single possibility
6: S ← realiseIfFoundPossibility(p , S) . Returns a solution with the inserted request, if possible
7: end for
8: return S
9: end procedure

A.1.3. PARALLEL CHEAPEST INSERTION
The parallel cheapest insertion heuristic expands on the sequential cheapest insertion heuristic by making
the initial order of the unscheduled requests not of importance. This is done by computing all insertion
possibilities for all unscheduled requests before each insertion. This ensures that each time the cheapest
feasible insertion possibility across all unscheduled requests is realised. This comes at the cost of having to
compute and handle a much larger list of insertion possibilities before each insertion. The procedure is listed
in Algorithm 6. In this algorithm all symbols are as defined in Section 3.1. It is worth mentioning that after an
insertion possibility has been realised into a single route, all insertion possibilities for all other unscheduled
requests, in all other routes, remain unaffected. Because of this, an efficient implementation should only
recompute possibilities for the remaining unscheduled requests in the affected route.

72 A. IMPLEMENTATION OF THE VEHICLE ROUTING SOLVER

Algorithm 6 Parallel Cheapest Insertion

1: procedure PARALLELCHEAPESTINSERTION(S , Rus)
2: while nus > 0 do
3: P ← {} . Initialise an empty set
4: for ri ,us ∈ Rus do
5: P ← P ∪ computeInsertionPossibilities(ri ,us , S) . Append all possibilities for a request
6: end for
7: P ← sortBySmallestToLargestCost(P)
8: p ← findFirstFeasiblePossibility(P) . Returns a single possibility
9: S ← realiseIfFoundPossibility(p , S) . Returns a solution with the inserted request, if possible

10: end while
11: return S
12: end procedure

A.1.4. REGRET INSERTION
The regret insertion heuristic tries to improve upon the parallel cheapest insertion heuristic by ’looking
ahead’ and not simply choosing the cheapest insertion possibility for the current solution. The heuristic
does this by, for each unscheduled request, besides computing the cheapest feasible insertion possibility,
also computing subsequent feasible insertion possibilities. For each unscheduled request, the cost of each
cheapest feasible insertion possibility is then defined as the cost difference between that possibility and one
of its subsequent feasible insertion possibilities. Basically the cost for inserting each unscheduled requests is
set equal to the possible increase in cost which may be encountered when the first possibility is not realisable
any more after another unscheduled request has been inserted. This explains the name of the heuristic as the
request with the largest possible regret, from not inserting at that moment, is inserted. The procedure of this
heuristic is listed in Algorithm 7. In this algorithm all symbols are as defined in Section 3.1.

Algorithm 7 Regret Insertion

1: procedure KREGRETINSERTION(S , Rus , k)
2: while nus > 0 do
3: P ← {} . Initialise an empty set
4: for ri ,us ∈ Rus do
5: Q ← computeInsertionPossibilities(ri ,us , S) . Compute all possibilities for this request
6: Q ← sortBySmallestToLargestCost(Q)
7: p ← findFirstFeasiblePossibility(Q) . Returns a single possibility
8: pr eg r et ← findKthFirsFeasiblePossibility(Q , k) . Returns the k-th feasible possibility
9: cr eg r et ← computeDifferenceInCostBetween(p , pr eg r et)

10: p ← changeCostOfInsertionPossibilityTo(p , cr eg r et)
11: P ← P ∪ p
12: end for
13: P ← sortBySmallestToLargestCost(P)
14: p ← getFirst(P) . Returns a single possibility
15: S ← realisePossibility(p , S) . Returns a solution with the inserted request
16: end while
17: return S
18: end procedure

A.1.5. CLUSTER INSERTION
A new construction heuristic named cluster insertion is developed. Even though initial solutions may be
constructed using more conventional heuristics such as sequential or parallel cheapest insertion, an attempt
is made at improving upon these heuristics by making use of a measure for the relatedness of requests. Before
the procedure is described several concepts are first introduced. First, the Normalised Request Relatedness
(NRR) measure is introduced. Second, how seed requests are selected is described. Then, how cluster sizes
for seed requests are determined using the NRR measure is described.

A.1. INSERTION 73

DETERMINING REQUEST RELATEDNESS

A variety of methods can be used to determine the relatedness of two requests. It may be said that two re-
quests are related when both their pickup and deliver locations are quite similar. However, when the goal is
to find requests which may be served efficiently by the same vehicle, other options arise as well. In the case
of having two requests R1 and R2 consisting of a pickup tasks P1 and P2 and deliver tasks D1 and D2 there
are in fact six possibilities for the ordering of these tasks are visited so that R2 may be considered as being
related to R1. These possibilities, together with their requirements for R2 to be considered as being related
to R1, are listed in Table A.1. However, given that all four tasks also have time windows, some orderings may
not be feasible in certain cases. This feasibility is checked by making use of the methods described in Section
A.1.1. For the feasible orderings the relatedness is defined as the additionally required travelling distance as
compared to only travelling from P1 to D1. The relatedness of request a R2 to R1 is defined as the minimum
additionally required travelling distance of all feasible orderings.

By computing this request relatedness of all requests, towards all other requests within the problem def-
inition, a request relatedness matrix can be obtained. This matrix is then normalised to only contain values
between zero and one. Finally by subtracting each value from one, a Normalised Request Relatedness (NRR)
measure is obtained which equals one when two requests are very related and zero when two requests are
unrelated. When the ordering of the tasks is not feasible for any of the six possibilities, the normalised relat-
edness of two requests is defined as zero, which states that they are incompatible.

Table A.1: Possibilities for the ordering of the tasks of two requests to determine if R2 is related to R1

Order of tasks Requirements for request R2 considered to be related to R1

P1, P2, D1, D2 The travelling distance from P1 to P2 to D1 should not be much larger than the travelling
distance from P1 to D1. The the travelling distance from D1 to D2 should be small.

P1, P2, D2, D1 The travelling distance from P1 to P2 to D2 to D1 should not be much larger than the
travelling distance from P1 to D1.

P1, D1, P2, D2 The the travelling distance from D1 to P2 should be small. The the travelling distance
from P2 to D2 should be small.

P2, P1, D1, D2 The the travelling distance from P2 to P1 should be small. The the travelling distance
from D1 to D2 should be small.

P2, P1, D2, D1 The the travelling distance from P2 to P1 should be small. The travelling distance from
P1 to D2 to D1 should not be much larger than the travelling distance from P1 to D1.

P2, D2, P1, D1 The the travelling distance from P2 to D2 should be small. The the travelling distance
from D2 to P1 should be small.

SELECTING SEED REQUESTS

The request which has the highest average relatedness to a certain number of unscheduled requests and is
least related to any of the already scheduled requests is chosen as a seed request. For each request the five
requests which have the highest normalised relatedness are selected. The normalised relatedness of these
requests is averaged. Then, the highest relatedness to any of the already scheduled is determined. This value
is subtracted from the average highest relatedness to the five selected unscheduled requests. This final value
is calculated for each unscheduled request and the request which has the highest value is chosen as the next
seed request. Additionally, when this the value falls below a threshold (for example 0.05), no further seed
requests may selected.

DETERMINING CLUSTER SIZE

The cluster size of a seed request is determined by making use of the normalised request matrix which was
covered in Section A.1.5. The cluster size is defined as the number of unscheduled requests which have a
normalised request relatedness, towards this request, which is larger than a certain relatively high threshold
(for example 0.95). Furthermore, to prevent clusters becoming to small or to big, the number of requests can
constrained to be within a certain range (for example larger than 5 requests and smaller than 5% of the total
number of requests within the problem definition).

74 A. IMPLEMENTATION OF THE VEHICLE ROUTING SOLVER

PROCEDURE

The entire procedure for cluster insertion is listed in Algorithm 8. The algorithm first tries to find a seed
request. It then inserts this request into a new route and then inserts the related requests (or in other words,
the cluster of the seed request) to fill up the created route. A new seed request is then chosen and the process
is repeated. When no new seed request is found the remaining unscheduled requests are inserted using
sequential cheapest insertion as described in Section A.1.2.

Algorithm 8 Cluster Insertion

1: procedure CLUSTERINSERTION(S , Rus , n)
2: while nus > 0 do
3: if there are no empty routes remaining then
4: return S
5: else
6: wk ← getEmptyRoute(S) . Returns an empty route
7: end if
8: ri ,us ← getSeedRequestWhichIsMostRelatedToFirstNButLeastRelatedTo(Rus , Rs , n)
9: if ri ,us was not found then

10: S ← sequentialCheapestInsertion(S, Rus)
11: return S
12: end if
13: P ← computeInsertionPossibilitiesInRoute(ri ,us , wk) . Returns a set of all possibilities
14: P ← sortBySmallestToLargestCost(P)
15: p ← findFirstFeasiblePossibility(P) . Returns a single possibility
16: S ← realisePossibility(p , S) . Returns a solution with the inserted request
17: n2 ← determineClusterSizeOf(ri ,us) . Returns a number
18: Ri ,usr el ated ← getNUnscheduledRequestsMostRelatedTo(ri ,us , n2) . Returns a set of requests
19: for ri ,usr el ated ∈ Ri ,usr el ated do
20: P ← computeInsertionPossibilitiesInRoute(ri ,us , wk) . Returns a set of all possibilities
21: P ← sortBySmallestToLargestCost(P)
22: p ← findFirstFeasiblePossibility(P) . Returns a single possibility
23: S ← realisePossibility(p , S) . Returns a solution with the inserted request
24: end for
25: end while
26: return S
27: end procedure

A.2. LOCAL SEARCH
Three local search operators are implemented. The shift and rearrange operators have a shared implemen-
tation. The two-opt operator is implemented seperatly. The three implementations are described in the
following subsections.

COMBINED SHIFT AND REARRANGE OPERATOR

To implement the combined shift and rearrange operator, methods for scheduling and unscheduling requests
are required. These methods are essentially the same methods that need to be implemented for Ruin & Recre-
ate iterations. It therefore makes sense to reuse these methods when they do not perform much worse, in
terms of computational efficiency, as compared to methods which may be implemented specifically for the
purpose of Local Search. The implementation for the combined shift and rearrange operator is therefore as
listed in Algorithm 9. The algorithm sequentially unschedules each scheduled request and reschedules it at
the best location at that moment, within any of the routes. During a single iteration each requests is resched-
uled a single time. The operator continues with more iterations until not a single solution improvement was
found during the previous iteration.

A.3. RUIN & RECREATE 75

Algorithm 9 Combined Shift and Rearrange Local Search Operator

1: procedure SHIFTREARRANGEOPERATOR(S)
2: while S improved during the previous iteration do
3: for ri ,s ∈ Rs do
4: S ← unscheduleRequest(S, ri ,s) .

5: S ← sequentialCheapestInsertion(S, [ri ,us])
6: end for
7: end while
8: return S
9: end procedure

2-OPT OPERATOR

The 2-opt operator is implemented by attempting to reversing each possible set of tasks within each route.
When reversing a set of tasks yields a solution improvement this solution is used for further modifications.
The implementation continues to try every set of tasks in a route until no solution improvement was found
during a previous iteration. The entire procedure is thereby as listed in Algorithm 10.

Algorithm 10 2-Opt Local Search Operator

1: procedure 2OPTOPERATOR(S)
2: for wk ∈W ∈ S do . For each route
3: while S improved during the previous iteration do
4: for zk,l ∈ Zk do . For each task in this route
5: for zk,m ∈ Zk do . For each task in this route
6: if m ≤ l then
7: continue
8: end if
9: Siteration ← reverseTasksFromToIn(zk,l , zk,m , S)

10: if Siteration < S then
11: S ← move(Siteration)
12: end if
13: end for
14: end for
15: end while
16: end for
17: return S
18: end procedure

A.3. RUIN & RECREATE
As described in Section 6.2.3 the R&R procedure works by removing requests and then reinserting them. The
procedure is implemented as listed in Algorithm 11.

The procedure makes use of a variable search neighbourhood. In the implementation this behaviour is
controlled by making use of a variable t which is defined as the number of iterations since the last solution
improvement was found.

Similarly, the use of local search operators also depends on this variable. Initially, no local search opera-
tors are used. After a 100 iterations without improvement the relatively fast two-opt operator is used and only
after a 1000 iterations without improvement the much slower shift and rearrange operators are used.

The size of the search neighbourhood is also determined based on the number of iterations since the last
solution improvement was found. The number of requests and routes that are removed during each iteration
is as defined by Equations 3.2b and 3.2c. These equations state that initially only a small part of the solution
may be ruined. After a larger number of iterations without a solution improvement (t) a larger part of the
solution may be ruined. However, this part is limited to be at most equal to 30% of the scheduled requests
or 30% of the used routes. Furthermore, to increase randomness, actually a random number between these
upper and lower bounds is chosen for the number of request or routes that are actually being removed.

76 A. IMPLEMENTATION OF THE VEHICLE ROUTING SOLVER

n = rand(5,min(round(0.30|Rs |),50+ t)) (3.2b)

n = rand(1,min(round(0.30|W |),3+round(t/10))) (3.2c)

Algorithm 11 Ruin and Recreate

1: procedure RUINANDRECREATE(S)
2: t ← 0 . The number of iterations since the last solution improvement was found
3: while no stopping condition has been reached do
4: removalMethod ← random(allRemovalMethods)
5: if t < 1000 then
6: insertionMethod ← sequentialCheapestInsertion
7: else
8: insertionMethod ← random(allInsertionMethods)
9: end if

10:

11: Siteration ← copy(S)
12: n ← determineNumberOfRequestsOrRoutesToRemove(Siteration, t)
13: Siteration ← removalMethod(Siteration, n)
14: Siteration ← randomlyOrderUnscheduledRequests(Siteration)
15: Siteration ← insertionMethod(Siteration, n)
16:

17: if t > 100 or Siteration < S then
18: if t > 1000 then
19: Siteration ← shiftRearrangeOperator(Siteration)
20: Siteration ← twoOptOperator(Siteration)
21: else
22: Siteration ← twoOptOperator(Siteration)
23: end if
24: end if
25: if Siteration < S then
26: S ← copy(Siteration)
27: t ← 0
28: else
29: t++
30: end if
31: end while
32: return S
33: end procedure

A.4. REDUCING ROUTES
The algorithm used for the reduction of routes is as listed in Algorithm 12.

A.4. REDUCING ROUTES 77

Algorithm 12 Reducing Routes

1: procedure REDUCINGROUTES(S)
2: Sprocedure ← copy(S)
3: Sprocedure ← removeRandomRoute(Sprocedure)
4: while no stopping conditions is reached do
5: for ri ,us ∈ Rus do . For each unscheduled request
6: Sprocedure ← sequentialCheapestInsertion(Sprocedure, [ri ,us])
7: if ri ,us could not be inserted then
8: Sprocedure ← leastHardestRemovalInsertion(Sprocedure, [ri ,us])
9: if ri ,us could not be inserted then

10: increaseHardnessOf(ri ,us)
11: Sprocedure ← removeRandomRequest(Sprocedure)
12: end if
13: end if
14: if |Rus | = 0 then . If no more unscheduled requests remain
15: S ← copy(Sprocedure)
16: Sprocedure ← removeRandomRoute(Sprocedure)
17: end if
18: end for
19: end while
20: return S
21: end procedure

A.4.1. PERFORMANCE IMPROVEMENTS
A significant amount of time is spent on improving the implementation and general performance of the
solver. Several measures which are taken to improve the performance are described in the following sections.

HANDLING MEMORY

As C++ allows any implementation to interact with random access memory on a relatively low level, signifi-
cant performance improvements can be achieved by doing this as efficiently as possible. Numerous measures
are taken to do this. For example, lists of request insertion possibilities (as described in Section A.1.1) are ac-
tually sorted from largest to smallest cost. By sorting in this way it is possible to delete the first insertion
possibility (if it was found to be infeasible) without having to move up all other possibilities one position in
memory. Also by constructing objects in vectors as often as possible "in place" and using pointers as often as
possible, entire objects are copied and moved as little as possible.

PRE-CHECKS

A pre-check is a computationally cheap operation which checks, in advance, if a specific constraint is not vi-
olated when a to be generated insertion possibility (as described in Section A.1.1) would be realised. By mak-
ing use of these checks, the number of actually generated (infeasible) insertion possibilities can be heavily
reduced. This generally means much smaller lists of insertion possibilities are required to be stored, handled
and to be fully checked for feasibility when trying to find the best feasible insertion possibility at any mo-
ment. Multiple pre-checks are used at various locations to ensure as many infeasible insertion possibilities
are disregarded as quickly as possible.

REQUEST INSERTION POSSIBILITY CACHE

When performing a significant amount of Ruin & Recreate iterations (in the order of 105 - 107) the process
of inserting a certain request into a certain route has often already occurred during a previous iteration. To
make use of this knowledge and significantly speed up the process of inserting these requests into these
routes, the request insertion possibility cache was introduced. This cache eliminates the computation of
insertion possibilities for each request that was previously inserted into the same route. This is done by, each
time a request is inserted, storing the realised insertion possibility (which is feasible and best according to
the objectives) together with a hashed key of the request and route combination. By doing so a single best
possibility for inserting a request into a certain route can directly be presented when the situation occurs
again. This cache was implemented using a custom implementation of a map in C++, named hopscotch map

78 A. IMPLEMENTATION OF THE VEHICLE ROUTING SOLVER

[75]. This custom map implementation is required for performance reasons as look ups occur millions of
times a second given that millions of insertion possibilities are evaluated each second. It is worth mentioning
that even though this cache has the most impact during many Ruin & Recreate iterations, it is also used during
Local Search and construction.

B
SCALABILITY OF CLUSTERING

IMPLEMENTATIONS

Figure B.1: Scalability of clustering implementations (2019; https://hdbscan.readthedocs.io/en/latest/performance_and_
scalability.html)

79

https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html
https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html

C
RESULTS ON LI & LIM PDPTW INSTANCES

C.1. INSTANCES WITH APPROXIMATELY 50 REQUESTS

Table C.1: Results on Li & Lim PDPTW benchmark instances with approximately 50 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC101 53 10 828.94 7 10 828.94 0.00 0.00
LC102 53 10 828.94 5 10 828.94 0.00 0.00
LC103 52 9 1035.35 3648 9 1035.35 0.00 0.00
LC104 53 9 860.01 228 9 860.01 0.00 0.00
LC105 53 10 828.94 11 10 828.94 0.00 0.00
LC106 53 10 828.94 19 10 828.94 0.00 0.00
LC107 53 10 828.94 9 10 828.94 0.00 0.00
LC108 53 10 826.44 17 10 826.44 0.00 0.00
LC109 53 9 1000.60 15766 9 1000.60 0.00 0.00
LC201 51 3 591.56 27 3 591.56 0.00 0.00
LC202 51 3 591.56 64 3 591.56 0.00 0.00
LC203 51 3 591.17 84 3 591.17 0.00 0.00
LC204 51 3 590.60 92 3 590.60 0.00 0.00
LC205 51 3 588.88 69 3 588.88 0.00 0.00
LC206 51 3 588.49 70 3 588.49 0.00 0.00
LC207 51 3 588.29 92 3 588.29 0.00 0.00
LC208 51 3 588.32 77 3 588.32 0.00 0.00
LR101 53 19 1650.80 66 19 1650.80 0.00 0.00
LR102 55 17 1487.57 145 17 1487.57 0.00 0.00
LR103 52 13 1292.68 114 13 1292.68 0.00 0.00
LR104 52 9 1013.39 415 9 1013.39 0.00 0.00
LR105 53 14 1377.11 101 14 1377.11 0.00 0.00
LR106 52 12 1252.62 64 12 1252.62 0.00 0.00
LR107 52 10 1111.31 75 10 1111.31 0.00 0.00
LR108 50 9 968.97 53 9 968.97 0.00 0.00
LR109 53 11 1208.96 238 11 1208.96 0.00 0.00
LR110 52 10 1159.35 11621 10 1159.35 0.00 0.00
LR111 54 10 1108.90 166 10 1108.90 0.00 0.00
LR112 53 9 1003.77 321 9 1003.77 0.00 0.00
LR201 51 4 1253.23 85 4 1253.23 0.00 0.00

Continued on next page

81

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/100-customers/

82 C. RESULTS ON LI & LIM PDPTW INSTANCES

Table C.1 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LR202 50 3 1197.67 156 3 1197.67 0.00 0.00
LR203 51 3 949.40 168 3 949.40 0.00 0.00
LR204 50 2 849.05 228 2 849.05 0.00 0.00
LR205 51 3 1054.02 143 3 1054.02 0.00 0.00
LR206 50 3 931.63 154 3 931.63 0.00 0.00
LR207 51 2 903.06 203 2 903.06 0.00 0.00
LR208 50 2 734.85 234 2 734.85 0.00 0.00
LR209 51 3 930.59 295 3 930.59 0.00 0.00
LR210 51 3 964.22 134 3 964.22 0.00 0.00
LR211 50 2 911.52 20638 2 911.52 0.00 0.00
LRC101 53 14 1708.80 77 14 1708.80 0.00 0.00
LRC102 53 12 1558.07 160 12 1558.07 0.00 0.00
LRC103 53 11 1258.74 98 11 1258.74 0.00 0.00
LRC104 54 10 1128.40 100 10 1128.40 0.00 0.00
LRC105 54 13 1637.62 215 13 1637.62 0.00 0.00
LRC106 53 11 1424.73 163 11 1424.73 0.00 0.00
LRC107 53 11 1230.14 183 11 1230.14 0.00 0.00
LRC108 52 10 1147.43 421 10 1147.43 0.00 0.00
LRC201 51 4 1406.94 61 4 1406.94 0.00 0.00
LRC202 51 3 1374.27 474 3 1374.27 0.00 0.00
LRC203 51 3 1089.07 176 3 1089.07 0.00 0.00
LRC204 51 3 818.66 165 3 818.66 0.00 0.00
LRC205 51 4 1302.20 140 4 1302.20 0.00 0.00
LRC206 51 3 1159.03 79 3 1159.03 0.00 0.00
LRC207 51 3 1062.05 115 3 1062.05 0.00 0.00
LRC208 51 3 852.76 163 3 852.76 0.00 0.00
Average 51.86 1052 0.00 0.00
Standard deviation 1.22 3690 0.00 0.00

C.2. INSTANCES WITH APPROXIMATELY 100 REQUESTS

Table C.2: Results on Li & Lim PDPTW benchmark instances with approximately 100 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/200-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_2_1 106 20 2704.57 36 20 2704.57 0.00 0.00
LC1_2_2 105 19 2764.56 125 19 2764.56 0.00 0.00
LC1_2_3 103 17 3134.08 60264 17 3127.78 0.00 0.20
LC1_2_4 105 17 2724.87 60148 17 2693.41 0.00 1.17
LC1_2_5 107 20 2702.05 99 20 2702.05 0.00 0.00
LC1_2_6 107 20 2701.04 107 20 2701.04 0.00 0.00
LC1_2_7 107 20 2701.04 92 20 2701.04 0.00 0.00
LC1_2_8 105 20 2689.83 60122 19 3354.27 5.26 -19.81
LC1_2_9 105 18 2724.24 7240 18 2724.24 0.00 0.00
LC1_2_10 104 17 3180.83 60250 17 2942.13 0.00 8.11
LC2_2_1 102 6 1931.44 72 6 1931.44 0.00 0.00
LC2_2_2 102 6 1881.40 103 6 1881.40 0.00 0.00
LC2_2_3 101 6 1844.33 305 6 1844.33 0.00 0.00
LC2_2_4 102 6 1767.12 782 6 1767.12 0.00 0.00
LC2_2_5 101 6 1891.21 56 6 1891.21 0.00 0.00

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/200-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/200-customers/

C.3. INSTANCES WITH APPROXIMATELY 200 REQUESTS 83

Table C.2 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC2_2_6 101 6 1857.78 215 6 1857.78 0.00 0.00
LC2_2_7 101 6 1850.13 197 6 1850.13 0.00 0.00
LC2_2_8 102 6 1824.34 160 6 1824.34 0.00 0.00
LC2_2_9 101 6 1854.21 207 6 1854.21 0.00 0.00
LC2_2_10 101 6 1817.45 199 6 1817.45 0.00 0.00
LR1_2_1 105 20 4819.12 174 20 4819.12 0.00 0.00
LR1_2_2 105 17 4666.09 60117 17 4621.21 0.00 0.97
LR1_2_3 104 15 3823.95 60141 14 4402.38 7.14 -13.14
LR1_2_4 105 11 2880.65 60216 10 3027.06 10.00 -4.84
LR1_2_5 106 16 4785.38 60130 16 4760.18 0.00 0.53
LR1_2_6 107 14 4231.58 60159 13 4800.94 7.69 -11.86
LR1_2_7 103 12 3617.50 60144 12 3543.36 0.00 2.09
LR1_2_8 103 10 2689.43 60160 9 2759.32 11.11 -2.53
LR1_2_9 105 14 4411.30 60202 13 5050.75 7.69 -12.66
LR1_2_10 104 11 4049.23 60191 11 3664.08 0.00 10.51
LR2_2_1 101 5 4073.10 65 5 4073.10 0.00 0.00
LR2_2_2 101 4 3796.00 1067 4 3796.00 0.00 0.00
LR2_2_3 101 4 3098.36 667 4 3098.36 0.00 0.00
LR2_2_4 101 3 2644.65 60113 3 2486.00 0.00 6.38
LR2_2_5 102 4 3438.39 236 4 3438.39 0.00 0.00
LR2_2_6 100 4 3201.54 60120 3 4518.93 33.33 -29.15
LR2_2_7 101 3 3176.26 60205 3 3098.35 0.00 2.51
LR2_2_8 100 3 2123.78 60091 2 2450.47 50.00 -13.33
LR2_2_9 100 3 4182.41 60361 3 3922.11 0.00 6.64
LR2_2_10 101 3 3361.78 60249 3 3254.83 0.00 3.29
LRC1_2_1 106 19 3606.06 107 19 3606.06 0.00 0.00
LRC1_2_2 103 15 3711.37 60113 15 3671.02 0.00 1.10
LRC1_2_3 105 13 3182.35 60121 13 3154.92 0.00 0.87
LRC1_2_4 106 10 2631.82 42730 10 2631.82 0.00 0.00
LRC1_2_5 107 16 3715.81 851 16 3715.81 0.00 0.00
LRC1_2_6 105 17 3368.66 60137 16 3572.16 6.25 -5.70
LRC1_2_7 106 15 3491.44 60183 14 3666.34 7.14 -4.77
LRC1_2_8 104 14 3086.66 60117 13 3145.74 7.69 -1.88
LRC1_2_9 104 14 3120.24 60136 13 3157.34 7.69 -1.17
LRC1_2_10 105 13 2873.84 60127 12 2928.90 8.33 -1.88
LRC2_2_1 101 6 3690.10 60201 6 3595.18 0.00 2.64
LRC2_2_2 102 5 3467.61 60189 5 3158.25 0.00 9.80
LRC2_2_3 101 4 2886.49 60201 4 2881.99 0.00 0.16
LRC2_2_4 101 4 2184.53 60076 3 2849.43 33.33 -23.33
LRC2_2_5 101 5 2776.93 173 5 2776.93 0.00 0.00
LRC2_2_6 101 5 2707.96 153 5 2707.96 0.00 0.00
LRC2_2_7 101 4 3028.34 60222 4 3016.53 0.00 0.39
LRC2_2_8 101 4 2399.89 1322 4 2399.89 0.00 0.00
LRC2_2_9 101 4 2208.49 2197 4 2208.49 0.00 0.00
LRC2_2_10 101 3 2546.93 60245 3 2437.88 0.00 4.47
Average 103.08 33086 3.38 -1.40
Standard deviation 2.20 29456 8.88 6.86

C.3. INSTANCES WITH APPROXIMATELY 200 REQUESTS

84 C. RESULTS ON LI & LIM PDPTW INSTANCES

Table C.3: Results on Li & Lim PDPTW benchmark instances with approximately 200 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_4_1 211 40 7152.06 66 40 7152.06 0.00 0.00
LC1_4_2 211 40 7151.26 60209 38 8007.79 5.26 -10.70
LC1_4_3 210 35 8191.99 60141 32 9163.09 9.38 -10.60
LC1_4_4 208 31 6877.66 60119 N/A N/A N/A N/A
LC1_4_5 211 40 7150.00 165 40 7150.00 0.00 0.00
LC1_4_6 211 40 7154.02 372 40 7154.02 0.00 0.00
LC1_4_7 211 40 7149.43 6098 40 7149.43 0.00 0.00
LC1_4_8 208 39 7111.16 457 39 7111.16 0.00 0.00
LC1_4_9 209 37 7403.24 60237 36 7451.20 2.78 -0.64
LC1_4_10 208 36 7187.79 60143 35 7325.01 2.86 -1.87
LC2_4_1 203 12 4116.33 82 12 4116.33 0.00 0.00
LC2_4_2 202 12 4144.29 938 12 4144.29 0.00 0.00
LC2_4_3 203 12 5065.11 60132 12 4407.71 0.00 14.91
LC2_4_4 203 12 4038.00 60122 N/A N/A N/A N/A
LC2_4_5 203 12 4030.63 387 12 4030.63 0.00 0.00
LC2_4_6 203 12 3900.29 469 12 3900.29 0.00 0.00
LC2_4_7 204 12 3962.51 902 12 3962.51 0.00 0.00
LC2_4_8 203 12 3844.45 53053 12 3844.45 0.00 0.00
LC2_4_9 205 12 4188.93 6257 12 4188.93 0.00 0.00
LC2_4_10 202 12 3828.44 2011 12 3828.44 0.00 0.00
LR1_4_1 208 40 10639.75 6704 40 10639.75 0.00 0.00
LR1_4_2 209 32 10220.29 60248 30 11026.32 6.67 -7.31
LR1_4_3 208 24 9148.32 60126 22 9291.25 9.09 -1.54
LR1_4_4 210 18 6913.01 60128 15 7546.42 20.00 -8.39
LR1_4_5 206 30 10775.42 60127 28 11374.06 7.14 -5.26
LR1_4_6 211 27 9623.20 60236 24 9872.59 12.50 -2.53
LR1_4_7 208 21 7996.53 60273 18 8999.97 16.67 -11.15
LR1_4_8 211 16 6222.67 60125 14 5848.60 14.29 6.40
LR1_4_9 209 26 10289.25 60222 24 9862.65 8.33 4.33
LR1_4_10 209 21 8292.11 60213 20 8364.66 5.00 -0.87
LR2_4_1 201 8 9726.88 28325 8 9726.88 0.00 0.00
LR2_4_2 201 7 10115.11 60185 7 9440.93 0.00 7.14
LR2_4_3 202 7 8877.10 60117 5 10658.64 40.00 -16.71
LR2_4_4 202 5 5882.67 60081 4 6403.06 25.00 -8.13
LR2_4_5 202 7 8903.20 60225 6 10084.44 16.67 -11.71
LR2_4_6 201 6 7971.40 60192 5 9044.03 20.00 -11.86
LR2_4_7 203 5 7518.80 60120 4 8263.26 25.00 -9.01
LR2_4_8 202 4 6028.08 60088 4 5303.74 0.00 13.66
LR2_4_9 202 6 9121.43 60190 6 7930.55 0.00 15.02
LR2_4_10 202 6 7095.69 60289 5 7786.13 20.00 -8.87
LRC1_4_1 208 37 8971.61 60168 36 9124.52 2.78 -1.68
LRC1_4_2 209 33 7996.08 60141 31 8346.06 6.45 -4.19
LRC1_4_3 206 25 7516.09 60103 24 7819.90 4.17 -3.88
LRC1_4_4 207 19 5848.39 60066 19 5804.47 0.00 0.76
LRC1_4_5 207 35 8636.49 60177 32 8867.38 9.38 -2.60
LRC1_4_6 208 32 8142.96 60180 30 8423.70 6.67 -3.33
LRC1_4_7 211 31 7870.98 60173 28 8037.87 10.71 -2.08
LRC1_4_8 208 30 7543.31 60102 26 7982.45 15.38 -5.50

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/

C.4. INSTANCES WITH APPROXIMATELY 300 REQUESTS 85

Table C.3 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LRC1_4_9 209 28 8108.34 60162 25 8145.44 12.00 -0.46
LRC1_4_10 209 27 7228.23 60251 23 7222.97 17.39 0.07
LRC2_4_1 203 12 7503.01 60215 11 10155.25 9.09 -26.12
LRC2_4_2 203 10 7657.69 60171 10 7214.99 0.00 6.14
LRC2_4_3 201 9 5634.10 60081 8 6483.48 12.50 -13.10
LRC2_4_4 203 6 4780.10 60100 5 5300.42 20.00 -9.82
LRC2_4_5 203 11 6120.13 60216 10 7404.23 10.00 -17.34
LRC2_4_6 203 10 5919.18 60155 9 6337.08 11.11 -6.59
LRC2_4_7 202 9 5684.00 60198 8 6322.35 12.50 -10.10
LRC2_4_8 201 8 5197.74 60106 7 5778.36 14.29 -10.05
LRC2_4_9 203 7 6143.11 60105 6 6529.63 16.67 -5.92
LRC2_4_10 203 7 5252.68 60173 6 5551.07 16.67 -5.38
Average 205.72 46438 8.18 -3.22
Standard deviation 3.48 24326 8.58 7.35

C.4. INSTANCES WITH APPROXIMATELY 300 REQUESTS

Table C.4: Results on Li & Lim PDPTW benchmark instances with approximately 300 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/600-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_6_1 315 60 14095.64 162 60 14095.64 0.00 0.00
LC1_6_2 314 59 14161.46 60206 57 15048.16 3.51 -5.89
LC1_6_3 314 52 14440.58 60084 49 15543.34 6.12 -7.09
LC1_6_4 314 49 14904.97 60081 47 13343.69 4.26 11.70
LC1_6_5 314 60 14086.30 293 60 14086.30 0.00 0.00
LC1_6_6 314 60 14090.79 2989 60 14090.79 0.00 0.00
LC1_6_7 314 60 14083.76 7547 60 14083.76 0.00 0.00
LC1_6_8 317 59 14625.38 60074 58 14880.70 1.72 -1.72
LC1_6_9 316 56 15172.14 60072 54 14652.14 3.70 3.55
LC1_6_10 319 55 14813.63 60078 52 14899.31 5.77 -0.58
LC2_6_1 304 19 7977.98 160 19 7977.98 0.00 0.00
LC2_6_2 302 19 8253.67 60157 18 9914.10 5.56 -16.75
LC2_6_3 304 18 7738.75 60112 17 8718.22 5.88 -11.23
LC2_6_4 306 18 9816.20 60131 17 7902.66 5.88 24.21
LC2_6_5 304 19 8047.37 24275 19 8047.37 0.00 0.00
LC2_6_6 305 19 8109.27 60118 18 8859.78 5.56 -8.47
LC2_6_7 304 19 8010.02 60109 19 7997.96 0.00 0.15
LC2_6_8 306 18 7738.05 60112 18 7579.93 0.00 2.09
LC2_6_9 307 19 8140.14 60110 18 8864.29 5.56 -8.17
LC2_6_10 304 18 7484.04 60124 17 7965.41 5.88 -6.04
LR1_6_1 317 59 22962.19 60117 59 22821.65 0.00 0.62
LR1_6_2 315 45 21360.01 60086 45 20144.05 0.00 6.04
LR1_6_3 317 37 19413.11 60073 37 17945.97 0.00 8.18
LR1_6_4 313 28 13776.27 60097 28 13191.79 0.00 4.43
LR1_6_5 313 42 22129.43 60107 37 25225.93 13.51 -12.28
LR1_6_6 315 34 22157.83 60106 31 22188.80 9.68 -0.14
LR1_6_7 312 28 16190.77 60108 24 18076.96 16.67 -10.43
LR1_6_8 314 21 12318.10 60118 18 12255.29 16.67 0.51
LR1_6_9 312 35 21376.73 60111 31 23239.79 12.90 -8.02

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/600-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/600-customers/

86 C. RESULTS ON LI & LIM PDPTW INSTANCES

Table C.4 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LR1_6_10 314 30 18193.46 60146 26 19028.25 15.38 -4.39
LR2_6_1 304 11 22862.32 60264 11 21904.86 0.00 4.37
LR2_6_2 304 10 19810.58 60123 9 22310.56 11.11 -11.21
LR2_6_3 301 9 16086.77 60126 7 18337.46 28.57 -12.27
LR2_6_4 301 6 11604.34 60072 6 10792.55 0.00 7.52
LR2_6_5 303 9 20544.69 60188 9 19411.73 0.00 5.84
LR2_6_6 302 8 19412.71 60174 7 20702.64 14.29 -6.23
LR2_6_7 303 7 16360.85 60128 6 15526.81 16.67 5.37
LR2_6_8 303 6 11197.90 60076 4 12739.25 50.00 -12.10
LR2_6_9 302 9 18983.39 60180 8 18718.63 12.50 1.41
LR2_6_10 302 8 16495.39 60183 7 16805.06 14.29 -1.84
LRC1_6_1 313 54 17789.13 60228 52 18293.72 3.85 -2.76
LRC1_6_2 315 46 16093.73 60076 43 16576.53 6.98 -2.91
LRC1_6_3 314 36 14472.69 60094 36 13987.02 0.00 3.47
LRC1_6_4 317 25 11203.75 60119 25 10852.31 0.00 3.24
LRC1_6_5 315 49 16847.47 60246 45 17678.51 8.89 -4.70
LRC1_6_6 315 47 16987.57 60172 42 17079.65 11.90 -0.54
LRC1_6_7 315 42 15892.70 60105 37 16053.13 13.51 -1.00
LRC1_6_8 311 38 15405.24 60109 33 15812.61 15.15 -2.58
LRC1_6_9 314 38 14788.82 60231 33 15788.24 15.15 -6.33
LRC1_6_10 314 33 13867.90 60106 29 14584.41 13.79 -4.91
LRC2_6_1 303 16 15969.35 60138 16 14665.50 0.00 8.89
LRC2_6_2 303 13 15808.99 60116 13 13958.91 0.00 13.25
LRC2_6_3 303 10 15662.63 60092 10 12741.64 0.00 22.92
LRC2_6_4 302 8 11190.23 60143 7 10536.79 14.29 6.20
LRC2_6_5 303 14 13902.90 60133 13 14733.31 7.69 -5.64
LRC2_6_6 303 13 12642.68 60219 12 15200.75 8.33 -16.83
LRC2_6_7 305 11 12042.10 60108 10 15032.16 10.00 -19.89
LRC2_6_8 304 10 12619.63 60130 9 13836.07 11.11 -8.79
LRC2_6_9 302 10 12821.34 60195 9 13455.55 11.11 -4.71
LRC2_6_10 303 9 12019.17 60173 7 14141.16 28.57 -15.01
Average 308.97 54708 7.87 -1.62
Standard deviation 5.78 16495 8.88 8.48

C.5. INSTANCES WITH APPROXIMATELY 400 REQUESTS

Table C.5: Results on Li & Lim PDPTW benchmark instances with approximately 400 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_8_1 420 80 25184.38 482 80 25184.38 0.00 0.00
LC1_8_2 423 80 25489.83 60054 77 26864.13 3.90 -5.12
LC1_8_3 417 70 27135.93 60058 63 27261.46 11.11 -0.46
LC1_8_4 416 61 24488.03 60088 60 22744.15 1.67 7.67
LC1_8_5 421 80 25211.22 4803 80 25211.22 0.00 0.00
LC1_8_6 421 80 25164.25 2602 80 25164.25 0.00 0.00
LC1_8_7 420 80 25158.38 2298 80 25158.38 0.00 0.00
LC1_8_8 419 79 25871.52 60073 78 25348.45 1.28 2.06
LC1_8_9 418 75 25993.03 60076 72 26085.76 4.17 -0.36
LC1_8_10 419 75 27222.75 60128 69 29227.07 8.70 -6.86

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/400-customers/

C.5. INSTANCES WITH APPROXIMATELY 400 REQUESTS 87

Table C.5 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC2_8_1 405 24 11687.06 231 24 11687.06 0.00 0.00
LC2_8_2 408 25 12581.14 60076 24 13990.57 4.17 -10.07
LC2_8_3 407 25 13547.50 60133 24 13085.26 4.17 3.53
LC2_8_4 407 24 14377.37 60148 23 13297.66 4.35 8.12
LC2_8_5 405 25 12329.80 60097 25 12298.33 0.00 0.26
LC2_8_6 406 25 12063.73 60081 24 12645.72 4.17 -4.60
LC2_8_7 408 25 11854.44 16845 25 11854.44 0.00 0.00
LC2_8_8 406 24 11953.85 60119 24 11454.33 0.00 4.36
LC2_8_9 404 24 11629.52 4577 24 11629.41 0.00 0.00
LC2_8_10 406 25 12285.38 60122 23 12459.43 8.70 -1.40
LR1_8_1 421 80 40424.84 60103 80 39291.32 0.00 2.88
LR1_8_2 417 59 36762.53 60128 59 34313.36 0.00 7.14
LR1_8_3 418 44 32445.39 60121 44 29637.24 0.00 9.48
LR1_8_4 417 27 21694.40 60110 25 20877.41 8.00 3.91
LR1_8_5 419 55 38386.62 60099 48 41284.95 14.58 -7.02
LR1_8_6 420 45 34582.39 60134 39 37276.52 15.38 -7.23
LR1_8_7 416 34 27967.35 60127 30 28180.30 13.33 -0.76
LR1_8_8 419 24 20156.02 60137 20 20037.07 20.00 0.59
LR1_8_9 417 45 36258.66 60250 40 38592.65 12.50 -6.05
LR1_8_10 420 35 29707.88 60122 31 30769.55 12.90 -3.45
LR2_8_1 405 15 36906.58 60182 14 46452.00 7.14 -20.55
LR2_8_2 404 13 31312.14 60125 11 40855.72 18.18 -23.36
LR2_8_3 404 11 26646.58 60089 9 30151.50 22.22 -11.62
LR2_8_4 405 8 21298.38 60068 6 21956.26 33.33 -3.00
LR2_8_5 403 12 38300.04 60199 11 36980.88 9.09 3.57
LR2_8_6 403 10 32704.95 60117 9 29832.94 11.11 9.63
LR2_8_7 404 8 29232.07 60088 7 27499.87 14.29 6.30
LR2_8_8 403 7 18475.34 60075 N/A N/A N/A N/A
LR2_8_9 403 11 31360.33 60200 N/A N/A N/A N/A
LR2_8_10 405 10 29662.88 60169 8 32588.26 25.00 -8.98
LRC1_8_1 411 69 32604.32 60076 66 32300.25 4.55 0.94
LRC1_8_2 415 59 28331.50 60100 56 28004.68 5.36 1.17
LRC1_8_3 421 50 25200.71 60112 48 24575.40 4.17 2.54
LRC1_8_4 418 34 18984.36 60151 34 18405.31 0.00 3.15
LRC1_8_5 418 65 31758.76 60094 58 31406.11 12.07 1.12
LRC1_8_6 422 60 28790.56 60089 54 29407.52 11.11 -2.10
LRC1_8_7 415 54 28409.02 60109 50 29378.53 8.00 -3.30
LRC1_8_8 422 50 26816.80 60127 45 26606.54 11.11 0.79
LRC1_8_9 418 51 25806.07 60144 44 25286.53 15.91 2.05
LRC1_8_10 420 45 24918.41 60111 40 24388.40 12.50 2.17
LRC2_8_1 406 21 21459.41 60282 20 23074.75 5.00 -7.00
LRC2_8_2 405 19 19981.17 60121 17 22686.62 11.76 -11.93
LRC2_8_3 404 16 17612.84 60073 14 20939.66 14.29 -15.89
LRC2_8_4 404 11 17146.05 60089 11 15260.02 0.00 12.36
LRC2_8_5 405 18 20277.02 60177 16 24404.69 12.50 -16.91
LRC2_8_6 402 17 19338.97 60119 15 22992.93 13.33 -15.89
LRC2_8_7 401 16 19579.82 60118 13 29162.55 23.08 -32.86
LRC2_8_8 403 14 19249.33 60119 11 25179.67 27.27 -23.55
LRC2_8_9 403 13 19922.69 60124 10 24786.05 30.00 -19.62
LRC2_8_10 404 11 19154.07 60145 9 21005.25 22.22 -8.81
Average 411.60 53413 9.27 -3.15
Standard deviation 7.31 18196 8.45 9.01

88 C. RESULTS ON LI & LIM PDPTW INSTANCES

C.6. INSTANCES WITH APPROXIMATELY 500 REQUESTS

Table C.6: Results on Li & Lim PDPTW benchmark instances with approximately 500 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_10_1 527 100 42488.66 2117 100 42488.66 0.00 0.00
LC1_10_2 523 97 43026.54 62697 94 44622.39 3.19 -3.58
LC1_10_3 524 88 42767.65 60140 79 45623.05 11.39 -6.26
LC1_10_4 519 78 42062.97 62628 74 37649.21 5.41 11.72
LC1_10_5 529 100 42477.41 1713 100 42477.41 0.00 0.00
LC1_10_6 527 101 42838.39 3929 101 42838.39 0.00 0.00
LC1_10_7 526 100 42856.95 62446 100 42854.99 0.00 0.00
LC1_10_8 526 99 42711.60 62072 98 42949.56 1.02 -0.55
LC1_10_9 523 95 43478.19 62531 91 42663.13 4.40 1.91
LC1_10_10 523 94 43939.44 63804 87 45661.01 8.05 -3.77
LC2_10_1 507 30 16879.24 588 30 16879.24 0.00 0.00
LC2_10_2 508 32 19179.13 61753 30 21515.47 6.67 -10.86
LC2_10_3 508 30 20482.41 60855 30 17765.65 0.00 15.29
LC2_10_4 509 30 19967.17 60116 29 17994.30 3.45 10.96
LC2_10_5 507 32 18162.13 60733 31 17137.53 3.23 5.98
LC2_10_6 509 32 18003.10 60642 31 17194.13 3.23 4.70
LC2_10_7 509 32 18147.22 60915 31 18749.10 3.23 -3.21
LC2_10_8 507 31 17839.77 60730 30 17015.41 3.33 4.84
LC2_10_9 511 33 20175.24 60133 30 18429.66 10.00 9.47
LC2_10_10 504 31 19171.67 62281 29 17222.05 6.90 11.32
LR1_10_1 527 100 59069.52 62116 100 56744.91 0.00 4.10
LR1_10_2 520 80 53380.35 60128 80 49452.07 0.00 7.94
LR1_10_3 523 55 46283.96 60093 54 41768.24 1.85 10.81
LR1_10_4 519 32 33096.87 60112 27 31677.08 18.52 4.48
LR1_10_5 524 67 59321.33 60209 58 63134.76 15.52 -6.04
LR1_10_6 524 54 50248.67 62814 47 51246.67 14.89 -1.95
LR1_10_7 523 41 41492.09 60177 35 40439.63 17.14 2.60
LR1_10_8 523 29 30720.68 60125 24 30678.26 20.83 0.14
LR1_10_9 523 54 51696.31 62595 48 54812.46 12.50 -5.69
LR1_10_10 519 44 47312.74 61225 38 47945.15 15.79 -1.32
LR2_10_1 503 19 45420.21 60794 17 64486.92 11.76 -29.57
LR2_10_2 504 16 52497.36 60203 14 55369.13 14.29 -5.19
LR2_10_3 505 12 41904.50 60107 10 44925.60 20.00 -6.72
LR2_10_4 504 9 30159.10 60092 8 28171.94 12.50 7.05
LR2_10_5 504 15 56567.37 60523 13 58411.09 15.38 -3.16
LR2_10_6 506 13 47326.37 60107 11 47796.20 18.18 -0.98
LR2_10_7 505 11 38824.21 60091 8 44342.46 37.50 -12.44
LR2_10_8 504 8 28208.51 60118 6 27755.19 33.33 1.63
LR2_10_9 504 15 52186.18 60450 12 53508.74 25.00 -2.47
LR2_10_10 502 12 48522.24 60110 10 47288.78 20.00 2.61
LRC1_10_1 527 86 49914.71 60114 82 49175.44 4.88 1.50
LRC1_10_2 523 74 46513.67 60126 71 45583.72 4.23 2.04
LRC1_10_3 524 54 37744.53 60083 53 35831.40 1.89 5.34
LRC1_10_4 521 41 28676.91 60042 40 27487.53 2.50 4.33
LRC1_10_5 526 80 51707.65 62524 72 50628.04 11.11 2.13
LRC1_10_6 523 75 45395.58 62528 67 45154.07 11.94 0.53
LRC1_10_7 523 69 42270.42 62160 60 41890.14 15.00 0.91

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/

C.6. INSTANCES WITH APPROXIMATELY 500 REQUESTS 89

Table C.6 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LRC1_10_8 522 65 42195.41 62440 55 42101.70 18.18 0.22
LRC1_10_9 524 64 41498.98 60182 53 39477.68 20.75 5.12
LRC1_10_10 522 56 37223.11 61834 47 37667.36 19.15 -1.18
LRC2_10_1 507 23 35624.01 60619 22 34767.39 4.55 2.46
LRC2_10_2 505 21 38316.70 60125 19 39496.45 10.53 -2.99
LRC2_10_3 507 18 31572.85 60055 16 28055.82 12.50 12.54
LRC2_10_4 506 13 26721.34 60110 11 23806.88 18.18 12.24
LRC2_10_5 504 19 33515.74 60195 16 41944.26 18.75 -20.09
LRC2_10_6 504 18 30802.28 60509 17 31003.36 5.88 -0.65
LRC2_10_7 505 17 34706.78 60658 15 34596.92 13.33 0.32
LRC2_10_10 504 14 30243.70 60982 11 30181.34 27.27 0.21
Average 514.98 56902 10.67 0.67
Standard deviation 9.18 14955 8.75 7.49

Table C.7: Results on Li & Lim PDPTW benchmark instances with approximately 500 requests. The column R [#] states the number of
requests within the problem instance. The column V [#]states number of vehicles that are used in the found solution. The column D [-]
states the distance travelled by all vehicles in the found solution. A bold type face indicates that the best known solution was found. The
columns Vbk [#] and Dbk [-] state the same objective values for the best known solution as of 17-09-2018 gathered from https://www.
sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/. The final two columns state the percent deviations of
both objective values of the found solutions as compared to the best known solutions.

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LC1_10_1 527 100 42488.66 1276 100 42488.66 0.00 0.00
LC1_10_2 523 97 42969.97 603749 94 44622.39 3.19 -3.70
LC1_10_3 524 86 42725.86 603203 79 45623.05 8.86 -6.35
LC1_10_4 519 76 40338.53 602640 74 37649.21 2.70 7.14
LC1_10_5 529 100 42477.41 1372 100 42477.41 0.00 0.00
LC1_10_6 527 101 42838.39 2780 101 42838.39 0.00 0.00
LC1_10_7 526 100 42854.99 250119 100 42854.99 0.00 0.00
LC1_10_8 526 99 42711.60 602357 98 42949.56 1.02 -0.55
LC1_10_9 523 94 42694.07 603091 91 42663.13 3.30 0.07
LC1_10_10 523 93 43654.73 602768 87 45661.01 6.90 -4.39
LC2_10_1 507 30 16879.24 528 30 16879.24 0.00 0.00
LC2_10_2 508 32 17598.61 601781 30 21515.47 6.67 -18.20
LC2_10_3 508 31 21706.83 604484 30 17765.65 3.33 22.18
LC2_10_4 509 30 20297.52 604852 29 17994.30 3.45 12.80
LC2_10_5 507 31 17137.53 306696 31 17137.53 0.00 0.00
LC2_10_6 509 31 17194.13 336152 31 17194.13 0.00 0.00
LC2_10_7 509 33 18989.83 601394 31 18749.10 6.45 1.28
LC2_10_8 507 31 17811.69 601833 30 17015.41 3.33 4.68
LC2_10_9 511 31 17807.98 602129 30 18429.66 3.33 -3.37
LC2_10_10 504 30 17548.98 600800 29 17222.05 3.45 1.90
LR1_10_1 527 100 57147.84 601026 100 56744.91 0.00 0.71
LR1_10_2 520 80 52285.19 604978 80 49452.07 0.00 5.73
LR1_10_3 523 54 46980.35 604011 54 41768.24 0.00 12.48
LR1_10_4 519 31 32924.57 604318 27 31677.08 14.81 3.94
LR1_10_5 524 63 58936.15 602673 58 63134.76 8.62 -6.65
LR1_10_6 524 53 49483.24 602050 47 51246.67 12.77 -3.44
LR1_10_7 523 38 41139.19 602825 35 40439.63 8.57 1.73
LR1_10_8 523 28 30896.85 606715 24 30678.26 16.67 0.71
LR1_10_9 523 52 52144.79 602119 48 54812.46 8.33 -4.87
LR1_10_10 519 43 46186.81 602077 38 47945.15 13.16 -3.67
LR2_10_1 503 18 58663.50 600995 17 64486.92 5.88 -9.03
LR2_10_2 504 15 54591.39 601786 14 55369.13 7.14 -1.40

Continued on next page

https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/1000-customers/

90 C. RESULTS ON LI & LIM PDPTW INSTANCES

Table C.7 - Continued from previous page

Instance R [#] V [#] D [-] tc [ms] Vbk [#] Dbk [-] ∆V [%] ∆D [%]
LR2_10_3 505 12 39786.25 601902 10 44925.60 20.00 -11.44
LR2_10_4 504 9 30150.57 600263 8 28171.94 12.50 7.02
LR2_10_5 504 15 54208.77 601102 13 58411.09 15.38 -7.19
LR2_10_6 506 12 51260.14 601950 11 47796.20 9.09 7.25
LR2_10_7 505 10 38672.96 600380 8 44342.46 25.00 -12.79
LR2_10_8 504 7 29440.62 600168 6 27755.19 16.67 6.07
LR2_10_9 504 14 53526.07 601174 12 53508.74 16.67 0.03
LR2_10_10 502 12 44609.52 601174 10 47288.78 20.00 -5.67
LRC1_10_1 527 87 49574.08 601194 82 49175.44 6.10 0.81
LRC1_10_2 523 73 46127.36 605962 71 45583.72 2.82 1.19
LRC1_10_3 524 54 37569.48 607187 53 35831.40 1.89 4.85
LRC1_10_4 521 40 28719.89 600197 40 27487.53 0.00 4.48
LRC1_10_5 526 80 51771.93 602997 72 50628.04 11.11 2.26
LRC1_10_6 523 75 46243.46 601240 67 45154.07 11.94 2.41
LRC1_10_7 523 70 42212.48 602342 60 41890.14 16.67 0.77
LRC1_10_8 522 64 41387.93 603014 55 42101.70 16.36 -1.70
LRC1_10_9 524 61 40110.95 602290 53 39477.68 15.09 1.60
LRC1_10_10 522 55 37199.98 601573 47 37667.36 17.02 -1.24
LRC2_10_1 507 22 35962.26 600992 22 34767.39 0.00 3.44
LRC2_10_2 505 21 35800.54 603447 19 39496.45 10.53 -9.36
LRC2_10_3 507 16 32880.54 605519 16 28055.82 0.00 17.20
LRC2_10_4 506 12 26671.48 600133 11 23806.88 9.09 12.03
LRC2_10_5 504 18 39118.11 600999 16 41944.26 12.50 -6.74
LRC2_10_6 504 17 34007.31 600789 17 31003.36 0.00 9.69
LRC2_10_7 505 17 32491.90 601034 15 34596.92 13.33 -6.08
LRC2_10_10 504 13 28393.91 602066 11 30181.34 18.18 -5.92
Average 514.98 545184 7.76 0.39
Standard deviation 9.18 162792 6.74 7.02

D
REMAINING RESULTS ON COMPARING

STRATEGIES

D.1. INSTANCE A

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

70000

80000

90000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.1: Performance of different optimisation strategies on instance A. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

91

92 D. REMAINING RESULTS ON COMPARING STRATEGIES

D.2. INSTANCE B

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

70000

80000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.2: Performance of different optimisation strategies on instance B. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

D.3. INSTANCE C

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

70000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.3: Performance of different optimisation strategies on instance C. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

D.4. INSTANCE D 93

D.4. INSTANCE D

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.4: Performance of different optimisation strategies on instance D. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

D.5. INSTANCE E

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

5000

10000

15000

20000

25000

30000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.5: Performance of different optimisation strategies on instance E. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

94 D. REMAINING RESULTS ON COMPARING STRATEGIES

D.6. INSTANCE G

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.6: Performance of different optimisation strategies on instance G. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

D.7. INSTANCE H

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.7: Performance of different optimisation strategies on instance H. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

D.8. INSTANCE J 95

D.8. INSTANCE J

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

5000

10000

15000

20000

25000

30000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.8: Performance of different optimisation strategies on instance J. On the left it is shown how the distance that is planned to be
travelled during the entire day evolves during the day for each strategy. Each separate line represents a single simulation. On the right
the distributions of the total distance travelled at the end of the day for each strategy are shown.

96 D. REMAINING RESULTS ON COMPARING STRATEGIES

D.9. INSTANCE B - REAL-TIME

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

50000

60000

70000

80000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.9: Performance of different optimisation strategies on instance B when using a simulation speed equal to 1. On the left it is
shown how the distance that is planned to be travelled during the entire day evolves during the day for each strategy. Each separate line
represents a single simulation. On the right the distributions of the total distance travelled at the end of the day for each strategy are
shown.

D.10. INSTANCE H - REAL-TIME 97

D.10. INSTANCE H - REAL-TIME

06:
00

07:
00

08:
00

09:
00

10:
00

11:
00

12:
00

13:
00

14:
00

15:
00

16:
00

17:
00

18:
00

Time of the day

10000

20000

30000

40000

Di
sta

nc
e [

km
]

Reactive + Cheapest Insertion (CI)
Reactive + Ruin & Recreate (RR)
Anticipatory (A)
Full information (FI)

FI A RR CI

Strategy

Figure D.10: Performance of different optimisation strategies on instance H when using a simulation speed equal to 1. On the left it is
shown how the distance that is planned to be travelled during the entire day evolves during the day for each strategy. Each separate line
represents a single simulation. On the right the distributions of the total distance travelled at the end of the day for each strategy are
shown.

	Abstract
	Preface
	List of Figures
	List of Tables
	Introduction
	Research Objective
	Contributions
	Chapter Overview

	Related Work
	Vehicle Routing Problem
	Problem Variations
	Problem Complexity
	Solution Methods

	Dynamic Vehicle Routing
	Degree of Dynamism
	Performance Evaluation
	Solution Methods

	Anticipatory Routing
	Anticipatory Insertion
	Multiple Scenario Approach
	Waiting- and Relocation Strategies

	Preliminaries
	Problem Definition
	Static Problem
	Dynamic Problem

	Method Overview

	Predicting Requests
	Generating Request Types
	Choosing a Clustering Method
	Hierarchical Agglomerative Complete Linkage Clustering
	Improving Clustering Speed
	Clustering on Multiple Levels
	Clustering Parameters

	Generating Requests
	Choosing a Prediction Model
	Relative Frequency of Occurrence
	Predicting the Number of Occurrences
	Creating Representations

	Horizon and Frequency

	Incorporating Predicted Requests
	Adding Predicted Requests
	Replacing Predicted Requests
	Removing Predicted Requests
	Made Known Removal
	To be Realised Removal

	Vehicle Routing Solver
	Considerations
	Design
	Construction
	Local Search
	Ruin-And-Recreate
	Reducing Routes

	Validation
	Experimental Setup
	Results

	Visualisation

	Evaluation
	Experimental Set-Up
	Instances
	Historical Data Analysis
	Method Parameters
	Strategies
	Implementation
	Simulation
	Hardware

	Sensitivity to Simulation Speed
	Sensitivity to Minimum Relative Frequency of Occurrence
	Sensitivity to Clustering Parameters
	Comparing Strategies
	Discussion

	Conclusions
	Recommendations

	Acronyms
	Bibliography
	Appendices
	Implementation of the Vehicle Routing Solver
	Insertion
	General Components
	Sequential Cheapest Insertion
	Parallel Cheapest Insertion
	Regret Insertion
	Cluster Insertion

	Local Search
	Ruin & Recreate
	Reducing Routes
	Performance Improvements

	Scalability of Clustering Implementations
	Results on Li & Lim PDPTW instances
	Instances with approximately 50 requests
	Instances with approximately 100 requests
	Instances with approximately 200 requests
	Instances with approximately 300 requests
	Instances with approximately 400 requests
	Instances with approximately 500 requests

	Remaining results on Comparing Strategies
	Instance A
	Instance B
	Instance C
	Instance D
	Instance E
	Instance G
	Instance H
	Instance J
	Instance B - Real-time
	Instance H - Real-time

