<]
TUDelft

Delft University of Technology

Evolutionary Algorithms for Designing Self-sufficient Floating Neighborhoods

Kirimtat, Ayca; Ekici, Berk; Cubukguoglu, Cemre; Sariyildiz, Sevil; Tasgetiren, Mehmet Fatih

DOI
10.1007/978-3-030-01641-8_6

Publication date
2019

Document Version
Final published version

Published in
Optimization in Industry

Citation (APA)

Kirimtat, A., Ekici, B., Cubukguoglu, C., Sariyildiz, S., & Tasgetiren, M. F. (2019). Evolutionary Algorithms for
Designing Self-sufficient Floating Neighborhoods. In S. Datta, & J. Davim (Eds.), Optimization in Industry:
Present Practices and Future Scopes (pp. 121-147). Springer. https://doi.org/10.1007/978-3-030-01641-8_6

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-030-01641-8_6
https://doi.org/10.1007/978-3-030-01641-8_6

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Evolutionary Algorithms for Designing m
Self-sufficient Floating Neighborhoods L

Ayca Kirimtat, Berk Ekici, Cemre Cubukcuoglu, Sevil Sariyildiz
and Fatih Tasgetiren

Abstract Floating neighborhoods are innovative and promising urban areas for chal-
lenges in the development of cities and settlements. However, this design task requires
a lot of considerations and technical challenges. Computational tools and methods
can be beneficial to tackle the complexity of floating neighborhood design. This paper
considers the design of a self-sufficient floating neighborhood by using computational
intelligence techniques. In this respect, we consider a design problem for locating
each neighborhood function in each cluster with a certain density within a floating
neighborhood. In order to develop a self-sufficient floating neighborhood, we propose
multi-objective evolutionary algorithms, namely, a self-adaptive real-coded genetic
algorithm (CGA) as well as a self-adaptive real-coded genetic algorithm (CGA_DE)
employing mutation operator of differential evolution algorithm. The only difference
between CGA and CGA_DE is the fact that CGA uses random immigration of cer-
tain individuals into the population as a mutation operator whereas in the mutation
phase of CGA_DE algorithm, the traditional mutation operator DE/rand/1/bin of DE
algorithms. The arrangement of individual functions to develop each neighborhood
function is further elaborated and formed by using Voronoi diagram algorithm. An
application to design a self-sufficient floating neighborhood in Urla district, which
is on the west coast of Turkey, [zmir, is presented.

A. Kirimtat - B. Ekici
Department of Architecture, Yasar University, Izmir, Turkey
e-mail: ayca.kirimtat@yasar.edu.tr

B. Ekici
e-mail: berk.ekici @yasar.edu.tr; B.Ekici-1 @tudelft.nl

C. Cubukcuoglu
Department of Interior Architecture and Environmental Design, Yasar University, {zmir, Turkey
e-mail: cemre.cubukcuoglu@yasar.edu.tr; C.Cubukcuoglu@tudelft.nl

B. Ekici - C. Cubukcuoglu - S. Sariyildiz
Chair of Design Informatics, TU Delft, Delft, The Netherlands
e-mail: I.S.Sariyildiz@tudelft.nl

F. Tasgetiren ()
Department of International Logistics and Management, Yasar University, Izmir, Turkey
e-mail: fatih.tasgetiren @yasar.edu.tr

© Springer Nature Switzerland AG 2019 121
S. Datta and J. P. Davim (eds.), Optimization in Industry, Management
and Industrial Engineering, https://doi.org/10.1007/978-3-030-01641-8_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01641-8_6&domain=pdf
mailto:ayca.kirimtat@yasar.edu.tr
mailto:berk.ekici@yasar.edu.tr
mailto:B.Ekici-1@tudelft.nl
mailto:cemre.cubukcuoglu@yasar.edu.tr
mailto:C.Cubukcuoglu@tudelft.nl
mailto:I.S.Sariyildiz@tudelft.nl
mailto:fatih.tasgetiren@yasar.edu.tr
https://doi.org/10.1007/978-3-030-01641-8_6

122 A. Kirimtat et al.

Keywords Computational design * Performance-based design + Self-sufficient
Floating city - Multi-objective optimization - Urban design * Genetic algorithm
Differential evolution + Form-finding + Voronoi diagram

1 Introduction

In the past decades, relevant and innovative solutions for cities have been exploring
among researchers, city planners, as well as engineers. The reason is to tackle envi-
ronmental problems caused by rising sea levels, natural disasters, and harmful effects
of human activities. It is predicted by researchers that sea levels will continue to rise
around the world [1]. For these reasons, we will see to face the problem of land short-
age in the near future. In addition, extraordinary natural events such as earthquakes
and heat waves will occur more frequent and more intense in the future. Many of the
vulnerable cities, which are often in coastal locations, can be unpleasantly affected
by problems mentioned above. In addition, a large number of world population is
living in the coastal areas. For this reason, we have to consider the challenges in the
development of cities and settlements to save humanity and our future life. Some of
European and East Asian cities such as Tokyo, Shanghai, London, Rotterdam, and
Hamburg take precautions against those challenges [2]. However, more advanced
design solutions are still being sought in the world. Regarding this, floating settle-
ments have emerged as new promising urban areas. Since the oceans are technically
seen as international zones, they are defined as our last chance to remain in life on
the earth [3]. In opposition to the traditional land renovation methods, floating set-
tlements provide an exciting and environmentally friendly solution for land creation
[3]. They have many advantages in terms of various aspects stated as follows:

Protecting the marine eco-system,

Construction on the sea is fast and easy,

Easily removed or expanded,

Durable against the seismic shocks,

Presenting economical solutions especially when the sea depth is high or the seabed
is very soft [4].

There are relatively few examples of floating settlements, such as

e A collaborative design of The SeaSteading Institute with Delta Sync [3],
e Floating city design proposal of AT Design Office in China [5],
e A concept design proposed by Baca Architects [6].

In the examples mentioned above, most of them deal with structural aspects,
energy-efficiency, self-sufficiency, growth, movability, seakeeping, safety, water
experience, and cost-efficiency. Based on these approaches, we aimed to consider
both architectural and engineering design goals. We foresee that combining these
two disciplines in the conceptual phase can play a key role in the development of
future floating settlements.

Evolutionary Algorithms for Designing Self-sufficient ... 123

Fig. 1 Project region: Urla, Izmir, Turkey

As an extension of [7], this paper develops a novel design methodology for the
design of a self-sufficient floating neighborhood through implementations of evo-
lutionary algorithms. Briefly, we combine knowledge from Floating Settlements
Design practice with Computational Intelligence. Regarding the formulation of the
complex problem in our study, we start with clustering the proposed site region into
different zones. Then, we focus on locating each neighborhood function in each clus-
ter with certain percentages. The neighborhood functions are residential, agricultural,
public, and green areas. We aim to fit 30.000 people in this floating neighborhood.
In the problem of distribution of the neighborhood functions in each cluster, inputs
are the percentages of each function in each cluster and the cluster capacities. On the
other hand, objective functions are to ensure walkability, scenery of the residents,
as well as to enable the design to be cost-effective. We aim at finding desirable dis-
tributions of the functions in each cluster that contribute the self-sufficient design
of floating neighborhoods. To solve this complex problem, we applied two different
evolutionary algorithms, namely CGA and CGA_DE. The arrangement of individual
functions to develop each neighborhood function is further elaborated and formed by
using Voronoi diagram algorithm. An application to design a self-sufficient floating
neighborhood in Urla, which is a coastal region located on the west of Turkey, Izmir
is presented. So-called project region can be found in Fig. 1.

The rest of the paper is organized as follows: Sect. 2 introduces the design method-
ology and problem formulation developed in this chapter. Section 3 presents the
evolutionary algorithms that have been applied in this chapter. Section 4 discusses

124
- N\
Proposed - . 2
Site Region > Design Concept
A S
Y
' 4 B
Design Rules

A ¢ J/
e ~

—» Sea Space Analysis
\ J

Y

& ~

Rule-Based Decision

Making

\ ¢ J
f ™

Problem Formulation
\ J

A. Kirimtat et al.

.

~

Employing
Evolutionary Algorithms

J/

v

7 o

L — .

Fig. 2 Floating neighborhood design workflow

.

~

Algorithm Comparison
and Analysis of Results

J

Form Finding

Final
Floating
Neighborhood
Design

the computational results. Section 5 presents the form-finding step. Finally, Sect. 6

gives the conclusions.

2 Design Methodology

In this section, we introduce our proposed self-sufficient floating neighborhood
design and its fundamentals. The design process consists of several steps as shown
in Fig. 2.

Evolutionary Algorithms for Designing Self-sufficient ... 125

2.1 Design Concept

The design concept is in relation with proposed project region. According to our
preliminary site analysis, the urban area is required for further investigation in the
conceptual phase. Thus, the design concept for the floating neighborhoods involves
the following features:

e Proposed design should be self-sufficient. The food will be provided from the
neighborhoods themselves by the help of agricultural areas.

e Distances between each function should be walkable. There will be fewer vehicles
for transporting from one function to another.

e Scenic view should be desirable for both the residents in the project region and in
the proposed floating neighborhood.

e The construction on the sea should be cost-efficient and required low budgets.

2.2 Design Rules

We infer the design rules through “if-then” statements, which is a common approach
for representing design knowledge. In this approach, the design inferences are based
on a process of obtaining new knowledge through existing knowledge. We could
rather define them as our propositions, too. The design rules are mainly related
to seabed characteristics of the project region, construction budget for residential
areas, distances among the neighborhood functions and some specific proximity
requirements. “if-then” rules considering in this study are listed as follows:

e If (sea depth is very shallow), then it is not proper for any neighborhood.

e If (sea depth is shallow) and (budget for residential function is low), then total
budget is cost-effective.

e If (agricultural functions are very close to each other), and (residential functions
are far from each other), then it is scenic for Urla people.

e If (green area functions are very close to each other), and (residential functions
are far from each other), then it is scenic for Urla people.

e If there is a (very short distance between public and residential functions), and
(very short distance between residential function and agricultural function), then
it is a walkable city.

o If there is a (very short distance between residential function and public function),
and (very short distance between residential function and green function), then it
is a walkable city.

126 A. Kirimtat et al.

Fig. 3 Placements of 16
clusters on the intervention
area

2.3 Sea Space Analysis

Sea space is analyzed to determine the proper intervention area for the location of the
floating neighborhood. This decision is related to the water depth information. We
selected the intervention area along the coastline that has water depths in between 5
and 20 m. Selected area is also based on our “if-then” rules stated above. As shown
in Fig. 3, we divided the intervention area into 16 zones, so-called clusters where we
distribute each neighborhood function in them.

2.4 Rule-Based Decision-Making

Rule-based decision-making is a way to determine which neighborhood function
will be placed in which cluster with how much density. In other words, the decisions
regarding the distribution of the neighborhood functions are based on “if-then” rules
considering design goals, which are scenery, walkability, and cost-effectiveness. For
instance, one cluster can separate its functions as 35% of green areas, 45% of resi-
dential areas, 20% of agricultural areas, and 0% of public areas. On the other hand,
another cluster’s percentages could be divided as 0% of green areas, 20% of resi-
dential areas, 40% of agricultural areas, and 40% of public areas. These percentages
directly affect the performance of the design alternatives.

Evolutionary Algorithms for Designing Self-sufficient ... 127

2.5 Problem Formulation

In this section, we explain the mathematical model of our proposed floating neigh-
borhood design problem. Notations of decision variables, objectives, and constraints
are given in Table 1.

According to the notations above, the mathematical model is described as

1’1’111](1 1 1)

Ee* S¢* Wa

subject to (1
100, 000 m? < aa < 120.000 m2

0<pyy <1 2)

ra > 300, 000 m? (3)

ca > 900, 000 m? 4)

Decision variables of the floating neighborhood design problem consist of 64
variables, which are percentages to distribute four functions into 16 clusters.

Cost-Effectiveness, denoted as Ec, is one of the problem objectives as given in
Egs. (5)—(9). There is a close relationship between water depths and budget require-
ments. Locating the neighborhoods on shallow sea depths is an economical solution
for settlements on the sea. Due to the cost-effectiveness priority, clusters are forced
to locate on sea depth with (0—5 m) or (5-20 m). On the other hand, this objective
aims at keeping total budget of the floating neighborhood between 1 million TL
and 1.5 million TL for residential areas because of the highest budget requirements
of them. These cost values are measured based on the proposed number of 30,000
people living in the neighborhood.

. sd — 20
ss = max| 0, min|{ 1, 5
5-20
0. min(1, 3422 ©6)
su = max| 0, min{ 1, ——
0-5
db—1.5
bl = 0, min(1, ——— 7
a max(mm(115)) 7
where
db =raxcu (3
Max Ec = ss +su +abl 9)

Scenery objective consists of two main criteria: scenery for the residents in the
floating neighborhood (Scf’) and scenery from Urla to floating neighborhood (Scu).
In order to achieve Scf part of this objective, we aim at keeping all functions close
to the agricultural and the green areas to enable more sea view for residents in the

128

Table 1 Problem notations

A. Kirimtat et al.

Notations Descriptions
Dxy Density of function (x) in cluster (y)
X Index of functions x =1, ..., 4
y Index of clusters y =1, ..., 16
aa Capacity of each cluster
sd Sea depth (m)
Ec Cost-effectiveness
Sc Scenery
Wa Walkability
ss Shallow water
su Shallow water
db Total budget for residential areas
cu Unit cost of residential areas (%%‘)
ra Total area of residential functions (m?)
ca Total area of agricultural functions (m?)
abl The degree of low budget satisfaction
Scf Scenery for residents in floating neighborhood
Scu Scenery for Urla people
Ox x coordinate of offshore
Oy y coordinate of offshore
Cx x coordinate for coastline of Urla
Cy y coordinate for coastline of Urla
Rx x coordinate of residentials
Ry y coordinate of residentials
Ax x coordinate of agricultural areas
Ay y coordinate of agricultural areas
Gx x coordinate of green areas
Gy y coordinate of green areas
Px x coordinate of public areas
Py y coordinate of public areas
Whixj Walkability between functions xi and xj
1: residential, 2: agricultural, 3: green, 4: public
Dr.o Manbhattan distance between residential and offshore
Da.c Manhattan distance between agricultural and coast
Dg.c Manhattan distance between green and coast
Dg.c Manhattan distance between residential and coast
Dr.c Manhattan distance between residential and green
Dp.a Manhattan distance between residential and agricultural
Dg. p Manhattan distance between residential and public

Evolutionary Algorithms for Designing Self-sufficient ... 129

floating neighborhood. Regarding the Scu part of this objective, we aim at locating the
residential areas more close to the water shore, in contrast, locating the agricultural
and green areas more close to the Urla coastline. To assess the distances between
functions and other places, we make use of Manhattan distance calculations as shown
in Egs. (10)—(13). After the distances are calculated, we aim at keeping those distance
values in a certain interval as stated in below equation from (14) to (17). This interval
isinbetween 300 and 1500 mfor D4 ¢, Dg.c, Dr.c. Onthe other hand, the acceptable
range for the distance between residential and offshore is 0-1500 m.

Dg,o =|Rx — Ox|+|Ry — Oy| (10)
Dac =[Ax —Cx|[+|Ay — Cy| (11)
Dg,c =|Gx — Cx| +|Gy — Cy| (12)
Dg.c =|Rx —Cx|+|Ry — Cy| (13)
0 < Dg.o < 1500 (14)
300 < Dy < 1500 (15)
300 < Dg.c < 1500 (16)
300 < Dg.c < 1500 (17)

Mathematical expressions that aim at keeping the distances between ranges are
given from Egs. (18)—(22).

4 0. min(1. 2.0 = 1500)
= max min —_—
! ’ 0 — 1500
Dac—1
d> = max(0, min 1, 2a.c = 1500 (19)
300 — 1500
Dge—1
ds = max(0, min(1, Dg.c = 1500 (20)
300 — 1500
Dg.c — 1500
dy = max(0, min(1, 2&2€ — 7~ 1)
300 — 1500
1
max Sc = - - 22)
min(dy, (min(max(dz, d3), ds))

Walkability is another objective of this design problem. Numerical walkability
scores that assigned to each location according to their proximity related features
are gathered from walk score. Walk score website [8] searches for walkable cities
based on easy access to public transit, better commutes, and proximity to the people
and places you love. Based on this approach, equation from (23) to (27) show the
calculations of distances between functions. Then, we try to keep those distances in
a walkable range.

Dr ¢ = |Rx — Gx|+|Ry — Gy| (23)

130 A. Kirimtat et al.

Dpr s =|Rx — Ax|+ |Ry — Ay| 24)
Dg.p =|Rx — Px|+|Ry — Py| (25)
300 < Dyiyi <1000 i =1,...,4andj=1,...,4 (26)

o . Dy —1000
maximize Wy; x; = max| 0, min(1, 5535500 27)

for¥ xiandxj.

Problem Constraints are categorized into three parts as “Cluster Capacity Con-
straint”, “Black Box Constraint” and “Functions’ Areas Constraint”. Cluster capacity
constraint is given in Eq. (1), black box constraint is given in Eq. (2) and area con-
straints for neighborhood functions are given in Egs. (3) and (4).

3 Proposed Evolutionary Algorithms

In this chapter, we present multi-objective evolutionary algorithms to solve the float-
ing settlement design problem. Evolutionary algorithms (EAs) are popular opti-
mization algorithms since they have been implemented to multi-objective problems
(MOP). For this reason, they are entitled as multi-objective evolutionary algorithms
(MOEA) . Amongst them, NSGA-II [9] and SPEA-2 [10] are the most studied ones
to deal with MOPs in the literature. As an extension of [7], CGA and CGA_DE are
developed and implemented in order to solve the complex floating neighborhood
design problem.

Genetic algorithms (GA) are search heuristics based on the biological process
of natural selection and evolution [11]. In GAs, individuals with decision variables
in D dimensions are encoded into chromosomes to obtain an initial population that
should be evolved over generations. At each generation, two individuals are chosen
and mated from the population. Then, two individuals are crossed over to generate
new solutions called offspring or child. Some individuals are mutated to escape from
local minima. Ultimately, offspring population is added to parent population in order
to select new individuals for the next generation. Figure 4 shows the overall scheme
of the genetic algorithm (GA).

Real-coded GA needs a crossover and mutation operators. As a crossover operator,
we employ a simple binomial crossover operator to generate offspring Q. In other
words, two individuals, X, and X}, are selected from the parent population. Then,
each dimension of the offspring is either taken from the first or second individual
with a certain crossover probability CR!. The outline of the crossover operator is
given in Fig. 5 to generate offspring Q; as well as an example is given in Table 2.

Regarding the mutation operator, some dimensions of offspring Q{ 1 can be
mutated or perturbed with a small mutation probability as shown in Table 2.

Evolutionary Algorithms for Designing Self-sufficient ...

Fig. 4 GA procedure

Fig. 5 Crossover operator

131

Establish initial population P* at generation t
Evaluate individuals in Pt
While (not termination)do

{

Select two individuals from Pt

Crossover individuals to produce of fspring Q"

Mutate some individuals in Q*

Add of fspring Qt to individuals in Pt
Evaluate (Pt + Q%)individuals in P*
Select Pt individuals from (Pt + Q%)

End While
End Algorithm

forj=1toD

if rj < CR; then

Qij,t+1 — X[]l',t
else '
Qi],t+1 — Xi)],t
endfor
Table 2 Binomial crossover and mutation operator
j 1 2 3 4 5
CR; 0.70 0.70 0.70 0.70 0.70
7 0.80 0.25 0.92 0.67 0.11
xé't 0.15 0.70 0.35 0.45 0.95
xl],"t 0.65 0.75 0.10 0.25 0.05
Qifr“'l 0.65 0.70 0.10 0.45 0.95
7 0.80 0.01 0.18 0.75 0.15
MR; 0.02 0.02 0.02 0.02 0.02
Qij'tﬂ 0.65 0.32 0.10 0.45 0.95

3.1 CGA and CGA_DE Algorithms

The real-coded GA mentioned above is actually for single objective real-parameter
optimization problems. Now, in this section, we extend it to multi-objective float-
ing neighborhood design problem. We propose a self-adaptive real-coded CGA and
CGA_DE algorithms for the problem on hand. In both algorithms, initial popula-

132 A. Kirimtat et al.

tion is constructed uniformly and randomly within the given boundaries for each of
64 dimensions. The binomial crossover operator is used in both algorithms to gen-
erate offspring population. The difference between two algorithms comes from the
different mutation operators used. In the CGA, we immigrate some random new indi-
viduals into the parent population with an amount of M R; x | P! | . It means that if the
MR; is equal to 0.02 with the population size |P’ | = 100, two individuals selected
from the population are randomly and uniformly regenerated within the boundaries
of each dimension. On the other hand, we employ the traditional mutation operator
DE/rand/1/bin of DE algorithms. In other words, a certain percent of the offspring
population randomly goes under a mutation operator, after generating the offspring
population. For the mutation operator, we propose a distinct strategy by employing
the mutation operator of DE. Three individuals are randomly chosen from the parent
population. Then, the difference between two individuals is multiplied by a uniform
random number r between 0 and 1 in order to add to another individual randomly
chosen as in Eq. (28).

0" = x4 r x (X)' - X1) (28)

Self-adaptive procedure in DE algorithms is first proposed by Brest et al. [12, 13].
We employ the same idea in this paper. Initially, CR; and M R; values are assigned
to 0.9 and 0.05. These values are updated for each individual I at each generation t
as in as in Eqgs. (29) and (30).

MR;+1 _ MRmin+rl ;MRmax ifl"z <.P1 (29)
MR; otherwise

30
CR! otherwise 0

CR;H _ !CRmin +71 - CRyax if r2 < p
where r; € {1, 2} are uniform random numbers in the range [0, 1]. p; denotes the
probability to adjust the CR; and M R; values. Parameters are taken as p; = 0.1,
CR,in = 0.1, and CR,,,, = 0.9. In addition, M R,,;,, and M R,,,,, are taken as 0.01
and 0.05.

For both algorithms, we take advantage of non-dominated sorting procedure and
constrained-domination rule of the NSGA-II algorithm [9], which is one of the most
sophisticated multi-objective algorithms in the literature. The non-dominated sorting
procedure is given in Fig. 6.

However, we employ the fast non-dominated sorting algorithm to create non-
dominated fronts in both algorithms proposed in this paper.

Another key feature of the NSGA-II algorithm is the crowding distance. Suppose
that we obtained a non-dominated set §. The crowding distance of 6[i], is calculated
as in Fig. 7.

Evolutionary Algorithms for Designing Self-sufficient ... 133

foreachp € P

S,=0
n, =0
foreachq € P
if (p <q)then If p dominated q
Sy, =5, U{q} Add g to the set of solutions dominated by p
elseif (q < p) then
n,=n,+1 Increment the domination counter of p
if n, = 0then p belongs to the first front
Prank = 1
Fy =F U {p}
i=1 Initialize the front counter
while F; # @
Q=09 Used to store the members of the next front

foreachp € F;
foreachq €S,

ng=ng—1
if ng = 0then q belongs to the next front
Grank =1+ 1
Q=Qu{q}
i=i+1
=0
End

Fig. 6 Non-dominated sorting procedure

1. L=16]
2. for eachindividual i,set §[i]zise = 0
3. foreachobjective m
a. 6 = sort(8,m) in an ascending order
b, 8[1aise = 6[L]aise =
c. fori=2toL-1
S[ilaise = Olilaise + (6[i + 1][m] — 6[i — U[mD /(7™ — fm'™)

Fig. 7 Crowding distance calculation

3.1.1 Comparison Operators

For unconstrained multi-objective optimization, the NSGA-II employs the crowded-
comparison operator (<). It directs the selection process at various stages of the
algorithm. Every individual i in the population has a nomination rank (i,,,;) and a
crowding distance rank (igisiance)- It defines a crowded-comparison operator (<) as
follows:

lf rank < jrank)theni < J

or ((irank - jrank) and (idistance > jdistance))

134 A. Kirimtat et al.

—_

Set t = 0 and create a random parent population Pt with N
2. Perform binomial and mutation operator as in Fig.5 and Table 11
on Pt to obtain Q* with size N
If the termination criteria is satisfied, stop and return P
Set Rt = Pt U Q¢ to combine two populations
5. Perform non — dominated sorting procedure for R to set the non —
dominated fronts fi,fs,.., fx-
6. Fori=1,..,krepeat the following steps:
a. Calculate crowding distance for each solution in f;.
b. Create P'* as follows:
i if [P +|fi]| < N,then set Pt*1 = pttly ft
iil. if |P"*Y + |f;| > N, then add the least crowded
N — |Pt*1| solutions from f; to Pt*1,
7. Use binary tournament selection with constrained domination rule
to select parents from Ptt1,
8. Apply binomial crossover and mutation operator to Pt and
obtain new of fspring population Q** with size N
9. Sett=t+1and goto Step 3.

Ealiad

Fig. 8 CGA and CGA_DE algorithm

It means that lower (better) rank is preferred between two individuals with different
non-domination ranks. On the other hand, if both individuals have the same rank, it
prefers individual with lesser crowded region.

Regarding the constrained multi-objective optimization, when comparing two
individuals, the situation is somewhat different. Three cases can be observed: (1)
one is feasible, the other is not; (2) both are infeasible; and (3) both solutions are
feasible. For the constrained multi-objective optimization, NSGA-II modifies the
definition of domination between two solutions as follows:

An individual i is considered to constrained-dominate an individual j under the
following conditions:

(1) Individual i is feasible and individual j is infeasible.

(2) Bothindividuals are infeasible, butindividual i has a smaller constraint violation.

(3) Both individuals, i and j are feasible and individual i dominates individual j
with crowded-comparison rule as follows:

if(irank < jrank) theni <]

or ((imnk = jrank) and (idistance > jdixmnce))

Now we are ready to outline the CGA and CGA_DE algorithms in Fig. 8.

As mentioned before, the difference between two algorithms comes from the
different mutation operators used in step 2 and step 8 in Fig. 8. In the CGA, we
immigrate some random new individuals with an amount of M R; x |PT| into the
parent population. If the mutation rate M R; is equal to 0.02 with the population size
‘ P!] = 100, two individuals chosen from the population. Then, these individuals are
regenerated randomly and uniformly within the boundaries of each dimension. In

Evolutionary Algorithms for Designing Self-sufficient ... 135

case of CGA_DE algorithm, we employ the traditional mutation operator (rand/1/bin)
of DE algorithms. In other words, after generating the offspring population, a certain
percent of the child population randomly goes under a mutation operator. Again, if
the mutation rate, M R; is equal to 0.02 with the population size |P’| = 100, two
individuals will be immigrated into the parent population. For each one, we randomly
select three individuals from the parent population. The difference of two individuals
is taken, multiplied by a uniform random number. r between 0 and 1 in order to add
to the third individual as in Eq. (28).

4 Computational Results

In this study, we proposed CGA and CGA_DE algorithms to deal with a multi-
objective problem of self-sufficient floating neighborhood design. These algorithms
are run for five independent replications on a computer, which has 2.6 GHz Intel core
17-6700HQ processor, 8 GBx2 DDR3 memory and 256 GB SSD. The population
size is taken as |P’ | = 100. As a termination criterion, each algorithm was run for
100 generations. Initial values of the parameters are assigned to CR; = 0.9 and
M R; = 0.5. With the self-adaptive procedure, we update these values with Egs. (29)
and (30) at each generation.

In Fig. 9, the standard deviations of five replications of the non-dominated solu-
tions for each algorithm are shown. The standard deviation refers to the number of
non-dominated solutions for each of 25 generations until 100th generation. From
this graph below, we observe that there is no significant change after 75th generation
until 100th generation. We observe zero standard deviation in this generation range
for both algorithms. Thus, we determine the termination criteria as 100th generation
for both algorithms.

Regarding the problem objectives, we analyzed minimum, average and maximum
values of each objective function for each algorithm as can be found in Fig. 10, 11, 12,
13, 14, and 15. As it is seen from those graphs, each objective function has different
characteristics in terms of their minimum, maximum, and average values generated
by each algorithm.

Behaviors of cost-effectiveness are presented in Figs. 10 and 11. Until 50th gen-
eration, CGA and CGA_DE algorithms have presented different behavior in terms
of average values. However, after 50th generation, both algorithms have generated
similar results for the cost-effectiveness objective function.

Related to scenery objective function’s results presented by both algorithms, max-
imum and average values are very similar as shown in Figs. 12 and 13. However,
CGA_DE investigates alarger range of solutions, i.e., the results that are more diverse.

136 A. Kirimtat et al.

Standard Deviation Graph
20 Algorithms
—e— CGA
— m - CGA_DE
15+
=
2
2
a
10
el
3
3
w
5 4
0 o
T T T T
25 50 75 100
Generation No
Fig. 9 Standard deviation graph for CGA and CGA_DE
Cost-Effectiveness Values of CGA During Optimization
0.700 Variable
—@— Min
—— Avg
0.6751 Hax
2 0.650-
E I
E T
& 0.625+ -
o o~
@ . -
o
O 0.600 o
7~
7
-~
'
0.5751 '_—_/\'
0.550, : : :
25 50 75 100

Generation

Fig. 10 Cost-effectiveness values of CGA during the 100th generation

In terms of walkability objective, CGA_DE again presents larger range of results
as shown in Fig. 14 and 15. CGA is able to achieve 0.25% in maximum value at
100th generation. In addition, the maximum values presented by CGA were almost

Evolutionary Algorithms for Designing Self-sufficient ... 137

Cost-Effectiveness

Fig.

Scenery

Fig.

Cost-Effectiveness Values of CGA_DE During Optimization

0.725 Variable
—&— Min
—i— Avg
0.700+ Max

0.675+

0.650+

0.625+

0.600+

0.5754

0.550+

25 50 75 100

Generation

11 Cost-effectiveness values of CGA_DE during the 100th generation

Scenery Values of CGA During Optimization

0.70 Variable
—@&— Min
—#— Avg

0.654 Max

0.604

0.554

0.504

0.454

0.404

T T T T
25 50 75 100
Generation

12 Scenery values of CGA during the 100th generation

the same in each generation. On the other hand, CGA_DE reaches 0.40% maximum
value and presents changing results, which is an advantage for the design optimization
problems.

138 A. Kirimtat et al.
Scenery Values of CGA_DE During Optimization
0.70+ Variable
—@— Min
—B— Avg
0.65+ Max
0.60 a——— T T
-
z -
s 0554 -~
8 ~
2 -
0.50+ °
0.45 -
0.40
T T T T
25 50 75 100
Generation
Fig. 13 Scenery values of CGA_DE during the 100th generation
Walkability Values of CGA During Optimization
0.254 Variable
' —e— Min
—#— Avg
Max
0.20+
2 0.15-
g P ———— — — — - —— — — — — -
= -
S -
Z 0.10- -
-~
-~
'
0.05+
0.001 e . . B
T T T T
25 50 75 100

Generation

Fig. 14 Walkability values of CGA during the 100th generation

Finally, the non-dominated solutions of CGA and CGA_DE after the 100th gen-
eration are given in Fig. 16. In the 3D scatter plot below, red dots correspond to
the non-dominated individuals gathered from the CGA_DE; blue dots refer to the

Evolutionary Algorithms for Designing Self-sufficient ...

Walkability Values of CGA DE During Optimization

139

0.4 Variable
RSy ¢ [—®— Min
T —B— Avg
/’,,/——//’ - - Max
0.3+ ///
> e =
= . e
- R o~
és 0.2 //
< Ve
3 v
Ve
7
0.1 //
e P e
0.0+
T T T T
25 50 75 100

Generation

Fig. 15 Walkability values of CGA_DE during the 100th generation

Algorithms '
-~ CGA
m — - CGADE |

037

027
Walkability

" 060
0.64

Cost-Effectiveness

Fig. 16 Non-dominated solutions in the 100th generation for CGA and CGA_DE

results obtained by CGA algorithm. The Pareto front approximation in both cases
is investigated for all three objectives, supporting the claim of the objectives being
conflicting with each other.

140 A. Kirimtat et al.

Interval Plot of Decision Variables for Residential Areas
95% CI for the Mean

1,0 1 ® Algorithms
® 0: CGA
® ® ® 1: CGA_DE

0,8 1

06- L % !

04 ?
0,2 @

Decision Variable Value

® ®
a® 6 ® o © o &
00 @ o6 ®
rr—Trr—TrTrTrTrTrTrr T rT o T T T T T T T T T T T T
Algorithms O~ 9% QXN ON ON ON ON 9N 9N 9N 9N ON ON ON ON O™
PL P L L LD PLIDPO PP

Fig. 17 Interval plot of decision variables for residential areas

From the scatter plot above, it can be seen that solutions present very similar
performances but different compositions of 64 design variables. With regard to the
architectural qualities of the solutions, we need to analyze the influence of those
64 decision variables on each objective function for each algorithm. In this respect,
we generated interval plots for each decision variable category considered in the
optimization problem. By this way, we present behavior of each design variable
for both CGA and CGA_DE algorithms. Thus, architectural specifications can be
better discussed. All interval plots for different decision variable combinations are
given in Fig. 17, 18, 19, and 20. In these figures, x1-x16 represents the densities
of the residential areas in each cluster from one to sixteen. The percentages of the
agricultural areas are represented by yl-y16. We used the notations of z1-z16 for
public areas and t1-t16 for the percentages related to green areas.

As can be seen in Fig. 17, the percentages related to residential areas are almost
the same in the clusters that are close to the coastline. In addition, the corresponding
decision variables x1, x2, x3, x4, and x5 present lower results for CGA_DE algorithm
than CGA algorithm. The percentages of residential areas in the clusters that are close
to the offshore, in contrast, are higher in both algorithms. In few cases of decision
variables with regard to the offshore clusters, the percentages are not as high as
expected. This situation can be explained by the limited cluster capacities or the
limitations caused by walkability objective.

The decision variables related to the agricultural areas present the highest per-
centages compared to the densities of other neighborhood functions. This can be
explained by the high impact of the agricultural areas on both scenery objective and

Evolutionary Algorithms for Designing Self-sufficient ...

Interval Plot of Decision Variables for Agricultural Areas
95% CI for the Mean

141

1,0 1 Algorithms
® ® ® e ® 8. o ® ® 0: CGA
® ® & @@ ® 1:CGA_DE
0,81 ® ® % &
[}
5 ®
s ® ®
[
S 061 ® ® 4
=
S 3 ¢
= o ® &
=}
z 047
5 ¢ !
o)
0,2
(7] ®
0’O-llllll||||||||||||||||||||||||||
Algorithms O™ % 5 9N 9N 9% 9N ON ON ON OX X X N 9N O™
e L 2oL PP PSP
Fig. 18 Interval plot of decision variables for agricultural areas
Interval Plot of Decision Variables for Public Areas
95% CI for the Mean
0,9 Algorithms
® 0: CGA
0,8- ¢ o 1:CGADE
0,7 1

E

S 06"

2

§

E 0,41 5 %

2 0,3-%5 % o @ b

Q

8 ®
0,2 - ® ®

® ® ®

0,1 ® $ ®
L@ ® o 3} ® & ® 3]
00{ ®® ® & P ®

T T T T T T T
Algorithms QN QN QN QN QN ON O™

T
Q
IR R

o |

Fig. 19 Interval plot of decision variables for public areas

142 A. Kirimtat et al.

Interval Plot of Decision Variables for Green Areas
95% CI for the Mean

0,8 Algorithms
(5} ® O CGA
0,7 ® 1: CGA_DE
3
2 0,6 - ® % %
S
o 051 3
s
5 0,4
>
f=
2 0,31 ®
A 0.2g ® ®
®
011 @@ d & 4
® ® ®
® D
0,0- ® ® 06® o

T T T T T T T T T T T T T
Algorithms % ON Q% ON 9% ON% O N O 9N ON 9N OX ON N O™
9 N
Fig. 20 Interval plot of decision variables for green areas

problem constraints. From the point of algorithm comparison, CGA_DE presents
more uniform results than CGA. As can be seen in Fig. 18, CGA picks the percent-
ages of the agricultural areas in some cases.

The percentages of public areas consist just in walkability objective as control-
lable variables. In contrast to the agricultural areas, public areas have the lowest
percentages in total compared to the percentages of other areas as shown in Fig. 19.

The occupancy rates of green areas in clusters that are close to the coastline are
higher than in the cluster that are close to the offshore. It means that the effect of
green areas on scenery is relatively high. For the decision variables related to green
areas, CGA presents more changing results than CGA_DE as shown in Fig. 20.

5 Generative Model and Form-Finding

Generative model of the floating neighborhood problem has been created in the
Grasshopper algorithmic modeling environment [14]. Grasshopper is a plug-in for
Rhinoceros, which is a well-known CAD program. This section consists of two parts,
which are parametric definition of functions’ distributions based on rules and form
generation of the chosen result.

Evolutionary Algorithms for Designing Self-sufficient ... 143

Fig. 21 Representation of info graphics for each cluster

5.1 Parametric Definition

In the parametric definition of floating neighborhoods, the percentages of each neigh-
borhood function in each cluster are generated based on rule-based decision-making.
In order to represent densities, we use info graphics. The info graphics are illustrated
in the Rhino model with four different colors in Fig. 21. This figure belongs to one
design alternative gathered after optimization, which presents both walkable and
scenic characteristic. In so-called infographics, pink, purple, yellow, and green col-
ors correspond to residential areas, public areas, agricultural areas, and green areas,
respectively.

5.2 Form Generation

In this section, we explained how the form of floating neighborhood is generated in
relation with infographics. Voronoi diagram algorithm is used for further elaborations
of the floating neighborhood. As can be seen in Fig. 22, each cluster has different
sizes based on their different capacities.

144

Fig. 22 16 clusters with
different sizes [7]

Fig. 23 Voronoi diagram for
each cluster [7]

e 9‘
oy =
3rd (o[> 1%%
= = b 'i A
St °

A. Kirimtat et al.

(.
¢ —~ J@(ﬁh
15ih

After determination of clusters’ sizes, Voronoi diagram algorithm [15] divides
each cluster into parts that each one corresponds to each neighborhood function.
Figure 23 shows the Voronoi diagrams within the floating neighborhood.

After the final adjustments on the generative model, computer rendering are get
prepared. As can be seen in Figs. 24, 25 and 26, final self-sufficient floating neigh-
borhood design is indeed plausible.

Evolutionary Algorithms for Designing Self-sufficient ... 145

Fig. 24 Computer rendering from general view to floating neighborhoods [7]

Fig. 25 Computer rendering from agricultural areas

146 A. Kirimtat et al.

Fig. 26 Computer rendering from residential and public areas

6 Conclusion

In this study, two different evolutionary algorithms, namely CGA and CGA_DE
are implemented to solve the complex design problem of floating neighborhoods.
The design goals consist of both architectural and engineering aspects, which are
cost-efficiency, scenery and walkability. These objectives are conflicting. Thus, the
design methodology combines the floating structures design practices with compu-
tational intelligence and utilizes computational design strategies. The comparison
of algorithms is performed through graphical representations. Both algorithms have
presented competitive results. However, CGA_DE found more spread-out solutions
than CGA for this multi-objective constrained real-parameter floating neighborhood
design problem. In addition to objective function analysis, we also discussed the
results of decision variables to analyze architectural qualities of the solutions. As
a result, we achieved Pareto front approximations for both algorithms with non-
dominated individuals, and both feasible and indeed plausible architectural design
solutions.

Evolutionary Algorithms for Designing Self-sufficient ... 147

References

o

10.

11.

12.

14.
15.

. Pachauri, R. K., Meyer, L., & Intergovernmental Panel on Climate Change (Eds.). (2015).

Climate change 2014: Synthesis report. Geneva, Switzerland: Intergovernmental Panel on
Climate Change.

Field, C. B., & Intergovernmental Panel on Climate Change (Eds.). (2012). Managing the risks
of extreme events and disasters to advance climate change adaption: Special report of the
Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.
DeltaSync and The Seasteading Report: Design input, location design. Retrieved December 3,
2017, from https://www.seasteading.org/floating-city-project/.

Watanabe, E., Wang, M., Utsunomiya, T., & Moan, T. (2017). Very Large Floating Structures:
Application, Analysis and Design; Technical Report No. 2004-02. Retrieved December 3,2017,
from http://www.eng.nus.edu.sg/core/Report%20200402.pdf.

Floating City concept by AT Design Office features underwater roads and submarines, Dezeen
Magazine. Retrieved December 3, 2017, from https://www.dezeen.com/2014/05/13/floating-
city-at-design-office/.

Floating settlements proposal by Baca Architects. Retrieved December 3, 2017, from https://
www.dezeen.com/2017/06/09/video-baca-architects-floating-architecture-homes-movie/.
Kirimtat, A., Chatzikonstantinou, I., Sariyildiz, S., & Tartar, A. (2015). Designing self-sufficient
floating neighborhoods using computational decision support. In CEC 2015, Sendai, Japan.
Walk Score Website. https://www.walkscore.com/.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6, 182-197.
Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: Improving the strength Pareto evolu-
tionary algorithm. In Eurogen, 2001 (pp. 95-100).

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer, V. (2006). Selfadapting control
parameters in differential evolution: A comparative study on numerical benchmark problems.
IEEE Transactions on Evolutionary Computation, 10(6), 646—657.

. Brest, J. (2009). Constrained real-parameter optimization with e-self-adaptive differential evo-

lution. In E. Mezura-Montes (Ed.), Constraint-handling in evolutionary optimization. Studies
in computational intelligence series (Vol. 198). Springer.

Grasshopper, Algorithmic Modeling for Rhino. http://www.grasshopper3d.com/.

Brandt, J. W., & Algazi, V. R. (1992). Continuous skeleton computation by Voronoi diagram.
CVGIP: Image understanding, 55(3), 329-338.

https://www.seasteading.org/floating-city-project/
http://www.eng.nus.edu.sg/core/Report%20200402.pdf
https://www.dezeen.com/2014/05/13/floating-city-at-design-office/
https://www.dezeen.com/2017/06/09/video-baca-architects-floating-architecture-homes-movie/
https://www.walkscore.com/
http://www.grasshopper3d.com/

	Evolutionary Algorithms for Designing Self-sufficient Floating Neighborhoods
	1 Introduction
	2 Design Methodology
	2.1 Design Concept
	2.2 Design Rules
	2.3 Sea Space Analysis
	2.4 Rule-Based Decision-Making
	2.5 Problem Formulation

	3 Proposed Evolutionary Algorithms
	3.1 CGA and CGA_DE Algorithms

	4 Computational Results
	5 Generative Model and Form-Finding
	5.1 Parametric Definition
	5.2 Form Generation

	6 Conclusion
	References

