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Abstract

As recently emerged network concepts such as Network Function Virtualization (NFV) and Software-
Defined Networking (SDN) promise to bring more flexibility to existing networks they also pave the
road for the development of a new type of service. These novel services are known as mission-critical
services which generally have tight latency and jitter restrictions. Some examples of this type of service
are could gaming, cloud-connected virtual reality or remote surgery.

To avoid exceeding the tight tolerances set by these services, Network Functions (NFs) that are nec-
essary for the network connection (e.g. firewalls), should benefit from both hardware acceleration for
increased performance and scaling to reduce the hardware footprint and introduce more network flex-
ibility. In this thesis, a novel, horizontal scaling solution for Virtualized Network Functions (VNFs) was
designed and implemented in P4.

In particular, we propose a novel elastic scaling solution for hardware-accelerated switches. Our solu-
tion consists of three parts: flow migration, monitoring, and decision-making. Flow migration, the part
where flows are migrated to another switch, is performed in three phases. First, the migration source
migrates the state to the migration destination. Then, the migration source updates the NF states as
they change on the migration source. When the controller completes its tasks, flow packets are for-
warded to the migration destination and the controller can divert the traffic to the migration destination
directly.

Our decision-making algorithm uses VNF, switch, and individual flow usage statistics to decide where
to scale to and - if applicable - where to place a new NF instance. To reduce the monitoring overhead,
only usage statistics for high-rate flows are gathered and overloads are detected within the switch. Our
decision-making algorithm is able to spawn new NF instances when an overload occurs or redistribute
load among already existing NF instances to optimize NF resource usage.

Results show that our algorithm reduces migration times by 0.52s on average while the average latency
observed by the flow is reduced by approximately 5ms on average when compared to current state-
of-the-art. Furthermore, our solution does not overflow the controller as NF states are communicated
directly between switches which are equipped with links that are optimized for high data volumes.






Glossary

Control plane The part of the network that executes topology-related task (e.g. routing protocols). 3,
4,9,12-22, 24, 25, 27-30, 32, 33, 37, 39, 40

Data plane Packet-processing part of networks. Usually equipped with high-rate, low-latency links,
which are optimized for data throughput. 2, 3, 5, 9-15, 17-22, 24, 28-30, 33-35, 37, 40, 41

Digest Short P4 message that is used to export information (e.g. header fields or metadata) from the
switch to the control plane. 22

Field-Programmable Gate Array Type of reprogrammable hardware. 2

Flow A series of packets that can be distinguished based on several header fields. In most networks,
flows are distinguished by source/destination IP address, TCP/UDP port, and IP protocol. iii, 3-5,
7-25, 27-35, 37, 39-41

Google Remote Procedure Call Remote Procedure Call (RPC) implementation, originally created by
Google. Used in the P4 simple_switch_grpc software switch to communicate between the control-
and data plane. 21, 27

High-Availability Systems in a redundant setup, so that single failure does not lead to service inter-
ruption. 12

Intrusion Detection System Network Function (NF) that monitors systems or networks for unautho-
rized or malicious traffic. 1

Network Address Translation Technique to change address information in network traffic. 21

Network Function Applications which add functionality to a network, such as firewalls, Intrusion De-
tection Systems (IDS), or network-address-translation (NAT). iii, v, 1, 7, 11, 13, 21, 27, 37, 39

Network Function Virtualization Technique to virtualize network functions, instead of using physical
hardware. iii, 1, 7, 11

Programming Protocol-Independent Packet Processors High-level programming language, used
to program network nodes. Commonly abbreviated to P4. iii, 2-5, 7, 9-11, 13, 17, 18, 21, 22, 24,
27, 29, 30, 39-41

Remote Procedure Calls Inter-process communication, which is used to execute code in different
address spaces (usually computers connected to a network). vi, 21

Service Function Chain Sequence of network functions (NFs), applied on packets from a single flow.
4,7,20,21, 39

Software-Defined Networking Novel networking technique which implements a packet-forwarding
layer (data plane), controlled by a central controller (control plane). iii, 1, 7, 14, 22, 30

Switch Hardware network devices in networks. Programmable switches can execute network func-
tions (NFs). iii, 2-5, 7-25, 27-35, 37, 39-41



Vi Glossary

Thrift Remote Procedure Call Remote Procedure Calls (RPC) implementation by Apache. Used in
the P4 simple_switch software switch to communicate between the control- and data planes. 21,
27

Virtualized Network Function Network function (NF) implemented in software. iii, 1, 7, 11, 19, 27, 39



Contents

Introduction 1
1.1 Motivation. . . . . . . . 1
1.2 Problemdefinition . . . . . . . . 3
1.3 ScCope . . . . e e 4
1.4 Contributions . . . . . . . . 4
1.5 Thesisoutline. . . . . . . . . e 5
Background 7
2.1 Network Function Virtualization (NFV). . . . . .. .. .. ... . oL 7
2.2 Software-defined Networking (SDN). . . . . . . . . . . . .. 9
2.3 Programming Protocol-Independent Packet Processors (P4) . . . . . . . .. ... .... 9

231 Pdprogramstates . . . . . . .. 10
Related Work 1"
Architecture 13
4.1 Scaling ProCess. . . . . . . i 13
4.2 Architecture components. . . . . . ... 14
4.3 Monitoring. . . . . . . e 15
4.4 Decision-making . . . . . . .. e e e e 17
4.5 Flowmigration . . . . . . . . e 17

451 Statemigration . . . . . . .. 18

4.5.2 |Initializationphase . . . . . . ... .. 19

453 Updatephase. . . . . . . . .. 20

454 Forwardphase . . . . . . . . . L 20
Implementation 21
5.1 Monitoring. . . . . . . e 22
5.2 DecCision-making proCess . . . . . . . . . e e e 23
53 Flow & state migration . . . . . . . ... 24
Experiments 27
6.1 Experimentsetup. . . . . . . . . . L 27

Vi



viii Contents

6.2 Experimenttopology . . . . . . . . . e 28
6.3 Performance metrics . . . . . . . . . 28
6.4 Trafficpattern. . . . . . . . . e 29
6.5 Experimentscenarios . . . . . . . . . . . . .. e 29
6.6 Experimentresults . . . . . . . .. 29
6.6.1 Approach without scaling algorithms . . . . . . . .. ... ... 0oL, 31

6.6.2 Controller-based approach. . . . . . . . . . . ... ... .. 32

6.6.3 Swing state dataplaneapproach . . . . . .. .. .. ... L. 33

6.6.4 Dataplane scalingapproach. . . . . . . . ... ... o 34

6.7 Comparison. . . . . . . . . . e e e 34

7 Result discussion 37
8 Conclusion 39
8.1 Futurework. . . . . . . e 40

A Appendices 43

Bibliography 49



Introduction

New concepts in networking such as Network Function Virtualization (NFV) [1] and Software-Defined
Networking (SDN) [2] have emerged which, when combined, promise to introduce more flexibility, re-
configurability, and agility needed by many new services in novel network techniques, such as 5G

[3].

Many of these services, e.g. cloud gaming [4], cloud-connected virtual reality [5], or tactile internet ap-
plications [3] (e.g. sending the sense of touch over the internet) have tight latency and jitter tolerances.
Exceeding those tolerances can lead to motion sickness [6], a reduced experience, or unplayable
games [7]. Moreover, with the introduction of 5G [8], it is expected that new mission-critical services
such as autonomous vehicles [9], smart grids [10], and remote surgery [11] will become more common
and make low-latency network connections vital.

This introduces many new challenges, as today’s networks are not equipped for these types of new ser-
vices. In order to create reliable low-latency network services, infrastructures need to be able to adapt
to the tight tolerances new services require. This requires a high-performing and flexible environment,
one that does not exist today.

1.1. Motivation

Traditionally, Network Functions (NFs) such as a firewall or Intrusion Detection System (IDS) are imple-
mented in hardware without any form of virtualization (middleboxes). While this enables manufacturers
to guarantee a specific performance or throughput, an NF’s performance cannot be adjusted while in
operation. This has the disadvantage that if the NF is not able to process all load, the network operator
is left with only one option: buying new hardware with higher capacity. As network traffic is generally
unpredictable (e.g. time of day or seasonal variations, or a general increase in requests for the service),
hardware NFs are generally overdimensioned to prevent unnecessary hardware replacements. This is
inefficient since it causes the middleboxes to waste resources.

Middleboxes generally use hardware acceleration to increase performance and reduce response la-
tency [12]. This hardware is specifically designed or tuned for the NF, making it inefficient or even
impossible to run other NFs than the hardware was designed for.

NFV promises to move network functions from dedicated hardware to commodity servers [1], offering
more flexibility, elasticity, and easier management. Since Virtualized Network Functions (VNFs) are
implemented in software new instances can easily be deployed when the current NF is overloaded. In
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contrast to replacing a traditional middlebox, elastic scaling is executed on-demand and hardware can
be used by multiple NFs.

Scaling up

Scaling in Scaling out

Vertical scaling

. Horizontal scaling

(a) (b)

Figure 1.1: Vertical (a) and horizontal scaling (b).

Elasticity, i.e. scaling an application according to its current load, can help hardware-accelerated NFs
become even more flexible. By allowing them to scale, hardware resources could be further optimized,
as NFs only use hardware resources they currently need. As figure 1.1 shows, scaling can be done
either vertically or horizontally. Scaling vertical involves expanding or decreasing resources (e.g. CPU,
memory, or network links) of a single instance based on the load the NF experiences. When scaling
horizontally, the number of instances can be increased or decreased. The total NF load is divided
amongst several NF instances.

Vertical scaling is possible on only a single machine. This means that an upper scaling limit exists.
When all resources on that machine are assigned to an NF (e.g. CPU, memory, or network links), an
NF is unable to scale up further. With horizontal scaling, this limit does not exist. However, scaling
horizontally creates several issues.

Since NFV uses commodity hardware, hardware acceleration is unavailable or requires special add-in
cards tailored for usage with only one or a few NFs. Efforts have been made in order to offload parts
to acceleration processors to reduce the processing time of NFV workloads [13, 14]. These solutions
need to be tailored to the application since specific parts of the NF workload have to be reprogrammed
to be hardware accelerated. Programming Protocol-Independent Packet Processors (P4) [15] enables
many NFs to use hardware acceleration by offering a fully programmable SDN data plane that supports
multiple targets that offer hardware acceleration, such as Field-Programmable Gate Arrays (FPGAs),
ASICs or programmable switches [16].

P4, a high-level programming language for creating a programmable data plane, which allows network
operators to implement NFs directly into the data plane. P4 supports multiple hardware-accelerated
targets (e.g. FPGASs), and allows to run multiple NFs on a single device, enabling more flexible usage
and clearing the way for elasticity in hardware-accelerated platforms.

Many NFs require information about previous traffic to function. These NFs are called stateful NFs.
When scaling horizontally, state information (states) NFs must be migrated with the NF. Simply copying
these states once is not a feasible solution since it leads to corrupt states as during state transmission
the state is updated at the migration’s source. Therefore, a process needs to be in place to correctly
transfer and update state information during the migration process.
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Usually, the link speeds of the control plane are lower and latencies are generally higher compared to
data plane links, which are optimized for data transmission. Especially with modern data plane speeds
reaching Tbps [16], migration traffic rates could easily overflow the control plane. Stateful NFs, (e.g. a
packet counter, which counts how many packets have arrived for each flow) could update their states
at line rate, as their internal state changes for each received packet. Furthermore, NFs can potentially
require hundreds of states per flow to function [17]. Migrating such an amount of states requires many
data to be transmitted, which would easily overflow the control plane.

On top of that, latencies between the data plane and the control plane are usually high in SDNs [18],
as the control plane is not running on network devices themselves, but is separated into a single con-
troller. Therefore, state updates have a high transmission latency between a migration’s source and
destination, complicating the scaling process as many states are in the process of being updated.

Multiple NF state migration solutions exist [19-27]. These solutions either use a central controller to
forward state information or use high-level abstractions, such as virtual machine (VM) replication or
external databases, that are not available in P4. Moreover, these implementations do not address the
problem where various switches use different implementations for hash calculations, leading to corrupt
states as states could be written over another flow’s states. Therefore, these algorithms cannot be
used when dealing with hardware-accelerated NFs.

Swing State [28] addresses this problem. This approach uses packets of the flow to carry state infor-
mation to a migration destination switch, which is then able to calculate its internal hash, to store the
NF state in the correct position. However, Swing State’s performance heavily depends on the incoming
traffic pattern. Along with other problems (see section 3), Swing State is not well suited for transmitting
NF states within the data plane.

1.2. Problem definition

In this report, we investigate ways to introduce elastic scaling to P4 VNFs. By implementing a general
scaling solution in P4, NFs could benefit from scaling and hardware acceleration simultaneously. Many
NFs can be implemented in P4 to let them profit from hardware acceleration, without requiring them
to run on vendor-specific hardware. As horizontal scaling does not have the single-system upper limit
vertical scaling has, the solution uses horizontal scaling.

In order to implement horizontal scaling, several problems need to be solved. First, as many NFs
require states to function correctly, these states have to be migrated. Using the control plane for this is
infeasible, as the control plane can be easily overflowed, states can be generated faster than they can
be migrated, and high latencies exist between the control plane and the control plane in SDNs.

Furthermore, when a switch is overloading, a new NF instance must be placed on another switch. As
not individual NF loads, but the combined load of all NFs running on a switch causes overloads, a
decision-making process will determine for which NF an action needs to take place and where a new
instance will be placed. This process requires recent load information from flows, NF (instances) and
switches.

Each flow needs to be processed by the NF instance that has the flow’s state information. Several NFV
scaling approaches [22, 23] introduce global states (see chapter 3). However, this is not feasible for
P4 NFs, as many states are not incremental (meaning they cannot use local incremental updates to
create a shared global state), or latencies to retrieve states from external storage would be too high, as
this would congest the network. Therefore, states must be migrated with the flows, without corrupting
state information. During migration, flows must continue as normal, avoiding packet loss or jitter.

This leads us to the following research question:
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How can we achieve elasticity of hardware-accelerated VNFs?

In order to fully answer this question, several sub questions need to be answered:

1. How can we efficiently and reliably detect overloads in P4 switches?
2. What metrics can we use to decide where to redistribute load to?

3. How can we migrate flows while maintaining states for stateful NFs without interrupting flows or
overflowing the control plane with only a small overhead and as quickly as possible?

This solution requires to detect overloads, decide which flows to migrate to which instance, and to
migrate the flows. Flows for stateful NFs require state data, which has to be migrated with the flow.
Migrating flows should not overload the control plane, and flows must continue as normal, avoiding
packet loss or jitter during migration.

1.3. Scope

Topics such as VNF and Service Function Chain (SFC) placement, have been thoroughly researched
[29-38]. Therefore, this research will not take initial placement of VNFs or SFCs into account but
provides solutions for placing new instances in situations where a switch in a previously placed SFC
experiences overloads.

Solutions that can migrate stateful NFs are also able to migrate stateless NFs. Since stateful NF
migration is the more difficult of the two, this report will focus on stateful NFs. NFs that

Hardware-accelerated devices generally do not allow to assign hardware resources to specific pro-
grams, due to their design. Therefore, horizontal scaling is limited by the number of available devices.
Normally, when scaling to many instances, the communication overhead on horizontal scaling can be-
come so high that adding more instances does not improve performance. However, this limit will be
much higher than what is considered in this thesis. As each instance functions independently over-
head consists of installing rules and monitoring, which would already occur in situations where NFs
are not scaled horizontally. Overhead due to scaling mostly consists out of traffic between the migra-
tion’s source and destination. Therefore, this thesis will only consider horizontal scaling. As horizontal
scaling does not have the single-system limit vertical scaling has, it is a more flexible approach.

Not all states need to be transferred. Some states depend on local information (e.g. timestamps).
These states will be recovered almost instantly as they can be derived from traffic. Other states can-
not be transmitted one-to-one, as they depend on network topology. These states require transfer
functions, which is not considered in this thesis.

Currently, no implementation exists that can instantaneously reload P4 software without losing internal
program states or installed control plane rules. Research has proven [39—43] that instantaneous, rule
preserving P4 software reloads are possible, but no implementation that does not suffer from heavy
performance loss is available. Therefore, this research will assume it is possible to instantaneously
reload P4 software, while preserving the state. This will be modeled by adding all NFs in the switch’s
code. Each NF can be enabled or disabled by the control plane by installing a table rule.

1.4. Contributions

Our main contributions are as follows:

* We propose a novel elastic scaling solution for P4 NFs, which changes flow routes on scaling



1.5. Thesis outline 5

events and executes a novel data plane state migration protocol, which is able to consistently
migrate and update states and is resistant against out-of-order packets.

* We give an approach for efficiently detecting overloads from the data plane, which reduces over-
load detection latency and monitoring overhead.

+ To decrease the overhead that comes with monitoring individual flows, a novel approach is pre-
sented.

» We will present metrics to decide which flows to migrate to which switches.

Our elastic scaling solution for P4 NFs will redistribute flows amongst existing instances if possible, and
only scales out when necessary. A decision-making process decides if and where to place or remove
instances, based on the current flow paths, network layout, and usage information from NF instances,
switches, and flows. This process will decide when to scale and where to place a new NF instance.
This decision-making process will also decide when to scale in, so freed hardware resources can then
be used for other NFs.

1.5. Thesis outline

Chapter 2 will provide an explanation of several key concepts used for our novel elastic scaling solution.
This chapter will be followed by a summary of related work (chapter 3).

In chapter 4 the solution’s design will be explained. First, the components will be explained. Switch,
NF, and flow information will be gathered (section 4.3) for use in a decision-making protocol (section
4.5).

The decision-making protocol is activated when overloads are detected and is able to either rebalance
NF load within existing NF instances. When all existing NF instances cannot handle the extra load, a
new instance is spawned.

When a solution to overcome the overload has been calculated by the decision-making protocol, the
flow migration algorithm is executed. This algorithm modifies flow paths (section 4.5), and migrates NF
states within the data plane (section 4.5.1) in several phases, to prevent lost or corrupted states.

Chapter 5 explains how the three components are implemented. This implementation is used to run
the experiments on (chapter 6), in which our implementation will be compared to a similar, controller-
based migration approach, and an approach which is not able to scale in or out. These findings will
be discussed in chapter 7. Chapter 8 gives conclusions and recommendations for future research to
focus on.






Background

In order to solve the problems mentioned in chapter 1, knowledge about several concepts is required,
which includes Network Function Virtualization (NFV) (Sec. 2.1), Software-Defined Networking (SDN)
(Sec. 2.2), and P4 (Sec. 2.3).

2.1. Network Function Virtualization (NFV)

Traditional middleboxes have the disadvantage that each Network Function (NF) has its own dedicated
hardware box. Furthermore, if the NF should be upgraded due to an increase in NF requests, new
hardware or licenses should be acquired. Since middleboxes are dedicated hardware appliances, they
are unable to scale. By virtualizing NFs, the hardware can be used by multiple NFs. This allows for
adding the ability to scale to NFs, assuming hardware to scale out to is available.

NFV is the technique of moving NFs (network functions), such as load balancing or caching, from tradi-
tional middleboxes to commodity services offering lower equipment costs, more flexibility, elasticity and
easier management [44, 45]. This makes the network more flexible than traditional network solutions
and reduces network costs [46]. Virtualized network functions will be referred to as Virtualized Network
Functions (VNFs). Within networks, each flow can - depending on the network and type of flow - be
processed by one or more NFs.

Very often the order in which NFs are applied on a packet is important, since most NFs operate in OSI
layer 2/3 [47] and change packet information. Therefore, NFs often depend on each other and need to
be executed in a specific order. This sequence of NFs will be referred to as the Service Function Chain
(SFC). The SFC can consist of two or more VNFs and is defined on a per-flow basis. These NFs are
not necessarily directly connected; a path between NFs could span multiple network hops, as shown
by figure 2.1. If, for example, an extra link would be added between switch 2 and switch 4, the network
path would change, whereas the SFC path would remain equal.

Network Function (NF) states

VNFs that don'’t require state information are called stateless. They only need information from the
packet itself to function. This can be the case in a simple proxy VNF. The simple proxy works by
forwarding incoming packets to a predefined destination and can therefore function without any data
dependencies.

Most NFs require information about previous traffic to function. These NFs are called stateful NFs. For

7
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NF1

h 4

SFC path
h d

7 N / N

src s1 s3 s5

Network path

Figure 2.1: Relation between an SFC path and network path. The network path is shown below, connecting source and destina-
tion hosts. Several NFs are running on switches and process packets of the flow from src to dst. The network path consists out
of switch-switch hops, whereas the SFC path consists out of NF-NF hops. A single SFC hop could span multiple network hops.

example, firewalls, where information from previously processed packets belonging to the same flow is
used by the VNF to make decisions about incoming packets. NFs have global states (e.g. states used
by each flow) and per-flow states.

Some of these states are incremental (e.g. packet counters). This is the case with for example the
TCP protocol. TCP has multiple states (e.g. ESTABLISHED, or CLOSING), which indicate the state of
a TCP connection. Firewalls can use this information to pass or block certain packets. These states
are not incremental, as the numbers are a mere mapping to store connection states more efficiently.

Other NFs use states that are incremental. For example a packet counter NF, which counts how many
packets (mostly for each flow) arrive at the switch. It keeps a counter with the amount of packets that
arrived into the switch and updates this counter on each new packet that arrives.

State migration

Regarding migration, NF states can be distinguished into two types: hard and soft states [28]. Hard
states are derived solely from packet information that can be recalculated by any other switch in the
network, such as source IP, destination IP, or destination port.

Soft states use switch-dependent information to calculate state keys, such as ingress port or ingress
timestamp. State keys derived from these kind of metadata fields would not be recalculable by other
switches, since it would be highly probable this metadata information differs in other switches. Accord-
ing to [28], soft states are typically used for optimization purposes and don’t need to be migrated.

Some hard states are dependent on e.g. network topology [28]. For example a Network Access Control
(NAC) solution, which only allows traffic from specific MAC addresses on specific ports. When migrated,
these states would have to be migrated for the VNF to function correctly. Just migrating them would
not necessarily lead to a correct function at the migrations destination, since the MAC addresses could
be connected to another port. Since most of these states could be considered soft states, since they
rely on switch-dependent information these states are ignored. As flow are migrated for stateful NFs,
program states need to be merged (scaling in, where states for a flow need to be imported), or replicated
(scaling out, where a flow’s states need to be replicated).
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2.2. Software-defined Networking (SDN)

Traditional networks consist of routers, switches, firewalls, and many more devices, where each device
runs on its own hardware and has a fixed function. No single device has a clear overview of the whole
network. Therefore, algorithms on the network (e.g. routing algorithms, such as Open Shortest Path
First (OSPF) or Border Gateway Protocol (BGP)) are not centrally managed, which means that they
can only make local choices. This behaviour is called the decentralized control plane.

SDN changes this behavior, as shown in figure 2.2. SDN centralizes the decentralized control plane
into a single control plane application. Since this control plane application has a central overview of
the network, this allows for more flexible and efficient behavior, for example for routing applications.
Traditional protocols, such as OSPF or BGP could be integrated in the SDN, but also any other algorithm
could be easily implemented into the control plane.

R e

Control

Application blane

Application

Application Application

Switch

Switch

Switch

@Q/d)

3

Traditional network |

(@)

Switch

Data plane

Da

-

ta plane

e

Switch

Data plane

(b)

Figure 2.2: Difference between traditional network (a) and SDN (b). The SDN distinguishes a data plane, where packets are
switched, and a control plane, with global knowledge about the network. Applications that require global network information,
can be connected to the control plane, whereas they would need to address each individual switch in the traditional network.

The layer where data packets are being handled is called the data plane. Data plane behaviour is
determined by the control plane. In most SDN protocols, like OpenFlow [48], the data plane behavior
is fixed, and only the behavior of the control plane can be programmed. The control plane requires
several supporting functions, such as link-, host- and switch discovery. Furthermore, packet routing or
forwarding functions are deployed to enable packets to flow efficiently over the network. SDN can use
various routing principles. One is the classical approach of IPv4 networking.

2.3. Programming Protocol-Independent Packet Processors (P4)

SDN enables a fully programmable control plane. Continuing this trend, programming languages for
programming the data planes [49], such as P4 [15] and Protocol-oblivious Forwarding (POF) [50] were
proposed. P4 enables programmers to fully determine a switch’s behaviour, since the whole packet
processing pipeline is programmable.

Custom and new packet headers could be used without waiting for support from vendors. For instance
VXLAN is a relatively new protocol where many devices do not yet have support for. Using P4 VXLAN'’s
header and protocol support could be implemented very quickly.
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Packet processing VNFs, such as a packet counter, firewall, or proxy application, could be imple-
mented directly in P4 [51]. Running VNFs directly on switches gives them the advantage of hardware
acceleration. Furthermore, P4 implementations are target independent. P4 can be compiled to sev-
eral architectures, such as ASICs, FPGAs, Network Processor Units (NPUs), and general-purpose
CPUs. These architectures are called targets. P4 programs can also be deployed to various dedi-
cated platforms, such as Intel® Tofino™ 2 [16] switches . This makes P4 a very general solution for
programmable data plane programming languages.

2.3.1. P4 program states

P4 VNFs can be stateful (section 2.1). This means that decisions the P4 programs makes depend on
previous packets that have arrived earlier to the switch. A simple example of a stateful NF that can
easily be implemented in P4 is a packet counter. This packet counter can be used to detect heavy-
hitters: flows with a rate higher than some threshold. This information can be used to block certain
flows or perform rate-limiting on heavy-hitters. If these states would be corrupted, heavy hitters would
not be detected, and the NF would not be functional.

P4 stores state values in registers, which are essentially a key-value storage. Keys are usually de-
rived from packet information by using some hash calculation on data that distinguishes packet flows
from each other. Usually, IP source and destination addresses, IP source and destination ports, and
the IP protocol are used for this hash calculation. Since switches can have different hash algorithm
implementations, depending on the hardware capabilities, register keys for a single flow vary between
switches.



Related Work

Network Function Virtualization (NFV) scaling and migration has been subject to many researches,
such as [22, 24, 25, 52—-63]. These implementations typically use virtual machine (VM) migration (e.g.
migrating the current state of an Network Function (NF)). These hypervisor functions will not be avail-
able in P4 data planes, as these approaches use high-level abstractions, which are not available in
high-speed data plane NFs by design.

Some [64, 65] do not migrate state information, but use load balancing to distribute traffic over in-
stances, by assigning incoming flows to specific instances. This gives NFs the ability to elastically
scale out, but only lets them scale down when an instance is fully idle (i.e. no flows are processed
on that specific NF instance). Furthermore, this approach is not able to handle overloads if existing
flows (i.e. flows that are already assigned to an instance) start overloading an instance. As flows are
not migrated, but only assigned to instances when they first arrive, the load cannot be reduced at an
overloading instance.

Others do consider both local and shared states. FreeFlow [54] temporarily suspends flows while up-
dating global states. This will lead to high flow latencies for flows with many shared states, as the
flow needs to be paused while transmitting states. Moreover, hardware accelerated devices cannot
temporarily pause flows. With data rates reaching Tbps [16], buffers must be impossibly large to ac-
commodate this temporary buffering.

LODGE [23] proposes a global state model for distributed NFs, which use local states and receive
global updates from other Virtualized Network Function (VNF) instances, essentially creating distributed
states on multiple switches. This approach works by leveraging multicast groups to propagate individual
state updates to create a distributed state, a state which exists on each instance. While this could be
used to migrate state information from a transmitter to a receiver, LODGE is only able to create global
incremental states (states that incrementally increase/decrease each packet). As many NFs require
states that are not incremental (e.g. TCP protocol states, which a firewall uses to decide whether to
block certain packets), LODGE is unsuitable for our application, as general NFs should be able to use
and migrate non incremental states.

StatelessNF [22] only considers global states, which are migrated to an external state data storage.
This abstraction can not be made in P4 data planes. P4 is not able to queue packets awaiting the
switch to retrieve any non-local states. Therefore, retrieving external state information would impose
a significant performance impact on NFs, which would make retrieving remote or distributed states
infeasible for P4 VNFs.

A multitude of controller driven migration schemes exist [25-27]. For example Gember et al. [24] pro-
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posed a state migration scheme using the control plane. Controller based approaches are generally
infeasible as the control plane is usually much slower than the data plane. Since states can be updated
at line rate, and NFs may keep hundreds of states per flow, this would easily flood the control plane.
Furthermore, various implementations might use different hash implementations. Simply copying infor-
mation and putting it in the other device’s database at the same index will not directly lead to a correct
state interpretation: it could even corrupt states, as it is possible that states on the receiver overwrite
another flow’s states already present in the register array. Furthermore, as the switch processes NF
packets, the state will not be used, as it is located at the wrong memory position.

Non-controller driven state updates are widely researched, mostly for High-Availability (HA) purposes
[19-21]. Many NFs require some form of HA, where a backup device could take over a failing device
without losing state information. This information is usually propagated via a direct link, without the use
of any controllers. Pico Replication (PR) [20] implements this by monitoring middleboxes for state up-
dates and transmits them if changed, do not use the control plane for state transmission. However, PR
does not address the problem of incorrect states, as it was meant as a HA state synchronisation solution
and therefore it could be assumed that similar hardware was used in a similar network configuration.

Luo et al. [28] addressed this problem and proposed Swing State, a data plane state migration al-
gorithm. The main novelty of Swing State is that data packets are used to migrate state information
within the data plane, in order to let migration destinations calculate their own internal hashes. To do so,
Swing State appends a new migration header to the packet, which will carry updated state values to the
migration destination. While Swing State addresses differences in hash calculations in various switch
implementations and avoids using the control plane for migration, it heavily depends on the pattern of
incoming traffic. States will not be migrated until traffic arrives.

As both the state receiver and transmitter need to be in certain states, a protocol state mismatch at the
migration source and destination could lead to incorrect output behaviour (either forwarding a packet
twice to its destination or no forwarding at all). Using full data packets for state transmission causes
Swing State to have a large overhead, which could be reduced by using smaller update packets. Lastly,
Swing State cannot handle out-of-order packets or packet loss, as states could be overwritten by older
information.



Architecture

Our novel approach enables Network Functions (NFs) to scale horizontally over several switches. Two
processes are considered, namely scaling in and scaling out. Our novel elastic scaling solution for P4
NFs activates when a switch overload is detected. Our overload detection exploits the programmability
of P4 switches to enable fast detection of overloads (while the packets are processed on the switch),
triggering a scaling-in/out and state transfer directly in the data plane. This makes our approach ideally
suitable for programmable data planes operating at Tbps.

In order to use hardware more efficiently, an algorithm periodically determines whether NFs could be
scaled in to eliminate unnecessary, almost idle NF instances. These freed hardware resources can
be reused by other NFs, for example when another switch detects an overload or when a new NF is
deployed to the network.

A custom decision-making process has been implemented to detect appropriate mitigations for scal-
ing infout. This process uses monitoring information from switches, NFs, and individual flow to base
decisions on. Two situations can occur when overloads are detected:

1. Only migrate flows (to an already running instance)

2. Deploy an NF and migrate flows to this new instance

The process first checks if NF instances exist which could take over a portion of the load (1) that has
to be migrated away from the overloading switch. This has the advantage that hardware resources
(where NFs are running on) will be used more efficiently, as less hardware resources are used for NFs.
Scaling (2) only occurs if all NF instances cannot be migrated to existing NFs. In that case, the only
option to overcome these overloads without interrupting flows is allocating new resources to the NF.

4.1. Scaling process

The decision-making process generates an action to mitigate overloads or removing NF instances
to free hardware resources. After this, the flow migration process is started. Flows are migrated in
multiple steps, to ensure that no packets or states are lost or corrupted by the migration. Phase one
(initialization phase), consists of transferring NF states to the migration destination switch, after which
phase two (update phase) is started. In phase two, state updates are sent to the migration destination if
state changes occur at the migration source switch, called stateUpdates. Meanwhile, the control plane

13
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starts installing new traffic rules, without disturbing the current packet flow. After the initial state has
been received and the path installation has been completed, the process enters phase 3: the forward
phase.

In this phase, the migration source only forwards packets to the migration destinations, which processes
them and forwards them to their destination. The control plane changes the flow’s path in such a way
that traffic is sent directly to the migration destination. Any leftover packets will still be forwarded to the
migration destination.

4.2. Architecture components

This chapter outlines the general design of our solutions and its components. Our elastic scaling solu-
tion exists of three main components:

1. A monitoring component (Sec. 4.3). The novelty of this component is that only relevant (high-rate)
flow statistics are gathered, to reduce monitoring overhead, while all switch and NF statistics are
retrieved.

2. A decision-making component (Sec. 4.4), which generates responses on overload situations and
is able to free hardware resources when the situation allows to reduce the number of NF in-
stances.

3. Flow migration (Sec. 4.5), which transfers NF states within the data plane.

Control plane functionality Data plane functionality
rf N N \\ rf 7
- Decision- . . .
Monitoring making Scaling Monitoring Scaling

NF mon- Redistribution Scaling Overload State
itoring calculations in/out detection migration

B

Switch Instance FlowID Flow rate
monitoring placemen- man- monitoring
t/removal agement L )
Flow
monitoring Flow
rate control migration
| N e )

. J

Figure 4.1: Control plane (green) and data plane (blue) architecture components, separated in three categories. Components
that perform monitoring tasks send information to the control plane. This information is used by the decision-making algorithm,
which calculates mitigations for overloads and optimizes hardware usage by reducing the number of NF instances if possible.
Several scaling components initiate and control the flow migration procedure.

Figure 4.1 shows which functionality is implemented in the control- or data plane. The control plane
is well suited for tasks that require a global network overview (e.g. links, switches, usage statistics).
Typical Software-Defined Networking (SDN) frameworks already deploy several tasks, such as link or
switch detection and routing algorithms. Our novel elastic scaling solution extends this functionality
with monitoring (switches, NFs, or flows), flow management, NF, or instance placement tasks.

Tasks that require low latency and large bandwidth are executed in the data plane. To reduce monitoring
overhead and overload detection latencies, overload detection and flow rate monitoring is performed
on the switch, instead of using a polling-based procedure initiated from the control plane, where the
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control plane regularly sends a message to the switch to retrieve information. To prevent overloading
the control plane on NF state migration, state migration is executed in the data plane. Since the data
plane is equipped with high-rate and low-latency links, optimized for data transmission, the data plane
is an excellent network to communicate NF states quickly and reliably.

4.3. Monitoring

Our solution needs several monitoring data. Usage statistics from switches, NFs, and individual flows
are considered by the decision-making process to detect valid scaling options. However, monitoring
individual flows comes with several challenges. First, the sample interval needs to be decided upon.
As internet traffic is generally unpredictable, short traffic bursts might trigger unnecessary flow migra-
tions when sampling too often. High sampling frequencies lead to high overheads, as many data is
transferred.

Sampling with a too low rate might delay overload detection, as the overload detection latency (the
latency between occurrence of the overload until activation of the decision-making algorithm) depends
on the sample frequency and the latency between the control plane and the data plane. This can be a
problem, since a switch has limited buffers, which can fill up completely during this period, forcing the
switch to start dropping packets.

Therefore, overloads must be detected quickly. To reduce both the overload detection latency and the
polling overhead, our solution detects overloads on the switches. Doing so has two main advantages:

1. By eliminating the polling interval from the overload detection latency, overloads are detected
more quickly, as packets are processed at the switch.

2. Polling rates can be reduced, as overloads are detected independently from the polling-based
monitoring mechanism and no high-rate NF and switch usage is required.

Switches detect overload themselves by monitoring egress buffers and notify the control plane when
an overload occurs. Switches report overloads when queue sizes are longer than a threshold. The
threshold should be chosen low enough to allow the control plane to scale out or redistribute load
before buffers are completely full and packets need to be dropped. Furthermore, the threshold should
be high enough to allow some slight, occasional buffering due to short traffic bursts, without immediately
triggering overloads, leading to unnecessary migration actions.

In order to gather Switch and NF instance loads, switches will be regularly queried (polled) to reply
with current usage statistics. As overloads are detected by a separate process, our solution will poll
switches at a low rate. This will provide the decision-making algorithm with statistics about switch, and
NF instance usage, without inducing a significant load on the switches. To further reduce the overhead,
switch and NF instance loads are appended to packets belonging to the link discovery process.

Another challenge is per-flow monitoring. In order to reduce a switch’s load, without overloading the
migration destination, our solution is able to execute per-flow migration. This requires knowledge about
individual flow rates, which can be very inefficient to poll.

Two options for polling individual flow rates exist. Either each flow rate is polled individually, or one
really large packet must be sent, containing all flow statistics. Polling each flow rate individually will
lead to a high overhead, as each flow rate is reported individually, which imposes a significant load on
the switch and control plane. Retrieving all individual flow rates in one request will require increased
processing at the switch to accommodate such packets'. Furthermore, as registers can have millions

A 10Gbit/s link can carry 14.880.952 IP packets/sec, which leads to a packet size of 15KB. For 100Gbit/s and 1Tbit/s lines the
packet sizes at maximum packet rates will be 17,5KB and 19,3KB, respectively.
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of rows for storing data, retrieving this data will be quite ineffective: in most cases these registers
are sparsely populated, meaning many irrelevant data is transmitted. Therefore, a novel data-plane
approach was chosen to report individual flow statistics.

Updating all active flows on the switch with a low rate can still easily overflow the switch. Since the
decision-making process only depends on flow rates for high-rate flows, our solution only monitors
high-rate flows.

Algorithm 1 Pseudo code for individual flow rate transmission.

n, Flow rate threshold (per-flow value)
N, Global rate threshold (per-switch value)
p, Number of received packets for flow

if p >=n then Update is sent every n packets
if n >= N then Update is sent for rates larger than N
Send flow update
end if
p=0
end if

Pseudo code 1 shows how individual flow rates are reported. Each switch counts packet quantities,
and reports them to the control plane each n packets. The rate is controlled by the control plane, by
increasing or decreasing n, on a per-flow basis. The control plane aims to receive rate updates for
flows (flowUpdates) approximately each second, to prevent bursts from having a too large influence
on these rates, while having quite precise and recent updates without posing a significant load on the
switch. Increasing the interval (e.g. to 10s) would lead to too inaccurate flow rates, whereas decreasing
the interval (e.g. to 0.1s) leads to high overhead.

Flow rate updates are only sent if the rate is higher than N. Therefore, decreasing this value will lead
to more flow rate updates and increasing this value will lead to less flow rate updates. A process in the
control plane monitors if a sufficient flow volume can be migrated from the switch in case an overload of
a preset percentage occurs (e.g. 10%). While the monitored flow volume is smaller than the worst-case
overload volume, the value for N is decreased until the monitored flow volume is larger than the worst-
case overload volume. To reduce the individual flow monitoring overload, N is increased when the
monitored flow volume is larger than 1.3 times the worst-case overload, to prevent the monitored flow
volume from becoming smaller than the worst-case overload volume, while still limiting the overhead.

Using this mechanism, small increases or decreases in flow rate will only slightly influence the rate of
flow rate updates. However, this algorithm will not account for flows that either stop or change from high-
to low rates. Instead of relying on old, and presumably incorrect information (since no flow rate update
was received, one can safely assume the packet rate is lower than its last update, as a flowUpdate
would have been received), an algorithm is designed that calculates the worst-case flow rates for flows
that did not receive updates recently. As flow rates are updated approximately each second, the worst-
case packet rate is calculated for flows that are not recently updated. This worst-case flow rate is equal

to ————, since the maximum amount of packets received by a switch for a flow is equal or less than
lastupdate

n packets since the last flow rate update. To reduce overestimation of the worst-case packet rates, this
algorithm is only used for flows that were not updated in the previous 1.5* interval seconds, as dividing
by small t;q5tupaate Can lead to incorrect packet rate estimations. For flows which have been updated
more recently than this period, the latest received flow rate is returned.

Switches transmit flowUpdates for high-rate flows. By comparing a preset worst-case overload volume
(e.g. 10% of the switch’s capacity) to the total monitored flow volume, the control plane can increase
or decrease the rate for which the switch sends flowUpdates.
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4.4. Decision-making

A decision-making algorithm is deployed in the control plane and uses network layout and monitoring
information to calculate actions (e.g. redistribution or scaling out) for overload situations, and manages
flow migrations. It periodically checks whether NF instances can be removed, to optimize hardware
usage and free resources for use in potential overload situations. As P4 switches lack timer-interrupt
procedures, the control plane rate-controls individual flow monitoring. Furthermore, low-rate switch and
NF rate monitoring is performed from the control plane. The algorithm sets the following constraints on
finding a valid set of flows that it can migrate:

1. The flow volume is large enough to stop the source switch from overloading
2. The destination switch will not be overloaded by the flow volume
3. Any new switches in the flow’s path will not be overloaded

4. For each flow, the flow path length will not increase more than N hops

Condition 1 ensures a sufficient solution to overcome the overhead is found by the decision-making
algorithm. Conditions 2 and 3 prevent unnecessary overloads, as immediately overloading another
switch while migrating a switch would be inefficient. Condition 4 prevents network congestion. Espe-
cially in large or distributed networks it can be quite inefficient to migrate an NF to another location,
as bandwith is generally limited. Furthermore, each switch experiences load by only forwarding traffic.
As path lengths increase, more switches need to forward packets, hence increasing loads on multiple
switches. N is set to limit this and to prevent network congestion. Depending on the network topology,
N can be set to a higher or lower value.

When an overload is detected, a decision-making process checks which actions need to occur in order
to reduce the load for the overloading switch. First, it considers rebalancing traffic, to prevent unneces-
sary scaling when spare capacity is available on NF instances that are already running. If it can find an
instance that meets the above conditions, flows can be migrated to an existing NF instance, eliminating
the need for scaling. When no solution arises, the algorithm is run again, but now considering switches
that do not currently run the NF. It is vital to keep flow paths as short as possible, as networks could
get congested easily if many flow paths increase too much in an inefficient manner.

4.5. Flow migration

The flow migration algorithm is responsible for migrating flows from one NF instance to another and
is only active when scaling in/out or rebalancing load. For most NFs, state data has to be migrated
with the flow to prevent incorrect NF behaviour at the migration destination. Our algorithm is able to
migrate flows belonging to stateless NFs as well, since they are more simple and do not require state
migration. Thus, in this subsection the more complex of the two, flow migration for stateful NFs will be
explained.

We developed a new algorithm able to migrate flows from stateful NFs, as current algorithms use
the control plane for state migration, which is easily overflowed by the amount of packets that such
migrations could generate. Furthermore, the performance of current state-of-the-art data plane state
migrations depend on the pattern of incoming traffic. It is able to migrate NF states from one NF to
another consistently, directly in the data-plane and changes a flow’s path when states are migrated.
Furthermore, our algorithm, in contrast to the state-of-the-art data plane state migration algorithms, is
able to successfully migrate states and flows, even in situations where out-of-order packets and packet
loss occur.

Our flow migration protocol is performed in three stages:
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1. Initialization phase. NF states are migrated to the destination NF within the data plane and flow
paths are changed to accommodate transmitting packets from the destination NF to the original
destination of the flow.

2. Update phase, where states are updated as packets arrive at the migration’s source. These
updates are propagated in-data plane to the migration destination.

3. Forward phase. The migration’s source only forwards packets to the migration destination, which
processes them and forwards them to the original destination of the flow.

Migrations are carried out on a per-flow basis. This has multiple advantages. First, if multiple flows
have to be migrated from a switch, each flow can be migrated to a different NF instance. Second,
migration only has to be performed for flows that are migrated. Information for other flows, that are
already active on the migration destination, is not overwritten, as states can be merged easily. This
enables both easy load rebalancing and scaling out, since states from different NF instances can easily
be merged, without collisions.

During the update phase, traffic rates for flows that are migrated on the migration’s source could double
when a worst-case NF (which changes states for each packets, triggering a stateUpdate) states are
migrated. This causes an even higher load on the switch, and therefore increases the rate at which
the buffers grow. This makes it important to keep this phase as short as possible, since a migration
protocol—designed to mitigate overloads—should not force the switch to overload even more and start
dropping packets.

In contrast to Swing State, our algorithm only requires packet cloning in the update phase. As our pro-
tocol switches to the forward phase, packets are only forwarded to the migration destination, whereas
Swing State keeps cloning packets until the traffic is diverted. This has the main advantage that the
overloading switch after completion of the update phase experiences a lower flow rate than

In order to perform in-data plane state migration, switches need to be able to exchange information
directly. Therefore, the control plane programs each switch with information to reach all other switches
present in the network, without requiring direct links between switches. This information is programmed
when switches are first detected by the control plane, to prevent unnecessary latency during state mi-
gration, which is executed during switch overloads and therefore time critical. This makes flow updates
more flexible, since state migration algorithm packets are routed independently from NF traffic, and
flow route updates don’t disturb switch-to-switch communication.

Since different P4 switch hardware vendors can use different hash implementations, hashes of flows
do not require to be the same. This can become problematic, as it creates the possibility that states
are overwritten by another flow’s states, corrupting states for both flows. Our state migration algo-
rithm addresses this by requiring each switch to calculate its own internal hash, by providing network
information used for these calculations in all migration packets.

4.5.1. State migration
Our state migration process is explained in table 4.1. Flow migration is performed in three stages,

namely the initialization, update and forward phase. Table 4.1 explains the state migration protocol
and figure 4.2 shows the flow path updates.
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Table 4.1: The state migration process. The set of states for a specific flow F is migrated from migration source switch § to
migration destination switch D. The flow’s source is srcHost, its destination dstHost

Packet Source Destination Information
number
Initialization phase
1 Control plane - 8 Information for hash calculation.
8 calculates hash and appends state information
to the packet.
Control plane will start installing flow rules on D.
Control plane installs new flow path [D, dstHost].
2 8 - D D will write the state information to its internal
registers.
3 D —  Control plane  Acknowledge NF state reception.
Update phase
5 - D State update values until pkt 4 is received.
8 handles Virtualized Network Function (VNF)
traffic.
Forward phase
4 Control plane - D D executes NF function for F, § only forward
packets to D.
5 D — Control plane D acknowledges packet 4 to control plane
Control plane changes flow path from [srcHost,
8] to [srcHost, D]
. 8 - D Any packets for flow.
6 Control plane —  Switches Reroute flow F
@ Network host
@ Migration source switch
@ Migration destination switch
=> Packet flow
=> Migration traffic
4)
(a) (b) (c)

Figure 4.2: Data plane overview of the flow migration procedure. An overload is detected and a flow between (3) and (2) has
to be migrated.Switch (4) performs an NF on the traffic. In the initialization phase (step a), switch (4) migrates state to switch
(5). After initial state migration, an acknowledgement is be sent to the control plane. Meanwhile, switch (4) communicates state
updates to switch (5), and the control plane installs a new path [5,2]. When the acknowledgement is received by the control
plane, and the state reception has been acknowledged to the control plane, the process enters the forward phase (step b).
The control plane indicates switch (4) to forward packets to switch (5), which processes the NF. Switch (4) acknowledges this
indication to the control plane, after which the control plane installs path [(3),(5)]. Finally, (step c), the control plane removes
paths [(3),(4)] and [(2),(4)], and the flow migration is be completed.

4.5.2. Initialization phase

A packet is sent by the control plane to the migration source NF §. This packet contains all neces-
sary information for the NF to calculate the hashes for state values that need to be migrated (e.g.
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source/destination IP and port). With this information, 8§ calculates hashes for flow F and appends its
state values to the packet. NF S then forwards this packet to the migration destination NF D. NF 8
enters the forward phase: all subsequent state updates are forwarded to NF D. D processes packets
received from 8§ and informs the control plane it has received state information for flow . NF D enters
the forward phase as well and starts accepting state updates for 7.

Furthermore, after sending the packet to source NF 8, the control plane starts installing a path from D
to the next Service Function Chain (SFC) (either dstHost or another NF) path hop after S. Figure 4.2
shows this in (b), where path [(5),(2)] is installed by the control plane.

4.5.3. Update phase

After completing the initialization phase, flow J still follows its original path and packets are still pro-
cessed by NF §, which is sending state updates to D. In contrast to the state-of-the-art solutions, such
as Swing State, our solution applies sequence numbers to update packets. D compares this sequen-
celD to the sequencelD embedded in the state update it previously received. If the sequencelD of
the previous state update is higher than the sequencelD embedded in the current update, a newer
state value is already stored, and thus this update can be discarded. This solves the problem with
out-of-order packets state-of-the-art solutions have. Adding a sequencelD to packets has the advan-
tage that NF D will only overwrite state with newer information, even if older updates arrive later at D
than newer ones. Since no incremental states are transmitted, any migration traffic packet loss is over-
written when newer packets arrive at D. When the control plane has received the NF state reception
acknowledgement from D, the control plane will signal the start of the forward phase.

If for some reason this acknowledgement is lost (e.g. packet loss or corruption), it will be resent.
Switches do this by checking sequencelDs. Each N state updates, it will resend the state reception
acknowledgement. The value for N is network-specific and depends on the delay between the control
plane and data plane and the flow rate; acknowledgements shouldn’t be sent too quickly, but lost
acknowledgements shouldn’t prevent a successful migration.

4.5.4. Forward phase

If signalled by the control plane, NF S will stop processing packets for flow J and only forward these
packets to D, which will then process packets from F. Extra header information informs D that § did
not process a packet, and D should do so. Figure 4.2 shows this as stage (c). The path for packets
from flow F is [(3),(4),(5),5(2)], where (5) performs the NF on packets from F.

When the control plane has signalled $ to only forward packets to D, the control plane changes path
[(3),(4)] to [(3),(B)], to let traffic from flow F directly arrive at D. Any packets on route to 8 will still be
forwarded to D. Meanwhile, the control plane changes the flow’s path so that packets arrive directly at
D. When this is completed, the control plane will remove old network rules that are installed.



Implementation

Basic control plane and data plane Network Functions (NFs) from the architecture, as explained in
chapter 4, were implemented to compare the proposed algorithms to the current state-of-the-art. Sim-
ple_switch_grpc P4 targets were deployed in a Mininet environment which enables fast prototyping for
network applications. These targets use the more modern and standardized P4Runtime [66] API, in
contrast to the Thrift Remote Procedure Call (Thrift RPC) implementation which the simple_switch uses.
These switch targets are based on the vimodel P4 architecture. Programs written for this switch archi-
tecture are easily portable with little to no changes to other P4 architectures such as the psa_model,
which the Intel® Tofino™ 2 [16] uses. The switches were equipped with Thrift RPC as well, to remedy
limitations (see section 5.3) of the Google Remote Procedure Call (gRPC) Remote Procedure Calls
(RPC) infrastructure. The control application was implemented in Python.

Mininet is an environment to run a virtualized network on a single computer. Many parameters such
as switch types, network layout, and link capacity/delay can be programmed. In Mininet, several P4
switches were deployed to form a network of programmable switches.

Since most P4 NFs (e.g. Network Address Translation (NAT)) operate on OSI layer 2/3 [47], these
NFs will change packet headers, rendering the packet after NF processing unrelatable to the packet
before NF processing. This makes it challenging to determine a flow’s full path, especially for Service
Function Chains (SFCs), where a flow is sequentially processed by multiple NFs. However, the control
plane should be able to only change a flow’s path partially?, since rerouting a flow’s full path would lead
to many flow migrations. This would frustrate NF migrations, as switch and NF load statistics would be
more and more unreliable as more flows are migrated, increasing the possibility of overloading more
switches.

To overcome this, it should be possible to migrate only a single NF. Especially in SFCs where multiple
NFs are executed sequentially it can be efficient to only change a single NF’s location, instead of
migrating the whole SFC. Therefore, flows at the in- and output of NFs should be relatable to make
partial route changes possible. As many NFs change a packet’s network information, packets should
be distinguished based on another attribute, which is not changed by NFs. Therefore, each flow is
assigned a flowID by the control plane. The first switch in the flow’s network path will append this
flowID, the last switch in the path will remove the flowID. This will ensure the flowID is consistent on
each switch and single NFs can be changed in the SFC without the necessity to migrate other NFs in
the SFC.

As P4 switches cannot instantaneously reload firmware without losing its internal state, scaling in or out

"Figure 4.2(a) demonstrates this. Flow (3)(4) needs to be related to (4)(2) for successful flow migration.
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is implemented using table rules, which can enable or disable NFs. This simulates live, instantaneous
and rule-preserving firmware reloads.

5.1. Monitoring

A novel algorithm that performs overload detection in the data plane (Sec. 4.3) was implemented, since
current state-of-the-art algorithms impose high loads on switches and the control plane when used for
individual flow monitoring. If the output queue length is rising, and the output queue length is longer
than a threshold, a message is sent to the control plane. As small traffic bursts can cause temporary
queuing, the threshold should be set high enough so that these bursts will not lead to (unnecessary)
migrations. Overload notifications are sent as a digest, a short gRPC message sent by the switch to
the control plane. Since the used P4 targets do not support transmitting digests at the end of packet
processing, information, as in table 5.1, is stored in a special register, whose transmission will be
triggered by the next packet arriving at the switch. While it is possible that no packets arrive after a
digest has been prepared—hence delaying overload detection—one could safely assume that in the
case of overloads new packets arrive, as these digests are only sent when the switch is overloading.
While this could delay overload detection, it is considered insignificant as it is a shortcoming of the used
P4 target, not of P4 itself, and real-world hardware will support sending egress digests.

Table 5.1: Information transmitted in digests

Timestamp timestamp when the packet entered the queue

egress port egress port for which the queue is rising

enqueue length  length of the queue when the packet was put into the queue
dequeue length  length of the queue when the packet was taken out of the queue
queue timedelta time the packet spent in the queue

Switch and NF instance usage data is polled by the control plane. Packets that are used to discover
active Software-Defined Networking (SDN) links are modified to retrieve switch and NF usage data. For
each packet that is processed by the switch, a register value is increased. The same yields for each
NF: each packet processed increases an internal counter. On the arrival of link discovery packets,
usage information for the switch itself and its NFs is appended to these packets and forwarded to the
control plane.

Individual flow rate updates can impose a significant load on the switch, similarly to high-rate polling.
Whilst P4 supports meters, which are objects within the switch that measure data rate by assigning
each packet with green, yellow, or red (indicating e.g. idle, busy or failing) values, meter implementa-
tions are architecture-specific and some vendors might not even implement them. Furthermore, having
only three thresholds would be too coarse for individual flow rates. Therefore, individual flow rates are
reported by the data plane. Switches will report flow rates for every 10 packets by default. This default
value can be easily increased, as real-world hardware is generally much faster than our virtual envi-
ronment. The threshold value should be chosen such that rates for new flows will quickly be available,
as flow rates are generally higher than the threshold.

If the following conditions are met, the switch will send a digest message to the control plane with the
amount of received packets and a timestamp. These digests can be sent directly, as they are generated
in the ingress pipeline, instead of the overload signaling digests, which are generated from the egress
pipeline.
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5.2. Decision-making process

The decision-making process determines an appropriate solution to mitigate overloads on switches.
First, the algorithm (shown in appendix A) tries, for each NF on the overloading switch, to find a set of
flows it can migrate to another NF instance. If such a set can be found, no scaling is necessary, and
the set of flows can be migrated to other instances. If no solution is found, the algorithm is executed
again, but now considering switches where an NF instance can be spawned, instead of switches where
an instance is already running. A solution consists of a switch, NF, and a set of flows.

Since load statistics for switches and NFs are low-rate and coarse-grain, a 10% margin is taken into
account. This margin is introduced to ensure first that the decrease in flow volume on the overloading
switch is large enough to stop the switch from overloading, and second, to make sure that extra flow
volume introduced on the other switch will not immediately overload the migration destination. If no
solution arises through neither rebalancing flows nor spawning new instances, these margins will have
to be decreased. Furthermore, other solutions could be considered by increasing the allowed extra
path length. In extreme cases, admission control should be in place to allow access to prioritize NFs
or traffic.

Chapter 4 proposes four constraints. First, the flow volume should be large enough to stop the switch
from overloading. Furthermore, any switch which will experience an increased load (by processing an
NF or forwarding packets) must not be overloaded immediately. This is verified by calculating a solution
and comparing if the sum of flow rates would (1) mitigate the overload and (2) will not overflow any new
switches in each flow path.

The last constraint, which limits additional path length, is verified using the SFC path. Figure 5.1 shows
an SFC path, where a flow is processed by three NFs. The decision algorithm checks if flows from NF2
could be migrated to NF2'. Since packets need to be processed by NF1, the route section [NF1, NF2,
NF3] is compared to the path section [NF1, NF2’, NF3].

If the path section length increases by more than N hops, the flow is not considered for migration. A
large increase in path length could lead to very inefficient paths, which could easily congest the network
and add lots of latency to the flow, especially in large or distributed networks. Therefore, N is chosen
to be a relatively low integer: N = 3.

@ src/dst host =» Original path
@ Migration source NF =» Migration path
@ Migration destination NF ->» New path

D nF N

/I

NF1

Figure 5.1: The SFC path for a flow from src to dst is shown. The flow is processed by three NFs, NF1, NF2, and NF3. If the
switch where NF2 runs is overloaded, NF2’ is evaluated as a migration option. The extra path length is calculated by subtracting
the path [NF1, NF2, NF3] from the path [NF1, NF2’, NF3], where path including NF2’' does not include the switch where NF2
currently resides.

Especially in large networks, processing many NFs on many switches for many flows could be a
processor-intensive task. Therefore, only switches that could handle the extra flow volume are consid-
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ered, as other switches will never be considered.

5.3. Flow & state migration

The previously discussed flow- and state migration algorithms (Sec. 4.5) were implemented. To enable
reliable, efficient state migration, that is resistant to out-of-order packets and packet loss, two new
headers were defined. The first header consists out of protocol state information:

* flowhdr,
* flowlD,

* pktType,

migStatus,

» sequencelD,

VNFID,

* migSessionID.

This header, which is used for all migration packets, eliminates the need to keep protocol states syn-
chronized between the migration source and destination, as all information for transmitting migration
packets, and protocol information is embedded in the packet. The flowhdr is a static value that indicates
the parser (Appendix A) that the following packet is a migration packet. The flowlD is the switchFlowID
of either the migration source (traffic from the control plane to the migration source) or the migration
destination (traffic from the migration source to the migration destination). The pktType and migSta-
tus mark the packet type (e.g. initial sync, state update, flow packet forward) and the protocol status
(e.g. initialization phase, update phase, or forward phase). The sequencelD is an incremental value.
When state updates are received by the migration destination, it first checks the sequencelD. If the
sequencelD it has stored in its registers is lower than the sequencelD in the packet, the state update
is processed and the new sequencelD is stored. If the received sequencelD is lower than the sequen-
celD stored in its registers, an out-of-order packet has been received. As more recent information has
already been stored, the packet will be ignored. The VNFID indicates which NF the state data is from,
since each NF has its own data header type. This allows the switch to append the correct value header.

The migSessionlID primarily indicates the mirror_session, a session which clones packets to specific
egress pipelines. Shortest paths between switches are calculated when a switch is first connected to
the network and mirror_sessions? are installed on each switch, to enable direct switch-switch com-
munication. This approach enables in-data plane state migration without requiring switches to have
direct links to each other, which could be very inefficient in large networks. By combining switchlDs in
migSessionlIDs, source and destination switches can be easily calculated, as equation 5.1 shows.

source switchlD = migSessionIDs > 4
destination switchID = migSessionIDs A 0x0f (5.1)
migSessionlDs = source switchID « 4 A destination switchlD

The source switchID is derived by bitshifting the migSessionID four bits to the right. The destination
switchlID is derived by an AND operation with 0x0f. On the other hand, the migSessionID can be derived
from the source and destination switchIDs by the inverse operation (bitshifting the source switchlD four
bits to the left and then add the destination switchID).

2This functionality is currently not supported by gRPC. Therefore, Thrift RPC was enabled on the switches targets to add support
for mirror_sessions on the P4 targets.
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The second header contains network information which the migration source and destination use for
register index calculations, and are similar to information from flow packets. It is important that this
information is the same header information NFs use for index calculation, otherwise state information
could still be migrated to a wrong register index at the destination. The networkinfo header contains:

* IPv4 source/destination address,
» TCP/UDP source/destination port (for protocols that don’t use ports, a default value is used),

 |Pv4 protocol.

Protocols that do not use ports (e.g. ICMP or IGMP) are assigned a default value of 143. To differentiate
flows between the same source and destination the IPv4 protocol number is added. Both the migration
source and destination use this information to calculate internal hashes, since different vendors use
conflicting hash implementations, causing state information to be migrated to faulty register indexes
and state information for other flows to be overwritten.

When combined, these headers are 28 byte. This ensures migrations do not congest links by sending
unnecessary data, while still transmitting all necessary data.

Several data are required for a successful state migration. First, the migration source needs informa-
tion about the migration destination, flow, and NF. This information is provided by the control plane
during the initialization phase. The migration source switch stores the migration status, VNFID and
migSessioniD in its registers, at an index calculated from the networkinfo header, that is embedded to
the packet.

When flow packets arrive at the migration source, the packet is cloned. The first packet is processed
and forwarded a usually, and the clone will be sent to the migration destination. Further information for
the migration header is retrieved from internal registers. Network information is copied from original
packet headers, after which all unnecessary headers (e.g. Ethernet or IPv4) are removed to reduce the
size of the packet. Flow rules are installed to insert the flowID value based on the migration destination
(calculated from the migSessionID).

The forward phase is initialized by the control plane, after finishing installing the new path (see section
4.5). Any subsequent packets will not be processed by the NF on the migration’s source, but will be
forwarded to the migration destination, which will process and forward them to the flow’s destination.
To avoid a desynchronization between a migration’s source, this phase transition is only communicated
to the migration destination when the first packet is forwarded.






Experiments

This chapter will validate the design as described in chapter 5 by comparing it to scenarios without
elastic scaling capabilities, a controller-based scaling approach, and Swing State, currently state-of-
the-art. To evaluate our solution, we used the experiment setup, explained in section 6.1. Several test
scenarios were run (section 6.5) on an experiment topology (section 6.2) while performance metrics
explained in section 6.3 were collected. The results of these experiments will be explained in section
6.6. Section 6.7 will give a comparison between the used scenarios.

6.1. Experiment setup

A Mininet environment with P4 simple_switch switches and a control application, written in P4, were
deployed on a virtual system equipped with 6 CPU cores and 6GB of RAM. The simple_switch targets
were modified to support both the Google Remote Procedure Call (gRPC) and Thrift Remote Procedure
Call (Thrift RPC) interfaces, which allows the switch to mimic egress cloning. This is not supported by
simple_switch targets, which is required by our implementation in order to let switches forward flow
packets and send state updates simultaneously to the migration destination switch.

The Mininet environment is embedded in prebuilt Docker [67] containers’, which has the benefit that
switching between various simple_switch target versions (e.g. log level, or specific versions) could be
done in seconds. A control plane applications capable of performing P4 elastic scaling is implemented
in a Python 2.7 environment [69]. Despite the fact that Python 2.7 is deprecated, many source libraries
are not available for Python 3.x.

As the scaling in procedure is similar to the scaling out procedure, the focus of the experiments is scaling
out since this procedure is more time critical: scaling in is performed to optimize and free resources,
while scaling out is performed to prevent high latencies and packet loss for flows that are processed
by Network Functions (NFs) running on overloading hardware.

Currently, live-reloading of P4 software is not possible. To model instantaneous, rule preserving reload-
ing of P4 code, the Virtualized Network Function (VNF)’'s code is embedded in the code at setup time
and is activated by installing table rules. Therefore, migration times for both the control plane migration
algorithm and our implementation will have a similar offset. Since this is a relative comparison, only
redistribution times are shown.

"The used docker containers are available on DockerHub [68].

27
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6.2. Experiment topology

To evaluate our solution the topology shown in figure 6.1, consisting of 4 switches, is used. This
topology is a simple topology that allows only switch 2 (s2) and s3 to run and scale NFs, as no paths
are possible that do not include s7 or s4. Furthermore, s2 and s3 are not directly connected, which
requires either s7 or s4 to forward state information when states are communicated within the data
plane.

Several performance tests concluded that packets could be generated with a rate up to roughly 750
packets/sec. Therefore, we configured the maximum packet rate on switches s7 and s4 to 500 packets,
and on switches s2 and s3, which will run NFs, to 250 packets. This configuration ensures that other
factors (e.g. system bottlenecks) are not significant in the experiments. The queuing threshold (the
threshold that triggers an overload) is therefore set rather low: if the switch’s queue is rising and is
longer than 20, an overload is triggered.

In normal networks a delay exists between the control plane and data plane. Since our topology is
running on a single system this delay does not exist. To emulate a physical distance between the
control plane and data plane, a constant delay of 500ms is implemented. By setting this value high, all
scaling scenarios require several state updates to be transmitted.

L)
Control plane g,

Figure 6.1: The network used for experiments. Four switches (s1-4) and two hosts (h1-2) are spawned in a Mininet environment.
A Python control plane application was written, which is able to perform elastic scaling.

Each flow is processed by a packet counter NF, which increments a counter for each packet the NF
receives. This packet counter is chosen since it has the most dynamic NF states (it changes its state
each packet), making it the worst-case single variable NF. Therefore, if a solution is able to migrate
states belonging to a packet counter NF, it is able to handle less dynamic ones (e.g. a firewall, where
TCP states do not change for each packet). When the network starts, all NFs are handled by s3. When
s3 overloads one or more flows are migrated to s2. The default path for flows is therefore (h1, s1, s3,
s4, h2).

6.3. Performance metrics

The goal of the experiments is to validate the design and qualitatively measure improvement in mi-
gration time, overhead, and the quantity of packets exchanged between the control- and data plane.
Therefore, queue lengths, packet delays, initial synchronization, and redistribution times are measured
during the experiments.

Therefore, queue lengths, initial synchronization and redistribution times give an indication about how
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well the migration protocol works. The time between overload detection in the switch and the initial
migration of the NF’s states to the migration destination switch is the initial synchronization time. As
traffic rates could double during state synchronisation when using a worst-case NF (which triggers a
stateUpdate for each flow packet), it is vital to keep this phase as short as possible. The total syn-
chronization time is the time between overload detection in the switch and the moment the flow’s path
has been changed to directly send traffic to s2. This indicates that new packets are sent directly to the
migration destination, which relieves the overloading switch.

In order to measure queue lengths and protocol times the state migration P4 code is modified to embed
a timestamp in packets sent to the control plane. Furthermore, the overload detection, embedded in
the P4 code, was modified to report queue lengths (on adding a packet to the queue and removing it
from the queue respectively) and the packet timestamp for each packet belonging to the experiments.
Since the timestamps start at the boot time of each switch, timestamp offsets are adjusted for.

Packet delays are measured from the transmitting host (h7) to the receiving host (h2). H1 sends a
timestamp in the packet data, which is subtracted by h2 from the reception time.

6.4. Traffic pattern

Traffic with an increasing amount of packets was sent from h7 to h2. Initially, 9 flows, each with a rate
of 25 packets/sec, form an NF load of 225 packets/sec, which will not overload s3. A new flow of 25
packets/sec is added to the total flow volume after each 10-second interval. This pattern is chosen
to test multiple iterating flow migrations. Since the packet rate is increasing with 25 packets/sec each
10-second interval, switch s3 will experience a 10% overload at t= 20, which is considered to be the
worst-case overload for our situation.

6.5. Experiment scenarios

Several scenarios are tested with the experiment topology. The implementation of our novel data plane
scaling algorithm is modified in such a way that state updates are communicated using the control plane,
and four situations are compared:

1. no scaling,
scaling, using a controller-based approach,

scaling, using current state-of-the-art in-data plane scaling (Swing State), and

> oD

scaling, using a data plane-based approach.

All scenarios are run on the network depicted in figure 6.1. The first scenario is a single NF, which
is unable to scale and migrate. The second scenario, which is the current state-of-the-art is able to
scale using a controller-based state migration approach, which is similar to our implementation, except
that NF state migrations and updates are communicated through the controller. Swing State, the third
approach communicates states within the data plane. The fourth scenario will communicate these
states directly from the migration source switch (s3) to the migration destination switch (s2).

6.6. Experiment results

The scenarios, as explained in section 6.5 were executed on the experiment topology. Figures 6.2,
6.3, 6.4, and 6.5 show the traffic rate, packet delay, and queue length of load distribution, for the
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scenario where no scaling algorithm, a controller based state migration approach, the current state-of-
the-art data plane approach (Swing State), or a data plane based approach were active. To improve
the visibility of the graphs, only the first 35s of the experiment is shown. These measurements were
repeated multiple times, which showed similar results. Other traffic patterns (more lower-rate flows,
and less higher-rate flow) were tested as well, which led to similar observations.

Our solution seems to detect overloads earlier. However, as all scenarios (the controller-based, Swing
State, and our data plane flow migration approach) use the same algorithm for overload detection this
is likely caused by virtualization overhead or other programmatic inefficiencies in VMWare, Docker, the
simple_switch P4 target or Mininet. Therefore, only relative times are compared.

The upper graph in figures 6.2, 6.3, 6.4, and 6.5 shows the packet delay measured during the ex-
periment for each scenario. Visible in each graph is a peak in latency of roughly 500ms, caused by
the installation of new flows in the network at t = 10s, t = 20s, and t = 30s. Especially at the start
of the experiment, where 9 new flows arrive at the control plane almost simultaneously. As in any
Software-Defined Networking (SDN), packets from unknown flows are first sent to the controller, which
then installs the flow path on the network. Due to the additional latency between the control plane and
the data plane, the first few packets of each flow experience more delay than packets from flows which
already have been installed on the network.

All test scenarios showed a slight increased latency in a small period at approximately 25s. This could
be due migration algorithms, which can delay certain packets. However, as the scenario without any
scaling scenario also shows this increase, it is more likely that some tasks are performed regularly in
the simple_switch, Mininet or Python, which could slightly delay a small amount of packets.

After migrations have been performed, some flows are processed by a different switch. These flow
latencies will vary per-flow. Flows that are processed by the (previously) overloading switch will have
a higher latency than flows processed by the migration destination. As the migration destination switch
does not have queue buildup it does not add queuing delays to flows it processes. Therefore, flows
processed by the migration destination experience less latency during their transmission in the network.

This behaviour is shown in the four figures. Both the controller-based algorithm, Swing State and our
data plane scaling algorithm show alternating flow latencies which are observed by several flows after
one or more flows have been migrated. While the queue is reducing on the migration’s source, the
maximum latencies decline.

The middle graph in in the four figures depicts the traffic statistics during the experiment for each sce-
nario. Shown are the switch capacity (250 packets per second), the total amount of NF packets (com-
bination of packets handled by the migration source switch and migration destination switch), individual
switch NF packet statistics, and migration overhead packets. Except from the scenario without scaling,
all four implementations show that overhead traffic is still transmitted between the control plane and the
data plane when the flow migration is finished. This is due to the fact that we consider a migration to be
ready when the flow path has been changed. Any packets that have accumulated in the switch’s queue
(as happens in overloading switches) still need to be transmitted. This causes migration overhead to
be visible, even after our migration period ended.

The bottom graph in the four figures shows the queue lengths and the migration period during the
experiment for each scenario. Queue lengths for packets entering the switch’s queue (enqueue length)
and for packets leaving the queue (dequeue length) are shown. If a packet’'s dequeue length is higher
than its enqueue length it means the queue is growing since the queue increased its length while the
packet was in the queue.

Grey areas show a migration of a single flow. Since one overload could lead to several flow migrations,
different shadings indicate multiple flow migrations. Darker areas indicate several flow migrations.
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6.6.1. Approach without scaling algorithms

Test scenario results for scenario with no scaling algorithm
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Figure 6.2: Baseline measurement for the traffic profile sent through the experiment topology without any overload mitigation
algorithms. The upper graph shows the latency experienced by the flow, the middle graph shows the NF traffic processed by
the switch and the lower graph shows the queue lengths on the switch.

Figure 6.2 shows the traffic statistics, flow latency and queue lengths for traffic sent through s3 without
any algorithms in place to rebalance flows or scale an NF to another switch. As the incoming packet
rate increases, the queue length increases, since the input packet rate is higher than the output packet
rate and no algorithms are in place to reduce loads on the system. Itis clearly shown that the queue size
and latency packets increase faster as the incoming packet rate increases; each of the four intervals
(0:10, 10:20, 20:30, 30:35) shows a faster increasing queue and latency, due to the increase of the
number of flows that transmit packets. The maximum observed queue size in the shown interval is
roughly 3527.

The middle graph shows that only s3 is processing packets. Both the latency and queue size are
increasing faster as the packet rate increases. Furthermore, as no flows can be migrated, no migration
overhead traffic is visible.

In order to model a maximum capacity of an NF, a limit was set on the transmission rate on each switch.
However, queuing only occurs after the NF has been processed. This results in the fact that the NF
seems to be performing above its capacity. However, this is not the case, as packets are buffered after
NF execution.

The lower graph shows an increasing queue. Due to the absence of scaling algorithms, loads cannot
be reduced. This results in an ever-increasing queue, until the maximum queue length is reached.
Then, the overloading switch will start dropping packets as there is no memory to temporarily store the
packet in.
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6.6.2. Controller-based approach

Test scenario results for control plane migration algorithm
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Figure 6.3: Migrations performed using control plane based state migration. The upper graph shows the latency experienced
by the flow, the middle graph shows the NF traffic processed by the switch and the lower graph shows the queue lengths on the
switch.

When introducing scaling techniques to the setup, several flow migrations are observed (figure 6.3).
Figure 6.3 shows the traffic statistics, flow latency and queue lengths for traffic sent through the net-
work with a control plane based scaling algorithm, which uses the control plane to communicate state
updates from s2 to s3.

Figure 6.3 shows that after approximately 21 seconds an overload is detected. Three flows are mi-
grated. During the migration period, the migration destination experiences migration overhead, which
is approximately equal to the total flow volume it will take over from the overloading switch. Since a
worst-case NF is used, state updates are generated for each flow packet. The migration overhead at
the migration’s source is consisting of a few packets.

Due to increasing queue sizes, flows experience higher latencies. Maximum observed latency during
the migration period is approximately 300ms. The maximum observed queue size during migration
was roughly 75. After 3.16s the migrations are completed. The NF instance load reduces, queues at
the previously overloading switch decline, and maximum flow latencies decrease.
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6.6.3. Swing state data plane approach

Test scenario results for swing state migration algorithm
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Figure 6.4: Migrations performed using current state-of-the-art (Swing State) data plane based state migration. The upper graph
shows the latency experienced by the flow, the middle graph shows the NF traffic processed by the switch and the lower graph
shows the queue lengths on the switch.

Figure 6.4 shows flow latency, traffic statistics, and queue lengths for traffic sent through the network
with our data plane based scaling algorithm. This algorithm communicates states directly in the data
plane between the migration’s source (s3) and destination (s2).

As Swing State clones traffic to the migration destination and lets this switch process the NF to update
internal states (after which the packet is dropped), NF traffic is increasing at the migration’s destina-
tion. Then, both the migration’s source and destination are processing NF packets, but the migration’s
destination drops them after processing. Only when the path is changed by the control plane, traffic
starts to decline at the migration’s source.

Due to increasing queue sizes, flows experience higher latencies. During this period, the maximum
observed latency (excluding the peaks at each 10-second interval and at the beginning of the mea-
surements) is approximately 400ms. The maximum observed queue size during migration was roughly
100. After 2.61s the migrations are completed. The NF instance load reduces, queues at the previously
overloading switch decline and maximum flow latencies decrease.
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6.6.4. Data plane scaling approach

Test scenario results for data plane migration algorithm
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Figure 6.5: Migrations performed using data plane based state migration. The upper graph shows the latency experienced by
the flow, the middle graph shows the NF traffic processed by the switch and the lower graph shows the queue lengths on the
switch. Each single flow migration is indicated as a gray area; more simultaneous migrations are darker areas.

Figure 6.5 shows flow latency, the traffic statistics, and queue lengths for traffic sent through the network
with our data plane based scaling algorithm. This algorithm communicates states directly in the data
plane between the migration’s source (s3) and destination (s2).

Figure 6.5 shows that after approximately 20 seconds an overload is detected. Three flows are mi-
grated. During this period, the migration destination experiences migration overhead, which is approx-
imately equal to the total flow volume that is migrated. Since a worst-case NF is used, state updates
are generated for each flow packet. After 2.16s the migrations are completed. The NF instance load
reduces, queues at the previously overloading switch decline and maximum flow latencies decrease.

During the migration period, latencies did not exceed 290ms. The maximum queue size was roughly
76.

6.7. Comparison

The four scenarios are compared in terms of latency experienced by the flows, queue lengths, and
observed traffic. The above measurements are repeated multiple times, each showing similar results.
Table 6.1 summarizes the main differences between the scenarios.

2Flow latencies are based on 1-second averages, to reduce the impact of rule installations on the latency, while still considering
differences between various scenarios.
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Table 6.1: Comparison of no scaling implementation, a elastic scaling solution using a controller based state migration approach,
Swing State, and our novel data plane based state migration. Measurements are obtained in several measurements where in
total 50 flow migrations were performed for each scaling scenario.

Initial state Total migration flow latency? Max queue
sync time (s) time (s) (ms) length
min  avg max | min avg max | min avg max
No elastic scaling - - - - - - 243 9832.53 28096.50 7048
Elastic scaling

Control plane | 2.06 211 219 | 3.11 3.38 4.23 | 259 56.07 276.97 128
Swing State | 1.03 1.07 1.13 | 260 265 272 | 3.68 47.60 226.47 106
Data plane 1.04 109 114|206 213 220 | 3.51 43.50 177.75 80

Overall, the scenario without a scaling solution performed the worst. When any flow migration algo-
rithm is enabled on the network, flow latencies and maximum queue lengths drastically improve. The
controller-based design improves this behaviour by implementing scaling. This is further improved by
Swing State and our implementation, which use the data plane for transferring state.

Experiments show that Swing State and our solution show similar overhead rates. However, due to the
fact that Swing State uses full packets to transfer state and our solution is using small packets of 28
byte, our solution requires lower migration bandwidth.

Compared to the controller-based design, Swing State is able to reduce migration latencies with 0.73s,
and is able to reduce initial state synchronisation by 1.07s on average. Swing State performs initial state
migration 20ms quicker than our solution on average, while our implementation performs full migration
0.52s quicker than Swing State does. Furthermore, our algorithm shows improvements in observed
queue sizes and latency experienced by flows compared to the other scenarios.

Swing State clones packets in all protocol phases. This leads to higher packet rates on the switch
that is already overloading. Our algorithm improves this, by only requiring packet cloning in the update
phase. Compared to Swing State, our algorithm reduces maximum queue sizes during migration by
25%. As the controller-based approach takes longer to migrate flows, queue sizes grow even longer.






Result discussion

Experiments showed that our solution is able to migrate flows reliably and efficiently, by directly com-
municating Network Function (NF) states without using the control plane. Measurements have proven
that our solution is able to migrate flows on average in 2.13s, where a comparable control plane based
migration solution takes 3.38s to migrate flows. Swing State, the current state-of-the-art approach on
migrating NF states, takes 1.07s to perform initial state migration, and migrates the flow in 2.65s on
average. Our algorithm achieves initial state migration in a comparable time (1.09s), and improves flow
migration times by 0.52s.

In contrast to expectations, Swing State was able to perform initial flow migrations approximately 20ms
quicker than our implementation. As Swing State has to wait for packets when the protocol is activated,
our implementation directly forwards state information to the migration’s destination. This could be ex-
plained by the fact that we did not use hardware accelerated devices, but a virtual software_switch.
Since we run different programs, one program could be asking more resources than another program,
slightly delaying the switch. This could also be caused by inefficiencies in our system. As the environ-
ment was virtualized, load on other servers could influence the measurements.

As our control plane latency is 500ms, the initial state migration time is heavily impacted by this. As
Swing State and our algorithm require only two messages between the control plane and the data plane:
one to detect the overflow, and one to instruct the overloading switch to transfer states, it transfers state
more quickly. The controller-based algorithm requires four communications: detecting the overflow,
instructing the overloading switch, sending the state from the overloading switch to the control plane,
and sending the state from the control plane to the migration destination.

If we subtract the transmission delays from these migration times, state migration via the data plane
is performed in 90ms. The controller-based approach takes 70ms to initially migrate a state. This
difference is most likely due extra processing delays in the controller, which needs to determine what
to do with the packet, causing an additional delay of approximately 20ms on our system.

Short initial state migration times are important for our algorithm since the largest overhead is observed
during the update phase of the flow migrations, as each state update requires an additional packet on
top of the overload that the switch already experiences. When the state reception acknowledgement
arrives, the control plane can initiate the forward phase, where the overloading switch only forwards
packets to the migration destination instead of forwarding flow packets and sending state updates.

The experiments are performed in a very low-rate environment. As rates are higher, the control plane

would experience overloads, which would changed the outcome of the experiments. However, as we
could only use a single system, system overloads did occur when running all of the network, switches,
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controller, and monitoring scripts all at once, delaying not only the controller application, but also other
tasks, such as packet generation.

Even in this environment, our algorithm shows several benefits over both the controller-based design
and Swing State. First it has a much lower migration overhead during state migration as our algorithm
uses 28 byte packets to which the state values are appended, instead of using the whole packet to ap-
pend state information. Since our solution uses smaller packets and finishes quicker (an improvement
of 8.6% on average), our solution causes less data to be transferred. Second, our algorithm imposes
less load on an overloading switch. Swing State requires packet cloning throughout all migration proto-
col phases, whereas our algorithm only duplicates packets during the update phase, which takes 1.09s
on average. This shows in maximum observed queue lengths. Swing State reaches queue lengths of
106, whereas our algorithm is able to perform migration with maximum observed queue lengths of 80.



Conclusion

In this thesis we proposed a new solution to add elasticity to hardware-accelerated switches. A novel,
horizontal scaling solution for P4 Network Functions (NFs) was designed and implemented. We inves-
tigated ways to introduce elastic scaling to P4 Virtualized Network Functions (VNFs). By implementing
a general scaling solution in P4, NFs could benefit from both scaling and hardware acceleration si-
multaneously, as many NFs can be implemented in P4 to let them profit from hardware acceleration,
without requiring them to run on vendor-specific hardware.

Our solution is able to migrate flows by offloading a certain part of the switch’s load to another switch
already present in the network by using horizontal scaling. Flow migration is performed in three stages,
namely the initialization phase, update phase, and the forward phase. In these phases, a state is
migrated to the migration destination and updated if states change at the migration source. When this
is all completed, the flow path is changed in such a way that the load is reduced from the overloading
switch.

A decision-making algorithm decides what flows to migrate to which switch, given an already exist-
ing Service Function Chain (SFC). It is able to scale elastically, based on flow rate information from
switches, NFs, and individual flows. To reduce overload detection latency, switch overloads are de-
tected by the switches. Flow rate information is gathered by a novel process, which only monitors
high-rate flows, instead of all flows, in order to reduce the monitoring overhead.

Our solution has several advantages over the current state-of-the-art: Swing State. First, it has a much
lower migration overhead during state migration as our algorithm uses 28 byte packets to which the
state values are appended, instead of using the whole packet to append state information. Since our
protocol finishes migrations quicker, and the observed migration overhead packet rate is similar, our
solution will transmit less data to transfer NF states.

Second, our algorithm imposes less load on an overloading switch. Swing State requires packet cloning
throughout all phases on the migration’s source, whereas our algorithm only duplicates packets during
the update phase, which takes 1.09s on average. Third, our solution is able to deal with packet loss,
as the NF states are plainly overwritten, instead of sending incremental values. Our protocol is able to
deal with out-of-order packets, since it does not overwrite NF states with older information, due to the
incremental sequencelD appended to state updates.

In order to reduce the overhead of detecting overloads, our solution detects overloads on the switches,
which monitor their own queues. If the queue size is longer than a certain amount of positions and is
growing, the control plane is notified of an overload. This eliminates the need for high-rate polling, as
the overload detection latency does not depend on a sample frequency. Moreover, this reduces the
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overall overload detection latency, as overloads are detected as quickly as the best-case in sampling
ingl
scenarios’.

In order to find a location to spawn new instances, several data can be used. In this thesis, we propose
to use overall switch loads which, together with a decision-making algorithm that considers NF, and
individual flow rate statistics, decides to migrate which flows to which NF instance. These values are
sampled approximately every second. Switch and NF rate statistics are polled using packets of the link
discovery process. Flow statistics are sent by the switches. To increase efficiency, rate statistics are
only gathered for high-rate flows.

This decision-making process ensures that solutions proposed by the process are valid and do not
overload other switches by checking if the total flow rate is within limits of the switch and path lengths
do not increase above a certain threshold. To ensure the solution is valid a safety margin of 10% on
the switch capacity and the flow rate that is migrated is taken into account to allow some variability in
flows that cross the switch.

As states are communicated within the data plane, the control plane only has a coordinating role.
Therefore, the control plane will not be overloaded by performing flow migrations.

The load on the control plane is reduced, as the control plane only indicates protocol phases, instead of
actively relaying NF states. Packets indicate the protocol phase, which is coordinated by the migration
source. This ensures that protocol phases are only programmed on one switch which, in turn, prevents
desynchronization issues.

Migrations are only performed when necessary (i.e. when a switch overloads) and only migrates flows
to switches which are not overloaded by the additional load. A mechanism to optimize NF instance
usage is in place, that periodically checks whether NF instances can be removed without overloading
switches.

Our decision-making protocol takes network topology into account, by preventing path length to in-
crease more than three network hops. Our P4 solution is able to forward state updates between
switches, eliminating the need for direct links between the migration source and migration destination.

In order to decide which flows to migrate to which switch, our solution uses a low-overhead to provide
the decision-making algorithm with switch, NF, and individual flow information. Since only high-rate
flows are considered for migration, low-rate flows are not monitored to reduce the monitoring overhead.

These findings provide a potential mechanism for elastic scaling in hardware accelerated VNFs. Com-
pared to a similar control plane based state migration approach, our data plane based migration pro-
tocol reduces initial state synchronization times by 1.02s and improves flow migration times by 1.26s,
a reduction of 37%. As this decreases queue buildup on the overloading switch, the average latency
experienced by flows reduced by 12.57ms.

8.1. Future work

Future studies should further develop and confirm these initial findings by running experiments on real-
world hardware accelerated environment, instead of a virtual Mininet environment. The assumption that
stateful, instantaneous firmware reloads on P4 hardware is currently unavailable might be addressed
in future studies, as technology advances. In future work, investigating how to mitigate overloads by
migrating multiple NFs to multiple switches might prove important for a more efficient network and more
flexible deployment of hardware. Especially large, dense networks might benefit from this.

"The best-case overload detection latency in a monitoring scheme which uses sampling to retrieve usage statistics is when an
overload occurs the exact moment before indicators are sampled.
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Furthermore, future work could focus on migrating NF states that are network-dependent (e.g. in-
or output port). More research should be conducted into the individual flow monitoring. As currently
a fixed flow volume, depending on the overload volume and the capacity of the switch is monitored,
monitoring behaviour could be further optimized by only monitoring flows when the load is over a certain
percentage.

Research could be done in order to achieve high-availability P4 NFs, by transmitting state updates
even when switches are not overloading. If a separate phase of the protocol could be implemented,
flows could automatically be routed to backup NF in the case the primary NF fails. Our solution could
have uses in line congestion prevention, by considering link loads, instead of switch loads.

This work could be used as a way to achieve elastic network slicing. If slices could be placed dynam-
ically using our in-data plane state migration algorithm, network slicing would become more dynamic
and could use hardware more efficiently; ultimately leading to lower costs for customers.






Appendices

Decision-making process for flow migration

Algorithm 2 Pseudo code for decision-making process $SwitchPool is either the pool of switches that
does not run the NF yet (scaling), or the pool of switches that does (rebalancing flows volumes).

switch Switch that is experiencing overload
migrateVol volume to reduce load on switch, with 10% margin

for each NF on switch do
Find all current NF instances on switch
for each sw $SwitchPool do
freeVolunused capacity on sw 10% margin
if freeVol > migrateVol then
for each flow on switch do
if newPathLength < 3 + curPathLength then Only allow an added path length of 3
totalFlowVol += currentFlowVol

end if
if totalFlowVol > migrateVol && totalFlowVal < freeVol then
return Solution Return NF, switch, Flows
end if
end for
end if
end for
end for

return noSolution
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start
(tmp[15:0])

parse_mig_flow_recv

[16wOx1433 | (4. mig_flow_recv.subProtocol)

parse_ethernet
(hdr.ethernet.ctherType)

parse_ipv4
(hdr.ipv4.fragOffset, hdr.ipv4.ihl, hdr.ipv4.protocol)

parse_pktin
(hdr.ethernet.etherType)

parse_netinfo
(hdr._mig_flow_recv.VNFID)

(13w0x0, 4w0x5, 8w0x1) ?oxo\ 4w0x5, 8w0x6) (usoxo\ 4w0x5, 8w0x11)

(e Tawmwm“%o& _Ewmwm_“%cé parse_mig_fwStateful_value | [ parse_mig_fwStateless_value | | parse_mig_packetCounter_value | | parse_mig_proxyStateless_value | | parse_timestamp
default default default always

P4 parser tree

Figure A.1: Parser representation of P4 parser. Parsing starts at start, for different fields it can parse different headers.



45




46 A. Appendices

P4 parser tree

deipd sValid;
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RUE

igross_port
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Tude_onkg_flow_recv VNFID - 15;
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nd_nig_flow_rocv fowhds |- 12611 andard_motadata.ogross_upoc |- 255,

| [standard motada nstanco.type

ALSE

mota digest_pit.

Figure A.2: Flow diagram representation the ingress pipeline in the P4 program
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P4 egress logic tree

__START__

standard_metadata.instance_type == 1; |

hdr.ipv4.isValid();

hdr.tcp.isValid();

hdr.udp.isValid(); FALSE

egress_set_port_metadata_tcp_thl

egress_set_port_metadata_udp_tbl egress_set_port_metadata_rest_tbl

clone_pkt_set_hash_table FALSE

| hdr._mig_flow_recv.VNFID == 0; |

ALSE

’ hdr._mig_flow_recv.VNFID == 15;

TRUE

‘ALSE

/ /

‘ hdr.udp.isValid() || standard_metadata.deq_qdepth >= standard_metadata.enq qdepth && standard_metadata.deq_qdepth != 0;

update_packetCounter header table

monitor_read_data_tbl
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store_digest_tbl

Figure A.3: Flow diagram representation the egress pipeline in the P4 program
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