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“Science is the belief in the ignorance of experts.” 1

— Richard Feynman

“You must trust and believe in people or life becomes impossible.” 2

— Anton Chekhov
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Abstract

This thesis presents the decoupled copula model, a novel theoretical framework for
aggregating expert judgments in structured expert judgment (SEJ) studies. The
model’s key innovation lies in transforming expert assessments into a ”decoupled
space” where systematic biases can be identified and corrected while capturing po-
tential inter-expert dependencies. Unlike existing Bayesian SEJ methods, which are
limited to linear error metrics, our framework accommodates flexible dependency
measures with rigorous theoretical criteria and practical tests for their evaluation.
While previous Bayesian approaches acknowledged the possibility of bias correction,
they lacked practical procedures for implementing these corrections using historical
test data. Our framework addresses these limitations by enabling flexible metric
choices for measuring biases and dependencies. Captured biases include under-
and overconfidence as well as consistent over- and underestimation. Additionally,
we introduce novel calibration criteria that have been proven necessary for perfect
aggregation methods, along with interpretable calibration metrics that measure dis-
crepancies from these criteria. Empirical evaluation on 47 real-world SEJ studies
demonstrates superior calibration properties while maintaining competitive predic-
tive performance compared to established methods like the Classical Model. The
empirical analysis reveals that inter-expert dependency modeling provides limited
benefits, suggesting that systematic bias correction, rather than dependency mod-
eling, drives improvements in aggregation performance in practical applications of
our model.
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Chapter 1

Introduction

Expert judgment plays a critical role in decision-making under uncertainty, particu-
larly in domains where empirical data is scarce, expensive, or unavailable [1]. In such
situations, Structured Expert Judgement (SEJ) methods are employed to formally
elicit and combine the beliefs of subject matter experts [1]–[5]. A key principle of
SEJ is that both the elicitation and aggregation of expert opinions should follow
a clearly defined and transparent process, designed to reduce cognitive biases and
promote the clarity and reproducibility of the results [6]. Rather than relying on
ad hoc or informal consultations, SEJ encourages a systematic approach that makes
expert input suitable for scientific analysis. Building on this systematic foundation,
this work presents a novel belief aggregation model that can (1) capture inter-expert
dependencies, (2) correct for various experts’ biases, (3) accommodate different types
of quantities for measuring these biases and dependencies, and (4) provide both the-
oretical criteria and practical tests for evaluating these quantities. Here, ’bias’ refers
to the distributional difference between a question-invariant quantity derived from
an expert’s stated belief and the expected distribution of that same quantity if the
expert’s belief perfectly reflected the true underlying distribution.

This contribution sits within a diverse landscape of aggregation methodologies
that can broadly be classified into behavioral and mathematical aggregation strate-
gies [7], the latter being the focus of this work. Behavioral aggregation involves
procedures aimed at reaching a consensus through direct or mediated group inter-
action [3], or facilitated discussions. While these methods can benefit from expert
dialogue and the exchange of justifications, they are often susceptible to group
dynamics, social pressures, and conformity effects, which may compromise the inde-
pendence and diversity of opinions [8], [9]. In contrast, mathematical aggregation
applies formal statistical or probabilistic rules to combine individual assessments
without requiring interaction among experts. These methods, such as the Classical
Model (CM) [1] or the Jouini-Clemen Model (JC) model [2], offer transparency,
reproducibility, and resistance to social bias but come with their own assumptions
about the nature of the expert distributions, dependencies, and weighting schemes.
For a comprehensive overview of aggregation approaches, see, for instance, [10].

Among mathematical aggregation strategies, pooling algorithms are a widely
adopted approach due to their computational simplicity, proven robustness, and
interpretability [11]. Linear pooling combines expert assessments as weighted aver-
ages, formally expressed as 𝑓DM(𝑞) = ∑𝐸

𝑒=1 𝑤𝑒𝑓𝑒(𝑞), where 𝑓𝑒(𝑞) represents expert
𝑒’s subjective probability density for a random variable 𝑄, and 𝑤𝑒 are aggrega-
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CHAPTER 1. INTRODUCTION

tion weights. Alternatively, logarithmic pooling uses multiplicative combinations:
𝑓DM(𝑞) = 𝑘 ∏𝐸

𝑒=1(𝑓𝑒(𝑞))𝛼𝑒 , where 𝑘 is a normalization constant and 𝛼𝑒 are expert-
specific exponents. While these methods offer transparency and computational effi-
ciency, they typically assume independence between expert assessments, potentially
overlooking correlations that may arise from shared training, common information
sources, or similar analytical approaches [12]. Furthermore, by their mathematical
construction, they cannot directly adjust for expert biases, such as consistent over- or
underestimation of their believed median, on an individual level, but they can limit
the influence of experts with undesirable biases. Two notable linear pooling methods
are the widely used CM, where the weights are based on the experts’ performance
on a set of test questions, and the Equal Weights (EW) scheme where 𝑤𝑒 = 1/𝐸 for
all experts [13].

In contrast to the postulated aggregation structure of linear or algorithmic pool-
ing, Bayesian aggregation methods treat expert opinions as data to inform posterior
beliefs about the quantity of interest [11]. The specific structure of a Bayesian DM
varies depending on the specific model assumptions made to connect the belief dis-
tributions to the quantity of interest [2], [4]. Notable examples of Bayesian models
include Winkler’s model [4] and the copula-based JC model. Both of these mod-
els try to address the limitation of expert independence that is present in existing
linear pooling models. Winkler’s model focuses on the means of expert beliefs and
models the linear errors between experts through a multivariate distribution. This
has, among others, the consequence that all posterior densities will be unimodal.
JC’s approach uses, in contrast, the medians of expert assessments to model expert
dependencies through the difference between the median and the realization. Instead
of assuming a multivariate normal form, JC employs copulas to combine arbitrarily
shaped beliefs together with inter-expert dependency modeling through the choice
of copula.

For both of these models, however, several important limitations constrain their
practical applicability. First, both Winkler’s and JC’s methods model expert depen-
dencies exclusively through linear error structures, which may or may not be the
most reliable way to capture expert dependencies. Second, while both approaches ac-
knowledge that model parameters could be learned from historical performance data,
they lack explicit numerical procedures for doing so. Third, neither model attempts
to correct for potential systemic biases in experts, such as under- or overconfidence.

To address these limitations, this work introduces the decoupled copula model for
expert belief aggregation that extends beyond the constraints of existing Bayesian
approaches. The proposed method offers several key contributions: First, it provides
flexibility in modeling expert dependencies through various statistical measures
beyond linear error structures. Second, it presents explicit numerical procedures
for learning model parameters from historical expert performance data. Third, the
work includes both theoretical criteria and empirical tests for comparing different
dependency measures, enabling systematic evaluation of aggregation performance.

A comparison of key characteristics across different expert judgment models is
presented in Chapter 1, highlighting how the proposed decoupled approach addresses
the limitations of existing methods.

The remainder of this thesis is structured as follows: Chapter 2 provides back-
ground on SEJ and establishes the mathematical foundation for copula-based aggre-
gation. Chapter 3 presents formal DM definitions and a novel calibration metric to

12



Table 1.1: Comparison of expert judgment models: Winkler’s model, the Jouini-
Clemen model, the Classical model and, the decoupled copula model.

Model Type Dependencies
captured through

Mono or
multi modal

Numerical
procedures

Winkler’s Bayesian Linear error Mono N/A
JC’s Copula Bayesian Linear error Multi N/A
Classical Linear N/A Multi Exists
Decoupled Bayesian Flexible Multi Exists

evaluate DMs. Chapter 4 presents the decoupled copula model with its theoretical
derivation and numerical procedures for parameter estimation. Chapter 5 presents
empirical evaluation and benchmarking of the decoupled copula model against estab-
lished methods using data from real expert judgment studies. Chapter 6 discusses
the implications of the findings, limitations and, future research directions.

The implementation of the methods and computational procedures described
throughout this thesis are available in the accompanying code repository1.

1Available at: https://github.com/HugoSave/Decoupled
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Chapter 2

Background

This chapter establishes the theoretical foundation and practical context necessary
for developing the decoupled copula model presented in Chapter 4. We begin by
examining the practical considerations of expert elicitation and its inherent trade-offs,
then review existing mathematical aggregation approaches, with particular attention
to the CM and the JC model. The chapter concludes with essential mathematical
background on copulas and dependency measures that will underpin our proposed
framework.

2.1 Practical Considerations of SEJ Studies
In developing a new model, we want not only a mathematically correct framework
but also a practically relevant one. For this, we need to consider the practical
considerations of SEJ studies and their operational context.

When eliciting experts, there is often a trade-off between the costs of the elicita-
tion and the information extracted from the experts. The trade-off comes both in
the form of how many questions to ask, as well as in how much detail to elicit the
experts’ uncertainty about each question. The advantage of more questions comes
from receiving more statistical data to make robust judgments of experts from, and
the advantage of eliciting the uncertainty is that this tends to allow us to use more
performant aggregation methods [14].

Focusing on a single quantity 𝑞, one way to model an expert’s uncertainty about 𝑞,
is to assume that the expert has a personal probability distribution for that quantity
that represents the expert’s belief about it. This modeling choice is the same as
part of Savage’s work on decision theory and personal probabilities [15]. In the
scenario of 𝑞 being continuous, we can denote expert 𝑒’s probability distribution by
the density function 𝑓𝑒 and Cumulative Distribution Function (CDF) 𝐹 𝑒. With
this definition, we can more concretely characterize the tradeoff between costs and
uncertainty elicitation, as the trade-off between time and exhaustion of the expert,
against gaining a more accurate image of 𝑓𝑒.

One way to settle this trade-off, which is done in the classical model [1], is to
elicit a limited amount of quantiles, 𝑚1, … , 𝑚𝐷, of 𝐹 corresponding to probabilities
𝑝1, … , 𝑝𝐷. For example, one could choose (𝑝1, 𝑝2, 𝑝3) = (5%, 50%, 95%) and then
elicit the respective quantiles 𝑚𝑑 for 𝑑 = 1, … , 3. 𝑚𝑑 thus would have the property
of 𝐹(𝑚𝑑) = 𝑝𝑑. Finally, using these values, we construct a CDF function ̂𝐹 (𝑞)
that has the property of ̂𝐹 (𝑚𝑑) = 𝑝𝑑 for all 𝑑, that hopefully also approximates 𝐹
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CHAPTER 2. BACKGROUND

also for all other values that are not 𝑚𝑑. One way to do so is to choose the ”least
informative” distribution in the sense that it maximizes the Shannon entropy. For
the case of finite support and quantiles constraints, this turns out to be a piecewise
uniform distribution [16]. Another approach is to choose a reference distribution that
is considered to be least informative and then choose ̂𝐹 to minimize the Kullback-
Leibler (KL) divergence between these while preserving the quantile and support
constraints. These two approaches coincide when the reference distribution is the
uniform distribution [16]. Another choice of reference distribution could be the
log uniform distribution sometimes used in the CM which leads to a piecewise
log-uniform distribution for ̂𝐹 [1].

The practical constraints inherent in SEJ studies introduce several complexities
that must be considered when developing aggregation methods. For SEJ models that
require historical test questions with known answers, elicitation costs necessitate
that the number of test questions is typically limited, often being fewer than 15 [14].
Additionally, it is not uncommon in applied SEJ studies for the ratio between the
largest and smallest test question realizations to exceed 105 in magnitude [17]–[21],
creating difficulties for statistical modeling across vastly different scales.

These practical considerations lead to a few fundamental challenges when design-
ing models for SEJ studies:

• Limited sample sizes: The number of questions available for learning is
constrained by practical and economic factors, requiring methods that can
perform effectively with sparse data.

• Scale heterogeneity: Questions within a study may span multiple orders of
magnitude, necessitating approaches that can handle diverse scales and range
effectively.

• Restricted belief information: Expert uncertainty is typically captured
through a limited number of quantiles, representing a balance between the
richness of elicited information and practical feasibility constraints.

2.2 Belief Estimation from Quantile Data
As mentioned in the previous section, it can be practically needed to estimate ex-
pert beliefs from quantile data. Given a matrix of 𝐷 quantiles from 𝐸 experts,
m𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠 ∈ ℝ𝐸×𝐷, whose columns belong to strictly increasing accumulated prob-
abilities 𝑝1, … , 𝑝𝐷, we use the following procedure to generate 𝐸 distributions,

̂𝐹 1, … , ̂𝐹 𝐸. These distributions aim to estimate the true expert beliefs the m𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠
are elicited from. It is assumed that 𝑝1 ≠ 0, 𝑝𝐷 ≠ 1 and instead these cutoff points
are estimated from m𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠.

1. Calculate 𝐿 and 𝑈 as the minimum and maximum of the quantiles in m𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠:

𝐿 = min
𝑖,𝑒

𝑚𝑒
𝑖 , 𝑈 = max

𝑖,𝑒
𝑚𝑒

𝑖 .

2. Define two non-negative overshoot parameters 𝑘𝐿, 𝑘𝑈 and the extended support
parameters to 𝐿∗ and 𝑈∗ as

𝐿∗ = 𝐿 − 𝑘𝐿(𝑈 − 𝐿), 𝑈 ∗ = 𝑈 + 𝑘𝑈(𝑈 − 𝐿).
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2.3. EXISTING MODELS

If the support of the question of interest, 𝑄, is known a priori, then 𝑘𝐿 and
𝑘𝑈 should be restricted to ensure 𝐿∗, 𝑈 ∗ ∈ support(𝑄). For example, if 𝑄 is a
proportion, then 𝐿∗, 𝑈 ∗ should be restricted to [0, 1]. In this work, however,
we let both 𝑘𝐿 and 𝑘𝑈 be constants equal to 10% at all times.

3. For each expert 𝑒, estimate the distribution function ̂𝐹 𝑒 as the linear interpola-
tion between domain values (𝑚𝑒

0, … , 𝑚𝑒
𝐷+1) and codomain values (𝑝0, … , 𝑝𝐷+1),

where 𝑚𝑒
0 = 𝐿∗, 𝑚𝑒

𝐷+1 = 𝑈 ∗ and 𝑝0 = 0, 𝑝𝐷+1 = 1. Let ̂𝐹 𝑒(𝑞) = 0 for 𝑞 ≤ 𝑚𝑒
0

and ̂𝐹 𝑒(𝑞) = 1 for 𝑞 ≥ 𝑚𝑒
𝐷+1. Explicitly this can also be written as

̂𝐹 𝑒(𝑞) =
⎧{
⎨{⎩

0 if 𝑞 ≤ 𝑚𝑒
0

𝑝𝑑−1 + (𝑝𝑑 − 𝑝𝑑−1) 𝑞−𝑚𝑒
𝑑−1

𝑚𝑒
𝑑−𝑚𝑒

𝑑−1
if 𝑞 ∈ (𝑚𝑒

𝑑−1, 𝑚𝑒
𝑑] for 𝑑 = 1, … , 𝐷 + 1

1 if 𝑞 > 𝑚𝑒
𝐷+1

Which has density

̂𝑓𝑒(𝑞) =
⎧{
⎨{⎩

0 if 𝑞 ≤ 𝑚𝑒
0

𝑝𝑑−𝑝𝑑−1
𝑚𝑒

𝑑−𝑚𝑒
𝑑−1

if 𝑞 ∈ (𝑚𝑒
𝑑−1, 𝑚𝑒

𝑑] for 𝑑 = 1, … , 𝐷 + 1
0 if 𝑞 ≥ 𝑚𝑒

𝐷+1

Expert-specific support variation: An alternative approach calculates the sup-
port parameters individually for each expert. Instead of global 𝐿 and 𝑈, we compute
expert-specific bounds:

𝐿𝑒 = min
𝑑

𝑚𝑒
𝑑, 𝑈𝑒 = max

𝑑
𝑚𝑒

𝑑

and define 𝐿𝑒∗ = 𝐿𝑒 − 𝑘𝐿(𝑈𝑒 − 𝐿𝑒) and 𝑈𝑒∗ = 𝑈𝑒 + 𝑘𝑈(𝑈𝑒 − 𝐿𝑒) for each expert
𝑒. This generates expert-specific distributions ̂𝑓𝑒

E.Sup. that respect individual expert
ranges rather than forcing a common global support across all experts. When
clarification is needed, we denote the global support variant as ̂𝑓𝑒

G.Sup., but when no
subscript is written, we refer to the global support version by default.

The choice between global and expert-specific support estimation methods can be
motivated by both empirical and pragmatic considerations. Empirical motivations
could come from better performance according to some chosen metric. Pragmatic
motivations emerge from the requirements or limitations of the chosen SEJ method.
For instance, when using logarithmic pooling then the support of the final DM
distribution equals the intersection of individual expert belief supports. Thus, it
might be desired to ensure that all experts share a common support to prevent the
aggregated distribution from having empty support.

2.3 Existing Models
While a large range of existing models exist, we will here introduce a selection that
our proposed model will later be benchmarked against in Chapter 5. In particular,
we will benchmark against the commonly used CM, the JC model, and against a set
of simple baseline models: EW, Density Product (DP), and uniform.
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CHAPTER 2. BACKGROUND

2.3.1 Classical Model
The CM, [1], is a SEJ model that combines expert assessments with a performance-
based weighting scheme. The model is based on the principle that experts should
be weighted according to their demonstrated ability to provide calibrated and infor-
mative probability assessments. This is achieved by weighing experts depending on
their performance on a set of test questions for which the true answers are known
to the analyst but not to the experts themselves. Experts provide their uncertainty
assessments for these test questions in the form of probability distributions, typically
by specifying percentiles (commonly the 5th, 50th, and 95th percentiles: 𝑚5%, 𝑚50%,
and 𝑚95%).

The framework of the Classical Model centers on two key scoring metrics derived
from the test question assessments: the calibration score and the information score.
The calibration score measures statistical accuracy by first dividing the probability
space into intervals based on the provided percentiles. For example, with three
percentiles (5th, 50th, 95th), this creates four intervals: (−∞, 𝑚5%], (𝑚5%, 𝑚50%],
(𝑚50%, 𝑚95%], and (𝑚95%, ∞). The empirical probability is then calculated as
𝑝𝑖 = 𝑠𝑖

𝑁 , where 𝑠𝑖 is the number of realizations falling in the interval 𝑖 and 𝑁 is the
total number of test questions. The calibration score is calculated as:

Cal(𝑒) = 1 − 𝜒2
𝑅[2𝑁𝐼(𝑠, 𝑝)] (2.1)

where 𝑅 is the number of intervals, 𝑠 = (𝑠1, … , 𝑠𝑅+1) is the sample distribution over
the 𝑅 + 1 probability intervals, 𝑝 = (𝑝1, … , 𝑝𝑅+1) are the theoretical probabilities
for each interval, 𝜒2

𝑅 is the cumulative chi-square distribution with 𝑅 degrees of
freedom, and 𝐼(𝑠, 𝑝) is the relative information

𝐼(𝑠, 𝑝) =
𝑁

∑
𝑖=1

𝑠𝑖 log 𝑠𝑖
𝑝𝑖

. (2.2)

In addition to the calibration score, the information score quantifies the concentration
of an expert’s distributions relative to a background measure. In case the background
measure is the uniform measure then the information score is calculated as

𝐼(𝑒) = 1
𝑁

𝑁
∑
𝑖=1

[ln(𝑚𝑖𝑅+1 − 𝑚𝑖0) +
𝑅+1

∑
𝑟=1

𝑝𝑟 ln ( 𝑝𝑟
𝑚𝑖𝑟 − 𝑚𝑖𝑟−1

)] (2.3)

where 𝑚𝑖𝑟 represents the 𝑟-th percentile value for test question 𝑖, with 𝑚𝑖0 and
𝑚𝑖𝑅+1 being the intrinsic range bounds, and 𝑝𝑟 is the probability mass in interval 𝑟.
These scores combine multiplicatively to create the combined score:

𝑤′
𝑒 = Cal(𝑒) × 𝐼(𝑒) × 1{Cal(𝑒)>𝛼} (2.4)

where 𝛼 is the significance threshold (typically 0.05). The final normalized weights
are:

𝑤𝑒 = 𝑤′
𝑒

∑𝐸
𝑗=1 𝑤′

𝑗
. (2.5)

The final aggregation step constructs the Decision Maker (DM) distribution through
weighted linear pooling. For each test question, the aggregated distribution is:

𝐹DM(𝑞) =
𝐸

∑
𝑒=1

𝑤𝑒𝐹 𝑒(𝑞) (2.6)
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where 𝐹𝑒 is the belief of expert 𝑒 of the test question. The beliefs 𝐹 𝑒 are estimated
according to Section 2.2 from belief quantiles of the test question.

Optimized Significance Threshold

The classical model offers flexibility in determining the significance threshold 𝛼.
While 𝛼 can be set as a predetermined value, the model also provides an optimization
approach. In this alternative method, if a weight 𝑤DM is assigned to the DM on
the test questions using the same weighting scheme applied to experts, then 𝛼 is
chosen to maximize this weight value. This optimization variant, which we refer to
as the optimized classical model, serves as one of the benchmark methods in our
later comparative analysis.

2.3.2 The Jouini-Clemen Model
The JC model from 1996 [2] introduces a copula-based model for expert aggregation
with inter-expert dependency modeling. For the JC model, we see the target question
of interest as a random variable 𝑄 and we will also see the expert beliefs as random
objects. This probabilistic framework enables the modeling of dependencies between
expert beliefs through copula structures. Because our work with the decoupled
copula model is inspired by the JC model, we will end this section by going through
some of its limitations and potential improvements.

Regarding expert dependency modeling, it would arguably be preferable to model
the dependencies between the belief functions 𝐹 𝑒. The difficulty with this, however,
is that these complete function dependencies are complex to model and capture.
As a simplifying modeling assumption, Jouini and Clemen assume that relevant
dependencies can be captured by examining only the medians 𝑚𝑒∗ of 𝐹 𝑒, where
the asterisk notation differentiates the observed median values from free argument
variables 𝑚𝑒. To model inter-expert dependencies, they let 𝑀𝑒 be the random vari-
able that generated 𝑚𝑒∗, which may be interpreted as experts having an inherently
random element in their opinion formation. Using the notation M = (𝑀1, … , 𝑀𝐸)
and m∗ = (𝑚1∗, … , 𝑚𝐸∗), the Bayesian perspective seeks 𝑓𝑄|M=m∗(𝑞), which with a
flat prior is proportional to 𝑓M∣𝑄=𝑞(m∗).

To facilitate this modeling, Jouini and Clemen define the linear error variable
ℰ𝑒 = 𝑄 − 𝑀𝑒 with realizations 𝜀𝑒 = 𝑞 − 𝑚𝑒∗, grouped as 𝓔 = (ℰ1, … , ℰ𝐸) and
𝜺 = (𝜀1, … , 𝜀𝐸). They propose that an appropriate density for ℰ𝑒 is 𝑓𝑒(𝜀+𝑚𝑒∗), the
elicited belief centered at zero, and implicitly assume that ℰ𝑒 and 𝑄 are independent.
The corresponding CDF of ℰ𝑒 is then 𝐹 𝑒(𝜀 + 𝑚𝑒∗).

The connection between conditional median densities and errors can be derived
through:

𝐹𝑀𝑒∣𝑄=𝑞(𝑚) = 𝑃(𝑀𝑒 ≤ 𝑚 ∣ 𝑄 = 𝑞) = 𝑃(𝑞 − ℰ𝑒 ≤ 𝑚 ∣ 𝑄 = 𝑞)
= 1 − 𝑃(ℰ𝑒 < 𝑞 − 𝑚 ∣ 𝑄 = 𝑞) = 1 − 𝐹ℰ𝑒∣𝑄=𝑞(𝑞 − 𝑚) (2.7)

which together with the independence assumption leads to the conditional distribu-
tion

𝐹𝑀𝑒∣𝑄=𝑞(𝑚) = 1 − 𝐹 𝑒(𝑞 − 𝑚 + 𝑚𝑒∗) (2.8)
and corresponding density

𝑓𝑀𝑒∣𝑄=𝑞(𝑚) = 𝑓𝑒(𝑞 − 𝑚 + 𝑚𝑒∗). (2.9)
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Having derived the marginal densities of 𝑀𝑒 ∣ 𝑄 = 𝑞, we can construct the joint
density 𝑓M∣𝑄=𝑞 through copula decomposition as in Corollary 1.1 to be:

𝑓M∣𝑄=𝑞(𝑚1, … , 𝑚𝐸) = 𝑐M∣𝑄=𝑞 (𝐹𝑀1∣𝑄=𝑞(𝑚1), … , 𝐹𝑀𝐸∣𝑄=𝑞(𝑚𝐸))
𝐸

∏
𝑒=1

𝑓𝑀𝑒∣𝑄=𝑞(𝑚𝑒)

(2.10)
where 𝑐M∣𝑄=𝑞 is the conditional copula density of M conditional on 𝑄 = 𝑞.

Evaluating this expression at the observed medians, where 𝐹𝑀𝑒∣𝑄=𝑞(𝑚𝑒∗) =
1 − 𝐹 𝑒(𝑞) and 𝑓𝑀𝑒∣𝑄=𝑞(𝑚𝑒∗) = 𝑓𝑒(𝑞), yields:

𝑓𝑄∣M=m∗(𝑞) ∝ 𝑐M∣𝑄=𝑞 (1 − 𝐹 1(𝑞), … , 1 − 𝐹 𝐸(𝑞))
𝐸

∏
𝑒=1

𝑓𝑒(𝑞). (2.11)

Finally, Jouini and Clemen make the explicit assumption that 𝑐M∣𝑄=𝑞 is inde-
pendent of 𝑞 and implicitly assume that the copula dependence of the medians is
equivalent to that of the errors, leading to the final result:

𝑓𝑄∣M=m∗(𝑞) ∝ 𝑐𝓔(1 − 𝐹 1(𝑞), … , 1 − 𝐹 𝐸(𝑞))
𝐸

∏
𝑒=1

𝑓𝑒(𝑞). (2.12)

For the error copula 𝑐𝓔, they use a Frank copula parameterization. To assess
the single parameter, JC proposes having someone knowledgeable about the experts
answer questions such as (paraphrased): ”If experts 1 and 2 give their median
estimates on two questions, what is the probability that the median errors of the
second question will be both greater than or both less than their errors in the first
question?”. From such probability statements, they estimate pairwise Kendall tau
correlations and determine the Frank copula parameter.

In this work, we are more interested in methods that do not require personal
knowledge about each expert, instead drawing conclusions solely from assessed beliefs
and test questions. Therefore, we will not cover this elicitation process in detail and
will instead consider a variation where we fit the copula using Maximum Likelihood
Estimation (MLE). Given 𝑁 test questions, we denote the observed errors from
question 𝑖 as 𝜺𝑖 = (𝜀1

𝑖 , … , 𝜀𝐸
𝑖 ) where 𝜀𝑒

𝑖 is the observed error of expert 𝑒 for question
𝑖. We denote the random variable of 𝜀𝑒

𝑖 as ℰ𝑒
𝑖 . To fit the copula, we transform these

errors to [0, 1] bounded variables 𝐮1, … 𝐮𝑁 where 𝐮𝑖 = (𝑢1
𝑖 , … , 𝑢𝐸

𝑖 ) through

𝑢𝑒
𝑖 = 𝐹ℰ𝑒

𝑖
(𝜀𝑒

𝑖 ) = 𝐹 𝑒
𝑖 (𝜀𝑒

𝑖 + 𝑚𝑒∗
𝑖 )

where we have denoted 𝐹 𝑒
𝑖 as the observed belief of expert 𝑒 on question 𝑖 and 𝑚𝑒∗

𝑖
as the median of this belief. These 𝐮𝑖 samples are then used as in the Frank MLE
estimation explained in Section 4.3.5.

Motivation for the Decoupled Copula Model

While the JC model introduced copula-based dependency modeling into the SEJ
field, some limitations and potential extensions motivate the development of our
proposed approach in Chapter 4:

• Dependence on expert knowledge assessment: The original JC frame-
work requires study researchers to have someone who can reliably assess the
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error dependencies between elicited experts through subjective probability
statements. This places an additional burden on the research team and intro-
duces potential subjectivity in dependency parameter estimation.

• Theoretical assumptions: The JC model makes several assumptions that
lack explicit theoretical justification. First, it assumes that the copula depen-
dence structure of expert medians is equivalent to that of the error variables.
Second, the choice of 𝑓𝑒(𝜀 + 𝑚𝑒∗) as an appropriate density for the error
variable ℰ𝑒 is not motivated theoretically.

• Limited scope of dependency modeling: The JC approach focuses ex-
clusively on dependencies between expert medians, potentially missing other
important aspects of expert belief relationships. Dependencies may exist at
different quantile levels or involve other distributional characteristics beyond
central tendencies.

• Utilization of available data: When historical test questions with known re-
alizations are available, this information could potentially be leveraged to make
better estimates of error distributions and dependencies than the approach
proposed in the original model.

• Restriction to linear error measures: The focus on linear error measures
of the form 𝑄−𝑀𝑒 may or may not be the most suitable to capture dependen-
cies across different contexts and question types. A more flexible framework
allowing for alternative error measures could prove more robust and generally
applicable.

These limitations suggest the need for a more general framework that can capture
expert dependencies through data-driven methods while allowing for greater flexi-
bility in both the choice of dependency measures and the underlying mathematical
structure.

2.3.3 Baseline Models
In addition to the classical model we also define the following baseline models.

Equal Weights

Let 𝑤𝑒 = 1/𝐸 where 𝐸 is the number of experts and create the DM according to
Eq. (2.6).

Density Product

Let 𝑓𝑒 be beliefs estimated according to Section 2.2 and then define the DP DM
density as being equal to

𝐶
𝐸

∏
𝑒=1

𝑓𝑒(𝑞)

where 𝐶 is a normalization constant.
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Uniform

For the uniform DM we calculate the support [𝐿∗, 𝑈 ∗] from the expert quantiles
as in Section 2.2 and then define the uniform DM to be the continuous uniform
distribution on [𝐿∗, 𝑈 ∗].

2.4 The Dataset
For empirical evaluations, we will use the expert judgment dataset introduced in
[14] that contains 49 expert judgment studies conducted between 2006 and 2019.
Among these 49 studies, there are two studies with 30 or more experts in it that we
excluded for computational ease. We will refer to the collection of the remaining 47
studies as the ”dataset” throughout this work.

In the (47 studies) dataset, there are a total of 548 test questions and 446 experts.
For each expert and each question in every study, the dataset contains the expert’s
assessed 5%, 50%, and 95% percentiles, providing a quantile-based representation of
each expert’s belief distribution. The configurations of the number of experts and
test questions per study can be seen in Fig. 2.1.
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Figure 2.1: Plot showing the configurations of number of experts and test questions
present in the 47 different studies of the dataset.

2.5 Leave-One-Out Cross-Validation
Leave-One-Out Cross Validation (LOOCV) is used throughout this work as the
primary method validation framework. The specific implementation of LOOCV in
this context operates at the study level rather than across the entire dataset. This
comes from how the expert judgment methods in general are defined per study and
require the same set of experts to answer all questions. Thus, for each study 𝑠 in the
dataset containing 𝑁𝑠 questions and 𝐸𝑠 experts, LOOCV is performed as follows:

1. For each question 𝑡 ∈ {1, … , 𝑁𝑠} in study 𝑠:
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(a) Training set: Use the remaining 𝑁𝑠 − 1 questions with their known
realizations and expert beliefs

(b) Test question: Hold out question 𝑡 with its known realization 𝑞𝑡 and
expert beliefs F𝑡

(c) Model fitting: Estimate model parameters using only the training ques-
tions

(d) Prediction: Apply the fitted model to the expert beliefs for question 𝑡
to obtain a predictive distribution

(e) Evaluation: Compare the predictive distribution against the known
realization 𝑞𝑡

2. Repeat for all studies in the dataset

This approach generates ∑𝑠 𝑁𝑠 total train/test evaluations across the dataset. For
our dataset, this equals 548 questions over the 47 studies.

2.6 Mathematical Background
This section will work as a reference section for existing theorems that will be used
later in the work.

2.6.1 Copulas
Copulas are a way to model multivariate distributions that decouple the dependency
modeling from the marginal distributions. In this section, we will introduce the
definition of the copula together with properties and common parameterizations
that will be used throughout the paper. For more details and historical context, see,
for example, [22].

Definition 1. A 𝑑-dimensional copula is a 𝑑-dimensional CDF, 𝐶(𝑢1, … , 𝑢𝑑), with
support on the 𝑑-dimensional hypercube, [0, 1]𝑑, and whose marginals are uniformly
distributed on [0, 1].

With 𝐶(𝑢1, … , 𝑢𝑑) being a CDF we can also associate any random vectors with
univariate components, ̄𝑈 = [𝑈1, … , 𝑈𝑑] with 𝑈𝑖 ∼ 𝑈(0, 1) for 𝑖 = 1, … 𝑑, to have a
copula distribution, ̄𝑈 ∼ 𝐶. The versatility of the copulas expands further than just
univariate random vectors, however, as shown by Sklar’s theorem from 1959, [23].

Theorem 1. Let 𝐹 be a 𝑑-dimensional CDF with univariate marginals 𝐹1, … 𝐹𝑑.
Then there exists a unique 𝑑-dimensional copula, 𝐶, such that for all (𝑥1, … , 𝑥𝑑) ∈
ℝ𝑑,

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)). (2.13)

Sklar’s theorem shows that arbitrary CDFs with continuous marginals can be
decomposed into their marginal distributions and a copula function, which captures
the dependency structure between the variables. This allows for flexible modeling
of dependencies independently of the choice of marginals. Taking the derivative of
this expression gives us similar results for the density.

23



CHAPTER 2. BACKGROUND

Corollary 1.1. Let 𝐹 be a 𝑑-dimensional CDF with continuous marginals 𝐹1, … 𝐹𝑑,
and let 𝑓 be the joint Probability Density Function (PDF) of 𝐹 with marginals
𝑓1, … , 𝑓𝑑. Then there exists a unique 𝑑-dimensional copula, C, such that for all
(𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑,

𝑓(𝑥1, … , 𝑥𝑑) = 𝑐(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑))𝑓1(𝑥1) ⋯ 𝑓𝑑(𝑥𝑑) (2.14)

where 𝑐(𝑢1, … , 𝑢𝑑) = 𝜕𝑑

𝜕𝑢1…𝜕𝑢𝑑
𝐶(𝑢1, … , 𝑢𝑑).

2.6.2 Copula Families
While the literature contains numerous copula families, we present here a selection
of commonly used bivariate copulas that will be employed in our subsequent analysis.
For a comprehensive treatment of copula families, we refer to Nelsen [24].

The copulas we consider belong to different mathematical classes. The Clayton,
Gumbel, Frank, and Joe copulas are members of the Archimedean family, character-
ized by their construction through generator functions. In contrast, the Gaussian
copula belongs to the elliptical family, derived from elliptical distributions. While
we do not delve into the theoretical distinctions between these classes, this diverse
selection ensures that the Dißmann algorithm described in Section 2.6.3 can identify
appropriate copulas for various dependency patterns in the data.

Table 2.1 presents the copulas used in this work, along with their functional
forms and parameter ranges.

Table 2.1: Copula families used in this study. The Gaussian and Frank copula are
given in their multivariate form for dimensions 𝑑 ≥ 2.

Copula 𝐶(𝑢, 𝑣) or 𝐶(𝑢1, ..., 𝑢𝑑) Parameter
Independence 𝑢𝑣 -
Gaussian Φ𝑅(Φ−1(𝑢1), … , Φ−1(𝑢𝑑)) 𝑅 ∈ ℝ𝑑×𝑑

Clayton (𝑢−𝜃 + 𝑣−𝜃 − 1)−1/𝜃 𝜃 ∈ (0, ∞)
Gumbel exp{−[(− ln 𝑢)𝜃 + (− ln 𝑣)𝜃]1/𝜃} 𝜃 ∈ [1, ∞)
Frank −1

𝜃 ln (1 + ∏𝑑
𝑖=1(𝑒−𝜃𝑢𝑖−1)
(𝑒−𝜃−1)𝑑−1 ) 𝜃 ∈ ℝ ∖ {0}

Joe 1 − [(1 − 𝑢)𝜃 + (1 − 𝑣)𝜃 − (1 − 𝑢)𝜃(1 − 𝑣)𝜃]1/𝜃 𝜃 ∈ [1, ∞)

The Gaussian copula is parameterized by a correlation matrix 𝑅, where Φ denotes
the univariate standard normal CDF and Φ𝑅 represents the multivariate normal
CDF with correlation matrix 𝑅. The independence copula serves as a baseline,
representing the absence of dependence between variables. For the bivariate case,
all copulas except the independence copula are single-parameter families, with the
Gaussian copula’s correlation matrix 𝑅 reducing to a single correlation coefficient.

2.6.3 Regular Vine Copulas
Regular vine copulas provide a flexible framework for modeling complex multivariate
dependence structures by decomposing them into a cascade of bivariate copulas [25],
making them particularly valuable for applications such as modeling financial returns
where traditional approaches often fail to capture complex dependency patterns [26].
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The key insight behind regular vines is that complex multivariate dependencies
can be systematically broken down into a series of bivariate relationships. Rather
than attempting to specify a single high-dimensional copula directly, regular vines
build up the joint distribution by modeling how variables relate in pairs, and then
how they relate conditionally given other variables, proceeding in a hierarchical
manner through multiple tree levels.

A central part of using regular vines is determining the tree structure. Dißmann
et al. [26] developed a sequential selection algorithm utilizing maximum spanning
trees that prioritizes the strongest dependencies. In their approach, the first tree
captures the strongest unconditional pairwise dependencies between variables, with
subsequent trees building upon these relationships. Put loosely the procedure itera-
tively constructs each tree level through:

1. Computing empirical Kendall’s tau coefficients for all valid variable pairs that
are allowed to be part of the sub-tree.

2. Constructing a maximum spanning tree where edge weights are given by the
absolute Kendall tau correlations

3. Selecting appropriate bivariate copula families for each edge and estimating
their parameters

This process continues for each tree level until the vine structure is complete.
While this sequential strategy does not guarantee globally optimal structures, it
effectively prioritizes modeling the strongest dependencies in initial trees, aiming to
capture the most significant dependency relations.

For implementation of this algorithm we used the rvinecopulalib package [27].
More detailed code signatures and fitting procedures are provided in Appendix A.5.
For the detailed mathematical formulation of regular vine copulas and the Dißmann
algorithm, see [26].

2.6.4 Inference Functions for Margins
When estimating parameters for copula models with continuous marginals, two main
approaches are available: full MLE and multi-step procedures. In full MLE, all
parameters (marginal and copula) are estimated simultaneously by maximizing the
joint likelihood. An alternative approach involves sequential estimation stages.

Copula estimation inherently depends on the choice of marginal estimation
method, as the marginal transformations directly affect the copula inputs. This
two-step procedure of first estimating the marginal parameters individually and then
the copula parameters is called the method of inference functions for margins (IFM)
[28]. The IFM approach first estimates marginal distribution parameters then uses
these estimates to transform observations to uniform margins via the probability
integral transform, and finally estimates copula parameters from the transformed
data.

Denoting 𝜃0 the set of parameters that generated the data, and ̂𝜃𝐼𝐹𝑀 the param-
eters estimated from IFM, we have, under suitable regularity conditions, that

√
𝑁(𝜃0 − ̂𝜃𝐼𝐹𝑀) → 𝒩(0, 𝜈(𝜃0)) (2.15)
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where 𝑁 is the number of samples the marginals and copula are estimated from and
𝜈(𝜃0) is a matrix defined in [28]. This result establishes the asymptotic normality
of IFM estimators. Proof and details can be seen in [28]. This applies to both MLE
and Bayesian estimation setups for the marginals and copula.

The IFM approach offers computational advantages for high-dimensional prob-
lems, as it avoids optimizing complex multivariate likelihood functions. However,
it may be less statistically efficient than full MLE due to the sequential nature of
parameter estimation.

2.6.5 Measure of Dependence - Distance Correlation
For the parameter selection of the upcoming decoupled copula model, we will need
a measure of dependence between random variables of different dimensions. For
this purpose we will use the modified distance correlation (dCor) introduced by
Székely and Rizzo in 2013, [29], as a high-dimensional adjustment to the regular
distance correlation metric introduced by Székely et al. in [30]. Put loosely, the dCor
statistic measures a weighted 𝐿2 distance between the joint characteristic function
and the product of the marginal characteristic functions. The dCor statistic has
the advantage of being applicable to random vectors of different dimensions, and
it has an asymptotic Student 𝑡 asymptotic distribution under the independence
assumption. This consistent behavior for varying dimension sizes will turn out to be
important for our scenario because we will want to compare dependencies between
studies where dimensions will differ. Also, the asymptotic distribution will allow us
to do formal hypothesis testing. What follows is a short summary of some of the
definitions and results originally presented by Székely and Rizzo. These will later
be used in Section 4.3.1.

Let X ∈ ℝ𝑝 and Y ∈ ℝ𝑞 be random vectors with dimension 𝑝 and 𝑞. We are
interested in whether X and Y are independent. Let Xi, Y𝑖 be 𝑛 samples, 𝑖 = 1, … , 𝑛,
of the same distribution of X and Y. For notational ease, let | ⋅ | be the Euclidean
norm and define

𝑎𝑖𝑗 = |X𝑖 − X𝑗|, 𝑖, 𝑗 = 1, … , 𝑛,

𝑎𝑖. =
𝑛

∑
𝑘=1

𝑎𝑖𝑘, 𝑎.𝑗 =
𝑛

∑
𝑘=1

𝑎𝑘𝑗, ̄𝑎𝑖 = ̄𝑎𝑖. = 1
𝑛

𝑎𝑖.,

𝑎.. =
𝑛

∑
𝑖,𝑗=1

𝑎𝑖𝑗, ̄𝑎 = 1
𝑛2

𝑛
∑
𝑖,𝑗=1

𝑎𝑖𝑗 ̄𝑎𝑗 = ̄𝑎.𝑗 = 1
𝑛

𝑎.𝑗.

and let 𝑏𝑖,𝑗, 𝑏𝑖., 𝑏.𝑗, �̄�𝑖, 𝑏.., �̄� and �̄�𝑗 be defined in a respective manner for Y𝑖. Using
these quantities we can define the non-modified sample distance covariance, 𝒱𝑛, as

𝒱𝑛(X, Y) = 1
𝑛2

𝑛
∑
𝑖,𝑗

𝐴𝑖,𝑗𝐵𝑖,𝑗

where
𝐴𝑖,𝑗 = 𝑎𝑖𝑗 − ̄𝑎𝑖 − ̄𝑎𝑗 + ̄𝑎, 𝐵𝑖,𝑗 = 𝑏𝑖𝑗 − �̄�𝑖 − �̄�𝑗 + �̄�.

For the modified version, however, we modify 𝐴 and 𝐵 according to

𝐴∗
𝑖,𝑗 =

⎧{
⎨{⎩

𝑛
𝑛−1 (𝐴𝑖,𝑗 − 𝑎𝑖𝑗

𝑛 ) , 𝑖 ≠ 𝑗;

𝑛
𝑛−1( ̄𝑎𝑖 − ̄𝑎), 𝑖 = 𝑗,

𝐵∗
𝑖,𝑗 =

⎧{
⎨{⎩

𝑛
𝑛−1 (𝐵𝑖,𝑗 − 𝑏𝑖𝑗

𝑛 ) , 𝑖 ≠ 𝑗;

𝑛
𝑛−1(�̄�𝑖 − �̄�), 𝑖 = 𝑗.
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2.6. MATHEMATICAL BACKGROUND

and define 𝒱∗
𝑛 as

𝒱∗
𝑛 = 1

𝑛(𝑛 − 3)
{

𝑛
∑
𝑖,𝑗=1

𝐴∗
𝑖,𝑗𝐵∗

𝑖,𝑗 − 𝑛
𝑛 − 2

𝑛
∑
𝑖=1

𝐴∗
𝑖,𝑖𝐵∗

𝑖,𝑖} .

and the modified distance correlation statistic, ℛ∗, as

ℛ∗
𝑛(X, Y) = 𝒱∗

𝑛(X, Y)
√𝒱∗

𝑛(X, X)𝒱∗
𝑛(Y, Y)

(2.16)

if 𝒱∗
𝑛(X, X)𝒱∗

𝑛(Y, Y) > 0 otherwise ℛ∗
𝑛(X, Y) = 0. The image of ℛ∗

𝑛 is [−1, 1].
With this, we will also define the 𝑡-statistic

𝒯𝑛 =
√

𝜈 − 1 ℛ∗
𝑛

√1 − (ℛ∗
𝑛)2

, (2.17)

where 𝜈 = 𝑛(𝑛−3)
2 . We can then state the main theorem of Székely and Rizzo’s paper

as

Theorem 2. If the coordinates of X and Y are Independent and Identically Dis-
tributed (IID) with positive finite variance, for fixed sample size 𝑛 ≥ 4 the following
hold.

i. Under independence of X and Y,

𝑃(𝒯 < 𝑡) →
𝑝,𝑞→∞

𝑃(𝑡𝜈−1 < 𝑡),

where 𝑡𝜈−1 is a Student t distributed random variable with 𝜈 − 1 degrees of
freedom.

ii. Let 𝑐𝛼 = 𝑡−1
𝜈−1(1 − 𝛼) denote the (1 − 𝛼) quantile of a Student 𝑡 distribution

with 𝜈 − 1 degrees of freedom. The 𝑡-test of independence at significance level
𝛼 rejects the independence hypothesis whenever 𝒯𝑛 > 𝑐𝛼 is unbiased.

From this we also get the corollary that:

Corollary 2.1. Under independence of X and Y, if the coordinates of X and Y
are IID with positive finite variance, then the limit distribution of (1 + ℛ∗

𝑛)/2 is a
symmetric beta distribution with shape parameter (𝜈 − 1)/2. It follows that, in high
dimension the large sample distribution of

√
𝜈 − 1ℛ∗

𝑛 is approximately standard
normal.

Thus, we can loosely interpret near-zero realizations of the modified correlation
statistic as it being likely that the variables are independent, while realizations
further away from zero would indicate dependence.

2.6.6 Probability Integral Theorem
Theorem 3 (Probability Integral Theorem). Let 𝑋 be a continuous random vari-
able with CDF 𝐹𝑋(𝑥). Then the random variable 𝑈 = 𝐹𝑋(𝑋) follows a uniform
distribution on [0, 1].
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CHAPTER 2. BACKGROUND

Proof. This proof follows the exposition in [31]. Let 𝑈 = 𝐹𝑋(𝑋), then 𝑈 is in [0, 1].
For 𝑢 ∈ [0, 1], consider:

𝐹𝑈(𝑢) = 𝑃(𝑈 ≤ 𝑢) (2.18)
= 𝑃(𝐹𝑋(𝑋) ≤ 𝑢) (2.19)

Defining the inverse CDF 𝐹 −1
𝑋 as

𝐹 −1
𝑋 (𝑦) = inf{𝑥 ∶ 𝐹(𝑥) ≥ 𝑦}, (2.20)

gives us

𝐹𝑈(𝑢) = 𝑃(𝑋 ≤ 𝐹 −1
𝑋 (𝑢)) (2.21)

= 𝑃(𝐹 −1
𝑋 (𝐹𝑋(𝑋)) ≤ 𝐹 −1

𝑋 (𝑢)) (2.22)
= 𝑃(𝑋 ≤ 𝐹 −1

𝑋 (𝑢)) (2.23)
= 𝐹𝑋(𝐹 −1

𝑋 (𝑢)) = 𝑢 (2.24)
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Chapter 3

Evaluating Methods

Before discussing the decoupled copula model in Chapter 4, we will here introduce
some definitions and lemmas regarding the evaluation of DMs. We present this
before the decoupled copula model because the methodology of selecting parts of
the model will be connected to the theory introduced here. The theory presented
here will also be used in the results Chapter 5, when comparing various different
methods.

3.1 Decision Makers
We begin by establishing the fundamental concepts that underlie our evaluation
framework. At the core is the concept of a DM, which formalizes how we represent
beliefs about uncertain quantities.
Definition 2. A question 𝑄 is a continuous random variable with CDF 𝐹𝑄.
Definition 3. A decision maker for a question 𝑄 is a distribution 𝐹 that aims to
approximate the distribution 𝐹𝑄.

With this definition, all experts are DMs in the sense that each expert belief
𝐹 𝑒 aims to approximate 𝐹𝑄. Similarly, any SEJ model that aggregates these be-
liefs is also a DM for the same question. This perspective allows us to evaluate
both individual expert beliefs and aggregation methods using the same theoretical
framework.
Definition 4. A decision maker 𝐹 for a question 𝑄, is perfect if 𝐹 = 𝐹𝑄. If the
DM is an expert’s belief function, 𝐹 = 𝐹 𝑒, we call that expert perfect.

While this defines DMs for individual questions, we are sometimes interested in
the methods producing a series of DMs over multiple questions. This is particularly
relevant if we only have a single realization of a question, which gives little statistical
material to evaluate the performance of the DM. To analyze such systems, we
introduce the concept of distribution and question generators.
Definition 5. A distribution generator is a random variable ℱ that has CDF
functions as realizations. With ℱ(𝑞) we denote the random variable that evaluates
the CDF at 𝑞. That is, if ℱ has a realization 𝐹, then ℱ(𝑞) has the realization
𝐹(𝑞). Furthermore, with ℱ−1(𝑝) we refer to the random variable that evaluates the
quantile function at probability 𝑝, such that if ℱ has realization 𝐹, then ℱ−1(𝑝) has
realization 𝐹 −1(𝑝).
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CHAPTER 3. EVALUATING METHODS

Definition 6. A question generator, ℱ𝒬, is a distribution generator that produces
distributions corresponding to observable random variables. With 𝒬 we denote the
random quantity that the ℱ𝒬 produces the distribution of. That is, a realization
of a question generator is a CDF 𝐹𝑄 that describes the distribution of a random
variable 𝑄, and the realization 𝑞 of 𝑄 is also the realization of 𝒬.

Example (Question Generator): Let a question generator be defined as

ℱ𝒬 = {
𝐹𝑄1

∼ Unif(0, 0.5) with probability 0.5
𝐹𝑄2

∼ Unif(0.5, 1) with probability 0.5
. (3.1)

corresponding to two random variables 𝑄1 and 𝑄2 that are both uniformly
distributed on different supports. In this case 𝒬 would equal 𝑄1 with 0.5
probability, and similarly for 𝑄2. This will lead to the distribution of 𝒬 being
different from both 𝑄1 and 𝑄2. Looking at its distribution, we can first write

𝑃(𝒬 ≤ 𝑞) = 𝑃(𝒬 ≤ 𝑞 ∣ ℱ𝒬 = 𝐹𝑄1
)𝑃 (ℱ𝒬 = 𝐹𝑄1

)+

𝑃(𝒬 ≤ 𝑞 ∣ ℱ𝒬 = 𝐹𝑄2
)𝑃 (ℱ𝒬 = 𝐹𝑄2

) = 1
2

(𝐹𝑄1
(𝑞) + 𝐹𝑄2

(𝑞)) (3.2)

which with uniform CDFs:

𝐹𝑄1
(𝑞) = 2𝑞𝟙(𝑞 ∈ [0, 0.5)) + 𝟙(𝑞 ≥ 0.5) (3.3)

𝐹𝑄2
(𝑞) = (2𝑞 − 1)𝟙(𝑞 ∈ [0.5, 1)) + 𝟙(𝑞 ≥ 1) (3.4)

for indicator functions 𝟙(⋅) yields

𝑃(𝒬 ≤ 𝑞) = 𝑞𝟙(𝑞 ∈ [0, 1)) + 𝟙(𝑞 ≥ 1). (3.5)

This shows that 𝒬 ∼ Unif(0, 1) while 𝑄1 ∼ Unif(0, 0.5) and 𝑄2 ∼ Unif(0.5, 1).

Definition 7. A DM method, ℱ, is a distribution generator that produces distri-
butions that aim to estimate the distributions of a question generator, ℱ𝒬.

We introduce this distinction between DM methods and question generators
because the distributions generated by DM methods while aiming for, do not neces-
sarily need to produce probabilities that are connected to any measurable quantities.
We denote with ℱ𝑄 the question generator that represents potential questions of
interest and ℱ the DM method that generates DMs for these questions.

Definition 8. A DM method, ℱ, is perfect if ℱ and ℱ𝑄 are equal. That is, they
always produce the exact same CDF distributions as realizations.

3.2 Error Measures
When evaluating DMs in practice, we often face the challenge of having only a single
realization from each of many heterogeneous questions. In ground truth simulations
where the target density is known or sufficient observed realizations are available,
we could employ established metrics such as the Kullback-Leibler divergence or the
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Wasserstein distance to measure approximation quality directly. However, in many
forecasting contexts, we must develop evaluation metrics suitable for this limited
observation setting.

In practice, we work with a finite set of 𝑁 questions that represent realizations
from a question generator ℱ𝒬. That is, we have questions 𝑄1, … , 𝑄𝑁 with target
distributions 𝐹𝑄1

, … , 𝐹𝑄𝑁
that are realizations of ℱ𝒬, and corresponding observed

outcomes 𝑞1, … , 𝑞𝑁 that are realizations of 𝒬. While the question generator frame-
work allows us to theoretically discuss the space of all questions that could be asked
to a DM method, for any given empirical study we observe these concepts realized
to some finite set of specific questions and their outcomes.

The questions generally correspond to different target distributions and are
not identically distributed, reflecting the diverse nature of real-world forecasting
scenarios. For each question 𝑖, we have DM distributions 𝐹 𝑗

𝑖 produced by method 𝑗,
representing that method’s predicted distribution for the question.

3.2.1 Point Estimate Error Metrics
To evaluate DM performance, we can employ several error metrics that capture
different aspects of distributional accuracy. These metrics focus on how well the
DMs’ point estimates align with the realized values.

The linear error for question 𝑖 and DM method 𝑗 is defined as the absolute
deviation between the predicted median and the realized value:

|Median(𝐹 𝑗
𝑖 ) − 𝑞𝑖|

Similarly, the squared error measures the deviation using the predicted mean:

(𝔼[𝐹 𝑗
𝑖 ] − 𝑞𝑖)2

where 𝔼[𝐹 𝑗
𝑖 ] represents the expected value under the DM’s distribution.

The theoretical foundation for these metrics stems from statistics. The median
minimizes expected linear loss, while the mean minimizes expected squared loss
[31]. This provides a principled basis for evaluation, if DM method 𝑗1 consistently
produces distributions whose medians align with the target distribution’s median
better than method 𝑗2, then method 𝑗1 will demonstrate lower expected linear loss.
By computing mean linear or squared errors across multiple questions, we can assess
which DM methods most effectively capture the central tendencies of their target
distributions.

It is important to note that even a perfect DM method producing the correct
target distribution can have non-zero expected error since realized values are random
draws rather than deterministic central parameters.

3.2.2 Scale-Invariant Error Metrics
Because questions sometimes vary considerably in scale, the linear error metrics
might be misleading when comparing performance across different question types.
Relative error is a common alternative metric that provides better scale invariance:

|Median(𝐹 𝑗
𝑖 ) − 𝑞𝑖|

𝑞𝑖
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While relative error does not have a well-known theoretic minimizer like the linear
and squared error metrics, we use the median in this formulation for consistency
with the linear error approach.

3.2.3 Aggregate Error Metrics
To summarize these evaluation approaches across multiple questions, we define
several aggregate metrics. For DM method 𝑗 evaluated over 𝑁 questions, we define
the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Root Mean Squared Error (RMSE) as:

MAEMedian,𝑗 = 1
𝑁

𝑁
∑
𝑖=1

|Median(𝐹 𝑗
𝑖 ) − 𝑞𝑖| (3.6)

MAPEMedian,𝑗 = 1
𝑁

𝑁
∑
𝑖=1

|Median(𝐹 𝑗
𝑖 ) − 𝑞𝑖|

𝑞𝑖
(3.7)

RMSEMean,𝑗 = √ 1
𝑁

𝑁
∑
𝑖=1

(𝐸[𝐹 𝑗
𝑖 ] − 𝑞𝑖)2 (3.8)

For the first two metrics, we also define their median analogs to provide robust
alternatives less sensitive to outliers:

MedAEMedian,𝑗 = Median𝑖=1,…,𝑁 {∣Median(𝐹 𝑗
𝑖 ) − 𝑞𝑖∣} (3.9)

MedAPEMedian,𝑗 = Median𝑖=1,…,𝑁 {
∣Median(𝐹 𝑗

𝑖 ) − 𝑞𝑖∣
𝑞𝑖

} (3.10)

Despite their utility, these point-estimate evaluations capture only limited aspects
of distributional quality. They assess a DM method’s ability to locate the center of the
target distribution but do not capture the appropriateness of the distribution’s shape,
spread, or higher-order moments. To address part of these limitations, calibration
measures will complement these point-estimate evaluations to also capture over- and
under-confidence.

3.3 Calibration Metrics
Calibration metrics exist in various forecasting contexts and tend to capture whether
claimed DM probabilities correspond to frequencies of observable quantities [1], [32].
In the CM, for example, this is done by examining specific inter-quantile ranges
and measuring the deviation between claimed probabilities and observed frequencies.
Here we introduce novel definitions to define calibration for all quantiles and for
continuous random variables.

Definition 9. A DM, 𝐹, is calibrated if 𝑃(𝑄 ≤ 𝐹 −1(𝑝)) = 𝑝 for all 𝑝 ∈ [0, 1].

For individual DMs, calibration is equivalent to being perfect, as shown in the
following lemma.

Lemma 1. A DM is perfect if and only if it is calibrated.
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Proof. (→) ∶ If the DM is perfect we have 𝐹 = 𝐹𝑄 and thus

𝑃(𝑄 ≤ 𝐹 −1(𝑝)) = 𝑃(𝑄 ≤ 𝐹 −1
𝑄 (𝑝)) = 𝐹𝑄(𝐹 −1

𝑄 (𝑝)) = 𝑝.

(←) ∶If the DM is calibrated let 𝑈 = 𝐹(𝑄) and we have

𝑃(𝑄 ≤ 𝐹 −1(𝑝)) = 𝑃(𝐹(𝑄) ≤ 𝑝) = 𝑃(𝑈 ≤ 𝑝) = 𝑝,

thus the variable 𝑈 is uniformly distributed.Then from the inverse probability integral
Theorem 3, 𝑄 is distributed according to 𝐹, which means that 𝐹 = 𝐹𝑄.

While this definition of calibration is equivalent to perfection for DMs, this is
not the case for DM methods with the following calibration definitions.

Definition 10. A DM method, ℱ, is calibrated for the 𝑝-quantile if

𝑃(𝒬 ≤ ℱ−1(𝑝)) = 𝑝.

In particular, a DM method is calibrated for the median if it is calibrated for the
0.5-quantile.

Definition 11. A DM method, ℱ, is calibrated if all its 𝑝-quantiles are calibrated.

This last definition captures that for any probability 𝑝, the DM method produces
a random quantile ℱ−1(𝑝), such that the random question to be asked 𝒬 is below this
quantile with probability 𝑝. The first definition of a specific calibrated 𝑝-quantile can
be of particular interest when performing predictions using that quantile; for example,
if one uses the median for predictions, then the calibration of the 0.5-quantile may
be of extra interest.

The distinction between calibration and perfection for DM methods is made clear
with the following lemma.

Lemma 2. If a DM method is perfect then it is also calibrated. If a DM method is
calibrated, it is not necessarily perfect.

Proof. For the first statement we have from perfection that ℱ = ℱ𝒬 which leads to

𝑃(𝒬 ≤ ℱ−1(𝑝)) = 𝑃(𝒬 ≤ ℱ−1
𝒬 (𝑝)) = 𝑃(ℱ𝑄(𝒬) ≤ 𝑝)

Now for any realization of the question generator, we have from the probability
integral theorem that 𝑈 = ℱ𝑄(𝒬) is uniformly distributed. Thus

𝑃(𝒬 ≤ ℱ−1(𝑝)) = 𝑃(𝑈 ≤ 𝑝) = 𝑝.

We show the second statement with a counter-example.
Let ℱ𝒬(𝑞) be the same question generator as in the example of Eq. (3.1). Let

ℱ be a DM method that is a constant uniform distribution

ℱ ∼ Unif(0, 1).

This DM method is clearly not perfect with 𝑃(ℱ = ℱ𝑄) = 0. From the example
before we showed that 𝒬 ∼ Unif(0, 1) which yields

𝑃(𝒬 ≤ ℱ−1(𝑝)) = 𝑃(𝒬 ≤ 𝑝) = 𝑝. (3.11)

Thus showing that this DM method is calibrated while not being perfect.
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This lemma shows both the advantages and limitations of looking at a DM
method’s calibration. While calibration is not sufficient for perfection, it is a neces-
sary condition for perfect DM methods. It is also an interpretable measure in the
sense that it measures how well the quantiles of a DM method match the probabilities
of observing realizations below these quantiles for a certain class of questions.

To make testing for calibration easier, we introduce the following lemma:
Lemma 3. If a DM method ℱ is calibrated, then ℱ(𝒬) is uniformly distributed on
(0, 1).
Proof. Let 𝑈 be the random variable ℱ(𝒬). From the definition of calibration, we
then get

𝑃(𝑈 ≤ 𝑢) = 𝑃(ℱ(𝒬) ≤ 𝑢) = 𝑃(𝒬 ≤ ℱ−1(𝑢)) = 𝑢; 0 ≤ 𝑢 ≤ 1

With this lemma as motivation, we introduce calibration testing procedures.
Even though calibration is not a sufficient criterion for perfect DM methods, it is
still useful to measure since it is a required condition for perfect DM methods, which
is what we ultimately want.

3.3.1 Practical Calibration Testing
To evaluate the full distributional properties of DM methods beyond central tendency
measures, we introduce two descriptive metrics that measure how well a DM method
satisfies the calibration criterion.

For a finite set of questions with realizations 𝑞1, … , 𝑞𝑁 and a DM method that
has produced DMs 𝐹1, … , 𝐹𝑁 for these questions, we define calibration quantities 𝑢𝑖
as 𝑢𝑖 = 𝐹𝑖(𝑞𝑖) for 𝑖 = 1, … , 𝑁. From Lemma 3, we know that 𝑢𝑖 are realizations
from a uniform random variable if the DM method is calibrated. We therefore
define two 𝐿𝑝 metrics that measure the deviation between the Empirical Cumulative
Distribution Function (ECDF), ̂𝐹, of the 𝑢𝑖 realizations and the uniform CDF:

𝐿1
Unif = ∫

1

0
∣ ̂𝐹 (𝑢) − 𝑢∣ 𝑑𝑢 (3.12)

𝐿∞
Unif = max

𝑢∈[0,1]
| ̂𝐹 (𝑢) − 𝑢| (3.13)

where we calculate the ECDF ̂𝐹 (𝑢) as

̂𝐹 (𝑢) = 1
𝑁

𝑁
∑
𝑖=1

𝟙(𝑢𝑖 ≤ 𝑢).

The 𝐿1
Unif metric can be interpreted as the average deviation of claimed 𝑝-quantiles

between the empirical probability and the 𝑝 probability they represent. 𝐿∞
Unif, on the

other hand, represents the maximum deviation between the empirical probability
and the claimed probability of any 𝑝-quantile. The 𝐿1

Unif metric captures information
about the entire shape of predicted distributions, including their spread and higher-
order moments. In both cases, lower values of these metrics are evidence for better
calibrated DM methods.

The use of the ECDF and the uniform CDF also lend themselves well for visual
investigation by plotting the two distributions side by side. This will be done in the
result chapter when comparing different DMs such as in Fig. 5.6.
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3.3.2 Overconfidence and Underconfidence
We conclude this chapter with some qualitative calibration definitions that will aid
us in describing different types of calibration behavior.

Definition 12. A DM method, ℱ, overestimates the 𝑝-quantile of a question
generator, ℱ𝒬, if

𝑃(𝒬 ≤ ℱ−1(𝑝)) > 𝑝.

and underestimates the 𝑝-quantile if

𝑃(𝒬 ≤ ℱ−1(𝑝)) < 𝑝.

This wording is motivated by the fact that if a DM method overestimates a
certain 𝑝-quantile, then the method tends to estimate the 𝑝-quantile as larger than
the real question 𝑝-quantiles. This in turn leads to the probability of a question
being smaller than estimate quantiles being larger than optimal.

Definition 13. A DM method ℱ, is overconfident for a question generator ℱ𝒬
if it is calibrated for the median but overestimates all 𝑝-quantiles for 𝑝 < 0.5 and
underestimates all 𝑝-quantiles for 𝑝 > 0.5. That is, if

𝑃(𝒬 ≤ ℱ−1(𝑝)) > 𝑝 for 𝑝 < 0.5 (3.14)
𝑃(𝒬 ≤ ℱ−1(0.5)) = 0.5 for 𝑝 = 0.5 (3.15)
𝑃(𝒬 ≤ ℱ−1(𝑝)) < 𝑝 for 𝑝 > 0.5 (3.16)

Similarly, a method is underconfident if it is calibrated for the median but under-
estimates all 𝑝-quantiles for 𝑝 < 0.5 and overestimates all 𝑝-quantiles for 𝑝 > 0.5.

The overconfident behavior, where lower quantiles are overestimated while up-
per quantiles are underestimated, translates to the method generally producing
distributions that are too narrow. Conversely, an underconfident DM method gener-
ally produces distributions that are too wide. A selection of archetypal calibration
scenarios is shown in Fig. 3.1.
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Figure 3.1: Illustration of some different archetypal DM method calibration behaviors.
The dashed line represents perfect calibration where 𝑃(𝒬 ≤ ℱ−1(𝑝)) = 𝑝.
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Chapter 4

The Decoupled Copula Model

The JC model, described in Section 2.3.2, captures possible dependencies between
experts via the median error random variable. However, there appears to be no
particular argument for why the median error would be the most appropriate scalar
to capture this dependence, nor any obvious advantage of a linear error metric over
alternatives such as relative error. For both linear and relative metrics, we would
expect realizations to be focused around zero when the expert’s belief is close to the
target distribution. However, this zero-focused property is not generally required,
and we will see an example of a non-zero-focused metric later in this chapter. This
generalized choice of metric we call the decoupled random variable and it is induced
by a decoupling function. Much like how the median error random variable from the
JC model was induced by the linear difference between the median and the quantity
of interest.

In addition to providing a more flexible metric to model expert dependencies, we
also study methods for estimating the distribution of the decoupled random variable,
which leads us to a framework where individual expert biases can be detected and
adjusted for. The chapter is structured to first establish the theoretical foundation
of our model, then explore the range of parameter choices available for practical
implementation, and finally describe the model’s relation to existing models.

4.1 The Decoupled Copula Model

Let 𝑄, 𝑓𝑒 and cdf 𝐹 𝑒 be defined as in Section 2.3.2. However, in order to allow
modeling dependencies between experts, we will see cdf 𝐹 𝑒 (and indirectly also 𝑓𝑒)
as an outcome of a random variable (random function) ℱ𝑒. More explicitly, if Ω
is the sample space, ℱ𝑒 maps to a continuous CDF, ℱ𝑒 ∶ Ω → 𝐶(ℝ). This way,
experts being dependent on each other corresponds to their random variables, let us
say ℱ𝑒1 and ℱ𝑒2 , being dependent. We denote the joint random variable of these
functions as 𝓕 = (ℱ1, … , ℱ𝐸) having a realization F = (𝐹 1, … , 𝐹 𝐸).

Given these distributions, we are ultimately interested in the density 𝑓𝑄∣𝓕=F(𝑞)
that describes the aggregated belief in 𝑄 given the beliefs. To later be able to use
test questions to estimate this density, however, we will transform the beliefs and 𝑄
into a random variable that potentially can be invariant of question scale and type.
That random variable is the decoupled random variable (matrix), Z, and is induced
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CHAPTER 4. THE DECOUPLED COPULA MODEL

by a decoupling function, 𝜙(⋅, ⋅), through

Z = ⎡⎢
⎣

𝑍1
1 … 𝑍1

𝐷
⋮ ⋱ ⋮

𝑍𝐸
1 … 𝑍𝐸

𝐷

⎤⎥
⎦

= 𝜙(𝑄, 𝓕) = ⎡⎢
⎣

𝜙1(𝑄, ℱ1) … 𝜙𝐷(𝑄, ℱ1)
⋮ ⋱ ⋮

𝜙1(𝑄, ℱ𝐸) … 𝜙𝐷(𝑄, ℱ𝐸)
⎤⎥
⎦

. (4.1)

The decoupling function will also be referred to as simply the decoupler.
The number of columns, 𝐷, represents 𝐷 transformed features per expert dis-

tribution that are extracted by 𝜙𝑑 for 𝑑 = 1, … , 𝐷 and we call 𝜙𝑑 the component
functions. Examples of features could be the mean, variance, or specific quantiles of
the belief. We emphasize that we will use the same notation to denote the decou-
pling function 𝜙 that is applied to random variables 𝜙(𝑄, 𝓕) and to non-random
arguments 𝜙(𝑞, F). Furthermore, it will sometimes be notationally convenient to
place the second argument as a subscript writing 𝜙F(𝑞) and 𝜙𝑑,𝐹 𝑒(𝑞) respectively.
We assume that each component function 𝜙𝑑,𝐹 𝑒(𝑞) is invertible and differentiable
with respect to 𝑞, allowing us to define the inverse with respect to 𝑞 as 𝜙−1

𝑑,𝐹 𝑒(𝑧).

Example (Decoupling Functions): A list of decoupling functions is presented in
Section 4.3.1 but two examples are the linear three-quantile decoupler and the
CDF decoupler defined as

𝜙Lin.3Q(𝑞, F) = ⎡⎢
⎣

𝑞 − 𝑚1
5% 𝑞 − 𝑚1

50% 𝑞 − 𝑚1
95%

⋮ ⋮ ⋮
𝑞 − 𝑚𝐸

5% 𝑞 − 𝑚𝐸
50% 𝑞 − 𝑚𝐸

95%

⎤⎥
⎦

, 𝜙CDF(𝑞, F) = ⎡⎢
⎣

𝐹 1(𝑞)
⋮

𝐹 𝐸(𝑞)
⎤⎥
⎦

respectively, where 𝑚𝑒
𝑝% is the 𝑝-percentile of expert 𝑒 and 𝐹 𝑒(𝑞) is the CDF of

expert 𝑒 evaluated at 𝑞. With these choices, we see how the column dimension is
dependent on the choice of decoupler while the number of rows does not. These
decouplers are further discussed in Section 4.3.1.

We restrict the domain of the 𝑞 argument in 𝜙 to the support of 𝑄 and then refer
to the image of 𝜙F as ΓF

ΓF = {𝜙(𝑞, F) ∶ 𝑞 ∈ support (𝑄)}.

With this, we can, in addition to each component being invertible, require that the
overall 𝜙 function be invertible between support(𝑄) and ΓF. We denote this inverse
function as 𝜙−1

F (z).
Note that this ΓF is a 1-dimensional curve existing in a 𝐷 ×𝐸-dimensional space.

We denote a segment of ΓF that is parameterized by a segment of q values by

ΓF[𝑎, 𝑏] = {𝜙(𝑞, F) ∶ 𝑞 ∈ [𝑎, 𝑏]}

where 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ support (𝑄). We will generally assume compact support of
𝑄 for simplicity and because it is realistic for practical SEJ studies.

We are now equipped with the foundational notation and transformation setup
needed to relate expert beliefs to the decoupled representation. The goal is to relate
the unconditional density of Z to the density of 𝑄 conditional on 𝓕 = F. We
are particularly interested in the unconditional density of Z because it is generally
more tractable to estimate from test questions than the density of Z conditional on
𝓕 = F.
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4.1. THE DECOUPLED COPULA MODEL

Definition 14. We call a function 𝑓Z∣𝓕=F ∶ ΓF → ℝ a density of Z conditional on
𝓕 = F if

𝑃(Z ∈ ΓF[𝑎, 𝑏] ∣ 𝓕 = F) = ∫
ΓF[𝑎,𝑏]

𝑓Z∣𝓕=F(z)𝑑z. (4.2)

where the integral is a line integral.

Although not a density with respect to the Lebesgue measure, 𝑓Z∣𝓕=F would,
in a measure-theoretic framework, be a density with respect to the 1D-Hausdorff
measure which in this setting would measure the length of the curve ΓF[𝑎, 𝑏] in the
ℝ𝐷𝐸 space Z is in. We will not discuss this theoretical measure theory further, but it
is with respect to this background that we will still refer to 𝑓Z∣𝓕=F as a conditional
density.

Lemma 4. A density, 𝑓Z∣𝓕=F, of Z conditional on 𝓕 = F is given by

𝑓Z∣𝓕=F(z) = 𝑓𝑄∣𝓕=F(𝜙−1
F (z)) 1

∥𝜙′
F(𝜙−1

F (z))∥
, ∀z ∈ ΓF (4.3)

where 𝜙′
F(𝑞) is the matrix with elements 𝜕

𝜕𝑞𝜙𝑑(𝑞, 𝐹 𝑒) and ‖𝜙′
F(𝑞)‖ is the Euclidian

norm over a vector containing the matrix elements of 𝜙′
F(𝑞).

Proof. Note first that Eq. (4.3) can be written as 𝑓Z∣𝓕=F fulfilling

𝑓Z∣𝓕=F (𝜙F(𝑞)) ‖𝜙′
F(𝑞)‖ = 𝑓𝑄∣𝓕=F(𝑞) (4.4)

by choosing z as 𝜙F(𝑞). Considering the left-hand side (LHS) of Eq. (4.2) we have

LHS = 𝑃(Z ∈ ΓF[𝑎, 𝑏] ∣ 𝓕 = F) = 𝑃(𝑄 ∈ [𝑎, 𝑏] ∣ 𝓕 = F) = ∫
𝑏

𝑎
𝑓𝑄∣𝓕=F(𝑞)𝑑𝑞.

Then from the definition of line integrals, the right-hand side (RHS) becomes

RHS = ∫
ΓF[𝑎,𝑏]

𝑓Z∣𝓕=F(z)𝑑z = ∫
𝑏

𝑎
𝑓Z∣𝓕=F (𝜙F(𝑞)) ‖𝜙′

F(𝑞)‖𝑑𝑞

Now from Eq. (4.4) we see that also the RHS is equal to

RHS = ∫
𝑏

𝑎
𝑓𝑄∣𝓕=F(𝑞)𝑑𝑞

which concludes that the the density of Eq. (4.3) fulfills the definition.

With the connection between the two conditional densities made, we will now
relate the conditional density of the decoupled random variable to the unconditional
density. We do so with the following assumption.

Assumption 1 (Independence assumption). The independence assumption is said
to hold if the conditional density 𝑓Z∣𝓕=F is proportional to the unconditional density
𝑓Z for all points in ΓF. That is,

𝑓Z∣𝓕=F(z) ∝ 𝑓Z(z), ∀z ∈ ΓF. (4.5)
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CHAPTER 4. THE DECOUPLED COPULA MODEL

Note that this is not the same as the random variables Z and 𝓕 being independent.
In particular, the support of Z depends on the value of 𝓕, so standard independence
does not hold. However, due to the similar density relationship, we retain the term
’independence assumption’.

The independence assumption assumes that the conditional densities follow, up
to a constant, the same density as the unconditional density. The truthfulness of this
assumption is difficult to test directly since we in general only observe a single set of
beliefs F once, and it is more chosen as arguably the most parsimonious connection
between the two densities. Other connections are discussed in the future research
section of Chapter 6. While we can not easily test this assumption in isolation we
can test it indirectly by seeing if the derived properties of the final model match
empirical observations.

Having the conditional density relation and the independence assumption, we
arrive at the core result: a tractable expression for the density 𝑓𝑄∣𝓕=F in terms of
copula components and marginal densities in the transformed space of Z.

Theorem 4 (The Decoupled Copula Model). Under the independence Assumption 1,
we can write the conditional density 𝑓𝑄∣𝓕=F, as

𝑓𝑄∣𝓕=F(𝑞) ∝ 𝑐Z (𝐹𝑍1
1

(𝜙1(𝑞, 𝐹 1)) , … , 𝐹𝑍𝐸
𝐷

(𝜙𝐷(𝑞, 𝐹 𝐸)))

∏
𝑑=1,…,𝐷
𝑒=1,…,𝐸

𝑓𝑍𝑒
𝑑
(𝜙𝑑(𝑞, 𝐹 𝑒)) ‖𝜙′

F(𝑞)‖ (4.6)

where 𝑐Z(𝑢1, … , 𝑢𝐷𝐸) is the density of the copula for Z.

Proof. From Lemma 4 we have that 𝑓𝑄∣𝓕=F(𝑞) = 𝑓Z∣𝓕=F(𝜙F(𝑞))‖𝜙′
F(𝑞)‖ which

together with the independence assumption yields

𝑓𝑄∣𝓕=F(𝑞) ∝ 𝑓Z(𝜙F(𝑞))‖𝜙′
F(𝑞)‖.

Being flexible with the matrix notation and seeing Z as a vector with 𝐷𝐸 values,
we get from the copula Corollary 1.1 that we can write 𝑓Z as

𝑓Z(𝑧1
1 , … , 𝑧𝐸

𝐷) = 𝑐Z (𝐹𝑍1
1

(𝑧1
1) , … , 𝐹𝑍𝐸

𝐷
(𝑧𝐸

𝐷)) ∏
𝑑=1,…,𝐷
𝑒=1,…,𝐸

𝑓𝑍𝑒
𝑑
(𝑧𝑒

𝑑)

which yields the desired expression

𝑓𝑄∣𝓕=F(𝑞) ∝ 𝑐Z ({𝐹𝑍𝑒
𝑑
(𝜙𝑒

𝑑(𝑞, F))}𝑒
𝑑) ∏

𝑖=1,…,𝐷
𝑒=1,…,𝐸

𝑓𝑍𝑒
𝑑
(𝜙𝑒

𝑑(𝑞, F))‖𝜙′
F(𝑞)‖

The practical point of the transformation of 𝑓𝑄∣𝓕=F into densities of Z, is that
we choose the decoupling function 𝜙 such that the decoupled space Z is invariant to
the question asked. In doing this, we can use historical questions that the experts
have answered, and to which we know the answers, to help us estimate the Z space.
Having estimated 𝑐Z and 𝐹𝑍𝐸

𝑑
, 𝑓𝑍𝑒

𝑑
we can use these densities in Eq. (4.6) with F

from a new question, to yield the 𝑓𝑄∣𝓕=ℱ to this new question we do not know the
answer to.
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In order to estimate the copula and marginal distributions of Z from previous
observations, however, we need the distribution to be invariant to the question
asked. That is, while the distributions of 𝑄 and 𝓕 clearly differ between questions
(otherwise the questions would be essentially identical), we will here assume that
with the transformation to Z, the connection is ’decoupled’.

Assumption 2 (Question invariance assumption). The question invariance assump-
tion is said to hold if there exists a common distribution 𝐹Z such that

Z𝑖 = 𝜙(𝑄𝑖, 𝓕𝑖) ∼ 𝐹Z ∀𝑖 = 1, … , 𝑁 (4.7)

for 𝑁 questions 𝑄1, … , 𝑄𝑁 and respective 𝑁 expert belief realizations 𝓕1, … , 𝓕𝑁.

With this, we have an extra constraint on 𝜙 that should be chosen such that the
question invariance assumption also holds. Equation (4.6) together with Assump-
tion 1 and Assumption 2 is the decoupled copula model.

While the core theoretical framework of the model now is established, multiple
implementation questions remain:

• How do we choose the decoupling function 𝜙?

• How do we estimate the marginal densities 𝑓𝑍𝑒
𝑑

of Z?

• How do we estimate the copula 𝑐Z of Z?

These questions form the core of making the decoupled copula model practically
applicable. The choice of decoupling function must balance theoretical soundness
with empirical validity, ensuring that the transformed variables satisfy our assump-
tions while being estimable from limited historical data. These questions will be
addressed in Section 4.3 but first we will look at a a method of strengthening the
question independence assumption by rejecting experts prior to applying the model.

4.2 Expert Rejection as Preprocessing
Implicit in all expert judgment studies, is the selection of experts to elicit. At one end
of the spectra, there is ’wisdom of the crowd’ where experts can be random members
of the public [33] and on the other end they can be carefully selected experts with
specific domain expertise [34]. In addition to the selection of experts to elicit, we can
also further narrow down which experts’ assessments to use, post-elicitation. Among
existing expert judgment models, this is for example done in the CM where an expert
can be rejected1 if their assessments on the test questions are not deemed sufficiently
calibrated [35]. In contrast to the CM that rejects based on calibration, however,
we will reject experts based on the question invariance assumption. Preferably, we
would reject experts based upon both the independence and the question invariance
assumption, but because the independence assumption is difficult to test in practice
we limit ourselves to testing the question invariance assumption. This will be done
through the following two lemmas.

1The rejected expert’s assessments are, however, still used in the computation of the support of
the question of interest.
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Lemma 5. If the question invariance assumption holds, then Z is independent of
𝑄.

Proof. Since the assumption should hold for any 𝑄𝑖 with arbitrary distribution, it
can also be phrased as

Z = 𝜙(𝑄, 𝓕) ∼ 𝐹Z, ∀𝐹𝑄.
Generally we can write the pdf, 𝑓Z, of Z in terms of the conditional distribution as

𝑓Z(z) = ∫ 𝑓Z∣𝑄=𝑠(z)𝑓𝑄(𝑠)𝑑𝑠, ∀z

With this holding for all distributions, we inspect the case where 𝑓𝑄 is the Dirac
delta distribution at a point 𝑞, 𝑓𝑄(𝑠) = 𝛿𝑞(𝑠). The previous integral then becomes

𝑓Z(z) = 𝑓Z∣𝑄=𝑞(z), ∀z, 𝑞

which shows the desired independence.

Lemma 6. If the question invariance assumption holds, then the marginal distribu-
tions, Z𝑒 = (𝑍𝑒

1 , … , 𝑍𝑒
𝐷), of Z are independent of 𝑄.

Proof. From Lemma 5, we know that Z is independent of 𝑄. Given any expert 𝑒,
let Z𝑐 be the complement of random variables Z𝑒, Z𝑐 = Z ∖ Z𝑒. Then we can write
the marginal distribution of Z𝑒 as

𝑓Z𝑒∣𝑄=𝑞(z𝑒) = ∫ 𝑓Z∣𝑄=𝑞(z)𝑑z𝑐 = ∫ 𝑓Z(z)𝑑z𝑐 = 𝑓Z𝑒(z𝑒) (4.8)

Because of how the question invariance assumption implies that the decoupled
expert marginals Z𝑒 are independent of 𝑄, we have that their independence to 𝑄
also is a requirement for the question invariance assumption. With this in mind, we
propose a rejection procedure to remove experts whose marginals Z𝑒 do not seem
independent of 𝑄, with the aim for the whole join distribution of Z to better satisfy
the question invariance assumption.

The expert rejection procedure involves the following steps:

1. We use the distance correlation test in Section 2.6.5 to test the independence
of Z𝑒 and 𝑄.

2. If the test fails for some significance level 𝛼𝑅𝑒𝑗, we exclude their beliefs from
the F realization and perform the chosen aggregation method on the remaining
experts.

3. If all experts are rejected, we consider only the expert with the highest p-value
from the distance correlation test.

This constitutes a pre-processing step that can be performed before the aggregation
process. In this work, we use the historically common threshold 𝛼𝑅𝑒𝑗 = 0.05, but
this could be adjusted to the context of the study. For example, it could be adaptive
to the number of test questions asked, or one could choose the threshold to optimize
some performance metric measured on a set of test questions in a similar way to
how the optimized significance threshold variant of the CM does it in Section 2.3.1.

The impact of this expert rejection procedure on the question invariance assump-
tion is measured empirically in Section 5.1.1.
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4.3 Parameters of the Decoupled Copula Model
The implementation of the decoupled copula model requires specifying three key
components: the decoupling function 𝜙, the marginal densities 𝑓𝑍𝑒

𝑑
, and the copula

𝑐Z. Each choice involves multiple degrees of freedom and affects how well the model
satisfies the independence and question invariance assumptions. We first examine
suitable choices for the decoupling function, evaluating different transformations
against theoretical requirements and empirical evidence. We then explore methods
for estimating the marginal distributions of the decoupled variables, comparing
approaches that balance theoretical soundness with practical robustness in small-
sample settings. Finally, we investigate copula estimation strategies, ranging from
independence assumptions to more flexible parametric families that can capture
expert dependencies while remaining tractable for implementation.

4.3.1 Choices of Decoupling Function 𝜙
While the theory in Section 4.1 includes the belief functions F, many SEJ studies,
such as all 49 studies in our dataset [14], focus on the quantiles of the experts’ beliefs.
When choosing the decoupling function, we need to follow these practical constraints
imposed by the quantile-based elicitation format. While many decoupling functions
could be imagined, we identify in this section two classes of decouplers: the CDF
decoupler and several error-based decouplers.

The CDF Decoupler

In general, we define the CDF decoupler as

𝜙CDF(𝑞, F) = ⎡⎢
⎣

𝐹 1(𝑞)
⋮

𝐹 𝐸(𝑞)
⎤⎥
⎦

∈ ℝ𝐸×1. (4.9)

In cases we only have access to quantile assessments, we first estimate the distribu-
tions 𝐹 𝑒 as described in Section 2.2, and then use these estimates ̂𝐹 𝑒, instead of 𝐹 𝑒

in the formula above.

Error-Based Decouplers

For error-based decouplers, we first define error functions: linear error, scaled linear
error, and relative error, for a scalar property 𝑚 of 𝐹 𝑒 as

𝜖Lin.(𝑞, 𝑚) = 𝑞 − 𝑚 (4.10)

𝜖Sc.Lin.(𝑞, 𝑚) = 𝑞 − 𝑚
𝑈𝑒∗ − 𝐿𝑒∗ (4.11)

𝜖Rel.(𝑞, 𝑚) = 𝑞 − 𝑚
|𝑚| + 𝜀

(4.12)

where 𝜀 is a small positive constant to avoid division by zero and ensure invertibility
with respect to 𝑞 for all choices of 𝑚. For this work, we set 𝜀 = 10−3. We use the
expert-specific support parameters 𝐿𝑒∗ and 𝑈𝑒∗ because, as explained in Section 4.3.2,
we want the denominator to be proportional to the standard deviation and we argue
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that the global support parameters 𝐿∗ and 𝑈 ∗ are more of a measure of the experts
uncertainty than the standard deviation of the quantity.

If m ∈ ℝ𝐸×𝐷 is a matrix with elements 𝑚𝑒
𝑑 with 𝐷 properties of each experts’

beliefs, such as quantiles or means, we can use the above error functions to define
decoupling functions of the form:

𝜙(𝑞, F) = ⎡⎢
⎣

𝜖(𝑞, 𝑚1
1) … 𝜖(𝑞, 𝑚1

𝐷)
⋮ ⋱ ⋮

𝜖(𝑞, 𝑚𝐸
1 ) … 𝜖(𝑞, 𝑚𝐸

𝐷)
⎤⎥
⎦

∈ ℝ𝐸×𝐷 (4.13)

The choices for properties m that we investigate are:

m = ⎡
⎢
⎣

𝜇1
G.Sup.

⋮
𝜇𝐸

G.Sup.

⎤
⎥
⎦

∈ ℝ𝐸×1

where 𝜇𝑒
G.Sup. is the global support mean of expert 𝑒, calculated from ̂𝐹 𝑒 using global

support parameters as defined in Section 2.2.

m = ⎡
⎢
⎣

𝜇1
E.Sup.

⋮
𝜇𝐸

E.Sup.

⎤
⎥
⎦

∈ ℝ𝐸×1

where 𝜇𝑒
E.Sup. is the expert support mean of expert 𝑒, calculated from ̂𝐹 𝑒

E.Sup. using
expert-specific support parameters as defined in Section 2.2.

m = ⎡
⎢
⎣

Median1

⋮
Median𝐸

⎤
⎥
⎦

∈ ℝ𝐸×1

where Median𝑒 is the median of expert 𝑒, calculated as (𝐹 𝑒)−1(0.5).

m = ⎡⎢
⎣

(𝐹 1)−1(5%) (𝐹 1)−1(50%) (𝐹 1)−1(95%)
⋮ ⋮ ⋮

(𝐹 𝐸)−1(5%) (𝐹 𝐸)−1(50%) (𝐹 𝐸)−1(95%)
⎤⎥
⎦

∈ ℝ𝐸×3

where the matrix contains the 5%, 50%, and 95% quantiles for each expert 𝑒, directly
corresponding to the elicited quantile information from our dataset.

In the case of m existing of quantiles, we can calculate the means through

𝜇𝑒 = ∫ 𝑞 ̂𝑓𝑒(𝑞)𝑑𝑞 = 1
2

𝐷+1

∑
𝑑=1

(𝑝𝑑 − 𝑝𝑑−1)(𝑚𝑒
𝑑 − 𝑚𝑒

𝑑−1)

where 𝑚𝑒
0 = 𝐿∗ and 𝑚𝑒

𝐷+1 = 𝑈 ∗ (or 𝐿𝑒∗ and 𝑈𝑒∗ for the expert support variant) for
all 𝑒, and 𝑝𝑑 is the probability for quantiles 𝑚𝑒

𝑑. 𝐿∗ and 𝑈 ∗ are the lower and upper
support limits as defined in Section 2.2. A derivation for this result can be seen in
Appendix A.2.

These property choices, combined with the three error functions, give rise to the
following error-based decoupling functions:

1. 𝜙Lin.𝜇G.Sup.
: Linear error with global support means
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2. 𝜙Lin.𝜇E.Sup.
: Linear error with expert support means

3. 𝜙Lin.Median: Linear error with medians

4. 𝜙Lin.Q3: Linear error with three quantiles

5. 𝜙Sc.Lin.𝜇G.Sup.
: Scaled linear error with global support means

6. 𝜙Sc.Lin.𝜇E.Sup.
: Scaled linear error with expert support means

7. 𝜙Sc.Lin.Median: Scaled linear error with medians

8. 𝜙Sc.Lin.Q3: Scaled linear error with three quantiles

9. 𝜙Rel.𝜇G.Sup.
: Relative error with global support means

10. 𝜙Rel.𝜇E.Sup.
: Relative error with expert support means

11. 𝜙Rel.Median: Relative error with medians

12. 𝜙Rel.Q3: Relative error with three quantiles

4.3.2 Theoretical arguments for the decoupling functions
We examine the theoretical properties of each decoupling function under the assump-
tion of perfect experts to understand which transformations are most likely to satisfy
the question invariance assumption.

CDF Decoupler: The CDF decoupler perfectly fulfills the question invariance
assumption if experts are perfect and our estimation of the 𝐹 𝑒 functions is correct.
When an expert is perfect, i.e., 𝐹 𝑒 = 𝐹𝑄, then 𝑍𝑒

1 = 𝐹𝑄(𝑄) and 𝑍𝑒
1 is uniformly

distributed by the probability integral transform theorem Theorem 3. This uniform
distribution is completely independent of the specific question, making the CDF
decoupler theoretically optimal in a sense for question invariance. Note that the
dependence between experts becomes trivial in the case of all experts being perfect
(they are all essentially the same expert), thus it is sufficient to look at the marginals.

Linear Error Decoupler: For a perfect expert, the mean of the linear error is
zero when one of the mean estimations is chosen and correctly aligns with the mean
of 𝐹 𝑒. However, the variance remains dependent on the question:

𝑍𝑒
𝑑 = 𝑄 − 𝜇𝑒 ⟹ 𝐸[𝑍𝑒

𝑑 ] = 𝐸[𝑄] − 𝜇𝑒 = 0 and Var(𝑍𝑒
𝑑) = Var(𝑄) (4.14)

Since the variance depends on the specific question 𝑄, this violates the question
invariance assumption.

Scaled Linear Error Decoupler: The mean of the scaled linear error is zero
for a perfect expert. Additionally, if the expert support range is proportional to the
standard deviation of 𝐹 𝑒, then the variance becomes question-invariant. Assuming
𝜎𝑄 ∝ 𝑈𝑒∗ − 𝐿𝑒∗ and 𝜇𝑒 = 𝜇𝑄:

𝑍𝑒
𝑑 = 𝑄 − 𝜇𝑒

𝑈𝑒∗ − 𝐿𝑒∗ ⟹ 𝐸[𝑍𝑒
𝑑 ] = 𝐸[𝑄] − 𝜇𝑒

𝑈𝑒∗ − 𝐿𝑒∗ = 0 and Var(𝑍𝑒
𝑑) = Var(𝑄)

(𝑈𝑒∗ − 𝐿𝑒∗)2 ∝ 1

(4.15)
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This proportionality assumption makes the scaled linear decoupler more promising
for question invariance than the unscaled version.

Relative Error Decoupler: Similar to the scaled linear case, the mean of
the relative error is zero for a perfect expert. If we assume that the mean of 𝑄 is
proportional to its standard deviation, then the variance also becomes proportional
to a constant, achieving question invariance in both mean and variance.

Performance Predictions: Based on these theoretical arguments, we hypothe-
size the following performance ranking for satisfying the question invariance assump-
tion:

1. CDF decoupler : Best performance, as it can make all moments of the 𝑍𝑒
𝑑

marginals independent of the question

2. Scaled linear decoupler : Second best, as the proportionality assumption be-
tween support range and standard deviation seems more reasonable than mean-
based assumptions

3. Relative error decoupler : Third, requiring the additional assumption of pro-
portionality between mean and standard deviation

4. Linear decoupler : Worst among error-based methods, as variance remains
question-dependent

Property Choice Considerations: Since the median is not a linear function
of the distribution, linear error decouplers using medians will not have the property
that the expected error is zero for perfect experts. We therefore expect mean-based
properties to outperform median-based properties.

Expert Rejection Effects: We expect that performing expert rejection prepro-
cessing as described in Section 4.2 will improve independence by removing marginals
that are clearly dependent on the question, thereby enhancing the performance of
all decoupling functions.

Dimension of Output: There are arguably fewer arguments to expect that
the 3 quantiles error decouplers should be question invariant. They do however
have an information advantage in the sense that 𝐼(𝑄; 𝓕) ≥ 𝐼(𝑄; M3Quantiles) ≥
𝐼(𝑄; MMedian) where 𝐼 is the mutual information and M is the random variable of
m. This follows from the data processing inequality [36] and because how MMedian
is a function of M3𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠, that in turn is a function of 𝓕. Intuitively, this can
be described as no information can be gained, only potentially lost, by transforming
a random variable. The mutual information is relevant because it describes the
amount of information obtained about 𝑄 when observing, for instance, MMedian.
From the inequality above, we can thus hypothesize that we can infer more about
the distribution of 𝑄 if we use all quantiles instead of only the median. See [36] for
a formal definition of mutual information and related results.

These theoretical arguments provide guidance for selecting appropriate decou-
pling functions. The empirical evaluation of these different decoupling functions and
their performance in satisfying the question invariance assumption is presented in
Chapter 5.
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4.3.3 Composition with sigmoid function
In terms of the independence towards 𝑄, performing an invertible transformation on
Z does not alter this property, see Appendix A.3 for proof. In terms of practically
estimating the joint density of Z from observations, however, transformations can
facilitate the process by making the support bounded. To simplify the density
estimation part in Section 4.3.4 we introduce composition with sigmoid functions
for our error-based decouplers that are not naturally bounded.

For any invertible function 𝜎 ∶ ℝ → (0, 1) we can define the sigmoid composed
decoupler function as

𝜙𝜎(𝑞, F) = ⎡⎢
⎣

𝜎(𝜙1(𝑞, 𝐹 1)) … 𝜎(𝜙�̃�(𝑞, 𝐹 1))
⋮ ⋱ ⋮

𝜎(𝜙1(𝑞, 𝐹 𝐸)) … 𝜎(𝜙�̃�(𝑞, 𝐹 𝐸))
⎤⎥
⎦

,

and its derivative wrt 𝑞 at row 𝑒 column 𝑑 becomes

𝜎′(𝜙𝑑(𝑞, 𝐹 𝑒)) 𝜕
𝜕𝑞

𝜙𝑑(𝑞, 𝐹 𝑒).

For this work, we use the logistic function.

𝜎(𝑥; 𝑘) = 1
1 + 𝑒−𝑘𝑥 .

with derivative
𝜎′(𝑥; 𝑘) = 𝑘𝑒−𝑘𝑥

(1 + 𝑒−𝑘𝑥)2 .

as sigmoid function.
With the support of the CDF decoupler function already being bounded, we apply

the sigmoid transformation only to the previously mentioned linear and relative error
decoupler functions. The parameter 𝑘 is chosen to ensure that the range of interest
is captured without numerical precision issues.

For error-based decouplers where 𝜙𝑑 is an affine function of 𝑞 (constant derivative)
and is composed with the logistic function, the mean and variance of the transformed
random variables can be calculated analytically. From Appendix A.2, for a piecewise
linear distribution with density represented as quantile interpolation points, the
expected value of the sigmoid-transformed variable is:

∫ 𝜎(𝜙𝑑(𝑞, 𝐹 𝑒))𝑓𝑒(𝑞)𝑑𝑞 =
𝑛

∑
𝑑=1

𝑝𝑖 − 𝑝𝑑−1
(𝑚𝑒

𝑖 − 𝑚𝑒
𝑑−1)𝐶𝑑𝑘

log 1 + 𝑒𝑘𝜙𝑑(𝑚𝑒
𝑖 ,𝐹 𝑒)

1 + 𝑒𝑘𝜙𝑑(𝑚𝑒
𝑑−1,𝐹 𝑒)

where 𝐶𝑑 is the constant derivative of 𝜙𝑑 with respect to 𝑞. and the primitive
function for the sigmoid composition (from Appendix A.1) enables this analytical
computation of moments.

4.3.4 Estimation of Margins
With the decoupler function analyzed in Section 4.3.1, we focus here on estimating
the marginal densities 𝑓𝑍𝑒

𝑑
and 𝐹𝑍𝑒

𝑑
of Eq. (4.6). Of particular importance for all

these estimations is that we want them to be robust even with few samples, 𝑁 ≈ 10,
as discussed in Section 2.1.
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For this purpose, we will investigate three approaches: MLE, empirical Bayes
Maximum a Posteriori (MAP), and a non-data-driven Perfect Expert (PE) prior
approach. In all approaches, we assume that 𝑍𝑒

𝑑 can be parameterized as a four-
parameter beta distribution. We also define the exact perfect expert marginals for
future theoretical discussions.

The four-parameter beta distribution is defined by shape parameters 𝑎 > 0,
𝑏 > 0, and support [𝑐, 𝑑] where 𝑐 < 𝑑. It has density

𝑓Beta(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = 1
𝐵(𝑎, 𝑏)

1
𝑑 − 𝑐

(𝑥 − 𝑐
𝑑 − 𝑐

)
𝑎−1

(𝑑 − 𝑥
𝑑 − 𝑐

)
𝑏−1

(4.16)

for 𝑥 ∈ [𝑐, 𝑑] and 𝑓Beta(𝑥; 𝑎, 𝑏, 𝑐, 𝑑) = 0 otherwise, where 𝐵(𝑎, 𝑏) = ∫1
0

𝑡𝑎−1(1 −
𝑡)𝑏−1𝑑𝑡 is the beta function. We write the assumption that 𝑍𝑒

𝑑 is beta distributed as

𝑍𝑒
𝑑 ∼ Beta(𝑎𝑒

𝑑, 𝑏𝑒
𝑑, 𝑐𝑒

𝑑, 𝑑𝑒
𝑑).

or
𝑓𝑍𝑒

𝑑
(𝑧) = 𝑓Beta(𝑧; 𝑎𝑒

𝑑, 𝑏𝑒
𝑑, 𝑐𝑒

𝑑, 𝑑𝑒
𝑑)

for parameters (𝑎𝑒
𝑑, 𝑏𝑒

𝑑, 𝑐𝑒
𝑑, 𝑑𝑒

𝑑). The support parameters 𝑐𝑒
𝑑 and 𝑑𝑒

𝑑 are determined
by taking the support of 𝑄 and mapping it to the space of 𝑍𝑒

𝑑 . Let [𝐿∗, 𝑈 ∗] be the
support of 𝑄 as calculated in Section 2.2, then we define

𝑐𝑒
𝑑 = inf{𝜙𝑑(𝑞, 𝐹 𝑒) ∶ ∀𝑞 ∈ [𝐿∗, 𝑈 ∗]}

and
𝑑𝑒

𝑑 = sup{𝜙𝑑(𝑞, 𝐹 𝑒) ∶ ∀𝑞 ∈ [𝐿∗, 𝑈 ∗]}

Since these support parameters are identical across all estimation methods for 𝑎𝑒
𝑑

and 𝑏𝑒
𝑑, we will drop the explicit notation and write 𝑓Beta(𝑎𝑒

𝑑, 𝑏𝑒
𝑑) for brevity. The

three density estimation methods are described below.

MLE estimation

For the MLE approach, we define realizations 𝑧𝑒
𝑑,𝑖 of the random variable 𝑍𝑒

𝑑 for
𝑖 = 1, … , 𝑁 test questions. Note that it is possible to use other test questions as
realizations due to the question invariance assumption. The MLE method selects
𝑎𝑒

𝑑, 𝑏𝑒
𝑑 as elements from the set

arg max
𝑎𝑒

𝑑,𝑏𝑒
𝑑

𝑁
∑
𝑖=1

log (𝑓Beta(𝑥; 𝑎𝑒
𝑑, 𝑏𝑒

𝑑))

MAP estimation

The MAP approach employs a hierarchical setup according to

𝑍𝑒
𝑑 ∣ 𝐴𝑒

𝑑 = 𝑎𝑒
𝑑, 𝐵𝑒

𝑑 = 𝑏𝑒
𝑑 ∼ 𝐵𝑒𝑡𝑎(𝑎𝑒

𝑑, 𝑏𝑒
𝑑, 𝑐𝑒

𝑑, 𝑑𝑒
𝑑)

where 𝐴𝑒
𝑑 and 𝐵𝑒

𝑑 are modeled as independent and marginally log-normal distributed:

𝐴𝑒
𝑑 ∼ LogNormal(𝜇𝐴𝑒

𝑑
, 𝜎𝐴𝑒

𝑑
); 𝐵𝑒

𝑑 ∼ LogNormal(𝜇𝐵𝑒
𝑑
, 𝜎𝐵𝑒

𝑑
)
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where the log-normal density is

𝑓LogNormal(𝑥; 𝜇, 𝜎) = 1
𝑥𝜎

√
2𝜋

exp (−(log 𝑥 − 𝜇)2

2𝜎2 )

for 𝑥 > 0, where 𝜇 ∈ ℝ is the location parameter and 𝜎 > 0 is the scale parameter.
The MAP estimation can then be formulated as choosing 𝑎𝑒

𝑑, 𝑏𝑒
𝑑 from the set:

arg max
𝑎𝑒

𝑑,𝑏𝑒
𝑑

log 𝑝(𝑎𝑒
𝑑, 𝑏𝑒

𝑑 ∣ 𝑧𝑒
𝑑,1 … 𝑧𝑒

𝑑,𝑁) ∝ log 𝑓LogNormal (𝑎𝑒
𝑑; 𝜇𝐴𝑒

𝑑
, 𝜎𝐴𝑒

𝑑
) +

log 𝑓LogNormal (𝑏𝑒
𝑑; 𝜇𝐵𝑒

𝑑
, 𝜎𝐵𝑒

𝑑
) +

𝑁
∑
𝑖=1

log 𝑓Beta(𝑧𝑒
𝑑,𝑖; 𝑎𝑒

𝑑, 𝑏𝑒
𝑑) (4.17)

For our purposes, it is more convenient to specify the prior in terms of its mode
and actual variance rather than using the standard parameterization. Note that
the parameters 𝜇 and 𝜎2 in the standard parameterization are not the mean and
variance of the log-normal distribution itself, but rather the mean and variance of
the underlying normal distribution of the logarithm of the random variable. We,
therefore, establish a change of variables that allows us to specify the desired mode 𝑀
and variance 𝜎2

Prior of the log-normal distribution, and then derive the corresponding
standard parameters 𝜇 and 𝜎.

For a log-normal distribution with parameters 𝜇 and 𝜎, the mode 𝑀, and variance
𝜎2

prior, are given by:
𝑀 = exp(𝜇 − 𝜎2),

𝜎2
prior = exp(2𝜇 + 𝜎2)(exp(𝜎2) − 1).

This can be derived by normal probability and algebra relations or one can consult
for instance [37]. These relationships lead to a change of variables that allows us
to specify the desired mode 𝑀 and variance 𝜎2

Prior of the log-normal distribution
and then derive the corresponding standard parameters 𝜇 and 𝜎. Letting 𝑀𝐴𝑒

𝑑
and

𝑀𝐵𝑒
𝑑

be the mode of the distribution of 𝐴𝑒
𝑑 and 𝐵𝑒

𝑑 respectively, and 𝜎2
prior be the

variance of both distributions, we have that the log-normal distribution parameters
are determined through:

𝜎2
𝐴𝑒

𝑑
= log(𝑢𝐴𝑒

𝑑
); 𝜎2

𝐵𝑒
𝑑

= log(𝑢𝐵𝑒
𝑑
)

𝜇𝐴𝑒
𝑑

= log(𝑀𝐴𝑒
𝑑
) + 𝜎2

𝐴𝑒
𝑑
; 𝜇𝐵𝑒

𝑑
= log(𝑀𝐵𝑒

𝑑
) + 𝜎2

𝐵𝑒
𝑑

where 𝑢𝐴𝑒
𝑑

and 𝑢𝐵𝑒
𝑑

are solutions to the respective nonlinear equations:

𝑢4
𝐴𝑒

𝑑
− 𝑢3

𝐴𝑒
𝑑

− 𝜎2
Prior

𝑀2
𝐴𝑒

𝑑

= 0; 𝑢4
𝐵𝑒

𝑑
− 𝑢3

𝐵𝑒
𝑑

− 𝜎2
Prior

𝑀2
𝐵𝑒

𝑑

= 0

These nonlinear equations must be solved numerically using root-finding algorithms,
as they do not admit closed-form solutions. With 𝜎2

Prior
𝑀2

𝐵𝑒
𝑑

> 0, the equation is solved

for some 𝑢 > 1. Letting ℎ(𝑢) = 𝑢4 − 𝑢3, we have that ℎ(𝑢) is strictly increasing
for 𝑢 ≥ 1, which makes the equation tractable to solve using, for instance, bisection
methods. The solution ensures that both log-normal priors have the specified modes
𝑀𝐴𝑒

𝑑
and 𝑀𝐵𝑒

𝑑
while maintaining the common prior variance 𝜎2

Prior. An illustration
of a selection of log-normal densities using this parameterization is shown in Fig. 4.1.
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We choose the mode over the mean or median because when fixing the mean or
median and increasing 𝜎prior, part of the density concentrates close to zero, which
leads to the selection of smaller parameter values as 𝜎prior increases and does not
converge to the MLE estimation, which we are aiming for. This is not the case for
the mode parameterization, where the density becomes more flat overall as 𝜎prior
increases, as illustrated in the figure.
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Figure 4.1: Illustration of log-normal densities with specified prior standard devia-
tions 𝜎prior and with mode equal to 1 (dashed line).

With the parameterization of the priors complete, we are left to choose the
parameters. We will leave 𝜎prior to be chosen empirically as a hyperparameter
specifying the uncertainty of the prior density. For the mode, however, we will
choose it somewhat based on the following principle:

Design Principle 1. The prior should be chosen such that, without evidence to
the contrary, the distribution of 𝑍𝑒

𝑑 should be that of a perfect expert.

This principle comes from the argument that if we have no other information
about an expert, we might as well trust that they are correct. While the distribution
of 𝑍𝑒

𝑑 depends on the generally unknown distributions of 𝑄 and ℱ𝑒, this is not the
case when an expert is perfect. If an expert is perfect, both the distribution of 𝑄
and ℱ𝑒 become known and identical. The distribution of 𝑄 becomes equal to that of
the perfect expert, and ℱ𝑒 is constant at that distribution. This means that we can
calculate the distribution of 𝑍𝑒

𝑑 analytically under the perfect expert assumption.
For notational ease we denote the random variable induced by 𝜙 under the

perfect expert assumption as Z̃ and we call the mean and variance of ̃𝑍𝑒
𝑑 , 𝜇 ̃𝑍𝑒

𝑑
and

𝜎2
̃𝑍𝑒
𝑑
, respectively. For our operationalization of Design Principle 1, we choose the

prior modes 𝑀𝐴𝑒
𝑑

and 𝑀𝐵𝑒
𝑑

such that when conditioning on these modes, the mean
of 𝑍𝑒

𝑑 equals that of ̃𝑍𝑒
𝑑 :

𝐸[ ̃𝑍𝑒
𝑑 |𝐴𝑒

𝑑 = 𝑀𝐴𝑒
𝑑
, 𝐵𝑒

𝑑 = 𝑀𝐵𝑒
𝑑
] =

𝑀𝐴𝑒
𝑑

𝑀𝐴𝑒
𝑑

+ 𝑀𝐵𝑒
𝑑

∶= 𝜇 ̃𝑍𝑒
𝑑
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Var( ̃𝑍𝑒
𝑑 |𝐴𝑒

𝑑 = 𝑀𝐴𝑒
𝑑
, 𝐵𝑒

𝑑 = 𝑀𝐵𝑒
𝑑
) =

𝑀𝐴𝑒
𝑑
𝑀𝐵𝑒

𝑑

(𝑀𝐴𝑒
𝑑

+ 𝑀𝐵𝑒
𝑑
)2(𝑀𝐴𝑒

𝑑
+ 𝑀𝐵𝑒

𝑑
+ 1)

∶= 𝜎2
̃𝑍𝑒
𝑑

Solving this system yields:

𝑀𝐴𝑒
𝑑

= 𝜇 ̃𝑍𝑒
𝑑

⎛⎜
⎝

𝜇 ̃𝑍𝑒
𝑑
(1 − 𝜇 ̃𝑍𝑒

𝑑
)

𝜎2
̃𝑍𝑒
𝑑

− 1⎞⎟
⎠

𝑀𝐵𝑒
𝑑

= (1 − 𝜇 ̃𝑍𝑒
𝑑
) ⎛⎜
⎝

𝜇 ̃𝑍𝑒
𝑑
(1 − 𝜇 ̃𝑍𝑒

𝑑
)

𝜎2
̃𝑍𝑒
𝑑

− 1⎞⎟
⎠

The final problem left is to determine 𝜇 ̃𝑍𝑒
𝑑

and 𝜎2
̃𝑍𝑒
𝑑
. We do this by different procedures

for the CDF decoupler and the error-based decouplers. As discussed in Section 4.3.2,
the CDF decoupler function produces uniform 𝑍𝑒

𝑑 variables under the perfect expert
assumption. Thus 𝜇 ̃𝑍𝑒

𝑑
= 1/2 and 𝜎2

̃𝑍𝑒
𝑑

= 1/12, which are standard results for
continuously uniform random variables.

For the case of sigmoid-composed error-based decouplers, 𝜙𝑑 = 𝜎∘𝜖𝑑, we generally
would compute the mean and variance with

𝜇 ̃𝑍𝑒
𝑑

= 𝐸[ ̃𝑍𝑒
𝑑 ] = 𝐸[𝜎(𝜖((𝑄, 𝐹𝑄))] = ∫ 𝜎(𝜖𝑑(𝑞, 𝐹𝑄))𝑓𝑄(𝑞)𝑑𝑞.

For the case of linearly interpolated beliefs 𝑓𝑒 (and thus also 𝑓𝑄), we can derive,
using the same notation as in Section 2.2, that:

𝜇 ̃𝑍𝑒
𝑑

=
𝐷+1

∑
𝑑=1

𝑝𝑑 − 𝑝𝑑−1
𝑚𝑒

𝑑 − 𝑚𝑒
𝑑−1

(𝐺𝜎(𝜖𝑑)(𝑚𝑒
𝑑) − 𝐺𝜎(𝜖𝑑)(𝑚𝑒

𝑑−1))

𝜎 ̃𝑍𝑒
𝑑

= 𝐸[( ̃𝑍𝑒
𝑑)2] − 𝜇2

̃𝑍𝑒
𝑑

with

𝐸[( ̃𝑍𝑒
𝑑)2] =

𝐷+1

∑
𝑑=1

𝑝𝑑 − 𝑝𝑑−1
𝑚𝑒

𝑑 − 𝑚𝑒
𝑑−1

(𝐺𝜎2(𝜖𝑑)(𝑚𝑒
𝑑) − 𝐺𝜎2(𝜖𝑑)(𝑚𝑒

𝑑−1))

where 𝐺𝜎(𝜖𝑑) and 𝐺𝜎2(𝜖𝑑) are primitive functions with respect to 𝑞 of 𝜎(𝜖𝑑(𝑞, 𝐹 𝑒))
and 𝜎2(𝜖𝑑(𝑞, 𝐹 𝑒)), respectively. This is derived in Appendix A.2. With the choice
of the logistic sigmoid function, we have primitives calculated in Appendix A.1 as:

𝐺𝜎(𝜖𝑑)(𝑞, 𝐹 𝑒) = log(1 + 𝑒𝑘𝜖𝑑(𝑞,𝐹 𝑒))
𝐶𝑒

𝑑𝑘
(4.18)

and
𝐺𝜎2(𝜖𝑑)(𝑥) = 1

𝐶𝑒
𝑑𝑘(1 + 𝑒𝑘𝜖𝑑(𝑥))

+ log(1 + 𝑒𝑘𝜖𝑑(𝑥))
𝐶𝑒

𝑑𝑘
. (4.19)

The complete MAP estimation procedure can be summarized in the following
steps:

1. Calculate perfect expert moments: Compute the target moments 𝜇 ̃𝑍𝑒
𝑑

and 𝜎 ̃𝑍𝑒
𝑑

under the perfect expert assumption using the appropriate formulas
for the chosen decoupling function (uniform distribution for CDF decoupler,
or integration for sigmoid-composed error-based decouplers).
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2. Determine prior modes: Use the perfect expert moments to calculate the
prior modes 𝑀𝐴𝑒

𝑑
and 𝑀𝐵𝑒

𝑑
via the system of equations derived from the beta

distribution moment matching.

3. Convert to log-normal parameters: For a specific prior variance 𝜎2
Prior,

solve the nonlinear equations numerically to obtain the log-normal distribution
parameters 𝜇𝐴𝑒

𝑑
, 𝜎𝐴𝑒

𝑑
, 𝜇𝐵𝑒

𝑑
, and 𝜎𝐵𝑒

𝑑
.

4. Solve MAP optimization: Maximize the posterior distribution by solving
the optimization problem of 𝑎𝑒

𝑑, 𝑏𝑒
𝑑, that combines the log-normal priors with

the beta likelihood from the observed data 𝑧𝑒
𝑑,1, … , 𝑧𝑒

𝑑,𝑁. Doing this, 𝑍𝑒
𝑑 is

then now modeled to have distribution Beta(𝑎𝑒
𝑑, 𝑏𝑒

𝑑, 𝑐𝑒
𝑑, 𝑑𝑒

𝑑).

For implementation of the MAP optimization problem, we used the R rstan
package, which provides an interface to the probabilistic programming language
stan2.

Out of Bounds Values

Both the MLE and MAP estimation methods require observed realizations of the
decoupled variables 𝑧𝑒

𝑑,𝑖 to lie within the theoretical support [𝑐𝑒
𝑑, 𝑑𝑒

𝑑] of the extended
beta distribution. However, in practice, some observed values may fall outside this
support due to the question invariance assumption not holding. If this happens we
exclude those observations from the optimization algorithm.

In the extreme case where all observed realizations for a particular 𝑍𝑒
𝑑 fall outside

the theoretical support, the MLE and MAP methods cannot proceed with standard
parameter estimation. Similarly, numerical optimization procedures may occasionally
fail to converge due to poor initialization or challenging likelihood surfaces. The
number of estimation failures for the upcoming empirical test is seen in Table A.2.

The Perfect Expert prior approach is unaffected by these issues since it does not
rely on observed data, making it a robust fallback option when data-driven methods
encounter difficulties.

Perfect Expert Prior

The PE prior approach represents a purely theory-driven method among our three
estimation strategies. Rather than relying on historical data through MLE or in-
corporating limited prior information via MAP estimation, this approach directly
implements the theoretical expectations derived from our perfect expert assumption.

In this method, we set the marginal distributions of 𝑍𝑒
𝑑 to exactly match the

theoretical moments of ̃𝑍𝑒
𝑑 calculated under the perfect expert assumption, as defined

in the previous section. Specifically, we parameterize the extended beta distribution
using the theoretically derived shape parameters:

𝑍𝑒
𝑑 ∼ Beta(𝜇𝐴𝑒

𝑑
, 𝜇𝐵𝑒

𝑑
, 𝑐𝑒

𝑑, 𝑑𝑒
𝑑)

where 𝜇𝐴𝑒
𝑑

and 𝜇𝐵𝑒
𝑑

are determined from the perfect expert moments 𝜇 ̃𝑍𝑒
𝑑

and 𝜎 ̃𝑍𝑒
𝑑

using the system of equations presented earlier.
2https://mc-stan.org/
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This approach is fundamentally non-data-driven, making no empirical inferences
from observed realizations. Instead, it represents how decoupled variables would be-
have when experts provide assessments that perfectly align with the true underlying
distributions, under the restriction to the beta distribution.

While this approach may seem overly optimistic in assuming perfect expert
behavior, it serves as an important theoretical benchmark and could be used in
isolation in scenarios where historical data is not available.

Exact Perfect Expert Marginal

The PE prior approach described above restricts the marginal distributions to the
beta family for ease of comparison with the MAP and MLE methods. However, an
alternative formulation allows for the exact distribution induced by transforming the
expert beliefs without parametric constraints. In this exact approach, we directly
use the distribution 𝑍𝑒

𝑑 = 𝜙𝑑(𝑄, 𝐹 𝑒), which yields the density

𝑓𝑍𝑒
𝑑
(𝑧) = 𝑓𝑒(𝜙−1

𝑑,𝐹 𝑒(𝑧)) ∣ 𝑑
𝑑𝑧

𝜙−1
𝑑,𝐹 𝑒(𝑧)∣ . (4.20)

This formulation follows directly from the change of variables formula in probability
theory, providing the exact distribution of the decoupled variables without requiring
any parametric approximation.

While we do not implement this exact approach in our empirical evaluation, it
serves a theoretical purpose in analyzing the model’s connections to existing methods,
as discussed in Section 4.4. The method can be viewed as implementing Design
Principle 1 in its purest form, setting the prior distribution to reflect our theoretical
expectations without the distributional restrictions imposed by the regular PE prior.

With the three practical marginal estimation approaches (MLE, MAP, and PE
prior) established, we have completed the theoretical framework for estimating the
marginal densities 𝑓𝑍𝑒

𝑑
in the decoupled copula model. The empirical comparison of

these methods is presented in Chapter 5.

4.3.5 Estimation of copula
With strategies for estimating the distributions of 𝑍𝑒

𝑑 laid out, we will here discuss
the estimation of the copula density 𝑐Z. Following the inference functions for mar-
gins (IFM) approach described in Section 2.6.4, we estimate marginal and copula
parameters sequentially.

For the copula estimation, we evaluate several different strategies. First, we
consider the independence copula, which assumes no dependence between experts’
errors and serves as our baseline approach. We also examine vine copulas with an
independence or single parameter estimation per bivariate copula using Dißmann’s
algorithm. Additionally, we implement multivariate Frank copulas with MLE and
an empirical Bayes Gaussian copulas approach with LKJ priors on the correlation
matrix. Finally, we apply a connection threshold dimension reduction technique to
both vine and Gaussian copula methods to improve computational tractability and
numerical stability.

For copula estimation, we consider a study with test questions 𝑄1, … , 𝑄𝑁 having
realizations 𝑞1, … , 𝑞𝑁 and corresponding expert beliefs F1, … , F𝑁. The estimation
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procedure involves two key transformations. First, we compute the decoupled vari-
ables z𝑖 = 𝜙(𝑞𝑖, F𝑖) with elements 𝑧𝑒

𝑑,𝑖 = 𝜙𝑑(𝑞𝑖, 𝐹 𝑒
𝑖 ). Second, we transform these

to uniform marginals by defining u𝑖 with elements 𝑢𝑒
𝑑,𝑖 = 𝐹𝑍𝑒

𝑑,𝑖
(𝑧𝑒

𝑑,𝑖) for 𝑖 = 1, … 𝑁,
where 𝐹𝑍𝑒

𝑑,𝑖
represents the estimated marginal distribution of the decoupled variable

𝑍𝑒
𝑑,𝑖. The copula estimation methods then use these uniform samples u𝑖 to estimate

the copula density 𝑐z.

Independence Copula

For the independence copula, we assume independence between experts and simply
set the copula density to that of the independence copula

𝑐z(u) = 1.

Estimation through vine copulas

Moving beyond the simple independence assumption, we employ vine copula es-
timation using Dißmann’s sequential approach as outlined in Section 2.6.3. This
algorithm involves a large set of potential parameters, details of which can be seen
in Appendix A.5. Because the bivariate independence copula is part of the po-
tential copulas the method selects from, this method represents a superset of the
independence copula method.

This approach may provide flexibility in modeling complex dependence structures
while maintaining computational tractability through the sequential decomposition
of the multivariate copula into bivariate components.

Multivariate Frank Copula

As an alternative to the flexible but complex vine approach, we consider the multivari-
ate Frank copula. The JC model described in Section 2.3.2 employed a multivariate
Frank copula with manually selected parameters by the research team. Following
[38], we implement the same Frank copula family but estimate the parameter using
MLE from the observed data.

The multivariate Frank copula with parameter 𝜃 has the form:

𝐶Frank(u; 𝜃) = −1
𝜃

log (1 +
∏𝐷𝐸

𝑖=1(𝑒−𝜃𝑢𝑖 − 1)
(𝑒−𝜃 − 1)𝐷𝐸−1 ) (4.21)

for u = (𝑢1, … , 𝑢𝐷𝐸) ∈ [0, 1]𝐷𝐸 and 𝜃 ≠ 0. For 𝜃 = 0 we define it equal to the
independence copula as that is the limit as 𝜃 → 0 [22]. The expression for the
corresponding copula density, 𝑐Frank(u; 𝜃), is involved for arbitrary dimension but a
method of evaluating it can be referenced in [39].

Empirically, we observed better generalizability by applying regularization in the
form of constraining the parameter 𝜃 to values that correspond to Kendall’s tau in
the range [−0.9, 0.9]. This constraint prevents extreme dependencies that can lead
to numerical difficulties during optimization while maintaining a reasonable range
of dependence structures.

The MLE proceeds by maximizing the log-likelihood:
𝑁

∑
𝑖=1

log 𝑐Frank(u𝑖; 𝜃) (4.22)
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subject to the constraint that the corresponding Kendall’s tau remains within the
specified bounds. We employ the bound-constrained optimization algorithm by Bard
et al. [40] to solve this constrained optimization problem.

MAP with Gaussian Copula

We model the joint dependence structure among the 𝐷𝐸 transformed variables
using a Gaussian copula framework. The Gaussian copula provides an approach for
capturing linear and near-linear dependencies.

The multivariate Gaussian copula with correlation matrix R has density:

𝑐Gaussian(u; R) = 1
√det(R)

exp (1
2

Φ−1(u)𝑇(R−1 − I)Φ−1(u))

where Φ−1(u) = (Φ−1(𝑢1), … , Φ−1(𝑢𝐷𝐸))𝑇 represents the vector of inverse standard
normal CDFs applied element-wise to u, and I is the identity matrix of dimension
𝐷𝐸 × 𝐷𝐸. For properties of the Gaussian Copula model, see for instance [41].

To implement a Bayesian approach, we place an LKJ (Lewandowski-Kurowicka-
Joe) prior on the correlation matrix R :

𝑓(R; 𝜂) ∝ det(R)𝜂−1

This prior possesses two, for us, notable properties. First, when 𝜂 = 1, it provides
a uniform distribution over the space of valid correlation matrices. Second, the
off-diagonal elements of R follow a beta distribution on the interval (−1, 1) [42]:

Beta (𝜂 + 𝐷𝐸 − 2
2

, 𝜂 + 𝐷𝐸 − 2
2

, −1, 1)

It is worth noting that uniform distribution over correlation matrices does not im-
ply uniform marginal distributions for individual correlation coefficients. This comes
from not all configurations of matrix elements yielding valid correlation matrices
that are positive definite and have ones on the diagonal.

The parameter 𝜂 serves as a concentration parameter: as 𝜂 increases above 1,
the beta distribution becomes more concentrated around zero, effectively placing
stronger prior belief on independence between variables. This allows us to control
the degree of prior skepticism about dependencies in our model. We interpret 𝜂 = 1
as a relatively uninformative prior, while larger values express stronger prior beliefs
favoring independence.

The posterior distribution for the correlation matrix is:

log 𝑓(R ∣ u1, … , u𝑁) ∝
𝑁

∑
𝑖=1

log 𝑐Gaussian(u𝑖; R) + (𝜂 − 1) log det(R)

We employ MAP estimation to obtain point estimates of R by maximizing this
posterior. This becomes equivalent to MLE when 𝜂 = 1 because of the flat prior.

Connection Threshold as Dimension Reduction

The number of parameters required to model with the Gaussian copula scaled
quadratically with dimension size. With limited sample size this can make numerical
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optimization unstable, particularly when dealing with many experts. To address this
challenge, we introduce a dimension reduction heuristic that models dependencies
only between groups of highly correlated experts. This approach is inspired by Diß-
mann’s algorithm, which constructs vine copula structures by identifying variables
with high Kendall tau correlations.

The procedure begins with a set of random variables 𝑋1, … , 𝑋𝑛 and a threshold
value 𝜏threshold ≥ 0. We calculate the Kendall tau correlation 𝜏𝑖,𝑗 between each
pair of variables 𝑋𝑖 and 𝑋𝑗 for all 𝑖 and 𝑗. We then define the indicator function
𝛿𝑖,𝑗 = 𝟙(|𝜏𝑖,𝑗| ≥ 𝜏threshold) and construct the adjacency matrix

𝐴 =
⎡
⎢
⎢
⎣

0 𝛿1,2 ⋯ 𝛿1,𝑛
𝛿2,1 0 ⋯ 𝛿2,𝑛

⋮ ⋮ ⋱ ⋮
𝛿𝑛,1 𝛿𝑛,2 ⋯ 0

⎤
⎥
⎥
⎦

We apply graph clustering to the adjacency matrix 𝐴 to identify connected com-
ponents, which represent groups of seemingly highly dependent experts. Let 𝐺 =
{𝐺1, 𝐺2, … , 𝐺𝑘} be the partition of {1, 2, … , 𝑛} into 𝑘 groups, where each 𝐺𝑖 repre-
sents a connected component. For each group 𝐺𝑖, we define X𝐺𝑖

= (𝑋𝑗 ∶ 𝑗 ∈ 𝐺𝑖) as
the subvector of experts in group 𝑖.

The key assumption underlying this dimension reduction technique is that groups
are independent of each other, allowing us to factorize a joint copula 𝐶 as

𝐶(𝑋1, … , 𝑋𝑛) =
𝑘

∏
𝑖=1

𝐶𝐺𝑖
(X𝐺𝑖

),

where 𝐶𝐺𝑖
is the copula restricted to the variables in group 𝐺𝑖. This factorization re-

duces the complexity of the estimation problem by replacing a single high-dimensional
copula with multiple lower-dimensional copulas.

When implementing this connection threshold method in conjunction with the
previously described copula estimation techniques, we first partition the 𝑍𝑒

𝑑 variables
according to the clustering procedure outlined above. Each group-specific copula
𝐶𝐺𝑖

is then fitted separately using one of the established copula estimation methods.
With the copula estimation strategies established, including independence, vine,

Frank, and Gaussian copulas, along with the connection threshold dimension reduc-
tion technique, we have completed the theoretical framework for modeling depen-
dencies in the decoupled copula model. The empirical comparison of these copula
estimation approaches is presented in Chapter 5.

4.3.6 Recovering from Numerical Failure
The marginal and copula estimation methods presented in the previous sections
rely on numerical optimization procedures that can occasionally fail to converge.
In practical applications focused on a single study, practitioners could invest more
effort in tuning optimization parameters, adjusting starting values to achieve conver-
gence. However, our evaluation framework requires running thousands of LOOCV
evaluations across multiple studies and parameter combinations, making manual
intervention for each failed optimization infeasible.

To address this in the upcoming results chapter, we implement a hierarchical
fallback strategy as follows:
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• Marginal estimation failure: When MLE or MAP estimation fails to con-
verge for a particular 𝑍𝑒

𝑑 , we substitute the PE prior approach, which requires
no numerical optimization.

• Copula estimation failure: When vine, Frank, or Gaussian copula esti-
mation fails to converge, we fall back to the independence copula which also
requires no numerical optimization.

These substitutions are required for fewer than 1% of samples for any given opti-
mization method tested on our dataset. Because of the low substitution rate, we will
assume that this fallback strategy does not materially affect the overall performance
comparisons and conclusions drawn from these.

4.3.7 Sampling of Decoupled Copula Model
Because the independence assumption only requires proportionality between the
densities of Z and Z ∣ 𝓕, the density 𝑓𝑄∣𝓕=F of the decoupled copula model
in Eq. (4.6) is unnormalized. Having discussed the selection and estimation of all
components of the copula model, we now address the sampling procedure necessary to
draw inferences from this unnormalized posterior distribution. Since direct sampling
is not feasible, we employ Markov Chain Monte Carlo (MCMC) methods to generate
samples from the target distribution.

We employ the extended differential evolution Markov chain (DE-MC) method
presented in [43] and implemented in the R BayesianTools package [44]. This
method is well-suited for expert aggregation problems as it efficiently handles multi-
modal posterior distributions by running multiple chains in parallel and exploiting
information from past states to generate informed proposal jumps.

For initialization, we sample a starting population from the experts’ interpolated
beliefs ̂𝑓𝑒, running 50𝐸 chains where 𝐸 is the number of experts. The starting
points are generated by sampling 50 points from each expert’s distribution ̂𝐹 𝑒. This
initialization strategy reflects the rationale that the aggregated belief likely exhibits
modalities near those of individual expert beliefs, allowing the chains to efficiently
explore the relevant regions of the parameter space. The specific parameters used
for sampling with the BayesianTools package are detailed in Appendix A.4.

4.4 Connection to Existing Models
While structurally different from linear pooling methods, the decoupled copula model
generalizes both the DP model and bears similarity to the Jouini-Clemen model un-
der certain parameter choices. These connections demonstrate how our framework
encompasses existing approaches as special cases while providing additional flexibil-
ity.

4.4.1 Connection to the Density Product Model
The decoupled copula model reduces to the DP model through specific parameter
choices. To establish this connection, we set 𝐷 = 1 and choose the identity decoupler
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𝜙𝑑(𝑞, 𝐹 ) = 𝑞. Under this configuration, 𝑑
𝑑𝑧𝜙−1

𝑑,𝐹(𝑧) = 1 and ‖𝜙′
F(𝑞)‖ = 1. Applying

these simplifications to Eq. (4.6) yields:

𝑓𝑄∣𝓕=F ∝
𝐸

∏
𝑒=1

𝑓𝑍𝑒
𝑑
(𝑞)

When combined with the exact perfect expert marginal estimation method, we
have 𝑓𝑍𝑒

𝑑
(𝑞) = 𝑓𝑒(𝑞), which gives us:

𝑓𝑄∣𝓕=F ∝
𝐸

∏
𝑒=1

𝑓𝑒(𝑞) (4.23)

This is precisely the DP model, demonstrating that our framework generalizes this
approach.

4.4.2 Connection to the Jouini-Clemen Model
The relationship to the JC model is established through a different set of parameter
choices. We employ the exact perfect expert marginal estimation method, select the
Frank copula for dependency modeling, and use the linear median error decoupler
𝜙𝑑(𝑞, 𝐹 𝑒) = 𝑞 − 𝑚𝑒∗, where 𝑚𝑒∗ is the median of 𝐹 𝑒. Under these conditions, we
again have ‖𝜙′

F(𝑞)‖ = 1 and 𝑑
𝑑𝑧𝜙−1

𝑑,𝐹(𝑧) = 1.
Substituting these choices into Eq. (4.6) produces:

𝑓𝑄∣𝓕=F ∝ 𝑐Z,Frank(𝐹𝑍𝑒(𝑞 − 𝑚1∗), … , 𝐹𝑍𝑒(𝑞 − 𝑚𝐸∗))
𝐸

∏
𝑒=1

𝑓𝑍𝑒(𝑞 − 𝑚𝑒∗) (4.24)

With the exact perfect expert marginal estimation, 𝑓𝑍𝑒(𝑧) = 𝑓𝑒(𝑧 + 𝑚𝑒∗) and
𝐹𝑍𝑒(𝑧) = 𝐹 𝑒(𝑧 + 𝑚𝑒∗), which simplifies the expression to:

𝑓𝑄∣𝓕=F ∝ 𝑐Z,Frank(𝐹 1(𝑞), … , 𝐹 𝐸(𝑞))
𝐸

∏
𝑒=1

𝑓𝑒(𝑞) (4.25)

This formulation closely resembles the JC model presented in Eq. (2.12), with
the difference that the copula arguments are 𝐹 𝑒(𝑞) rather than 1 − 𝐹 𝑒(𝑞). This
discrepancy appears to stem from the choice of decomposition target in the original
JC derivation. If the copula decomposition had been applied to the joint error
distribution 𝓔 instead of the joint median distribution M, the result would match
Eq. (4.25) exactly. This alternative derivation appears to be referenced in the prose
of [2], suggesting a potential inconsistency in their original mathematical derivation.

4.5 Summary of the method
The decoupled copula model provides a framework for aggregating expert judgments
by modeling dependencies in a transformed space. We refer to the copula method as
the copula model, Eq. (4.6), in addition to the procedures of estimating the marginal
and copula densities. The following enumerated list provides a summary of the
method:
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1. Belief Elicitation and Decoupling Function

(a) Obtain expert belief distributions 𝐹 𝑒
𝑖 for experts 𝑒 = 1, … , 𝐸 across

historical test questions 𝑖 = 1, … , 𝑁 with known realizations 𝑞𝑖. One
approach to obtain the belief distributions is to collect expert quantile
assessments such as {𝑚𝑒

5%, 𝑚𝑒
50%, 𝑚𝑒

95%} and estimate the distributions
using piecewise linear interpolation with support parameters as defined
in Section 2.2.

(b) Choose a decoupling function such as one from the list in Section 4.3.1.
(c) Compute decoupled variables: z𝑖 = 𝜙(𝑞𝑖, F𝑖) for all historical questions

𝑖 = 1, … , 𝑁 where F𝑖 = (𝐹 1
𝑖 , … , 𝐹 𝐸

𝑖 ).
(d) Optionally apply expert rejection preprocessing using distance correlation

test to check independence between Z𝑒 and 𝑄 for each expert. This is
done by using the realizations z𝑖 and 𝑞𝑖 for 𝑖 = 1, … , 𝑁. Reject experts
with p-values below 𝛼𝑅𝑒𝑗 = 0.05, retaining at least one expert.

(e) Calculate support bounds: 𝑐𝑒
𝑑 = inf{𝜙𝑑(𝑞, 𝐹 𝑒) ∶ 𝑞 ∈ [𝐿∗, 𝑈 ∗]} and 𝑑𝑒

𝑑 =
sup{𝜙𝑑(𝑞, 𝐹 𝑒) ∶ 𝑞 ∈ [𝐿∗, 𝑈 ∗]}. For the CDF decoupler, this is always
[0, 1].

2. Marginal Density Estimation

(a) Select one of the marginal estimation methods from Section 4.3.4: MLE,
MAP, or PE prior.

(b) Fit or select parameters of the extended beta distributions

𝑍𝑒
𝑑 ∼ Beta(𝑎𝑒

𝑑, 𝑏𝑒
𝑑, 𝑐𝑒

𝑑, 𝑑𝑒
𝑑)

for each expert 𝑒 and property 𝑑, depending on the estimation method.
(c) For MAP estimation: calculate perfect expert moments, set prior modes

based on theoretical expectations, solve numerically for log-normal pa-
rameters, and maximize the posterior distribution.

(d) Handle estimation failures by falling back to PE prior approach.

3. Copula Estimation

(a) Transform decoupled variables to uniform marginals: 𝑢𝑒
𝑑,𝑖 = 𝐹𝑍𝑒

𝑑
(𝑧𝑒

𝑑,𝑖) for
expert 𝑒, property 𝑑, and test question 𝑖 using the estimated marginal
CDFs.

(b) Select one of the copula families from Section 4.3.5: independence, vine,
Frank, or Gaussian copula.

(c) If using connection threshold dimension reduction: calculate Kendall tau
correlations, construct adjacency matrix with threshold 𝜏threshold, apply
graph clustering, and factorize the copula as 𝐶(u) = ∏𝑘

𝑖=1 𝐶𝐺𝑖
(u𝐺𝑖

).
(d) Estimate copula parameters using the chosen method (MLE, MAP, or

another approach specific to the copula family).
(e) Handle estimation failures by falling back to independence copula.
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CHAPTER 4. THE DECOUPLED COPULA MODEL

4. MCMC Sampling for New Question

(a) For a new question with expert beliefs Fnew, construct the unnormalized
posterior density using Eq. (4.6), using the estimated densities of Z from
the previous steps.

(b) Initialize sampler using starting points sampled from individual expert
beliefs ̂𝐹 𝑒

new.
(c) Compute point estimates and uncertainty quantification from MCMC

samples.

Having established the theoretical foundation and implementation framework of
the decoupled copula model, we now turn to its empirical evaluation in Chapter 5 and
subsequently discuss the implications and limitations of our approach in Chapter 6.
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Chapter 5

Results

The previous chapter established the theoretical framework of the decoupled copula
model, presenting the mathematical foundation and various methodological choices
for each component. This chapter provides the empirical evaluation and performance
analysis of the proposed approach. The analysis proceeds in two main stages: first,
we evaluate and select optimal parameter configurations for the decoupled copula
model through component-level analysis and system-level comparison. Second, we
benchmark the selected configuration against established SEJ methods to assess the
practical value of the proposed approach.

The evaluation employs the LOOCV framework introduced in Section 2.5 and
performance metrics introduced in Chapter 3 to give measurable comparisons of the
different parameter choices and will also aid in benchmarking the decoupled copula
model against existing SEJ models.

5.1 Choosing Parameters of the Copula Model
This section presents the empirical evaluation of the decoupled copula model compo-
nents and parameter selection. We begin by evaluating individual components, de-
coupling functions, marginal estimation methods, and copula estimation approaches,
before comparing different parameter configurations of the complete system.

5.1.1 Empirical Investigation of Decoupling Functions
For empirical evaluation of the decoupling functions, we will test the question invari-
ance assumption by looking at the dependence between Z and 𝑄 as this a required
(but not sufficient) criterion as stated by Lemma 5. Empirically, we will test this
by independence testing on the dataset from Section 2.4. Let the independence null
hypothesis 𝐻0 be defined as

𝐻0 ∶ Z = 𝜙(𝑄; F) is independent from 𝑄. (5.1)

If a study has 𝑛 calibration questions, we will use the test statistic, 𝒯𝑛, as introduced
in Section 2.6.5, and reject 𝐻0 when 𝒯𝑛 > 𝑐𝛼 = 𝑡−1

𝜈−1(1 − 𝛼) where 𝑐𝛼 is the 1 − 𝛼
quantile of a Student t distribution with 𝜈 − 1 degrees of freedom where 𝜈 = 𝑛(𝑛−3)

2 .
Applying this independence test to all studies in the dataset yields the results

shown in Table 5.1 without expert rejection preprocessing, while Table 5.2 shows
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Figure 5.1: Box plot over
√

𝜈 − 1ℛ∗ for different decoupler functions. Also includes
a box plot of a standard normal distribution.

the results with the preprocessing. An important limitation in interpreting these
results is that we cannot directly compare decoupler functions with different output
dimensions (𝐷 = 1 vs 𝐷 = 3), as the statistical power of the test varies with
dimension. However, meaningful comparisons can be made between decouplers of
the same dimension.

The relative performance rankings among decouplers depend notably on whether
expert rejection is employed. With expert rejection preprocessing, the CDF decou-
pler, relative median, relative mean with global support, and relative 3-quantile
decouplers demonstrate the lowest rejection rates. Without expert rejection, the
scaled linear error decouplers perform best among the 𝐷 = 1 dimension decouplers,
while the relative 3-quantile decoupler maintains its strong performance in the 𝐷 = 3
category.

The problem of comparing decouplers with different dimensions is also illustrated
in tables Tables 5.1 and 5.2: we would theoretically expect the relative 3-quantile
decoupler to exhibit stronger dependence with 𝑄 than the relative median decoupler,
based on the mutual information arguments presented earlier. However, our empirical
results show the opposite pattern. This apparent contradiction likely results from
the distance correlation test having reduced statistical power in higher dimensions.

In addition to null hypothesis testing, we have from the theory of distance cor-
relation that the rescaled statistic

√
𝜈 − 1ℛ∗ defined in Section 2.6.5, converges

asymptotically to a normal distribution under the independence assumption. Fig-
ure 5.1 provides a visual investigation of the empirical distribution of

√
𝜈 − 1ℛ∗

to compare against this asymptotic normality result. The figure demonstrates how
expert rejection preprocessing appears beneficial for question invariance across all
decoupler types, as well as showing how the CDF decoupler with expert rejection
seems to have quartiles most similar to that of the standard normal.

The quantitative evidence for this improvement is apparent when comparing
Table 5.1 and Table 5.2. The proportion of studies where each decoupler is re-
jected decreases systematically across all decoupler types when expert rejection is

62



5.1. CHOOSING PARAMETERS OF THE COPULA MODEL

Table 5.1: Result of null hypothesis independence test without expert rejection. The
’Highest p-value’ column is computed separately for 𝐷 = 1 and 𝐷 = 3. A total of
47 studies were analyzed.

Decoupler D
H0 Rejected

(% of studies)
Highest p-value
(% of studies)

Lin.3𝑄 3 85% 13%
Rel.3𝑄 3 30% 57%
Sc.Lin.3𝑄 3 36% 30%

CDF 1 40% 15%
Lin.Md 1 85% 4%
Lin.𝜇E.Sup. 1 81% 2%
Lin.𝜇G.Sup. 1 81% 2%
Rel.Md 1 43% 21%
Rel.𝜇E.Sup. 1 45% 9%
Rel.𝜇G.Sup. 1 40% 15%
Sc.Lin.Md 1 34% 4%
Sc.Lin.𝜇E.Sup. 1 34% 4%
Sc.Lin.𝜇G.Sup. 1 30% 23%

applied. This suggests that the preprocessing step successfully removes experts
whose marginal distributions violate the question invariance assumption.

Based on these empirical findings, we focus subsequent analysis on the CDF
decoupler and the relative median decoupler due to their strong performance in the
expert rejection scenario. We exclude 𝐷 = 3 decouplers from further consideration
for two reasons: clarity of exposition and the lack of compelling theoretical motivation
for why the relative error between realizations and specific percentiles (5% or 95%)
should constitute question-invariant quantities across studies.

Having identified the promising decoupling functions, we now turn to evaluating
the marginal estimation methods that will model the distributions of the decoupled
variables 𝑍𝑒

𝑑 .

5.1.2 Empirical Results of Marginal Estimation Methods
To evaluate the performance of the three marginal estimation methods (MLE, MAP,
and PE prior), we assess them using the calibration and point estimates presented
in Chapter 3. Within the framework for evaluating DMs, each marginal estimation
method can be viewed as a DM aiming to estimate 𝑍𝑒

𝑑 . Using the LOOCV procedure
described in Section 2.5, we fit each method on training questions and evaluate them
on held-out test questions.

Table 5.3 presents performance measures for the relative median decoupler with
𝑘 = 0.05 and the CDF decoupler across all estimation strategies and with 𝜎prior
values of 0.1, 0.25, 0.5 and 0.75. Among the relative median decouplers, we focus
on 𝑘 = 0.05 as it generally demonstrates better performance than other 𝑘 values;
complete results for all 𝑘 values can be found in Table A.3. A visual inspection of
the calibration is shown in Figs. 5.2 and 5.3 for the CDF and the relative decoupler
respectively. The plots show the empirical CDFs of the values 𝑢𝑒

𝑑,𝑠,𝑡 = 𝐹𝑍𝑒
𝑑
(𝑧𝑒∗

𝑑,𝑠,𝑡)
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CHAPTER 5. RESULTS

Table 5.2: Result of null hypothesis independence test with expert rejection prepro-
cessing. The ’Highest p-value’ among studies is computed separately for 𝐷 = 1 and
𝐷 = 3. ’Mean Experts Excluded’ refers to the average number of rejected experts
per study. A total of 47 studies were analyzed.

Decoupler D
H0 Rejected

(% of studies)
Highest p-value
(% of studies)

Mean Experts
Excluded

Lin.3𝑄 3 49% 17% 6.9
Rel.3𝑄 3 4% 64% 2.2
Sc.Lin.3𝑄 3 15% 19% 2.4

CDF 1 11% 28% 2.0
Lin.Md 1 38% 9% 5.1
Lin.𝜇E.Sup. 1 36% 4% 5.1
Lin.𝜇G.Sup. 1 34% 6% 4.9
Rel.Md 1 11% 19% 2.3
Rel.𝜇E.Sup. 1 15% 9% 2.4
Rel.𝜇G.Sup. 1 11% 15% 2.4
Sc.Lin.Md 1 15% 2% 2.2
Sc.Lin.𝜇E.Sup. 1 15% 0% 2.1
Sc.Lin.𝜇G.Sup. 1 13% 9% 2.1

where 𝐹𝑍𝑒
𝑑

is the estimated 𝑍𝑒
𝑑 distribution of a method, and 𝑧𝑒∗

𝑑,𝑠,𝑡 is the test sample
from the LOOCV procedure (Section 2.5) for study 𝑠, expert 𝑒, and property 𝑑.
Because we are using expert rejection preprocessing the number of experts in a study
changes per decoupler, and thus also the exact number of 𝑢𝑒

𝑑,𝑠,𝑡 samples. For the
used dataset specific counts can be seen in Table A.2 but it ranges between around
4200 and 4600 samples.

The empirical results reveal several patterns. The relative median decoupler ap-
pears to outperform the CDF decoupler across all metrics for all estimation methods.
This could either be because the relative decoupler fulfills the model assumptions
better, or because the beta distribution family used for 𝑍𝑒

𝑑 is more suitable to capture
the densities induced by the relative decoupler. We also see that the MAEMedian and
𝑅𝑀𝑆𝐸𝑚𝑒𝑎𝑛 metrics show relatively stable performance (varying by approximately
±3% for the CDF and ±6% for the relative decoupler) between different estimation
methods within the same decoupler. They do differ between decouplers but because
the support of the 𝑍𝑒

𝑑 is dependent on the choice of decoupler, this metric is difficult
to compare between different decoupling functions.

An interesting inverse relationship emerges between calibration performance and
the degree of data-driven estimation. The relative decoupler tends to achieve better
calibration with less data-driven methods (performing best with PE prior and worst
with MLE), while the CDF decoupler exhibits the opposite trend. This pattern may
indicate that while the CDF PE Prior approach has an exact analytical solution
under the perfect expert assumption (uniformly distributed), this theoretical ideal
does not appear to reflect actual expert behavior patterns.

With marginal estimation methods evaluated, we next examine the copula esti-
mation approaches that will model dependencies between the decoupled variables.
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Table 5.3: Marginal estimation performance comparison for CDF decoupler and
Rel.Md. decoupler with 𝑘 = 0.05. When a method specifies only the value of 𝜎prior
then the marginal MAP estimation method has been used with that prior standard
deviation. The table is sorted in ascending 𝐿1

Unif order.

Decoupler Method L1
Unif L∞

Unif MAEMedian RMSEMean

Rel.Md. PE prior 0.035 0.065 0.018 0.053
Rel.Md. 𝜎prior = 0.1 0.035 0.065 0.017 0.052
Rel.Md. 𝜎prior = 0.25 0.038 0.086 0.017 0.052
Rel.Md. 𝜎prior = 0.5 0.041 0.097 0.018 0.052
Rel.Md. 𝜎prior = 0.75 0.043 0.101 0.018 0.052
Rel.Md. MLE 0.046 0.105 0.018 0.052
CDF MLE 0.049 0.096 0.346 0.383
CDF 𝜎prior = 0.75 0.062 0.119 0.341 0.378
CDF 𝜎prior = 0.5 0.067 0.131 0.339 0.377
CDF 𝜎prior = 0.25 0.076 0.164 0.337 0.373
CDF 𝜎prior = 0.1 0.084 0.205 0.335 0.371
CDF PE prior 0.087 0.229 0.336 0.371

5.1.3 Empirical Comparison of Copula Estimation
To evaluate the copula estimation methods presented in the previous sections, we
conduct an empirical comparison using the LOOCV framework described in Sec-
tion 2.5. For the MAP method, we test 𝜂 values of 1, 10, and 50, while for both MAP
and Vine methods, we employ connection thresholds 𝜏threshold of 0, 0.5, and 0.7. Due
to the multidimensional nature of the copula estimation problem, we cannot apply
the same metrics used for decoupler and marginal estimation evaluation. Instead,
we perform a likelihood-based comparison using the independence method, that is
constant one, as our baseline.

It turns out that the numerical stability of these methods varies considerably, with
MAP methods experiencing substantial failure rates when used without connection
threshold dimension reduction. Detailed failure rates for each method are presented
in Table A.1. To ensure reliable comparisons, we focus exclusively on methods with
successful convergence rates higher than 99% of the times it was applied. Among
the included models, the MAP method with 𝜂 = 1 and 𝜏threshold = 0.7 exhibits
the lowest convergence rate at 99.3%. The selected high-convergence methods are
compared in Fig. 5.4.

Figure 5.4 shows the likelihood comparison across different copula estimation
methods, illustrating the relative performance of each approach in terms of model
fit quality.

To quantify the performance relative to the independence copula baseline, Ta-
ble 5.4 presents the percentage of LOOCV evaluations where each method achieved
likelihood values above or below 1 (the constant likelihood of the independence
copula). The results reveal interesting patterns in method performance. The Frank
copula demonstrates the most extreme behavior, achieving both the highest fre-
quency of higher likelihood relative to the independence baseline and the highest
frequency of lower likelihood. Notably, only the MAP estimation methods consis-
tently performed better more often than they underperformed.
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Figure 5.2: ECDFs of calibration quantities for different marginal estimations proce-
dures for the CDF decoupler. The dashed diagonal line represents perfect calibration.
The ECDFs are estimated from 4468 samples each.

Table 5.4: Percentage of LOOCV samples with likelihood values above and below
the independence copula baseline (likelihood = 1). The horizontal line separates
methods that performed better than the independence method more often than they
underperformed.

Method % likelihood > 1 % likelihood < 1

MAP:𝜂(50):𝜏threshold(0.7) 38.7 24.0
MAP:𝜂(10):𝜏threshold(0.7) 38.6 24.4
MAP:𝜂(1):𝜏threshold(0.7) 35.7 27.2

Vine:𝜏threshold(0.7) 24.7 26.1
Frank 44.4 55.6
Vine 34.5 49.3
Vine:𝜏threshold(0.5) 34.4 49.3

Since the Frank and Vine estimation methods represent supersets of the indepen-
dence copula, their generally lower likelihood values compared to the independence
baseline can be interpreted as evidence of overfitting to the training data. However,
these same methods also exhibit the highest proportion of likelihood values exceeding
5.

Overall, no method, arguably, demonstrates a clear and significant advantage
over the independence copula across all evaluation criteria. For the subsequent
benchmarking analysis, we select the MAP method with 𝜂 = 10 and 𝜏threshold = 0.7,
along with the independence copula method. Although the MAP method with
𝜂 = 50 and 𝜏threshold = 0.7 performed marginally better according to Table 5.4,
its behavior is more similar to the independence copula. Therefore, we choose the
𝜂 = 10 variant to introduce greater methodological diversity in our evaluation.

With the individual components evaluated, we now assess how different combi-
nations of these components perform when integrated into the complete decoupled
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Figure 5.3: ECDFs of calibration quantities for different marginal estimations pro-
cedures for the relative median decoupler with 𝑘 = 0.05. The dashed diagonal line
represents perfect calibration. The ECDFs are estimated from 4468 samples each

copula model.

5.1.4 Parameter Configuration Comparison
Based on the component-level analysis in the previous subsections, we now evaluate
different parameter configurations of the complete decoupled copula model. The
empirical analysis suggested that a sigmoid-composed relative median error decou-
pler with 𝑘 = 0.05, combined with PE prior marginal estimation and Gaussian
MAP copula estimation (connection threshold 0.7, 𝜂 = 10), may provide favorable
performance characteristics. To evaluate whether those performance characteristics
translate to practical DM performance, we assess this configuration alongside a
broader range of parameter combinations.

Specifically, we compare the relative median decoupler against the CDF decoupler.
For marginal estimation, we evaluate the complete range of methods examined in
Section 4.3.4: PE prior, MAP estimation with various 𝜎prior values (0.1, 0.25, 0.5,
0.75), and MLE estimation. For copula estimation, we compare the Gaussian MAP
method (connection threshold 0.7, 𝜂 = 10) with the independence copula baseline.

The evaluation employs the same LOOCV framework used in previous compo-
nent analyses, applying the performance metrics 𝐿1

Unif, 𝐿∞
Unif, MedAEmedian, and

MedSEMean introduced in Chapter 3. Results across different parameter configura-
tions are presented in Fig. 5.5.

The results reveal several patterns. For all metrics, the relative decoupler
tends to outperform the CDF decoupler across most parameter configurations. The
CDF decoupler appears to exhibit more continuous performance changes along the
marginal estimation method spectrum, transitioning smoothly from less data-driven
approaches (PE prior) to more data-driven methods (MLE). This pattern also holds
for the relative decoupler between the PE prior and the largest 𝜎prior approach, but
the relative decoupler exhibits a notable discontinuity for the calibration metrics
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Figure 5.4: Likelihood comparison across different copula estimation methods. The
boxplots show the distribution for likelihoods less than or equal to 5. The numbers
on the top of the plot indicate how many likelihoods were greater than 5 for that
copula estimation method. 𝑦 = 1 is dashed in red to indicate the likelihood of the
independence copula.

between the 𝜎prior = 0.75 and MLE estimation.
Regarding the median and mean performance metrics, the relative decoupler

shows less sensitivity to the choice of marginal estimation approach compared to the
CDF decoupler.

The comparison between copula estimation methods indicates similar perfor-
mance levels for both the Gaussian MAP approach and the independence copula,
suggesting that the additional complexity of modeling expert dependencies may not
provide substantial performance improvements for this dataset.

While the PE prior performed the best for the relative decoupler in terms of the
calibration metrics when measured against predicting 𝑍𝑒

𝑑 as was seen in Table 5.3,
here the PE prior underperforms all other marginal estimation methods except MLE
in terms of calibration.

5.2 Benchmarking Against Existing Methods
Based on the parameter comparison results in the previous section, we select the
configuration that balances performance across multiple metrics for comparison with
existing methods. Specifically, we evaluate the sigmoid-composed relative median
decoupler with 𝑘 = 0.05, combined with MAP marginal estimation using 𝜎prior = 0.5,
Gaussian copula estimation, expert rejection preprocessing with 𝛼Rej = 5%, and
dimension reduction with 𝜏threshold = 0.7. This configuration demonstrated consis-
tently good performance, relative to the other configurations, across the different
calibration and point estimate metrics. In this section, this configuration is referred
to as the Decoupled Copula model.

We benchmark this configuration against the established methods introduced in
Section 2.3: the Density Product model, the Equal Weights model, the Jouini-Clemen
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Figure 5.5: Point estimate performance comparison across different decoupled copula
method configurations. The figure shows four performance metrics (𝐿1

Unif, 𝐿∞
Unif,

MedAEmedian, and MedSEMean) for combinations of two decoupling functions (CDF
and relative median with 𝑘 = 0.05), five marginal estimation methods (PE prior,
MAP with 𝜎prior ∈ {0.1, 0.25, 0.5, 0.75}, and MLE), and two copula estimation
approaches (Gaussian MAP and Independence). All configurations use 𝜏threshold =
0.7 dimension reduction and expert rejection preprocessing with 𝛼Rej = 5%.

model, the Optimized Classical Model, and the Uniform model.
The calibration analysis through empirical cumulative distribution functions is

presented in Fig. 5.6. The Equal Weights model shows good calibration for the
median but tends to underestimate lower quantiles while overestimating the upper
ones, indicating underconfident behavior. Similarly, the Jouini-Clemen model has a
calibrated median but exhibits a significantly larger underconfident behavior. The
Globally Optimized Classical Model exhibits similar calibration patterns to Equal
Weights but with slightly more median overestimation, with approximately 56% of
observations falling below the claimed median.

The Decoupled Copula model demonstrates slight overestimation of lower tail
quantiles but appears well-calibrated for the median and quantiles above the median.
In contrast, the Uniform model shows substantial overestimation beginning from the
first quartile. Notably, the Decoupled Copula, Equal Weights, and Jouini-Clemen
models all exhibit calibrated means, though the Jouini-Clemen model shows poorer
overall calibration metrics compared to the closely related Density Product model.
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Figure 5.6: ECDFs from the calibration quantities from a subset of copula method
configurations comparing calibration performance. The dashed line shows the op-
timal uniform CDF that represents perfect calibration. The ECDFs are estimated
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Figure 5.7: Performance comparison across different method configurations showing
(a) absolute median against absolute realizations comparison and (b) relative error
distribution. Both plots exclude 1 question, out of the 548 in the dataset, that had
a realization of 0. In the boxplot, the axis is limited to show relative errors with
absolute values smaller or equal to 10. Under each method name, it is reported how
many relative errors had an absolute value larger than 10.
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Discussion

This work introduced the decoupled copula model as a novel framework for aggre-
gating expert judgments that can adjust for systematic biases in expert assessments
and capture inter-expert dependencies through flexible statistical measures beyond
linear error structures. The approach provides explicit numerical procedures for
parameter estimation and includes theoretical criteria for evaluating dependency
measures. The research also contributed novel calibration definitions and criteria
for DM evaluation and includes empirical comparisons against existing SEJ models.
This chapter discusses the implications of our findings, examines the limitations of
the proposed approach, and suggests directions for future research.

6.1 Main Contributions

6.1.1 Theoretical Framework
The decoupled copula model contributes to the structured expert judgment litera-
ture by addressing key limitations of existing methods through several theoretical
advances. The framework provides a systematic approach for correcting individual
expert biases by transforming assessments into a space where systematic patterns
can be identified and adjusted through historical data analysis.

The framework generalizes the density product approach and includes a special
case that is closely related to the JC model for specific parameter choices. Unlike
previous Bayesian approaches that are constrained to particular dependency mea-
sures such as linear errors, the proposed framework offers flexibility in the choice of
dependency measures through decoupling functions, while providing both theoretical
criteria and empirical tests for evaluating these choices.

The concept of question invariance represents a key theoretical contribution, es-
tablishing a criterion for evaluating whether transformed expert assessments maintain
consistent distributional properties across different questions. The framework also
enables the modeling of expert dependencies when they exist, though this capability
occupies a more secondary role given the empirical findings.

In addition to the decoupled copula model, this work also proposes novel defini-
tions and calibration criteria for evaluating DM methods when having access to only
single realizations of heterogeneous random variables. While the classical model also
has a calibration measure, ours is not limited to specific quantile ranges, and the
𝐿1 and 𝐿∞ measures provide inherently descriptive metrics that are not sensitive
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to sample sizes such as the p-value based calibration score of the classical model.
These calibration measures add more nuance in comparing DM methods to assess
uncertainty quantification better than only looking at the predictive performance of
the median or mean.

6.1.2 Empirical Evidence

The benchmarking analysis indicates that the decoupled copula model can achieve
mean and median predictive performance levels similar to that of established methods
while outperforming these methods with respect to calibration. When configured
appropriately, the method demonstrated calibration properties that outperform
equal weights aggregation and the classical model, while offering greater theoretical
flexibility in modeling expert relationships.

While we kept the selection of possible parameter values coarse to avoid severe
overfitting, it is worth noting that the benchmarked configuration was chosen be-
cause of its performance on the dataset and that this might not translate perfectly
to a new dataset. Our goal with the benchmarking section, however, was not to be a
comprehensive performance comparison. Rather, the empirical analysis provides ini-
tial evidence that the theoretical framework can translate into practical aggregation
performance, suggesting that the added complexity of the model may be justified
and worth improving on.

An important empirical finding was that modeling expert dependencies appeared
to provide only marginal performance increases. This was observed both in direct
copula fit performance measures and in the predictive performance of the final
DM, suggesting that the benefits of sophisticated dependency modeling may be
more limited than initially anticipated. This limited impact could occur for two
reasons: either dependencies between experts do not significantly matter for changing
predictions, or such dependencies exist but are elusive to capture with the current
estimation methods and available data.

6.2 Insights Into the Decoupled Copula Model

6.2.1 Decoupling Function Performance

The analysis of different decoupling functions revealed a few important patterns for
the future development of the model. The CDF decoupler possessed both stronger
theoretical arguments for question invariance and empirically demonstrated better in-
dependence properties in testing. However, this theoretical and empirical advantage
in achieving question invariance did not translate into superior marginal estimation
performance or better end-target predictive performance compared to the relative
median decoupler.

While the exact reason for this disconnect remains an open question, one potential
explanation could be that the beta distribution parameterization for the marginals
was more fitting for capturing distributions induced by the relative decoupler than
the CDF decoupler.
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6.2.2 Marginal Estimation Inconsistencies

An unexpected pattern emerged in the relationship between component-level and
system-level performance. For the relative median decoupler, the perfect expert
prior approach demonstrated superior calibration performance when evaluated on
marginal estimation tasks, yet performed worse than MAP methods when evaluated
on final DM calibration performance. Inversely, for the CDF decoupler the MLE
marginal estimation approach demonstrated better calibration performance on the
marginal estimation tasks while the PE prior gave the best calibration on final
DM performance. This inconsistency suggests that better calibration of individual
components does not necessarily translate to better overall system calibration and
that the interactions between different model components may be more complex
than anticipated.

6.2.3 The Value of Bayesian Modeling

While dependency modeling showed limited empirical benefits, the comparison be-
tween different marginal and copula estimation approaches revealed the importance of
Bayesian modeling compared to purely data-driven approaches. The MAP marginal
estimation methods, which combined theoretical priors with empirical evidence,
generally outperformed both purely theoretical (PE prior) and purely data-driven
(MLE) alternatives in final system performance. Similarly, for the copula estimation
benchmarks, the Gaussian MAP methods outperformed the data-driven Frank and
vine estimation methods in terms of providing higher likelihoods for unseen samples.

6.3 Limitations and Methodological Considerations

6.3.1 Distributional Modeling Constraints

The current implementation of the decoupled copula model assumes continuous
distributions for the transformed variables 𝑍𝑒

𝑑 , which may not adequately capture all
aspects of expert behavior. The CDF decoupler, in particular, can produce boundary
values of 0 and 1 when observations fall outside expert-assessed probability ranges,
creating mixed discrete-continuous distributions that the current framework does
not explicitly model.

A more comprehensive approach might explicitly model discrete probability
masses at boundary values while maintaining continuous distributions for interior val-
ues. Even for relative error decouplers, that do not induce mixed discrete-continuous
distributions, it might be advantageous to limit the relative errors to a fixed range
and treat observations outside of this range as discrete events. This could be inter-
preted from a perspective of expert behavior: for small errors, experts may exhibit
systematic biases that can be observed and adjusted for across questions, while
for large errors, experts may not exhibit systematic beliefs or such patterns may
be significantly harder to capture. We suspect this is the most promising future
research direction for this model.
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6.3.2 Parameter Convergence Inconsistencies
The analysis revealed inconsistencies in the behavior of certain modeling components
across different decoupling functions. The way 𝜎prior was defined was intended to
ensure that as it increased, the MAP marginal estimations would converge towards
MLE. This convergence pattern was observed for the CDF decoupler but not for
the relative decoupler, as can be seen visually in the marginal empirical CDF plots
and in the trends shown in the point metrics analysis. This inconsistency suggests
that parameter selection may require more decoupler-specific guidance than initially
anticipated to be interpretable across different decoupler functions.

6.3.3 MCMC Induced Variance
The use of MCMC sampling for all benchmarking methods, even those with closed
analytical formulas, was chosen to better compare the core modeling differences
rather than their practical implementation advantages. While this approach ensures
a fair comparison of the foundational modeling, it does not reflect optimal imple-
mentation strategies for practical applications. In particular, it misfavors the linear
pooling methods that have easy-to-compute closed-form expressions for their DM
densities and CDFs.

6.4 Future Research Directions
Based on the insights gained from this work, several promising directions emerge for
extending and improving the decoupled copula framework. These research avenues
address both technical limitations identified in our analysis and broader opportunities
for methodological advancement.

1. Mixed Discrete-Continuous Extensions. As discussed in the limitations,
developing explicit mixed discrete-continuous modeling for boundary values
and extreme errors represents a promising direction. This could be particu-
larly beneficial for the relative decoupler and might help explain some of the
performance differences observed between decoupling functions.

2. Refined Independence Assumption. It might be fruitful to explore the
possible connections between 𝑓Z|𝓕=F(𝜀) and 𝑓Z(𝜀) further than just assuming
proportionality. For example, one could explore projecting the joint Z space
onto the ΓF line as potentially being a more robust estimation of 𝑓Z|𝓕=F(𝜀).
Pragmatically, at least, this kind of estimation would have the benefit of pro-
ducing a density with equality, and not proportionality, which might improve
ease of inference.

3. Question-Level Dependencies. While this work focused on dependencies
between experts, dependencies between questions remain an open research area.
Expert judgment studies often involve related questions that may exhibit sys-
tematic patterns in expert performance or bias. Extending the framework to
capture these question-level dependencies could potentially improve aggrega-
tion performance, particularly in studies with many related questions.
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4. Alternative Approaches to Uncertainty Quantification. If expert de-
pendencies exist but are difficult to capture reliably, an alternative approach
would be to simulate different potential dependency structures and investigate
the spread of outcomes. This could provide a wider range of uncertainty esti-
mates, which might be desirable in risk-averse decision-making situations where
acknowledging model uncertainty about expert relationships is important.

5. Context-Specific Applications. Future research could investigate whether
expert dependencies are more pronounced in specific domains or contexts.
Understanding when dependency modeling provides greater benefits could
inform more targeted applications of the framework, particularly in fields
where experts share common training backgrounds, information sources, or
analytical frameworks.

6.5 Conclusion
The decoupled copula model represents an advance in structured expert judgment
theory by providing a flexible Bayesian framework for bias correction and depen-
dency modeling. The method achieved competitive predictive performance and
superior calibration against the benchmarked models. The findings revealed that
dependency modeling provided limited benefits. At the same time, the marginal
Bayesian combination of theoretical priors with empirical evidence seemed particu-
larly valuable relative to the MLE and PE prior methods. Future developments in
mixed discrete-continuous modeling may further enhance the framework’s practical
applicability.
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Appendix A

Appendix

A.1 Primitive Function of Sigmoid Composed Affine
Function

In case 𝜙𝑑(𝑞, 𝐹 ) is an affine function 𝜖𝑑(𝑞, 𝐹 ) wrt to 𝑞 (constant derivative) and is
composed with the logistic function

𝜎(𝑥) = 1
1 + 𝑒−𝑘𝑥 .

That is, if
𝜙𝑑(𝑞, F) = 𝜎(𝜖𝑑(𝑞, F)),

then, a primitive function of 𝜙 wrt 𝑞 is

𝐺𝜎(𝜖𝑑)(𝑞, F) = log(1 + 𝑒𝑘𝜖𝑑(𝑞,F))
𝐶𝑑𝑘

(A.1)

where 𝐶𝑑 = 𝑑
𝑑𝑞𝜖𝑑(𝑞, F) and is constant by assumption.

Proof. We drop the subscript 𝑑 for notational clarity. Taking the derivative we get:

𝑑
𝑑𝑞

𝐺(𝑞) = 1
𝐶𝑘

⋅ 𝑑
𝑑𝑞

log(1 + 𝑒𝑘𝜖(𝑞)) = 1
𝐶𝑘

⋅ 𝑒𝑘𝜖(𝑞) ⋅ 𝑘𝜖′(𝑞)
1 + 𝑒𝑘𝜖(𝑞) ,

= 𝜖′(𝑞)
𝐶𝑒

𝑑
⋅ 𝑒𝑘𝜖(𝑞)

1 + 𝑒𝑘𝜖(𝑞) = 1
1 + 𝑒−𝑘𝜖(𝑞) = 𝜙(𝑞)

Thus, 𝐺(𝑞) is a primitive of 𝜙(𝑞).

For the squared sigmoid function:

𝜎2(𝑥) = 1
(1 + 𝑒−𝑘𝑥)2 .

we can similarly show that

𝐺𝜎2(𝜖𝑑)(𝑥) = 1
𝐶𝑑𝑘(1 + 𝑒𝑘𝜖𝑑(𝑥))

+ log(1 + 𝑒𝑘𝜖𝑑(𝑥))
𝐶𝑑𝑘

(A.2)

is a primitive function of 𝜙2(𝑞, F) = 𝜎2(𝜖(𝑞, F)) with respect to 𝑞.
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Proof. We drop the subscript 𝑑 for notational clarity. Taking the derivative we get:

𝑑
𝑑𝑞

𝐺𝜎2(𝜖)(𝑞) = 𝑑
𝑑𝑞

[ 1
𝐶𝑘(1 + 𝑒𝑘𝜖(𝑞))

+ log(1 + 𝑒𝑘𝜖(𝑞))
𝐶𝑘

] (A.3)

= −𝑘𝜖′(𝑞)𝑒𝑘𝜖(𝑞)

𝐶𝑘(1 + 𝑒𝑘𝜖(𝑞))2 + 𝑘𝜖′(𝑞)𝑒𝑘𝜖(𝑞)

𝐶𝑘(1 + 𝑒𝑘𝜖(𝑞))
(A.4)

= 𝜖′(𝑞)𝑒𝑘𝜖(𝑞)

𝐶(1 + 𝑒𝑘𝜖(𝑞))2 [−1 + (1 + 𝑒𝑘𝜖(𝑞))] (A.5)

= 𝑒𝑘𝜖(𝑞)

(1 + 𝑒𝑘𝜖(𝑞))2 ⋅ 𝑒𝑘𝜖(𝑞) (A.6)

= 𝑒2𝑘𝜖(𝑞)

(1 + 𝑒𝑘𝜖(𝑞))2 = ( 𝑒𝑘𝜖(𝑞)

1 + 𝑒𝑘𝜖(𝑞) )
2

= 𝜎2(𝜖(𝑞)) (A.7)

A.2 Mean of Piecewise Continuous Function
If random variable 𝑋 has a piecewise constant density

𝑓(𝑥) =

⎧
{{{
⎨
{{{
⎩

0 if 𝑥 ≤ 𝑚𝑒
0

𝑎1, if 𝑥 ∈ (𝑚𝑒
0, 𝑚𝑒

1]
⋮ ⋮
𝑎𝐷+1, if 𝑥 ∈ (𝑚𝑒

𝐷, 𝑚𝑒
𝐷+1]

0 if 𝑥 ≥ 𝑚𝑒
𝐷+1

for a strictly increasing set of cutoff points 𝑚𝑒
0, … , 𝑚𝑒

𝐷+1 and positive values 𝑎1, … , 𝑎𝐷+1.
Then the mean is given by

𝐸[𝑋] = 1
2

𝐷+1

∑
𝑖=1

𝑎𝑖(𝑚𝑒2
𝑖 − 𝑚𝑒2

𝑖−1).

This comes directly from integration:

∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 =

𝐷+1

∑
𝑖=1

𝑎𝑖 ∫
𝑚𝑒

𝑖

𝑚𝑒
𝑖−1

𝑥𝑑𝑥 = 1
2

𝐷+1

∑
𝑖=1

𝑎𝑖(𝑚𝑒2
𝑖 − 𝑚𝑒2

𝑖−1).

If 𝑓 is specified in terms of strictly increasing quantile values 𝑝0, … 𝑝𝐷+1 with 𝑝0 = 0,
𝑝𝐷+1 = 1 such that its CDF 𝐹 is equal to

𝐹(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 ≤ 𝑚𝑒
0

𝑝𝑖−1 + (𝑝𝑖 − 𝑝𝑖−1) 𝑥−𝑚𝑒
𝑖−1

𝑚𝑒
𝑖 −𝑚𝑒

𝑖−1
if 𝑥 ∈ (𝑚𝑒

𝑖−1, 𝑚𝑒
𝑖 ]

1 if 𝑥 ≥ 𝑚𝑒
𝐷+1

then 𝑎𝑖 = 𝑝𝑖−𝑝𝑖−1
𝑚𝑒

𝑖 −𝑚𝑒
𝑖−1

for 𝑖 = 1, … , 𝐷 + 1 and we can write the mean as

𝐸[𝑋] = 1
2

𝐷+1

∑
𝑖=1

(𝑝𝑖 − 𝑝𝑖−1)(𝑚𝑒2
𝑖 − 𝑚𝑒2

𝑖−1)
𝑚𝑒

𝑖 − 𝑚𝑒
𝑖−1

= 1
2

𝐷+1

∑
𝑖=1

(𝑝𝑖 − 𝑝𝑖−1)(𝑚𝑒
𝑖 + 𝑚𝑒

𝑖−1).

82



A.3. INDEPENDENCE INVARIANT OF INVERTABLE TRANSFORMATIONS

Furthermore 𝐸[𝑔(𝑋)] is given by

𝐸[𝑔(𝑋)] =
𝐷+1

∑
𝑖=1

𝑎𝑖 ∫
𝑚𝑒

𝑖

𝑚𝑒
𝑖−1

𝑔(𝑥)𝑑𝑥 =
𝐷+1

∑
𝑖=1

𝑎𝑖 (𝐺(𝑚𝑒
𝑖 ) − 𝐺(𝑚𝑒

𝑖−1)) (A.8)

where 𝐺(𝑥) is a primitive function of 𝑔(𝑦). Expressed in terms of CDF interpolation
points we have

𝐸[𝑔(𝑋)] =
𝐷+1

∑
𝑖=1

𝑝𝑖 − 𝑝𝑖−1
𝑚𝑒

𝑖 − 𝑚𝑒
𝑖−1

(𝐺(𝑚𝑒
𝑖 ) − 𝐺(𝑚𝑒

𝑖−1))

If 𝑔(𝑥) is 𝜎(𝜖(𝑥)) as in Appendix A.1, then we have

𝐸[𝜎(𝜖(𝑋))] =
𝐷+1

∑
𝑖=1

𝑝𝑖 − 𝑝𝑖−1
(𝑚𝑒

𝑖 − 𝑚𝑒
𝑖−1)𝐶𝑘

log 1 + 𝑒𝑘𝜖(𝑚𝑒
𝑖 )

1 + 𝑒𝑘𝜖(𝑚𝑒
𝑖−1)

A.3 Independence Invariant of Invertable Trans-
formations

Random variables 𝑋 ∶ Ω → 𝐸𝑋 and 𝑌 ∶ Ω → 𝐸𝑌 are independent if and only if
𝑔(𝑋) and 𝑌 are independent for any invertable function 𝑔 ∶ 𝐸𝑋 → 𝐸𝑌.

Proof (⇒): For any 𝐴 ⊆ 𝐸𝑋 and 𝐵 ⊆ 𝐸𝑦 we have

𝑃(𝑔(𝑋) ∈ 𝐴, 𝑌 ∈ 𝐵) = 𝑃(𝑋 ∈ 𝑔−1(𝐴), 𝑌 ∈ 𝐵)

Where 𝑔−1(𝐴) = {𝑔−1(𝑎) ∶ 𝑎 ∈ 𝐴}. Using that X and Y are independet

𝑃(𝑋 ∈ 𝑔−1(𝐴))𝑃 (𝑌 ∈ 𝐵) = 𝑃(𝑔(𝑋) ∈ 𝐴)𝑃(𝑌 ∈ 𝐵).

The proof is analogous for the other difrection.

A.4 Sampling Parameters
In Listing 1 you can see the parameters used for the sampling of unnormalized
densities. The assumed variables in the listing are starting_population that have
100 points sampled from each ̂𝑓𝑒 density, chain_start_values that has 50 points
sampled from each ̂𝑓𝑒 density, log_density that is a function that evaluated the
log of the target density, L_star that is the lower bound 𝐿∗ and U_star that is the
upper bound 𝑈 ∗.Note that because we are only sampling from univarate distributions,
multiple parameter choices are redundant. These include for example the pSnooker
argument that is.

A.5 Vine Copula Fitting Implementation
The relevant parameters for the vine copula estimation are provided in the Ap-
pendix A.5 using the vinecop function of the rvinecopulib R package.
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Listing 2 Setup of vine copula estimation
1 rvinecopulib::vinecop(
2 data,
3 var_types = rep("c", NCOL(data)),
4 family_set = c("onepar", "indep),
5 structure = NA,
6 par_method = "mle",
7 nonpar_method = "constant",
8 mult = 1,
9 selcrit = "aic",

10 weights = numeric(),
11 psi0 = 0.9,
12 presel = TRUE,
13 allow_rotations = TRUE,
14 trunc_lvl = Inf,
15 tree_crit = "tau",
16 threshold = 0,
17 )

A.6 Copula Estimation Failure Rates
Table A.1 presents the failure rates for different copula estimation methods across
all studies in the dataset. The table shows the number of cases where estimation
failed (NA Count), the total number of estimation attempts, and the corresponding
failure percentage. MAP estimation methods show varying failure rates depending
on the 𝜂 parameter and threshold settings, while Frank copula, vine copula, and
some threshold-based methods achieved perfect reliability with zero failures.

Table A.1: Copula estimation failure rates by method

Method NA Count Total Percentage NA

MAP:𝜂(50) 144 299 48.2%
MAP:𝜂(1) 139 299 46.5%
MAP:𝜂(10) 135 299 45.2%
MAP:𝜂(1):𝜏threshold(0.5) 55 299 18.4%
MAP:𝜂(10):𝜏threshold(0.5) 48 299 16.1%
MAP:𝜂(50):𝜏threshold(0.5) 45 299 15.1%
MAP:𝜂(1):𝜏threshold(0.7) 2 299 0.7%
MAP:𝜂(50):𝜏threshold(0.7) 2 299 0.7%
Frank 0 299 0.0%
MAP:𝜂(10):𝜏threshold(0.7) 0 299 0.0%
Vine 0 299 0.0%
Vine:𝜏threshold(0.5) 0 299 0.0%
Vine:𝜏threshold(0.7) 0 299 0.0%
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A.7 Addtional Marginal Estimation Data

A.7.1 Marginal Estimation Sample Sizes

Table A.2 mainly presents the number of total test samples made using LOOCV
for the the different decouplers. This differs because of the use of expert rejection
preprocessing. It also shows if any of the methods had numerical procedures that
did not converge. This was only true for the MLE method.

Table A.2: Marginal estimation number of LOOCV samples and number of numerical
failures by decoupler and method

Decoupler Method Failures Total
Rel.Md.𝑘 = 0.05 MLE 3 4317
Rel.Md.𝑘 = 0.05 PE prior 0 4332
Rel.Md.𝑘 = 0.05 𝜎prior = 0.1 0 4332
Rel.Md.𝑘 = 0.05 𝜎prior = 0.25 0 4332
Rel.Md.𝑘 = 0.05 𝜎prior = 0.5 0 4332
Rel.Md.𝑘 = 0.05 𝜎prior = 0.75 0 4332

Rel.Md.𝑘 = 0.1 MLE 4 4203
Rel.Md.𝑘 = 0.1 PE prior 0 4230
Rel.Md.𝑘 = 0.1 𝜎prior = 0.1 0 4230
Rel.Md.𝑘 = 0.1 𝜎prior = 0.25 0 4230
Rel.Md.𝑘 = 0.1 𝜎prior = 0.5 0 4230
Rel.Md.𝑘 = 0.1 𝜎prior = 0.75 0 4230

Rel.Md.𝑘 = 0.5 MLE 4 4168
Rel.Md.𝑘 = 0.5 PE prior 0 4204
Rel.Md.𝑘 = 0.5 𝜎prior = 0.1 0 4204
Rel.Md.𝑘 = 0.5 𝜎prior = 0.25 0 4204
Rel.Md.𝑘 = 0.5 𝜎prior = 0.5 0 4204
Rel.Md.𝑘 = 0.5 𝜎prior = 0.75 0 4204

Rel.Md.𝑘 = 1 MLE 4 4188
Rel.Md.𝑘 = 1 PE prior 0 4222
Rel.Md.𝑘 = 1 𝜎prior = 0.1 0 4222
Rel.Md.𝑘 = 1 𝜎prior = 0.25 0 4222
Rel.Md.𝑘 = 1 𝜎prior = 0.5 0 4222
Rel.Md.𝑘 = 1 𝜎prior = 0.75 0 4222

CDF MLE 0 4468
CDF PE prior 0 4468
CDF 𝜎prior = 0.1 0 4468
CDF 𝜎prior = 0.25 0 4468
CDF 𝜎prior = 0.5 0 4468
CDF 𝜎prior = 0.75 0 4468
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A.7.2 Complete Marginal Estimation Performance Results
Table A.3 presents the complete performance results for all marginal estimation
methods tested across different decouplers and settings. The table shows L1 and L2
error rates for all combinations of decouplers (CDF, Rel.Md. with various 𝑘 values)
and estimation approaches (MLE, MAP with different 𝜎prior values, and PE prior).
Results are sorted by L1 error in ascending order.

Table A.3: Complete marginal estimation performance results across all methods
and settings

Decoupler Settings MAEMedian RMSEMean L1
Unif L∞

Unif

Rel.Md.𝑘 = 0.05 PE prior 0.018 0.053 0.035 0.065
Rel.Md.𝑘 = 0.05 𝜎prior = 0.1 0.017 0.052 0.035 0.065
Rel.Md.𝑘 = 0.1 𝜎prior = 0.25 0.060 0.126 0.037 0.130
Rel.Md.𝑘 = 0.05 𝜎prior = 0.25 0.017 0.052 0.038 0.086
Rel.Md.𝑘 = 0.1 𝜎prior = 0.1 0.059 0.127 0.039 0.132
Rel.Md.𝑘 = 0.1 PE prior 0.060 0.128 0.041 0.133
Rel.Md.𝑘 = 0.05 𝜎prior = 0.5 0.018 0.052 0.041 0.097
Rel.Md.𝑘 = 0.05 𝜎prior = 0.75 0.018 0.052 0.043 0.101
Rel.Md.𝑘 = 0.1 𝜎prior = 0.5 0.061 0.125 0.045 0.125
Rel.Md.𝑘 = 0.05 MLE 0.018 0.052 0.046 0.105
CDF MLE 0.346 0.383 0.049 0.096
Rel.Md.𝑘 = 0.1 MLE 0.062 0.126 0.050 0.169
Rel.Md.𝑘 = 0.1 𝜎prior = 0.75 0.062 0.125 0.051 0.120
Rel.Md.𝑘 = 0.5 PE prior 0.140 0.203 0.055 0.176
Rel.Md.𝑘 = 0.5 𝜎prior = 0.1 0.140 0.201 0.056 0.174
Rel.Md.𝑘 = 0.5 MLE 0.146 0.201 0.057 0.171
Rel.Md.𝑘 = 0.5 𝜎prior = 0.25 0.140 0.199 0.061 0.168
CDF 𝜎prior = 0.75 0.341 0.378 0.062 0.119
Rel.Md.𝑘 = 1 MLE 0.204 0.253 0.063 0.178
CDF 𝜎prior = 0.5 0.339 0.377 0.067 0.131
Rel.Md.𝑘 = 0.5 𝜎prior = 0.5 0.143 0.198 0.069 0.158
Rel.Md.𝑘 = 0.5 𝜎prior = 0.75 0.145 0.198 0.072 0.152
Rel.Md.𝑘 = 1 PE prior 0.200 0.252 0.075 0.202
Rel.Md.𝑘 = 1 𝜎prior = 0.1 0.199 0.250 0.075 0.198
CDF 𝜎prior = 0.25 0.337 0.373 0.076 0.164
Rel.Md.𝑘 = 1 𝜎prior = 0.25 0.199 0.247 0.078 0.190
Rel.Md.𝑘 = 1 𝜎prior = 0.5 0.201 0.247 0.082 0.178
Rel.Md.𝑘 = 1 𝜎prior = 0.75 0.204 0.248 0.082 0.170
CDF 𝜎prior = 0.1 0.335 0.371 0.084 0.205
CDF PE prior 0.336 0.371 0.087 0.229

A.7.3 Marginal Density Estimation Plots
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Figure A.1: Histogram comparisons of marginal density estimation methods for
different sigmoid scaling k values of 𝜙𝜎(Rel.Md.)
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(d) k = 1

Figure A.2: Marginal density estimation comparisons for different sigmoid scaling k
values of 𝜙𝜎(Rel.Md.)
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APPENDIX A. APPENDIX

Listing 1 Sampling steup using DEzs algorithm
1 starting_population # Sapmle 100 points from each belief function
2 chain_start_values # Sample 50 points from each belief function
3

4 bayesian_setup <- BayesianTools::createBayesianSetup(
5 log_density,
6 lower = L_star,
7 upper = U_star
8 )
9

10 bayesian_settings <- list(
11 iterations = num_samples,
12 startValue = matrix(chain_start_values, nrow =

length(chain_start_values), ncol = 1)↪

13 )
14

15 samples <- BayesianTools::DEzs(
16 bayesianSetup,
17 settings = list(
18 iterations = 10000,
19 Z = matrix(starting_population, length(starting_population), ncol =

1),↪

20 startValue = matrix(chain_start_values, nrow =
length(chain_start_values), ncol = 1),↪

21 pSnooker = 0.1,
22 burnin = 100,
23 thin = 1,
24 f = 2.38,
25 eps = 0,
26 parallel = NULL,
27 pGamma1 = 0.1,
28 eps.mult = 0.2,
29 eps.add = 0,
30 consoleUpdates = 100,
31 zUpdateFrequency = 1,
32 currentChain = 1,
33 blockUpdate = list(
34 "none",
35 k = NULL,
36 h = NULL,
37 pSel = NULL,
38 pGroup = NULL,
39 groupStart = 1000,
40 groupIntervall = 1000
41 ),
42 message = TRUE
43 )
44 )
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