
Delft Center for Systems and Control

Decision Making under Uncer-
tainty for Automated Vehicles in
Urban Situations

Jayesh R. Chandiramani

M
as

te
ro

fS
cie

nc
e

Th
es

is

Decision Making under Uncertainty for
Automated Vehicles in Urban

Situations

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

Jayesh R. Chandiramani

November 7, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by the PEM department at RWTH Aachen University.
Their cooperation is hereby gratefully acknowledged.

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Decision Making under Uncertainty for Automated Vehicles in Urban

Situations
by

Jayesh R. Chandiramani
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: November 7, 2017

Supervisor(s):
dr.ir. S. Baldi

ir. M. Sefati

Reader(s):
dr.ir. T. Keviczky

dr.ir. R. Happee

dr. L. Ferranti

Abstract

One of the most crucial links to building an autonomous system is the task of decision making.
The ability of a vehicle to make robust decisions on its own by predicting and assessing future
consequences is what makes it intelligent. This task of decision making becomes even more
complex due to the fact that the real world is uncertain, continuous and vehicles interact
with each other. Sensors that perceive the real world and measure quantities such as position
and speed of other traffic objects are inherently noisy and are further susceptible to external
conditions. On the other hand, the road users’ intentions are stochastic and not measurable,
and the presence of partial or complete vision based occlusions can make any measurements
obtained useless. The decision making unit thus has to be aware of these issues and use the
limited knowledge available to anticipate future situations that could unfold in an infinite
number of ways to then maximize a reward (or minimize a cost).

In this thesis, a method to make automated longitudinal decisions along a predetermined
path for autonomous vehicles in unsignalized urban scenarios is proposed. The decision mak-
ing problem is formulated as a continuous Partially Observable Markov Decision Process
(POMDP) with a discrete Bayesian Network estimating the behavior of other traffic objects.
The future evolution of states are predicted using a multi-model Trajectory Estimator along
with the digital map of the current driving area. Since continuous spaces make the belief
space infinitely large, calculation of the value function for this problem becomes computa-
tionally intractable. The presented solver algorithm approximates the value function instead
of computing it directly, and additional optimizations reduce the belief space exploration area
in order to improve performance. The results show that this single generalized framework is
able to handle all the tested urban scenarios with a good safety margin in scenes with multiple
traffic objects, even under zero visibility of the other traffic objects due to the presence of
occlusions.

Master of Science Thesis Jayesh R. Chandiramani

ii

Jayesh R. Chandiramani Master of Science Thesis

Table of Contents

Acknowledgements vii

1 Introduction 1
1-1 Motivation . 1
1-2 Related Work . 3

1-2-1 Future State Prediction . 3
1-2-2 Decision Making . 5

1-3 Research Questions . 7
1-4 Outline . 8

2 Behavior Prediction and Trajectory Estimation 9
2-1 Bayesian Network Theory . 9

2-1-1 Introduction to Bayesian Networks . 9
2-1-2 Inference in BNs . 10

2-2 Applying discrete BNs to estimate driver behavior 14
2-3 Multi motion model approach for future state prediction 16
2-4 Summary . 18

3 Decision Making 19
3-1 Introduction to Partially Observable Markov Decision Processes 19
3-2 Solver algorithm . 22

3-2-1 Monte Carlo Value Iteration . 22
3-2-2 Performance improvements . 25

3-3 Formulating the autonomous driving problem as a POMDP 27
3-3-1 Transition model . 28
3-3-2 Observation model . 28
3-3-3 Multi Resolution Planning . 29
3-3-4 Reward function . 29

3-4 Summary . 32

Master of Science Thesis Jayesh R. Chandiramani

iv Table of Contents

4 Simulation results 33
4-1 Simulation Setup . 33

4-1-1 Parameter Configuration . 34
4-1-2 Evaluation Criteria . 34

4-2 Results . 35
4-2-1 Perpendicular Intersection . 35
4-2-2 Curved Intersection . 40
4-2-3 Zipper Merge . 44
4-2-4 Roundabout . 48
4-2-5 Occlusions . 52
4-2-6 Computation time . 54

5 Conclusions and Future Work 55
5-1 Conclusion . 55
5-2 Future Work . 56

A Preliminaries 57
A-1 Probability theory . 57
A-2 Value function approximation in POMDPs . 58

Bibliography 61

Jayesh R. Chandiramani Master of Science Thesis

List of Figures

1-1 Autonomous Driving System Architecture [1] 2
1-2 Longitudinal motion scenarios . 3

2-1 Basic Bayesian Network . 10
2-2 Moralization . 11
2-3 Triangulation . 11
2-4 Clique graph formation . 12
2-5 Building a clique tree . 12
2-6 Message passing in a junction tree . 13
2-7 Summary of the junction tree algorithm . 14
2-8 Comparison of maneuver classes . 15
2-9 Discrete Bayesian network for vehicular behavior prediction 15

3-1 POMDP Belief Tree . 20
3-2 Optimally reachable belief space exploration . 26
3-3 Observation model in urban areas . 29
3-4 Vehicles tunneling each other between two time steps 31
3-5 Two level continuous collision detection . 32

4-1 Test scenario 1: Setup . 35
4-2 Test scenario 1: Results - Behavior prediction 36
4-3 Test scenario 1: Results - Decision Making . 37
4-4 Test scenario 1: Visualization . 37
4-5 Test scenario 2: Setup . 38
4-6 Test scenario 2: Results - Behavior prediction 38
4-7 Test scenario 2: Results - Decision Making . 39
4-8 Test scenario 2: Visualization . 39

Master of Science Thesis Jayesh R. Chandiramani

vi List of Figures

4-9 Test scenario 3: Setup . 40
4-10 Test scenario 3: Results - Behavior prediction 40
4-11 Test scenario 3: Results - Decision Making . 41
4-12 Test scenario 3: Visualization . 41
4-13 Test scenario 4: Setup . 42
4-14 Test scenario 4: Results - Behavior prediction 42
4-15 Test scenario 4: Results - Decision Making . 43
4-16 Test scenario 4: Visualization . 43
4-17 Test scenario 5: Setup . 44
4-18 Test scenario 5: Results - Behavior prediction 44
4-19 Test scenario 5: Results - Decision Making . 45
4-20 Test scenario 5: Visualization . 45
4-21 Test scenario 6: Setup . 46
4-22 Test scenario 6: Results - Behavior prediction 46
4-23 Test scenario 6: Results - Decision Making . 47
4-24 Test scenario 6: Visualization . 47
4-25 Test scenario 7: Setup . 48
4-26 Test scenario 7: Results - Behavior prediction 49
4-27 Test scenario 7: Results - Decision Making . 49
4-28 Test scenario 7: Visualization . 49
4-29 Test scenario 8: Setup . 50
4-30 Test scenario 8: Results - Behavior prediction 51
4-31 Test scenario 8: Results - Decision Making . 51
4-32 Test scenario 8: Visualization . 52
4-33 Test scenario 9: Setup . 52
4-34 Test scenario 9: Results - Decision Making . 53
4-35 Test scenario 9: Visualization . 53

A-1 Policy Tree . 59

Jayesh R. Chandiramani Master of Science Thesis

Acknowledgements

This MSc thesis marks the end of my work as an MSc student at Delft University of Technology
and brings to conclusion two exciting years. I would like to take this opportunity to thank the
entire DCSC department at TU Delft and the PEM department at RWTH Aachen University
for providing a stimulating environment and for keeping student’s motivation high.

I would specifically like to thank my supervisors Mohsen Sefati (Lehrstuhl fur Production
Engineering of E-Mobility Components, RWTH Aachen), and Simone Baldi for their continu-
ous support and guidance throughout the research project, while pushing me to achieve more
than I could have done myself.

I would also like to express my deepest appreciation to my family for their unconditional love,
support and trust. I would also like to express gratitude to all my friends for the support and
the direct or indirect help they provided me with during my thesis.

Delft, University of Technology Jayesh R. Chandiramani
November 7, 2017

Master of Science Thesis Jayesh R. Chandiramani

viii Acknowledgements

Jayesh R. Chandiramani Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Globally, the number of on-road fatalities stand at a staggering 1.25 million per year [2].
While Europe provides a relatively small contribution to this number at 84,600 fatalities per
year [2], it is still a significant number. Additionally, the number of vehicles on the road
also steadily increases, as does the time spent by each individual traveling each year. This
shows the importance of increasing the safety and efficiency of vehicles and this is reflected
in the fact that development with regard to Automotive Driver Assistance Systems (ADAS)
has been progressing at a rapid rate over the last few decades. More and more vehicles are
being equipped with increasingly sophisticated ADAS systems and more recently, automated
vehicles have gained the spotlight as fully autonomous vehicles become a reality.

The first big push towards research and development of automated vehicles came with the
DARPA Urban Challenge in 2004 [3], where numerous research teams presented their au-
tonomous vehicles against each other, and the efforts have been increasing substantially since
then. When Google received permission to test its prototype autonomous vehicle for the
first time in 2012 [4], it was a significant step forward to a safer and more efficient future.
Currently, there are numerous research groups and companies working hard on bringing this
technology to market, as governments around the world prepare to modify their road laws for
this eventuality.

In order to describe the architecture of such a system, let us first look at the tasks performed
by a driver. According to [5], these are: Navigation, Guidance and Stabilization. Navigation
involves being able to use map data to find a path from point A to point B, with some
consideration of traffic levels and length of route to minimize the overall time taken. Guidance
refers to the process of perceiving the world, detecting other road user’s intentions and then
making decisions such as the desired velocity and choice of lane based on this information. The
stabilization level relates to aligning the vehicle motion with the selected guidance parameters
within an acceptable level of accuracy. Expanding these basic tasks into a generalized system
architecture, this results in the structure seen in figure 1-1. According to this, the automated

Master of Science Thesis Jayesh R. Chandiramani

2 Introduction

vehicle is expected to work on its own to localize itself globally, define its mission, plan a
route using map data and cooperate with other road users by predicting their intentions. It
also needs to take other static and dynamic objects into consideration to finally accomplish
its mission while ensuring driver safety.

Figure 1-1: Autonomous Driving System Architecture [1]

Within this structure, the task of decision making is especially vital as it converts a thought
(such as traveling from point A to point B along a path) into action. It does this by considering
the evolution of the current scene and weighing the actions against each other to choose the
most optimal one that would result in a safe and efficient journey. Generally speaking,
there are two main categories of decision making methods - Group and Individual [6]. In
autonomous driving terms this is referred to as centralized and decentralized decision making
methods. Centralized methods are applied under the assumption that vehicles are able to
communicate with each other or with some infrastructure, while decentralized methods rely
on their perception of the environment to make decisions. Further, decision making for
autonomous vehicles is split into two subcategories - for lateral and longitudinal motion.
Lateral motion essentially deals with lane keeping or lane changing, while longitudinal motion
deals with braking, accelerating or keeping a constant velocity along a path.

Although the process of decision making seems simple on paper, it must be considered that
there are numerous challenges along this process when it comes to autonomous vehicles. The
first challenge is the consideration of the uncertainty in the scene. Autonomous vehicles use
sensors such as cameras, RADAR and LIDAR to gather information about the environment
and thus predict the evolution of vehicles around it. The problem here is the fact that
these sensors are always susceptible to noise, faulty measurements and obstacles blocking
their vision. Further, information such as the driver’s intention is not measurable and is
usually stochastic as human drivers could change their intention at any moment. The second
challenge is that along with safety and efficiency, the comfort of the passengers within the

Jayesh R. Chandiramani Master of Science Thesis

1-2 Related Work 3

vehicle must also be accounted for and a smooth ride is highly desirable. For example, an
overly conservative strategy in a crowded area could lead to uncomfortable, jerky vehicle
behavior. Finally, the decision making unit must not be limited to certain scenarios such as
single lane or highway driving. For fully autonomous driving, it must be applicable to all
types of scenes and scenarios.

In this thesis, the goal is to develop a decentralized decision making framework for longitudinal
motion within urban scenarios. To demonstrate that the framework is applicable to all urban
situations, scenes such as the ones depicted in figure 1-2 are used for testing and validation
of the work.

Figure 1-2: Longitudinal motion scenarios
(a) Perpendicular intersection (b) Curved intersection (c) Zipper Merge (d) Roundabout

1-2 Related Work

1-2-1 Future State Prediction

The first step in choosing the most optimal action to execute is being able to predict what the
vehicles in the near vicinity intend to do and thus what their physical states would be. The
current states (position, velocity, yaw angle) can be measured using sensors in the perception
subsystem, using which a prediction must be made for each time step over the total horizon.

According to [7], future state prediction models can be divided into three categories:

Physics based models

These are the most direct models, as they simply model vehicles as dynamic entities that
obey the laws of physics. Future positions are calculated using dynamic or kinematic models
using the current state measurements.

The most commonly used models from this category are the Constant Velocity (CV) and
Constant Acceleration (CA) models [8][9][10] which use basic equations of motion to make
linear predictions of future states along with velocity and acceleration based simplifications
respectively. They usually result in errors in applications with longer time horizons or slow
sampling rates, but are computationally inexpensive and can be applied to certain cases such
as constant highway driving very effectively.

Master of Science Thesis Jayesh R. Chandiramani

4 Introduction

The Gaussian noise representation of the uncertain vehicle state is popular [11][10] as it is used
in the Kalman Filter, which is a method to iteratively update a vehicles state using a linear
evolution and sensor model, along with a normal distribution for consideration of uncertainty.
The combination of prediction and update steps for each new measurement results in a mean
trajectory for the vehicle.

Another method in this category is Monte Carlo simulations [12], where random sampling of
variables from the evolution model generates future trajectories for the vehicle. The advantage
of this method is that future trajectories can be obtained using certain or uncertain vehicle
state knowledge.

Maneuver based models

These models assume that a vehicle is an independent entity performing a specific maneuver
such as a lane change or a turn. In order to do this, either prototype trajectories must be
generated [13] or the intention or behavior of the vehicle is required. This calls for methods
such as a Hidden Markov Model [14], Bayes classifier [15] or a Support Vector Machine [16]
to be used for the task of behavior prediction.

In [17], 8 distinct maneuver classes are identified: Turn left, Turn right, Lane Change left,
Lane Change right, Follow road, Follow vehicle, Target brake and Trash that are the outputs of
a discrete Bayesian network (BN). The trash class relates to highly uncertain maneuvers and
is meant to model highly stochastic behavior such as that of a drunk driver. The authors use
a separate model for each of these classes and include a noise term to model the variation and
uncertainty of the state variables over longer time horizons. This is very advantageous as it
does not simply apply a single model to various maneuvers and also the inherent consideration
of uncertainty expands the potential decision making methods that could be used (at the cost
of the decision making approach needing to perform multiple iterations).

Overall these models are much more accurate than the simple physics based models especially
over longer prediction horizons, but they come with an added computational overhead and
require careful selection of training data.

Interaction based models

This class of models assume vehicles to be entities that interact with each other and influence
each other’s maneuvers. This leads to a more sophisticated approach with a better under-
standing of the vehicle motion within the scene. An example of such an approach is seen
in [18], where a Dynamic Bayesian Network (DBN) is deployed to consider all the available
information and then predict the intention of the driver. Using this, the future state of the
vehicle is predicted along with all the associated uncertainty. This makes the approach much
more reliable over longer prediction horizons but again at the cost of higher computational
overhead, which becomes even more significant in densely populated urban areas with a lot
of traffic. Additionally, the problems relating to collecting a large amount of training data
and making assumptions while building the network itself remain.

Jayesh R. Chandiramani Master of Science Thesis

1-2 Related Work 5

1-2-2 Decision Making

The earliest autonomous vehicles focused on computer vision, control architecture and inte-
gration rather than on outright decision making [19]. While the complexity of the decision
making task was recognized to some extent at the time, the first DARPA Challenge in 2004
brought it into focus and propelled development in this area [3]. In this part some of the
main decision making approaches specifically in the field of autonomous driving are explored.
Note that some of the methods discussed in this section employ behavior and future state
prediction methods that are similar to the ones discussed earlier.

Manual Programming

Finite State Machines (FSM) and Rule Based manual programming approaches are the sim-
plest type of decision making approaches but they are very effective even today as they allow
for a clear method of failure analysis and testing. Some of the best teams at the DARPA
Challenges such as Team AnnieWay [20] used an FSM based approach where states included
driving behavior and state transitions occurred as per manually written conditions. Another
example is Tartan Racing Team ("BOSS") [21] who used an event triggered automatic state
machine based approach.
In Germany, Mercedes-Benz has demonstrated the S500 Intelligent Drive research vehicle that
successfully covered a distance of 100km between Mannheim and Pforzheim, encountering
some complex urban traffic situations along the way [22]. They used a hierarchical state
machine approach to generate time and space constraints based on assuming the worst case
scenario for each and fed this information directly into the trajectory planner.
These methods are very efficient and easy to understand and debug. The drawback is that
the only way that uncertainty can be considered in the method itself is by assuming the worst
case scenario at all times.

Optimisation

The first method is by defining a cost function and evaluating each action or sequence of
actions using optimization algorithms in order to find the one with the lowest cost. The
autonomous driving use case usually results in a highly non linear cost function so the simpler
optimization algorithms (such as linear programming or convex optimization) cannot be used.
Instead, methods such as Chance Controlled Optimization in [23] are used to efficiently solve
lane change overtaking in urban areas. In this case, other road user’s behavior is modeled
using a Markov linear system but formulated as a discrete time stochastic hybrid system. In
[24] the authors integrate receding horizon control into game theory in order to make the
decision dependent on both the current and future predicted uncertain information. A game
is defined for lane changes and reachability analysis is then used to include an upper and
lower bound on the vehicle position at each time step while evaluating actions.

Graph Search

Graph search methods are another class of approaches that have been used in many fields.
Here a tree-like graph is created to model different decisions and their consequences in order

Master of Science Thesis Jayesh R. Chandiramani

6 Introduction

to choose the optimal action. In [25], a simple rule based classifier is used to model other
road users and the A* graph search method is then used with invisible collision states as a
heuristic. This method was implemented in BMW’s Highly Automated Driving Framework
simulator as well on the road. Another approach is using Rapidly Explored Random Trees
(RRTs). In [26], the authors use cooperative perception to perform motion planning via an
RRT based framework. First the map is divided into a grid using the Occupancy Grid Map
and then a cost map is created to keep the vehicle in the center of its lane on the road and
planning is then handled by the Anytime RRT algorithm. In [27], the motion planner uses
Sparse Stable Trees with the RRT* method to simplify the problem by pruning non-useful
nodes and MPC.

Model Predictive Control

The next method is using Model Predictive Control (MPC), which is a continuous space
control method that uses a dynamic model to predict future events and minimizes a cost
function to find the optimal solution. [28] first models driving as a hybrid system, and uses
inverse reinforcement learning to predict behavior. An MPC like cost function is then sought
to be minimized in order to make lateral lane change decisions. In [29], automation of lane
change maneuvers is looked at as a longitudinal planning problem. By first using a trajectory
planner to check if a longitudinal trajectory exists in order for the ego vehicle to be positioned
safely in a gap in the target lane and then planning a lateral trajectory, the problem complexity
is reduced and MPC is applied more effectively in the lateral and longitudinal direction. [30]
uses the Interactive Multi Model-Extended Kalman Filter (IMM-EKF) method to estimate
and a maximum likelihood prediction of other road user’s states is got using the Kalman filter
equations. Lane change and lane keeping cost functions are defined and the driving mode is
derived by comparing these two costs. Finally, the lower level MPC considers disturbances
and uncertainty to complete the decision making task.

In general, these approaches are advantageous because they allow for a large action set to be
used but they ordinarily do not have the provision to consider uncertainty.

Partially Observable Markov Decision Process

The next method is using the Partially Observable Markov Decision Process (POMDP) which
is based on probability theory. The aim is to maximize the total expected reward over a time
period by evaluating all action sequences and considering their resulting effects. A probability
distribution over the states is used in order to allow for the consideration of uncertainty in
the decision making process. This is usually computationally expensive to solve but a lot of
research has been done to try and find ways to simplify the problem, such as the team from
TU Braunschweig that uses relative distances, velocities and time to collision with various
objects within a signal processing network to provide the POMDP with inputs such as "lane
change possible" and "lane change beneficial" to then find the optimal lane change action
[31]. The work done by this research group was further extended with the inclusion of a
behavior planning framework, a situation prediction model and also enabled variable time
steps in the planning process [32]. Other approaches try to reduce the number of branches
in the decision tree and reduce the time needed to find the optimal solution. For example,

Jayesh R. Chandiramani Master of Science Thesis

1-3 Research Questions 7

"DESPOT" is one of these solvers that has gained popularity due to its effectiveness [33][34].
In [35], the authors use Monte Carlo planning and reduce the complexity of the continuous
POMDP autonomous driving problem at an intersection by iteratively developing an effective
low dimensional discrete representation of the state space. This allows for a significant speed
up of the decision making problem but this representation needs to be formulated offline,
which is a problem as it needs to be continuoually updated if there is a change in the map.

Overall, this approach is extremely advantageous as it allows all sources of uncertainty to
be modeled but real time implementation is usually a problem due to the computational
complexity.

Deep Learning

Finally, there are deep neural networks, or simply "Deep Learning" (DL) approaches, which
have been gaining popularity in recent years across a variety of applications. However, due
to the secretive nature of automotive companies, there is a lack of scientific publications in
this area with respect to autonomous driving.

For example, Google/WayMo has been developing an approach in this direction since 2009
and have been collecting a few million miles of driving data [36]. Tesla has also been collecting
driving data in 2014 and then after they rolled out their driver assistance package in 2015,
they have continued to collect more data especially when driver intervention is required [37].
Unfortunately neither of these companies have published any scientific papers regarding their
work. nVidia has released some information about their end to end approach in [38], where
they present a neural network with 9 layers that determines steering angles based on video
input. The network is said to have been trained on images from a front facing camera and
steering wheel input from a human driver, but further details are minimal.

The problems with DL approaches are the amount of training data required to actually train
the network under all possible scenarios and the fact that the resulting system is basically a
black box [39]. This is a major problem, as it hinders failure testing and performance under
untrained scenarios cannot be guaranteed. In the case undesired behavior is detected, more
data specific to that scenario must be obtained and the system must be retrained. Automotive
companies in general are opposed to this approach, especially as end-to-end solutions as there
is no clear understanding of how the underlying network works. Instead, there is a general
preference for transparency and well defined rules when it comes to subsystems interacting
with each other.

1-3 Research Questions

From the current state of the art, it is clear that there are a multitude of approaches to
solving the decision making and behavior modeling problem. The main criteria for choosing
an approach in this thesis are:

• Generality: an approach that could be applied to all types of driving scenarios

• Traceability: allowing for easy failure analysis and debugging

Master of Science Thesis Jayesh R. Chandiramani

8 Introduction

• Uncertainty handling: allowing for sensor, environmental and behavioral uncertainties
to be taken into consideration

• Real Time Capability: so that the method can be used in real world application

Narrowing the approaches down based on this, POMDP appears to meet most of our require-
ments for decision making, while BNs paired with maneuver based models are a good fit for
future state prediction. Our further research questions are formulated as follows:

1 Is it possible to adapt and optimize state of the art continuous online POMDP solver
algorithms to the autonomous driving problem such that they can be run in real time?

2 Can a probabilistic approach effectively address the stochastic nature of the problem
using the predicted intentions and future states of traffic vehicles?

3 Along with a good safety margin, is it possible to obtain an acceptable level of driving
efficiency from this approach?

4 Can invisible vehicles, occluded from the sensors via obstacles in the environment be
addressed within the decision making approach?

1-4 Outline

Chapter 2 introduces the concept of Bayesian networks and details the Junction Tree algo-
rithm that simplifies the process of making inferences within these networks. Following this,
the behavior prediction problem is formulated within the Bayesian network structure and a
multi motion model approach to future state prediction using the output of the network is
covered in detail.

Chapter 3 introduces POMDPs and the underlying complexity of finding a solution to a
problem modeled as a continuous POMDP. Following this, a state of the art online solver
is presented, along with further performance improvements to bring it closer to real time
performance. Finally, the autonomous driving problem is modeled as a POMDP and the
finer details within this structure are discussed in detail.

Chapter 4 begins with the description of the simulation setup and the parameters used for
the decision making framework. Then several test scenarios are defined and the results of the
behavior prediction and decision making framework is presented and analyzed in detail.

Chapter 5 presents a summary of this MSc thesis, highlighting the contributions and dis-
cussing areas of further development.

Jayesh R. Chandiramani Master of Science Thesis

Chapter 2

Behavior Prediction and Trajectory
Estimation

The main reason a behaviour estimator or predictor is required is to provide the decision
making algorithm with information regarding the future positions and velocities of traffic
objects. Without this information, it would only be possible to proceed by weighing all
possible maneuvers equally, but this is a worst case approach. In this work a discrete Bayesian
Network is used to provide the decision making unit with a set of probabilities corresponding
to a set of discrete maneuver classes for each of the n traffic objects.

This chapter is organized as follows: Section 2-1 introduces Bayesian networks and the related
algorithm used to make inferences from a set of observations. Section 2-2 presents an approach
for behavior prediction adapted from [17]. Section 2-3 discusses how the output of this network
can be used to predict the future evolution of the scene.

2-1 Bayesian Network Theory

2-1-1 Introduction to Bayesian Networks

Bayesian networks (BNs) [40] are a probabilistic graphical representation of knowledge in an
uncertain domain. They are essentially a directed acyclic graph (DAG), which is a graph in
which all edges connecting nodes have a specific direction with no cycles formed within it. In
these graphs, each node represents a variable and the edge that links two nodes represents
a probabilistic dependency between the corresponding variables. They allow for effective
computation of the joint probability distribution (JPD) over the set of variables used.

A BN, uses the DAG structure and the parameters of the model that have to be specified
- ie. the qualitative and quantitative parts. These parameters follow the Markov property,
wherein the conditional probability distribution (CPD) of each node depends only on its
parent’s nodes [41]. For discrete variables, this results in a table of values which lists the local

Master of Science Thesis Jayesh R. Chandiramani

10 Behavior Prediction and Trajectory Estimation

probability that a child node takes on a specific value for each combination of its parent’s
values. The JPD of a set of variables can be uniquely derived from these CPD tables.

Figure 2-1: Basic Bayesian Network

Figure 2-1 depicts a simple example of a BN [42]. The set of edges E = (B,A), (B,C) along
with the nodes X = A,B,C form a DAG as they satisfy the two requirements: all edges
have a direction and form no cycles. From the figure, it can be concluded that A and C are
conditionally independent and thus P (A|B,C) = P (A|B). This means that the probability
of A is conditioned only based on the value of B and the value of C has no relevance here.
The same is true for C: P (C|B,A) = P (C|B). The joint distribution of all the variables in
the BN is:

P (A,B,C) = P (A|B)P (B)P (C|B) (2-1)

Putting this in a general form, for nodes X = X1, X2, ..., Xn, the joint probability function
is:

P (X) =
n∏
i=1

P (Xi|parents(Xi)) (2-2)

Thus, the directed edges give the graph meaning by telling us what other variables a specific
variable is conditioned upon. Depending on whether Xi has parents or not, it is said to
be conditional or unconditional respectively and if the node (variable) is observed then it is
called an evidence node, else it is said to be hidden.

2-1-2 Inference in BNs

The information about the previous nodes that appears as the posterior in the mathematical
expression is termed "evidence" and these evidence nodes are filled using the observations
received. The process of computing the values of the other nodes in the BN using this
evidence is called inference. Making inferences in a BN is usually NP-hard but there are
various methods such as Monte Carlo, Gibbs Sampling and Helmholtz machine that either
perform belief propagation or approximate inferences to make this process more efficient [43].

In this work, the Junction Tree Algorithm (JTA) [42][44] is used for inferences. The idea
behind the algorithm is to create a representation of the graph such that variables are clustered
together in a singly connected graph. This allows for message passing and variable elimination
schemes to be applied easily in order to make inferences.

The JTA basically consists of the following steps:

Jayesh R. Chandiramani Master of Science Thesis

2-1 Bayesian Network Theory 11

• Moralization - it is the process of "marrying" the child nodes to the parents. For each
child node in the initial graph, undirected edges are added between all its parents. This
would result in an undirected graph, with all parents connected of a given node to each
other, as in figure 2-2.

Figure 2-2: Moralization

• Triangulation - this is the process of creating a chordal graph (also called a triangulated
graph), in which each cycle with more than 3 vertices has an edge that connects two
vertices of the cycle. This is also called a chord. Thus it essentially is the addition of
edges to the undirected graph.
If the graph is not triangulated, the "fill-in" process is performed on the basis of the
maximum number search to create a triangulated graph structure. In the cycle ABCD
in Figure 2-3, it is seen that AC and BD are not directly connected to each other.
Therefore, the fill-in must be performed, in which case either a new edge BD or AC is
added, so that the graph structure is triangulated.

Figure 2-3: Triangulation

• Create the junction tree - The first step is the formation of cliques. A clique is a
subgraph in which all vertices are connected in pairs. Several nodes of the subgraph
are then combined to form a common node called a clique node. The clique nodes
then represent a new quantity which is used in the so-called potential representation
instead of the original conditional probabilities. With this formulation the probability
distribution can then be expressed in the form with several potential functions ψi(Ci):

P (V) = K
m∏
i=1

ψi(Ci) (2-3)

where K is a normalization factor such that
∑
V P (V) = 1.

In order to connect cliques to each other and to create a clique graph (which is illus-
trated as a non-directed graph with cliques as nodes), separators are needed. This is

Master of Science Thesis Jayesh R. Chandiramani

12 Behavior Prediction and Trajectory Estimation

understood to be the number of nodes that describe the intersection of two arbitrary
cliques. It can be seen from Figure 2-4 that nodes ABC, BCD, and CE are intercon-
nected. They are then transformed into common cliques, which are linked via separators
BD and C.

Figure 2-4: Clique graph formation

With a triangulated graph the distribution P can also be factorized according to:

P (V) =
∏
Ci
P (Ci)∏

Sj
P (Sj)

(2-4)

where Ci are the cliques and Sj are the separators of a clique tree of the graph. This
global product representation can be split into smaller local distributions to reduce
complexity [45].

Since the algorithm is a tree, some edges or separators must be eliminated to create
a clique tree that fulfills the "running intersection property" (RIP) [44]. According to
this property, if all nodes between a pair of nodes V and W in the clique tree contain
the intersection V

⋂
W , then the clique tree is a junction tree. From the clique graph,

a maximum spanning tree Tmax is now sought for the RIP property. The weighting of
the edges wi is defined as the number of elements in the separator i. Mathematically
this looks like: ∑

wi∈G
wi(Tmax) = max (2-5)

Since the standard methods are applied only to determine the minimum span, the
weights in the clique graph can be negated or subtracted from a number. The prob-
lem is now transformed into a search for a minimal span tree. In Figure 2-5, cliques
are connected by weighted edges. In order to form the tree, the left and lower edges
are required in this example since the sum of weights in the spanning tree reaches a
maximum value.

Figure 2-5: Building a clique tree

Jayesh R. Chandiramani Master of Science Thesis

2-1 Bayesian Network Theory 13

• Potential assignment - In order to calculate further with a potential representation,
parameter assignment has to be done. The clique is chosen such that it’s set and it’s
parents belong to the same clique.
If there are p cliques in total, the potential function of Clique i with 1 ≤ i ≤ p is
described in the potential representation by:

ψ(Ci) =
∏

V :V=Ci

P (V |parents(V)) (2-6)

• Absorption - The process of message passing from one clique to another is called absorp-
tion. A root clique is first chosen arbitrarily from the set of cliques, then information is
passed from the leaf cliques up toward the root. Then the information is passed down
to the leaf cliques again. Thus all cliques receive the information from all other cliques
and the calculation of the joint probability is reduced to the elimination of variables in
individual cliques.
For the clique tree in figure 2-6, Ci is the child clique of Cj and they are connected by
separator Sij with the property Ci \ Sij = Ui, Cj \ Sij = Uj . For the up-calculation
(marked with a single asterisk), the first update of the cliques and separators is used:

ψ∗(Sij) =
∑
Ui

ψ∗(Ci) (2-7)

ψ∗(Cj) = ψ∗(Sij)
ψ(Sij)

ψ(Cj) (2-8)

Figure 2-6: Message passing in a junction tree

If clique Cj absorbs information from several separators at the same time, then:

ψ∗(Cj) =
∏
i ψ
∗(Sij)∏

i ψ(Sij)
ψ(Cj) (2-9)

In the case of the downward calculation (marked with a double asterisk), the second
update is used:

ψ∗∗(Sij) =
∑
Uj

ψ∗(Cj) (2-10)

ψ∗∗(Ci) = ψ∗∗(Sij)
ψ∗(Sij)

ψ(Cj) (2-11)

After the absorption is completed:

ψ∗∗(Ci) = P (Ci) (2-12)

Master of Science Thesis Jayesh R. Chandiramani

14 Behavior Prediction and Trajectory Estimation

ψ∗∗(Sij) = P (Sij) (2-13)

Thus, the global composite probability P (V) is reduced to two single composite proba-
bilities P (Ci) and P (Sij) and then the probability calculation is performed by variable
elimination.
The JTA can be summarized in the following figure:

Figure 2-7: Summary of the junction tree algorithm

2-2 Applying discrete BNs to estimate driver behavior

In order to make effective predictions regarding the intention of either a densely populated
scenario or a single other vehicle on the road, the fact that drivers make mistakes must
be considered [17]. While the idealistic assumption could work in simulation, it could be
dangerous out in the real world when a driver does not follow the traffic rules perfectly,
leading to a rare event. Thus, the regular approaches that end up modeling the average,
sensible driver are not always suitable as they would exclude these rare events or emergency
situations. Instead, if a separate network is instantiated for each vehicle and each network
receives observations/evidence independent from other traffic participants then the network
would designed under the premise that drivers overlook each other and make mistakes. If
there is physical evidence that proves otherwise, then that evidence plays a role in the behavior
prediction.

The basic set of maneuvers that drivers use are: Lane change (left/right), Turn (left/right),
Follow road, Follow vehicle, Target Brake and an additional Trash maneuver class for highly
stochastic driving behavior. While the names of these maneuvers make them self explanatory,
a visualization of these classes is seen in figure 2-8.

These maneuvers are formulated as nodes within the network and the resulting network,
adapted from [17] can be seen in figure 2-9. It consists of three main layers, with 8 maneuver
nodes corresponding to the 8 classes (green), 6 helper nodes (gray) and 12 evidence nodes
(blue). Continuous variables such as position and velocity discretized into intervals to make
the entire network a discrete BN. The hidden layer is embedded between the causal layer

Jayesh R. Chandiramani Master of Science Thesis

2-2 Applying discrete BNs to estimate driver behavior 15

Figure 2-8: Comparison of maneuver classes

Figure 2-9: Discrete Bayesian network for vehicular behavior prediction

and the diagnostic reasoning layer as this allows for inter-causal reasoning to be applied.
The causal layer models the requirement for a specific maneuver, such as the existence of a
neighboring lane being a requirement for a lane change maneuver. On the other hand, the
diagnostic layer models each maneuver’s consequences as measurable states, such as vehicle
acceleration (lateral/longitudinal), yaw rate and velocity (lateral). This greatly simplifies the
corresponding CPTs and allows for explaining away - if the diagnostic layer’s observed states
are common to both a turn and a lane change maneuver, then the causal knowledge of a turn
not existing increases the probability of the lane change maneuver. This also allows for the
creation of the Trash maneuver class, when all of the other maneuvers have been explained
away - for example, in the case of a drunk driver’s movement. The Trash helper nodes assist
with the explaining away.

The entire network is updated with the available evidences and measurements at each new
timestep and the JTA is applied to make inferences for the discrete random variables. Then
the maneuver nodes’ values are normalized so that they form a single state with a valid
probability for each of the 8 maneuvers.

Master of Science Thesis Jayesh R. Chandiramani

16 Behavior Prediction and Trajectory Estimation

For this specific vehicular behavior prediction application, the formulation of the junction tree
itself can be done offline, and only the absorption steps need to be performed online at each
timestep when new observations are obtained. Thus the offline process was done in MATLAB
using the Bayes-net Toolbox [46] and the resulting network along with the online processes
were programmed using C++. The network’s tables were filled with values obtained from
[17], where a similar BN was trained with actual road data to derive the values.

2-3 Multi motion model approach for future state prediction

Since the output of the behavior predictor contains the probabilities for 8 different driving
maneuvers, a different maneuver based motion model can be applied per maneuver while
taking into account the environmental evidences to calculate the future state. Since the
uncertainty in the position will be accounted for in the decision making algorithm, it does
not need to be considered at this point. The models chosen are thus relatively simple, and
can be replaced by more sophisticated models in the future, if deemed necessary.

In general, there are two main coordinate systems to choose from: the Global Coordinate
System (GCS) and the Road Coordinate System (RCS). The difference between these two
is the reference and what the coordinates represent. The advantage of the GCS is that it
is slightly more intuitive and allows for easier collision detection but it tends to be quite
tedious when calculating vehicle positions in scenes in complex road networks. In these cases,
the RCS ends up being easier to use along in order to calculate the future position of the
vehicle along the route. Thus, the GCS is first transformed to the RCS, the state transition
is performed and then the coordinates are transformed back to the GCS. Note that the map
information is vital to performing this transformation and the corresponding transition in the
RCS.

Thus the models corresponding to each of the maneuver classes are:

• Follow Road: A Constant Acceleration (CA) model is chosen as it able to calculate
the future longitudinal position of a vehicle that is following the road in its own lane. s′i

v′i,lon
a′i,lon

 =

1 T 0.5T 2

0 1 T
0 0 1

 si
vi,lon
ai,lon

 (2-14)

where si refers to the longitudinal position (in the RCS), vi,long and ai,long refers to the
longitudinal velocity and acceleration respectively of the ith vehicle. For convenience
and easier reading, henceforth the extra notation is omitted. The acceleration value
used is directly from the initial state and is passed down untouched, while the velocity
and position is calculated each time. The lateral offset t (in the RCS) is assumed to
remain the same over the entire prediction.

• Follow Vehicle: Here it is assumed that the driver reacts to the vehicle in front in
order to keep a reference time gap between the vehicles. The difference between the
predicted time gap τi and the reference time gap τr: ∆τ = τ − τr is used to find the

Jayesh R. Chandiramani Master of Science Thesis

2-3 Multi motion model approach for future state prediction 17

corresponding acceleration to maintain this gap:

alon =
{
cFV amin if ∆τ < 0
cFV amax if ∆τ ≥ 0

(2-15)

where amax and amin are the maximum and minimum comfort acceleration/deceleration
values for a general vehicle, and cFV is the scaling factor based on the deviation from
the reference time gap:

cFV = min

(
1; ∆τ2

2τ

)
(2-16)

This allows for the assumption that the driver will accelerate more smoothly when there
are positive time gaps, and decelerate harder when there are negative time gaps. The
velocity and position is then calculated using the corresponding CA model equations.

• Target Brake: This model assumes that the vehicle is going to stop at the designated
braking target, such as a stop line at an intersection for example. Thus the predicted
acceleration value must be calculated such that the vehicle actually stops at this point
from its current velocity and position:

ai,lon = max

(
−v2

i,lon

2∆d ; amin

)
(2-17)

where ∆d is the distance to the braking target from the current position of the vehicle.
The velocity and position are then calculated using the CA model.

• Lane Change (right/left): A half sine model can effectively simulate a vehicle per-
forming a lane change in the RCS, using the maneuver start coordinate sstart, the width
of the lane wlane and the reference maneuver length lref . The lateral offset is calculated
by:

t = 0.5wlanesin
(
π

lref
∆s− 0.5π

)
+ wlane (2-18)

note that t is the lateral offset in the RCS, and ∆s = s− sstart. The longitudinal offset
requires the yaw angle to be calculated first:

ψ = arctan
(
dt

d∆s

)
= arctan

(
wlaneπ

2lref
cos

(
π

lref
∆s− 0.5π

))
(2-19)

Now at each time step k the above equations are re-used and the model is adapted to
the current lateral position and yaw angle by setting t = tk and ψ = ψk tp solve for lref
and ∆s:

lref = wlaneπ

2 tanψk
cos

(
arcsin

(2tk
wlane

− 2
))

(2-20)

∆sk =
(

0.5 + 1
π

arcsin
(2tk
wlane

− 2
))

lk (2-21)

Once the end of the half sine is reached, the CA model is used.

Master of Science Thesis Jayesh R. Chandiramani

18 Behavior Prediction and Trajectory Estimation

• Turn (right/left): This maneuver is split into three parts - the approach to the turn,
the turn itself and the part after the turn has been executed. For the first and third
parts, the road is considered to be straight near the turn itself and the information
about the turn, such as the radius rc, and start sstart and end send points of the turn
are known from the digital map.
For the first phase, the current velocity is compared to the reference turn velocity which
is calculated such that the driver does not experience more than a pre-set value of lateral
acceleration during the turn:

vlon,max =
√
acomf,max(rc + ∆rc) (2-22)

If the current velocity is lower than or equal to this reference, the acceleration value is
set to zero but if the velocity exceeds it, then the deceleration is calculated to correspond
with the driver adjusting his speed to match this reference velocity. This is then used
in a CA model.
For the second phase, a Constant Turn Radius (CTR) model is used. The map informa-
tion is used to calculate the future position of the vehicle by first calculating the angle
around the turn and the longitudinal distance covered at that speed:

ψturn = send − sstart
rc

(2-23)

xk,lon = vk,lon∆tk (2-24)

xk = xk−1 + xk,lon cosψturndir (2-25)

yk = yk−1 + xk,lon sinψturndir (2-26)

Where dir = vk
|vk|

Finally, in the third phase, the driver is assumed to accelerate back up to the speed
limit thus a comfort acceleration value is then used in the CA model.

• Trash: Since this maneuver class describes highly irrational behavior, there is no single
model that can accurately predict the future position of such a vehicle. Thus, a CTR
and CA model is combined for this, directly using the measurements from the state and
the corresponding model equations above.

2-4 Summary

The future state prediction problem has been investigated and a solution has been proposed
by first predicting the behavior of the driver, followed by applying a state estimation model
specific to the predicted maneuver.
Bayesian networks took up the role of behavior prediction, and the junction tree representation
allowed for inferences within the network to be made as effectively as possible. The vehicle’s
future state is then predicted with higher accuracy than standard approaches by using a
motion model specific to the each chosen maneuver.

Jayesh R. Chandiramani Master of Science Thesis

Chapter 3

Decision Making

Based on the overview on the current state of the art decision making approaches in the field
of autonomous driving in Chapter 1, it is clear that a probabilistic approach such as POMDPs
are the most suitable approach as it can be applied to all driving scenarios, has a good level
of transparency and most importantly allows for the full consideration of uncertainty.

This chapter introduces the concept of POMDPs, followed by the proposed solver algorithm.
Following this, the autonomous vehicle decision making problem is formulated as a POMDP
and the approaches taken towards dealing with occluded vehicles and detection of collisions
between vehicles are described.

3-1 Introduction to Partially Observable Markov Decision Processes

A POMDP is a decision making method that models an agent that has to perform a series of
actions to maximize its expected rewards over a specific time horizon. The main advantage of
POMDPs is the consideration of uncertainty via the concept of "partial observability", which
is the assumption that the agent cannot directly observe the underlying state and therefore
a probability distribution over the set of possible states is used. This probability distribution
is then updated based on a set of transitions, observations and their respective probabilities.

Formally, POMDP is defined by the tuple

(S,A, T, Z,O,R, γ)

where:

• S represents the set of states

• A corresponds to the action set

• O is the observation space

Master of Science Thesis Jayesh R. Chandiramani

20 Decision Making

• Z(s′, a, o) = p(o|s′) is the observation model which is the probability that the agent in
receives observation o when action a was taken to move to state s′. This is based on
sensor uncertainty

• T (s, a, s′) = p(s′|s, a) is the transition model which is the probability that the agent
ends up in state s′ if action a is taken from state s. This is based on uncertainty in the
system dynamics and the environment

• R(s, a) is the reward function which is a real number returned when an action a is taken
in state s

• γ is the discount factor in the range [0, 1) that weighs the current reward and the rewards
further in the future relative to each other.

At t = 0, the agent begins in state s and executes action a. It then moves to state s′, receives
a reward r and observes o. The agent’s imperfect knowledge of its state is represented as a
probability distribution over the states, called a belief. The initial belief is created directly
from s and is then updated based on the action executed and observation received:

b′(s′) = τ(b, a, o) = p(o|s′)
p(o|b, a)

∫
s
p(s′|s, a)b(s) (3-1)

This is similar to a particle filter update, with η chosen to represent the normalization factor:

b′(s′) = ηZ(s′, a, o)
∑
s

T (s, a, s′)b(s) (3-2)

This process then repeats until all possible actions and corresponding observations have been
explored. This results in a large tree containing nodes that represent belief states, and the
edges connecting these nodes are the actions and observations that result in the child belief
node from the parent belief node. The goal of the POMDP is to explore all these possibilities
and assess the value of the expected rewards in each branch to finally choose the branch
that results in the highest expected reward over the entire horizon. A visualization of the
corresponding tree is shown in figure 3-1.

Figure 3-1: POMDP Belief Tree

Jayesh R. Chandiramani Master of Science Thesis

3-1 Introduction to Partially Observable Markov Decision Processes 21

In a POMDP, a policy π : B → A represents a mapping of beliefs b ∈ B to actions a ∈ A.
The optimal policy is thus the branch within the belief tree that is predicted to result in the
largest expected reward. The value function represents the sum of the current and future
rewards as follows:

Vn(b) = max
a

Qn(b, a) (3-3)

where n is the planning horizon and

Qn(b, a) =
∫
s
ra(s)b(s) + γ

∑
o

p(o|b, a)Vn−1(b′(s′)) (3-4)

This recursion is called the Bellman equation and it converges to the optimal value V ∗. The
corresponding optimal policy is thus defined as:

π∗(b) = argmax
a

Q∗(b, a) (3-5)

for the optimal Q function Q∗ associated with V ∗.

It must be mentioned here that the above equations are applicable to continuous POMDP
spaces. In the case of discrete state, action and observation spaces, the equations change
slightly as the integrals are replaced by summation terms over the respective spaces. While
this makes it clear that solving a discrete POMDP is much easier, continuous spaces are
chosen in this thesis as they are much more intuitive for the problem at hand. Another
reason is that in order to use discrete spaces, the entire real continuous world would need to
be discretized in a way that the Markov property is still considered valid [47]. An approach
for this is seen in [35], but requires a massive amount of computation and has to be done
offline. This would be problematic in a new or modified area in the map.

Moving forward to solving the POMDP, there is a choice between online and offline solvers.
Offline solvers are not bound to real time constraints and develop a policy by exploring the
entire state space over thousands of iterations. This is far from ideal when looking at a large
problem such as autonomous driving, as the size of the continuous state space is infinitely huge
and thus the computation time and storage requirement becomes too large. This brings us to
online solvers, which start only with a default policy and are expected to solve the POMDP
in real time. This is of course computationally intensive, especially when continuous spaces
are used and integrals are to be dealt with. While there is no solution to solve the continuous
autonomous driving problem in real time via a POMDP, there has been significant progress
in this regard to approximate a continuous value function via discrete sampling [48].

Although on first glance it seems that the value function calculation is computationally in-
tractable, it has been shown that for a discrete POMDP, the value function calculation can
be reduced to [49]:

Vn(b) = max
α∈Γ

∑
s

α(s)b(s) (3-6)

where Γ is the set of α vectors. Saving these vectors in a set for future use is a form of
learning and simplifies exploration of similar states in the future. An intuitive explanation of
this can be found in the appendix. The main reason this is being discussed is that there exist

Master of Science Thesis Jayesh R. Chandiramani

22 Decision Making

approaches for solving continuous POMDPs that make use this property, thus resulting in a
form of learning and result in lower computational expense.

The following section presents a state of the art solver algorithm that uses this approach
and further modifications relating to the problem at hand are proposed in order to increase
performance efficiency.

3-2 Solver algorithm

There has been a lot of research in the area of solving POMDPs efficiently and as of today, the
fastest approaches to solve a continuous POMDP are point based methods that approximate
the continuous value function instead of evaluating it directly. These methods are based on
the principle of sampling the continuous belief and solving a discrete POMDP problem to
approximate the continuous value function [50]. At each time step, the belief is sampled, the
expected reward for each sample is obtained and weighed with the probability corresponding
to each sample. The sum of these weighted rewards are then the approximated value function.
As the number of samples increase, a more accurate approximation is obtained at the cost of
a higher computational demand.

The current state of the art methods in this category are: Monte Carlo Value Iteration
(MCVI) [48], Determinized Sparse Partially Observable Tree (DESPOT) [51], Real-Time
Belief Space Search (RTBSS) [31] and Heuristic Search Value Function (HSVI) [52]. While
these approaches are similar in the sense that they are all point based methods, they are
vastly different in their actual implementation. More information about these solvers and a
comparison between them can be found in the literature review done for this thesis.

In this thesis, the MCVI is chosen as a base solver because of its novel concept of policy
graphs, which allow for previously explored states to be learned from in an iterative manner.
It uses a so called Monte Carlo (MC) backup operation along with point based planning
that allows the error in the point based planner to be bound while finding the optimal value
function. Further performance improvements are added to this algorithm to bring it closer
to real time performance.

3-2-1 Monte Carlo Value Iteration

As the same suggests, this POMDP solver uses random Monte Carlo sampling of the belief
state to perform point based approximation of the value function [48]. The main concepts
within this approach are the MC backup and the idea of learning from explored states using
policy graphs.

Policy Graphs

While α vectors are advantageous with discrete POMDPs and show a considerable speed up,
they cannot be used with continuous spaces as they result in hardware storage problems due
to the amount of data produced. [48] proposes the concept of representing these α vectors
implicitly in a so called policy graph G whose nodes are labeled with actions a ∈ A and edges

Jayesh R. Chandiramani Master of Science Thesis

3-2 Solver algorithm 23

are labeled with observations o ∈ O. This can represent a policy in the POMDP by leveraging
the advantages of α vectors from discrete POMDPs but without the data storage problems
that are associated with using α vectors with continuous spaces. When such a policy graph
is executed, the agent performs action a from an initial belief b, then receives an observation
o and transitions from node v to node v′ following the edge corresponding to the observation
and this process repeats. Each node v of the policy graph represents an α function αv, and
the value αv(s) is the reward of executing a policy π from an initial state s:

αv(s) = R(s, αv) + E(
T∑
t=1

γtR(st, at)) (3-7)

Thus the value function Vn can be completely determined using the α functions associated
with G:

Vn(b) = max
v∈G

∫
s
αv(s)b(s)ds (3-8)

MC Backup

From the basic concepts, it is known that the optimal value function V ∗ can be found through
value iteration. Each iteration is called a backup H and is represented as:

Vt(b) = HVt−1(b) = max
a∈A

(R(b, a) + γ
∑
o∈O

p(o|b, a)Vt−1(b′)) (3-9)

where R(b, a) =
∫
s∈S R(s, a)b(s)ds. At each belief b ∈ B, the backup H looks ahead and

chooses the optimal action that maximises the sum of expected rewards over the current and
next step.

As mentioned earlier, the value function explicitly is not represented explicitly as a set of α
functions, but instead implicitly as a policy graph. Let us denote this value function as VG
for the current policy graph G [48]:

HVG(b) = max
a∈A

(R(b, a) + γ
∑
o∈O

p(o|b, a) max
v∈G

∫
s∈S

αv(s)b(s)ds) (3-10)

Considering that α vectors are not used explicitly, it seems that the original problem of
evaluating the integral on the right hand side of the above equation still exists. However, the
entire right hand side of this equation can be evaluated via sampling and MC-simulation to
construct a new policy graph G′. This is then called MC-Backup of G at belief b. Algorithm
1 elaborates this process in detail. It must be noted that a strong advantage of this is that
the MC backup only requires a relatively small number of samples to work effectively [48].

Upper and Lower Bounds

In order to have a measure of the accuracy of the approximated value function, the concept
of an upper and a lower bound is introduced, which are represented by V and V respectively.
The lower bound is essentially the maximum value function extended over the belief space
but the upper bound is represented by a set of points that are calculated separately and

Master of Science Thesis Jayesh R. Chandiramani

24 Decision Making

Algorithm 1 Backing up a policy graph G with N samples taken from belief b
1: function MC_Backup(b,N,G)
2: for all a ∈ A do
3: Ra ← 0
4: end for
5: for all a ∈ A do
6: for all o ∈ O do
7: for all v ∈ G do
8: Va,o,v ← 0
9: end for

10: end for
11: end for
12: for all a ∈ A do
13: for i = 1 to N do
14: Sample b to get state si, with probability b(si)
15: Apply transition model to action a taken in state si. Sample from transition
16: model T (si, a, s′i) and observation model Z(si, a, oi) to get oi and s′i.
17: Ra ← Ra +R(si), a
18: for all v ∈ G do
19: V ′ ← Reward of policy represented by G
20: Va,o,v ← Va,o,v + V ′

21: end for
22: end for
23: for all o ∈ O do
24: Va,o ← maxv∈G Va,o,v
25: va,o ← argmaxv∈G Va,o,v
26: end for
27: Va ← (Ra + γ

∑
o∈O Va,o)/N

28: end for
29: V ∗ ← maxa∈A Va
30: a∗ ← argmaxa∈A Va Create G′ by adding new node a∗ to G.
31: for all o ∈ O do
32: Add edge (a∗, va∗,o) to G.
33: end for
34: return G′

35: end function

interpolated over the space. As the belief space is explored, these bounds are updated and
the difference between these two bounds at a certain point express the uncertainty of the
expected value at that specific belief point. When the difference is below a threshold ε, an
accurate enough approximation is achieved and no advantage would be obtained by continuing
exploration with more samples taken from that belief.

There are a number of ways to initialize these bounds, varying in complexity depending on
the amount of information used to form a potentially tighter bound. For the lower bound,
the simplest method is the Blind policy method [31] that essentially takes a single action and

Jayesh R. Chandiramani Master of Science Thesis

3-2 Solver algorithm 25

repeatedly applies it regardless of belief state, until the horizon is reached. Another approach
is to always assume that the agent is in the worst state to choose action a from, which gives
us equation 3-11 for an infinite horizon problem [52].

V =
∞∑
t=0

γtmin
s

r(s, a) =
min
s

r(s, a)
1− γ (3-11)

For the upper bound, there are numerous initialization techniques proposed in [53]. First,
there is the fixed strategy approach wherein the best possible value is assigned to every belief,
but this is a relatively loose initialization of the upper bound compared to other approaches
such as the MDP method, which assumes full observability and then solves the MDP version
of the problem. With this, the bound would look like equation 3-12

V (b) =
∑
s∈S

b(s)V ∗MDP (s) (3-12)

where

VMDP
i+1 (s) = max

a

ρ(s, a) + γ
∑
s′∈S

p(s′|s, a)VMDP
i (s′)

 (3-13)

Further approaches exist, such as the Fast Informed Bound (FIB) method which accounts
for the partial observability to some extent and improves the approximation, but although
it produces a 5x tighter initial bound than the MDP method, it takes roughly 50x longer to
compute [53].

In this thesis a compromise between bound quality and computation time is made by choosing
the MDP method for the upper bound and the blind policy for the lower bound.

3-2-2 Performance improvements

In general, online POMDP algorithms start from the initial belief b0 and explore the entire
reachable belief space R(b0) to converge to the optimal value function V ∗. This is of course
more efficient than exploring the entire belief space for a solution, such as is done in offline
methods when real time performance during the training phase is not necessary. Considering
at computational speed is usually a problem with continuous POMDP problems that need to
be solved online, this process can be made even more efficient by directing the belief space
exploration to the optimally reachable space R∗(b0) [54]. In this thesis the following methods
are proposed to reduce the size of the explored area by pruning branches that are potentially
suboptimal during the exploration phase:

Lower Bound Criterion

As the main aim of the POMDP exploration process is to evaluate all branches to find the
optimal one, it is possible that there would be several suboptimal branches, such as those that
result in collisions with other vehicles for example. In order to quickly prune these branches,
a lower bound L can be set on the expected reward, which if not met marks that branch as

Master of Science Thesis Jayesh R. Chandiramani

26 Decision Making

suboptimal and discontinues exploration along that path. This basically removes branches
with low rewards which would ordinarily be explored but not chosen as the optimal branch.
It must be noted that this lower bound value must always be chosen somewhat conservatively.
This is because during exploration based on sampling of a probability distribution, there could
be belief states in which a small percentage of samples result in a collision but could still turn
out to be part of the optimal branch in a worst case scenario.

Figure 3-2: Optimally reachable belief space exploration

Gap Termination Criterion

In general, the upper and lower bound give us a measure of the accuracy of the value function
approximation but general algorithms wait till a full backup is performed to update the
bounds and check if the gap is below a threshold at the root so that it is possible to terminate
sampling and further exploration. Instead, passing this gap termination value ε down the tree
to the leaves by applying the inverse of the discount factor makes this more efficient as it is
now possible to check if the termination criterion is satisfied at the leaves rather than only at
the root. Thus the value γ−tε is passed down the tree.

Action Change Criterion

Another idea proposed here specifically for the autonomous driving use case is that it is
unlikely that a branch that consists of numerous action changes over the horizon will turn
out to be optimal, especially from a comfort viewpoint. Thus exploration of these branches
can be terminated once the number of action changes exceeds a pre specified limit, thus
pruning branches of the tree and making the process far more efficient.

These ideas can be visualized in figure 3-2.

Jayesh R. Chandiramani Master of Science Thesis

3-3 Formulating the autonomous driving problem as a POMDP 27

3-3 Formulating the autonomous driving problem as a POMDP

States, actions and observations

For the autonomous driving problem, a continuous state space is chosen and the basic states
for the ego vehicle and other traffic objects are position (x, y), velocity (vx, vy) and acceleration
ax, ay. Considering that for the traffic objects these states depend on their uncertain behavior
(b), the output of the behavior prediction is added as an extra state for these vehicles.

s =
(
sego, s1, ..., sn

)
(3-14)

sego =
(
x, y, vx, vy, ax, ay

)
, si =

(
x, y, vx, vy, ax, ay, b

)
(3-15)

The initial belief is constructed from the states and observations by creating a normal distri-
bution for the positions, velocities and acceleration. The probability density function (PDF)
for a normal (Gaussian) distribution is defined as:

p(x|x̂,Σ) = 1
(2π)2

√
det(Σ)

e−
1
2 ((x−x̂)T Σ−1(x−x̂)) (3-16)

where x̂ is the mean of the distribution and Σ is the defined covariance matrix:

Σ =
[

σ2
x ρxyσxσy

ρxyσxσy σ2
y

]
(3-17)

It must be noted that for continuous distributions, the corresponding probability value for x
cannot be obtained directly from the PDF. In order to obtain the corresponding probability
value of x from the continuous PDF, the obtained value must be multiplied with a small area
around x.

For the behavior, each motion intention is assigned to an integer from 0 to 7 and a discrete
distribution is created using the probability associated with the behavior (ie., a large ran-
dom distribution of the values with the corresponding discrete variable’s frequency in the
distribution is directly proportional to its probability).

For the action set, more care must be taken as the problem grows exponentially with the
addition of more actions. Thus the action set is chosen to be discrete, and contains three
distinct actions:

a = {Accelerate, Stay Constant,Brake} (3-18)

The transitions are also part of the continuous space and the new positions are obtained
using the multi model approach discussed in the previous chapter. The transition model
simulates the system dynamics and the conditional probability function p(s′|s, a) describes
the probability of an initial state s and an action a resulting in the future state s′.

The observations are essentially measurements of position and velocity received from the
vehicle sensors, along with the accelerations for the other traffic vehicles measured using the

Master of Science Thesis Jayesh R. Chandiramani

28 Decision Making

rate of change of velocity between the previous sample and the current one. Thus this is also
a continuous space, as it basically follows the state space.

o =
(
oego, o1, ..., on

)
, where oi =

(
x, y, vx, vy, ax, ay

)
(3-19)

The observation model simulates the sensors obtaining measurements and the conditional
probability function p(o|s′, a) describes the probability of receiving an observation o when the
action a is applied to get state s′.

3-3-1 Transition model

The objective of the transition model is to effectively describe the system dynamics relative
to the chosen actions and consider the uncertainty in these transitions as the conditional
probability distribution p(s′|s, a).

In the case of the ego vehicle, knowledge of the chosen action allows the effect it has on
the state transition to be calculated. In the case of the traffic objects, their behavior must
be considered in order to obtain realistic predictions as this directly has an effect on their
transition. For example, the interaction of two vehicles where one follows the other can only
be detected when the "Follow Vehicle" behavior is predicted. Further, the digital map data
must also be included in this process so that the predictions are more accurate and uncertainty
is reduced.

In summary, the transition model for a tactical decision making framework in urban scenarios
needs to consider all the static and dynamic information in the scene. The static informa-
tion includes the road information, road signs and markings, while the dynamic information
includes the vehicle’s measurable states and predicted behavior. This is where the behavior
prediction and multi model transition approaches discussed in the previous chapter come into
play.

3-3-2 Observation model

The role of the observation model is to describe the capabilities and limitations of the percep-
tion unit and its sensors. The model is basically required to consider the uncertainty related
to the sensors, which exist in two areas - inaccuracies and occlusions.

The first problem is fairly straightforward to deal with. The measurements of different traffic
objects are independent from each other and a simple additive normal distribution of noise
can model sensor inaccuracies quite well. The covariance matrix ΣO accounts for velocity and
position for each traffic object. To model this, the conditional distribution is used as follows:

p(oi|x′ego, x′1, ...x′n) = N(x′ego,ΣOego) (3-20)

The second problem is slightly more complex. In urban scenarios, it is very common to have
vision based occlusions in the path of the sensors and thus vehicles that are present could be
completely invisible to the decision making framework. It could also be possible that sensor
limitations such as angle or range could cause these traffic objects to be invisible. Since these

Jayesh R. Chandiramani Master of Science Thesis

3-3 Formulating the autonomous driving problem as a POMDP 29

(a) Sensor perception of the environment (b) Resulting belief state

Figure 3-3: Observation model in urban areas

problems are related directly to the sensors, they must be considered in the observation model
as it allows the decision making framework to be aware of this uncertainty.

An obstruction (such as a building or trees) can be detected by the perception unit/sensors.
Then, using the map information it can be checked if this could cause a traffic object to be
occluded. If such an obstruction exists, then a new traffic object state is created and added,
with the position set behind the obstruction and velocity set to the speed limit of the area.
Finally, the ΣO value is modified to account for a large amount of uncertainty for this specific
state. Figure 3-3 gives a rough visualization of the resulting belief state.

In order to augment the modeling of invisible traffic objects in the observation model, a slight
modification to the future state prediction is made, wherein the behavior prediction is ignored
for the added state. Instead the acceleration, velocity and position is calculated assuming
that this vehicle could reach the point of collision (for example, the center of the intersection)
at the same moment as the ego vehicle.

3-3-3 Multi Resolution Planning

Measurements taken in the current time step are relatively more certain than future steps
where another road user could deviate significantly from his initial intention and predicted
state. Thus it is unreasonable to treat prediction steps further into the future with the same
resolution as the steps closer to t = 0 by using fixed time steps ∆t = T/N where N is the
total number of time steps and T is the horizon.

Thus, the idea of using exponentially increasing time steps is proposed here, wherein the first
time step is chosen to be ∆t = 0.2 seconds and every nth time step thereafter is ∆tn = 2n∆t.
This also reduces computational expense while still allowing for a relatively long time horizon.

3-3-4 Reward function

The reward function assigns values to specific situations so that the decision making frame-
work can choose which action would be the most preferred or optimal. The main goals are
related to the ego vehicle reaching a preset destination as quickly as possible, while adhering

Master of Science Thesis Jayesh R. Chandiramani

30 Decision Making

to the speed limit and not crashing into another vehicle. Secondary goals include a comfort
factor, which is split into two parts - the direct switching of acceleration and braking actions
(rather than using a constant velocity action between them, which would be more comfort-
able) and continuing to use the same action as the previous time step. Of course, in many
cases these goals clash and thus a hierarchy is born, wherein one goal is weighed more strongly
than the other. A good policy creates a balance between these potential conflicting goals.

The reward function used in this work is split into two parts - depending on whether a collision
has been predicted or not. If there is a collision, only the corresponding collision reward is
assigned. If there is no collision then if conditions are used to check whether the ego vehicle
has reached its destination, if it is under the set speed limit and if the action chosen obeys
the two comfort criteria. An overview of the functions is shown in algorithm 2.

Algorithm 2 Reward function for autonomous driving
Precondition: previous_action, speed_limit

1: function Reward Function(state, action)
2: if collision then . Checks for collisions between ego vehicle and all traffic objects
3: reward+ = rcollision ∗ number_of_collisions
4: else
5: if goal then . Checks if the ego vehicle is within the goal area
6: reward+ = rgoal
7: end if
8: if speed < speed_limit then . Checks if the ego vehicle is under the speed limit
9: reward+ = rspeed ∗

speed

speed_limit
10: end if
11: if abs(action− previous_action) < 2 then . Checks if there is a direct switch
12: between acceleration and braking
13: actions (0 and 2)
14: reward+ = rcomfort1
15: end if
16: if action = previous_action then . Checks if the current action is the same as
17: the previous step
18: reward+ = rcomfort2
19: end if
20: end if
21: return reward
22: end function

Terminal state

In the event that the destination is reached or a collision occurs with high certainty within the
prediction horizon, the prediction along that branch must be stopped as it is not required to
explore further and undesirable to potentially assign multiple rewards for the these criteria.

Hence if more than 50% of samples from the belief end up in either of these two criteria, then
a terminal flag is set so that the branch is not explored further.

Jayesh R. Chandiramani Master of Science Thesis

3-3 Formulating the autonomous driving problem as a POMDP 31

Collision detection

An important tool to detect a terminal state is the collision detection method. Choice of
method here is critical, as this must be performed n times, for each sample of each belief of
the POMDP. There is also the issue of vehicles tunneling each other [55] between time steps
due to relatively high velocities as illustrated in figure 3-4.

Figure 3-4: Vehicles tunneling each other between two time steps

A simple method to check for collisions is to perform a distance check between two vehicles,
which is analogous to drawing a circle over each vehicle and checking for intersections between
pairs of these circles. The problem here is that this is quite inaccurate in the lateral direction
and would result in numerous false collision predictions when vehicles are traveling in adjacent
lanes. According to [56], a minimum of three circles along the vehicle axis can represent
the vehicle with minimal error using the vehicle’s length l, width b and wheelbase w. The
equations to calculate the positions ci and radius r of these circles using the half axle distance
dha as follows:

dha = 0.5(l − w) (3-21)

c1 = 0.5 ∗ dha (3-22)

c3 = l − (1.5 ∗ dha) (3-23)

c2 = 0.5 ∗ (c1 − c3) (3-24)

r =
√

0.25 ∗ b2 + 0.25 ∗ d2
ha (3-25)

While the three circle representation is more accurate, it is also much more expensive than
the single circle check, as this results in 3n distance comparisons when considering n vehicles,
compared to n distance comparisons with the single circle representation.

Thus a two level collision check is proposed, wherein the first level consists of the single circle
representation and the second level consists of the three circle representation. If a collision is
detected by the first level, the second level check performed to verify if a collision is actually
going to occur. This balances accuracy and computational expense between the two methods.

In order to solve the issue of tunneling with this two level check, two modifications are made.
First, to better detect the possibility of vehicles being close enough that a collision is possible

Master of Science Thesis Jayesh R. Chandiramani

32 Decision Making

at a specific speed, the diameter of the first circle is made directly proportional to the speed
of the vehicles. At the second level, it is clearly not enough to simply perform the collision
check with the three circle representation at the position at that discrete time step. Instead,
a "continuous" check is performed by moving the vehicles along their intended direction in
smaller steps between the two larger POMDP prediction time steps to check for a collision.
This can be visualized better in figure 3-5 using the previous example shown in figure 3-4.

Figure 3-5: Two level continuous collision detection

While this takes care of the challenges discussed so far, there is a possibility of collisions still
occurring if a traffic object performs a sudden action such as braking hard while ahead of
the ego vehicle. This is due to the limited deceleration value in the discrete action set, and
can result in a collision if the traffic object decelerates continuously with a higher value than
the ego vehicle’s braking action. To work around this, if a collision terminal state is reached
for all possible root action choices, the braking value is modified to a larger "brake harder"
value. This results in a negligible computational overhead and accounts for such emergency
situations where collisions would be unavoidable with a limited action set.

3-4 Summary

A state of the art online POMDP solver was chosen and modified to converge to a solution
faster by directing the solver towards the belief space that will most likely result in the optimal
solution. Additionally, the approximation of the value function is stopped as soon as it has
achieved a specific level of accuracy, thus making the entire solver far more efficient.

Following this, more specific problems relating to the autonomous driving use case were
discussed, such as vehicle tunneling and invisible vehicles in urban areas. Solutions to these
problems were proposed and incorporated withing the POMDP structure.

Jayesh R. Chandiramani Master of Science Thesis

Chapter 4

Simulation results

This chapter begin with a description of the simulation setup, the parameters chosen and some
evaluation criteria. Following this, the test scenarios are described and are accompanied by
the corresponding results along with an analysis of the various graphs.

4-1 Simulation Setup

In order to test and verify the work done, the simulation software CarMaker by IPG is
chosen. CarMaker is a sophisticated vehicle simulation package that allows the user to model
a vehicle accurately using the multitude of parameters spanning the suspension, engine and
transmission characteristics. The user can then create the desired road network, insert Traffic
objects and import a 3-dimensional vehicle model into the software for visualization.

A road network is created using a text file in which all necessary data relating to the scene
has to be defined. This includes the length, radius, join angle, etc of the road segments and
junctions. Further details such as road markings, signs and traffic lights can also be defined.
Finally, routes must be created along these road segments, vehicles are assigned to a route
and maneuvers can be set for the traffic objects. For the ego vehicle the user is given the
option of using a fixed maneuver or external input from Simulink or a C++ program. The
digital map information corresponding to these road networks and routes is written in a C++
file and read by the behavior predictor and future state estimator when needed. This file
includes essential information regarding the scene, such start and end points of a junction,
the existence and position of road markers such as stop lines and the radius of turns.

The decision making framework is set to run every 0.2 seconds and corresponding synchro-
nization with the simulation software is set up. In the case that the built executable of the
C++ source code runs slower than 0.2 seconds per planning iteration, the simulation software
waits to receive an input before proceeding. The output of the simulation can then be viewed
in the IPGMovie window, and specific output parameters can be viewed as the simulation
progresses in the IPGControl window.

Master of Science Thesis Jayesh R. Chandiramani

34 Simulation results

4-1-1 Parameter Configuration

Before proceeding further, the various parameters of the decision making framework must be
described for a better understanding of the results. These are listed in table 4-1 and divided
into categories for ease of viewing.

Category Parameter Value

General

Time step (∆t) 0.2 s
Total time horizon (T) 6.2 s
Speed limit 50 km/h (±5%)
Discount factor (γ) 0.9

Actions
Accelerate +2 m/s2

Constant 0 m/s2

Brake -2 m/s2

Sensor RADAR - Range 150 m
RADAR - Field 140deg

Belief Prediction
Number of samples (N) 50
Transition model variance (ΣT) 0.05
Observation model variance (ΣO) 0.05 (visible) or 0.5 (invisible)

Rewards

Collision -1000*number of collisions
Goal reached 100
Speed 20*(current speed/speed limit)
Comfort1 10
Comfort2 10

Termination Criteria
Minimum bound gap 20
Lower bound -250
Maximum number of action changes 2

Collision Check Circle diameter (level 1) 40 m

Table 4-1: Framework parameters

4-1-2 Evaluation Criteria

The first and foremost goal of a decision making method for autonomous vehicles is to ensure
the safety of its passengers. Along with this, it must also result in a high level of efficiency and
comfort for the passengers inside the vehicle. Unfortunately there are no standard criteria or
tests defined by governing bodies for autonomous vehicle or in the related literature yet, so the
following criteria are defined to quantify the performance of the decision making approach:

• Minimum distance to vehicles: This parameter measures the closest distance (from
bumper to bumper) between the ego vehicle and any other vehicle in the scenario. This
will be accompanied by the ego vehicle’s speed at that moment as the safety distance
is directly proportional to the speed of the vehicles. A larger distance between vehicles
is preferred as it represents a higher safety margin.

• Time to accelerate: This refers to the time the ego vehicle spends below the maximum
speed without accelerating after a braking maneuver has been performed and there is

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 35

no obstacle in front of the ego vehicle anymore (or if the speed of the vehicle ahead is
significantly higher than that of the ego vehicle). The lower the value, the better is the
efficiency of the approach.

• Number of action changes: This is the number of times the ego vehicle changes its chosen
action over the entire simulation period. In order to have a smooth and comfortable
ride, this value must be as low as possible.

4-2 Results

The goal in this work is to test the decision making framework within various urban scenes
similar to those shown in figure 1-2 in Chapter 1. While the total set of tested scenes and
scenarios cannot be displayed here, a chosen set of the results are displayed to give the
reader a relatively wide range of possible scenarios. In each subsection the scenario will be
described, along with figures and the velocity profile of each traffic object. In these figures,
the ego vehicle is always marked with a blue box, while the traffic objects are marked with
red, magenta and orange boxes. The first result presented is the behavior prediction for each
traffic vehicle, followed by the decision making results (ie., the chosen action along with the
associated velocity profile of the ego vehicle and the reward values rescaled relative to each
other).

It is of value to note that in order to create the worst possible scenarios to test and validate
the work done, usual traffic rules are broken by the traffic objects in some of the scenarios.
The aim here is to prove that the framework is able to achieve an adequate level of safety
and performance even when there is a large amount of uncertainty and unpredictability.

4-2-1 Perpendicular Intersection

Topographically, this is the simplest of the tested scenes but it allows for inferences to be
made more easily before progressing to more complicated scenes. This scene is a perfect
intersection with full visibility, and the results from two scenarios are presented.

(a) Intended routes of all vehicles (b) Velocity profile of traffic

Figure 4-1: Test scenario 1: Setup

Master of Science Thesis Jayesh R. Chandiramani

36 Simulation results

The first scenario uses two traffic objects that start from opposite directions. The first one
turns left at the intersection, while the second continues straight ahead. The ego vehicle is set
to continue straight along its path to cross the intersection. Figure 4-1 depicts the scenario
visually and provides the velocity profiles of the traffic objects.

The corresponding behavior predictions of the traffic objects are seen in figure 4-2. Looking
at the prediction for traffic object 1, a follow road maneuver is predicted initially and then as
it nears the turning point the Turn Left maneuver is predicted as soon as it begins turning
as the vehicle does not brake before making the turn. For traffic object 2, the prediction
is that it continues to follow the road and this is of course accurate. At the point when
traffic object 2 is performing a turn and is an obstacle in front, the vehicle brakes slightly to
avoid a potential collision and thus a relatively high possibility of a target brake maneuver is
predicted.

(a) Traffic object 1 (b) Traffic object 2

Figure 4-2: Test scenario 1: Results - Behavior prediction

Focusing on decision making, the ego vehicle has two basic option to choose from in this
scenario. Either it can accelerate and cross the intersection before either of the other vehicle
arrive or it must brake to allow them to pass and then continue. Since this requires a gross
violation of the speed limit (and thus a relatively lower reward), the ego vehicle’s only viable
choice here is to brake. This must be kept in mind for all the remaining tested scenarios.

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-3. At the first
instant the ego vehicle chooses to accelerate in an effort to maintain the highest speed as per
the set speed limit. A moment later it is more certain that a collision is imminent and the
decision switches to a braking maneuver. After this, the ego vehicle chooses to accelerate
back to the speed limit at the 2.8 second mark, even though traffic object 1 has not fully
crossed its path. This is because it is able to predict with enough certainty that a collision
is not possible with any of the vehicles. This is unlike the average human driver where one
feels more comfortable accelerating only once a clear path ahead is visible. On one hand this
result is more efficient, but on the other hand more human like behavior may be preferred by
the occupants of the vehicle.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 37

0

1

2

0

10

20

30

40

50

60

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-3: Test scenario 1: Results - Decision Making

A visualization of the simulation output is shown in figure 4-4.

(a) t = 2.5s (b) t = 3.6s (c) t = 5.1s

Figure 4-4: Test scenario 1: Visualization

The overall performance of the decision making approach is quantified in in table 4-2:

Criterion Value
Minimum distance to vehicles 3.8m (31.0km/h)
Time to accelerate 0s
Number of action changes 4

Table 4-2: Performance evaluation - Decision Making

The second scenario is set up with one more traffic object traveling straight ahead, located
in front of the ego vehicle. This vehicle slows down to a stop before the intersection to give
way to the other vehicles before continuing ahead. Figure 4-5 depicts the scenario along with
the velocity profile of the traffic objects.

Master of Science Thesis Jayesh R. Chandiramani

38 Simulation results

(a) Intended routes of all vehicles
(b) Velocity profile of traffic

Figure 4-5: Test scenario 2: Setup

The corresponding behavior predictions of the traffic objects are seen in figure 4-6. The
predictions of traffic object 1 and 2 are similar to that of scenario 1. With regard to traffic
object 3, which begins braking (with the stop line as a target stop point) to give way to
the other vehicles before accelerating and continuing ahead, a Target Brake maneuver is
accurately predicted after which the most likely maneuver is again the Follow Road maneuver.

(a) Traffic object 1 (b) Traffic object 2

(c) Traffic object 3

Figure 4-6: Test scenario 2: Results - Behavior prediction

The output (chosen action) of the decision making framework along with the corresponding

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 39

velocity of the ego vehicle over the course of the simulation is seen in figure 4-7. At the start,
the ego vehicle keeps a constant velocity as it is following another vehicle (traffic object 3).
Once this vehicle begins to brake at the intersection, the ego vehicle predicts the possibility
of an earlier collision but due to the uncertainty, it only chooses to brake slightly as this is
the most efficient choice. Once the certainty of a collision increases, the ego vehicle begins
a more consistent braking maneuver. Finally, while accelerating back up to speed, the ego
vehicle switches between accelerate and stay constant a few times as it attempts to keep a
sufficient gap between itself and traffic object 3. Overall, the ego vehicle is able to maintain
not only a safety margin but also a high level of efficiency in its decisions.

0

1

2

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-7: Test scenario 2: Results - Decision Making

A visualization of the simulation output is shown in figure 4-8.

(a) t = 5.7s (b) t = 7.6s (c) t = 16.0s

Figure 4-8: Test scenario 2: Visualization

The overall performance of the decision making approach is quantified in in table 4-3:

Criterion Value
Minimum distance to vehicles 3.02m (10.9km/h)
Time to accelerate 0.2s
Number of action changes 13

Table 4-3: Performance evaluation - Decision Making

Master of Science Thesis Jayesh R. Chandiramani

40 Simulation results

4-2-2 Curved Intersection

Here the topography is complicated by adding curves to the road segments, and making them
meet at the intersection at varying angles. This is to further test and validate the decision
making framework, since the amount of uncertainty makes it very difficult even for a human
driver to predict if a vehicle approaching from the left will continue straight or turn left at
the intersection. It is also critical here that the future state estimation takes into account the
map information, due to the curvature and angles of the road segments.
The first scenario within this scene uses two traffic objects that start from opposite directions.
In this case, both vehicles turn left at the intersection. The ego vehicle is set to continue
straight along its path to cross the intersection. Figure 4-9 depicts the scenario visually and
provides the velocity profiles of the traffic objects.

(a) Intended routes of all vehicles (b) Velocity profile of traffic

Figure 4-9: Test scenario 3: Setup

(a) Traffic object 1 (b) Traffic object 2

Figure 4-10: Test scenario 3: Results - Behavior prediction

The corresponding behavior predictions of the traffic objects are seen in figure 4-10. The turn
left maneuvers were successfully predicted for both traffic objects. The decrease in speed along
with the yaw angle and the map information easily lead to this prediction. The relatively
high trash maneuver prediction is due to the uncertain nature of the scene and the vehicles
brake relatively late into their respective maneuvers compared to human drivers. This is a
simulation artifact, as the Bayesian network was trained on real data.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 41

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-11. The ego
vehicle is able to predict a collision based on the movements of the vehicles within the scene
and performs the necessary braking maneuver to give way to the traffic objects before it
accelerates ahead and approaches its destination. After passing the intersection, the ego
vehicle chooses to stay below the maximum speed limit due to the fact that it needs to keep
a sufficient gap to traffic object 2.

0

1

2

0

10

20

30

40

50

60

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

13
.6

14
.4 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4 12

12
.6

13
.2

13
.8

14
.4

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-11: Test scenario 3: Results - Decision Making

A visualization of the simulation output is shown in figure 4-12.

(a) t = 3.8s (b) t = 5.6s (c) t = 6.7s

Figure 4-12: Test scenario 3: Visualization

The overall performance of the decision making approach is quantified in in table 4-4. Note
that the low distance between vehicles is due to the ego vehicle and traffic object 1 passing
each other in adjacent lanes.

Criterion Value
Minimum distance to vehicles 0.9m (17.7km/h)
Time to accelerate 0.4s
Number of action changes 8

Table 4-4: Performance evaluation - Decision Making

Master of Science Thesis Jayesh R. Chandiramani

42 Simulation results

The next scenario is set up with one more traffic object placed in front of the ego vehicle. It
slows down to a stop before the intersection to give way to the other vehicles before continuing
ahead. Figure 4-13 depicts the scenario along with the velocity profile of the traffic objects.

(a) Intended routes of all vehicles (b) Velocity profile of traffic

Figure 4-13: Test scenario 4: Setup

(a) Traffic object 1 (b) Traffic object 2

(c) Traffic object 3

Figure 4-14: Test scenario 4: Results - Behavior prediction

The behavior predictions of the traffic objects are seen in figure 4-14. There is no significant
change for the prediction of the first two vehicles compared to the previous scenario. Their
turn left maneuvers are predicted using their states and the map information. For the third

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 43

traffic object, the target brake maneuver is identified immediately as it brakes (with the stop
line as a target) to give way to the other vehicles before continuing ahead.
The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-15.
Corresponding to the behavior prediction, the ego vehicle performs a braking maneuver and
comes to a complete stop behind traffic object 3. At the 6 second mark when traffic object 3
has begun moving again, the ego vehicle also begins to accelerate and follows behind it.

0

1

2

0

10

20

30

40

50

60

0

0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

13
.6

14
.4

Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4 12

12
.6

13
.2

13
.8

14
.4

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-15: Test scenario 4: Results - Decision Making

A visualization of the simulation output is shown in figure 4-16.

(a) t = 4.3s (b) t = 6.0s (c) t = 8.5s

Figure 4-16: Test scenario 4: Visualization

The overall performance of the decision making approach is quantified in in table 4-5:

Criterion Value
Minimum distance to vehicles 0.9m (0.2km/h)
Time to accelerate 0.8s
Number of action changes 7

Table 4-5: Performance evaluation - Decision Making

Again, the low distance between vehicles here is due to the ego vehicle and traffic object 1
passing each other in adjacent lanes.

Master of Science Thesis Jayesh R. Chandiramani

44 Simulation results

4-2-3 Zipper Merge

Here a scene which simulates vehicles approaching from different roads/lanes and then merging
into a single lane. Due to the unsignalized nature of this scene in particular, there exists a
lot of uncertainty in the intention of the traffic as the vehicles approach the merge point.

The first scenario in this scene deals with two traffic objects approaching the merge point
from the same lane. The first traffic vehicle does not brake and continues ahead without
interruption, while the second traffic vehicle ends up slowing down to allow the ego vehicle
to merge ahead of it.

Figure 4-17 depicts the scenario visually and provides the velocity profiles of the traffic objects.

(a) Intended routes of all vehicles
(b) Velocity profile of traffic

Figure 4-17: Test scenario 5: Setup

The corresponding behavior predictions of the traffic objects are seen in figure 4-18. Here the
turn right/merge maneuver for traffic object 2 and the target brake maneuver for the traffic
object 1 are both predicted accurately as they approach the merge point.

(a) Traffic object 1 (b) Traffic object 2

Figure 4-18: Test scenario 5: Results - Behavior prediction

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-19.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 45

This scenario displays the robustness of the overall approach as the ego vehicle is able to con-
sider these predicted intentions and the general uncertainty to make the appropriate braking
and acceleration decisions so that it can easily merge between the two traffic objects instead
of waiting inefficiently for both vehicles to pass and then moving ahead.
A visualization of the simulation output is shown in figure 4-20.

0

1

2

0

10

20

30

40

50

60

0
0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-19: Test scenario 5: Results - Decision Making

(a) t = 1.2s (b) t = 2.6s (c) t = 4.4s

Figure 4-20: Test scenario 5: Visualization

The overall performance of the decision making approach is quantified in in table 4-6:

Criterion Value
Minimum distance to vehicles 3.87m (41.0km/h)
Time to accelerate 0.8s
Number of action changes 7

Table 4-6: Performance evaluation - Decision Making

The next scenario is set up with traffic object 3 added in front of the ego vehicle. It is set to
slow down before the merge point to give way to traffic object 2 (approaching from the right),
after which it merges into the lane. Finally, traffic object 1 approaches from the right and
slows down to avoid colliding with the other vehicles, then accelerates ahead without giving
way to the ego vehicle. This complicated merge scenario pushes the overall approach to check
that a safe and efficient behavior is achievable for the ego vehicle. Figure 4-21 depicts the
scenario along with the velocity profile of the traffic objects.

Master of Science Thesis Jayesh R. Chandiramani

46 Simulation results

(a) Intended routes of all vehicles
(b) Velocity profile of traffic

Figure 4-21: Test scenario 6: Setup

(a) Traffic object 1 (b) Traffic object 2

(c) Traffic object 3

Figure 4-22: Test scenario 6: Results - Behavior prediction

The corresponding behavior predictions of the traffic objects are seen in figure 4-22. The
slowing down behavior of traffic objects 1 and 3 is formulated as a target braking prediction.
While this is partly true, these vehicles do not intend to come to a complete halt and this
is reflected by the fact that the target brake prediction is completely eliminated after the
vehicles stop braking, at which point the merge maneuvers are predicted and then the follow
vehicle maneuver is predicted for these two vehicles.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 47

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-23. The ego
vehicle brakes sufficiently behind the vehicle in front of it, and then starts accelerating with
the assumption that traffic object 1 will continue with its target brake maneuver. But once
the maneuver prediction changes, it sees the high possibility of a collision as it is no longer
given a gap and it chooses to brake again. Finally, it accelerates again to merge behind the
entire platoon of vehicles.

rechte

0

1

2

0

10

20

30

40

50

60

0
0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

13
.6

14
.4

15
.2 16 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4 12

12
.6

13
.2

13
.8

14
.4 15

15
.6

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-23: Test scenario 6: Results - Decision Making

A visualization of the simulation output is shown in figure 4-24.

(a) t = 3.1s (b) t = 4.9s (c) t = 7.2s

Figure 4-24: Test scenario 6: Visualization

The overall performance of the decision making approach is quantified in in table 4-7:

Criterion Value
Minimum distance to vehicles 4.39m (17.7km/h)
Time to accelerate 0.8s
Number of action changes 11

Table 4-7: Performance evaluation - Decision Making

Master of Science Thesis Jayesh R. Chandiramani

48 Simulation results

4-2-4 Roundabout

The core of this scene is a roundabout, wherein vehicles merge onto a common curved path.
This is also a fairly common scene in urban areas and there is usually a high amount of inter-
action and cooperation between vehicles here, with traffic rules usually dictating a hierarchy
between vehicles. For the sake of testing and validation, two worst case scenarios are created
and tested within the roundabout scene.

The first scenario deals with two traffic objects attempting to enter the roundabout from the
same lane. The first traffic object does not give way to the ego vehicle, while the second
traffic vehicle ends up slowing down before merging to allow the ego vehicle to merge ahead
of it.

Figure 4-25 depicts the scenario visually and provides the velocity profiles of the traffic objects.

(a) Intended routes of all vehicles (b) Velocity profile of traffic

Figure 4-25: Test scenario 7: Setup

The corresponding behavior predictions of the traffic objects are seen in figure 4-26. The traffic
vehicles in this scenario slows down as they approach the roundabout, and then accelerate
back up to speed once they enter it. This causes the behavior to be predicted as a target brake
maneuver because of the possibility that the vehicle can stop before entering the roundabout.
This is also seen in the results, along with a slightly lower probability that the maneuver is
follow road or follow vehicle.

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-27.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 49

(a) Traffic object 1 (b) Traffic object 2

Figure 4-26: Test scenario 7: Results - Behavior prediction

0

1

2

0

10

20

30

40

50

60

0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6
0

0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-27: Test scenario 7: Results - Decision Making

Due to the consideration of uncertainty the ego vehicle is able to avoid a collision with the
first traffic object by braking sufficiently and following behind it to continue along the path
to its destination. It does not brake further for the second traffic vehicle because it uses the
target brake maneuver prediction to predict its future state at the stop line. It does, however
brake again at around the 8 second mark in response to the the traffic vehicle ahead of it.

A visualization of the simulation output is shown in figure 4-28.

(a) t = 3.1s (b) t = 4.4s (c) t = 6.2s

Figure 4-28: Test scenario 7: Visualization

Master of Science Thesis Jayesh R. Chandiramani

50 Simulation results

The overall performance of the decision making approach is quantified in in table 4-8:

Criterion Value
Minimum distance to vehicles 4.15m (30.5km/h)
Time to accelerate 0.2s
Number of action changes 6

Table 4-8: Performance evaluation - Decision Making

The next scenario within this scene is set up with two traffic objects already on the roundabout
and another one approaching the roundabout from an on ramp ahead. This vehicle is set up
to enter the roundabout in front of the ego vehicle as a worst case scenario. Figures 4-29 (a)
and (b) depict the scenario and 4-29 (c) displays the velocity profile of the traffic objects.

(a) Intended routes: part 1 (b) Intended routes: part 2

(c) Velocity profile of traffic

Figure 4-29: Test scenario 8: Setup

The corresponding behavior predictions of the traffic objects are seen in figure 4-30. At each
stage, the Bayesian network is able to predict the Follow Road and Target Brake intentions
of the traffic well enough to aid the decision making algorithm with the required information
to make informed choices to avoid collisions and remain efficient.

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 51

(a) Traffic object 1 (b) Traffic object 2

(c) Traffic object 3

Figure 4-30: Test scenario 8: Results - Behavior prediction

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-31.

0

1

2

0

10

20

30

40

50

60

0
0.
8

1.
6

2.
4

3.
2 4

4.
8

5.
6

6.
4

7.
2 8

8.
8

9.
6

10
.4

11
.2 12

12
.8

13
.6

14
.4

15
.2 16 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0
0.
6

1.
2

1.
8

2.
4 3

3.
6

4.
2

4.
8

5.
4 6

6.
6

7.
2

7.
8

8.
4 9

9.
6

10
.2

10
.8

11
.4 12

12
.6

13
.2

13
.8

14
.4 15

15
.6

Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-31: Test scenario 8: Results - Decision Making

At the start of the simulation, there is a direct collision predicted between the first traffic
object on the roundabout and the ego vehicle. Thus the ego vehicle brakes to avoid this, and
notices that traffic object 3 is slowing down to give way so the ego vehicle continues to enter
the roundabout and accelerates to follow the first vehicle. At the point when traffic object 2
is seen trying to enter the roundabout, the ego vehicle again predicts that the vehicle does

Master of Science Thesis Jayesh R. Chandiramani

52 Simulation results

not intend to give way so it chooses to brake and allow it to enter the roundabout. Following
this, the ego vehicle accelerates back up to the speed limit.

A visualization of the simulation output is shown in figure 4-32.

(a) t = 1.6s (b) t = 6.0s (c) t = 9.6s

Figure 4-32: Test scenario 8: Visualization

The overall performance of the decision making approach is quantified in in table 4-9:

Criterion Value
Minimum distance to vehicles 3.76m (38.8km/h)
Time to accelerate 0.8s
Number of action changes 5

Table 4-9: Performance evaluation - Decision Making

4-2-5 Occlusions

So far all the evaluated scenarios have been with no occlusions blocking the traffic. In ur-
ban areas, it is of course very common to approach an intersection with no visibility of the
approaching vehicles. Thus the final scenario is set up with multiple occlusions completely
blocking any approaching vehicles at the intersection. One traffic vehicle crossing the inter-
section is added as shown in 4-33.

(a) Intended route of invisible traffic (b) Velocity profile of traffic

Figure 4-33: Test scenario 9: Setup

Jayesh R. Chandiramani Master of Science Thesis

4-2 Results 53

In this case, there is no behavior prediction because there is no state information of the
traffic. Instead, the only vehicle states that exist are ones with high uncertainty behind each
occlusion.

The output (chosen action) of the decision making framework along with the corresponding
velocity of the ego vehicle over the course of the simulation is seen in figure 4-34.

0

1

2

0

10

20

30

40

50

60

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 Br
ak
e	
			
			
			
			
		C
on
st
an
t	
			
				
			
Ac
ce
le
ra
te

Ve
clo

tiy
	(k

m
/h
)

Time	(s)

Velocity	- EGO Action

(a) Chosen action and Ego vehicle velocity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8
Re
la
tiv
e	
Re
w
ar
d

Time	(s)

Accelerate Constant	Velocity Brake

(b) Relative rewards for each action

Figure 4-34: Test scenario 9: Results - Decision Making

The added states behind each occlusion cause the ego vehicle to reduce it’s speed sufficiently as
it approaches the intersection, so that it is able to avoid any potential collision with currently
invisible vehicles at the intersection. This turns out to be a good choice as the previously
occluded traffic object appears and continues past the intersection. Once the ego vehicle has
complete visibility of the intersection, it begins to accelerate back to the speed limit as it sees
no danger. This is similar to a human driver’s behavior when approaching an unsignalized
intersection with no visibility.

A visualization of the simulation output is shown in figure 4-35.

(a) t = 4.6s (b) t = 6.75s (c) t = 9.0s

Figure 4-35: Test scenario 9: Visualization

The overall performance of the decision making approach is quantified in in table 4-10:

Master of Science Thesis Jayesh R. Chandiramani

54 Simulation results

Criterion Value
Minimum distance to vehicles 16.2m (20.0km/h)
Time to accelerate 0s
Number of action changes 3

Table 4-10: Performance evaluation - Decision Making

4-2-6 Computation time

Shifting our focus to the applicability of this approach to the real world, one of the most
important criteria is real time capability. The work done in this thesis was demonstrated on
an Intel Core i7-4770 processor using a single core at a clock speed of 2.5GHz. A comparison of
execution times between the standard MCVI algorithm and the proposed approach are shown
in table 4-11. Note that the average execution time is averaged over the entire simulation.

POMDP Solver Execution Time (s)
Min. Max. Avg.

Standard Algorithm 0.468 5.128 2.23
Proposed Algorithm 0.11 2.13 0.657

Table 4-11: Computation time with 4 vehicles

From the values shown, it can be seen that while the proposed approach shows an average
speedup of 3.39x over the standard MVCI algorithm, it falls short of real time capability
on the tested hardware. Thus further development of the algorithm and/or parallelization
approaches must be looked at to improve on this.

For example, discrete graphics processing units (GPUs) are a viable option to achieve a
significant speed up. In [57], a basic POMDP algorithm along with the localization and
perception units were deployed on a high performance NVIDIA GPU using CUDA, which
allowed for parallelization to be exploited. The results of this work showed a speed up to the
tune of 213x. Thus via extrapolation one can predict that a similar performance gain can be
achieved using the algorithm proposed in this thesis to achieve real time performance.

Jayesh R. Chandiramani Master of Science Thesis

Chapter 5

Conclusions and Future Work

This chapter brings this MSc thesis to a conclusion. Section 5-1 highlights the challenges and
the contributions of this study. Section 5-2 identifies potential topics for future research.

5-1 Conclusion

This thesis began with the goal of developing a tactical decision making framework to deal
with uncertain, dynamic environments (ie., urban areas). The main challenges were being able
to accurately predict the future states of the traffic, while also considering the uncertainty
associated with their intentions and the sensor measurements. The Partially Observable
Markov Decision Process (POMDP) approach was chosen as the most suitable method for
the task of decision making along with Bayesian networks to predict the behaviour of the
traffic, and a multi model approach for future state prediction.

The problem was that online, continuous POMDPs are not always real time capable, so
methods to make the solver more efficient had to be explored. Additionally, the general
approach is not applicable to invisible vehicles, which is a common occurrence in dense urban
areas. Thus the main contribution of this thesis is a highly optimized POMDP algorithm with
a novel approach to dealing with occlusions resulting in a tactical decision making framework
for autonomous driving in urban environments. The results of simulation at speeds upto
50km/h show that the approach works in all possible urban traffic scenarios, with a good
level of efficiency and safety.

Regarding the real time capability of the work, while major improvements in the algorithm
were obtained, the framework was short of real time capable on an Intel Core i7 processor.
However, extrapolating using results from related work with parallelization of a basic POMDP
algorithm, a safe prediction can be made that the approach in this thesis would be real time
capable on a GPU. Coincidentally, this is congruent with the hardware proposed to be used
for the autonomous vehicle at the PEM department of RWTH Aachen University.

Master of Science Thesis Jayesh R. Chandiramani

56 Conclusions and Future Work

5-2 Future Work

The defined work in this thesis was limited to longitudinal decision making, but in the real
world lateral lane changes are also important in order to create an efficient path and have
more options to avoid collisions. Thus the action set must be expanded and this would have
a negative effect on the run time, but it must be considered that there would be additional
headroom on the target hardware to preserve real time capability.

Having said this, it is prohibitive to use high end hardware in autonomous vehicles when
looking at commercial production. Thus further improvements to the POMDP solver must
be sought, such as the scenario sampling approach from DESPOT [51], or approximating the
POMDP using deterministic closed loop forward simulations as in [58].

Another area of development - particularly for urban areas is the detection of pedestrians,
prediction of their intentions and future states. The movement of pedestrians is considered
even more stochastic than that of human drivers so consideration of uncertainty is paramount
in this case. It must be noted that due to the generality and transparency of the chosen
approach, the main requirement for expansion of the decision making framework to handle
pedestrians is a pedestrian model for state transitions within the POMDP. This also traces
back to the original justification of using this approach and not need extra training data or a
retraining phase for expansion of the framework.

Finally, real world testing of the approach is vital as simulation of scenarios has its own
inherent limitations. In the real word, drivers cooperate and react to each others’ movements
and also make mistakes. While scenarios that try and mimic stochastic driving behavior has
been considered in this thesis, real world testing must be performed for actual validation.

Jayesh R. Chandiramani Master of Science Thesis

Appendix A

Preliminaries

A-1 Probability theory

In the measurement world, disturbances such as noise are inevitable. The measured values
and the hidden unobservable variables are referred to as random variables X. If this variable
has a value of x, the Probability of this event is assigned to an expression P (X = x).
The most important properties in probability theory are:

0 ≤ P (A) ≤ 1

and ∑
ai∈A

P (A = ai) = 1

This implies that the single probability never takes a negative value and does not exceed 1.
Also the sum of all probabilities over all possible values from any random variable X always
sum up to 1.
Now, consider two events A and B. If both events have already occurred, the conditional
probability of P (B|A) is considered. If the two events occur simultaneously then the joint
probability is P (A,B). The relation between the conditional probability and the joint prob-
ability is:

P (B|A) = P (A,B)
P (A)

Bayes’ Theorem allows us to infer the probabilities of a series of events as:

P (B|A) = P (B)P (A|B)
P (A)

The total probability eliminates unconsidered random variables from the joint probability.
Thus, the probability of the event B is determined from the compound probability P (A,B)
over the event space:

P (B) =
∑
ai∈A

P (B,A = ai)

Master of Science Thesis Jayesh R. Chandiramani

58 Preliminaries

This resulting probability is also called a Marginal and the process is called Marginalization.
We can now reformulate Bayes’ Theorem as follows:

P (B|A) = P (B)P (A|B)∑
bi∈B P (bi)P (A|bi)

Using the conditional probability relation, the above equation can be rewritten as:

P (B) =
∑
ai∈A

P (B,A = ai) =
∑
ai∈A

P (B|A = ai)P (A = ai)

If the variable A is no longer varied and A = a′ has already been defined before the set of
total probabilities is calculated, then in the discrete event space A:

P (B) = P (B,A = a′)

Thus, only one term with A = a′ is calculated instead of the entire summation.

The compound probability can be determined using several interconnected conditional prob-
abilities via a chain rule. For example:

P (A,B,C,D) = P (A)P (B,C,D|A) = P (A)P (B|A)P (C,D|A,B) = P (A)P (B|A)P (C|A,B)P (D|A,B,C)

If the events A and B are independent:

P (A,B) = P (A)P (B)

Thus:
P (B|A) = P (B)

A-2 Value function approximation in POMDPs

Let us begin by modeling the POMDP as a belief state Markov Decision Process (MDP).
Simply put, it is an MDP that needs to be solved with states replaced by beliefs. The
probability of belief state b transitioning to b′b,a,o(s′) is given by the probability of receiving
observation o in b. Thus:

pb(b′|b, a) = p(o|b, a) (A-1)

And the immediate reward would be rb(b, a) =
∑
s∈S b(s)r(s, a).

Focusing on value iteration in a POMDP, if a policy tree is used to represent all the possible
actions that could be taken in response to receiving an observation (each of these is called a
"plan"), the agent would have to choose from all these plans and develop a policy based on
the belief it is in. While the policy tree is not as efficient as a decision tree, it is convenient
to introduce the concept of α vectors.

If s is the initial state and the agent follows a policy PT for some time t, then it expects
a reward of α, which is computed recursively by moving down a policy tree and choosing

Jayesh R. Chandiramani Master of Science Thesis

A-2 Value function approximation in POMDPs 59

Figure A-1: Policy Tree

actions from it and is essentially the sum of immediate rewards and the discounted future
rewards:

αPT (s) = r(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
o∈O

p(o|s′)αPT(o)(s
′) (A-2)

Here the true state in not known and is estimated as a belief b(s) so the value for initial belief
b0 is sought for after t steps, and this can be derived from the αPT (s) for any belief b as:

VPT (b) =
∑
s∈S

b(s)αPT (s) (A-3)

The optimal value function for a belief b and horizon t is thus the best policy tree amongst
all policy trees:

Vt(b) = max
PT

VPT (b) (A-4)

Combining the equations A-3 and A-4, the finite horizon value function can be represented
using a set of α vectors Γ as:

V (b) = max
α∈Γ

∑
s∈S

b(s)α(s) (A-5)

Thus, these α vectors contain the value that a policy tree can receive and the value function
for t-steps forms a piecewise linear convex simplex. The curse of history shows us that the
total number of policy trees is infinite and the number of vectors representing the value
function can become extremely large, and while a subset of these policy trees and their α

Master of Science Thesis Jayesh R. Chandiramani

60 Preliminaries

vectors actually have an impact on the optimal policy in the real world, this is till significant
for problems with continuous spaces.

Now, since the belief state space is actually continuous and not discrete, the MDP cannot
be solved directly. The derived POMDP value iteration from the previous belief state MDP
results shows that the POMDP backup is a linear operator, which serves as a justification for
using these α vectors.

Just as with regular MDPs, the nth Bellman backup of the value function can be calculated
using the value function of the n− 1th value function:

V 0(b) = rb(b, a) (A-6)

V n(b) = max
a∈A

V n
a (b) (A-7)

V n
a (b) = rb(s, a) + γ

∑
b′∈B

pb(s′|s, a)V n−1(b′) (A-8)

As per equation A-5, the n − 1th value function can be represented by the α vectors in the
set Γn−1 and it is PWLC. Thus:

V n−1(b′b,a,o) =
∑
s′∈S

b′b,a,oα
n−1
b,a,o (A-9)

where
αn−1
b,a,o = arg max

α∈Γn−1

∑
s′∈S

b′b,a,oα (A-10)

Rewriting equation A-8 using the transition, observation and reward functions, instead of the
belief state MDP’s reward rb(s, a) and transition pb(s′|s, a) function and simplifying:

V n
a (b) =

∑
s∈S

r(s, a) + γ
∑
o∈O

∑
s′∈S

p(o|s′)p(s′|s, a)αn−1
b,a,o(s

′)

 b(s) =
∑
s∈S

αnb,a(s)b(s) (A-11)

V n(b) = max
a∈A

V n
a (b) (A-12)

It turns out that the value function after the Bellman backup operation stays convex and if
the value function in the n − 1th step is PWLC, then it remains so in the nth step as well
[59].

The policy that is derived using the nth value function’s results is then:

πn(b) = arg max
a∈A

V n
a (b) (A-13)

Jayesh R. Chandiramani Master of Science Thesis

Bibliography

[1] R. Matthaei and M. Maurer, “Autonomous driving–a top-down-approach,” at-
Automatisierungstechnik, vol. 63, no. 3, pp. 155–167, 2015.

[2] WHO, “Violence and Injury Prevention.” http://www.who.int/violence_injury_
prevention/road_safety_status/2015/GSRRS2015_data/en/, 2017. [Online; accessed
02-August-2017].

[3] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA grand challenge: the great
robot race, vol. 36. Springer Science & Business Media, 2007.

[4] J. Markoff, “Google cars drive themselves, in traffic,” The New York Times, vol. 10,
no. A1, p. 9, 2010.

[5] E. Donges, “A conceptual framework for active safety in road traffic,” Vehicle System
Dynamics, vol. 32, no. 2-3, pp. 113–128, 1999.

[6] P. Ramser, Review of Decision Making in Action: Models and Methods. American Psy-
chological Association, 1993.

[7] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assess-
ment for intelligent vehicles,” Robomech Journal, vol. 1, no. 1, p. 1, 2014.

[8] S. Ammoun and F. Nashashibi, “Real time trajectory prediction for collision risk estima-
tion between vehicles,” in Intelligent Computer Communication and Processing, 2009.
ICCP 2009. IEEE 5th International Conference on, pp. 417–422, IEEE, 2009.

[9] A. Barth and U. Franke, “Where will the oncoming vehicle be the next second?,” in
Intelligent Vehicles Symposium, 2008 IEEE, pp. 1068–1073, IEEE, 2008.

[10] A. Polychronopoulos, M. Tsogas, A. J. Amditis, and L. Andreone, “Sensor fusion for pre-
dicting vehicles’ path for collision avoidance systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 8, no. 3, pp. 549–562, 2007.

Master of Science Thesis Jayesh R. Chandiramani

http://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_data/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_data/en/

62 Bibliography

[11] T. Batz, K. Watson, and J. Beyerer, “Recognition of dangerous situations within a
cooperative group of vehicles,” in Intelligent Vehicles Symposium, 2009 IEEE, pp. 907–
912, IEEE, 2009.

[12] M. Althoff and A. Mergel, “Comparison of markov chain abstraction and monte carlo
simulation for the safety assessment of autonomous cars,” IEEE Transactions on Intel-
ligent Transportation Systems, vol. 12, no. 4, pp. 1237–1247, 2011.

[13] D. Vasquez and T. Fraichard, “Motion prediction for moving objects: a statistical ap-
proach,” in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE Interna-
tional Conference on, vol. 4, pp. 3931–3936, IEEE, 2004.

[14] T. Streubel and K. H. Hoffmann, “Prediction of driver intended path at intersections,”
in Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pp. 134–139, IEEE, 2014.

[15] M. Bahram, A. Wolf, M. Aeberhard, and D. Wollherr, “A prediction-based reactive driv-
ing strategy for highly automated driving function on freeways,” in Intelligent Vehicles
Symposium Proceedings, 2014 IEEE, pp. 400–406, IEEE, 2014.

[16] H. M. Mandalia and M. D. D. Salvucci, “Using support vector machines for lane-change
detection,” in Proceedings of the human factors and ergonomics society annual meeting,
vol. 49, pp. 1965–1969, SAGE Publications Sage CA: Los Angeles, CA, 2005.

[17] M. Schreier, V. Willert, and J. Adamy, “An integrated approach to maneuver-based
trajectory prediction and criticality assessment in arbitrary road environments,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp. 2751–2766, 2016.

[18] T. Gindele, S. Brechtel, and R. Dillmann, “Learning context sensitive behavior models
from observations for predicting traffic situations,” in Intelligent Transportation Systems-
(ITSC), 2013 16th International IEEE Conference on, pp. 1764–1771, IEEE, 2013.

[19] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous navi-
gation,” Neural Computation, vol. 3, no. 1, pp. 88–97, 1991.

[20] S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder,
M. Thuy, M. Goebl, F. v. Hundelshausen, et al., “Team annieway’s autonomous system
for the 2007 darpa urban challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 615–639,
2008.

[21] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer, et al., “Autonomous driving in urban environments: Boss and the
urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 425–466, 2008.

[22] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang,
U. Franke, N. Appenrodt, C. G. Keller, et al., “Making bertha driveâĂŤan autonomous
journey on a historic route,” IEEE Intelligent Transportation Systems Magazine, vol. 6,
no. 2, pp. 8–20, 2014.

[23] M. P. Vitus and C. J. Tomlin, “A probabilistic approach to planning and control in au-
tonomous urban driving,” in 52nd IEEE Conference on Decision and Control, pp. 2459–
2464, IEEE, 2013.

Jayesh R. Chandiramani Master of Science Thesis

63

[24] F. Meng, J. Su, C. Liu, and W.-H. Chen, “Dynamic decision making in lane change: game
theory with receding horizon,” in Control (CONTROL), 2016 UKACC 11th International
Conference on, pp. 1–6, IEEE, 2016.

[25] C. Hubmann, M. Aeberhard, and C. Stiller, “A generic driving strategy for urban envi-
ronments,” in Intelligent Transportation Systems (ITSC), 2016 IEEE 19th International
Conference on, pp. 1010–1016, IEEE, 2016.

[26] W. Liu, S.-W. Kim, Z. J. Chong, X. Shen, and M. H. Ang, “Motion planning using coop-
erative perception on urban road,” in Robotics, Automation and Mechatronics (RAM),
2013 6th IEEE Conference on, pp. 130–137, IEEE, 2013.

[27] A. Arab, K. Yu, J. Yi, and D. Song, “Motion planning for aggressive autonomous vehicle
maneuvers,” in Automation Science and Engineering (CASE), 2016 IEEE International
Conference on, pp. 221–226, IEEE, 2016.

[28] K. Driggs-Campbell and R. Bajcsy, “Communicating intent on the road through human-
inspired control schemes,” in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pp. 3042–3047, IEEE, 2016.

[29] J. Nilsson, M. Brännström, E. Coelingh, and J. Fredriksson, “Longitudinal and lateral
control for automated lane change maneuvers,” in 2015 American Control Conference
(ACC), pp. 1399–1404, IEEE, 2015.

[30] J. Suh, B. Kim, and K. Yi, “Stochastic predictive control based motion planning for
lane change decision using a vehicle traffic simulator,” in Transportation Electrification
Asia-Pacific (ITEC Asia-Pacific), 2016 IEEE Conference and Expo, pp. 900–907, IEEE,
2016.

[31] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision making for lane
changes in fully automated driving,” IEEE Conference on Intelligent Transportation
Systems, Proceedings, ITSC, pp. 2063–2070, 2013.

[32] S. Ulbrich and M. Maurer, “Towards Tactical Lane Change Behavior Planning for Auto-
mated Vehicles,” IEEE Conference on Intelligent Transportation Systems, Proceedings,
ITSC, vol. 2015-Octob, pp. 989–995, 2015.

[33] D. K. Kye, S. W. Kim, and S. W. Seo, “Decision making for automated driving at
unsignalized intersection,” ICCAS 2015 - 2015 15th International Conference on Control,
Automation and Systems, Proceedings, no. Iccas, pp. 522–525, 2015.

[34] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online POMDP planning
for autonomous driving in a crowd,” Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2015-June, no. June, pp. 454–460, 2015.

[35] S. Brechtel, T. Gindele, and R. Dillmann, “Solving continuous pomdps: Value iteration
with incremental learning of an efficient space representation,” in International Confer-
ence on Machine Learning, pp. 370–378, 2013.

[36] C. Isidore, “Google looking to hire self-driving car ’drivers’.” http://money.cnn.
com/2016/05/13/autos/google-self-driving-drivers/, 2016. [Online; accessed 02-
January-2017].

Master of Science Thesis Jayesh R. Chandiramani

http://money.cnn.com/2016/05/13/autos/google-self-driving-drivers/
http://money.cnn.com/2016/05/13/autos/google-self-driving-drivers/

64 Bibliography

[37] F. Lambert, “Tesla has now 1.3 billion miles of Autopilot data go-
ing into its new self-driving program.” https://electrek.co/2016/11/13/
tesla-autopilot-billion-miles-data-self-driving-program/, 2016. [Online;
accessed 02-January-2017].

[38] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner, L. Jackel, and
U. Muller, “Explaining how a deep neural network trained with end-to-end learning
steers a car,” arXiv preprint arXiv:1704.07911, 2017.

[39] D. Castelvecchi, “Can we open the black box of ai?,” Nature News, vol. 538, no. 7623,
p. 20, 2016.

[40] F. V. Jensen, An introduction to Bayesian networks, vol. 210. UCL press London, 1996.

[41] I. Ben-Gal, “Bayesian networks,” Encyclopedia of statistics in quality and reliability,
2007.

[42] T. A. Stephenson, “An introduction to bayesian network theory and usage,” tech. rep.,
IDIAP, 2000.

[43] V. Mihajlovic and M. Petkovic, “Dynamic bayesian networks: A state of the art,” 2001.

[44] D. Barber, Bayesian reasoning and machine learning. Cambridge University Press, 2012.

[45] G. K.-I. C. Beierle and G. Kern-Isberner, Methoden wissensbasierter Systeme. Springer,
2003.

[46] K. Murphy, “Bayes Net Toolbox for Matlab.” https://github.com/bayesnet/bnt,
2014. [Online; accessed 21-May-2017].

[47] D. P. Bertsekas, D. P. Bertsekas, D. P. Bertsekas, and D. P. Bertsekas, Dynamic pro-
gramming and optimal control, vol. 1. Athena scientific Belmont, MA, 1995.

[48] H. Bai, D. Hsu, W. S. Lee, and V. a. Ngo, “Monte Carlo Value Iteration for Continuous
State POMDPs,” Int. Workshop on the Algorithmic Foundation of Robotics (WAFR),
pp. 175–191, 2011.

[49] M. S. J. Porta, M. Spaan, and N. Vlassis, “Value iteration for continuous-state pomdps,”
IAS Technical Report, University of Amsterdam, Tech. Rep. IAS-UVA-04-04, 2004.

[50] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning algorithms for
pomdps,” Journal of Artificial Intelligence Research, vol. 32, pp. 663–704, 2008.

[51] A. Somani, N. Ye, D. Hsu, and W. Lee, “DESPOT : Online POMDP Planning with
Regularization,” Advances in Neural Information Processing Systems, pp. 1–9, 2013.

[52] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in Proceedings
of the 20th conference on Uncertainty in artificial intelligence, pp. 520–527, AUAI Press,
2004.

[53] M. Hauskrecht, “Value-function approximations for partially observable markov decision
processes,” Journal of Artificial Intelligence Research, vol. 13, pp. 33–94, 2000.

Jayesh R. Chandiramani Master of Science Thesis

https://electrek.co/2016/11/13/tesla-autopilot-billion-miles-data-self-driving-program/
https://electrek.co/2016/11/13/tesla-autopilot-billion-miles-data-self-driving-program/
https://github.com/bayesnet/bnt

65

[54] H. Kurniawati, D. Hsu, and W. S. Lee, “Sarsop: Efficient point-based pomdp planning
by approximating optimally reachable belief spaces.,” in Robotics: Science and Systems,
vol. 2008, Zurich, Switzerland, 2008.

[55] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making under uncer-
tainty for autonomous driving using continuous pomdps,” in Intelligent Transportation
Systems (ITSC), 2014 IEEE 17th International Conference on, pp. 392–399, IEEE, 2014.

[56] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for berthaâĂŤa
local, continuous method,” in Intelligent Vehicles Symposium Proceedings, 2014 IEEE,
pp. 450–457, IEEE, 2014.

[57] F. J. Ramirez-Rodriguez, “Parallelization of existing algorithms of self-driving cars: De-
cisions, tracking, visualization,” Master’s thesis, PEM, RWTH Aachen, 04 2017.

[58] E. Galceran, A. G. Cunningham, R. M. Eustice, and E. Olson, “Multipolicy decision-
making for autonomous driving via changepoint-based behavior prediction.,” in Robotics:
Science and Systems, 2015.

[59] E. J. Sondik, “The optimal control of partially observable markov processes.,” tech. rep.,
DTIC Document, 1971.

Master of Science Thesis Jayesh R. Chandiramani

66 Bibliography

Jayesh R. Chandiramani Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Related Work
	Future State Prediction
	Decision Making

	Research Questions
	Outline

	Behavior Prediction and Trajectory Estimation
	Bayesian Network Theory
	Introduction to Bayesian Networks
	Inference in BNs

	Applying discrete BNs to estimate driver behavior
	Multi motion model approach for future state prediction
	Summary

	Decision Making
	Introduction to Partially Observable Markov Decision Processes
	Solver algorithm
	Monte Carlo Value Iteration
	Performance improvements

	Formulating the autonomous driving problem as a POMDP
	Transition model
	Observation model
	Multi Resolution Planning
	Reward function

	Summary

	Simulation results
	Simulation Setup
	Parameter Configuration
	Evaluation Criteria

	Results
	Perpendicular Intersection
	Curved Intersection
	Zipper Merge
	Roundabout
	Occlusions
	Computation time

	Conclusions and Future Work
	Conclusion
	Future Work

	Appendices
	Preliminaries
	Probability theory
	Value function approximation in POMDPs

	Back Matter
	Bibliography

