
A comprehensive study of Dynamic Memory Management in

OpenCL kernels
Master thesis report

Roy Spliet (1318977, R.Spliet@student.tudelft.nl)

Faculty of Electrical Engineering, Mathematics and Computer Science
Department of Software and Computer Technology

Parallel and Distributed Systems Group

June 5th, 2013

Abstract

Traditional (sequential) applications use malloc for a variety of dynamic data structures, like
linked lists or trees. GPGPU is gaining attention and popularity because its massively-parallel
architecture allows for great speed improvement for programs that can be parallelised and im-
plemented for a platform like OpenCL. Programmers who try to port their existing sequential or
even parallel program to OpenCL however will soon discover that this standard defines a subset
of C with several limitations, one of which is the absence of a malloc() routine that can be called
from an OpenCL kernel.

This document describes the results of research towards the impact of this limitation by trying
to answer the question: “How should a kernel-side heap allocator be implemented in OpenCL?”.
To give an answer to this question, two important aspects are investigated. Firstly we seek the
impact from the programmers perspective by trying to understand the use-cases for which a parallel
program requires an in-kernel heap allocator. We sought for a wide variety of implementations of
parallel algorithms and investigated their memory usage patterns. Secondly we aim to explain the
complexity of a dynamic memory allocator by taking a closer look at the limitations imposed by
hardware and the OpenCL standard, and trying to find a way to implement a memory allocator in
OpenCL. Based on our findings we present KMA, the first dynamic memory allocator for OpenCL
kernels.

Results from our use-case survey show that there are several cases where a programmer could
benefit from an in-kernel malloc routine. Non-regular data-structures are required both for schedul-
ing purposes and for holding intermediate results, and a memory allocator aids in creating these
structures. Programmers usually find their way around the lack of a malloc routine, sometimes
by creating something on their own that resembles part of one. Although a malloc routine thus is
not a hard requirement, it can make the life of programmers a lot easier in these cases.

Designing and implementing a memory allocator for OpenCL is far from trivial. Its capabilities
are limited by the available hardware and language constraints: hardware does not allow for com-
munication between the OpenCL kernel and the host system, and the OpenCL specification lacks
fundamental features like mutex locks. Because of these constraints, even the data-structures we
might take for granted, like full-featured doubly-linked-lists, cannot be implemented in OpenCL.

We believe a memory allocator should be implemented in two layers. The bottom layer should
implement behaviour like the malloc() routine found in C. On top of that data types can be
implemented which may use datatype-specific restrictions to optimise the usage of the low-level
memory allocator. Our KMA prototype shows that by carefully analysing the limitations of the
OpenCL environment it is possible to implement an in-kernel memory allocator, be it limited by
the constraints imposed by the GPU platform and OpenCL. Although using KMA comes with a
performance penalty, it can offer the flexibility and code readability for the use-cases we identified,
and offers the right level of support for optimisations if the use-case permits.

Supervisors
Dr. A. L. Varbanescu Parallel and Distributed Systems, EEMCS TU Delft
Dr. L. W. Howes Advanced Micro Devices
Dr. B. R. Gaster Qualcomm

Committee
Prof. Dr. H. J. Sips Parallel and Distributed Systems, EEMCS TU Delft
Prof. Dr. K. G. Langendoen Enbedded Systems, EEMCS TU Delft
Dr. A. L. Varbanescu Parallel and Distributed Systems, EEMCS TU Delft

Foreword

In the scientific world there is a long history of multiple-core processors, ranging from single-
instruction-multiple-data (SIMD) devices to multiple full-featured processing units. As sequential
processors were reaching its performance limits both logically and physically, these multi-core
devices started to become available in the standard computer. As a consequence, programmers
were forced to (re)write their programs to utilise all available parallel computational power in a
device. This meant tackling a lot of problems related to synchronisation and data sharing.

Over time, the design of GPUs has grown towards that of multi-core CPUs. Both feature a
number of cores that could be programmed to execute arbitrary algorithms, and programmers
encounter the same problems when doing so. The biggest difference between an CPU and a GPU
is the cores; where CPUs usually have a few complex fast cores, GPUs can have thousand of
simpler cores. When processing a large data set of independent values, like pixels in an image, a
GPU could far outperform a CPU.

Platforms like OpenCL were proposed to make this massive computational power available to
any programmer. What makes OpenCL different from the other platforms available is that its
functionality does not stop at the GPU: it targets a lot of devices ranging from GPUs to CPUs to
FPGAs. This gives programmers the opportunity to break their heads once on writing one parallel
implementation of the required algorithm, and be rewarded with acceleration on whichever device
is available on the users computer without having to worry a lot about the nature of this device.

A much heard disadvantage of OpenCL is that it is relatively difficult to program in, partially
because its API is limited compared to NVIDIAs Cuda. One of the missing features is a heap
allocator, which C developers probably know best as malloc(). Having no alternative at hand,
developers are currently left to their own devices. My challenge was to see what was required to
create a heap allocator and see if I could implement a prototype.

This project was proposed to me by my supervisor, Ana Varbanescu, and I was immediately
quite enthusiastic. Acquaintances know I have a weak spot for low-level design details of hardware.
Modern GPUs tend to expose a lot of these details. With my involvement in a project that aims
to write a full-featured open-source graphics driver based on reverse engineering work, my interest
was already raised before even getting into the details of the project.

In my opinion, OpenCL is a platform that has a potential greater than any competing platform
in the market. Besides the portability advantage, OpenCL is an open standard that is managed
by an organisation anyone could join. Having seen the quality of open projects like Linux, Firefox
and LibreOffice, I personally tend to favour a more democratic way of development over the
closed procedures that traditional companies followed. Research to a fairly low-level problem on
a platform of interest was a perfect match for me.

I therefore feel honoured to have the opportunity to contribute a small piece of work that could
support any OpenCL developer in their task of writing maintainable and portable code. I could
not have done this though without extensive feedback (and an occasional push forward) from my
supervisor Ana Varbanescu and the contributions of Lee Howes and Ben Gaster, all of who helped
me think in different ways about problems I encountered. Given my stubbornness I definitely
owe them my gratitude. Thanks also go out to the friends and room mates that listened to my
complains, to my parents that carried the financial burden of my study, and to anyone else who
made this project possible.

I hope this work proves to be of value to its readers, and look forward to any discussion that
might follow from it.

Roy Spliet

Contents

1 Introduction 5
1.1 Problem description . 6
1.2 Outline of this document . 6

2 Background and related work 7
2.1 Parallel programming: locking and lock-free algorithms 7
2.2 Memory allocators . 9
2.3 GPU . 11
2.4 OpenCL . 13
2.5 Related work: Heap allocator algorithms . 17

3 Memory allocation patterns 21
3.1 Research setup . 21
3.2 Results . 24

3.2.1 Finite state machines . 24
3.2.2 Graph Traversal: Graph conversion . 26
3.2.3 Structured grid: Heart Wall . 26
3.2.4 Dense linear algebra: K-means . 27
3.2.5 Sparse Matrix: Convert to vector . 28
3.2.6 Spectral: Fast-Fourier Transform . 29
3.2.7 Dynamic programming . 30
3.2.8 Particle Methods: Barnes-Hut . 30
3.2.9 Unstructured grid: Back propagation . 31
3.2.10 C++ . 31

3.3 Conclusions . 32

4 Allocator design 33
4.1 Constraints . 33

4.1.1 General requirements . 33
4.1.2 Platform requirements . 34
4.1.3 User requirements . 34

4.2 Technical design . 34
4.2.1 Low level heap allocator . 35
4.2.2 ArrayList . 36

5 Implementation 37
5.1 Low level: heap manager . 37

5.1.1 Blocks and superblocks . 37
5.1.2 Free-list . 39
5.1.3 Algorithms . 40

5.2 Low level: “Poormans”-heap . 42
5.2.1 Algorithms . 42

3

5.3 High level: ArrayList . 42
5.3.1 Reduction algorithm . 43
5.3.2 Possible variations . 44

6 Performance and results 47
6.1 Theoretical performance . 47

6.1.1 Complexity . 47
6.1.2 Memory overhead . 50

6.2 Benchmarks . 51
6.2.1 “Low-level”: Memory allocator . 51
6.2.2 “High-level”: ArrayList . 54
6.2.3 Use-case: Tree construction . 57

7 Discussion and further research 63
7.1 Trade-offs for KMA . 63
7.2 Proposals for “KMA-2” . 64
7.3 Notes on OpenCL portability . 65

8 Conclusion 67

4

Chapter 1

Introduction

An important tool in the hands of any C developer is the heap allocator, also referred to as
(dynamic) memory allocator, heap manager or malloc-routine. This heap allocator complements
the static array by having means of reserving a chunk of memory in runtime rather than on loading
an executable. This flexibility makes it more efficient to work with data that is sent through a
socket, read from a file, or otherwise needs to be transformed to a more redundant form like a
search tree.

Internally a memory allocator is a piece of software that delegates and administrates any
memory request the user program might have. In the case of C, it is part of the POSIX standard[1]
as implemented by libraries like glibc[25]. Each user program has its own heap that maps memory
from addresses in its own virtual memory range.

Heap allocators successfully utilise caching mechanisms to work with the rather big chunks of
memory (pages) the operating system provides and to improve performance. They ensure memory
space is available to the program upon request, and is handed back to the operating system when
no longer required. This means the algorithms that manage the state of the heap ideally minimise
the execution time and memory usage, but generally have to make a trade-off between the two[29].

With the recent rise of parallel systems, programmers were facing new challenges in writing
efficient code. For sequential execution there is a fairly linear correlation between the number
of instructions executed and the physical execution time (wall-time). For parallel execution on
the other hand, extra measures have to be taken in the code to make a program “thread-safe”,
meaning the state of the entire program is guaranteed to remain correct even if multiple threads
are running in parallel. Handling data dependencies and synchronisation between the different
cores are some measures to ensure thread-safety. However, these measures introduce idle time in
the execution of a program, increasing the wall-time a program takes to run.

Increasing the performance of a program now means minimising the idle-time necessary for
thread-safety as well as writing code that executes as little instructions as possible. Of course this
is also true for designing a thread-safe heap allocator for parallel systems. A lot of research was
done on how to efficiently design and maintain the state of the heap when accessed by multiple
threads at the same time[16, 31, 7, 23].

A popular subset of parallel processing devices nowadays are Graphics Processing Units, or
GPUs. Being designed to work on large amounts of vectors for graphical processing, these devices
implicitly have a great parallel processing capacity. With the introduction of General Purpose
GPUs(GPGPUs) and accompanying (de-facto) standards, such as Cuda[36] and OpenCL[27], this
processing capability became accessible to non-graphics related applications.

Although heap allocators are much studied and frequently used, the OpenCL standard cur-
rently does not contain a heap allocator. Other parallel platforms like Cuda[36] and OpenMP do
give the programmer access to a heap and an accompanying malloc()-routine, which raises some
obvious questions about this difference.

5

1.1 Problem description

The goal of our research is to understand what place a heap allocator would take in the OpenCL
platform. More specifically, we wish to answer the following question:

How should a kernel-side heap allocator be implemented in OpenCL?

To give an answer to this question, we approach this problem like any other software develop-
ment project by following the following steps:

1. Derive the (users) requirements

2. Design the heap allocator

3. Implement and debug the heap allocator

4. Gather feedback and repeat any steps necessary

Deriving the users requirements is done by means of a use-case survey. Looking at the problems
users are trying to tackle with parallel systems and their approach in their implementation gives
a good insight in the position a heap allocator could take in an OpenCL-enabled program. Of
course, this means investigating a series of programs implemented in platforms that do have a
heap allocator, but also trying to understand how this allocator is used in sequential programs.

From these results we not only get a motivation for building a heap allocator, but also derive
some more insight on the demands for such an allocator. Based on these demands and the specifics
of OpenCL we then design and implement a heap allocator we call Kernel Memory Allocator, or
KMA. Due to the complexity of OpenCL and parallel systems in general this is an iterative process:
bugs and problems in an implementation lead to more insight in the algorithms we use and in
the available OpenCL platforms, in turn affecting the constraints and design of the final heap
allocator. The design of KMA is inspired by earlier attempts at creating a dynamic heap allocator
made in literature[29, 7, 23].

1.2 Outline of this document

In this document we present KMA, the Kernel Memory Allocator, as a proof-of-concept to show the
possibilities for dynamic memory allocation within the boundaries of an OpenCL environment. We
explain the design of our prototype and evaluate its performance by looking at both its memory
wastage and its performance. Based on these results we discuss the benefits, costs and other
limitations that KMA has, proposing several improvements for a possible KMA-2.

A more in-depth explanation of memory allocators, the OpenCL platform and some of its
differences from CPU execution is given in chapter 2. The use-case research and results of this
study can be found in chapter 3. The design details of the memory allocator are explained in
chapter 4. Implementation details are given in chapter 5, and chapter 6 will contain an analysis of
the proposed algorithm and benchmark results summarising the implementation of this memory
allocator. After showing results, we discuss the current state and the future of KMA in chapter 7.

6

Chapter 2

Background and related work

2.1 Parallel programming: locking and lock-free algorithms

When talking about parallel computation, there are several models that could be referred to. In
our work we consider three. Multiple-Instruction Multiple-Data or MIMD is the most commonly
seen model on processors. In this model there are several fully functional cores, each executing
its own code. The opposite of MIMD is Single-Instruction Multiple-Data or SIMD. Instead of
having multiple fully functional independent cores, in the SIMD model a single instruction on
a single core leads to the same computation on different data elements. Finally there is the
Single-Instruction Multiple-Threads (SIMT) model. A thread is a running instance of a program.
Multiple instances that share variables and other resources can be running in parallel, in which we
speak of “multi-threaded execution”. The SIMT model differs from the SIMD model in the way
they are programmed: where in the SIMD model code contains explicit instructions to work on a
vector of data, in the SIMT model instructions work on scalar data and are vectorised by hardware
by launching multiple threads. In the SIMT model cores are often clustered and thus execute the
same instruction on multiple cores at the same time, typically with different data elements. This
last model is used on many modern graphics cards. In this document we will assume the MIMD
or SIMT model unless otherwise specified.

In the introduction we briefly discussed the differences between sequential and parallel pro-
gramming. The major challenge that any programmer will face when designing or implementing
a parallel algorithm is ensuring that all shared values remain consistent. Without considering
parallel access to shared values, a program will most likely encounter “race conditions” that occur
when two (or more) threads try to alter the same shared variable at the same time[19]. After both
threads finish their write operation the outcome can be either of the two values, thus the value
of this shared variable is unpredictable. Depending on the algorithm this may lead to a corrupt
state of the shared data or unpredictable behaviour.

Algorithms that are designed to avoid such race conditions can be classified into two categories:
“locking”-algorithms and “lock-free”-algorithms.

Locking algorithms apply a rather naive strategy to prevent race conditions: they rely on
mutual exclusion (mutex) of access to shared resources. Mutual exclusion can be implemented by
first defining a shared “lock”-variable or semaphore. When a thread wants to modify any shared
data, it will first call a function implementing a mutex that will use the semaphore to indicate
that access to the data is locked. When this function returns it can begin executing all code that
require these shared resources. This code is also known as the critical section. Subsequent threads
that try to call this mutex function will now be stalled until the first thread calls a second routine
indicating it no longer requires exclusive access to the shared resources, after which the next
thread to obtain the lock can execute its critical section. Although this is an effective technique
to prevent race conditions and to protect shared data, it does not scale well on a parallel platform
because a lot of time could be wasted by threads that are stalled until another thread finishes.

7

Lock-free algorithms follow a different strategy. Instead of ensuring a critical section is only
executed by one thread at any given time, lock-free algorithms construct the critical section in
such a way that it is safe to execute in parallel. The common way to design a lock-free algorithm is
by making use of the atomic Compare-And-Swap (CAS) operation[22] available on many modern
processors. As the name implies, the operation first compares the value of a given memory location
with one of the parameters. Iff these values are equal, the new value is written to that address.
The old value is returned, which will give the program the opportunity to verify whether the CAS
operation had succeeded or not. The CAS operation is atomic, meaning it cannot be interrupted.

Normally this CAS operation is used to change the value of a shared variable. The idea behind
lock-free algorithms is to consider the CAS operation as a checkpoint, where the purpose of this
CAS operation is to commit all work up to this point. Every time a CAS operation is executed
by one or more work-items, there is at least one thread that makes progress because its CAS
operation succeeds. All the other threads might need to re-do some work when the CAS operation
fails, but never more than the work between the previous checkpoint until this one. If a program
using this technique always adheres to an invariant that holds after every CAS operation, it can
be shown that the parallel algorithm manipulating global data indeed behaves correctly.

Lock-free algorithms have the advantage of not mutually excluding threads from access to a
resource, thus not forcing threads to operate one by one. Unfortunately, these algorithms are a
lot more difficult to construct due to the complexity of its invariant. For a lot of data structures
no complete lock-free algorithm exists currently. Furthermore, although lock-free algorithms are
presented as a promising alternative to locking algorithms and yield good performance on MIMD
machines, lock-free algorithms could fall short on SIMT machines. Because on a SIMT machine a
core is executing the same instruction at the same time as other cores in the its cluster, the failure
rate of a CAS instruction is likely to be significantly higher than on a system with autonomous
cores.

Many lock-free algorithms suffer from a problem that in literature is called the “ABA”-problem.
To understand this problem, consider a queue with nodes b1 → b2 → b3. In this example thread
1 tries to dequeue element b1 from the queue. Before committing the change to the global data
structure, it gets pre-empted by thread 2. Figure 2.1 shows a possible execution flow.

8

Thread 1 Thread 2
block = *head (b1)
next = block→next (b2)

block = *head (b1)
next = block→next (b2)
CAS(head, block, next)

queue: b2→ b3, head: b2
block = *head (b2)
next = block→next (b3)
CAS(head, block, next)

queue: b3, head: b3
enqueue(b1)

queue: b3→ b1, head: b3
block = *head (b3)
next = block→next (b1)
CAS(head, block, next)

queue: b1, head: b1
enqueue(b3)

queue: b1→ b3, head: b1
CAS(head, block, next)

queue: b3, head: b2

Figure 2.1: Example ABA problem

In this example thread 1 was interrupted after reading any relevant values, but before commit-
ting its changes. During this interruption thread 2 dequeued and re-enqueued b1. This particular
sequence of operations led b1 to no longer point at b2, but at b3. When thread 1 continues op-
eration, it finds b1 at the head of the queue, and therefore assumes nothing has changed. It will
successfully execute the CAS operation, and as a result head now points to b2. However, b2 is no
longer on the queue.

The most practical work-around for this problem, used by M. Maged for implementing a
queue data structure[32], is by the use of tag counters in the field. A pointer is defined as an
{address, tag} tuple. By incrementing this tag on every operation, the b1 pointer that appears
at the head of the stack after thread 2 is finished most likely differs from the value in the block
variable of thread 1. The more bits are available for the tag, the less likely it is to wrap around
and cause an undetectable ABA problem. With such a queue implementation, the CAS operation
executed by thread 1 would have failed, preserving a correct stack state and forcing thread 1 to
try again.

2.2 Memory allocators

One of the features covered by the POSIX C standard is the heap allocator. This feature en-
ables programmers to allocate memory dynamically instead of statically by calling malloc(). The
difference between static and dynamic allocation is illustrated in the following example C code:

void function() {

int staticArray[10];

int *dynamicArray;

dynamicArray = malloc(sizeof(int) * 10);

}

9

Functionally there is no difference between staticArray and dynamicArray; at the end of the
function call both variables point to an array of 10 integers. But while the size of staticArray is
decided at compile time, dynamicArray points to a block of memory allocated at run-time.

void function(unsigned int entries) {

/* This results in a compile error: */

int staticArray[entries];

/* While this is valid: */

int *dynamicArray;

dynamicArray = malloc(sizeof(int) * entries);

}

This second example shows the benefit of a memory allocator for programmers. Because the
size of a memory block can be determined at run-time when using malloc(), an array could for
instance consist of an arbitrary number of integers read from a file or socket. Memory allocated
with malloc() is not limited to any content type. After usage, the memory can be returned for
use by another program by calling the free() routine.

The POSIX standard defines that the heap allocator must work as shown above, but places
no restrictions on the implementation of the heap allocators routines. Some big software projects
replace the allocator they use in their program from the one available in the operating systems
libraries to an implementation that better suits their demands[9].

Terminology among these different implementation appears to be somewhat consistent. A
program allocates a block of memory by calling malloc(). Depending on the size of this block and
the implementation, this block could be allocated directly from the operating system, or allocated
from a superblock. A superblock is simply a chunk of memory that contains several blocks, allocated
from the operating system in its entire and managed by the heap allocator. When a heap allocator
decides it no longer requires a (super-)block of memory, it returns this block to the OS.

From the allocators point of view, obtaining a superblock and distributing blocks from it is
more efficient than obtaining each block separately from the operating system (OS), because it
reduces the number of costly software-interrupts of the OS. Furthermore, the OS can often only
provide full pages of memory, which on an x86 system are typically 4KB each. Because a lot of
user applications allocate blocks of memory smaller than 4KB, this superblock system eliminates
the wasting of a lot of memory. This wasted memory is one form of fragmentation, which inherits
its name from the availability of an unused fragment of memory between two allocated blocks.

Superblocks can be seen as a form of caching: the heap allocator provisions memory to have it
ready for use when the program demands it. Some memory allocators also cache empty superblocks
instead of returning them immediately to save more round-trips to the OS. Caching an empty
superblock is usually done by adding it to a free-list. In a multi-tasking environment any memory
returned to the OS can be re-used by another program. It is thus important to find a good balance
between the performance benefit gained from caching superblocks, and the reliability of the other
programs running on the machine gained from returning superblocks.

The current values of the free-list and any other variables that the heap might use for admin-
istrative purposes is called the state of the heap.

Fragmentation One of the qualities of a good memory allocator is its ability to fight wastage
of memory caused by fragmentation.[40] Two forms of fragmentation are identified: external and
internal fragmentation.

External fragmentation occurs when two blocks of allocated memory have an unallocated piece
of memory in between. This unallocated piece of memory might be available for re-use, but its
size could be a limiting factor in the usefulness of this block. External fragmentation usually is
caused by freeing of blocks.

Consider the case where three blocks of 20 bytes were allocated. If the middle block is de-
allocated, a gap of 20 bytes arises. A new allocation request of 18 bytes might be fulfilled from

10

this gap, reducing the size of the gap to 2 bytes. Because allocation of two bytes hardly occurs,
two bytes of memory are wasted on external fragmentation.

Internal fragmentation is the name of any excess bytes caused by rounding up the size of a
block. A heap allocator might decide to round up the block size for any request if this leads to
more regular block sizes. This effectively fights external fragmentation at the possible cost of this
internal fragmentation. Internal fragmentation is usually seen with memory allocators that use a
superblock system where each superblock serves the requests of a specific size class.

One of the size-classes in a superblock-based memory allocator could be “12 to 16 bytes”,
where each block in this superblock is of 16 bytes in size. If a program requests precisely 16
bytes, no internal fragmentation will occur. However, if a program requests 12 bytes, an internal
fragmentation of 4 bytes is observable between the end of the current block and the next.

Parallel systems In parallel systems, the heap state is a combination of shared variables.
Without taking proper precautions, this heap state is prone to race conditions. In parallel programs
that rely heavily on memory allocations, such as database systems or web servers[7], memory
allocators can easily become the bottleneck. The performance of a heap allocator is greatly
influenced by the process stalls resulting from the use of mutexes.

The challenge of creating a fast memory allocator lies in preventing threads from stalling. This
involves finding a good alternative for a mutex. Alternatives found in literature include reducing
the use of shared resources[7] and designing a lock-free allocation algorithm[16, 41].

2.3 GPU

The graphics card has traditionally been a device that serves two purposes: producing images
and bringing these images to the screen. The latter task is performed by a lot of infrastructure
inside the graphics card to drive the output ports and to read out memory. The first task has
throughout the years grown to be supported by a massively parallel platform. At the heart of a
GPU nowadays lie many computational cores, ranging from 48 units on a low-power laptop GPU
to several thousand on the more expensive high-end GPUs.

Figure 2.2: Modern GPU architecture - simplified

11

Graphics programmers can use these cores by writing “shaders”[39], small programs that con-
tain the algorithm for a single thread. These shaders are used to transform vectors into pixels,
and then to manipulate each pixel for instance by applying shadow or lighting. Because there are
many vectors and pixels to work with, there is a lot of potential concurrency. The more cores a
GPU has, the faster it can finish these computations. This speed translates to the user in higher
quality details, a higher resolution and a higher frame rate.

Modern GPUs are organised like depicted in figure 2.2. Cores are generally clustered in groups,
sharing some resources like an instruction scheduler and some (shared, on-chip) local memory.
Sharing the instruction scheduler means each core in a cluster will execute the same instruction.

A lot of the complexity of a GPU lies in the memory subsystem. By using reordering and
grouping techniques as well as effective local caches, GPUs are able to achieve sufficient bandwidth
for processing all the data required to produce a high-resolution picture.

The memory model of a GPU consists of at least three layers: global memory (VRAM), per-
cluster memory and local registers[34]. Here global memory is the slowest to access with an added
latency of 400 to 800 cycles, but the largest in size. Local memory is reported to be up to 100
times faster than global memory, and local registers inside each core have no extra latency at all
if read-after-write hazards are avoided. In addition to this memory hierarchy many GPUs feature
L1 and L2 caches to speed up memory reads from frequently accessed regions[44]. Modern GPUs
and computers also support GART[14], a method to map system memory into the virtual memory
space of the GPU. From the GPUs point of view this method is even more costly to access than
VRAM as all access has to pass through the systems memory bus, but it eliminates the need to
do an initial upload or finishing download of data to the GPUs memory.

To get a GPU to execute a shader, the host system first uploads or maps the code and the
required datasets to the GPUs memory. It then issues a launch of this program, labelled with
a specific identifier. When computation is done, the GPU interrupts the host system to notify
execution of the program has ended, after which the host system can freely download and/or
further process this data.

A GPU is designed to be a slave of the host system, not an autonomous device. It can use
interrupts its memory-mapped (MMIO) interface to inform the host system of its status, but for
performance reasons it is undesirable that a GPU waits for the host system. The I/O capabilities
of a GPU are also not as extensive as those of a CPU; it cannot access other devices like hard
disks or network devices. All the data a GPU has access to must be uploaded or mapped into the
GPUs address space by the host system.

This architecture implies several limitations when compared to a CPU. Programmers must take
special care for these limitations when designing their system. The most important limitations in
the light of memory allocation are:

Shared program counter One of the pieces of hardware that is shared between multiple cores
in many modern GPUs is the program counter. As a result all cores in a cluster will always
execute the same instruction, typically on different data. This is referred to as SIMD or SIMT
execution[33, 44].

For conditional code, this means that the cores in a cluster cannot simply start executing
different instructions. Instead, all the threads that do not meet the condition must be disabled
(masked out) to prevent execution of this code[34]. This mechanism makes divergent branches
expensive on a GPU. In the case where there are two code paths to be taken and execution on
different cores diverge, the execution time of this block of code for the group of cores will be the
sum of the execution times for both paths. With a large number of different code paths, code wil
run as if it is serialised. With clusters of cores typically containing 32 cores sharing one program
counter, this means the execution takes up to 32 times as long as when code paths never diverge.

GPU-to-Host communication The available global memory is managed by the device driver
on the host system. If a program running on the GPU wishes to allocate a block of memory,
theoretically this means that the GPUs program flow must be interrupted to notify the host

12

operating system that memory is required. The device driver can then allocate this memory
and return a pointer to the allocated block, after which execution can be continued. There are
two reasons why this is undesirable in practice: (1) interrupting the operating system is a costly
operation because the GPU will be idle waiting for the host system to return its memory and (2)
the required communication path to interrupt the host system from with a program running on
the GPU is currently not implemented in modern graphics cards.

Virtual memory space On a CPU there are two distinct memory spaces. First there is the
physical address space, the direct mapping of a memory address to either memory or the MMIO
space of a device in the system. On top of this, a virtual memory (VM) address space is placed
that maps to physical addresses in any way the operating system sees fit. Each process on a
system has its own VM space. By using this mechanism, the operating system can prevent a
process from accessing memory that belongs to another process. Besides, an operating system
can pick several blocks of memory spread physically, and map them contiguously in the virtual
address space such that a process can allocate large chunks of memory even when physical memory
is highly fragmented.

A GPU has its own VM layout which differs from the VM layout of a process on the host
system. Blocks in the GPUs VM space can be mapped to either the GPUs own VRAM, or to
the hosts memory using GART. On some graphics cards the VM space even differs between the
various processes or contexts running on the GPU, much like on a CPU.

The difference in VM layout between GPU and CPU comes with additional challenges. Because
the layout is different, pointers in one address space does not necessarily point to the same object
in the other. Because linked lists and trees work with pointers to other nodes, they cannot be
interpreted after transferring to a different device. Currently no driver gives the host the freedom
of parsing the virtual memory pagetables of the GPU, so the context of this structure gets lost on
transfer.

2.4 OpenCL

With the introduction of platforms like Cuda[36] and OpenCL[27], the GPUs massive-parallel
computational power became available for more general purposes. Both platforms describe a host-
side API that lets a program control a special compute environment, and a programming language
that lets a programmer write code to execute on the target device.

The difference between Cuda and OpenCL is both of technical and political nature. Cuda is
an environment developed by NVIDIA to fully utilise their GPU hardware. OpenCL on the other
hand is an open standard driven by most major players in the industry, including AMD, NVIDIA,
Intel, ARM, Apple and many others. One of the key properties of OpenCL is portability: OpenCL
code can be executed on a variety of hardware, such as CPUs, GPUs and FPGAs, from many
vendors. Although Cuda feature-wise has an advantage over OpenCL[36, 27], studies show that
programmers are able to obtain a similar performance with both[18] when targetting the same
device.

With its specifications released in 2008, OpenCL is a relatively young standard. Its program-
ming model is designed to closely match the GPU hardware, without compromising in portability
to other platforms like the CPU. The most recent version at the time of writing is OpenCL 1.2.
Some of its features are missing in the current implementation of NVIDIA, which only promotes
OpenCL 1.1 compliance. Most of the concepts in OpenCL should sound familiar to OpenGL
programmers, although terminology matches more with that of traditional programmers.

The memory model of OpenCL describes the use of global memory, local memory and local
variables that map to local registers. This corresponds to the general architecture of a GPU as
shown in figure 2.2. To allow performance optimisation by the device it also supports buffers like
read-only constant buffers and two- or three-dimensional image objects, both of which reside in
global memory.

13

On the host side OpenCL offers an extensive API to set up an OpenCL environment for a
program. A typical OpenCL work-flow looks as follows:

1. Select a platform (NVIDIA Cuda, AMD APP, Intel SDK...)

2. Choose a device for this platform (GPU, CPU)

3. Create a context on this device

4. Create a command queue for this context

5. Create and compile the OpenCL program from sources

6. Create a kernel object from this program, specifying the desired kernel

7. Create input and output buffers for the kernel

8. Schedule the upload of data to these buffers in the command queue

9. Set the kernel parameters in the kernel object and schedule kernel execution in the command
queue

10. Wait for the command queue to run empty, indicating execution has finished

11. Read back the results

Each platform offers support for one or more devices, but devices are not limited to a single
platform. For instance an Intel CPU can be user by both the Intel and AMD platforms, each
using their own compiler back-end. After choosing a device, the host program creates a context
on it. This context is used to tell apart the different programs utilising the same device.

OpenCL programs are typically written in a special subset of C, called OpenCL C. Such a
program contains all the work that one thread, or work-item, must complete. This programming
model, called SIMT, closely resembles shaders in graphics processing. A program contains one or
more entry points that the host can use to start execution. These entry points are special functions
called kernels. By running the same OpenCL kernel on different cores with different input data,
parallel execution is achieved with this sequential code. Programmers are responsible to handle
or eliminate data dependencies between work-items.

In order to launch a kernel, the OpenCL API demands a thread configuration. This con-
figuration specifies how many threads (work-items) are executed and how they are grouped in
work-groups. To allow efficient optimisation by the GPU, this configuration is given in one or
several dimensions and should map to the data set processed.

Because OpenCL is a fairly new standard, it comes with quite a few restrictions. Some of these
limitations are imposed by hardware while others are simply a matter of specification. The rest
of this subsection will cover some of the restrictions encountered in OpenCL during the creation
and testing of prototypes on NVIDIA hardware.

Locking In a lot of shared data structures, the state of the structure is protected by means
of a mutex lock as described in section 2.1. The OpenCL specification does not include such a
lock, but by using the available atomic operations in OpenCL it seems possible to create a fairly
simple spin-lock that works on a regular MIMD machine. However, for a SIMT device like a GPU
writing a spin-lock prove to be not nearly as trivial. This is caused by the fact that a GPU will
not have a program counter or instruction dispatcher per core, but rather share the same between
many cores. To illustrate the problem, consider the following simple example for implementing a
spin-lock:

14

/* Global vars */

global volatile int lock; /* Initialised to 0 */

function doCritical() {

int oldvalue;

do {

oldvalue = atom_CAS(&lock, 0, 1);

} while(oldvalue != 0);

/* Critical section here */

atom_set(&lock, 0);

}

On a MIMD machine supporting the atomic CAS operation, this function will attempt to swap
the lock from 0 (unlocked) to 1 (locked). If a particular thread succeeds it continues to execute
the critical section, after which it releases the lock again. However, on a GPU the critical section
will never be executed because the one work-item in a work-group that obtains the lock will be
masked out from further execution. The scheduler will instead make the remaining cores loop over
the while-loop until an active core sets the lock value to 0, an event that will never occur.

Attempting to “trick” the scheduler into masking out all cores but the one that obtains the
lock prove not to work. Likely the compiler tries to optimise the code instead and treats the
second piece of code like the first one.

/* Global vars */

global volatile int lock; /* Initialised to 0 */

function doCritical() {

int oldvalue;

while(true) {

if(atom_CAS(&lock, 0, 1) == 0) {

/* Critical section here */

atom_set(&lock, 0);

break;

}

}

}

Because shared program counters are a fundamental property of many GPUs[44, 24], more
complex code constructions based on this atomic principle are unlikely to lead to a reliable and
portable lock mechanism.

Memory ordering GPUs make heavy use of memory reordering by design, because it allows for
a much greater utilisation of the available memory bandwidth. Limiting reordering by explicitly
enforcing a memory order in source code likely degrades performance of the GPU in favour of
correctness. Unfortunately, memory ordering guarantees are sometimes required to be able to
construct reliable algorithms where threads co-operate on the same shared data structure.

The OpenCL standard states the following about memory ordering:

OpenCL uses a relaxed consistency memory model; i.e. the state of memory visible to
a work-item is not guaranteed to be consistent across the collection of work-items at
all times.[27]

This relaxed consistency memory model implies that there are no hard guarantees about mem-
ory ordering. Without these guarantees, it becomes quite difficult to work on true global shared

15

memory structured like lists and trees. Lock-free parallel algorithms for instance rely on certain
check-points where a set of changes is committed and verified using the atomic CAS operation. As
the order of execution for these atomic operations is not predictable, the complete system could
read a state which is impossible if the code was executed sequentially. Accounting for all these
possible states is not desirable and often not even possible in a lock-free algorithm.

In practice it seems on NVIDIA hardware and CPUs that support AMD APP, the order
of memory operations can be controlled by using memory fences. Although the specification is
unclear about whether these operations are safe to use to synchronise memory operations between
different work-items, tests on this hardware with a global queue data structure seem to indicate
it is. On recent AMD HD graphics cards, memory fences do not influence the memory ordering
like on NVIDIA or CPUs supported by AMD APP. The behaviour of algorithms that require a
specific memory ordering is therefore unspecified on these GPUs.

Global synchronisation Although synchronising is an expensive operation because all threads
have to wait for each other, it is a necessary evil for reduction operations. OpenCL offers barriers
that allow threads in a work-group to synchronise at a given point in source code. Unfortunately,
no such barrier exists for global synchronisation of all threads.

As an experiment we have written a global barrier function in OpenCL C. A similar experiment
has been conducted in Cuda by Shucai Xiao[45]. Consider the following snippet of pseudo-code,
which is safe when re-entry is prevented:

global_barrier(volatile unsigned int __global *b)

{

if(pid_local() == 0) atom_inc(b);

/* Synchronise locally; a lot cheaper this way */

barrier(CLK_LOCAL_MEM_FENCE);

/* Wait for all the other workgroups */

while(*b < workgroups() && *b > 0);

/* Reset b, _one_ thread only */

if(pid_global() == 0) atom_and(b, 0);

}

This code uses the regular barrier operation to synchronise the different threads in a work-
group. It then increments a counter and waits until the counter is equal to the number of work-
groups. At that point all threads should be synchronised, and all that is left is to reset the counter
once.

Our experiments on NVIDIA hardware show that global synchronisation works for a small
number of threads with a very specific thread configuration. On an NVIDIA GeForce GT640 the
work-item scheduler schedules around 3000 threads at the time. However, there are many variables
that influence this number of work-items, making it impossible to predict when this code will or
will not work in a portable way. Similar results were obtained in [45].

The reason why this method does not work with too many work items is because scheduling
techniques are used to keep register pressure low. Instead of executing all work-groups in round-
robin, NVIDIA hardware schedules a subset of the work-groups. Once a work-group is finished it
schedules a new one for execution. This technique eliminates the need to store register values on a
context switch, and at the same time makes more local registers available to a work-item reducing
register spills. The downside of this technique is that beyond a certain amount of work-items,
at no point in time all the work-groups will gather inside the barrier function. As a result a
synchronisation function like above leaves the active work-groups busy waiting forever.

The only way to enforce global synchronisation in OpenCL is by splitting up the kernel in two
halves. The top half can then be finished before the host system launches the bottom half. When

16

executing loops or reductions however this implies a lot of overhead and could greatly increase the
complexity of the code.

64-bit atomics Depending on the platform a memory allocator has to deal with either 32-bit
or 64-bit pointers. In lock-free implementations of data-structures like singly linked-lists or even
hash-tables, pointers will need to be updated atomically to verify expected execution and to be able
to detect situations where another thread updated the pointer before. Without these verifications
there is no way for a lock-free algorithm to ensure a consistent state.

The OpenCL 1.2 standard includes 32-bit atomic operations, but does not define 64-bit coun-
terparts. Atomic operations on 64-bit atomics are defined in separate extensions. Unfortunately
not all platforms implement these extensions, most notably Intel SDK for OpenCL Applications
2013. A 64-bit atomic operation is mandatory for any memory allocator that works on platforms
with 64-bit memory addresses. For GPGPU platforms this is not necessarily a restriction, as
both AMD and NVIDIA GPUs expose a 32-bit virtual memory layout to the OpenCL kernel. For
execution of OpenCL kernels on the CPU on the other hand this means that the entire application
needs to be compiled with 32-bit support unless 64-bit atomics are supported by the compiler.
Intels SDK also does not support 32-bit applications, making it impossible to create a memory
allocator that works on this particular platform.

2.5 Related work: Heap allocator algorithms

As memory allocation is an important and popular feature of many programming languages, a lot
of research has been done to find an efficient allocation algorithm. Many of such algorithms have
been developed to offer fast memory allocation while wasting as little memory as possible. In the
literature two heap management algorithms are often found: Doug Lea’s DLmalloc[29] as used
in the GNU libc implementation, and the GPL-licensed Hoard algorithm[7]. We consider both
algorithms a good candidate to base a memory allocator for OpenCL on.

DLMalloc Lea’s allocation scheme is a combination of two different algorithms[29]. It uses one
heap for all threads, and free blocks are put together in size-binned linked lists. For small and
medium sized allocations a best-fit algorithm is used. Large objects are obtained directly from
the operating system.

The best-fit algorithm works as follows: when available a block is returned from the correct
size bin. If no such block is available, a bigger block is taken from a different size bin and split
up into two smaller blocks, after which one block is returned and the other one attached to the
right size bin. When a program frees a block it is coalesced with adjacent free blocks, forming one
large block. Blocks start at 16 bytes, the minimum required to link them together when free, and
increase in 8-byte steps.

By using a large amount of size bins there is only a very limited amount of space wasted due to
returning blocks that are too large (internal fragmentation). Excessive 8-byte blocks can always
be split off as a separate block and added to the free-list, further reducing internal fragmentation.
However, DLMalloc is prone to “external fragmentation”, which occurs when blocks of memory
in the free-list are too small for the program to use, yet cannot coalesce into larger blocks because
their adjacent blocks are both taken.

Hoard Emery Berger et al. propose the Hoard allocation algorithm [7]. At the heart Hoard
manages superblocks containing equally sized memory blocks. What makes Hoard unique is its
improved performance on parallel systems. This is achieved by besides managing a global heap,
each process also has its own local heap. By limiting this local heap to one thread, there will be
no possible race conditions. This means that for any operation on the local heap there is no need
for mutexes or similar protection measures, so threads no longer always have to stall when another
thread is busy with its allocation- or free-routine. Only then when the local heap runs empty will
the global (thread-safe) heap be used.

17

Dave Dice et al. proposed a more efficient mostly lock-free heap allocator based on Hoard[16]
for Solaris systems. This heap allocator is mostly lock-free by relying on Solaris’ process scheduler
to warn a process when its allocation was pre-empted, forcing a restart of the routine. Michael
Maged proposed a portable and fully lock-free allocator based on Hoard that makes use of the
Compare-And-Swap (CAS) instruction of many modern processor architectures [31]. Benchmarks
show that this allocator scales nearly perfectly up to 16 processors, without introducing any
measurable latency overhead.

Each superblock falls into a certain “size-class”, where each class covers a range of requested
memory block sizes. Memory blocks larger than the upper bound of the largest size-class will be
allocated directly from the operating system.

By allocating and grouping blocks of memory of the same size, external fragmentation hardly
exist. On the downside the amount of required memory in a request must always be rounded up
to the size class border, causing internal fragmentation. Hoard chose the size classes in such a
way that this internal fragmentation is at most 20% of the available memory space. In addition,
because each size class gets allocated several 4K memory pages from the operating system, a lot
more space is wasted when the required heap space is small. In a multi-tasking environment this
space could have been used by other applications.

Although this strategy proves to be very efficient on MIMD machines like multi-core CPUs,
there are two reasons why this strategy is not efficient when applied on a GPU. First of all, to
fully utilise the available computational power of a GPU it is advised to spawn more threads
than the number of available cores[34]. If 3000 threads are spawned, and each of these threads
maintains a heap with one 4KB superblock, the entire program already uses a heap of 12MB.
Because the memory requirement of a single work-items is likely small, most of these superblocks
will be underutilised. This results in a lot of wasted memory.

The second reason why per-work-item heaps are a bad idea on a GPU is related to the alignment
of superblocks. Figure 2.3 illustrated a memory alignment likely to occur in Hoard.

Figure 2.3: Possible memory alignment with Hoard

Consider the case where all threads allocate a block of memory at the same time. With Hoard,
each thread will obtain its own superblock and allocate a block from it. Allocation from this
superblock will follow a fixed pattern, usually starting at the first block inside this superblock.
The result is a strided memory access, where the stride is the size of the superblock. Hardware
cannot combine this access into larger requests because blocks are not adjacent, resulting in a
lot of small memory requests each with a relatively high latency. This access pattern prevents
the GPU from fully utilising the available memory bandwidth when these objects are accessed in
parallel, greatly degrading performance. To make matters worse, superblocks are often of size 2n.
In these situations the L2 cache is not very efficient either unless alignment is forcibly broken. It
can be argued that memory read performance of memory blocks distributed by an implementation
of Hoard can not be portable between different devices, because caching becomes ineffective.

XMalloc Xiauhuang Huang et al. proposed the XMalloc allocator[23] for Cuda, an allocator
designed to work around issues with lock-free algorithms on SIMD and SIMT machines. XMalloc
structures the available memory in a three-level hierarchy: superblocks contain basic blocks, and
basic blocks consist of several memory blocks. Free superblocks are connected to a free list, which
is a fixed size fifo. Another fixed size fifo exists for free basic blocks. Unlike Hoard, XMalloc only

18

works with a single global heap.
Often in a kernel all work-items in a work-group call the malloc()-routine at the same time.

XMalloc optimises these requests by, instead of having each work-item allocate a chunk of memory,
gathering the memory requirements of all work-items by means of a prefix-sum reduction. XMalloc
first gathers the total memory requirement for all work-items by applying the up-sweep phase of
the prefix-sum algorithm[10]. It then allocates the total amount of memory required to serve
all work-items. Finally, this memory is distributed by the down-sweep phase of the prefix-sum
addition.

This prefix-sum reduction has a time complexity of O(logn). Benchmarks show a great im-
provement in latency of this approach compared to the linear CudaMalloc[36] and excellent scaling
with the number of cores in the SIMT machine.

19

20

Chapter 3

Memory allocation patterns

To reach the goal of designing a memory allocator suitable for use in GPGPU-enabled applications,
the following questions must be answered:

• What are “GPGPU-enabled applications”?

• What are the demands on a memory allocator for these applications?

• How can we meet these demands on a GPGPU architecture?

We believe the best way to answer these questions is by conducting a use-case study. By
systematically quantifying the behaviour of available programs regarding the lifespan of allocated
memory (allocate, read/write, free), many conclusions can be drawn about the desired use of a
memory allocator in OpenCL.

To ensure that the investigated set of programs is diverse, we attempted to find implementations
of different algorithms. Krste Asanovic et al. proposed a series of twelve basic patterns that cover
most of the available parallel problems seen today[3]. In the rest of this document these patterns
will be referred to as algorithm classes.

In our survey we do not limit ourselves to GPGPU-enabled programs. OpenCL programers
had no access to a heap allocator while Cuda programmers are discouraged the use of their
allocator. Although programmers could have worked around this absence, code using such work-
arounds are not always representative for the code its programmer envisioned. Besides investigat-
ing OpenCL and Cuda implementations we will thus also consider OpenMP implementations of
common massive-parallel problems.

3.1 Research setup

For the design of a memory allocator two factors are of particular interest. First of all good
insight is needed in the allocation process. Is the provided malloc()-routine called often or even
per-iteration, or rather just once or twice at the beginning of a program? And related to this, is
the memory free’d all at once, or in a different pattern? How large are the actual allocated blocks?
Are these allocated blocks (arrays of) equally-sized objects?

The second factor of interest is the use of these allocated blocks. When allocated memory is re-
used a lot, it is relevant to see what pattern can be observed in the usage of these allocated blocks.
Having simultaneously accessed data close together is one of the optimisations recommended to
improve performance[34] of OpenCL kernel execution. Xmalloc uses the prefix-sum algorithm for
distributing the allocated blocks[23], but this might not be the most efficient distribution when
considering the limited memory bandwidth on a GPU. How does a program access the allocated
memory? Does it only need its own data? Is it even possible to improve on performance by using
a different distribution method?

21

Based on these questions, we propose to extract the following metrics from each program to
profile dynamic memory access behaviour:

• Number of calls to malloc() in terms of p (processors) and n (data size)

• Number of calls to free()

• Size of each allocated object

• Number of allocated objects

• Access pattern[26]

– Linear

– Reverse linear

– Shifted

– Overlapping

– Non-unit stride

– Random

• Access globally or locally

• Read/write frequency

The required data will be extracted from a couple of sources. Ideally this study consists of
analysing the source code of a wide variety of parallel programs, each designed for a platform that
has a memory allocator available. If source code for a given algorithmic class is unavailable, we
either use details from implementation papers or an analysis of the algorithm to show the usability
of a malloc() routine.

One of the sources for parallel implementations is the Rodinia benchmark suite[13]. This
suite contains a variety of benchmarks covering five out of the twelve algorithmic classes, each
implemented in OpenMP, Cuda and OpenCL. We have picked three of the programs, as a quick
look at the source code revealed that the rest of the programs were designed for a Cuda environment
without memory allocation. This implies that the applications are biased towards a malloc-free
environment, and thus will not generate useful results for this study. The selected programs are
ones based on ready-available GPL source code, rather than designed specifically for Rodinia.

Parboil is another benchmark suite[2] containing a wide variety of parallel programs. Although
this suite does not contain any parallel implementations for the CPU, it does contain several Cuda
kernels designed for the Cuda 3.2 toolkit, thus supporting malloc in kernels. Unfortunately this
malloc routine is never used in any of the kernels. The fact that this routine is not used can be an
indication that programmers do not desire a dynamic memory allocator for use in their kernels.
Nonetheless we will investigate several Cuda implementations to find variables that are in theory
suitable for allocation using malloc(). We acknowledge that this data is a source of discussion and
will show that this discussion is actually a good reason not to disregard this data.

Several other sources are used to find good parallel programs for investigation. A complete list
of the chosen programs and their sources can be found in table 3.1. For all of these programs, all
relevant allocated variables are identified and their usage is written down in terms of the earlier
mentioned metrics. Data in an OpenCL program that needs to be shared between the host and
the accelerator can not be allocated on the accelerating device due to a difference in VM spaces,
as explained in section ??. The memory allocation behaviour for these datasets is therefore not
considered in the results of this study. The remaining variables are documented in table 3.2.

For the Finite State Machine algorithmic class, we extracted relevant data from a case study
written to describe the research towards accelerating such an algorithm by means of exploiting
parallelism[42]. Although this papers does not describe how each variable in the algorithm is

22

implemented, it does explain in detail the challenges encountered while implementing their pro-
posed solution. From the paper it can be derived what data structures are used and how they are
implemented in their prototype.

Finally, for the Dynamic Programming algorithmic class it is sufficient to reason from the
theoretical side how it should be implemented in a parallel environment. Algorithms that fall into
this class are well defined for sequential operation, but as we will see parallel implementations
often face challenges related to scheduling.

Algorithm Class Program Source Library
Finite State Machine Level-7 filtering Case Hellas University[42] -
Combinatorial ? ? ?
Graph Traversal Graph analysis Code TU Delft OpenCL
Structured Grid Heart Wall Code Rodinia OpenMP
Dense Linear Algebra K-Means Code Rodinia OpenMP
Sparse Matrix SPMV Code Parboil Cuda
Spectral (FFT) FFT Code Parboil Cuda
Dynamic Programming Dijkstra Theory - -
N-Body/Particle Methods Barnes-Hut Code Texas State University1 OpenCL
MapReduce ? ? ?
Backtracking ? ? ?
Unstructured Grid Back Propagation Code Rodinia OpenMP

Table 3.1: Selected programs for use-case study

1http://www.gpucomputing.net/?q=node/1314

23

http://www.gpucomputing.net/?q=node/1314

3.2 Results

Variable M
a
ll

o
c(

)

F
re

e(
)

O
b

j.
si

ze

O
b

j.
co

u
n
t

A
cc

es
s2

A
cc

es
s

P
a
tt

er
n

R
/
W

fr
eq

3.2.1: Finite state machine
work queue p*i p*i state 1 r: global - O(i)

w: local
3.2.2: Graph analysis

nodetree p*i p node p/i global random O(nlogn)
3.2.3: Heart Wall

private[p].d in2 p p float const3 local r: linear, non-unit stride O(i2)
w: linear

private[p].d in2 sqr p p float const3 local linear O(i)
private[p].d in mod p p float const3 local r: linear, non-unit stride O(i2)

w: linear
private[p].d in sqr p p float const3 local linear O(i)
private[p].d conv p p float const local linear O(i)
private[p].d in2 pad p p float const3 local linear, non-unit stride O(i)
private[p].d in2 sub p p float const3 local linear, non-unit stride O(i)
private[p].d in2 sub2 sqr p p float const3 local linear O(i)
private[p].d tMask p p float const local linear, random O(i)
private[p].d mask conv p p float const local linear O(i)

3.2.4: K-Means
membership p p int 1 local - O(n)
new centers 1 1 float k ∗ dim global linear O(i)
partial new centers p p float k global r: non-unit stride O()

w: linear
partial new centers len p p int k global r: non-unit stride O()

w: linear
3.2.5: Sparse Matrix Vector

fictive intermediate 1 1 float dim(X ∗ Y) global random ?
3.2.6: Fast-Fourier Transform

v p p float const local random O(i)
d work p p float const local random O(i)

3.2.8: Barnes Hut
octree p*i*j p*j node n(∗j) global random (local) O(nlogn)

3.2.9: Back propagation - no applicable variables

Table 3.2: Identified variables in parallel algorithms and implementations

3.2.1 Finite state machines

State machines are a basic mechanism for processing a string of input characters. By evaluating
the next input character and the current state, a new state can be determined. In particular, any
regular expression can be represented by a state machine.

There exist very few parallel programs that process a state machine. One experiment with
regular expressions on GPUs has been done at the university of Hellas[42]. They have created

2Local: only by the thread allocated; Global: data used by any thread
3Could be implemented as rand()*n for the border of a video

24

an implementation of “level-7” filtering or “deep-packet inspection” in networks. Each network
package needs to be tested against a large set of regular expressions to determine the content
type of the package. Each regular expression gets converted to a state transition table and will
be placed in (read-only) global memory. On the GPU every data packet can then be processed in
parallel, trying to match the data against all available regular expressions.

Lacking source code, we will investigate finite state machines on a theoretical level while
considering the decisions explained in the research on “level-7” filtering[42]. In FSM algorithms,
the number of iterations i is equal to the length of the input word. The number of processors p is
equal to the number of concurrent states the FSM has. The problem size n is not relevant as this
is captured already by the number of iterations of this algorithm. In each iteration the problem
size is equal to one.

An important property of state machines is that they are inherently sequential. The next state
always depends on the current state and the next input character. After evaluating the entire state
machine, the final state needs to be communicated back to the host system. When considering
state machines, or finite automatrons, we identify two classes: deterministic and non-deterministic
state machines.

A deterministic finite automatron (DFAs) is restricted in such a way that it can only be in
one state at any given time. Given the earlier metrics, this means that the number of processors
is always equal to one. Thus, no strategy exists to execute a DFA in parallel. The best strategy
to accelerate evaluation is by processing many DFAs in parallel. This fact plus the fact that a
DFA only operates on a graph, an input word and a notion of the current state, all of which are
uploaded by the host system, there is no need for any memory allocator.

Non-deterministic finite automatrons (NFAs) can be considered a relaxation of DFAs, in the
sense that these state machines can be in several states at the same time. Transitions from state
to state do not even require an input character. This divergence could in theory mean that more
processors could evaluate a single NFA with a single input string in parallel.

The typical method to evaluate NFAs is converting them to a DFAs. This conversion process
introduces many new states consisting of combinations of old states. Applying this method ensures
that an input of length n can be processed in n steps by one core. By doing this widely adopted
conversion, like the “Level-7 filtering” team did, the same strategy can be followed as for DFAs.
This means that no memory allocator is required during the evaluation. For large NFAs this
solution is unfortunately not feasible because this might lead to an exponential increase of states,
possibly exceeding memory restrictions on the targeted device.

A different way to process an NFA would be keeping track of all current states. This provides
interesting possibilities to evaluate a single NFA by several threads in parallel. For a given input
character the algorithm could build a work queue of all possible states the NFA could be in. In
the next iteration, each work item on this queue can be processed by a separate processor for the
next input character, repeating the process until the input word is completely consumed.

The properties of such a work queue are denoted in table 3.2. A work queue will be constructed
in every iteration with any size between 1 and the number of possible states s. Freeing of the work
items can be done at once. This work queue does not require the use of a memory allocator as
it is possible to allocate an array with size s once, and use this same array for every iteration. A
malloc routine will however reduce the memory footprint of the execution in the common case, as
no overestimation is done.

Evaluating an NFA in parallel by means of a work queue comes with a couple of disadvantages.
The biggest disadvantage is the inability to predict how many threads are needed for the next
iteration until after the current has finished. In theory the amount of required threads could be
any number between 1 and the total number of states. This makes scheduling problematic, as
OpenCL requires the number of scheduled threads to be specified before the start of a kernel.
Overestimation will waste resources better used by evaluating more NFAs in parallel. Besides this
problem, the time required to schedule might also be disproportional to the time spent on the
actual evaluation of the state machine. The whole job of the state machine is merely to find the
next state(s) in a table based on the input and the current state. Scheduling requires the creation
of a new data structure and scanning all states to see if they are a candidate on every iteration.

25

In order to make a definite statement about these possible disadvantages, an implementation
should be created and benchmarked. In-kernel malloc seems to be a prerequisite to creating such
a benchmark. Benefits from an in-kernel malloc routine would be code maintainability and the
flexibility of acquiring a chunk of memory for each iteration in the process.

3.2.2 Graph Traversal: Graph conversion

Many data sets can be modelled as graphs, like distribution networks, scheduling constraints
or instruction dependencies. Graph traversal algorithms are amongst the most commonly used
algorithms to process these graphs.

As part of his study, Ate Penders has proposed an OpenCL implementation of an elementary
graph analysis problem[38]. One of his initial problems is to convert a list of directed edges into
a list of n nodes with their edge-in and edge-out count. Nodes are identified by a unique random
integer, not necessarily between 1 and n. This is an example of a graph traversal algorithm that can
be used in many applications, for instance in the register allocation algorithm by G. Chaitin[12].
The graph analysis project is aimed at large graphs, possibly with millions of nodes. Additionally,
because the nodes are not strictly numbered between 1 and n, the node identifier cannot be used
as an array identifier. This restriction requires a node list captured in a data structure more
advanced than a linear array.

Investigating the source code of this OpenCL program assumes the following metrics. The
problem size n is equal to the number of nodes. The number of iterations i will be defined as the
number of edges divided by the number of threads. Finally, p is defined as the number of threads.

As identified, the node list is the only data structure that could benefit from a malloc routine. In
order to bypass the lack of such a memory allocator in OpenCL, inefficient hash-table constructions
are currently used to accelerate searching of nodes in this list. Worst case these algorithms show
no advantage over a simple list iteration as the exact position of a node in a list is not deterministic
based on solely its identifier. The developer explicitly requested a memory allocation routine in
order to be able to sort the nodes in a binary search tree[5] without a lot of manual labour.
This would allow him to use many known optimisations to generate a balanced tree structure[4],
reducing the search to any node and insertion of a node based on its identifier from O(n) to
O(logn).

The OpenCL kernel would allocate in total n nodes whose size is simply denoted as sizeof(node).
Node would be a structure containing an identifier, edge counters, a locking mechanism to avoid
concurrent writes and pointers to adjacent nodes. Without going into details, We estimate this to
be around 32 bytes for each node.

Although the memory allocations will occur roughly in amounts of p ∗ i, as each iteration a
part of the processors will allocate memory, there will be no need for freeing parts of the allocated
structures separately. Freeing should only be done after the entire tree has been processed and
when analysis is done on that tree. This means free only occurs once at the end of the kernel.

A traditional in-kernel memory allocator will allow for the construction of a node tree in a
conventional manner, a significant improvement compared to the use of a hash-table. In terms of
memory it will however introduce a slight overhead for the administration of the memory allocator
compared to the use of a regular array. Furthermore, global access only becomes possible by
traversing the search tree, limiting the application of the constructed tree. Predictable indexes
might nullify this restriction, and should be considered a useful feature for the designed malloc
routine.

3.2.3 Structured grid: Heart Wall

Algorithms that process a multidimensional structured grid of data elements are used commonly
for analysis of sampled objects. Key in these algorithms is that the data in each point is altered
based on the value of their neighbours. A well-known example is the game of life, but these
algorithms are also used more practically for instance in weather forecasting.

26

These algorithms generally allocate a big chunk of memory which will then be filled with
data samples. The grid is then re-used for every iteration of the algorithm, meaning there are
no dynamic memory requirements in this part of the algorithm. During execution though, often
temporary data needs to be stored as well. In addition, when dividing the grid over several
processors each needs its own memory area for storing intermediate results.

The “Heart wall” program investigated was obtained from the Rodinia suite[13]. The program
is an implementation of a structured grid algorithm, designed to analyse an AVI video of a mouse
heart. Each frame consists of a 2-dimensional grid of pixels, in which the algorithm tracks the
movement of the heart. The ideal number of processors p is equal to the number of endo- and
epi-points analysed. These points are simply coordinates in the image grid, relevant in medical
sense. The iteration count i is defined by the number of frames in the video file. The data size n
is equal to the physical number of pixels in a frame.

The first step in this implementation, converting the AVI frame to a bitmap, is done in se-
quential code. In theory this can be accelerated by using graphics accelerators, a technique for
which Cuda offers explicit APIs. However, regardless of the chosen decoding method, the frame
decoding will not need to call malloc()[46]. In the case of video decoding on Cuda the frames are
stored by the decoder in texture memory, outside of the control of the OpenCL program. If video
decoding hardware cannot be accessed the decoded frame must be uploaded to the card for the
kernel to use.

In the calculations that follow, an array of type “private struct”, named private[], is allocated
on the host system and is partially initialised. This type contains several pointers to floating-point
values or arrays of values. Given in the ideal situation the video file is converted to a bitmap in
OpenCL, ten of the floating-point values in the private struct array do not need to be shared
with the host system. Although these entries are currently allocated separately in a sequential
loop, they have been analysed as if they are allocated inside the parallel kernel for the purpose of
extracting sane results on the usage of this memory.

The allocated arrays in private[] are grids that store intermediate values for the current and
surrounding point in the grid. Each of these arrays are allocated and de-allocated exactly once for
each processor. The object size is constant and equal to the size of a float. The number of allocated
objects is currently constant, but in theory can be limited when taking into account points around
the border of an image. Currently each thread would allocate around 1000 floating-point values.

The exact usage of these ten arrays varies. What can be seen is that the individually allocated
blocks are all read and written linearly in a part of the algorithm. Some of these arrays are also
read in the transposed form (column-wise), a specific type of non-unit stride. One of the arrays,
d tMask, is accessed semi-randomly. Although the pattern is linear, the starting point depends on
values found in earlier calculations. It can be interpreted as shifted, but when executed sequentially
the access would have more similarities with a random pattern.

Allocating these arrays from inside the kernel will add no improvements to the program.
Although it might slightly improve the readability of the code, the overhead of allocating these
arrays from within the OpenCL kernel is larger than when done on the host system. This results
in an unnecessary performance penalty.

3.2.4 Dense linear algebra: K-means

Dense linear algebra problems generally consist of one or more manipulations done on irregular
dense matrices. These matrices are commonly used for representing the availability and weight of
edges in a graph, so that an edge from any known source and sink can be found in constant time.

K-means is the problem of partitioning a dataset into k groups or clusters. Each element in the
dataset is associated with the partition with the nearest mean. In principle the k-means algorithm
works with any data type for which a distance function exists, such as a list of numbers, a set
of two-dimensional vectors or a weighted graph. No linear algorithm exists to obtain an exact
solution for a k-means problem even with a dataset in the two-dimensional plane[43]. Several
efficient heuristics do exist that produce acceptable results.

27

The K-means implementation we investigated originates from the Rodinia suite[13]. The pro-
gram randomly picks a center for each cluster. It then calculates the means of each node associated
and moves the nodes to different clusters accordingly. From these newly formed clusters a new
center is calculated. This process repeats until no nodes move between clusters. We define the
number of preferred threads p as the number of nodes in the input graph. The number of iterations
is defined as i. The data size n is equal to the number of partitions k.

The implemented program has a very limited OpenMP kernel. The kernel finds for each node
in the grid the nearest cluster center, and updates its membership accordingly. The implication
of this approach is that none of the temporary arrays is eligible to allocate inside the kernel. All
data must be stored throughout the algorithm and thus be transferred for every iteration. For
analysis purposes we propose to consider the case where the surrounding for-loop is made part of
the kernel. Now three arrays could theoretically be allocated inside the kernel: the membership
array, used to store the current associated partition for each node, the new centers array, used
to store the proposed center after each iteration, and two arrays to store the partial results for
calculating these new centres.

The membership array is allocated once at the beginning of the algorithm, and freed once at
the end. Because the number of objects allocated for each thread is equal to one, this could be
replaced by a private variable instead inside a kernel. In the current implementation this is not
done because the limited parallel kernel causes this data to be lost after each iteration.

The new centers array also is allocated and freed once. The current implementation is ex-
plicitly written to calculate these new centres sequentially, although there is no reason not to use
already spawned threads to do this in parallel. Its size, although independent of the number of
desired partitions, is constant throughout the calculations and thus not an interesting case for the
in-kernel memory allocator.

The same allocation frequency holds for the other two arrays: they are allocated and freed
once. They are, however, written to more frequently. Each node in the grid keeps the distance
from each cluster in these partial results. These values are therefore written to in a linear fashion,
but read on a per-cluster basis. This corresponds roughly with a non-unit stride reading pattern,
as also assumed for the heart wall application. What is interesting to note here is that although
the kernels could possibly allocate local memory, they must be able to access data from other
kernels. This data must therefore reside in global memory, and an indexed array-like structure is
preferred here.

As with the structured grid algorithm, values are accessed linearly either when reading or
writing. A transposed form of reading is also used, resulting in a non-unit stride access pattern.
Allocation and freeing is done only once. The size of the objects is generally equal, but there is
one case where a varying number of objects is stored.

A more important similarity with structured grid algorithms is the fact that an OpenCL kernel
memory allocator will not be of much use in this program. The data structures are allocated once
and predictable in size. Allocating this memory in-kernel would simply introduce an overhead,
without giving any real benefit. Also, as we have shown in section 2.4 that global synchronisation is
not possible within an OpenCL kernel, our suggestion of extending the kernel with the surrounding
for-loop is unfeasible in practice.

3.2.5 Sparse Matrix: Convert to vector

Sparse matrices differ from dense matrices by the large number of zeroes in the dataset. Compres-
sion is often applied to reduce the amount of storage required to hold such a matrix, and to reduce
the number of arithmetic operations required in certain algorithms. Sparse matrix algorithms are
designed to compress these matrices or work with a compressed representation of such a matrix.

The investigated program is SPMV, a benchmark from the Parboil suite implemented in
Cuda[2]. The program is designed to convert a compressed sparse matrix in Jagged Diagonal
Storage (JDS) format to a vector format. Because the original matrix is stored in a compressed
form, there are two ways of measuring the data size. You could either consider the dimensions of
the original matrix or the number of non-zero values that are stored in the compressed form. This

28

implementation iterates over the non-zero data points linearly, thus we define the data size n as
the number of such non-zero points. The number of processors p is arbitrary, but ideally equal to
this number. The given implementation however is capable of processing considerably more data
points in a per-warp block size. The number of iterations i is then ceil(n/p).

This implementation does not require any allocated memory. The output will contain the
multiplication of this matrix with a float vector, thus the intermediate result is never relevant.
However, when one wants to reproduce or decompress the JDS-compressed matrix, this interme-
diate result can be stored in memory allocated inside the kernel.

Such a fictive block of memory will be equal in size to the dimensions of the resulting matrix.
It will be written to globally and semi-randomly, as the JDS-form relies on restructuring the data
values. How it will be read afterwards completely depends on the purpose of the matrix. Allocation
of memory to store the data values is done at the beginning of the program and presumably by
one thread only, as the data will be used globally and depends on fixed metrics.

Due to this fixed matrix size, this algorithm will not benefit from an in-kernel memory allocator.
Again the overhead introduced by such a memory allocator does not come with any advantage.

3.2.6 Spectral: Fast-Fourier Transform

Fast-fourier transform (FFT) algorithms are the most used algorithms in the area of digital signal
processing. FFT algorithms are used to convert discrete samples from the time- to the frequency-
domain. This allows for efficient analysis and storage of (sampled) analogue signals. In addition
these signals can be compressed by leaving sinusoids out, sacrificing precision for a smaller storage
size. This is one technique used in lossy audio compression formats such as MP3[37].

For this algorithmic class, we investigated the Cuda implementation of the FFT algorithm
found in the Parboil suite[2]. We define the number of data samples as p ∗ n, where n is the
number of points that will be sampled in a block, and p the number of blocks evaluated. The
number of iterations i in this program is equal to 1. Although no memory is dynamically allocated
inside the Cuda kernel, there are two candidates that could be if global synchronisation existed in
OpenCL: v and d work.

d work is used in conjunction with d source to form a pair of arrays used for pointer flipping.
This technique is used often to ensure data does not get overwritten before other threads have
read it. Instead of complex synchronisation schemes the program makes use of two data arrays.
After an entire iteration all threads synchronise once, and the pointers flip to make the new array
the source data for the next iteration. This way source data is available throughout the entire
iteration of a loop.

In a GPU-accelerated program this technique is not as effective as in a CPU oriented imple-
mentation, because while in the kernel the pointers flip after each iteration, the pointer on the
host system to this data is not changed along. This means that the kernel needs to ensure that
the eventual data must be available in a predictable place, perhaps even requiring a final memory
copy action. For this reason it is possible to allocate d work on the GPU, given the final output
is copied to the d source array after execution. Instead, this implementation flips the pointers on
the host system. This also avoids all the problems described without introducing a large overhead.
In this case though, both arrays need to be allocated on the host system.

The other allocated variable is v. This memory block is also used to store intermediate values
in the given implementation. Technically, this variable is entirely superfluous when doing pointer
flipping inside the kernel, as the intermediate value is only accessed linearly and an earlier value
of any entry is never needed after the next step of the iteration. In either implementation, the
number of floating point values that need to be stored is constant and available at run time. It
can be allocated and freed once respectively at the beginning and the end of the program.

Due to the predictable amount and size of required memory, allocating the memory in-kernel
will not give any advantage over allocation by the host. An in-kernel memory allocator will simply
introduce unnecessary overhead.

29

3.2.7 Dynamic programming

Dynamic programming is a technique commonly used to solve problems that can be divided into
smaller overlapping sub-problems, where the algorithm effectively uses this overlap to decrease
calculation time[28]. Classical examples of problems that can be solved with dynamic programming
are the shortest path problem and the 0/1 knapsack problem.

For this class of algorithms, The theoretical working of Dijkstra’s algorithm is considered. This
algorithm is designed to solve the problem of “finding the shortest path in a graph from source s
to sink t”[17]. The algorithm divides the problem by solving for each node n attached to s instead:
“what is the shortest path from n to t”. This division into sub-problems can be recursively applied
until the path from the processed node to t is covered by one edge. The previous sub-problem
then becomes trivial as well, as this is the minimum of every node attached to the current. The
execution tree obtained then can be traversed back up to end with the shortest path.

This algorithm shows some similarity with NFAs in terms of challenges. Where in an NFA each
time step results in a traversal to one or more nodes, the Dijkstra algorithm divides its problem
into one or more sub-problems. This corresponds to the traversal to all adjacent nodes.

Depending on the problem, the number of sub-problems may or may not be constant. For
the 0/1 knapsack problem for instance the division always results in two paths: “take object n”
and “do not take object n”. Problems that involve dynamic programming can however always be
solved in a linear amount of work, as each node in the constructable graph only needs to calculate
its shortest path to the sink once.

Because of the similarities with NFA algorithms, the scheduling strategy to solve dynamic
programming problems in parallel roughly corresponds. To design a parallel dynamic programming
algorithm a work-queue is required. Upon dividing the work, this queue should be expanded every
iteration with all nodes that can be processed in the next iteration, but have not been processed
previously. By also keeping track of the iteration number, the back traversal can be done by
processing all nodes with the highest iteration number, proceeding to the iteration before until
the source has been reached again. Although the size of the work-queue is known in advance, the
number of nodes in each iteration is not. Efficiently grouping the nodes per-iteration is a task that
is trivial when using a memory allocator, but requires a more complex sorting algorithm when
using a static array.

It is important in this case that the work-queue is also used as a stack. First the algorithm will
traverse down through the graph to create bundles of work that can be executed simultaneously.
After that these bundles should be executed in reverse order. This means that the size of this
complete work-queue is dependent only on the size of the graph. However, the size of each bundle
might vary and could thus benefit from an in-kernel memory allocator. Moreover, because the
number of bundles is unpredictable a simple array allocator is not sufficient here. Ideally it is
possible to allocate these bundles as arrays of memory that can be tied together by means of a
linked list. Each bundle will be allocated and freed separately, and the positions in this array need
to be distributed based on the needs of each thread in the down-traversal phase.

3.2.8 Particle Methods: Barnes-Hut

Particle method algorithms are used to simulate the interaction between any kind of particles,
for instance a simulation of molecules in a chemical solution or an N-body simulation, which
simulates the influences of gravity between particles. In an N-body simulation, often the Barnes-
Hut algorithm is chosen to simplify calculations[6]. By dividing the entire space to a grid of non-
uniformly sized squares, each square containing exactly one particle, it becomes computationally
easy to disregard the “gravity” of particles far away when calculating the velocity and direction of
any particle. With this approach, Barnes-Hut implementations are capable of running in O(nlogn)
time, whereas direct particle methods often run in O(n2). The price is a small and often acceptable
loss in precision.

We investigated the implementation created by M. Burtscher et al.[11], a Cuda implementation
consisting of multiple kernels. We define the problem size n as the number of particles, the number

30

of processors p varies between the different kernels. The number of iterations is defined as i = n/p,
while the number of time steps will be denoted by j.

The algorithm consists of several steps that are executed in order for each iteration. These
steps are implemented as different Cuda kernels, to make it possible to vary the thread distribution
between them. As this algorithm only updates local data, there is only one data structure that
could benefit from a good OpenCL kernel memory allocator: the octree that divides the particles
into several squares.

Building such an octree will benefit from using a malloc routine, as the number of nodes in
the octree is not known in advance and may even vary between iterations. In general the octree
contains at least as many nodes as there are particles in the system, but if the splitting of one
square leads to an empty new square there might be more nodes than particles. The ability of
allocating memory from inside a kernel will make the tree creation transparent and allows for
parallel execution.

What the implementers have decided to do instead is use a global array that is managed by
one or more atomic operations. Each time step the same array is reset and re-used, corresponding
to a single free for all the memory previously allocated. Usage of this memory is done by following
pointers, leading to a random access pattern. An attempt at improving locality by reordering is
implemented, but the access pattern remains unpredictable and random.

This particular program already uses a heap allocator inside the OpenCL kernel, as the atomic
operations used on the global array resemble the operations performed by a simple memory allo-
cator. By using a true dynamic memory allocator, the Barnes-hut implementation will lose the
atomic operations on the global array and thus benefit from a higher maintainability of the code.

3.2.9 Unstructured grid: Back propagation

The “unstructured grid” class of algorithms is used to evaluate grids of irregular layout. One
algorithm that uses an unstructured grid is the back propagation algorithm. This algorithm is
used in the field of artificial intelligence to train a neural network[30]. Each node in a neural
network consists simply of a “threshold” value. Any number of inputs are converted to a single
output considering the threshold of that node. The training step simply consists of calculating
the error of each node, and adjusting the threshold accordingly. Both are done in parallel for each
node.

We investigated the back propagation implementation found in the Parboil benchmark suite.
The number of processors p is equal to the number of nodes in the grid. The number of iterations
i is arbitrary and equal to the number of training rounds. The problem size is equal to the number
of processors.

The given implementation only executes small kernels in parallel instead of evaluating the entire
neural network. For OpenMP this is considered good practice, as the control logic only needs to
be executed once. On a GPU application however this forces the use of the global memory space
for variables. Unfortunately, because there is no way of synchronising globally in OpenCL without
returning to the host system, this is the only way of representing a back-propagating algorithm.

The implication of this observation is that in the back propagation algorithm, we found no use-
case for an OpenCL kernel memory allocator. Different specific implementations of unstructured
grid algorithms might have intermediate values, but it has been shown earlier that these values can
be stored in pre-allocated memory or local variables more efficiently than in kernel-allocated global
memory when the layout and size of the grid does not change between iterations. In unstructured
grid algorithms this is indeed the case.

3.2.10 C++

One use-case not covered by the list of algorithm classes, but an important one nonetheless, is the
C++ programming language. This language is characterised by its object oriented nature. This
means that objects, a combination of properties and methods to manipulate them, can be created
and deleted on the fly by using the new statement. In C++, the new-statement for an object is

31

often implemented by a call to the available memory allocator to request space for this object,
after which the object is initialised.

AMD developed the “OpenCL Static C++ kernel language extension” as part of their AMD
APP SDK[15], a subset of the C++ language. Lacking a memory allocator to handle the new
statement, this specification currently only covers static objects.

Dynamically creating an object requires a piece of memory large enough to hold the data
section of this object. This requires a flexible memory system capable of allocating and freeing
objects as the developer pleases. Contrary to earlier use-cases, there is nothing to conclude about
the pattern in which these objects get allocated and freed. This is entirely up to the developer,
which means a very flexible memory system must be available. In addition, there might be need
to extend this C++ subset to allow for parallel object creation. Research on how this could be
exposed and aid in making the process of allocating more efficient is out of the scope of this
project, but acknowledging that object creation is a use-case for a memory allocator does bring a
whole new set of constraints to the design.

3.3 Conclusions

After investigating a set of parallel programs covering the majority of the different algorithm
classes identified by K. Asanovic et al.[3], a couple of conclusions can be drawn on the usage of
malloc in parallel applications.

First of all, it seems that even in architectures that offer in-kernel memory allocation, all
memory is allocated at the beginning of, or actually before, the execution of a kernel. This
memory is freed after finishing the execution of all work. The mix of pre-allocated blocks of
memory for intermediate or global data and variables for local data appears to be sufficient for
any program that implements one of the investigated algorithmic classes.

Yet we have found several cases where the use of an in-kernel malloc routine, even with the
current limitations in GPGPU, would be beneficial to the application. The situations recognised
were mostly constructing a non-linear data structure such as a tree or a variable sized work queue.
These problems can be avoided by careful programming, but often programmers end up writing
their own memory “allocation” code, re-inventing a heap allocator over and over again.

Based on the found results, the demands for a memory allocator seem to be slightly different
from those of a sequential architecture. Most importantly, memory allocated by different threads
will be freed all at once. There seems to be no need to free every single allocated block inde-
pendently, but rather entire data structures would be discarded at once. Note that this does not
mean the entire heap must be cleared at once, as it can be used to allocate more than one data
structure. This observation allows for an efficient freeing algorithm, resulting in considerably less
overhead. It must be kept in mind though that this is a one-time win, as freeing data is not done
often anyway.

The second observation we made is that the allocated structures consist of large amounts of
elements of the same size and structure. This might be advantageous when trying to meet the
demand of global access to this data structure. Global access becomes a lot easier when pointers
can be used roughly like indexes in an array, and having regular sized objects greatly helps to
achieve such a goal.

Based on the samples it is also safe to conclude that threads will write to their own chunk
of memory either linearly or randomly. However, when at least one thread requests memory for
more than one element, even the applications with threads writing to their memory linearly will
produce a random access pattern for the global system. There is no solution yet for the memory
allocator to turn this into a more local access pattern without introducing extra memory reads.

A big exception to the found patterns is the case of C++ dynamic object creation. In this
case, there is a definite need for a memory allocator to store these objects, but the use-cases for
these are endless and cannot be generalised.

32

Chapter 4

Allocator design

So far we have showed several uses for a memory allocator in OpenCL programs. In order to
facilitate dynamic memory allocation for future programmers we propose a design for a memory
allocator in this section of the paper. First the identified constraints are listed, after which the
heap allocators APIs is presented.

4.1 Constraints

In order to define the boundaries in which a memory allocator must operate, we have identified
constraints from a number of sources. First of all, there are some general requirements that
every parallel code and every memory allocator needs to meet. Then, there are some additional
constraints enforced by the OpenCL environment and the platforms targeted by OpenCL. Finally,
there are some requirements that follow from the use-case survey we presented in chapter 3.

4.1.1 General requirements

Low fragmentation Every memory allocator suffers from a certain amount of fragmentation,
be it internal- or external fragmentation[40]. As explained earlier in section 2.5, the DLMalloc
algorithm suffers from external fragmentation because the size of the free blocks do not always
perfectly match a programs memory demands. Hoards algorithm is not as much susceptible to this
external fragmentation by making use of superblocks, but might cause more internal fragmentation
because it uses a superblock-based system with size-classes which might not perfectly match the
memory demands of a program. Also, having many underutilised superblocks can be considered
a form of fragmentation.

High speed Reducing fragmentation cannot come at any price. As we are discussing platforms
that strive for high performance, some memory fragmentation might be considered acceptable if
it leads to a bigger performance. In any case, the memory manager should not be the bottleneck
in an application.

Ease of use The goal of any library is to facilitate a complex feature for programmers, in such a
way that the programmer does not have to worry about any implementation details of this feature.
Although a new complex memory allocator might map perfectly to current hardware, this should
not lead to an API that is difficult to understand. If this heap allocator library should be a tool
to enable developers to experiment more easily with OpenCL, it should be designed with ease of
use in mind.

33

4.1.2 Platform requirements

Thread safety Although all software should be either single threaded or thread safe, no risks
can be taken with GPGPU. The probability of any fault occurring, caused by a race condition
error in the programming code, grows with the number of threads executed in parallel. Because
GPUs feature many cores each processing a work-item (thread) of the same program, extra care
should be taken in avoiding race conditions.

Scalable In the coming years GPUs will likely evolve in two ways: removing bottlenecks that
are no longer acceptable for GPGPU and adding more cores. The latter trend means that a
memory allocator should scale extremely well with the number of work-items and cores. Having
a memory allocator whose performance decreases superlinearly with number of used work-items
will certainly be unacceptable for massive-parallel platforms.

No GPU-to-host communication As explained in section 2.3, there currently is way for an
OpenCL kernel to communicate with the host system. In the case of memory allocation this
communication channel is desired to request pages of memory from the host system that can be
further distributed by the in-kernel heap allocator. As a result it is impossible to build a memory
allocator in OpenCL with the same functionality as heap managers in C libraries adhering to the
POSIX standard.

The solution NVIDIA takes to overcome this problem is to allocate a fixed heap of 8MB that is
used by the kernels memory allocator[36]. If required, the programmer can change this heap size
arbitrarily before starting the Cuda kernel. This means that this heap allocator does not solve
the problem of memory usage overestimation, introduced when the amount of required memory is
not known exactly before execution. Since we cannot alter hardware or firmware to facilitate the
desired communication, we have to follow a similar strategy in our allocator.

4.1.3 User requirements

Generic Although the XMalloc strategy, described in section 2.5, for reducing the number of
effective allocations is quite efficient, we cannot enforce synchronised allocation in all cases. C++
is a good example of a use-case that cannot be addressed by XMalloc. Developers should be able
to use a thread-safe generic allocation method that does not enforce synchronisation of work-items.

4.2 Technical design

Based on these constraints, we propose a layered interface. Layered memory allocators have been
discussed by E. Berger et al.[8], concluding that the benefit of maintainable and easy-to-read
code resulting from a layered design far outweighs any possible benefits a single-layer custom-
optimised memory allocator might have. With a correct design the performance impact can even
be negligible, while it is a lot easier to find bugs and identify areas of improvement. We therefore
designed a heap allocator consisting of two layers.

At the bottom, we propose the “low-level” heap allocator. This component behaves roughly
similar to the existing memory allocator in libc[1]. The top layer should be an “object” imple-
menting a basic data structure that uses the bottom layer heap allocator to fulfil its memory
needs. Depending on the specific details of such a data structure, usage of the low-level allocator
may be optimised.

To demonstrate the concept, we implement a prototype top-layer called “ArrayList”. This
object will implement a list of equally-sized objects which are globally accessible, inspired by the
ArrayList object available in Java1. Clearing of the list can be done with one function call, and
making the list grow can be done either per work-item, or per work-group. The latter grow function
applies the strategy proposed in [23]. Programmers are able to use either the low level allocator or

1http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html

34

http://docs.oracle.com/javase/6/docs/api/java/util/ArrayList.html

the ArrayList, but are also free to create their own data structure on top of the low-level memory
allocator.

This two-layer design has a number of benefits. The low level memory allocator is close to
what traditional programmers are used to. This similarity could attract new programmers to make
early prototypes without having to worry about the complex memory model of OpenCL straight
away. More importantly, it does not enforce any form of synchronised access, meaning that this
low-level heap is usable for every allocation case.

The ArrayList object demonstrates how we can offer more performance to programs that
meet the synchronisation demand of the prefix-sum reduction algorithm. Using the low-level
heap allocator is not restricted to just the ArrayList object; different list-type objects could be
created that use the same malloc back-end. If later it turns out the current malloc back-end is
not very efficient, another back-end that implements the same APIs can easily be dropped into
place. In short: such a two level design embraces all the functionality we feel a programmer desires
without limiting the programmer to do things differently if the proposed implementation does not
completely suit his use-case.

4.2.1 Low level heap allocator

Heap manager

+clSBMalloc init(dev:cl device id,ctx:cl context,
cq:cl command queue,prg:cl program,
sb:unsigned int): cl mem

+clheap init(heap: global struct clheap *)
+malloc(heap: global struct clheap *,size:size t): uintptr t
+free(heap: global struct clheap *,block:uintptr t): void

Figure 4.1: Technical Design: Heap manager

The heap managers API is shown in figure 4.1. On the host side it consists of one function:

clSBMalloc create(cl device id dev, cl context ctx, cl command queue cq, cl program
prg, unsigned int sbs) - Create a heap on the host and the device side. This heap is a buffer
containing its state followed by sbs superblocks. Each superblock is of a fixed size, defined as a
constant in clSBMalloc.h. This function will execute the clheap init() OpenCL kernel to set up all
the data structures, and returns a cl mem object pointing to the entire heap. This cl mem object
should be passed as a kernel parameter to any kernel which requires the use of the heap.

On the device side the programmer can now use the following API:

clheap init(global struct clheap *heap) - Initialise the heap, making sure the begin and
end-pointers are valid GPU pointers. Due to the lack of global scope variables or the ability to
define a pointer in a constant or macro in OpenCL, heap will remain a parameter for all malloc-
related functions.

malloc(global struct clheap *heap, size t size) - Allocate size bytes from the heap
pointed to at *heap. Returns a uintptr t pointing to the newly allocated block, or NULL on
failure. When out of memory, the behaviour is undefined, but could result in an endless loop.

free(global struct clheap *heap, uintptr t *block) - Free block, marking it allocatable
by any work-item.

35

4.2.2 ArrayList

ArrayList

+clArrayList create(dev:cl device id,ctx:cl context,
cq:cl command queue,prg:cl program,
objsize:size t,heap:cl mem): cl mem

+clArrayList init(l:clArrayList global *,
size:size t,heap:struct clheap global *): void

+clArrayList get(l:clArrayList global *,
index:uint): uintptr t

+clArrayList clear(l:clArrayList global *): void
+clArrayList grow(l:clArrayList global *,

items:size t): uintptr t
+clArrayList grow local(l:clArrayList global *,

items:uint,rMem:size t local[]): uintptr t

Figure 4.2: Technical Design: ArrayList

In figure 4.2 the API of the ArrayList object is given. On the host side it consists of a single
function:

clArrayList create(cl device id dev, cl context ctx, cl command queue cq, cl program
prg, cl uint objsize, cl mem heap) - This function creates and sets up an ArrayList data
structure. Set-up is done by calling the clArrayList init() kernel on the device. This ArrayList
is configured to contain objects of objsize bytes. The last parameter is a pointer to the heap as
returned by clSBMalloc create(). All objects inside the ArrayList will be allocated from this heap.
This function returns a cl mem object pointing to the ArrayList.

On the device side the API consists of the following functions:
clArrayList init(clArrayList global *l, size t size, struct clheap global *heap)

- Initialise the ArrayList, making it contain objects of size bytes. Any required memory will be
allocated from the heap.

clArrayList grow(clArrayList global *l, unsigned int objs) - Grow the given clAr-
rayList with objs blocks of the size given on initialisation. Returned is a pointer to the allocated
block.

clArrayList grow local(clArrayList global *l, unsigned int objs) - Grow the given
clArrayList with objs blocks of the size given at initialisation. This function needs to be called
by every work-item in the work-group, as it performs a local synchronised reduction to gather
the total memory requirements. If not all work-items enter this function because branches have
diverged, the system will lock up. If this function ends it returns a pointer to the first object for
this work-item.

clArrayList clear(clArrayList global *l) - Clear the entire ArrayList, freeing all allo-
cated blocks inside.

clArrayList get(clArrayList global *l, size t i) - Get an arbitrary object. This function
returns a pointer to the element at the i ’th location.

Because there is no way of doing global synchronisation without interrupting the program,
there is no API for doing a global prefix-sum reduction amongst all threads in the system.

36

Chapter 5

Implementation

After defining the APIs, there are a lot of implementation details that need to be decided. These
decisions are based on the requirements we identified and are the product of several iterations of the
design and implementation phase. In this chapter the implementation decisions are documented.

5.1 Low level: heap manager

Figure 5.1: Heap structure

At the base level of KMA lies the heap manager. The
heap manager is schematically represented in figure 5.1.

The administration of KMA is inspired by Hoard[7],
managing superblocks consisting of equally-sized blocks.
The heap itself is a single read-write buffer allocated by
the host system. This buffer contains the state of the
heap, followed by a series of superblocks. Similar to
XMalloc[23], KMA only manages a single global heap.
Figure 5.2 contains the structure of the heap, consist-
ing of the heap state and the superblocks used by KMA,
along with the relation between these entities.

The heap state section contains several structures and
values that together form the current state of the heap.
bytes is an integer containing the total size of this heap
in bytes. This value is used on initialisation of the heap.
free is a queue object containing a singly-linked list of
free superblocks. The sb array is a hashmap containing
a slot each possible block size, meant to store a pointer
to an active superblock. Each entry in this hashmap can
point to at most one active superblock, like illustrated
in figure 5.2.

5.1.1 Blocks and superblocks

In KMA, a superblock can be in one of three different
states: active, inactive or free. Active and inactive su-
perblocks contain at least one allocated block. Free su-
perblocks contain no allocated blocks, and are linked to-
gether in the free-list.

Because a superblocks next-pointer must exist even
after it is removed from the free-list, superblocks cannot
be safely coalesced. The size of an allocated block is thus

37

Figure 5.2: Superblock administration

upper bound by the size of a superblock minus its header and footer. The possible sizes of blocks
inside this superblock are approximated by:

{2n | 2 ≤ n < log(superblock size)} (5.1)

Heuristics are used to determine the actual block size. These heuristics are designed to minimise
the amount of space wasted on almost-fitting large blocks.

Each superblock contains a header consisting of a few properties. next is a pointer to another
superblock, which can be used by the free-list. block size contains the size of the blocks in this
superblock. credit contains the number of slots and the number of free blocks. These header
values are followed by the data segment containing the actual blocks. Every superblock ends with
a bit-map indicating which blocks in this superblock are taken and which are free.

The life-cycle of a superblock looks as follows: when a new superblock is required, one is taken
from the free-list. The header and bit-map of this superblock are initialised and the superblock
is stored in the right entry of the sb list in the heap state. At this point the superblock is
active. Subsequent allocations of similarly-sized blocks will be done from this superblock until all
its blocks have been allocated. As soon as all the blocks in this superblock are allocated, it is
removed from the sb list, making this superblock inactive. Freeing all blocks inside an active or
inactive superblock causes it to be reconnected to the free-list, allowing the free superblock to be
re-used later on.

Block size heuristics As we mentioned, the exact block size is not precisely a power-of-two. A
heuristic is used to determine the possible block size and number of blocks within a superblock,
depending on the requested amount of memory. This heuristic avoids fragmentation between the
end of the last block and the start of the bitmap. For requested blocks of size

√
(superblock size)

or smaller the following steps are executed to find the parameters of a superblock:

1. Determine the size of a block s, being the next power of two

2. Determine the number of blocks: c = data size
s

3. Determine the size of the bitmap in bytes: s bm = ceil(c
32) ∗ 4

4. Correct the number of blocks to leave room for the bitmap: c = c− ceil(s bm
s)

38

For requested blocks larger than
√

(superblock size), a slightly different algorithm is used:

1. Determine the size of a block s, being the next power of two

2. Determine the number of blocks: c = data size
s

3. Determine the size of the bitmap in bytes: s bm = ceil(c
32) ∗ 4

4. Correct the size of a block to fit: s = s− ceil(s bm
c)

5. Round the size of a block down to the previous multiple of 4 bytes: s = s&NOT (0x3)

5.1.2 Free-list

At the heart of any memory allocator lies its administration of free memory blocks. By organising
this free memory administration properly, a lot of decisions could be simplified resulting in faster
allocation algorithms. In essence this administration is nothing more than one or more lists of free
blocks. Depending on the chosen data structure, there is one or more lists that could be ordered
or not.

In section 2.4 we have briefly explained why locking algorithms are unusable in OpenCL soft-
ware. Taking this into account, lock-free algorithms for its data structures must be used for
building a memory allocator in OpenCL C.

Ideally lists of unknown lengths are used to keep flexibility in the size of the heap. The most
common way to implement such a list is called a “linked-list”. This data structure stores in each
element a pointer to the next, linking different memory blocks together.

Linked List Of the linked list type there are two implementations: singly-linked-lists and
doubly-linked-lists. Both lists consist of nodes that contain a pointer to the next item in the
list. The doubly-linked list uses some additional memory to store a pointer to the previous entry
in the list. Both lists should support the “insert” and “delete” operation, where a doubly-linked
list can execute the delete operation in less time because it does not need to search for the node
pointing at the to-be-deleted node. These data structures are usable in sequential environments
and parallel environments that allow for locking: When considering unordered linked lists, both
take O(n) time for insertion. A singly-linked list takes O(n) time for deletion, and a doubly-linked
list requires O(1) time when deleting a node. Locks are used to prevent elements from being
deleted that are used by other threads. Because the overhead in memory for a doubly-linked list
is small and can even overlap the data-section of a memory block this is an ideal structure for
memory allocators.

A lock-free implementation of a doubly-linked-list is documented by H. Sundell et al.[41] This
algorithm uses CAS to link and unlink nodes in several steps. In this process it assumes that the
“forward” list always contains all connected nodes whereas the backward list only contains hints
about where the previous node is supposed to be. This previous pointer can be used to determine
the actual previous node without having to traverse the entire list.

One particular problem this algorithm tackles is related to traversing the list. For this traversal,
every thread traversing the DLL has a cursor pointing to the node that it is currently using.
Problems arise when a thread deletes a node, as it could invalidate the cursors of other threads
without knowing so. H. Sundell et al. propose to place these cursors in global memory, and alter
all of them as part of the deletion process. This way, other threads no longer risk pointing to
something not a node in the list.

Although this solution is effective, we consider this solution not viable for GPGPU. The large
amount of work-items might cause the deleting process to spend a lot of time on updating the
cursors. These cursors either need to be pre-distributed to the threads or allocated every time
a work-item wants to traverse the linked-list. Having one cursor in memory for each work-item
means a lot of memory is required. Allocating cursors instead of pre-distributing them to lower

39

the amount of required global memory requires an allocation algorithm, which is precisely the
problem we are trying to tackle in the first place. To make matters worse, all traversal operations
will be further slowed down by the fact that this cursor is no longer stored in a local register, but
rather in much slower global memory.

Queue Because it is not desirable to update the cursors of other threads, we rather consider
data structures that do not require traversal of the entire list and thus do not require a cursor per
work-item. There are two obvious data structures that fit this profile: queues and stacks. Both
can be implemented using the same technique as a singly-linked list, but only the first and/or
last node in these structures are relevant. Using a singly-linked list has the additional benefit of
ending up with a simpler lock-free algorithm; there are less pointers to update on insertion and
deletion and thus the invariant becomes less complex. For KMA, we chose to use a queue for our
free list.

The downside of a queue is that it is not an ordered structure, so all nodes in this queue
must be equal. For our memory allocator this means that all enqueued superblocks must be equal
size. Earlier we already explained that superblocks cannot be coalesced because its pointers must
remain valid even after dequeuing. These two facts combined lead up to the size restriction we
explained earlier.

The chosen queue implementation must meet a few demands. Most importantly it cannot rely
on allocation, because that is the the problem we are trying to solve in the first place. Secondly
both enqueuing and dequeuing must take immediate effect. Deletion of nodes cannot be delayed
until all references have been solved, because the entire object is required by the memory allocator
and must be returned on deallocation.

A simple and practical algorithm with these properties is a small alteration of the one described
by Michael Maged et al.[32]. This algorithm is lock-free and correct as proven in [21]. Moreover,
it is a simple solution that utilises nothing more than just three different pointers: head, tail, and
the next-pointer in each enqueued item. The details of our implementation are shown in section
6.1.1, along with a static performance analysis.

Our queue implementation circumvents any ABA problems by applying the solution proposed
by M. Maged et al.[32], like explained in section 2.1. It uses pointers that consist of a 20 bit address
and an 11-bit tag counter. Because enqueued blocks are all aligned and equally sized, the address
is encoded as an index. Decoding this index is done by multiplying its value by the superblock
size and then adding the address of the first superblock to the result. With 4KB superblocks we
can manage a heap of up to 4GB with 32-bit atomic operations with this addressing scheme, much
more than we expect to require.

When a queue runs empty, it could be possible that both the head and tail pointer need to
be updated when enqueueing or dequeueing an item. This is a problem because a CAS operation
can only update one value at the time. The algorithm proposed by M. Maged avoids this problem
by initialising the queue with a dummy object and never allowing the queue to run completely
empty. To avoid wasting a complete object on the queue, the dequeue operation returns not the
data of the item it dequeues, but the data of the first object after this item.

In our case, this strategy is infeasible because the queue does not contain data, but actual
memory blocks. Instead, our implementation of the queue does not add a dummy node on initial-
isation. The dequeue operation returns a pointer to the just-dequeued block and always keeps one
real superblock enqueued. Our implementation thus takes the loss of one superblock of memory
for granted for the sake of a simple and correct algorithm.

5.1.3 Algorithms

As seen in the API documented in chapter 4, KMAs low-level memory allocator implements three
API calls: clheap init(), malloc() and free().

clheap init() This kernel is used solely to initialise all the data structures of the heap. It will
first set the state of the heap to sane default values, and then enqueue all the superblocks from

40

the read-write buffer into the free-list. This kernel is not thread-safe and should always be called
from the host system with only one work-item.

malloc() The malloc routine is used to allocate one block. The code performs this task in three
steps, as illustrated by the code snippet below.

void __global *

malloc(__global struct clheap *heap, size_t size)

{

int size_class;

unsigned int slot,i;

struct clSuperBlock __global *sb;

size_class = _clSBMalloc_sbid_by_size(size);

if(size_class < 0)

return NULL;

sb = _clSBMalloc_reserve_block(heap, size_class, &slot);

if(!sb) {

return NULL;

}

return _clSBMalloc_get_block(sb, slot);

}

First the malloc routine obtains the right size-class for the block requested. If no such size-class
exists, for instance when the requested block is larger than the size of a superblock, a null-pointer
is returned indicating failure.

When the size-class is known, the routine tries to reserve a block in a superblock of this size
class by calling clSBMalloc reserve block. This routine does two things. First it finds a suitable
superblock in the sb hashmap. If the desired size-class does not have an active superblock, one
is taken from the free-list, initialised and added to the hashmap. Once this is done, the credit
of this superblock is decreased by one atomically by using the CAS operation. This process is
repeated until the CAS operation succeeds. If the credit is zero, the superblock is detached from
the hashmap making it inactive. This routine returns a pointer to the superblock in which a block
is reserved. Slot is set the old credit.

If reservation fails, for instance if there are no more available superblocks, a null-pointer is re-
turned. Otherwise, clSBMalloc get block is called to obtain a block from the superblock returned.
This routine iterates over the superblocks bitmap, which are used to indicate which blocks are
taken. If a zero-bit is found, this bit is set using the atomic OR operation. Upon success, a pointer
to the corresponding block is returned. On failure, iteration continues from that point. The slot
value is used as a starting point for iteration, to avoid that the routine always starts its iteration
at the same point and iterates over a long list of taken blocks.

free() When the free-routine is called with the address of a block, the opposite is done from
malloc. First the credit of the superblock that contains the deallocated block is incremented by
one. If the credit ends up being equal to the total number of blocks in this superblocks, credit
is set to 0 instead to prevent further allocation from this superblock. Then the blocks taken bit
in the bitmap is unset using an atomic AND operation. Finally, if this free-operation results in a
completely free superblock, the superblock is detached from the sb hashmap and enqueued to the
free-list.

41

5.2 Low level: “Poormans”-heap

For certain benchmarks, we want to compare the performance of KMA with performance of a
situation without any heap allocator overhead. As the use-cases we target cannot run without a
heap allocator, we implemented the next best thing: the “poormans”-heap. Its concept is coined
by Doug Lea[29], who describes it as an extreme example of a fast memory allocator which is
hardly ever acceptable due to its memory wastage. In our implementation, this simplified heap
has an interface identical to KMAs low-level heap allocator. This implementation is not a complete
heap because freeing a block of memory does not lead to re-using it.

The poormans-heap consists of a big buffer containing the state of the heap, followed by the
heaps data segment. The state of the heap consists of a base pointer, a head offset and an integer
containing the size of the total heap in bytes.

5.2.1 Algorithms

As the free routine cannot be implemented, it just returns true. Malloc is implemented as follows:

void __global *

malloc(struct clheap __global *heap, size_t size)

{

uint32_t ret, sz = size;

ret = atom_add(&heap->head, sz);

if((ret + size) > heap->tail)

return NULL;

return (void __global *)&heap->base[ret];

}

As we see in this code snippet, malloc simply increments the heaps head -pointer with the size
of the requested block. Upon success, the old head -pointer is returned. When the new head -
pointer was incremented to a value beyond the tail of the data segment, a null-pointer is returned
indicating failure. For benchmark purposes this implementation is sufficiently correct, although
technically the head -pointer could wrap around, leading to unpredictable behaviour. This issue
can be solved by restoring the head -pointer to its old value when it is detected that the new value
is larger than the heaps tail.

5.3 High level: ArrayList

Keeping a consistent heap state is expensive; often lock-free algorithms have no upper bound in
execution as they consist of an infinite loop that returns on success. An analysis of the malloc
algorithm in KMA-1 can be found in chapter 6.1.1. A good way of minimising the overhead and
improving speed is reducing the need of this memory allocation routine. The XMalloc paper[23]
gives a good strategy for this.

ArrayList is a proof-of-concept top layer that utilises the concept of the XMalloc approach of
using prefix-sum reduction to reduce the amount of calls to malloc. ArrayList implements a list
of equally sized objects, allocated from the heap. Upon growth of the ArrayList, one or more
blocks are allocated by calling the low-level malloc()-routine. The allocated blocks of memory are
connected in a singly-linked list. Each allocated block starts with a header containing information
about the number of objects inside this block. This design makes it possible to do indexed access
to arbitrary blocks inside the ArrayList, regardless of which thread allocated it.

42

5.3.1 Reduction algorithm

As explained in section 2.5, the strategy behind XMalloc relies on doing a prefix-sum reduction
to allocate memory for all work-items in a work-group with one call to malloc, and distributing
the returned block of memory over all work-items. This prefix-sum reduction algorithm works
as follows: given a one-dimensional projection of a list, obtain for each element the sum of all
elements earlier in the list. An example execution of this algorithm for four arbitrary numbers is
given in figure 5.3

Figure 5.3: Prefix-sum reduction algorithm

The prefix-sum reduction always takes 2 ∗ log(n) + 1 steps to complete, where after each step
all cores must synchronise. The reduction consists of two phases. First there is the “up-sweep”. In
this phase partial sums are calculated, along with the total sum of all values. The second phase is
the “down-sweep”, where careful swapping and addition of these partial sums leads to the correct
prefix-sums. The time complexity of this algorithm is O(log(n)). Because after the up-sweep the
total of all values is known, no separate algorithm is required to calculate the total.

This prefix-sum is used to distribute memory within a single block over multiple threads. In
this example, if a memory block M [0..18] is allocated, the second “thread” is expected to skip
4 elements, be it bytes, words or any other object size, and is thus allocated the memory chunk
M [4..9]. The chunk that the third thread can use starts at an offset of 10. By not setting the last
item after the up-sweep to 0, but rather to the memory address of the start of the memory block,
the correct pointers are distributed in the down-sweep instead of the offsets.

A prefix-sum addition of size n only requires n/2 threads to process. By padding the dataset
with enough zeroes to make its size equal to the next power of two, no special corner cases need

43

to be considered when the size of the dataset is not a power of two. The implementation of prefix-
sum in our ArrayList thus works with work-groups that contain a non-power-of-two number of
work-items.

5.3.2 Possible variations

The solution we implemented in ArrayList is like proposed by X. Huang et al[23]. It is designed
to minimise the memory usage while improving performance compared to per-thread allocation,
under the assumption that each thread in a work-group allocates at roughly the same moment.
Different demands could lead to different design decisions though. We propose some alternatives
in the next paragraphs.

Local versus global synchronisation As explained in section 2.4, OpenCL 1.2 does not specify
a mechanism for global synchronisation. If this comes available it would be interesting to compare
the currently implemented per-work-group prefix-sum reduction allocation to an implementation
that applies the prefix-sum reduction on all work-items executing this kernel.

As an obvious advantage, global prefix-sum reduction will result in even less calls to the
underlying malloc()-routine. Instead of calling malloc() once for each work-group, it will only be
called once in total. Depending on the used heap allocator this may or may not give a significant
performance improvement.

Although this sounds a lot more efficient, there are quite a few caveats. First of all running
the prefix-sum locally per work-group greatly reduces the overhead for synchronisation because
there are less threads to involved. On a GPU several work-items in a work-group share a program
counter, meaning these work-items are already synchronised for free. Global synchronisation, if
even possible, means all work-groups should be synchronised, wasting valuable time on waiting
for other work-groups.

Secondly a global prefix-sum algorithm cannot use local memory for the entire reduction, and
instead requires the use of global memory for most steps in the global prefix-sum reduction. Global
memory is a lot slower to access than local memory, so performance of the prefix-sum algorithm
will degrade.

Finally both the work-complexity and time-complexity increase when doing a global prefix-sum
reduction. Normally the prefix-sum algorithm runs in O(log(n)) time and processes O(nlog(n))
work for n work-items . In the case of a per-work-group prefix-sum reduction between w work-
items, the algorithm will execute in O(log(w)) time and process O(nlog(w)) work. With any GPU
design the work-group size w =< n, so doing a locally synchronised prefix-sum is always more
efficient from the algorithms point of view.

Which of the two approaches is more efficient depends on the performance and scalability of
the used back-end, and experiments should show whether a global synchronised prefix-sum is a
desired feature.

Max distribution Another interesting variation on the XMalloc approach is using a different
reduction algorithm. Before explaining why prefix-sum might not be the best choice it is important
to consider the properties of the different use-cases mentioned in section 3. Table 3.2 contains
a column called access patters. The patterns here are explained in [26]. The “access pattern”
column in the table lists the local access pattern for a work-item.

Consider any variable with a linear local access pattern. The following example will assume
three work-items: the first work-item requests three blocks of memory, the second requests one
block and the third requests two. After allocation, the following global access will be done on read
or write operations when the prefix-sum distribution method is chosen:

44

Figure 5.4: Implementation: Prefix-sum distributed global memory access pattern

In figure 5.4 you can observe that even though the different work-items access their own memory
linearly, the global memory access pattern is described best as being “random”. GPUs benefit
greatly from having a more linear global access pattern, because they are optimised for transferring
large adjacent blocks of memory. If the accessed memory is fragmented, memory burst-modes will
not work, leading to degraded performance. An ideal distribution will thus look like following.

Figure 5.5: Implementation: Ideal global memory access pattern

Although this ideal case would greatly improve the memory bus usage, it cannot be achieved
in practice. The main advantage of the prefix-sum algorithm is that the offset for accessing each
object can easily be calculated by using only data local to the work-item and the start address as
distributed by the prefix-sum. To get to an ideal pattern like in figure 5.5 an algorithm must be
used that distributes more information. Probably a pointer table needs to be used to achieve a
memory distribution like depicted in figure ??. In this case each access to memory first requires a
read from the pointer table, followed by access to the actual memory block. Accessing a pointer
table adds extra memory operations, and this approach shifts the distribution problem from the
dataset itself to this pointer table. A simpler and more predictable distribution would thus be the
following:

Figure 5.6: Implementation: Max-distributed global memory access pattern

In this example each thread simply allocates an amount of blocks equal to the maximum of
all threads. This comes with an obvious downside: a lot of memory is wasted. Especially if
the required amounts of memory greatly diverges between work-items this could result in a lot
of wasted memory. Due to the distribution it might however lead to a higher performance of
the entire program. In the example shown, memory blocks are accessed more linearly and more
locally. With a prefix-sum this distance is bound by memObjCount(p(x)), which depending on the
use-case could be any number. Figure 5.7 demonstrates that with a max-distribution the distance
between two objects accessed in parallel is upper bound by |p| − 2.

45

Figure 5.7: Implementation: Max-distributed global memory access pattern

Because the maximum number of blocks and the number of work-items are known, the work-
items can also calculate the pointers to each block they should use without requiring a memory
pointer table, thus without introducing extra memory read operations. Whether an application
benefits from this increased locality depends on the use-case and the effectiveness of the memory
controller and caches on the device, and can be observed by quantitative experiments.

46

Chapter 6

Performance and results

In this chapter we discuss the performance of KMA. We first analyse the theoretical performance,
after which we present the results of a series of benchmarks to give a good insight in the perfor-
mance of our heap allocator when used in real applications.

6.1 Theoretical performance

6.1.1 Complexity

Queue The memory allocator is based on a lock-free implementation of a queue that uses CAS
to ensure the state is always correct. Like any queue, our implementation consists of two methods:
enqueue and dequeue. To avoid the ABA problem, these methods store a pointer in an encoded
format, as we explained in section 5. An encoded pointer consists of a tag and an encoded address
we call index. A couple of helper functions are defined for recurring operations:

• TAG() and IDX() are bit-shift operations that for an encoded pointer return the tag value
and the index respectively.

• PTR() returns an encoded pointer given a index and a tag.

• ptr2idx() is a function that converts a memory address to an index value.

• idx2ptr() converts an index value to a memory address.

On the next pages we present a complexity analysis of the enqueue() and dequeue() operations.

47

The enqueue algorithm is implemented as follows:

int enqueue(queue *q, queue item *item) {
queue item *tail;
uint32 t idx, tag, tailidx, nextidx;

tag = TAG(item→next);
item→next = PTR(0, tag-1);
tag++;
idx = ptr2idx(q, item);
while(1) { O(∞)

tailidx = q→tail;
tail = idx2ptr(q, tailidx);
nextidx = tail→next;
if(q→tail == tailidx) {

if(IDX(nextidx) == 0) {
tag = TAG(nextidx);
if(atom cmpxchg(&tail→next, nextidx, PTR(idx, tag)) == nextidx)

break;
} else {

tag = TAG(tailidx);
atom cmpxchg(&q→tail, tailidx, PTR(nextidx, tag));
}

}
}
tag = TAG(tailidx);
atom cmpxchg(&q→tail, tailidx, PTR(idx, tag));
return true;
}

As one can see all steps within the while-loop execute in constant time. The while loop itself,
though, is defined as an infinite loop. If one particular work-item is always interrupted after
preparing its values but before committing its changes with the atomic CAS operation, it never
ends. This effect is called starvation, and causes the work complexity of this algorithm to be
infinite in theory. In practice though, every time that the atomic CAS operation fails for a work-
item, it must have succeeded for another. This means that for every iteration of this algorithm
by one work-item, there is at least one work-item that made progress. Although this does not
mean that execution time of one work-item is always constant, every iteration in time results in
one successful dequeue operation. The work complexity of this algorithm thus is O(C ∗n) = O(n)
where n is the number of work-items, and C a constant whose value depends on the scheduling
algorithm used by the GPU. The lower bound work complexity for this algorithm is Ω(1).

48

The dequeue algorithm is implemented as follows:

queue item *dequeue(queue *q) {
queue item *head;
uint32 t tag, nextidx, tailidx, headidx;
while(1) { O(∞)

headidx = q→head;
head = idx2ptr(q, headidx);
tailidx = q→tail;
nextidx = head→next;

if(headidx == q→head) {
if(IDX(headidx) == IDX(tailidx)) {

if(IDX(nextidx) == 0) {
return NULL;

}
tag = TAG(tailidx);
atom cmpxchg(&q→tail, tailidx, PTR(nextidx, tag));
} else {

tag = TAG(headidx);
if(atom cmpxchg(&q→head, headidx, PTR(nextidx, tag)) == headidx)

break;
}

}
}
return head;
}

The complexity analysis for the dequeue operation is similar to that of the enqueue routine.
Assuming starvation does not occur, the work complexity of this routine again is at worst O(C ∗
n) = O(t). This corresponds with sequential execution multiplied by a constant. The lower bound
work complexity for this algorithm is Ω(1).

Allocator The in-kernel memory allocator relies on the queue mentioned earlier for managing
the free-list of superblocks. The implementations of both malloc() and free() thus share the
complexity with the queue implementation.

The first step of allocation is determining the right size class for the requested block size. This
operation is a sequence of calculations that can be done in constant time.

The second step is to reserve a slot for a block within a superblock. If no superblock is attached
to the right entry of the hashmap, the dequeue operation is called to obtain a new superblock.
Otherwise the right superblock is taken from the hashmap. Reservation of a block within this
superblock is an atomic exchange operation, which again might fail infinitely if work-items keep
being pre-empted. Like the queue algorithm, there is no reason to assume this makes the algorithm
run worse-than-sequential, although again the complexity of this reservation operation and thus
of the second step is of O(∞).

The final step is to find which slot is still free and reserving that particular slot. The availability
of these slots is stored in a bitmap at the end of a superblock. Using an atomic-or operation, a
single bit can be set. Judging by the return value of this operation, it can be verified if it was
already reserved before executing the atomic-or operation or not. Again this procedure ideally
just takes constant time, but worst case it has to be repeated infinitely if the block it tries to
allocate is taken before the atomic operation succeeds. The complexity of this operation is again
upper bound by O(∞).

49

The algorithm used by the free routine is not very complex apart from the dequeue operation.
A normal free is nothing more than atomically setting the bit in the bitmap to 0, and then
atomically increasing the slot number by one. The exact opposite happens of allocation, and with
the same complexity.

Although the theoretical complexity does not promise very good performance, the memory
allocator does not perform that poorly in practice. In the worst case the lock-free allocation
algorithm will obtain the performance of sequential execution, which is expected in a globally
shared data structure and not worse than the expected performance of any locking algorithm. To
better understand the behaviour and performance of KMA in real applications, we will rely on
the results of a series of benchmarks. If these benchmarks complete execution, the upper bound
complexity is never reached.

6.1.2 Memory overhead

To comment on the amount of memory that is lost due to fragmentation, we must first make a
distinction between static- and dynamic memory overhead. Static memory overhead is the memory
lost on static data structures. Depending on the size and number of allocated blocks there also is
a surplus of memory wasted, which we attribute to dynamic memory overhead.

Static memory overhead To keep track of the state of the entire heap, three datastructures
are used: a queue for the free-list, a hashmap for the active superblocks and a bitmap for the
available blocks inside a superblock. Each of these structures take some space that can not be
used for user data. The hashmap consists of one pointer for each size-class. The number of size
classes in our implementation is equal to (2log(sb) − 1), where sb is the size of a superblock.
The free-list is a combination of two encoded pointers, each requiring four bytes, and two regular
pointers. To store the hashmap and the free-list in the state of a heap with 4KB superblocks,
along with the total size of the heap, 64 bytes are reserved in total at the beginning of the heap
on 32-bit platforms and 120 bytes on 64-bit platforms.

In addition, as explained in section 5, the queue algorithm forbids the queue to run completely
empty, wasting one full superblock of memory.

Also static is the header for each superblock. It consists of a next-pointer for the queue, the
size of the blocks inside the superblock and a 32-bit volatile int2 value holding the number of free
slots and the number of total slots. In total, each superblock will thus have a header of 12 bytes
on 32-bit and 16 bytes on 64-bit platforms.

If we put all these numbers together, the total static overhead o, with n superblocks of size sb,
can be calculated for 32-bit platforms with:

o = sb+ (4 ∗ (2log(sb)− 1)) + 20 + (12 ∗ n) (6.1)

For 64-bit platforms the overhead o can be calculated with:

o = sb+ (8 ∗ (2log(sb)− 1)) + 32 + (16 ∗ n) (6.2)

Dynamic memory overhead The memory overhead within a superblocks data structure con-
sists of three categories: the bitmap used to keep track of free blocks, the amount of bytes sacrificed
for non-optimal block sizes and the amount of memory of blocks not allocated or wasted due to
rounding errors.

The number of bytes in this bitmap can be calculated by rounding up the number of elements
inside a superblock to the next multiple of 32, and dividing this number by 8. For blocks of a
maximum size this will be 4 bytes, for blocks of the minimum size of 4 bytes this could be as much
as 128 bytes.

The upper bound on the amount of memory wasted on fragmentation caused by a non-optimal
block size cannot be calculated deterministically for all cases. The heuristic we use to determine
a block-size is explained in section 5.1.1. This memory wasteage for a small block-size is no more

50

than the size of one block for each superblock, and for a bigger block-size this wasteage is no more
than three bytes multiplied with the number of blocks inside the superblock.

The last type of memory overhead is caused by underutilised superblocks. In theory it could
occur that a program allocates full superblocks of 4-byte blocks, making the superblocks inactive,
and then frees all blocks but one per superblock. These freed blocks cannot be re-allocated,
because the superblocks are in an inactive state. This leads to a total waste of memory of over
4092
4096 . Re-attaching pages that have been previously occupied is one strategy to reduce this memory
wastage, but at the price of performance.

6.2 Benchmarks

For a better understanding of how this allocator performs in real application, several benchmarks
are designed and tested on a variety of hardware, most of which has been made available on
the DAS-4 supercomputer1. The available hardware and its configuration is listed in table 6.1.
Besides running our benchmarks on a variety of GPUs, we also executed the test programs on
several CPUs to be able to show the portability of this code. Additionally, both AMD HD6850 and
AMD HD7970 graphics cards were available for tests, but due to problems explained in section 2
the memory allocator did not function properly on the AMD GPU platform. Unfortunately, there
were no OpenCL compatible ARM-based devices available for testing.

Device Type Cores Clk(MHz) (V)RAM Bitness Software
NVIDIA GeForce GT640 GPU 384 901 2GB 32 Cuda 5.0.35
NVIDIA GeForce GTX480 GPU 448 1215 1.25GB 32 Cuda 5.0.35
NVIDIA GeForce GTX680 GPU 1536 1006 2GB 32 Cuda 5.0.35
NVIDIA Tesla C2050 GPU 448 1150 3GB 32 Cuda 5.0.35
NVIDIA Tesla K20m GPU 2496 706 5GB 32 Cuda 5.0.35
AMD FX-6300 CPU 6 3500 8GB 32/64 AMD APP 2.8
Intel Xeon E5-2620 CPU 6(12) 2000 24GB 32/64 AMD APP 2.8
Intel Xeon E5620 CPU 4(8) 2400 24GB 32/64 AMD APP 2.8
Intel Xeon X5650 CPU 6(12) 2670 24GB 32/64 AMD APP 2.8

Table 6.1: Hardware available for experiments

6.2.1 “Low-level”: Memory allocator

Allocation time To get an idea of the time it takes to allocate and free a block of memory, we
execute a test kernel that repetitively calls malloc() and free() in a tight loop. In this kernel a
single work-item repetitively allocates and frees a block of memory. We expect that the execution
time of this benchmark grows linearly with the number of allocations, and that an approximation
of the resulting curve can be given with the linear formula t = ai+b. If our assumption of linearity
holds, we can find both the linear factor a and the constant overhead b for this linear equation.
Specifically, we are interested in finding a, the sequential time per iteration.

Results of this experiment can be found in figure 6.1. The execution time in seconds is measured
from the moment the kernel is enqueued on the command queue to the moment clFinish() returns.

1http://www.cs.vu.nl/das4/

51

http://www.cs.vu.nl/das4/

Figure 6.1: Single-work-item performance of the low-level memory allocator

As can be observed there is indeed a linear relation between the number of calls to malloc
and free, and the execution time. Because the curve seems to originate from the point (0, 0), we
can neglect the overhead introduced by launching a kernel. The time per iteration a can thus be
approximated simply by dividing any of the results with the number of iterations. The resulting
time on an NVIDIA GT640 is approximately 9.8ms. CPUs finish this benchmark much faster,
with an average of 0.6µs per allocation for the AMD FX-6300. For comparison, the authors of
the Xmalloc paper[23] reports a latency of 166µs for the Cuda malloc() operation, and 50µs for
its XMalloc routine on an NVIDIA Tesla C1060, an older but high end GPU based on NVIDIAs
GT200 series of GPUs.

To analyse the error in this approximation we could consider a run with very few iterations.
For two iterations on the NVIDIA GeForce GT640, we measured an average execution time of
0.000067s. Samples varied between 0.000065 and 0.000069, a difference of merely 6%. The ap-
proximated time per iteration is 0.000067

2 ≈ 3.33 ∗ 10−5. The value of the constant b can be
approximated by 0.000067− (2 ∗ 0.98 ∗ 10−5) ≈ 0.47 ∗ 10−4, which is 0.05% of the total execution
time for 10000 iterations. Distributed over these 10000 iterations, the absolute error in the time
per iteration calculated earlier is in fact insignificant.

A quick glance at the numbers for the AMD FX-6300, 0.000039s for 2 iterations and 0.005694s
for 10000, learns that the error here can not be more than 10 times larger. Even with an overhead
of 0.5% we expect the measuring error to be of larger influence on the time per iteration obtained
than the approximated set-up time.

Scalability To test the scalability of the memory allocator, we executed the same test program
with different parameters. For this benchmark, the iteration count is always 100. Within this loop,
a small amount of memory is allocated, the exact amount of memory differing between work-items.

52

This benchmark is repeated with a various number of work-items, each work-item thus performing
100 allocations and frees.

The benchmark is executed with three different allocation schemes. In the “no variance”
experiment, all work-items allocate 4 bytes of memory. In the “low variance” experiment, half of
the work-items allocate 4 bytes of memory and the other half allocates 8 bytes. To break patterns,
a single work-item also allocated 4000 bytes of memory for every iteration. In the “high variance”
experiment, each work-item allocates 2n bytes of memory for 0 ≤ n < 5. The value of n depends
on the work-items ID and the iteration count, increasing the variance in allocated memory. Again,
a single work-item also allocates 4000 bytes of memory in every iteration. For all three experiments
we hope to see at worst a linear relation between execution time and the number of work-items.
A linear curve will mean that parallelism is fully utilised even for a small number of work-items
and that work-items do not counteract progress of other work-items. Figure 6.2 shows the results
of these experiments.

Figure 6.2: Parallel performance of the low-level memory allocator

A few conclusions can be drawn from this graph. First of all, the execution time of the
program grows linearly with the number of work-items and thus with the total number of calls
to the memory allocator. The fact that there are more work-items to handle these cases makes
no difference with KMAs lock-free algorithms. We expected that the memory allocator would not
perform worse than sequential execution, and in absolute numbers this memory allocator does
not. The nearly straight line seems to confirm that the algorithm does scale linearly in this case.

If the time found for 4608 work-items on the NVIDIA GT640 GPU is divided by the number
of allocations, the time per single allocation and deallocation pair is estimated around 0.192761

460800 ≈
0.42µs , a major difference from the earlier found 9.8µs . The estimation based on 4608 work-items
is closer to the actual time the GPU will take for the allocation and freeing because when there
are more work-items, the GPU can schedule a different work-item while waiting for the memory

53

operations of the first to complete. This mechanism greatly increases the performance of the
overall system even if there were just one core available.

Our second observation is that by increasing the variance of allocated memory block sizes,
the efficiency of this memory allocator increases. This is to be expected when analysing the
algorithm, because there are more active superblocks and each is accessed by less work-items. As
these structures are not dependent on each other, more parallelism can be achieved.

This property is not of much use for the use-cases we have identified, where work-items tend
to allocate blocks of equal size to create irregular data structures. However, with the ArrayList
implementation this property could lead to higher performance, as the total number of allocated
memory could vary depending on the amount of required objects for the work-group.

On the AMD FX-6300 GPU we see different results. Although in the previous experiment
the CPU perform a lot better than the GPU due to a higher sequential performance, it is unable
to keep up in its massive-parallel execution. Execution of these experiments on the CPU was
approximately three times slower than on the GPU. Moreover, in cases where the GPU was able
to utilise parallelism better by adding more variation in the block size of allocated blocks, the
CPU already fully utilises parallelism when there is low variation. More variation in block size
just results in more work being done, which translates to higher execution times.

6.2.2 “High-level”: ArrayList

Ideally, to evaluate the performance of the ArrayList, a similar experiment should be conducted as
in section 6.2.1. Unfortunately, as explained in section 2.4, there is no practical and performant way
to do global synchronisation. Without synchronisation, it is impossible to decide when all elements
should be freed while maintaining a predictable state of the global data structure. When using
global sync by cutting up the kernel, the run-time will be dominated by the cost of synchronisation,

Figure 6.3: Comparing ArrayList to Malloc - NVIDIA GeForce GT640

54

and thus will not show the performance of the routine itself. This makes it impossible to use the
same experiment to compare performance figures with those of the low-level allocator experiments
conducted earlier.

Instead, we focus on the performance of just the malloc() routine, comparing the low-level
heap allocator (malloc) with the high-level ArrayList object. We set up a simple test case where
each work item allocates either 4 or 8 bytes of memory 10 times in a row. In the malloc case,
every thread allocates its own memory. In the ArrayList case, the clArraylist grow local routine is
called. Allocated memory is not freed, so from the programmers point of view the two programs
have the same end result. This test is conducted with both the KMA-heap and the poormans-heap
as a back-end. We measure the execution time for a varying number of threads, from the moment
the kernel is enqueued until clFinish() returns. We expect the ArrayList to perform better than
the low-level memory allocator in absolute numbers. Eventually we expect the execution time
to scale linearly with the number of work-items because when the maximum work-group size is
reached, adding extra work-items will only linearly increase the amount of work. Results on the
NVIDIA GeForce GT640 can be found in Figure 6.3.

The graph shows a clear benefit for using the ArrayList implementation over KMAs low level
memory allocator like we expected. For a very small number of threads the execution time is
negligible, but when a few hundred work-items or more are used the performance benefit is clear.
The outlier at 8192 work-items is likely caused by non-ideal work-group sizes for previous thread
configurations. For 16384 threads on a GPU the ArrayList testcase executes 7 times faster than
the Malloc testcase. Since both curves appear to be linear, apart from the outlier, the absolute
difference in time between the two will only grow further.

What is also shown is that the poormans allocator without the ArrayList is by far the fastest
solution, outperforming KMA by a factor of 72 with 32768 threads and continuing to widen this
gap. Using just the poormans heap even outperforms the ArrayList with the Poormans-heap.

Figure 6.4: Peformance of ArrayList on different GPUs

55

Finally, when we compare the performance of the ArrayList between the two different back-
ends (KMA and PM) we see a nearly identical performance. The prefix-sum algorithm dominates
the execution time of the executed benchmark, while the performance of the memory allocation
back-end has become a negligible factor. We expect to see a similar effect in real-life applications,
where the execution time of a program is not dominated by the performance of the memory
allocator, but rather by the algorithm it implements.

To show the portability of the ArrayLists performance with KMA back-end, we repeated this
experiment on a series of graphics cards available in the DAS-4 supercomputer. The results are
shown in graph 6.4.

Clearly its performance is roughly equal across all Kepler-based NVIDIA graphics cards (GTX680,
GT640, K20), GTX680 being the fastest. On the previous generation Fermi cards the test pro-
gram executes roughly 9 times slower, and 4 times slower when not using the ArrayList. This
is explained by the increase in number of cores and clock-speeds as can be observed in table
6.1, along with the increased memory bandwidth, and presumably the dual-issue logic and other
architectural improvements in the newer generation cards[35].

Figure 6.5: Comparing ArrayList to Malloc - AMD FX-6300

Figure 6.5 shows the same experiments ran on the AMD FX-6300 CPU using AMD APP. Again
the ArrayList shows a performance improvement over just using the KMA-1 allocator, albeit a
smaller difference because even the prefix-sum reduction now only has six cores to execute on,
even though the algorithm allows for greater parallelism.

Also similar is the fact that the Poormans heap here is faster than KMA, although the difference
is a lot smaller. On the CPU though, using the ArrayList is always quicker than calling the low-level
malloc() routine separately. Most likely the atomic operations required for a memory allocator,
no matter how complex, are a lot more expensive on the CPU than on an NVIDIA GPU.

56

Figure 6.6: Peformance of ArrayList on different CPUs

Figure 6.6 shows the performance of the ArrayList for different CPUs. The performance seems
to roughly correspond to the performance ratings given to these cores by the CPU manufacturers,
even though these are often based on floating point calculations whereas our test program uses
integers. The ArrayList benchmark seems to benefit more from extra cores than raw clock speed,
as we observe from the minor difference between the Intel Xeon E5-2620 and the higher-clocked
(but older) Intel Xeon X5650.

Although the usability of the ArrayList depends greatly on the use-case, with limitations like
expensive global synchronisation if the data must be free’d or otherwise be stable, the experiment
does show that the “two-layered” KMA is not only a useful tool for meeting a programmers
dynamic allocation needs, but also offers the right level of support for optimisations if the use-case
permits.

6.2.3 Use-case: Tree construction

To show the usability of KMA we implemented a practical use-case. This test program is designed
to convert a directed graph represented by a list of arbitrary edges into a binary search tree of
nodes with its edges represented as pointers to different nodes. One can imagine algorithms like
graph-colouring or shortest path working with this graph.

In the binary search tree, a node object contains a key, left and right pointers, and a singly
linked-list to store the edges of the graph. An edge is an object containing a pointer to the next
object in the SLL, and a pointer to the destination node. The node and edge objects are created
by using the low-level KMA-1 malloc routine, after which they are attached to the searchable
binary tree. If one attempts to add a node that was previously added, the node will be free’d
again.

The algorithm used to store this directed graph is a simple lock-free binary search tree algorithm
that allows to attach nodes and search for their existence based on the key. It does not need to

57

know how these are allocated. The add method is implemented as following:

bool clTree_add(*tree, *node) {

uintptr_t *cur = &(tree->root);

clTree_node *cn;

node->left = node->right = NULL;

while(1) {

cn = atom_cmpxchg(cur, NULL, node);

if(cn == NULL) return true;

if(cn->key == node->key) return false;

if(node->key < cn->key) cur = &cn->left;

else cur = &cn->right;

}

}

As input, the test program gets only a list of edges represented as {source id, sink id} tuples,
and the number of edges available in the list. As the node ids and number of links per node are
not known in advance, it is difficult to use static sized data structures like arrays or hashmaps.
By using a dynamic memory allocator instead, we minimise memory overhead while keeping code
easy to read.

Usability Using a heap starts with compiling the required heap code by adding its source
files to the program. The exact code used to compile the two source files in the host program,
clSBMalloc.cl and clIndexedQueue.cl, depends on the programming language the host program is
written in, but does not differ from the code used to compile the actual kernel.

The next step is to create a heap on the host system by calling the clSBMalloc create() routine
described in section 4.2.1. After this, the heap is ready to use by any kernel that receives the
returned cl mem object as a parameter.

The source code for adding a node to the tree shows the use of our memory allocator within
this program. The following routine finds a node in the tree, and adds it if it does not already
exist. Some keywords, like “ global” and “struct”, and typecasts are omitted for readability.

graph_node *ensure(*heap, *tree, int key) {

graph_node *node = NULL;

while(node == NULL) {

node = clTree_get(tree, key);

if(!node) {

node = malloc(heap,sizeof(graph_node));

if(!node)

continue; /* or fail */

node->tree.key = key;

sll_init(&node->links);

if(!clTree_add(tree, &node->tree)) {

free(heap, node);

node = NULL;

}

}

}

return node;

}

The code for adding a link to a node, where item is the currently processed edge, then looks as
follows:

58

source = ensure(heap, tree, item->source);

sink = ensure(heap, tree, item->sink);

link = malloc(heap, sizeof(graph_link));

link->sink = sink;

sll_add(&source->links, &link->q);

The code examples we have shown in this paragraph should not be fundamentally different
from code written for a “regular” application that would run on the host system. The allocation
and freeing of blocks are handled by the low-level APIs of KMA, like they would be handled by
libc for regular C programs.

Performance For understanding the performance of KMA in a real life application, we used
these tree routines to create a tree from a directed graph containing 65536 edges and up to 10000
nodes. This test case was executed both on the CPU and GPU with a varying number of threads.
To show the impact of a full memory allocator, performance is compared to the Poormans-heap.
To contain the memory requirements, the Poormans-heap test code is slightly less naive than the
KMA code: The Poormans-heap code holds on to an allocated object for a possible next iteration
while in the KMA code this block would be freed and re-allocated on the next iteration. For a fair
comparison between the non-caching KMA code and the caching Poormans-heap code, we also
used this caching technique with KMA.

The static set-up time of the data structures of this test program on the GPU when KMA is
initialised with 512 superblocks of 4KB each is 1.5ms. For the “poormans”-heap the total set-
up time is 0.2ms. This means approximately 1.3ms is spent on the single threaded initialisation
kernel that enqueues all the superblocks to the free-list. On the CPU similar numbers are observed:
1.15ms with KMA versus 0.1ms for the poormans-heap.

Figure 6.7: clTree performance: KMA-1 vs. poormans heap

59

The execution time relative to the number of threads is shown in figure 6.7. The first thing to
observe is that after about 400 threads, performance does not increase any further on the GPU,
apart from the small jump at 1536 threads. The latter can probably be explained by executing
with a more favourable work-group size, but all in all the difference is minor.

The difference between KMA with and without caching is negligible. The amount of superfluous
allocations done is limited by the checks, and the code required for this caching does not outperform
the memory allocator itself. This means that the difference in performance between KMA and
the poormans heap is caused entirely by the allocation algorithm.

In absolute numbers, this test program executes in approximately 28.6ms when using the KMA
back-end, where the program finishes in 12.6ms when using the Poormans-heap back-end. With
the naive usage of KMA the total overhead is 56% of the execution time. On the AMD FX-6300
CPU, performance does not change with the number of work-items. This is not surprising as adding
more work-items does not increase the amount of work, while parallelism is already exploited with
very few work-items because there are only six cores available. Here we observe times of 37.9ms
and 20.7ms respectively, meaning KMA-1 adds a performance overhead of approximately 45%.

At first this seems like a big price to pay for the full functionality of a memory allocator, and in
some cases it might be. However, most use-cases do not end after constructing this tree, but rather
this is the first step in a bigger algorithm. The relative overhead for using KMA in a complete
algorithm is likely a lot smaller in these cases, while the use of KMA does lead to a better code
readability, more flexibility and possibly better memory usage. If the use-case permits, programs
can also benefit from the prefix-sum reduction based allocation algorithm tested in 6.2.2, further
reducing the overhead.

Portability To show the portability of the clTree program, performance was measured on the
available NVIDIA GPUs in DAS-4. We expect some absolute differences in execution time between

Figure 6.8: clTree performance on different GPUs

60

the different GPUs. The shape of the graph, however, is expected to be similar to those found for
the GT640 in the previous paragraph. Our results are shown in figure 6.8.

The trends in this graph for the Kepler cards are as expected, where little difference is found
between these cards. The “sweet-spot” for these cards using this particular dataset is around 768
work-items. Adding more work-items will only increase the pressure on the malloc algorithm,
that does not permit for more parallelism. As a result, the overhead increases with the number of
work-items, as can be seen clearly on the K20m.

Judging by the dip in the graph, on the Fermi-based cards parallelism seems utilised entirely
when launching approximately 128 work-items. With its more complex schedulers compared to
Kepler-based GPUs[35], the overhead for adding more work-items on Fermi-based GPUs is larger,
resulting in a greater reduction in performance for more than 128 work-items.

Figure 6.9: clTree performance on different CPUs

For CPUs, the performance differences are also small, although relatively the Intel Xeon E5620
and X5650 are up to three times as fast as AMDs FX-6300 desktop processor, as can be observed
in figure 6.9. All trends are roughly horizontal, as we expected from a test setup where the number
of work-items is always higher than the number of cores.

The difference in performance between the CPU and the GPU is small in absolute numbers.
This is caused by the fact that the creation of a global data structure, like a tree, is not an efficient
task to perform in parallel. a CPU has the benefit of a higher sequential performance. Our results
show that a fast CPU can build up this tree twice as fast as a GPU. However, contrary to the
creation of a tree, usage of such a structure can safely be done in parallel. When considering
a program that both creates and the uses this tree, execution on a GPU might still offer a big
performance benefit over a CPU.

61

62

Chapter 7

Discussion and further research

In this chapter we discuss our findings from the process of designing, implementing and testing
a memory allocator. We evaluate the current KMA design and its use to OpenCL programmers,
propose several areas where KMA could improve in the future and discuss some possible solutions
to problems related to the portability of OpenCL across different platforms.

7.1 Trade-offs for KMA

As shown in section 4, algorithms that involve irregular data structures demand more flexibility
than currently offered by OpenCL’s restrictive, static host-side memory allocation. As a result,
OpenCL is perceived as unsuitable for algorithms using these structures, even though there is no
understanding of whether this is merely a software limitation or a consequence of hardware design.

To answer the question “Is OpenCL an efficient platform for irregular data structures?”, we
need to enable developers to experiment with these structures and draw conclusions from their
work. Tools like a memory allocator will aid developers in doing just this. And if the answer to
this question turns out to be negative, there are still algorithms that use these structures outside
the critical path, that could benefit from an easy-to use heap regardless of its performance. This
motivation led us to develop KMA.

Section 6.2.3 contains several code examples that show how the use of malloc() leads to simple
and understandable code. Essentially, we argue that the complexity of dealing with dynamic
memory management has been completely hidden in KMA behind the malloc() and free()

calls. However, in practice, there are still a few issues that need to be addressed before this
statement becomes 100% true.

The most severe problems we have encountered are related to the portability requirements
amongst different OpenCL implementations. Code that ran correctly on NVIDIA GPUs with
NVIDIA’s compiler, and on AMD and Intel CPUs with AMD’s compiler turned out to be impos-
sible to compile using Intel’s OpenCL platform and failed to properly execute on AMD’s GPUs
(as tested on AMD HD7970 and AMD HD6850). On the Intel platform, the lack of 64-bit atomic
operations in combination with its 64-bit pointers makes it very tough to create a portable memory
allocator. For the AMD GPUs, the problem is related to the way AMD’s OpenCL interprets and
implements the relaxed memory consistency model of OpenCL, as explained in section 2.4.

In terms of performance, KMA-1 adds a certain performance overhead by design (see Section 4).
We did show ways to reduce this overhead in section 6.2.2, but in the end using KMA is yet
another design decision any developer needs to take: the trade-off between the high-level KMA
functionality, leading to higher productivity and maintainability, and its impact on performance.

63

7.2 Proposals for “KMA-2”

A lot of the design decisions taken for KMA are enforced by the current platform limitations
discussed in Section 4. Improvements for KMA-2, both on performance and in portability, thus
depend on improvements on the platform.

For performance, the main priority is to limit the memory wastage of KMA without sacrificing
speed. For example, bigger blocks could be allocated when free blocks can be coalesced. This
feature requires an algorithm based on a lock-free ordered linked-list instead of the less complex
queue-based algorithm KMA uses for its free-list. Other areas where such complex algorithms
could help is to reduce fragmentation of half-empty superblocks, requiring more advanced lock-
free linked list algorithms that allow real unlinking of arbitrary nodes. Internal fragmentation
can be reduced with more fine-grained control of the size of the allocated blocks within their
superblocks. This last point might be achievable with current algorithms.

Literature has discussed several problems that need to be solved before lock-free algorithms
for complex global data structures can be implemented. One big problem is the use of local
cursors towards blocks as explained in section 4. Other problems that might arise with linked-lists
are solvable by the use of CAS2[20], an atomic operation performing compares-and-exchanges on
two disjoint memory locations. However, CAS2 is unlikely to be found in a modern computer
architecture. Possibly the most viable solution right now to solve fragmentation would be the
ability to use mutex locks in OpenCL to protect data instead of relying on limited lock-free
algorithms. However, the performance impact of mutex locks might outweigh the memory benefit.
Also current OpenCL implementations do not allow safe use of mutex locks, as we discussed in
section 2.4, and the specification provides no suitable mechanism to implement one.

In section 5.3.2, we have sketched some interesting experiments that may improve the high-
level data structure: using a different reduction algorithm might improve data locality, and global
synchronisation could reduce the number of calls to the memory allocator. The latter experiment
seems unlikely to give any interesting speed improvement. Comparison between the “Poormans-
heap” and the KMA-1 heap back-end showed very little difference in performance, showing that the
time spent on actual allocation is already relatively small with local synchronisation. Compared
with the presumably large overhead for global synchronisation and the increased time spent on
the larger prefix-sum reductions, the cost will most likely outweigh the benefit.

Using different reduction algorithms could be a more likely win in terms of performance. One of
the downsides of the prefix-sum reduction is that the objects accessed in parallel will almost always
be apart in memory by an (irregular) stride. This potentially limits the bandwidth available for
memory operations, degrading performance. Being able to distribute the memory in such a way
that adjacent objects will be accessed in parallel without adding new memory accesses will lead
to higher bandwidth utilisation, in turn decreasing the run-time of any kernel using this high-level
data structure.

For portability, we need to ensure that KMA-2 is functionally portable on all OpenCL platforms.
From the perspective of KMA, this can currently only be solved by adding constraints to the design.
It might be possible to eliminate the need of 64-bit atomic operations partially by encoding memory
addresses as a 32-bit offset from a base pointer. A similar approach was successfully applied to
encode the address of a superblock into 21-bits, with the downside of only supporting a heap of no
more than 4GB while pointers have a stride of 4KB. This approach might not be suitable when
other algorithms are used to manage superblocks more flexibly, and introduce a limitation on the
maximum size of the heap.

There are no indications that KMA-2 could be made compatible with AMD GPUs, given how
this platform implements a very relaxed memory model. Other platforms appear to have adopted
less relaxed memory models and therefore show no consistency issues when memory fences are
carefully placed, but this approach does not work for AMD GPUs. However, this memory model
is permitted by the current OpenCL specification[27].

Overall, we believe that the hypothetical KMA-2 has fair chances to be a better implementation
than KMA-1 in terms of performance if more complex algorithms are used to maintain the state of
the heap. Portability could be slightly improved on currently, but until the OpenCL specification

64

is clarified and the memory model is restricted, it is not possible to guarantee portability.

7.3 Notes on OpenCL portability

Although portability is one of the key features of OpenCL, we encountered several problems
when developing our KMA. Improving portability between platforms by clarifying the OpenCL
standard and unifying the implementations is not just beneficial to KMA, but to the entire OpenCL
community.

First of all, as our experiments have shown, different OpenCL implementations can interpret
the relaxed consistency model of OpenCL differently. This means that the optimisations done by
compiler, although valid according to the OpenCL specification, leave room for speculation. For
KMA this leads to malfunctioning on some platforms because optimisations break the semantics
of the lock-free queue algorithm. A clearer specification of the memory consistency model of
OpenCL, and the compilers to enforce it, can solve these functional portability issues. A further
study towards the compatibility and alignment of functionality of different compiler front-ends is
also needed to enable portability.

Secondly, correct usage of integer types like “uintptr t” and “size t” make it easy to write
OpenCL code that is compatible between 32- and 64-bit platforms, but because the bitness of the
targeted platform is not always equal to that of the host system, we still had to be cautious when
allocating device-side memory objects containing pointers or variables of these types. OpenCL
does not provide mechanisms to aid developers in handling these differences in bitness, other than
a host-side function to query the bitness of the targeted device.

Finally, Intel’s OpenCL compiler is quite picky about casting pointers back and forth to these
integer types, which further complicates the process of writing portable code. The following code
illustrates the problem we encountered with Intel’s OpenCl compiler.

void function(char __global *base) {

uintptr_t pointer_val;

char __global *ptr;

/* Example 1: does not compile with Intel’s OpenCL SDK */

pointer_val = (uintptr_t) base;

pointer_val += 8;

ptr = (char __global *) pointer_val;

/* Example 2: compiles with Intel’s OpenCL SDK */

ptr = &base[8];

}

Both examples are functionally equal, yet the first example causes a casting error when com-
piled with Intel’s OpenCL compiler, whereas the second example compiles without errors. In
some cases the first form would be preferred, for instance when atomic operations are required
that involve the address of an object. Atomic operations are generally defined for integer types
and types like uintptr t, but not for global pointers. When an atomic CAS operation returns a
uintptr t, this return value must be cast to a real pointer like shown in example 1 before it can be
used. On the Intel platform this is impossible.

One idea that might improve interoperability between the different platforms is for the Khronos
group to provide an OpenCL validation suite containing a series of test-cases that test the basic
requirements for any OpenCL implementation. Besides being a good tool for developers to spot
bugs and regressions, simple test cases could clarify the spirit of the standard and raise discussion
when different parties disagree. The community driven Piglit project1 successfully implements
such a test suite for OpenGL compliance with support for OpenCL in place.

1http://people.freedesktop.org/~nh/piglit/

65

http://people.freedesktop.org/~nh/piglit/

In addition, we believe a revision of the OpenCL synchronization primitives and their seman-
tics, as well as potential new additions (in the form of global synchronization) will make the
implementation of KMA-2 a lot easier, more robust, and portable.

66

Chapter 8

Conclusion

With the emerging of (massive-)parallel computation, several research projects towards efficient
and usable parallel dynamic memory allocation have been conducted. For OpenCL no attempt
has yet been made to implement a full featured heap allocator. In this light we have proposed
KMA: a proof-of-concept dynamic memory allocator for OpenCL kernels.

The goal of this research project was to find an answer to the question: how should a kernel-side
heap allocator be implemented in OpenCL? We aim to get an understanding of the place a heap
allocator would take in the OpenCL platform, and of the complexity of such a tool. Our approach
is to investigate two important aspects. Firstly we tried to understand the importance of a heap
allocator to programmers by conducting a use-case survey towards parallel implementations of
a variety of algorithms. Secondly we sought for the technical challenges of a heap allocator in
OpenCL by implementing a prototype inspired by the state of the art.

Our thorough survey of applications (chapter 3) revealed that a specific set of algorithms
require the creation of global non-regular data structures such as a linked-lists or trees. Dynamic
memory management is a prerequisite for a lot of these cases to allocate the nodes in these
structures. Along with the case of a C++-like object oriented kernel language, these cases led us
to investigate and design KMA-1.

To answer our research question, we believe that a kernel-side heap allocator should be imple-
mented in OpenCL by following a two-layered design, as proposed in chapter 4. This design is
aimed at providing a familiar and universal interface to kernel programmers without the need to
compromise on performance. The low level is an abstraction on top of the current OpenCL mem-
ory model to provide malloc() and free() routines to kernel developers. These APIs are available
to any high-level data structure, which may then optimise the use of these APIs if the use-case
permits. As a proof-of concept we designed the ArrayList top layer: a global array data struc-
ture that lets the threads in a work-group gather their memory requirements using a prefix-sum
reduction to reduce the number of calls to malloc().

Our contribution is the design (chapter 4) and implementation (chapter 5) of KMA. Our heap
allocator design aims for portability and performance by simplicity. Experiments (chapter 6)
have shown that KMA is functional and performs well when compared to Cuda’s malloc and
XMalloc[23]. The ArrayList implementation shows that when a use-case permits any restrictions,
a layer on top of the KMA back-end can obtain even higher performance. KMA has a limited
portability due to differences in the available platforms: NVIDIA Cuda and AMD APP for CPU
correctly execute our test cases, but Intels SDK lacks support for 64-bit atomic operations while
using 64-bit pointers, and AMD APP for GPU implements a more relaxed memory model leading
to semantic problems with the used lock-free algorithm.

As we discussed in chapter 7, a future version of KMA could improve in three areas: reducing
memory usage, increasing portability and extending features. Reducing memory fragmentation
could be achieved either by the use of more advanced lock-free algorithms, or by extending the
OpenCL standard to permit mutex-style locks. Portability can be improved mostly with unifica-
tions of the various OpenCL platforms, which probably requires some clarification and extension

67

of the current standard. There are several features that might extend the use of KMA, but imple-
menting them often requires alterations to the standard or even hardware. These features should
be considered based on user feedback.

We believe that the current KMA is a useful tool for all programmers that wish to experiment
or work with irregular data structures. It offers a feature-complete heap allocator that performs
similarly to the memory allocator found in Cuda. KMA allows programmers to write readable
code with the benefits of a flexible heap allocator, and offers good potential for optimisations if
the use-case permits.

68

Bibliography

[1] 1003.1 standard for information technology - portable operating system interface (posix) base
definitions, issue 6. IEEE Std 1003.1-2001. Base Definitions, Issue 6, pages i –448, 2001.

[2] Parboil benchmark suite, 2010. http://impact.crhc.illinois.edu/parboil.php.

[3] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubia-
towicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and
Katherine Yelick. A view of the parallel computing landscape. Commun. ACM, 52:56–67,
October 2009.

[4] J.-L. Baer and B. Schwab. A comparison of tree-balancing algorithms. Commun. ACM,
20(5):322–330, May 1977.

[5] Duane A. Bailey. Java Structures, pages 331–341. McGraw-Hill, 2002.

[6] Josh Barnes and Piet Hut. A hierarchical o(n log n) force-calculation algorithm. Nature, dec.
1986.

[7] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
a scalable memory allocator for multithreaded applications. SIGPLAN Not., 35:117–128,
November 2000.

[8] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing high-performance
memory allocators. In Proceedings of the ACM SIGPLAN 2001 conference on Programming
language design and implementation, PLDI ’01, pages 114–124, New York, NY, USA, 2001.
ACM.

[9] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Reconsidering custom
memory allocation. In Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, OOPSLA ’02, pages 1–12, New York,
NY, USA, 2002. ACM.

[10] Guy E Blelloch. Prefix sums and their applications. pages 35–60, 1990.

[11] M. Burtscher and K. Pingali. An Efficient CUDA Implementation of the Tree-based Barnes
Hut n-Body Algorithm, pages 75–92. Morgan Kaufmann, Jan. 2011.

[12] Gregory Chaitin. Register allocation and spilling via graph coloring. SIGPLAN Not., 39:66–
74, April 2004.

[13] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee, and K. Skadron.
Rodinia: A benchmark suite for heterogeneous computing. In Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, pages 44 –54, oct. 2009.

[14] Intel Corp. AGP V3.0 Interface Specification, sep. 2002.

[15] Advanced Micro Devices. OpenCL Static C++ kernel language extension, dec. 2011.

69

http://impact.crhc.illinois.edu/parboil.php

[16] Dave Dice and Alex Garthwaite. Mostly lock-free malloc. In Proceedings of the 3rd
international symposium on Memory management, ISMM ’02, pages 163–174, New York,
NY, USA, 2002. ACM.

[17] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. 10.1007/BF01386390.

[18] Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. A comprehensive performance com-
parison of cuda and opencl. In The 40-th International Conference on Parallel Processing
(ICPP’11), Taipei, Taiwan, September 2011.

[19] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction to Parallel
Computing. Pearson Education Ltd., 2003.

[20] Michael Greenwald. Two-handed emulation: how to build non-blocking implementations of
complex data-structures using dcas. In Proceedings of the twenty-first annual symposium on
Principles of distributed computing, PODC ’02, pages 260–269, New York, NY, USA, 2002.
ACM.

[21] Lindsay Groves. Verifying michael and scott’s lock-free queue algorithm using trace reduction.
In Proceedings of the fourteenth symposium on Computing: the Australasian theory - Volume
77, CATS ’08, pages 133–142, Darlinghurst, Australia, Australia, 2008. Australian Computer
Society, Inc.

[22] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13:124–149,
January 1991.

[23] Xiaohuang Huang, C.I. Rodrigues, S. Jones, I. Buck, and Wen mei Hwu. Xmalloc: A scalable
lock-free dynamic memory allocator for many-core machines. In Computer and Information
Technology (CIT), 2010 IEEE 10th International Conference on, pages 1134 –1139, 29 2010-
july 1 2010.

[24] Advanced Micro Devices Inc. Amd graphics cores next (gcn) architecture. white paper, jun.
2012. http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf.

[25] Free Software Foundation Inc. The GNU C Library, 2013. http://www.gnu.org/software/
libc/manual/html_node/index.html.

[26] Byunghyun Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting memory access patterns to
improve memory performance in data-parallel architectures. Parallel and Distributed Systems,
IEEE Transactions on, 22(1):105 –118, jan. 2011.

[27] Khronos. The OpenCL specification, nov. 2012.

[28] Jon Kleinberg and Eva Tardos. Algorithm design. Pearson, 2006.

[29] D Lea. A memory allocator, October 2000. http://g.oswego.edu/dl/html/malloc.html.

[30] Warren S. McCulloch and Walter Pitts. Neurocomputing: foundations of research. chapter A
logical calculus of the ideas immanent in nervous activity, pages 15–27. MIT Press, Cambridge,
MA, USA, 1988.

[31] Maged M. Michael. Scalable lock-free dynamic memory allocation. In Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and implementation, PLDI ’04,
pages 35–46, New York, NY, USA, 2004. ACM.

[32] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. Technical report, Rochester, NY, USA, 1995.

[33] N.N. R600-Family Instruction Set Architecture. Advanced Micro Devices Inc., jan. 2009.

70

http://www.amd.com/la/Documents/GCN_Architecture_whitepaper.pdf
http://www.gnu.org/software/libc/manual/html_node/index.html
http://www.gnu.org/software/libc/manual/html_node/index.html
http://g.oswego.edu/dl/html/malloc.html

[34] nVidia. nVidia OpenCL best practice guide, jul. 2009. www.nvidia.com/content/cudazone/
CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf.

[35] NVIDIA. Nvidia geforce gtx 680, whitepaper. Technical report, 2012. http://www.geforce.
com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf.

[36] nVidia corp. nVidia Cuda C Programming guide, apr. 2012.

[37] Ted Painter and Andreas Spanias. Perceptual coding of digital audio. In Proceedings of the
IEEE, pages 451–513, 2000.

[38] A Penders and A. L Varbanescu. Accelerating graph analysis with heterogeneous systems.
Master’s thesis, Delft University of Technology, 2012.

[39] Mark Segal and Kurt Akeley. The OpenGL graphics system: a specification (4.3 Core profile),
aug. 2012.

[40] Albert Silberschatz, Greg Gagne, and Peter Baer Galvin. Operating System Concepts, pages
286–288. John Wiley and Sons, Inc, 2005.

[41] H̊akan Sundell and Philippas Tsigas. Lock-free deques and doubly linked lists. J. Parallel
Distrib. Comput., 68(7):1008–1020, July 2008.

[42] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P. Markatos, and
Sotiris Ioannidis. Regular expression matching on graphics hardware for intrusion detec-
tion. In Proceedings of the 12th International Symposium on Recent Advances in Intrusion
Detection, RAID ’09, pages 265–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[43] Andrea Vattani. k-means requires exponentially many iterations even in the plane. In
Proceedings of the 25th annual symposium on Computational geometry, SCG ’09, pages
324–332, New York, NY, USA, 2009. ACM.

[44] C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi gf100 gpu architecture. Micro, IEEE,
31(2):50 –59, march-april 2011.

[45] Shucai Xiao and Wu chun Feng. Inter-block GPU communication via fast barrier synchro-
nization. In IEEE International Symposium on Parallel and Distributed Processing, IPDPS,
2010.

[46] E Young and F Jargstorff. nVidia Cuda video decoder - API Reference, aug. 2010.

71

www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
www.nvidia.com/content/cudazone/CUDABrowser/downloads/papers/NVIDIA_OpenCL_BestPracticesGuide.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://www.geforce.com/Active/en_US/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf

72

Glossary

algorithm class basic pattern as described in “A view of the parallel computing landscape”[3].
21

CAS Compare-And-Swap. 8, 9, 15, 16, 39–41, 48, 65, 73

critical section Part of code that may only be executed by one thread at a time. Protected by
means of locking. 7

DFA Deterministic Finite Automatron. 25

FFT Fast-Fourier Transform[]. 29

FSM Finite State Machine. 25

GART Graphics Address Remapping Table, table used to map system memory to the GPUs
address space, so that the GPU can access this memory. 13

GPGPU General Purpose Graphical Processing Unit. 5, 21

GPU Graphical Processing Unit. 5, 24, 29

kernel Function used as entry point in device-side OpenCL code. 14

lock Shared variable that is used by a routine implementing a mutex. 7, 73

lock-free Type of algorithm that does not require the use of mutual exclusion to protect its
shared resources. Often makes use of atomic operations like CAS. 7

locking The act of reserving access to a shared resource or part of code (critical section), mutually
excluding other threads. 7, 73

MIMD Multiple Instruction, Multiple Data. 7, 15, 18

mutex Mutual exclusion, protection mechanism that prevents concurrent access of shared vari-
ables. 7

NFA Non-Deterministic Finite Automatron. 25, 30

race condition Unpredictable behaviour when two concurrent threads try to alter the same
shared variable at the same time. 7

semaphore see lock. 7

SIMD Single Instruction, Multiple Data. 7, 12

73

SIMT Single Instruction, Multiple Thread. 7, 8, 12, 14, 19

thread Running instance of a program on arbitrary hardware, processing a part of the workload.
7

74

	Introduction
	Problem description
	Outline of this document

	Background and related work
	Parallel programming: locking and lock-free algorithms
	Memory allocators
	GPU
	OpenCL
	Related work: Heap allocator algorithms

	Memory allocation patterns
	Research setup
	Results
	Finite state machines
	Graph Traversal: Graph conversion
	Structured grid: Heart Wall
	Dense linear algebra: K-means
	Sparse Matrix: Convert to vector
	Spectral: Fast-Fourier Transform
	Dynamic programming
	Particle Methods: Barnes-Hut
	Unstructured grid: Back propagation
	C++

	Conclusions

	Allocator design
	Constraints
	General requirements
	Platform requirements
	User requirements

	Technical design
	Low level heap allocator
	ArrayList

	Implementation
	Low level: heap manager
	Blocks and superblocks
	Free-list
	Algorithms

	Low level: ``Poormans''-heap
	Algorithms

	High level: ArrayList
	Reduction algorithm
	Possible variations

	Performance and results
	Theoretical performance
	Complexity
	Memory overhead

	Benchmarks
	``Low-level'': Memory allocator
	``High-level'': ArrayList
	Use-case: Tree construction

	Discussion and further research
	Trade-offs for KMA
	Proposals for ``KMA-2''
	Notes on OpenCL portability

	Conclusion

