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1 CHAPTER

Introduction

This chapter sets the stage for the remainder of the thesis through demon-
strating the relevance of the investigation of fault-tolerant flight control
and through providing the required background information. Such basic
information includes a brief survey on fault tolerant control research and
the basics of model predictive control.

1.1 Motivation of fault-tolerant reconfigurable flight
control

Why does one investigate fault-tolerant flight control (FTFC)? Well, for one, be-
cause we can, for two, because it is relevant. Fault tolerant control can contribute sig-
nificantly towards an overall increase in flight safety and aircraft availability.

Mankind has truly experienced a jump in its technological abilities over the past
century. It took only 44 years from the first motorized flight (Wright Flyer 1903,
Fig. [[1a) for Yeager to fly the Bell X-1 past the sound barrier in 1947 (Fig. [LIb).
After that, it took only 22 years until Neil Armstrong got to speak his famous
words upon setting foot on the moon for the very first time in history: "That’s one
small step for a man, one giant leap for mankind." It is safe to say that the technological
advances of the past century are remarkable and that this holds for the aerospace
domain in particular. Advances in aviation have had a significant impact on glob-
alization as a whole.

Technological advances do have their drawbacks. With advance comes an increase
in complexity. When one compares the Wright Flyer with a modern jet fighter,
then, besides the obvious differences in performance, one major aspect is the enor-
mous difference between the both in the number of components and systems. Cur-
rent jet fighters and modern airliners are hugely complex pieces of machinery. A
well-known example of this explosion in complexity is illustrated by Moore’s law,
first coined in 1965, which states that the number of transistors per area doubles

1



2 Chapter 1 Introduction

(a) 1903 Wright Flyer (Daniels 1903) (b) 1946 Bell X-1 (Hoover 2006)

Figure 1.1: From Wright Flyer to Bell X-1 in less than 50 years time

approximately every two years. Aviation certainly has benefitted from the rapid
growth in computing power that this has brought. Fly-by-wire systems, advanced
stability augmentation systems and collision avoidance systems have all become
reality because of these advances. All of these systems either provide the pilot
with more information, or automate the task at hand.

The drawback of this exponential growth in complexity lies in the corresponding
growth of the number of systems and subsystems that may fail for one reason or
another. Given the systems complexity of aircraft it is no longer easily possible
for the crew to establish what exactly has happened when these fail. It is there-
fore that we need to provide means for the diagnosis of failures and automated
recovery.

The aerospace industry is especially conscious of safety and related aspects. The
certification of a new aircraft type or subsystem is a lengthy process that is grow-
ing ever more complex. Fault-tolerant Flight Control (FTFC) can play a major role
in improving the safety, reliability and availability of aircraft. The continuous in-
crease in the number and complexity of onboard systems of aircraft has created
demand for a supervisory system that continually monitors the health of onboard
systems and reconfigures them when needed. The growth in computing power
enables the design of such systems.

In 2015 3% of the accidents in global aviation were contributed to loss of control of
the aircraft in-flight (LOC-I), leading to 33% of the fatal accident (See Fig. .2). It
is postulated here that fault-tolerant flight control could have been of life-saving
importance in these cases and its investigation is worth our while.

This chapter motivates the investigation of FTFC and provides the research objec-
tives of the thesis in combination with required background information. The ba-
sics of flight control are introduced here, followed by a short introduction to fault
detection and diagnosis and an introduction to fault tolerant control in general.
The chapter continues with the introduction of Model Predictive Control and its
potential use in flight control. The text ends with an overview of the organization
of the thesis before continuing to its main body.
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Figure 1.2: Fatalities, fatal accidents and Accidents as recorded by the Interna-
tional Civil Aviation Authority (ICAQ [2016). The charts shows accidents, fatal
accidents and fatalities for three high risk occurrence categories in 2015. LOC-I
means loss of control in-flight, RS means runway safety, and CFIT means con-
trolled flight into terrain. There were no CFIT accidents in 2015.

1.2 Background

This thesis aims to investigate FTFC which lives at the intersection of fault-tolerant
control and flight control. The sections below provide background on both sub-
jects.

1.2.1 Introduction to flight control

The construction of a heavier-than-air machine that will fly is but one of the chal-
lenges that the pioneers faced in the early days of aviation. Equally important
is the ability to control the aircraft in order to have authority over its flightpath.
Flight control technology has evolved considerably over the past century.

Aircraft can be modeled as a point mass moving through the air. The wings pro-
vide the lift that is needed to sustain the weight of the aircraft in straight and level
flight, whereas the engines provide the thrust that is needed to cancel the drag
that the aircraft experiences. A pilot needs to rotate around the pitch axis in order
to change altitude (climb or descend). If the pilot wants to change direction he
will need to use a combination roll, yaw and pitch in order to make the aircraft
turn in the desired direction. Several methods can be used to control the attitude
of the aircraft.

flight control mechanisms

Otto Lilienthal (1848-1896) made some of the first documented gliding flights us-
ing an early version of what one might compare to a modern hang-glider. Much
like hang-gliders Lilienthal could control the glider by changing the center of grav-



4 Chapter 1 Introduction

RUDDER
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TRIMMING
TAILPLANE

Figure 1.3: Example of flight control surfaces

ity through shifting his body. The glider was difficult to control and eventually
Lilienthal fell from 17 meters when the glider lost lift. Lilienthal died saying:
"Kleine Opfer miissen gebracht werden" (small sacrifices must be made). In subse-
quent years Wilbur and Orville Wright built their own gliders. They were certain
that weight-shift control was not the way forward and came up with a method of
wing-warping to control the rolling motion of the aircraft. For pitch control they
employed a movable canard wing.

Finally, fixed wing aircraft settled on independent moving surfaces to control
pitching, yawing and rolling motion independently. The primary control surfaces
used for these motions are the elevator, the rudder and the ailerons. These surfaces
are controlled from a stick, or yoke, and the pedals in the cockpit. Two methods
are common in connecting the pilot controls in the cockpit to the control surfaces.
These methods are either cable and pulley systems, or push-pull control rod systems.
Next to the primary flight control surfaces, most civilian and military aircraft have
secondary flight control surfaces. Such secondary flight control surfaces include
trailing-edge flaps, leading-edge slats and airbrakes. These flight control surfaces
are typically used to control the amount of lift that the aircraft generates, either
through changing the wing surface or wing camber (slats and flaps), or through
lift ‘"dumping’ (airbrakes). Although most secondary control surfaces are typically
used symmetrically, airbrakes or spoilers are also used to aid the ailerons in roll
control.

Growth in aircraft size has made it more difficult for pilots to control the aircraft
because of the high forces needed to move the control surfaces. This created the
necessity to use additional power sources and subsequently hydraulic boosters were
introduced (at the end of the second World War) to lighten the physical workload
for pilots. This system is comparable to power-steering in a car. In a subsequent
step of evolution in flight control fully power-operated controls were introduced
that are irreversible because the aerodynamic hinge moment has no effect on the
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deflection of the surface. The advantage of this system is that it increases the
stiffness in the control system which improves the flutter characteristics of the
aircraft. At this moment in time the role of mechanical linkage between the cockpit
controls and the surface actuators was reduced to one of signaling and no longer
for the transmitting of power.

Obviously mechanical linkages are simple and reliable, but electrical signaling
allows for implementation of more complex and sophisticated flight controls, pos-
sibly enhancing the handling qualities of the aircraft. Traditional benefits of fly-
by-wire technology for civil aircraft are (Pratt2000, p.19):

¢ the improvement of natural aircraft dynamic behavior, that is: stability, han-
dling qualities, turbulence suppression and passenger comfort;

e the provision of flight envelope protection that allows full pilot commands,
if necessary, without danger of either leaving the safe flight envelope or over-
stressing the aircraft;

¢ the increase in safety by reduction of pilot workload in routine control tasks,
which allow him to concentrate on higher level flight guidance tasks;

¢ the reduction of airline crew training costs by offering commonality within
an aircraft family (cross-crew qualification);

¢ the more efficient use of crew resources, as one pilot can fly different aircraft
types with the same type rating;

¢ configuration changes can easily be implemented, offering development flex-
ibility and growth potential;

* reduced operational costs, through improved maintainability and a higher
dispatch reliability;

e aircraft mass can be reduced, as heavy mechanical parts can be eliminated.

It is fly-by-wire that opens the door to fault-tolerant flight control. There no longer is a
mechanical linkage between the cockpit controls and the control surfaces. Hence,
it is possible to use the freedom to use each control surface individually, which
can be advantageous in a faulty scenario. Some examples include the follow-

ing:
¢ propulsion control: given the fact that the engines of a multi-engine aircraft
are mounted away from the center of gravity it is possible to create a mo-
ment in the yaw, roll and pitch direction, hence making it possible to control
the attitude of the aircraft.

e roll control using asymmetric use of flaps or elevator halves: normally exten-
sive mechanisms exist to make sure that flaps are extended symmetrically,
but if ailerons become inoperative, if might be important to be able to use
flaps or spoilers asymmetrically such that a rolling motion can be achieved
using alternative means.

¢ weight shift control: trim in the roll direction through pumping fuel from
one wing tank to another.
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Flight critical systems such as the flight control system (FCS), require the highest
integrity: system failures which would result in the loss of the aircraft have to be
extremely improbable, i.e. its probability has to be less than 1079 per flight hour
(EASAI2016, AMC 25.1309). This requires redundant and highly reliable com-
ponents. Furthermore, additional redundant components are installed because
airlines need good dispatch rates, i.e. they want to continue with revenue flights
safely, even after certain failures have occurred and while being far away from
the maintenance base (Pratt2000). Multiple redundant lanes or channels of com-
puting and actuation are used to achieve this. Additionally extensive integrity
monitoring is used to detect faults at the system level. Hardware and software di-
versity are also important aspects that contribute towards achieving the required
safety levels.

Given the knowledge that failures of the present-day flight control system and its
individual components are extremely improbable, it may be assumed that it is al-
ready particularly unlikely that a fault in an individual actuator or flight control
computer will be outright catastrophic. Why investigate FTFC then? Serious prob-
lems may arise when faults are injected at higher hierarchical level. Examples
thereof are situations in which all hydraulic pressure is lost and authority over
all primary control surfaces is lost. All the actuator redundancy in the world will
not currently solve this problem when hydraulics are the only power source for
the flight control surfaces. Another major issue is that structural damage to the
aircraft may cause the closed loop of aircraft and autopilot to become unstable.
Structural damage may also take the aircraft out of trim, or make it open-loop
unstable.

Structural failures

Structural defects lead to a change in the behavior of the system. An example of such
a failure can be the loss of a vertical fin. Losing the fin causes several problems:
the stability in yaw direction is lost, there no longer is a rudder to control yaw, and
loss of the rudder has probably caused a leak in the hydraulic system. This is a
striking example where the existing flight control law and hardware redundancy
are no longer valid.

Sensor failures
Sensor failures are not investigated in this thesis, but actuator failures are.

Actuator failures

Single actuator failures are served relatively well by means of hardware redun-
dancy. It is only when major systems start failing (e.g. total loss of hydraulics,
complete loss of elevator authority, etc.) that we are likely to need to control the
aircraft using secondary actuators or using secondary effects of the primary actu-
ators.

An alternative reasoning is that through inclusion of fault-tolerant flight control
hardware it may be possible to reduce the amount of redundant hardware. Soft-
ware does not cause a weight penalty, whereas hardware does. Another possi-
ble benefit lies in increased dispatch reliability, a major factor in operating econ-
omy.
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In summary, fault tolerant control methods can either reduce the necessity for
hardware redundancy or broaden the scope and number of faults that can be han-
dled. We focus on faults at the system level and assume that single actuator fail-
ures do not, or only slightly, affect the behavior of the closed loop of flight control
system, airplane structure and actuators, whereas a complete failure of a control
surface, loss of an engine or complete hydraulics will.

1.2.2 Failure detection and Fault-tolerant control overview

Fault: In the general sense, a fault is something that changes the behavior of a system such
that the system no longer satisfies its purpose (Blankd2003).

Hence, fault-tolerant control has to prevent a fault from causing a failure at the
system level.

In larger systems different components typically each have their own purpose.
This means that a single fault in a component will in most cases change the per-
formance of the overall system. Fault tolerant control is an attempt at finding faults
swiftly and at subsequently stopping the propagation of the fault such as to pre-
vent damage to the overall system and human operators. It is the control system
that has to deal with this task. We strive to develop a control algorithm that adapts
to the faulty plant. Hence, in general the procedure to make a system fault-tolerant
consists of two steps (Blanke [2003):

1. Fault diagnosis: the existence of faults has to be detected and the faults have
to be identified; and

2. Control re-design: the controller has to be adapted to the faulty situation so
that the overall system continues to satisfy its goal.

Classification of Faults

Faults can be classified according to their location in the system, their nature or
their time-characteristics. When faults are ordered with respect to their location
we distinguish: actuator faults, plant faults and sensor faults (Verhaegen et al.
2010):

Actuator faults represent partial or total loss of control action. Partial loss of control
action can be the loss of range in an actuator, or it may be the loss of reaction speed.
Partially failed actuators produce only part of the nominal behavior. When full
loss of an actuator presents itself this may lead to an actuator that is stuck at a
certain position, or an actuator that is floating.

Sensor faults represent incorrect readings from the sensors that the system is fitted
with. Faulty sensors may provide the system with amplified versions of the orig-
inal system, a bias might be included, or the signal may be prone to high noise
levels. Either way, the quality of the signal is lost.
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Plant faults relate to faults that are associated with changes in the physical param-
eters of the system. These are the faults that can neither be attributed to actuators
or to the sensors. Typical examples would be failures of the system itself, such as
damage to the wing of an aircraft.

Faults are typically classified as either being additive or multiplicative. Sensor and
actuator faults can typically be modeled best as multiplicative faults and plant
faults are best modeled as additive faults.

Faults are not necessarily observable from the system behavior, but when they
are we have to take the effect into account. Fault tolerant control requires that
we detect that a fault has occurred and that the location of the fault is identified
together with identification of its severity

Fault tolerant control

Various control methods are suitable for fault tolerant control purposes. At a high
level of abstraction one can divide FTC methods into two categories: active and pas-
sive FTC (Jones 2005). Passive methods allow for fault accommodation, whereas
active methods use control reconfiguration as a starting point.

Robust control solutions are an example of passive FTC methods. In robust meth-
ods, the design of the controller is such that the closed-loop of plant and controller
is stable for a whole set of plants. This set can be designed such that certain faulty
behavior of the plant fits inside the set. The trade-off in selecting such a robust con-
trol law is that one trades performance for robustness. The advantage, however,
is that an online FDI system is not strictly required.

In active methods, one does make use of available FDI information and the entire
control loop is reconfigured as is necessary. It is possible that the structure of the
existing controller remains the same, but that the tuning of its parameters has to
be changed in order to accommodate for the fault. Active control reconfiguration
can become necessary.

The interested reader is referred to the following references for a generic intro-
duction to fault tolerant control Blanke and Schroder (2006), Patton (2015), Patton
(1997). Figure [L4] provides a classification of fault tolerant control methods, ref
Edwards et al. (2010).

1.2.3 Fault tolerant flight control

As stated, FTFC unifies the topic matter of flight control and fault tolerant control.
Surveys of, and generic introductions to, FTFC are: |Steinberg (2005), [Edwards et al.
(2010), [Zolghadri et al! (2014). Many control methods are suited to the purposes
of a fault-tolerant flight controller:

e Multiple model control - the multiple model concept is based on a set of
models, each model representing a different operating condition of the plant
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(e.g. a fault condition). A controller is designed for each plant model. Cen-
tral to the control method is an online method to determine a weighted com-
bination of the different controllers that is to be employed. A disadvantage
is that the method only considers a finite number of local models (i.e. fault
conditions).

* Multiple model and switching (MMST) - in multiple model and switching
control a series of models and controllers exist. For each time step the model
that is most representative is determined and the corresponding controller
selected. Most MMST controllers comprise a tuning mechanism that is ap-
plied to the model that corresponds to the active controller. Stability results
exist that require a sufficiently dense set of models and a sampling that is
fast enough.

¢ Interacting multiple models (IMM) - IMM attempts to relieve the limitations
of the previous two methods in the sense that every fault condition must
have been modeled a priori. A key assumption in IMM is that every failure
can be modeled as a convex combination of models in a set of models. In the-
ory multiple failures can be handled through combination of single failure
models.

¢ Control Allocation - desired forces and moments about the aircraft center of
gravity are inputs to this method. Based on these forces and moments, and
estimates of control effector efficiencies and stability derivatives, to compute
the inputs necessary to achieve such forces and moments.

¢ Adaptive feedback linearization - is based on a dynamic inversion controller
in an explicit model following architecture. An adaptive neural network is
used to adaptively regulate the error between the desired response model
and response of the vehicle. Control allocation is applied to generate indi-
vidual control effector commands (Wise et al|[1999).

¢ Sliding mode control - sliding mode systems are designed to drive the sys-
tem states onto a particular surface in the state space, named sliding surface.
Once the sliding surface is reached, sliding mode control keeps the states on
the close neighborhood of the sliding surface. Hence, sliding mode control
is a two part controller design. The first part involves the design of a sliding
surface so that the sliding motion satisfies design specifications. The second
is concerned with the selection of a control law that will make the switching
surface attractive to the system state (Shtessel et al![2014).

¢ Eigenstructure assignment - in eigenstructure assignhment a linear state feed-
back controller is obtained through pole placement after which the remain-
ing design freedom is used to align the eigenvectors as accurately as possi-
ble.

* Model reference adaptive control - The goal of adaptive model-following
is to force the plant output to track a reference model. This can either be
done in indirect form through online identification of the plant parameters,
or through direct estimation of the controller parameters.
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e MPC - applies online optimization to control multivariable systems and is
regarded for its ability to incorporate and accommodate various constraints.
MPC forms the main content matter of this thesis.

* Knowledge based methods - an artificial neural network (ANN) is a net-
work inspired by biological neural networks. ANN are typified by their
ability to accommodate changing behavior, in a certain sense learning what
has changed. ANN have been applied towards FTFC for purposes of fail-
ure detection and identification of a control surface (Napolitano et al/l2000)
and cancelation of residual errors in feedback linearization (Kim and Calise
1997).

Figure[I.4 provides a graphic overview of the methods listed above and Table[1.]]
from [Edwards et al! (2010) provides a comparison of fault tolerant control meth-
ods, applicable for reconfigurable flight control, considered in this survey. Filled
circles mean that the method has the indicated property while empty circles imply
that an author has suggested that the approach could be modified to incorporate
the property. The columns are explained as follows:

¢ Failures: Types of failures that the method can handle
® Robust: The method uses robust control techniques
¢ Adaptive: The method uses adaptive control techniques
¢ Fault Model:
— FDI: An FDI algorithm is incorporated into the method

- Assumed: The method assumes an algorithm which provides a fault
model

e Constraints: The method can handle actuator constraints

* Model Type: The type of internal model used

1.3 Model Predictive Control

Model predictive control (MPC) is central to the theory in this thesis, hence it
has to be discussed in this introductory chapter. MPC is a widely used and well
accepted controller design method in the process industry (ref. |Allgdwer et al.
(1999); Biegler (2000); [Camacho and Bordons (1995); Clarke et al! (1987a); Garcia
et al. (1989);Cutler and Ramaker (1979);Morari and Zafiriou (1989);Richalet et al.
(1978)). This motivates the extension of the benefits provided by the MPC frame-
work to high-bandwidth flight systems.

Various methods have been developed since the Seventies for the design of model
based control systems for robust multivariable control of industrial processes
(Boyd and Barratt [1991; Doyle et al.[1992, 1989; |Garcia et al. [1988; Maciejowski
1989; Morari and Zafiriou 1989).
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Table 1.1: FTFC methods, from (Edwards et al| 2010, p.84)

Method

Actuator | Structural |

Failures

Robust

Adaptive

Fault Model
FDI | Assumed |

Constraints

Multiple Model Switching and Tuning (MMST)
Interacting Multiple model (IMM)

Propulsion controlled aircraft (PCA)

Control Allocation (CA)

Feedback Linearization (FL)

Sliding Mode Control (SMC)

Eigenstructure Assignment (EA)

Pseudo Inverse Method (PIM)

Model Reference Adaptive Control (MRAC)
Model Predictive Control (MPC)

Model type
Linear | Nonlinear
[ ]
[ ]
[ ] [
[ ]
[ ]
[ ]
[ ]
[ ]

?Can handle partial loss of effectiveness of actuators, but not complete loss

b Assumes robust control can handle all forms of structural failures

45
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Predictive control was pioneered simultaneously by Richalet et al. (1976), Richalet
et al. (1978) and [Cutler and Ramaker (1980). Model Predictive Control technology
has evolved from a basic multivariable process control technology to a technology
that enables operation of processes within well-defined operating constraints (All-
gower et al. 1999; Bequette [1991; \Qin and Badgewell 1997). The contributors to
the acceptance of MPC technology by the process industry since the 1980’s are the
following:

e MPC is a model based controller design procedure, which can easily han-
dle processes with large time-delays, non-minimum phase and unstable pro-
cesses.

¢ (Industrial) processes typically have limitations in, for instance, valve capac-
ity and other technological requirements and are required to deliver output
products against detailed quality specifications. MPC can handle such con-
straints in a systematic way during design and implementation of the con-
troller.

¢ Finally, MPC can incorporate structural changes, such as sensor and actuator
failures, changes in system parameters and system structure by adapting the
control strategy in between measurement samples.

However, the main reasons for its popularity are the constraint-handling capabili-
ties, the straightforward extension to multi-variable processes and, most of all, the
possibility to increase process quality and profit margins. From academic side the
interest in MPC initially came from the field of self-tuning control. The problem
of Minimum Variance control (Astrém and Wittenmark (1973)) was studied while
minimizing the cost function

J(u, k) =E{(r(k+d) —y(k+d))*} (1.1)

at time k&, where y(k) is the process output signal, u(k) is the control signal, r(k)
is the reference signal, E(-) stands for expectation and d is the process dead-time.
To overcome stability problems with non-minimum phase plants, the cost func-
tion was modified by adding a penalty on the control signal w(k). Later this u(k)
in the cost function was replaced by the increment of the control signal Au(k) =
u(k) — u(k — 1) to guarantee a zero steady-state error. To handle a wider class of
unstable and non-minimum phase systems and systems with poorly known de-
lay the Generalized Predictive Control (GPC) scheme (Clarke and Mohtadi(1989;
Clarke et al![19874) was introduced with a quadratic cost function.

In GPC mostly polynomial based models are used. For instance, Controlled Au-
toRegressive Moving Average (CARMA) models or Controlled AutoRegressive In-
tegrated Moving Average (CARIMA) models are popular. These models describe
the process using a minimum number of parameters and therefore lead to effec-
tive and compact algorithms. Most GPC-literature in this area is based on Single-
Input Single-Output (SISO) models. However, the extension to Multiple-Input
Multiple-Output (MIMO) systems is straightforward as was shown by De Vries
and Verbruggen (1994) using a MIMO polynomial model, and by Kinnaert (1989)
using a state-space models.
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This text covers state-of-the-art technologies for model predictive process control
that are good candidates for future generations of industrial model predictive con-
trol systems. Like all other controller design methodologies, MPC also has its
drawbacks:

¢ A detailed plant model is required. Good insight in the physical behavior of
the plant is required or system identification techniques have to be applied
to obtain a good model.

* The methodology is open, and has given rise to many variations. Such vari-
ations include: IDCOM (Richalet et al. [1978), DMC (Cutler and Ramaker
1979), EPSAC (De Keyser and van Cauwenberghe|1982), MAC (Rouhani and
Mehra [1982), QDMC (Garcia and Morshedi[1986), GPC (Clarke et al/|[19874)
and (Clarke et al.[1987b), PFC (Richalet[1993), UPC (Soeterboek [1992).

* Although, in practice, stability and robustness are easily obtained by accu-
rate tuning, theoretical results on stability and robustness properties are dif-
ficult to achieve.

Industry specialists often prefer MPC for supervisory optimizing control of mul-
tivariable processes over other controller design methods, such as PID, LQ and
Hs. A PID controller is easily tuned but is basically limited to SISO systems.
LQ and H, can be applied to MIMO systems, but cannot incorporate constraints
in an adequate way. These techniques also exhibit difficulties in realizing robust
performance for varying operating conditions. Key element in model predictive
control is the use of a model that can simulate dynamic behavior of the process
at in a certain condition. In this respect, model predictive control differs from
most of the model based control technologies that have been studied in academia
in the Sixties, Seventies and Eighties. Academic research has mostly focused on
the use of models for controller design and robustness analysis of control systems
for quite some time. With their initial work on internal model based control, Gar-
cia and Morari (1982) made a first step towards bridging academic research in
the area of process control and industrial developments in this area. Significant
progress has been made in understanding the behavior of model predictive con-
trol systems, and a numerous results have been obtained on stability, robustness
and performance of MPC (Soeterboek (1992), (Camacho and Bordons (1995), Ma-
ciejowski (2002a), Rossiter (2003)).

Since the pioneering work at the end of the Seventies and early Eighties, MPC
has become the most widely applied supervisory control technique in the process
industry. Many papers report successful applications (seeRichalet (1993), and Qin
and Badgewell (1997)).

In the Eighties and Nineties MPC was mainly applied in the process industry,
since the slow dynamics permit the inter-sampling computations for model up-
date and optimal future control sequence determination. The dramatically in-
creasing available computer power now allows the extension of the computational
demanding MPC technology to high-bandwidth flight control systems (Keviczky
and Balas|2003).

The MPC scheme works as follows (see also Figure [L.5). A model (in our case
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PAST FUTURE

[ T T O O O I O
k k+j

Figure 1.5: The ‘Receding horizon’ in predictive control (van den Boom and Stoor-
vogel 2010, Fig 2.5., p.29)

a linear time-invariant discrete-time description of relevant process dynamics) is
used to predict the outcome y(k) (the controlled variables) of the process based on
an input sequence u(k) (the sequence of control inputs or manipulated variables)
supplied to the process and on past measurements of the process. The goal is to
achieve that a tracking error signal z(k) (often reflecting the difference between
the output signal y(k) and a given reference trajectory r(k)) that remains small
with reasonable control costs (related to e.g. energy consumption and pollution).
In many applications we will use the increment input Au(k) = u(k) — u(k — 1)
for this will automatically lead to an integrating action in the controller, which is
useful for reducing the steady state error. A cost criterion reflects the reference
tracking error and the control effort. The prediction horizon N is the number
of time steps at which the tracking error signal should be minimized. The op-
timal input sequence over a given horizon can now be computed by solving an
optimization problem (i.e. minimize the cost criterion over the allowed input se-
quences — and the corresponding y(k) predicted on the basis of the model — given
the information of the past behavior of the process). Let us look at the procedure
more closely.

Linear MPC uses a linear time-invariant (LTI) state-space representation for the
model:

z(k+1)
y(k)

where A € R"*", B € R*"*?, H € R™*™, and C € R™*", The vector x € R"
represents the state, Au € R” the input, y € R™ the output, e € R™ is zero-mean

Az(k) + BAu(k) + H e(k) (1.2)
Cx(k) +e(k) (1.3)



16 Chapter 1 Introduction

white noise, and k € Z is the discrete time counter. In this thesis we use a cost
function with one term that reflect the tracking error and one term that reflects the
control action. The following 2-norm cost function is introduced:

N
J(u,k) =" 5" (k+j— 1k)2(k +j — 1]k) (1.4)
j=1

where we defined the cost signal
z2(k) =C,x(k)+ D, Au(k) + E, e(k) + F. r(k) (1.5)

in which 2(k+ j — 1]k) is the prediction of z(k+j — 1) at time &, A is the difference
operator such that Au(k) = u(k) — Au(k — 1) and 2(k + j — 1|k) is the prediction
of z(k + j — 1) given the information up to time instant .

A key advantage of MPC is that we can immediately accommodate for constraints
on the input and outputs of the process. This changes the optimization problem
only by incorporating the additional limitations. However, this renders the opti-
mization much more complex and will require more computation time.

In MPC the input is often taken to be constant from a certain point onward: u(k +
j) = u(k 4+ Nc — 1) (or equivalently Au(k + j) = 0) for j = N,...,N — 1 where
N, is the control horizon. The use of a control horizon leads to a reduction of the
number of optimization variables. This results in a decrease of the computational
burden, a smoother controller signal (because of the emphasis on the average be-
havior rather than on aggressive noise reduction), and a stabilizing effect (since
the output signal is forced to its steady-state value).

MPC uses a receding horizon principle. At time step k the future control sequence
Au(k), ..., Au(k+ N. — 1) is determined such that the cost criterion is minimized
subject to the constraints. At time step k the first element of the optimal sequence
(Au(k)) is applied to the process. At the next time step the horizon is shifted, the
model is updated with new information of the measurements, and a new opti-
mization at time step % + 1 is performed.

By successive substitution of (L5) in (I1.2), estimates of the future values of the
output can be computed (Camacho and Bordons [1995). In matrix notation we
obtain:

Z(k) = Ca(k) + Di(k) + Ee(k) + F£(k)

with
if(mf)k 7}<:(k) AAlﬁf(k)l
Z T 1 u
(k) = (JTH 5 = (:+) k) = (:+) |
S(k+N—1Jk) r(k+N—1) Au(k+N—1)

(1.6)
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D, 0 - 0 0
CCZA ¢ D |
C = : , D= C.AB c,B . 0 0 | 1.7)
C, AN : . D, 0
| C.ANB -+ C:B D |
E,
C.H
B C:AH | F =diag(F.,...,F.). (1.8)
C,AN2H

where diag(As, ..., A4,) is defined as a block diagonal matrix with the blocks A,
through A,, on its diagonal. The cost function (I.4) can now be written as

N
Ju k) = Y 2T(k+j—1k)z(k+j— k)
Jj=Nm
z" (k)a(k)
(Cz(k) + Di(k) + Ee(k) + F(k))" (Cx(k) + D (k)
+Ee(k) + Fi(k))

= al(k)Hu(k) + f*(k)a(k) + c(k)

This means that the cost function is quadratic in the control variable u(k) and so
by omitting the constant term c(k) we obtain:

J(u, k) = a” (k)Ha(k) + f*(k)a(k) (1.9)

In practical applications signals are always constrained. We consider the linear
constraint

C.(k)x(k) + D.(k)t(k) + E.(k)e(k) + Fo(k)F(k) + Ju(k — 1) <h(k)  (1.10)

with C.(k) € R™*", D (k) € RPN, E (k) € R>™, F (k) € RX™N, J € R,
h(k) € R' for some integer [. Finally, we introduce the control horizon con-
straint

Aulk+75)=0 forj =N, N.+1,...,N—1 (1.11)
to reduce computational complexity and to smoothen the input signal’s behav-
ior.

The MPC problem at time step & for linear time invariant systems is defined as
follows:
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Find the input sequence u(k), . .., u(k+ N, — 1) that minimizes the cost
function (1.9) subject to the inequality constraints (I.10) and subject to
the control horizon constraint (LIT).

Note that the MPC problem boils down to the following quadratic programming
problem

subject to C.(k)z(k) + D (k)a(k) + E.(k)e(k) + Fo(k)F(k) + Ju(k — 1) < h(k)

In the absence of constraints (1.10) and (I.11) the solution can easily be found by
setting the gradient of the cost function to zero, resulting in

Vi a® (k) Hak) + £ (k)a(k) + c(k) = 2Ha(k) + f(k) =0

and so for the unconstrained case we find the optimal solution @* (k) = —H 1 f(k).
Using the receding horizon principle we can compute the optimal control signal
at time £ as

Au(k) = —E,H (k) (1.12)
where
10 0
00 ... 0
E,=| . . . . (1.13)
0 0 0

The solution can be realized with a feedback law
Au(k) = —K x(k) + D e(k) + D, t(k) (1.14)

with K = E,H'C,D, = —~E,H 'Eand D, = —E,H'F.

Quadratic programming problems can be solved very efficiently. Various algo-
rithms to solve the quadratic programming problem exist: the modified simplex
method (algorithms that use a modified version of the simplex method are Wolfe’s
algorithm (Wolfe [1959) and the pivoting algorithm of [Lemke (1968) are most ef-
ficient for small and medium-sized problems). The algorithm will find the opti-
mum in a finite number of steps. An alternative for large-sized quadratic program-
ming problems is the interior point method [Nesterov and Nemirovskii (1994). A
disadvantage of this method is that the optimum can only be approximated. How-
ever, bounds for the approximation can be derived.

Predictive control design does not give an a priori guaranteed stabilizing con-
troller. To enforce closed-loop stability we can introduce the following infinite
horizon cost function N = oo:

J(u,k) =" 5" (k+j— 1k)2(k+j — 1]k) (1.15)
j=1

oo
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where 75 is the steady-state reference signal, for which there holds r(k + j|k) =
rss for j < 0. The steady state ., can be computed by solving the following
equations:

Tss = Axss
ZSS:CZ‘/'ESS—’_FZTSS =0

The results are summarized in the following theorem:

Theorem 1.1
Consider the system

z(k+1)=Ax(k) + He(k) + B Au(k)
y(k) = Cz(k) + e(k)
z(k) = C,x(k) + D, Au(k) + E. é(k) + F. r(k)

with r(k + jlk) = rss for j < 0. Let P be the solution of the algebraic Riccati equation
P=ATPA— (ATPB+CTD,)(BT"PB+DI'D,)"Y(BTPA+ D¥C,)+ CTC,

The unconstrained infinite horizon standard predictive control problem of minimizing per-
formance index

=> 2" (k+ jlk)2(k + j|k) (1.16)
7=0
is solved by control law
Au(k) = —K (x(klk) — xss) + Dee(k) (1.17)

where

K =(B"PB+ DTD,)"Y(BTPA + DTC,)
D.=—(B"PB+DI'D,)""(B"PH + DI'E,)

Proof: we consider the unconstrained infinite horizon standard predictive control
problem. The system to be controlled is described as:

z(k+1)=Ax(k) + He(k) + B Au(k)

)
y(k) = Cx(k) + e(k)
z(k) = C,x(k) + E, é(k) + D, Au(k) + F,r(k)

with r(k + j|k) = rss for j < 0. Prediction:

2(k+j+1lk) = Az (k + jlk) + Hé(k + jlk) + Bo(k + j|k)
2k + jlk) = C. &(k + j|k) + E. é(k + j|k) + D v(k + j|k)
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Choosing
_ qon | 2k +jlk)
e = S0 |
we obtain:
z(k+j+1|k) = Az(k + jlk) + Bo(k + jlk)
2(k + jlk) = C2(k + jlk) + Dv(k + jlk)
where
| A
i-1o 0]
_ B
b-[2] e
C =[C. E.|
D =D

Substitution in the performance index leads to:

Mg

Tk + jlk)T(5)2(k + jlk)

:Z (k + j|k)CTCz(k + j|k)
—|—23: (k+ jlk)CTDu(k + jlk) +v" (k + jlk) D" Dv(k + j|k))
=3 2" (k+jlk)Qz(k+jk) + 2" (k+j|k)Sv(k+j]k)

vl (k+j|k)Ru(k+j|k)
where
Q:CTC:[CZ }T[Cz Ez],
S=CTD = [ C, E, } D., (1.19)
R=DTD=DTD,.

Minimization of the performance index is equivalent to the design of an LQR reg-
ulator with the solution

v(k) = (BTPB+ R)" (BT PA + S™)z(k) (1.20)

where P > 0 is the smallest positive semi-definite solution of the discrete time
Riccati equation

= ATPA— (ATPB+ S)(B"PB+ R) " (BTPA+ST)+Q
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which exists due to stabilizability of (4, B) and invertibility of R. Note that

P Pl [AT 0 P P|[A H
PF P3| | AT of|| P Ps|] 0 O
AT 0 P1 Pg B + Sl
HT o || Pl P 0 Sa
—1
T P B B
P P A H
T 1 2 T T
><< [ BT 0] [PQT P3H0 O}Jr[sl S3 })+Q
ATPA  ATPH
HT'P'A HTP'H
ATP B+ 5 T T \—1
{HTPlB+S (B"P B+ D!D,)
BTP A+ ST BTPH+ ST [Ql Qﬂ
<[ BihAy R R 07 oy
P =ATPIA— (A"PB+S)(B"PiB+DID,) Y (B"PIA+ST) + @
Py,=AT"PH - (A"P,B+ S)(B"P,B+D'D,)" (B P H + 5) + Q2
Py=H"P\H - (H'PB+ S)(B"PB+DID,) *(B"PLH + 53 ) + Q3
SO we can write
v(k) = (BTPB+ R)"Y(BTPA + 5Tz (k)
= K z(k)

=B"PB+DID.)"' [ BTPLA+ ST BTPiH+ 57 | [

= —K x(k|k) + D, e(k|k)

which constitutes the discrete time LQR problem, where

K=B"PB+DID,)"
D.=—(B'PB+D'D,)~

YBTP A+ DIC,)
YBTPH + DTE,)

|

Bitmead et al. (1990) showed that infinite horizon cost function (L.16) is equivalent

to the following cost function

min J(9, k) = mln{(ﬂﬁ(k + Nlk) — xSS)TPO (x(k + Nlk) — xss)

(k) (k)
N

J=1

F(k+j —1k)2(k + —1|k)}

(1.21)
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where P, is the solution to the Riccati equation
ATPyA-ATPy,B(BTP,B + BTCTQCB) 'BTP,A
+ ATCTQ(I — CB(BTCTQCB) 'BTCTYQCA - Py =0, (1.22)
where A = A — B(BTCTQCB + R)"'BTCTQCA.
Note that cost function (I.22) is a finite horizon cost function with an additional

T
terminal cost (x(k + Nlk) — a:ss) Py (a:(k + N|k) — xss). The predictive control
law, minimizing (T.21)), results in a stable closed loop (Bitmead et al!(1990).

The main disadvantage of the terminal cost function is that it can only handle
the unconstrained case. If we introduce a terminal constraint set we can ensure
closed-loop stability for the constrained case in a non-conservative way:

Theorem 1.2 (Gilbert and Tan (1991),\Scokaert and Rawlings (1998),
Sznaier and Damborg (1987)) Consider the LTI system (L2)-(L3) with cost function
(LZ1). Let the signal constraints be defined by

Fz(k —1) + GE(k) + Hii(k) < h, (1.23)

where F, G, H, and h are constant matrices. Let r(k) = rss for k > 0, and consider the
linear control law

ok + jk) = (BT RoB + BTCTQCB) ™ BT Py A+
(BTOTQOB)*BTOTQOA) (m(/f + k) — x) . (1.24)
Finally let W be the set of all states for which [.23] holds under control law and

assume
DCW. (1.25)

Then the predictive control law, minimizing (L.2Z1), subject to[l.23land terminal constraint
z(k + N|k) € D, (1.26)

results in a stable closed loop.

1.3.1 MPC in flight control

First advances in the direction of MPC for use in flight control system applications
have among others been reported in [Heise and Maciejowski (1996, [Singh et al.
(1995), Maciejowski and Jones (2003).

This thesis investigates the applicability of MPC for reconfigurable flight control
because we deem it particularly suitable to the task in view of the advantages (and
disadvantages) mentioned in the leading paragraphs of [[.3] These are repeated
here for reasons of convenience.

Advantages of MPC:
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¢ one can modify the model that is used in the computation phase of MPC
in between the time steps (i.e. the state-space system matrices) because it is
optimization based.

¢ one can change the plant constraints on the input, output and states in be-
tween the time steps

* MPC has some inherent robustness against modeling errors and disturbances
because it recomputes the optimal input sequence at each time step.

Drawbacks of MPC:

a stability proof is more difficult to provide

¢ modeling and control in the discrete-time domain is not always very well
accepted

¢ MPC can be computationally intensive for complex systems, with the risk of
calculation not completing before the end of the sampling interval /discrete
time step.

¢ switching between models is not necessarily a smooth phenomenon.

It is also important to notice that MPC can be seen as a control allocation method
that takes dynamics into account. Formulated in reverse, control allocation is
MPC with a prediction horizon equal to N = 1. Both MPC and Control Allo-
cation offer maximum flexibility in the distribution of desired control effort over
the available actuators but MPC will generally give a smoother response. Control
allocation methods are quite well-known in flight control theory literature.

1.4 Towards MPC based FTFC

This section forms a prelude to the main body of this thesis. The research objec-
tives include the synthesis of MPC type controllers that allow for different levels
of performance, or otherwise formulated, controllers that allow for gradual degra-
dation of performance or more strict operational constraints for the system under
control. Research constraints and assumptions are also presented here.

1.4.1 Synthesis of the research objectives

Formulating the research objectives requires a clear framework of what it is that
should be achieved. This thesis focuses on the application of modern control meth-
ods towards reconfigurable flight control. The latter does not mean that methods
described in this thesis are not applicable to other systems, but the focus is on air-
craft due to the relevance demonstrated in the introductory section of this chap-
ter.

Aircraft are designed with safety aspects in mind. Extensive redundancy is typi-
cally built into the flight control system. Most airliners have two, three, or even
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four engines and can sustain normal flight with one or several engines inopera-
tive. The same redundancy is available in other aircraft systems. Typical airliners
use multiple actuators per control surface, or they have multiple control surfaces
altogether. Even flight-control computers and sensors typically have double our
triple backups. This form of redundancy is well suited to tackle problems that
arise when single failures arise. Where lies the need for more complicated FTFC
then? It is useful when a surface becomes inoperative altogether, when multiple
systems fail such that some or all primary flight controls are lost.

It is the objective of this thesis to investigate fault tolerant flight control in the
event of actuator or plant faults. Table L.Tlsuggests that model predictive control
(MPC) is a very suitable for use as fault tolerant flight control method due to its
ability to incorporate various constraints. In summary, it is the objective of this
thesis to investigate the use of MPC as FTFC method.

An MPC problem is sought, changing the objective function when necessary, such
that the controller offers three distinct levels of performance:

¢ level 1: nominal operation, existing autopilot works properly.

¢ level 2: operation in which the desired closed-loop performance can be real-
ized within the operational constraints (including input constraints).

¢ level 3: operation in which not all operational constraints can be met, but
the plant is still stabilizable.

nominal inputs lead to nominal matching

nominal behavior attainable

plant stabilizable

Figure 1.6: Illustration of different performance levels that can be attained with
controller matching.

For obvious reasons, level 1 performance will only be attainable in those cases
where the plant has no failures. Level 2 performance is achievable in case of actua-
tor failures and only when redundant actuators are available such that the original
closed-loop behavior can be matched. The final level, level 3 performance can be
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regarded as a back-up mode. Level 3 abandons all desire to match the original
behavior, but focuses on stabilization of the plant. Level 1 is subset of level 2,
and level 2 is a subset of level 3 behavior. Figure [L.6lillustrates this. Because of
reasons that focus on stability of the closed loop it is desirable that these three
performance levels are included into one multi-objective cost-function such that
switching between different cost-functions can be avoided.

A potential feasibility recovery technique for level 3 performance is based on pri-
oritization of the constraints. The constraints are ordered from lowest to high-
est priority. In the (nominal) optimization problem becomes infeasible we start
by dropping the lowest constraints and see if the resulting reduced optimization
problem becomes feasible. As long as the problem is not feasible we continue
by dropping more and more constraints until the optimization is feasible again.
This means we solve a sequence of quadratic programming problems in the case
of infeasibility. The algorithm minimizes the violations of the constraints which
cannot be fulfilled. Note that it may take several trials of dropping constraints
and trying to find an optimal solution, which is not desirable in any real time
application.

Figure[.7lshows how the MPC framework is applied to achieve conformance with
the performance levels introduced in the previous section (Figure[1.6)

Originalcontroller 4 Replacement controller )
LTI controller LTI MPC Level1
Constrained MPC Level2a

Constrained MPC

Level2b
With additional inputs ve

Constrained MPC
With constraints prioritization

\ %

Figure 1.7: Illustration of different performance levels that can be attained with
controller matching.

Level3
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Research constraints and assumptions

In the remainder of this thesis, and in investigating the use of MPC as FTFC
method, it is assumed that we are dealing with fixed wing aircraft. The assump-
tion is made that it is possible to control all actuator surfaces independently in
the nominal and fault-free case (e.g. left and right wing aileron are independent).
Finally, we assume that the aircraft has some redundancy in actuators such that
at least one alternate means of control around one of the rotational axes exists.
The engines and (possibly asymmetrical use of) secondary control surfaces are
assumed to be good candidate alternate means. Furthermore, trimmed flight is as-
sumed to still be possible. Control methods are developed that allow us to make
efficient use of the remaining control surfaces.

In this thesis it is assumed that failure detection and identification information
becomes available following the introduction of a fault. For instance, use can be
made of an online identification algorithm such as described by [Lombaerts (2010).
This method continuously identifies the aerodynamic aircraft parameters from on-
line measurement data. In that sense, it is not explicitly a failure detection and
isolation method, but it rather is an online identification method. Furthermore, it
does not identify changes in the physical aircraft parameters like mass and inertia.
It is, however, very well possible to extract actuator failure information from the
fact that some actuator efficiency is identified to be zero (no effectiveness lost, e.g.
the actuator has locked into place).

This thesis poses an exploration of possibilities. There exist many obstacles before
practical application of such methods will become feasible in real life situations.
Such limitations include the current deterministic methods for clearance of flight
control laws that appear to not handle changing controller parameters very well,
and acceptance by flight crews due to the inherent loss of situational awareness
associated with fault tolerant flight control. These aspects are not investigated in
this thesis.

1.5 Organization of the thesis

This thesis is organized into the following chapters:

¢ Chapter[I}
 Chapter 2t MPC based controller matching]
¢ Chapter[3t I Predictive Control and F k Linearizati

Chapter 4 [Polytope projection|

Chapter 5 [Boeing 747 simulation study]

Chapter el [Conclusions and Recommendations

Chapter [l introduces the justification and high level goals of MPC based FTFC
and Chapter 2l computes an MPC formulation that (in the nominal case) approxi-
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mates an existing linear time-invariant controller as Maciejowski and Jones (2003)
show that MPC is suitable as fault tolerant control method, but that initial tuning
of the MPC controller is not a straightforward problem. The presented method
extends existing literature with a method that allows for replication of an orig-
inal controller that includes direct output feedback in the form of an MPC con-
troller.

Chapter 3] takes into account the fact that an aircraft has nonlinear dynamics and
investigates the combination of nonlinear inversion of the aircraft dynamics and
model predictive control. The method requires a computationally efficient projec-
tion method for the input constraints of the aircraft as these are affected by the
nonlinear inversion. Chapter @ introduces the aforementioned computationally
effective projection method.

Chapter [ applies the methods of Chapters 2] Bl and ] to a detailed simulation
model of a Boeing 747-100 aircraft that allows for the inclusion of a variety of
system and actuator faults.

The thesis concludes with conclusions and recommendations in Chapter|6l
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MPC based controller matching

This chapter investigates the qualities of a method for finding both a state-
observer and the cost function associated with a model predictive con-
troller based on an already existing linear time invariant output feedback
controller. The goal of this exercise is to retain the properties of the exist-
ing controller, while adding the constraint handling capabilities of MPC.
Consistent satisfaction of constraints is deemed an enabling quality for
the application of MPC as a fault-tolerant controller for the aircraft bench-
mark under consideration.

2.1 Introduction

MPC is one of the few control methods that can actively take constraints into ac-
count. Such constraints include input, state, and output constraints. It is hypothe-
sized here that the latter makes MPC especially suitable for FTC purposes, whilst
actuator faults can be accommodated for through adaptation of the constraints
(Maciejowski 2002b). Additionally, the internal model can be changed to incor-
porate knowledge of faults that affect the dynamics of the system under control.
Furthermore, MPC has a certain degree of fault-tolerance to actuator faults, even
if the fault is not detected (Maciejowski [1998).

Although MPC is a serious candidate for FTC purposes in theory, it has been ar-
gued by Maciejowski and Jones (2003) that proper tuning of MPC is required in
order to construct an MPC problem that has acceptable fault-tolerant properties.
In general, however, this chapter will look to replace an existing controller with
MPC such that constraint handling properties can be incorporated. The existing
controller generally has been tuned to exhibit desired transient response, hence
construction of MPC through matching of an existing controller offers a good start-
ing point.

The objective of this chapter is to match an existing linear time-invariant (LTI),
possibly dynamic, controller with MPC such as to incorporate the desired con-

29
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straint handling capabilities. These constraint handling capabilities can be of vital
importance in case of a failure. More precisely: a controller is sought that will
retain transient behavior of the nominal closed loop while input and state con-
straints permit this. If this is no longer possible, the solution should at least be
stabilizing. In doing so the aforementioned burdensome tuning of an MPC cost
function is avoided. Furthermore, the influence of different failures on the tunable
parameters in the MPC problem will be investigated.

2.2 Problem definition and chapter structure

Starting point of this chapter is the desire to match an existing and accurately
tuned controller using MPC. Two different theories available in the literature are
discussed that allow us to derive the corresponding cost-function for the MPC
problem. The first method obtains the tuning parameters in the cost function
through direct computation. The second method takes a general dynamic con-
troller which is subsequently manipulated such that an estimator-regulator form
of the original controller is obtained. In Section 2.4la new method for MPC con-
troller matching for plants with direct output feedback is put forward.

2.3 Controller matching using MPC

This section is limited to the investigation of linear time invariant (LTI) plants and
controllers. Nominal systems without actuator failures are studied, incorporation
of actuator failures is discussed at the end of the chapter.

The state space form is applied because of the multivariable nature of plant and
controller. Also the plant and controller are represented in discrete-time form,

Figure 2.1: Plant and controller; left: linear plant and controller, right: linear plant
and model predictive controller
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while assuming that this representation has been obtained through discretization
of a continuous time plant when necessary. As a starting point it is assumed that
the discrete-time representation of the plant is strictly proper and that it has state-

space dynamics
[x(]yﬂ(;fr)l)] B {g jg] [Agcg(ﬂi)e)} : @.1)

The original controller can either be static or it may have dynamics. Let the origi-
nal controller have the realization

AK BK xK(k)

TK (k + 1)
= 2.2
{ Aufk) ] [CK DK} [ y(k) ] 22)
or, alternatively, when it has no dynamics, let it be
Au(k) = K z(k) (2.3)

for a state-feedback controller. Figure [2.2] provides a schematic representation of
the original plant and controller. Note that in this chapter it is assumed that the
reference signal equals zero (r(k) = 0, Vk).

As a point of departure for the discussion on controller matching the following
papers by [Cairano and Bemporad (2010), Maciejowski (2007) and Hartley and
Maciejowski (2009) are considered in conjunction with the following cost func-
tion

E+N—1 s
Hen= 3 [0 arew ]| & 5| 290 ] e
j=k

Note that for a reference signal (k) = 0 the cost signal (L.5), the cost function (L.4)
of Chapter[I]can be rewritten as

k+N-—-1
Juk) = Y T GIREGIR)
j=k
k+N-—-1
= > (CoxliIk) + D2 Au(ilR)) (- a(ilk) + D. Au(jlk))
j=k
k+N-1

= 21 (j|k)CY Coa(jlk) + 227 (jIk)CZ D2 Au(jlk)Cs x(jlk)
+ Au'(k + 7 — 11k)DI D Au(j|k)
k+N-—1

= Y @Gk Qailk) + 22 (jlk) S Au(jlk)C: 2(jlk)

j=k
+ AuT (j)k) R Au(jlk)

<.
B

where Q = CTC,,S=CTD,,and R= DID.,.
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2.3.1 Direct matching method

Cairano and Bemporad (2010) start their discussion of controller matching, the
replication of an existing controller, with the investigation of static controllers.
They formulate the MPC matching problem, where the weighting matrices in the
cost function must be tuned so that when the constraints are not active, the synthe-
sized MPC feedback law is equivalent to a given linear state-feedback controller. A
general solution, based on a bilinear matrix inequality (BMI), is introduced as well
as a parameterization of the problem that leads to a linear matrix inequality (LMI)
formulation. Two such parameterizations are introduced by Cairano and Bempo-
rad (2010). Finally, the design is extended to dynamic compensators.

Cairano and Bemporad (2010) pose the following problem:
Problem 2.1 (MPC matching): For a pre-assigned "favorite controller”
ufy(k) = Kx(k), K € R™*" (2.5)

define the MPC cost function such that the unconstrained MPC controller as discussed
in Section[L.3lis equal to the favorite controller, that is uy, = —E,H ‘1Cx(k).

Problem [2.T]is immediately solved if
— E,H 'Cux(k) = Kx(k) (2.6)

The following solution to problem is posed, first of all E, is removed from 2.9
setting:

Ko

- K1

H 'Cx(k)=—-| . |xz(k) (2.7)
RN—-1

:r"fﬂ_a_n_t """"""""""""""""""""""""
| B o o C
| A |
| K |
i controller |

___________________________________________________

Figure 2.2: Original plant with state-feedback
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where kg = K, and where x; € R™*™ i € Zj; y_q) are free matrices. Hence
(2.7) accounts for the whole optimal input sequence, but a match to the original
controller is only enforced for the first control action, which corresponds to the
receding horizon mechanism of MPC.

Now define the following matrices for use in the following lemma:

A B 0 --- 0

A? AB B 0
T= . §= :

AN AN2B -+ B

Q= diag(Qv e aQ)v R = diag(R, cee ,R)

Lemma 2.1 (Cairano and Bemporad 2010): Let (K, Q, R, P) be any feasible solution of
the following problem

mrgrgl}ﬁp J(K,Q, R, P) (2.8)
st.  Q>0,P>0,R>ol (2.9)
(R+8'Q8S)K +S'QT =0 (2.10)

Ko = K 2.11)

where K = [k ... kh_,|, and J : RNTXm  RrXn  Rmxm x RnXn s R s an arbitrary
objective function. Then, the MPC strategy based on the optimal control problem where
weset Q =(Q, P =P, R= R, solves Problem[2.1]

Proof: see|Cairano and Bemporad (2010).

The latter gives rise to a non-convex mathematical problem due to the bilinear con-
straint (2.10). J remains free to be chosen in this problem, but for obvious reasons,
the resulting optimal triplet (Q, R, P) affects the behavior when constraints are ac-
tive. A possible choice for J is to specify a triplet (Q, R, P) of desired weights and
set

J(K,Q, R, P) =|Q — QI +wr||R — R|| + wp||P — P (2.12)

where wgr, wp € Ro+ and |.|| is any matrix norm. The solution that is introduced
to construct an LMI problem based on (2.8) is to consider the following convex
problem in LMI constraints

J* = xgign(n +S'QS)K +S'QT| (2.13)
st. P>0,R;,>0l,i=0...N—1 (2.14)
Q:i>0i=1...N—1 (2.15)

The second method introduced by|Cairano and Bemporad (2010) pertains to match-
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ing based on the inverse LOR problem. The latter involves solving

QménPJ(Q R, P) (2.16)
st.P>0,R>0l, Q>0 (2.17)
P=APA+APBK+Q (2.18)
B'PA=—-(B'PB+R)K (2.19)

where J is convex (e.g. as in (Z.12)). Let Q, R, Pbe any feasible solution (not nec-
essarily the optimal one) of (2.16). Then the MPC strategy based on the optimal
control problem (2.5) where we set @ = Q,P = P, R = R, solves Problem .11
Cairano and Bemporad (2010) include dynamic controllers by including the dy-
namics of the controller in the dynamics of the plant and consequently applying
the previously introduced theory for static controllers.

2.3.2 Matching observer based realization of controllers

Construction of an MPC problem based on an existing output feedback controller
requires two steps in this section. The first step consists of obtaining an observer-
based realization of the original controller. The work of Bender and Fowell (1985)
and|Alazard and Apkarian (1999) provides a method for obtaining a combination
of an observer and a state-feedback gain from a given linear time-invariant output
feedback controller. This methodology has subsequently been improved upon by
Alazard (2002) and IDelmond et al! (2006) where an optimal control problem is con-
structed for which the optimal solution is the existing output feedback controller.
A comprehensive overview of the theory of observer based realizations can be
found in the recent book by|Alazard (2013).

It was proposed by Maciejowski (2007) to use such an observer-based realization
as the basis for a second step during which an MPC cost-function is calculated.
This methodology has subsequently been investigated further by Hartley and Ma-
ciejowski (2009), who explore the trade-offs and design decisions that are involved
in this procedure. This section draws heavily upon what has been introduced in
the previous two references, while acknowledging that the provided information
is tailored with the application example in mind.

Obtaining an observer-based realization of the controller

In order to simplify what is to follow, it is assumed throughout the chapter that
both the plant and original controller are represented in discrete time. Whilst both
are typically provided in a continuous time representation, it is assumed that both
have been discretized before obtaining the observer based realization. As a start-
ing point it is assumed that the discrete-time representation of the plant is strictly
proper and that it has state-space dynamics (2.1). Additionally, let the original sta-
bilizing controller have the realization (2.2), and let the order of the plant be n, and
let the order of the controller be nx, respectively. Here, only the situation where
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nx < nis considered for that is the situation which will be encountered in the ex-
ample in this chapter and in Chapter 5] despite the unmodified controller having
ngx > n. Furthermore, both the plant and controller realization are assumed to be
minimal, thus not having any uncontrollable or unobservable modes.

It must be stressed that both the plant and the controller are assumed to be strictly
proper. While most physical systems are strictly proper, this does not hold true for
controllers which typically include some form of direct feedthrough term Au(k) =
Dgy(k). This requirement stems from the fact that it is only possible to construct a
controller with direct feedthrough using a combination of a discrete time observer
and MPC in a very limited number of cases. It is therefore assumed that the origi-
nal controller is made proper through direct inclusion of the feedthrough term in
the plant model, making the plant model

e )

as shown in Figure 2.3] or, alternatively, that the feedthrough term is passed to
the plant via a low-pass filter or a unit delay, hence creating extra states in the
controller.

(2.20)

Given the controller and plant pair, we search for an observer, in this case having
a predictor structure, of the form

ik +1) = (A— HC)i(k) + BAu(k) + Hy(k), (2.21)

where H is the observer gain, such that the controller state and the estimated state
are related via a transformation T, as in xx = T#(k). The observer and (positive)
state-feedback representation of the original controller in this case yield

[Tgcu?kﬂ B {A _HIC;+BK ﬂ Bgm (2.22)
T
— B ¢ 1] C —

G

Figure 2.3: Plant and controller; left: linear plant and controller with direct
feedthrough, right: linear plant and proper model predictive controller
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where K is the state feedback gain. In order to ensure that the original closed
loop remains unchanged, both (2.2) and (2.22) must have identical input-output
behavior. That, combined with the fact that zx = T'Z(k) gives rise to the controller
and observer gains

K = CgT (2.23)
H = T'Bg (2.24)

where 7' is a right inverse of 7' (see Bender and Fowell (1985) and Alazard and
Apkarian (1999) for a complete derivation). At this point it must be remarked
that alternative observer formulations exist, e.g. the filter estimator, which can be
applied in a similar manner (seeHartley and Maciejowski2009).

Finding T requires solving of the non-symmetric and rectangular Riccati equa-
tion

r q[ATBDKC Bcﬂ H:O

BrC Ax | |T

=Aq

(2.25)

which can be done through application of standard invariant subspace techniques
such as the Schur method for solving algebraic Riccati equations, which was in-
troduced by [Laub (1979). The Schur decomposition (Golub and van Loan 1996)
of a matrix A reads as follows: if A € C"*T"x*n¥"K then there exists a unitary
Q € Crtnrxntnk gych that

QTA,Q=S=D+N (2.26)

where D = diag(A1,..., Aqnyx) and N € C**" is strictly upper triangular. The
Hermitian adjoint Q7 of Q is defined by Qf = Q7, where Q is the component-
wise conjugate of (). Furthermore, () can be chosen such that the eigenvalues \;
appear in any order along the diagonal of D. Using this result a solution to the
Riccati equation can be computed through suitably partitioning of @) as

o=gn 22| auervn quemrmor (227)

which leads to the solution
T = Q107 (2.28)

With respect to this result it must be remarked that, in general, there exist finitely
many solutions to the above problem. These solutions correspond to a different
choice of eigenvalues from the group of closed loop eigenvalues. The partition-
ing of the subspaces of A.; determines which poles appear in the state feedback
dynamics and which states appear in the observer error dynamics. Remark: split-
ting conjugate pairs of eigenvalues leads to a solution for T' that contains complex
numbers, and hence to a complex solution for K and H respectively, which is to
be avoided.

Under the assumption that indeed nx < n, the observer based controller will be
a non-minimal realization of the original controller. Hence, the closed loop of the
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plant and observer based controller will contain n — ng poles that did not appear
in the original closed-loop system. The observer modes corresponding to these
poles lie in the nullspace of T' and are unobservable through K. Furthermore,
they are freely assignable through the choice of alternative 7' (see Delmond et al.
(2006) or Hartley and Maciejowski (2009) as on how to do so).

Relationship between Cairano and Maciejowski methods

Cairano and Bemporad (2010) try to match a model predictive controller to an
existing linear controller and pose their MPC problem as

N-1 . T .
Via(k) = min > Bgzig] [Cg 2,] [%I:ﬂ + 2T (N|k)Pz(N|k) (2.29)
s.t. x(i + 1|k) = Az(ilk) + Bu(i|k) (2.30)
Tmin < (1K) < Tmax (2.31)
Umin < u(i|k) < Umax (2.32)
z(0|k) = z(k) (2.33)

They pose an LMI problem and search for a triplet @, R, P such that u(k) = Kz(k)
for the first time step.

Hartley and Maciejowski (2009) choose another route and pose the MPC problem
as follows

Vialk) = min]_vi {x(?igr{@ 5} {x(“k)]+xT(N|k)Pa:(N|k)(2.34)

Uh) < |uli ST R| |u(ilk)

s.t. x(i + 1|k) = Az(i|k) + Bu(ilk) (2.35)
Tmin < 2(1]k) < Tmax (2.36)
Umin < u(i|k) < Umax (2.37)
2(0[k) = 2(k) (2.38)

and set

[;QT S} _ [KTRK —-KTR (239)

R| ~ | =RK R

where R can be chosen freely. Through this choice of weighting matrices the
optimization problem has an optimum cost of zero and hence P is a zero ma-
trix.

As can be seen, the only difference between both approaches is that Hartley and
Maciejowski (2009) allow for off-diagonal entries (.S) in the cost function, whilst
Cairano and Bemporad (2010) do not. The choice that Hartley and Maciejowski
(2009) make immediately leads to u* = K2 when no constraints are active, whereas
Cairano and Bemporad (2010) have to solve a rather involved set of LMIs in order
to compute @), R, P such that the same holds.
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Note that the performance index (2.29) in (Cairano and Bemporad (2010) is equiva-
lent to performance index (2.34) in Hartley and Maciejowski (2009) for S = 0. If S
is not zero for the performance index (2.34), it can be transformed in performance
index (229) by introducing an input-feedback u = v — R~ S x and substituting
this in (2.34). We obtain:
T Qu+ut Sz + 2T STu+ul Ru
=2 Qu+ (w1 —2TSTR™Y)Sz
+2T78T(w—-R1Sz)+ (Wl —2"STR™Y)YR(v— R ' Sx)
=T (Q-S"TR'S-STR'S+STR'S)x+v' Sz —vT RR™! Sz
+ 2787y — 2T STRR Y v +vT Ru
=zT (Q — STR_ls') z+vl Ru
=T Qz+ v Rv
which result in a new performance index (2.29) where v is the new control variable
andQ =Q — STR™'S.

MPC formulation

Now that an estimator form of the original controller has been obtained it is pos-
sible to replace the state-feedback with a predictive controller such that its opti-
mal solution is equal to the state feedback law u(k) = K&(k). A candidate cost-
function that corresponds to this requirement is

Yito (u(k) = Ki(k))" R(u(k) — Ki(k))

T _KTR] 2
S > L O RRT()  E I;R] [ugg]

—I(k)

(2.40)

for any input weighting matrix R = R” > 0 (Kreindler and Jameson 1972).

Typically MPC implementations perform an optimization over a finite but reced-
ing horizon. A infinite horizon implementation can be obtained by using the can-
didate cost-function over a finite horizon of length N and using the discrete-time
algebraic Riccati equation P as terminal cost. The finite horizon cost function is
then

N-—1
(Z l(k)) + 2T (N)Pz(N) (2.41)
k=0

although for N is large enough, the terminal cost is negligible. Additionally, since
the cost-function represents a quadratic programming problem, linear and ellip-
soidal constraints may be added to the controller without having to sacrifice the
fact that minimization over these cost-functions leads to a globally optimal solu-
tion. These constraints are enforced over the finite prediction horizon N.
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The cost-functions (2.40[2.41) presented above, have a very intuitive physical in-
terpretation, i.e. in the absence of constraints the input will match the input that
would have resulted from the state-feedback gain K. However, in the presence of
constraints it is not at all guaranteed that the properties of the original controller
are maintained. Furthermore, it might be more intuitive to opt for the use of other
objectives in the cost-function. Especially in failure cases it may be beneficial to
minimize the difference between the predicted state trajectory and the state trajec-
tory that would have resulted from the state-feedback gain. The latter opens up
the possibility to achieve the same control goals whilst using different and redun-
dant actuators in case of an actuator failure.

24 MPC for controllers with direct feedthrough ma-
trix

This section presents a solution to the limitation that the observer based realiza-
tion of an existing LTI controller does not include direct output feedback. Direct
output feedback always remains a separate element in parallel to the observer
and state-feedback. It is this fact that makes inclusion of the direct output feed-
back into the final MPC problem more difficult, as the MPC problem takes the
state estimate #(k) as its input. Common solutions are to include this term into
the plant dynamics prior to MPC design, or to include delay terms between the
plant input and the direct feedback term. The first solution makes satisfaction of
the input constraints complex and the other changes the dynamics of the closed
loop.

In order to arrive at this solution the Youla parameterization of an LTI controller is
used as starting point. From Figure[2.4lone can see that this parameterization can
include direct output feedback in the form of the term D., whereas the remainder
constitutes the combination of an observer and state-feedback gain.

From Theorem [I.T]in Section [[.3] we learn that the infinite horizon control law is
given by

Au(k) = —K z.(k|k) + D é(k|k)

where

e(klk) = y(k) — Cac(k[k)
Substitution in the controller gives the following form:
ze(k+1) = (A-BK-HC-BD.C)xz.(klk)+ (H+ BD.)y(k)
U(k) = (_K - Dec) xc(k|k) + D. y(k)
Let an arbitrary LTI controller be given by
zp(k+1) = A (klk)+ B y(k)
v(k) = Cxa(klk)+ Diy(k)
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where 2/, is the state of the LTI controller. Now there must exist a state transforma-
tion such that z/,(k) = T z.(k) and

TAyx = (A— BK — HC — BD,C)T
TBx =H+ BD,

Cx = (—K — D.O\T

Dk =D,

From the second and third equation we derive with H = TBxg — BD, and KT =
—Ckg — D.CT and we find

TAx—(A— BK — HC — BD.C)T =
=TAx — AT + B(—Ck — D.CT) + (TBg — BD,)CT + BD,CT
=TAyg — AT — BCx — BD.CT + TBxCT — BD.CT + BD.CT
=TAg — (A+ BD.C)T — BCx + TBxCT

- Ax  —BgC I
=[T H{—BCK A+BD@CH—T]

=[T I]Acl{_IT]

The transformation matrix 7" can be found using the method presented in Section
2.3.2] Equation2.25]onward. With the transformation matrix 7" we can derive the

plant T
B e ¢
: ‘ A :
] R )
: \ A :
: B : 271 —C b
L ~— |
: D, +— :
| e |
' controller |

Figure 2.4: Youla parameterization, observer and state feedback
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state feedback K and output feedback H as follows:

H =TBy — BDg
K=-CxgT'=DgC

or
K =-CgTl - DxC

where T is the Moore-Penrose pseudo inverse of T in case the controller order is
smaller than that of the palnt nx < n.

controller matching

Now that an estimator form of the original controller has been obtained it is possi-
ble to replace the state-feedback with a predictive controller such that its optimal
solution is equal to the state feedback law

Au(k) = =K x.(k|k) + Dc é(k|k) .

A possible candidate cost-function that corresponds to this requirement is

X (Au(k) + K x(klk) — D, e(k))TR(Au(k) + K (k) — D, e(k))

| KTRK —KT"RD. KTR] [ z(k)

= Yo [#T(k) €(k) AuT(k)] |-DTRK DIRD. DT e(k)
RK RD, R Au(k)

= Xilo 2 (k)z(k)

[ ¢fc., CrE. CID. x(k)
= Yoo [2T(k) €T(k) Au(k)] | EIC. EI'E. EID, e(k)

| DIC. DIE. DID, Au(k)
This gives us:

[C. B. D.]=RY[F -D. I] (2.42)

for any input weighting matrix R = RT > 0.

Note that the matrix R in equation[2.42can be chosen freely. It is important to scale
the input signals in an adequate way (see [Bryson (1975, p.149). Let the required
range of the i-th input be given by e given by r;, so |u;| < r;, fori=1,...,p. Then
a scaling matrix can be given by

R= diag(rl_2,r2_2, . ,r;g)
The variables ;% > 0 are a measure of how much the costs should increase if the
i-th input u;(k) increases by 1.
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Design considerations

Several choices have to be made in the process that has been outlined in the pre-
vious sections. Some of these have been addressed already, such as the choice
to discretize both the plant and controller before starting the reverse-engineering
process, but others have yet to be mentioned. This section is all but an exhaustive
discussion of these design considerations and the reader is referred to Hartley and
Maciejowski (2009) and |Alazard (2013) for an in-depth discussion of such issues.
The properties mentioned here, represent those that are of importance in the dis-
cussion of the simulation example in this Chapter.

It was already mentioned in Section that it is of importance that the con-
troller is strictly proper. The two options that were mentioned for situations where
this is not true consisted of adding the feedthrough term Dy to the plant directly,
through loop-shifting, or alternatively, of adding a filter or unit delay on the output
of the controller. The latter results in additional states in the controller, which may
have a negative influence on the stability margins of the closed-loop. On the other
hand, this does allow to satisfy hard input constraints, whereas loop-shifting does
not, due to the fact that the observer error comes into play when making predic-
tions of the output over the horizon.

Additionally, when nx < n, the process of designing a state-feedback and ob-
server realization of the original controller leads to two distinct problems involv-
ing poles. First of all, one has to distribute the closed loop eigenvalues over the
state feedback dynamics (A + BK) and the observer error dynamics (A — HC').
Although all ordering of eigenvalues among the two sets gives the same closed-
loop behavior (in discrete-time), it appears to be a wise choice to allocate the fast
closed-loop poles to the observer poles. The reason for doing so is that the model-
predictive controller relies on the estimated state & and therefore it is of great im-
portance that the quality of the estimated states is high. The other design choice
related to pole locations stems from the fact that when nx < n, n — ng free poles
appear in the observer realization. These can be placed freely whilst the corre-
sponding observer error dynamics lie in the null-space of T, but they come into
play as soon as one of the constraints becomes active.

2.5 Simulation Example

This example is based on data presented by van Keulen (1991) on the real-time sim-
ulation and analysis of the automatic flight control system of the Boeing 747-200.
The aforementioned reference is based on data presented by Hanke and Nordwall
(1970); Hanke (1970) which links this example to the full nonlinear aircraft model
and simulations in Chapter[5l In the thesisvan Keulen (1991) presents a (continu-
ous time) linearization of the symmetric equations of motion of the 747 aircraft in
combination with descriptions of the 747 autopilot system. The state-space matri-
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ces below are for cruise conditions (V = 423 ft/sec and h = 5000 ft).

0 0286 —0.572 0 0
—0.00947 —0.529 0 0.967 | —0.0383
A|B] 0 0 0 1.0 0
{c D}_ 0.00239  —1.22 0  —0631| —1.65
0 0 1.0 0 0
0 0 0 1.0 0

the states of this system are, u (ft), o (deg), 6 (deg), ¢ (deg/sec) and the input is
the elevator 6.. A full overview of the inner loop of the autopilot is presented in
Figure[5.6] which can be simplified to the following transfer functions

294s
(s +20)(s + 10)(s + 0.5)

So = —3.32(0pes — 0) —

The discrete time state-space form (sample time T = 0.1s) of the plant is

1.0 0.0279  —0.0572  —0.00147 | 2.73 1075 ]
—9.09-107* 0943  2.64-107°  0.0911 | —0.0114
A|B] | 136-107° —0.00587 1.0 0.0967 | —0.00809
[C D]_ 2.87-107* 0115 —7.76-10°  0.933 ~0.16
0 0 1.0 0 0
I 0 0 0 1.0 0

and the discrete time state-space representation of the controller is

0.135 —0.560 0.705 0

0
Ag | Bg | 0 0.368  0.795 0 0
Ck | Dk | 0 0 0.951 0 1.0

0.406 —0.457 0.575]3.320 0

Application of the theory in this Chapter and Section2.4]in particular leads to the
following matrices for the infinite MPC problem described in Section [I.3]

K=[1340 130.0 -154.0 —-9.91 ]

—9.06-1075  0.00737
o 0.0379 0.101
0.0268 0.09
0.531 0.114

D.=[332 0]
Simulations were made comparing the closed system for three different controllers:
1. the original controller;
2. an infinite horizon MPC controller;

3. an finite horizon MPC controller (horizon N=5).
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The Figures 2.5] through [2.7] show the results of the simulation when the model
is initiated in an off-equilibrium condition (pitch angle 6y = 0.15 [rad]. What is
shown are the elevator input (Fig[2.5), the state-response (for the pitch angle 6 only,
Fig. [2.6) and the difference (error) between the pitch rate response for the three
controllers2.7). What can be seen from the figures is that the matching procedure
leads to a controller with behavior that is identical to the original controller. All
controllers show stabilizing behavior as the pitch angle 6 returns to zero.

2.6 Conclusions

This chapter has introduced methods for obtaining a state observer in combina-
tion with a model-predictive controller. Based on a linear time-invariant repre-
sentation of both the existing autopilot and the aircraft it is possible to arrive at
such a controller structure. When the original controller contains both a direct
feedthrough term and integral action, this goal cannot be achieved without the
necessary caution. Section2.4presents a novel way to do so. In the absence of in-
put constraints this controller shows tracking performance that is on par with the
original output feedback controller without requiring extensive tuning of the cost-
function weighting matrices and quantities such as the prediction horizon.

In the presence of constraints, however, the performance of the reverse-engineered
controller cannot always be guaranteed, especially when one or more constraints
become active. Whilst the desire to introduce constrained control to the aircraft
benchmark is a driving force in this work, it is deemed very instructive to inves-
tigate different cost-function formulations for the MPC problem. Specifically cost-
functions that do not weigh the difference between the predicted state-feedback
quantities and the input are assumed to be of great value. Methods that weigh
the difference between the predicted plant state and the predicted closed loop dy-
namics are thought to be more than worth the investigation. The latter can offer
better ways to make use of the available redundancy in the sense of actuators. Ad-
ditionally, further future work on the applied aircraft model should also include
an exhaustive investigation of the different ways in which the closed-loop poles
may be distributed among the observer error-dynamics and the state-feedback
dynamics, as well as where to place the free poles in the controller.
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input

original controller
— - — infinite MPC
— — - finite MPC

0 1 2 3 4 5 6 7 8 9 10
t[s]

Figure 2.5: Comparison of the elevator input é. for a) the combination of the ob-
server based realization of the original controller plus infinite horizon MPC, and b)
the same for finite horizon MPC, and c) of the original controller for the example
in Section
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state

0.16

original controller
— - — infinite MPC
— — - finite MPC
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Figure 2.6: Comparison of the state behavior 6 (pitch angle) a) the combination of
the observer based realization of the original controller plus infinite horizon MPC,
and b) the same for finite horizon MPC, and c) of the original controller for the
example in Section
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state difference
0.3 T T T

original controller - infinite MPC
—  — infinite MPC - finite MPC
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Figure 2.7: Comparison of the error when comparing the state (pitch angle ) be-
havior for the example in Section Two errors are shown, a) the difference
between the original controller and the infinite horizon MPC controller based on
reverse-engineering, and b) the difference between the finite horizon and the infi-
nite horizon implementation of the aforementioned MPC controller.
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3 CHAPTER

Model Predictive Control and
Feedback Linearization

This chapter features the combination of model-based predictive control
and the inversion of the dynamics of the system under control into a con-
strained and global