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Abstract— Objective: To explain the 0.2-2Hz oscillation in 

human balance. Motivation: Oscillation (0.2-2 Hz) in the control 
signal (ankle moment) is sustained independently of external 
disturbances and exaggerated in Parkinson’s disease.  Does 
resonance or limit cycles in the neurophysiological feedback loop 
cause this oscillation?  We investigate two linear (non-predictive, 
predictive) and one non-linear (intermittent-predictive) control 
model (NPC, PC, IPC). Methods: Fourteen healthy participants, 
strapped to an actuated single segment robot with dynamics of 
upright standing, used natural haptic-visual feedback and 
myoelectric control signals from lower leg muscles to maintain 
balance.  An input disturbance applied stepwise changes in 
external force.   A linear time invariant model (ARX) extracted 
the delayed component of the control signal related linearly to the 
disturbance, leaving the remaining, larger, oscillatory non-linear 
component. We optimized model parameters and noise 
(observation, motor) to replicate concurrently (i) estimated-delay, 
(ii) time-series of the linear component, and (iii) magnitude-
frequency spectrum and transient magnitude response of the 
non-linear component. Results (mean±S.D., p<0.05): NPC 
produced estimated delays (0.116±0.03s) significantly lower than 
experiment (0.145±0.04s).  Overall fit (i)-(iii) was (79±7%, 
83±7%, 84±6% for NPC, PC, IPC).  IPC required little or no 
noise. Mean frequency of experimental oscillation (0.99±0.16 Hz) 
correlated trial by trial with closed loop resonant frequency (fres), 
not limit cycles, nor sampling rate. NPC (0.36±0.08Hz) and PC 
(0.86±0.4Hz) showed fres significantly lower than IPC 
(0.98±0.2Hz).  Conclusion: Human balance control requires 
short-term prediction. Significance: IPC mechanisms (prediction 
error, threshold related sampling, sequential re-initialization of 
open-loop predictive control) explain resonant gain without 
uncontrolled oscillation for healthy balance.  

  
Index Terms—Sensorimotor control, human balance, non-

linear oscillation, intermittent control, resonance, limit cycles 
 

I. INTRODUCTION 
uman balance requires external forces to be matched 
using internally generated muscle forces. In healthy 
people a well-practiced neurophysiological control 
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system integrates all sensory feedback to regulate activity in 
the muscles required to keep the center of mass (CoM) within 
the base of support of their unstable mechanical structure.  
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Figure 1. Balance task and sustained oscillation in control signal 
A. Participants, strapped to a one degree of freedom device with dynamics of 
upright standing, used visual-haptic-vestibular feedback and myoelectric 
control signals from the calf and tibialis anterior muscles to maintain balance 
for 250s.  B An input disturbance of discrete steps was applied. C. 
Representative signals v time(s): row 1: forward board angle, row 2: plantar 
flexion control signal (blue) and forwards disturbance (red), rows 3-4: 
Tibialis Anterior and calf muscles rectified EMG from both legs.   
Message: control signal oscillates around and matches step changes in 
disturbance.  The dataset is available (DOI: 10.23634/MMUDR.00629266). 

H 

mailto:i.loram@mmu.ac.uk
https://doi.org/10.23634/MMUDR.00629266


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2022.3174927, IEEE
Transactions on Biomedical Engineering

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

2 

When standing on a force plate, the control signal maintaining 
position of the CoM is summarized by the moving point of 
application of the ground reaction force [1], [2]. Control of 
sagittal CoM position is generated predominantly by the calf 
and tibialis anterior (TA) muscles [1]–[3].  Oscillation in the 
control signal at 0.2-2Hz can be observed, and this oscillation 
is exaggerated in Parkinson’s disease [4], [5]. This oscillation, 
has been associated with “over-generation” of corrective 
control signal and when exaggerated has been explained as an 
abnormal resonance in the feedback control loop [4], [5]. Our 
objective is to provide a feedback control explanation of this 
oscillation (0.2-2Hz) and to provide insight into the 
neurophysiological processes of human balance.   

A. Question – what is the source of the 0.2-2 Hz oscillation? 
Postural sway, and also manually controlled systems with 
dynamics similar to an upright standing human both show 
oscillation which sustains independently of any external 

disturbance [6], [7].  Within a feedback control loop there are 
several possible explanations of this oscillation.  Sensory or 
motor noise provides input which can be colored by a closed 
loop system to provide a spectrum of sustained oscillation [6], 
[7].   Resonance within a closed feedback loop can produce 
amplitude peaks at certain frequencies.  That resonance can 
arise from a combination of delays and poorly tuned 
parameters, particularly if the controller is not optimal.  Also, 
a non-linearity within the feedback loop such as a threshold, a 
switch, or event triggered open loop control can cause 
sustained oscillation without requiring noise as an input [8], 
[9].  A periodic return to the same state without external input 
(limit cycle) can occur in some circumstances [8], [9].   Our 
recent analysis of manually controlled systems with dynamics 
equivalent to a standing adult, shows that intermittent 
predictive control (IPC) with aperiodic sampling can explain 
linear power and non-linear remnant without addition of 
sensory or motor noise [7].  However, balance is different 
from manual control, and explaining human balance is 
challenging. Any convincing model has to reproduce 
concurrently and adequately the linear response to an external 
disturbance with accurate physiological delays and 
timing/phase characteristic, and also the oscillation which is 
not related linearly to the disturbance.  
 
What are the main candidate models?  The best validated, 
model of human balance is time delayed, continuous state 
feedback [1], [2], [6], [11]. We represent this currently 
unsurpassed model of human balance by generic non-
predictive control (NPC, Fig 2A). The cerebellum is relevant 
to balance and provides short term prediction [12].  Hence we 
consider also predictive state feedback control (PC, Fig 2B).  
Predictive control requires a mechanism to accommodate 
prediction error: furthermore, cerebellar function is associated 
intimately with switching function in linked basal ganglia 
circuits [12], [13].  Thus we consider intermittent predictive 
control (IPC, Fig 2C) as a logical extension of short-term 
predictive control [10], [14], [15]: IPC represents functionality 
associated with central cerebellar-basal ganglia networks [16].  
  

B. Overview of approach and hypotheses 
We implemented a task replicating the essence of human 
balance while allowing precise measurement of balance 
control and disturbance rejection (Fig.1) [17].  We 
investigated three models NPC, PC and IPC for their potential 
to reproduce concurrently the delayed linear, and non-linear 
components of human balance (Fig. 2).  
 
We tested three hypotheses (Fig. 3):- 
H1: A non-linear oscillation at 0.2–2 Hz (NLO) is present in 
all conditions, namely two sensory conditions (eyes open, eyes 
closed), two mechanical conditions (unstable, marginally 
stable external system), and two disturbance amplitudes.  
H2: Models (NPC, PC, IPC) can reproduce concurrently the 
delays, linear and non-linear component to the control signal.  
H3: The frequency of the NLO can be related to a feature of 
the model (e.g. resonance, sampling frequency, limit cycle).  
 

A 

 
 
B 

 
 
C 

 
 
Figure 2. Feedback control models. See Appendix [7], [10].  
A. Continuous non-predictive control (NPC): uses delayed linear 
observer state feedback . B. Continuous predictive control(PC): uses 
standard linear observer, predictor state feedback. C. Event-driven 
intermittent predictive control (IPC): the generalized hold implements 
a continuous linear observer predictor state feedback controller 
matched to the existing, underlying system-observer-predictor-state 
feedback. The hold is operated open-loop and the initial state is reset 
intermittently. The reset is triggered by the predicted hold state xh 
deviating from the observed state xo by more than a threshold θ.   
Message: Compared with PC, IPC uses an additional discrete control 
loop to sequentially re-initialize a continuous open-loop controller. 
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II. METHODS 

A. Apparatus and Balance Task 
Standing on a stable surface, participants were strapped to a 
single degree of freedom actuated device, named Whole Body 
Mover (WBM) with programmable dynamics replicating 
standing.  Participants used visual-haptic feedback to control 
forward-backward movement of their own body using natural 
muscle activity from the calf and TA muscles (Fig 1A) [17].    

The WBM (Fig. 1A) comprised a vertical board rotating 
around a joint collinear with the ankles, connected to a direct 
drive linear actuator (XTA3810S, Servotube Actuator, Copley 
Motion, UK) at approximately 1m above the axis of rotation. 
An incremental position encoder is located in the linear 
actuator. Using a proportional–integral–derivative (PID) 
controller, the actuated position of the WBM was controlled to 
follow the output of a real time simulated dynamic system. To 
replicate postural balance, the system used the equation of 
motion     for an inverted 
pendulum where θ is forward angle,  ue is the experimental 
control signal generated by the participant, d is the external 
disturbance, mgh is the gravitational toppling moment per unit 
angle, c is the passive stiffness relative to mgh, and B is the 
passive ankle joint viscosity. We use a mass m of 70 kg, 
gravitational acceleration g of 9.81 ms-2, and a center of mass 
height, h of 0.92 m giving mgh = 632 N rad-1 [3].  The moment 
of inertia J given by kmh2 where k is a shape factor of 1.3 was 
77 kg m2 . The passive ankle stiffness c was 0.85 and passive 
ankle viscosity B was 2.9 Nm rad-1 s [3], [18].  Following [19] 
we used the transfer function  6.9722/ (s2+ 0.03721 s - 1.231) 
where denominator coefficients determine passive stability 
and system time constants and the numerator coefficient 
represents coupling between experimental control signal ue 
and position θ. For comparison, and to include the 
circumstance where passive ankle stiffness matches the 

toppling torque due to gravity (c = 1) we tested also the 
related marginally stable system 6.9722/ ( s2+0.03721 s).  

Position control of the WBM eliminated the influence of 
the mechanical structure of the WBM[17]. During these tasks, 
power in the position signal is confined to low frequencies and 
using cross correlation the delay between simulated output 
and measured position of the WBM (4±3ms, mean ± S.D.) 
was negligible with respect to physiological delays. If the 
WBM exceeded a range of motion of ±10° the WBM was 
deactivated and the trial terminated.  

The task was implemented using Simulink, compiled using 
Real-Time Workshop and executed on a PC using Real-Time 
Windows Target within MATLAB (Math Works, Natick, MA, 
USA) with a step time of 1 ms.  Hardware signals were 
interfaced via a data-acquisition card (DAQ card 6036E, 
National Instruments, USA) at a sample rate of 1kHz to 16-bit 
precision. All signals were saved at 100 Hz.  

The experimental control signal ue was generated using a 
myoelectric interface recording from the ankle plantar and 
dorsiflexion muscles.  This control signal represents 
physiologically delayed neuromotor output solely, and 
excludes passive ankle impedance.  Surface electrical activity 
(sEMG) was recorded from the calf muscles (intersection of 
gastrocnemius medialis and soleus) and TA of both legs 
(Trigno, Delsys, USA). The Trigno system contributes a fixed 
delay of 48 ms to the output of sEMG signals.  At the 
beginning of each experimental session, we recorded sEMG 
(background electrical noise) in all muscles at rest to set dead-
zone values to subtract noise from input to the myoelectric 
control signal.   Throughout the task, sEMG signals were 
processed in real-time through a high-pass filter (fcutoff = 50 
Hz), then rectified and then low pass filtered using a second 
order filter 1/(1+τs)2 of time constant τ=100 ms. For each 
participant, the output of each electrode was scaled to a 
common external force measured using a load cell in series 
with the linear actuator. With the WBM locked, the participant 
strapped into the WBM, relaxed one leg at a time and with the 
other leg increased push (calf) or pull (TA) against the board 
to match a pre-set visual target equivalent to ~10 Nm ankle 
moment.  The net plantarflexion (backward acting) control 
signal was generated by the sum of the two scaled calf 
muscles minus the sum of the two scaled tibialis anterior 
muscles. During task familiarization the gain applied to output 
of the myoelectric interface was adjusted to ensure that it was 
neither too high nor too low for the participant.  We find 
participants adjust easily to halving or doubling the 
‘myoelectric gain’ with little effect on performance [17].   

 With the WBM unlocked and using an absolute position 
potentiometer mounted on the rotational axis, the WBM was 
set to a reference position of 2° forward with respect to the 
vertical line, to approximate physiological standing. A small, 
(~ 5 Nm) constant, forwards acting external disturbance was 
applied requiring a low-level tonic plantar flexion contraction 
to maintain the reference position (Fig. 1). Using this tonic 
bias disturbance, the task felt exceptionally natural and similar 
to normal standing.  In the absence of a disturbance 
challenging balance, participants maintained their position 
with minimal sway and participants reported the task felt as 
though they were not doing anything. 

 
Figure 3. Hypothesis Testing Flow Diagram   
Hypotheses H1, H2 and H3 are tested in sequence.  
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To enable identification of the human controller, an external 
disturbance providing random direction, constant amplitude 
(~4 Nm), step changes in input was applied (Fig 1B).  We use 
a small disturbance relative to normal fluctuation of the 
control signal so as to study natural balance rather than 
responses to large perturbations. Thirty-two paired steps were 
implemented in random sequence from (eight inter-step 
intervals (0.1, 0.2, 0.3, 0.5, 0.8, 1.4, 2.4, 4.0 s), each interval 
used four instances, including two unidirectional and two 
bidirectional pairs.  Unidirectional pairs were followed by a 
double size third step returning to zero.  A random recovery of 
4-5s was used after each pair, and after each 3rd return step 
[20].  The trial duration was 250 s.   

The experimental control signal represents muscle activity 
in units of volts. While a force is associated with active 
muscle contraction, the forces generated have no effect on 
motion of the WBM.  However, to aid understanding of the 
task, we provide (Fig. 1C) an estimate of the ankle moment 
derived from the system equation of motion and the measured 
relationship between ue in volts and output in degrees. This 
shows the tonic forward bias (~5 Nm), and shows the normal 
step disturbance (~4 Nm) is less than the oscillation associated 
with regulating balance. The rectified EMG signals (Fig 1C) 
confirm the tonic calf activity and the bursts of TA activity 
when the control signal reverses sign. At these low levels of 
muscle contraction, rectified EMG provides a good estimate of 
the neural drive with minimal non-linearity arising from 
amplitude cancellation [21]. 

Participants received natural visual, vestibular and ankle-
foot related haptic feedback and also contact sensation from 
the vertical board to which they were strapped. The position of 
the board and the reference position were also displayed on a 
screen mounted at eye level a couple of meters in front of the 
participant (Fig 1A).  

The experiments reported in this study, conducted at 
Manchester Metropolitan University (MMU), were approved 
by the Academic Ethics Committee of the Faculty of Science 
and Engineering, and conform to the Declaration of Helsinki. 
Participants gave written, informed consent to the experiment. 

B. Participants and Procedures 
Fourteen healthy participants (10 male, age 32 ± 12 years, 
mean ± S.D.), attempted five 250s trials in randomized order 
including eyes open unstable (EO US), eyes closed unstable 
(EC US), eyes open stable (EO S), eyes closed stable (EC S), 
lower amplitude disturbance eyes open unstable (L EO US). 
Participants were first prepared for sEMG recording, then 
baseline noise thresholds were recorded, then myoelectric 
signals scaled  as above.  Participants were strapped to the 
WBM and given a familiarization, until they were comfortable 
with the task, the perturbations and the experimental 
conditions. If necessary participants returned a second day for 
the actual experiment.  Participants were instructed only to 
keep the WBM within the range of motion (± 10°). 
 

C. Overview of analysis 
Stage 1. Separation into linear and non-linear components 

(Fig. 4). We separate the experimental control signal ue(t) into 
a non-parametric linear portion and non-linear remnant (ue = 

ue
lin + ue

nonlin). Together these linear and non-linear 
components comprise 100% of the signal (Fig 4 Left).  The 
linear portion where the control signal is linearly coherent 
with the disturbance tends to be largest at low frequency, and 
at these low frequencies larger than the non-linear portion.  
The non-linear portion tends to be largest at mid- frequencies 
of 0.2–2 Hz and increase transiently following changes in 
input disturbance (Fig 4 Right). We fitted a non-parametric 
(high order) linear time-series model to generate the linear 
portion of the experimental control signal.  

Stage 2 Model estimation (Figs. 5). We fit parametric 
control models concurrently to the linear and non-linear 
portions. We simulated a control signal ue

sim, and separate into 
linear ue

sim_lin and nonlinear components ue
sim_nonlin as above.  

We calculated a normalized root mean square error (nrmse) 
for the linear (nrmselin) and non-linear (nrmsenonlin) 
components and minimized their sum nrmselin + nrmsenonlin. 
Normalized root mean square error calculates the ratio of rms 
error to rms signal. We used the formula nrmse(ue

sim, ue
) = 

‖ue
sim – ue‖/‖ue-mean(ue)‖ where ‖ indicates the 2-norm.    

D. Practical details Stage 1: extraction of linear and non-
linear components 
Analysis was applied to experimental and simulation times 
series down sampled to 10 ms timestep. A time-series model 
ARX (timestep 10ms, autoregressive in ue with exogeneous 
input disturbance d including a dead-time) was used to extract 
the component of the human control signal related linearly to 
the disturbance (Fig. 4A). Using Akaike's Information 
Criterion (AIC), and mindful of the Trigno delay of 48ms 
delay and minimal lower limb peripheral spinal feedback 
delay of 40 ms, the deadtime (nk timesteps) was selected from 
range 0.09, 0.10 … to 0.4s using an 8th order model (na=nb=8 
coefficients). The data was then split into equal training and 

 
Figure 4. Separation of control signal into linear and non-linear 
components.   
Left. Using mean removed time series of a human control signal (top), and 
disturbance (middle, red), a linear model (ARX) including delay (0.13s) 
was estimated and used to simulate a linear response (left, middle, blue) 
with linear fit 0.353 to the original control signal. The non-linear 
component (bottom) is created by subtraction of the linear time-series from 
the control time-series. All units Nm.   
Right. Top: Magnitude-frequency spectrum. The non-linear component  
(red) shows peak amplitude in the range 0.2-2 Hz.  The power of the linear 
component (where original control amplitude (blue) is larger than the non-
linear amplitude (red) is confined to low frequencies e.g. below 1 Hz. 
Bottom left: Stim event averaged non-linear response. i.e. Disturbance step 
onset averaged absolute value of non-linear time-series. Bottom right: 
Impulse response function with respect to disturbance of absolute value of 
non-linear time-series. 
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validation halves.  Using ‘AIC’ and this estimated deadtime, 
model order was selected from 40 or less.  Using this chosen 
deadtime and model order (na=nb),  L2 regularization, a 
constraint for stability and the full time-series, the ARX model 
was estimated using prediction error method (one time-step 
ahead) and used to simulate the linear component.  Subtraction 
of the linear component from the experimental control signal 
gave the non-linear component (Fig. 4). For data simulated by 
the parametric control model (below), we used the same 
procedure to separate into linear and non-linear time series.  
We used MATLAB 2020a for all analysis: functions here were 
‘delayest’, ’selstruc’, ’arx’, ’arxRegul’.  

E. Practical details Stage 2: Identification of model 
parameters  
Using non-linear optimization of parameters, we fitted three 
models (NPC, PC, IPC, Fig. 2) to minimize the error function 
representing concurrently the linear and non-linear 
components of the control signal.   Models were run in 
Simulink in accelerator mode with a fixed step time of 1ms 
taking approximately ~2-4s computer time to simulate 250s 
data on a standard Intel i7 desktop PC.  Parameters were 
optimized using a combination of Direct Search (mesh 
adaptive pattern search) and gradient based search (“SQP”) 
each iteration allowing typically 10,000 function evaluations 
per model, sufficient for local convergence. For all three 
models, all trials were optimized in five successive iterations. 
For each iteration, each model of each trial evaluated the 
optimized model parameters of all other trials to search for the 
best starting parameter combination. (MATLAB functions 
used: ‘patternsearch’, ‘fmincon’). 
 For NPC and PC models we optimized 10 parameters (delay 

td, 4 state feedback gains k, 5 linear quadratic weightings for 
observer gain Qo, c.f. Appendix). Since gains k were fitted 
freely rather than designed using system parameters, mismatch 
gain gac was redundant and set to 1. We also optimized 4 
amplitudes of gaussian observation noise vy and one amplitude 
of gaussian motor noise vu).  Our previous analysis of remnant 
noise spectra showed motor noise and position observation 
noise exhibit a 1/f rather than gaussian pattern [7], thus we 
integrated the motor noise vu and observation noise applied to 
the position state prior to input to the simulation.  
 For IPC, noise free simulation (ic) we optimized 17 
parameters (td, Δs, k, Qo, gac and 5 event trigger thresholds θ1-5, 
c.f. Appendix). For simulation with noise (icn) we optimized 
22 parameters (td, Δs, k, Qo, gac, θ1-4, vy and vu).  The predicted 
delay + sampling delay, td +  Δs, was constrained to > 50 ms. 

F. Practical details: objective error function. From simulated 
timeseries ue

sim, using the same procedure as for experimental 
timeseries (Section D), we calculated the estimated delay 
nk_sim, the linear timeseries ue

sim_lin, the fractional error in delay 
%Δlin=(nk_sim-nk)/nk and the normalized error nrmselin=nrmse 
(ue

lin, ue
sim_lin).  Using the same procedure for experimental and 

simulated data, we calculated also the non-linear time series 
ue

sim_nonlin, its absolute value |ue
sim_nonlin| and its analytic 

envelope envsim_nonlin using a Hilbert filter (2s). From ue
sim_nonlin 

we calculated magnitude frequency response |ue
sim_nonlin(f)| at 

0.01, 0.02… 50Hz (Fig. 5) and its normalized error 
nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|). From |ue

sim_nonlin| and using 
absolute value of first differential of the disturbance |d(t) - d(t-
1)| as input, we calculated a non-linear deadtime nk_sim_nonlin, a 
fractional error in non-linear deadtime %Δnonlin=(nk_sim_nonlin-
nk_nonlin)/nk_nonlin, transient impulse response |ue

sim_nonlin|IRF  (Fig. 
5) and its normalized error nrmse(|ue

sim_nonlin|IRF, |ue
nonlin|IRF).   

For the analytic envelope env_sim_nonlin we calculate its 
autocorrelation function (envACF) and normalized error 
nrmse(envACFsim_nonlin, envACF_nonlin). For the system output ysim 
(i.e. body position) we calculated magnitude frequency 
spectra and its  normalized error nrmse(ysim(f), y(f)). We used 
MATLAB functions ‘ar’, ‘bode’, ’impulse’, ‘envelope’, 
’xcorr’.  

Optimization iteration one minimized nrmselin + 
nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|) alone. Some simulations, 

showed drift in system output y unlike experimental data.  So 
iteration 2, incorporated nrmse(ysim(f), y(f)) within the cost 
function. Analysis following iteration 2, showed amplitude of 
non-linear oscillation in the simulated data decaying too much 
rather than sustaining following intermittent corrections. So 
iteration 3 included nrmse(envsim_nonlin(f), envnonlin(f) in the cost 
function. Analysis following iteration 3 showed partial 
improvement to the temporal variation in amplitude of 
nonlinear oscillation, showed experimental amplitude of 
oscillation was related transiently to step changes in 
disturbance (Fig 4 right) and revealed imperfect reproduction 
of estimated delays in the linear response and transient non-
linear amplitude response. Our purpose is to find models 
which can reproduce concurrently the delays, linear and non-
linear component to the control signal.  Thus iterations 4 and 5 
included and gave high weight to fractional error in delays to 
linear and transient non-linear response and to the non-linear 
transient impulse response.  The cost function for final 

 
Figure 5.  Representative fit of IPC without noise (ic) 
Left. Top: mean removed control signal (blue, y), ic simulation (red, Y).  
Middle: linear component of control signal (blue) and ic simulation (red). 
Lower: non-linear remnant of control signal (blue) and ic simulation (red).  
Right. Top: Magnitude v. frequency of non-linear component.  Middle: 
Impulse response function with respect to disturbance of absolute value of 
non-linear times v time for control signal.  Lower: Auto correlation function 
of envelope of non-linear control signal v time.  Experiment (blue) and ic 
simulation (red).   All units Nm.  
Message: This wholly deterministic intermittent controller reproduces 
concurrently the linear timeseries, non-linear magnitude spectrum and 
transient non-linear amplitude impulse response, without noise added. 
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optimization iterations 4 and 5 was:  
cost function = %Δlin + %Δnonlin + nrmselin +  

nrmsenonlin_composite + 0.1 nrmse(ysim(f), y(f)) where 
nrmsenonlin_composite = 0.6 nrmse(|ue

sim_nonlin(f)|, |ue
nonlin(f)|) + 0.25 

nrmse(|ue
sim_nonlin|IRF, |ue

nonlin|IRF) + 0.15 nrmse(envACFsim_nonlin, 
envACF_nonlin). The dataset including code for the cost function is 
openly available from Manchester Metropolitan University’s 
research repository (DOI: 10.23634/MMUDR.00629266). 

G. Analysis of resonance and limit cycles in estimated models 
For each optimized model (npc, pc, ic, icn), we report the time 
constant of the least damped conjugate complex pole,  and 
from its inverse, the resonant frequency of the closed-loop 
system fres [9] and the closed-loop frequency response [22].  
For IPC models (ic, icn) we conducted a sensitivity analysis 
[9]. This sensitivity analysis reports the maximum eigenvalue 
of the closed-loop system when sampled discretely at each 
possible open-loop interval (Fig. 9). Eigenvalues greater than 
one indicate unstable, sustained oscillation. Eigenvalues of 
unity indicate periodic limit cycles.  We tested frequencies of 
resonance, periodic limit cycles and also rates of intermittent 
sampling for correlation with the frequency of peak amplitude 
of the non-linear component.  Finally, for experimental and 
simulated control signals, we calculated sample entropy (m=2, 
r=0.2 S.D., Chebyshev distance) as a non-linear measures of 
complexity [23] not included in the optimization cost function. 

Results report mean±S.D. unless stated otherwise.  Fit 
reports (1 - nrmse) x 100 which ranges from -∞ (bad fit), 
through zero (borderline linear relationship) to 100% (perfect 
fit). Statistical tests report, at alpha=0.05, a linear mixed effect 
model (68 trials, 14 subjects, 5 models, 5 conditions) with 
factors vision (EO, EC), stability (US, S), disturbance 
amplitude (normal, L), model (npc,  pc, ic, icn) included 
within fixed and random effects (grouped by subject), and 
ANOVA (Satterthwaite approximation) using functions 
‘fitlme’, ’anova’). Post hoc pairwise comparisons used 
Bonferroni correction. 

III. RESULTS 
Thirteen participants completed all five 250s trials including 
eyes open (EO) v eyes closed (EC), unstable (US) v stable (S), 
and the reduced amplitude disturbance trial (L). One 
participant failed to complete two 250s trials. The myoelectric 
control signal, delays and sway statistics approximated typical 
values for natural standing and single segment constrained 
balance for the sensory conditions studied (Table 1)[4], [6].  
The control signal deadtime was 145±36 ms overall and 
higher for EO than EC (F1,19.6=7.2, p=0.014).  Position sway 
was larger (F1,14.0=84.0, p<<0.00001) and faster (F1,15.6=15.0, 
p=0.001) for EC than EO. Linearity (linear fit to the control 
signal) was 28%±10% overall and smaller for low amplitude 
disturbance (F1,13.9=30.1, p=0.00008).  

A. Presence of non-linear oscillation in all conditions (H1) 
Combining all participants, the non-linear component of the 
control signal show a broad amplitude peak in the range 0.2-2 
Hz, referred to as the non-linear oscillation (NLO), for all the 
conditions studied (Fig. 6).  Non-linear power at low 
frequencies (≤0.1 Hz) exceeded the amplitude of the NLO 
only in the eyes closed, unstable condition. Overall, the mean 
power frequency of the NLO (0.99±0.16 Hz), was 
significantly higher with eyes open (F1,14.3=25.4, p=0.0002), 
and significantly higher for marginally stable loads 
(F1,16.2=7.0, p=0.02).   The peak magnitude of NLO was lower 
for low amplitude disturbance (F1,20.1=23.0, p=0.0001).  
 

B. Model fit to linear and non-linear components (H2) 
Fitting scores are summarized in Table2. Cost Function: 
Overall fit (cost function) of the NPC model was significantly 
lower than PC and IPC (ic, icn).  Main effect of model 
(F3,22.4=11.5, p=0.00009), post hoc NPC v PC (F1,26=22.6, 
p<0.001). There was no significant difference between PC or 

 
Figure 6 Non-linear oscillation for all conditions. 
Shows magnitude v. frequency for non-linear component of experimental 
time series (solid) and complete time series (faint dotted) for all conditions 
tested eyes open v close, unstable v marginally stable system, low 
amplitude (L) v. higher amplitude disturbance. Each spectrum averaged 
across 13 participants.   
Message: non-linear oscillation peak (0.2-2Hz) is present for all conditions. 

Metric EO 
S 

EO 
US 

EC 
S 

EC 
US 

L EO 
US All 

Delay (s) 
0.16 

±0.04 
0.15 

±0.04 
0.14 

±0.03 
0.13 

±0.04 
0.15 

±0.03 
0.145 
±0.04 

Linear 
Fit (%) 

0.32 
±0.09 

0.29 
±0.08 

0.32 
±0.1 

0.27 
±0.1 

0.2 
±0.09 

0.28 
±0.1 

Sway rms 
(o) 

0.37 
±0.2 

0.4 
±0.2 

0.86 
±0.3 

0.93 
±0.3 

0.25 
±0.09 

0.56 
±0.4 

Speed rms 
(os-1) 

0.83 
±0.2 

0.9 
±0.2 

1.0 
±0.3 

1.0 
±0.3 

0.57 
±0.1 

0.87 
±0.3 

f pk (Hz) 0.99 
±0.3 

1.0 
±0.4 

0.71 
±0.2 

0.67 
±0.2 

1.0 
±0.3 

0.87 
±0.3 

<f> (Hz) 1.1 
±0.1 

1.0 
±0.2 

0.92 
±0.2 

0.90 
±0.2 

1.1 
±0.1 

0.99 
±0.2 

Mag pk 
(o/Hz) 

0.22 
±0.1 

0.29 
±0.2 

0.28 
±0.2 

0.33 
±0.2 

0.12 
±0.07 

0.25 
±0.2 

Sample 
Entropy 

0.24 
±0.04 

0.22 
±0.04 

0.21 
±0.04 

0.18 
±0.06 

0.44 
±0.06 

0.25 
±0.1 

 

Table 1. Balance Performance. 
Shows metrics (mean ± SD) of balance for all (All) and individual conditions 
including Eyes Open (EO) v Eyes Closed (EC), marginally Stable (S) v 
Unstable (US) system, and Low Amplitude (L) v normal amplitude 
disturbance. Metric info: fpk and <f> are frequency of largest amplitude and 
mean power frequency respectively from range 0.2-2Hz.  
 

https://doi.org/10.23634/MMUDR.00629266
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IPC (ic or icn).  Delay: Estimated delays using NPC 
simulation were significantly lower than experiment (Table 1). 
Main effect of model F4,35.6=6.4, p=0.0005), post hoc NPC v 
Experiment (F1,16=24.1, p=0.001). There was no significant 
difference in delay between any of PC, IPC (ic or icn) and 
experiment. The inability to reproduce the experimental delays 
while fitting concurrently the linear and non-linear response, 
rules NPC out as a viable explanation of this balance task. 

Considering only PC and IPC (icn) as leading, viable 
candidate models: Linear: Fit to the linear component is 
significantly higher in IPC (icn) than PC (F1,14.1=5.6, p=0.03), 
(Table 2). Non-Linear: there was no significant difference in 
fit to the non-linear component (F1,12.7=1.8, p=0.20). Delay 
fit_non-linear: Fit to the delay before onset of transient increase in 
non-linear amplitude was significantly higher in IPC (icn) than 
PC (F1,15.4=8.5, p=0.01), (Table 2).  Figure 7A shows for the 
eyes open, unstable condition, how all models reproduce the 
non-linear magnitude frequency spectrum; and Figure 7B 
shows systematic onset too early and rise too slow in the linear 
models (NPC, PC) whereas IPC reproduces the sharp onset in 
non-linear amplitude matching the experimental delay.  
Sample Entropy: complexity (uncertainty) of PC simulation is 
significantly higher than experiment. Main effect of model  
(F2,16.4=32.0, p=0.000002), post hoc PC v Experiment 
(F1,26=31.1, p<0.0005).  IPC sample entropy was lower than 
experiment, marginally below the threshold of significance,  
post hoc IPC v Experiment (F1,15=8.7, p=0.049) (Tables 2, 1). 
 

C. Resonance, sampling, limit cycles and NLO (H3) 
The largest underdamped resonance (fres) in all models (npc, 

pc, ic, icn) was present at frequencies within the range (0.2-
2Hz) of the NLO (Table 3, Fig. 8). The resonant frequency 
(fres) of NPC and PC models was significantly lower than 
experimental mean power frequency <f> (Tables 3, 1). Main 
effect of model F4,22.7=77.4, p<<0.00001), post hoc fres NPC v 
<f> experiment (F1,16=246, p<0.0005) and fres PC v <f> 
experiment (F1,16=20.9, p=0.002). PC and NPC (fres) were 
lower than <f> by 0.18±0.3Hz and 0.64±0.2Hz respectively. 
There was no significant difference between fres IPC (ic or icn) 
and <f> experiment. 

Trial by trial, these resonant frequencies (fres) correlated 
with the mean power frequency <f>  of the NLO for PC  
(r=0.686, df=62, p<<0.00001) and IPC (r=0.689, df=66, 
p<<0.00001). NPC showed no correlation between fres and 
<f> (Fig. 8). 

IPC use aperiodic sampling with a distribution of open loop 
intervals ranging from the model delay (Table 4) to 362, 599 
and 891ms (25%, 50%, 75% percentiles), (Fig. 8).  The central 
instant sampling rate (inverse of mean power open loop 
interval) 1.75±.13 Hz (mean±SD), showed no significant 
correlation  with <f> of the NLO.  Whereas the model 
resonant frequency fres increased with vision (EO Table 3) in 
correspondence with <f> NLO (Table 1), the instant sampling 
rate decreased with eyes open (EO), indicating that sampling 
rate does not cause the frequency of the NLO.  

Sensitivity analysis (Fig. 9): IPC models: For unstable 
external systems only, eigenvalues increased beyond unity for 
open-loop intervals above 1.5 seconds, giving limit cycles 
with periods above 1.5s (Fig. 9 left).  The marginally stable 
external systems had eigenvalues less than unity  and thus no 
limit cycles.  For both unstable and marginally stable external 
systems, IPC shows eigenvalues approaching unity, i.e. an 
instability boundary, at open-loop intervals less than 1s.  

In the closed-loop transfer function T, PC models show 
resonance, and IPC models showed larger resonance at around 
1 Hz (Fig. 9 Middle).  NPC showed resonance around 0.36 
Hz. The underlying continuous controllers used for the open-
loop hold in IPC models (Fig. 9 Middle) T shows an additional 
resonance at 10 Hz that is not present in the complete IPC 
model.  For IPC, frequency of the resonance in T increased for 
EO v EC conditions (Fig. 9 right).  

IV. DISCUSSION 
Using a bespoke task, providing accurate measurement of 
human balance, we seek a feedback control explanation of the 
sustained oscillation (0.2-2 Hz) in the control signal. Do limit 
cycles or resonance in the neurophysiological feedback loop 
cause this oscillation?  We tested two linear continuous 
models, non-predictive and predictive control (NPC, PC) and 
one non-linear model intermittent predictive control (IPC) for 
their ability to simulate concurrently the delays, the delayed 
linear response and the non-linear remnant.  

A. Key results.  
We have clear answers to our three hypotheses (Fig. 3):- 

A 

 
B 

 
Figure 7 Fit of Models to non-linear spectrum and transient.  
A. Magnitude v. frequency for non-linear component, and  
B. Impulse response function of absolute value of non-linear component with 
respect to disturbance signal, for one condition eyes open (EO), unstable (US) 
system.  Experimental data (solid blue) and models (npc, pc, ic, icn) (dotted). 
Lines show mean of 14 participants.    
Message: (A) All models reproduce the magnitude-spectrum. (B) Linear models 
(NPC, PC) deviate from experiment for the impulse response.  
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H1: The human control signal is mostly non-linear remnant 
(linearity 28%±10%, Table 1).  The salient feature of the 
remnant is the 0.2-2Hz amplitude peak referred to as the non-
linear oscillation (NLO). This NLO is present in all conditions 
with eyes open or closed, when controlling stable or unstable 
external systems and when the amplitude of disturbance is 
small or large (Fig. 6).  This  NLO is an inherent part of the 
balance process. 
H2: PC and IPC can reproduce concurrently the delays, 
remnant NLO and linear response (Table 2, Fig 7). PC and 
IPC provide possible explanations of human balance.  Non-
predictive control (NPC) is not a viable explanation as it 
cannot reproduce the estimated delays concurrently with linear 
and non-linear components.  
H3: Limit cycles are rejected as a general explanation of the 
NLO, since the NLO was present for stable as well as unstable 
external systems (Fig. 9). Closed loop resonance, combined 
with continuous predictive (PC) or intermittent predictive IPC  
control is a possible explanation of the NLO (Fig. 8, Table 3).   
 

B. Do these results generalize to natural human balance? 
We use a bespoke task to test balance control.  Estimation of 
the human control system is informed by precise measurement 
of the disturbance, control signal and system output (position) 
of a known external system, and a known neuromuscular 
system converting EMG into force. In natural standing the 
control signal for a multi-segment system is hard to define, the 
neuromuscular and mechanical system are also hard to define 
precisely and system output (whole body CoM) is difficult to 
measure precisely. In natural balance, separation of 
neuromotor from passive contributions to the control signal is 
imprecise.   

Do our findings apply to natural balance? In our task, 
balance is natural.  Participants use their own muscles and 
their own natural senses to control movement of their own 
bodies which are strapped to the board.  The actuated board 
becomes part of their body. The difference from normal 
standing is that movement of their body is constrained to one 
degree of freedom namely forward and backward motion 
around the ankle joints.  The disturbance steps are small (~4 
Nm) in relation to oscillation of the control signal associated 
with balance and the sway statistics, e.g. rms sway, rms speed 
and frequency of non-linear oscillation (NLO) (Table 1) are 
similar to natural standing [4], [6].  

Both this task and normal postural balance, require 
participants to engage in the same processes to estimate and 
generate the muscular forces required to balance the effect of 
external forces and control body position within a finite range. 
So the neurophysiological control processes studied here 
should be representative of natural balance.  

C. Short term prediction is required to explain balance and 
the non-linear oscillation (0.2-2Hz)  
NPC is not a viable explanation of this balance task as it could 
not reproduce the experimental delays concurrently with linear 
and non-linear components. This result is consistent with 
known function of the cerebellum as a short term predictor 
and known role of the cerebellum for balance [12], [24].   

Previous investigations used NPC (delays, state feedback, 
state estimation (Fig 2A) [1], [2], [6], [11], and didn’t use PC 
which uses predicted future states (e.g. one closed-loop delay 
ahead) for state feedback [10], [14], [25] (Fig 2B, Table 4).  

Discrimination between predictive and non-predictive 
control requires a) experimental stimulus-response data 
accurate and precise to high frequencies, b) a neuromotor 
response signal uncontaminated by passive non-motor 
components, c) accurate, precise knowledge of the 
neuromuscular and external system being controlled, d) 
control models representing NPC and PC, and e) convincing 
fit to experimental delays concurrent with reproducing the 
linear response and all features of the non-linear remnant.  

This study used stepwise changes in force disturbance 
giving high frequency range to the independent stimulus.  The 
measured response (myoelectric signal) was a direct output of 
the human neuromotor system, and was the signal actually 
used to control balance. Quality of this stimulus-response data 
is shown by statistically significant differences in 
experimental delay (EO v EC) from only 14 participants.  We 
propose the ability to distinguish experimental delays (EO v 
EC) as one benchmark of data quality for discriminating PC 
from NPC. We propose ability to fit individual experimental 
trials without averaging as a second benchmark for data 
quality.  We propose ability to fit delays, linear response and 
all features of the non-linear remnant as a third benchmark.  

These previous datasets of constrained and natural balance 
may lack stimulus-response data to the accuracy, precision and 
frequencies required, and lack knowledge of the 
neuromuscular system and plant to the accuracy required to 
discriminate NPC from PC.  Briefly, these studies compared 
model simulations to (i) the average (8 subjects) complex 
frequency response (constrained body position/support surface 
angle) and remnant (stochastic) magnitude frequency 
response, at 0.017 - 1.3 Hz [6]; (ii) the average (18 subjects) 
complex frequency response alone (e.g. composite EMG 
signals/estimated leg-trunk segment angles), at 0.025 – 5 Hz 
[11]; (iii) to the complex frequency response (ankle 
torque/platform acceleration) and remnant magnitude 
frequency response at 0.06 – 4.4 Hz  [1].  (iv) In the time 
 

Metric npc pc ic icn 

Cost function (%) 79±7 83±7 82±7 84±6 

Linear (%) 84±10 85±9 88±10 89±9 

Non-Linear (%) 50±20 58±20 49±20 54±20 

Delay fit (%) 77±20 85±20 86±30 90±30 

Delay fit_non-linear (%) 77±40 76±40 95±10 95±20 

Delay (s) 0.114 
±0.04 

0.136 
±0.04 

0.141 
±0.04 

0.141 
±0.04 

Sample Entropy 0.26 
±0.09 

0.30 
±0.1 

0.21 
±0.07 

0.22 
±0.08 

 

 
Table 2. Fit of Models to linear and non-linear components and delays. 
Shows fit of models to all trials as mean ± SD.  Fit is (1-nrmse) x 100.  
Rows: Cost function shows overall fit.  Linear and Nonlinear show fit to 
linear and non-linear components.  Delay fit and Delay fit_non-linear show 
respectively percentage fit to estimated delay and  delay to non-linear 
impulse response.  Delay shows actual delay (s) estimated from model 
simulated control signals (nksim): c.f. Table. 1 Delay. 
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domain, a composite EMG signal was fitted to a delayed, 
linear combination of derivatives (0, 1, 2) of estimated CoM 
position averaged over all push-pull platform accelerations [2] 
A linear fit and estimated delay alone does not discriminate 
NPC from PC. Discriminating NPC from PC requires models 
with accurate values for the external system and accurate 
values of the position (CoM), control and disturbance signals.  
 

D. Limit cycles are eliminated as a general explanation of 
the non-linear oscillation (0.2-2Hz) 
Limit cycles are a property of non-linear systems, and have 
been considered a possible feature of human balance [8], [26], 
[27].  Limit cycles are a periodic return of the system to the 
same state, without external input [8].  IPC (Fig 2C) can 
produce limit cycles when the generalized open-loop hold is 
mismatched to the underlying closed loop system [9]. 

When the generalized hold is system matched, the IPC 
system is stable no matter what the open loop interval [28].  
However when the hold is based upon an inaccurate model of 
the external system (gac ≠ 1, limit cycles can occur at certain 
open loop intervals [9], but only for unstable external systems.   

Two facts rule out limit cycles as an explanation of the 
observed NLO.  First the NLO occurs in stable as well as 
unstable systems.  Second, sensitivity analysis of the 
eigenvalues v. open loop interval, showed that even for the 
unstable systems studied, the period of limit cycles (>1.5 s), is 
too long to account for the mean <f>  and peak fpk power 
frequencies 0.99±0.2 Hz and 0.87±0.3 Hz (Table 1, Fig. 9) of 
the NLO.  The NLO is not a limit cycle. 

E. Resonance explains the non-linear oscillation (0.2-2Hz) 
For predictive control models (PC, IPC) the frequency of 
closed-loop resonance fres correlated trial by trial with the 
mean power frequency <f> of NLO Fig. 8, Table 3). For IPC, 
frequency of sampling did not correlate with <f> of NLO. 
Thus closed-loop resonance provides a general, linear or 
nonlinear explanation of the NLO. For IPC the frequency of 
resonance fres equals the mean frequency <f> of NLO with no 
significant systematic error, though for PC fres was 
significantly lower than <f> (Fig. 8, Tables 1, 3).   

 A resonant circuit requires an input to excite an oscillation.  
For linear models, sensorimotor noise provides a stochastic 
input.  We used observation noise consistent with noisy state-
estimation [1], [6], [11]. For IPC, excitation of the NLO 
occurs deterministically (Fig 5) with or without sensorimotor 
noise [7]. IPC includes a sequential process of event triggered 
sampling, discrete reset of the hold states and continuous open 
loop implementation of the reinitialized hold [10], [15].  The 
event trigger, sampling and hold processes (Fig. 2C) are not 
present in linear control (Fig 2A, B).  Inaccurate prediction, 
resulting from unpredicted disturbance, inaccurate model of 
the system or added noise, will trigger sampling when the 
prediction error exceeds a threshold [7], [15]. Discontinuity in 
the control signal injects energy into the closed loop at each 
iteration of event triggered sampling even when IPC is wholly 
deterministic and noise free. Sequential injection of energy, at 
the frequency of sampling provides one possible, but rejected, 
explanation of the frequency of NLO.   

 Resonance shown by a peak in closed-loop gain T (Fig. 9) 
indicates a large response at certain timescales in relation to an 
unpredicted disturbance.  Falling over takes approximately 
~1s.  A large response on this timescale is valuable for 
survival. This large response is unhelpful only if it turns into 
oscillation which cannot be turned off.  In neurological 
conditions (essential tremor, Parkinson’s, dystonia) 
uncontrollable tremor illustrates the undesirability of 
oscillation that cannot be stopped.  

A linear controller contains no mechanism for interrupting 
resonant oscillation.  In linear controllers, closed loop 
resonance arising from delays and poorly tuned parameters, 
may indicate that control is not optimal.  
  IPC provides mechanisms within the main feedback loop 
for resetting the state of the controller (Fig 2C).  When a reset 
is triggered by prediction error exceeding a threshold, the 
current state of the hold (magnitude and phase) has no 
influence on the new state value. The open-loop hold 
implements a fast underlying continuous controller from the 
new re-initialized hold state. Evolution of the hold state is not 
influenced by measured or observed feedback.  See how the 
underlying continuous controller icnucc has higher closed loop 
gain at higher frequencies, and additional resonance at 10 Hz, 

 
Figure 8 Resonance and open loop intervals in relation to NLO 
Left: Vertical axis: Mean power frequency of NLO (<f>).  Horizontal axis: 
Frequency of largest underdamped resonance (fres) for ic and pc models. 
Shows all trials.  Solid line shows <f>=fres. Right: Distribution of open loop 
intervals for ic model, median for each condition.   
 
fres 
(Hz) 

EO 
S 

EO 
US 

EC 
S 

EC 
US 

L EO 
US All 

npc 0.38 
±0.05 

0.37 
±0.07 

0.39 
±0.05 

0.33 
±0.08 

0.32 
±0.02 

0.36 
±0.06 

pc 0.86 
±0.3 

0.8 
5±0.3 

0.69 
±0.3 

0.66 
±0.3 

0.97 
±0.5 

0.8 
±0.4 

ic 
0.94 
±0.2 

1.0 
±0.2 

0.92 
±0.2 

0.91 
±0.2 

1.2 
±0.2 

0.99 
±0.2 

icn 0.96 
±0.2 

1.0 
±0.2 

0.92 
±0.2 

0.88 
±0.2 

1.2 
±0.2 

0.98 
±0.2 

 

 
Table 3. Resonance. 
Shows frequency of largest resonance (mean ± SD) for all models (npc, pc, 
ic, icn) and conditions including Eyes Open (EO), Eyes Closed (EC), 
marginally Stable (S), Unstable (US) system, and Low amplitude (L) 
disturbance and all combined (All).  
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compared with PC, and with NPC (Fig 9). 
We propose, that reinitialization and open loop operation of 

fast continuous controllers within a main slow discrete control 
loop, benefits robust control of balance [29]–[31]. 

F. Neurophysiological interpretation of PC and IPC models  
Valid explanations must reproduce the observed experimental 
delay (145±40 ms, Table 1). The experimental delay includes 
a precise “Trigno” delay of 48ms, which conveniently equals 
the physiological delay (49.7±7ms) between onset of EMG 
and onset of force during voluntary (as opposed to electrically 
stimulated) contraction [32]. Second order neuromuscular 
dynamics combined with noise or non-linear variation explain 
latency longer than the model delay to observe statistically 
significant responses.  

NPC model delays were 85±20 ms (Table 4).  However, 
since NPC could not reproduce experimental delays NPC is 
eliminated as a valid model.  

Using model delays of 108±40 ms (Table 4), PC reproduced 
the observed delay (145±40 ms, Table 1). The PC delay for all 
unpredicted disturbance is fixed whereas physiological 
reaction times show a distribution. Furthermore, 108±40 ms is 
inconsistent with previous, estimates of the delay from other 
authors (~88±7 ms) [2] and has the unphysiological attribute 
of excluding lower limb spinal feedback.  However 108±40 
ms is reasonable as a mean delay representing balance 
mediated by trans-cortical feedback loops [30], [33]. 
 IPC reproduced observed delays using model delays of 
88±20 ms (Table 4).  The IPC delay represents the minimum 
value of a distribution which includes additional variable time 
for each unpredicted disturbance to cause prediction error to 
exceed a threshold. This latency (88±20 ms) and the 
distribution of open loop intervals (Fig 8) is consistent with a 
minimum delay defined by spinal feedback and a main 
contribution from transcortical and central pathways [30].  
 While there is no significant difference in cost function fit, 
IPC fits features of the data significantly better than PC 
(Linear, Delay fit_non-linear, Sample Entropy, Table 2; mean 
power frequency Table 3, Fig 8). PC uses noise to reproduce 
the remnant. PC sample entropy is significantly higher than 
experiment, thus PC is unphysiological. IPC produces the 
remnant mechanistically and sample entropy is marginally 
lower than experiment (Tables 1, 2). Additional sources of 
variability (e.g. time varying parameters) are possible, thus 
IPC is compatible with physiology.   

IPC confers a functional benefit.  Unlike linear control, IPC 
can use a resonant response without the disadvantage of 
uncontrollable oscillation.  Open loop implementation of an 
underlying continuous controller, within a main discrete 
feedback loop that can reset the states, allows IPC to use 
shorter latency, higher gain underlying continuous control 
than the equivalent linear controller (Fig 9, icnucc v PC, 
NPC).This combination of fast continuous feedback loops 
within a main slow discrete feedback loop is observed in 
vertebrate neurophysiology [29], [30]. In all vertebrates, the 
basal ganglia provides a metabolically costly, and thus 
important, main function of generalized tonic inhibition of fast 
trans-cortical and subcortical sensorimotor loops.  The basal 
ganglia loop also provides discrete selection (disinhibition) 
and reinforcement of beneficial responses. Functionally, the 

basal ganglia provides a slow pathway within the main 
sensorimotor feedback loop.  Working together the cerebellum 
and basal ganglia can sequentially switch on or off, and 
change the gain of transcortical and spinal reflex loops, can 
potentially shortcut, or not, the main slow loop, and can learn 
from and model, these reflex loops [12], [13], [24], [30].  In 
principle, vertebrates contain the neurophysiological 
machinery for IPC.  

The exaggeration and emergence of tremor in neurological 
conditions (essential tremor, Parkinson’s, dystonia), adds 
weight to the idea that processes of IPC are associated with 
distributed basal ganglia, cerebellar loops [12], [13], [30].  
These IPC processes not present in linear PC or NPC, include 
short term prediction, detection of prediction error, sequential 
event triggered sampling, modelling of systems within a 
generalized hold, reselection of initial hold states, and gating 
of feedback to allow open loop implementation of the 
continuous hold. This processes are worth investigating for 
their potential to explain uncontrolled tremor and other 
deficits of balance in neurological conditions.  

 
Figure 9 Sensitivity Analysis  
For a range of open-loop intervals Δol, ||Λ|| is the maximum eigenvalue of 
the periodically sampled discrete system  including a hold matching the 
underlying continuous control system, and a series mismatch gain gac [9]. 
Left: shows ||Λ|| for ic models, median for each condition. Dotted lines 
show the same calculation for PC  to compare with IPC.(using a hold 
matched precisely (gac=1) to the optimized PC model),  
Middle & Right: show closed loop transfer function T (ue/d) as magnitude 
v frequency (top) and phase v frequency (bottom). IC computed for periodic 
sampling [22]. Middle: For each model (npc, pc, ic, icn), shows median of 
all 68 trials.  Note ic_ucc, icn_ucc show underlying continuous controller used 
for the ic and icn open-loop hold (c.f. Appendix). Note also. ic/icn overlap 
and ic_ucc, icn_ucc overlap.   
Right : For icn model, shows each condition (median).  
Message 1: IPC limit cycles occur only with unstable systems. 
Message 2: Compared with PC, IPC has enhanced resonance around 1 Hz.  
  

Model 
Parameters npc pc ic icn 

Model Delay (s) 0.085 
±0.02 

0.108 
±0.04 

0.086 
±0.02 

0.088 
±0.02 

System Hold 
mismatch: gac 

  0.94 
±0.2 

0.92 
±0.2 

 

 
Table 4. Selected Model Parameters.  
Model Delay: NPC, PC shows delay td . IPC (ic, icn) shows delay 
+sampling delay td +  Δs.  System Hold mismatch applies only to IPC.  
gac<1, indicates system matched hold is over estimating the required size of 
control signal. Shows parameters as mean ± SD.  
(c.f. Supplementary Material Table SM1 shows all model parameters). 
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G. Current limitations and possible future extensions 
Our analysis used a single, main feedback loop to represent 
balance control and tested three models (NPC, PC, IPC). This 
approach lumps spinal, transcortical and more voluntary 
feedback into a single feedback controller.  Our results 
showed that experimental sample entropy lies between that 
predicted by PC and IPC and was closer to IPC.  IPC appears 
close to neurophysiological reality with some amendment 
required to incorporate continuous control more fully.  

For example, spinal, transcortical and voluntary feedback 
could be combined in parallel.  Following c.f. Fig. 1 [16], the 
external system and neuromuscular system augmented by fast 
continuous, spinal/transcortical feedback could be modelled as 
an augmented system controlled by an intermittent controller.  
IPC feedback could add to fast continuous spinal/transcortical 
feedback (parallel control) or could provide a setpoint to 
spinal/transcortical feedback (cascade control).  
 Evidence suggests short and long latency reflexes are 
limited in magnitude and are pulsatile (short duration) in 
nature [34], [35].  This evidence supports a serial concept in 
which a short duration reflex response is the first response to 
prediction error arising at short latency relative to the original 
discrete disturbance.  That first response is followed by 
sequential responses at longer latencies relative to the original 
disturbance.  The IPC model illustrates the serial concept, and 
already combines continuous with intermittent control (Fig. 
2B).  For IPC, the observer generating estimated states, the 
predictor generating future states one closed loop delay ahead 
(e.g. 100 ms), and the open loop hold generating time evolving 
states from an initial state are all continuous.  The hold models 
the continuous closed loop system that it is matching.  In the 
context of this serial model, spinal/transcortical reflexes are 
therefore  understood as the initial triggered response to an 
unpredicted disturbance rather than as the response of a 
separate feedback system.   

V. CONCLUSIONS 
We report a whole body balance task, providing data suitable 
for discriminating non-predictive, predictive, and intermittent 
predictive models of human balance control.  We provide 
evidence that: 

-the non-linear oscillation (NLO) (0.2-2Hz) present in 
healthy balance control is explained by closed-loop resonance, 
not limit cycles 

- short-term prediction is required for human balance. The 
standard state-estimation, state feedback model of human 
balance did not replicate concurrently the experimental delays, 
linear response and oscillatory non-linear remnant. 

-intermittent predictive control (IPC) is a viable explanation 
of human balance, fitting and explaining the mean frequency 
of NLO, sample entropy, the linear response, and non-linear 
delay better than continuous predictive control (PC). 

-processes of IPC (prediction error, threshold related 
sampling, sequential re-initialization of generalized hold, 
continuous open-loop implementation of predictive control) 
enable high gain fast reflexes (resonant closed loop gain) 
without uncontrolled oscillation. 

Significance: IPC provides new model based concepts to 
investigate balance in healthy and neurological conditions.  

APPENDIX 
Description of models [10] 

Definition of external and neuro-muscular system. 
The human participant controls an external 2nd order system 
using their net myoelectric signal. The explanatory model 
controls a dynamic system including the external system and a 
neuromuscular system representing the generation of the net 
myoelectric signal from state feedback.  The external and 
neuromuscular system are connected in series (Fig 2).  

Figure 2 shows the external 2nd order system, labelled 
"system" in Fig. 2A, B, and a 2nd order linear approximation 
of the neuro-muscular system, with a time-constant of 100ms, 
labelled "neuromusc. system". The system is augmented by a 
disturbance observer with integral action to compensate for 
any constant  disturbances  [10], [15].  

Linear controllers (Fig. 2A, B): A standard continuous-time 
state-space controller [15], [25]  containing an optimal state 
observer together with a state-predictor which compensates 
the model delay td and state feedback (not optimal), is used as 
a linear continuous-time predictive controller (PC) modelling 
the human operator (Fig. 2B). The linear, continuous non-
predictive controller (NPC), Fig 2A) omits the state predictor. 
Four measured system outputs, yo (position, velocity, and 
neuromuscular states), are taken as observer inputs, together 
with the control signal u. The state observer is designed using 
standard steady-state linear quadratic methods, which involve 
minimizing a quadratic cost function of the weighted control 
signals, system states and output signals [7]. The state 
feedback gains are adjusted freely by model fitting. 

Intermittent predictive controller (Fig 2C): The intermittent 
controller (IPC) [15] is based on the same structure as the 
linear continuous time predictive control (PC), but instead of 
continuous feedback of the observer state, feedback is only 
used at discrete time points, ti (indicated by the dashed line). 
The sampled observer state, xo(ti), is fed to a predictor and 
subjected to a computational delay, td which represents the 
predicted physiological delay, resulting in the predictor state 
xp(ti). The predictor state is used as the initial condition for a 
system matched hold element (labelled as "hold") with 
dynamics which correspond to those of the equivalent 
continuous time predictive control loop [15]. Thus, in the 
absence of disturbances, the hold state xh follows the observer 
state xo. A gain gac applied between state feedback and the 
neuromuscular system simulates mismatch between the 
assumed-predicted system and actual system.  When 
disturbances or uncertainties affect the loop, xh will diverge 
from xo, resulting in a non-zero prediction error, 
ep(t)=xh(t)−xo(t). A quadratic switching function of the form 
ep

T Qtep > 1, with Qt a positive semi-definite matrix, is defined 
as an event trigger to reset the hold state xh to the observer 
state xo [10], [15]. All elements of ep corresponding to the 
velocity (ep

vel), position (ep
pos),  two neuromuscular states, and 

estimated disturbance are considered, and Qt is a diagonal 
matrix with five positive elements, θ1-5), forming the axes of 
an elliptic switching surface. The time between trigger events 
is the intermittent (open-loop) interval, ∆ol

i=ti−ti−1. A new 
trigger event can only occur if ∆ol exceeds a minimal open 
loop interval, ∆ol

min > td  + Δs.  
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