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1 CHAPTER

Introduction

This chapter sets the stage for the remainder of the thesis through demon-
strating the relevance of the investigation of fault-tolerant flight control
and through providing the required background information. Such basic
information includes a brief survey on fault tolerant control research and
the basics of model predictive control.

1.1 Motivation of fault-tolerant reconfigurable flight

control

Why does one investigate fault-tolerant flight control (FTFC)? Well, for one, be-
cause we can, for two, because it is relevant. Fault tolerant control can contribute sig-
nificantly towards an overall increase in flight safety and aircraft availability.

Mankind has truly experienced a jump in its technological abilities over the past
century. It took only 44 years from the first motorized flight (Wright Flyer 1903,
Fig. 1.1a) for Yeager to fly the Bell X-1 past the sound barrier in 1947 (Fig. 1.1b).
After that, it took only 22 years until Neil Armstrong got to speak his famous
words upon setting foot on the moon for the very first time in history: "That’s one
small step for a man, one giant leap for mankind." It is safe to say that the technological
advances of the past century are remarkable and that this holds for the aerospace
domain in particular. Advances in aviation have had a significant impact on glob-
alization as a whole.

Technological advances do have their drawbacks. With advance comes an increase
in complexity. When one compares the Wright Flyer with a modern jet fighter,
then, besides the obvious differences in performance, one major aspect is the enor-
mous difference between the both in the number of components and systems. Cur-
rent jet fighters and modern airliners are hugely complex pieces of machinery. A
well-known example of this explosion in complexity is illustrated by Moore’s law,
first coined in 1965, which states that the number of transistors per area doubles

1



2 Chapter 1 Introduction

(a) 1903 Wright Flyer (Daniels 1903) (b) 1946 Bell X-1 (Hoover 2006)

Figure 1.1: From Wright Flyer to Bell X-1 in less than 50 years time

approximately every two years. Aviation certainly has benefitted from the rapid
growth in computing power that this has brought. Fly-by-wire systems, advanced
stability augmentation systems and collision avoidance systems have all become
reality because of these advances. All of these systems either provide the pilot
with more information, or automate the task at hand.

The drawback of this exponential growth in complexity lies in the corresponding
growth of the number of systems and subsystems that may fail for one reason or
another. Given the systems complexity of aircraft it is no longer easily possible
for the crew to establish what exactly has happened when these fail. It is there-
fore that we need to provide means for the diagnosis of failures and automated
recovery.

The aerospace industry is especially conscious of safety and related aspects. The
certification of a new aircraft type or subsystem is a lengthy process that is grow-
ing ever more complex. Fault-tolerant Flight Control (FTFC) can play a major role
in improving the safety, reliability and availability of aircraft. The continuous in-
crease in the number and complexity of onboard systems of aircraft has created
demand for a supervisory system that continually monitors the health of onboard
systems and reconfigures them when needed. The growth in computing power
enables the design of such systems.

In 2015 3% of the accidents in global aviation were contributed to loss of control of
the aircraft in-flight (LOC-I), leading to 33% of the fatal accident (See Fig. 1.2). It
is postulated here that fault-tolerant flight control could have been of life-saving
importance in these cases and its investigation is worth our while.

This chapter motivates the investigation of FTFC and provides the research objec-
tives of the thesis in combination with required background information. The ba-
sics of flight control are introduced here, followed by a short introduction to fault
detection and diagnosis and an introduction to fault tolerant control in general.
The chapter continues with the introduction of Model Predictive Control and its
potential use in flight control. The text ends with an overview of the organization
of the thesis before continuing to its main body.
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Figure 1.2: Fatalities, fatal accidents and Accidents as recorded by the Interna-
tional Civil Aviation Authority (ICAO 2016). The charts shows accidents, fatal
accidents and fatalities for three high risk occurrence categories in 2015. LOC-I
means loss of control in-flight, RS means runway safety, and CFIT means con-
trolled flight into terrain. There were no CFIT accidents in 2015.

1.2 Background

This thesis aims to investigate FTFC which lives at the intersection of fault-tolerant
control and flight control. The sections below provide background on both sub-
jects.

1.2.1 Introduction to flight control

The construction of a heavier-than-air machine that will fly is but one of the chal-
lenges that the pioneers faced in the early days of aviation. Equally important
is the ability to control the aircraft in order to have authority over its flightpath.
Flight control technology has evolved considerably over the past century.

Aircraft can be modeled as a point mass moving through the air. The wings pro-
vide the lift that is needed to sustain the weight of the aircraft in straight and level
flight, whereas the engines provide the thrust that is needed to cancel the drag
that the aircraft experiences. A pilot needs to rotate around the pitch axis in order
to change altitude (climb or descend). If the pilot wants to change direction he
will need to use a combination roll, yaw and pitch in order to make the aircraft
turn in the desired direction. Several methods can be used to control the attitude
of the aircraft.

flight control mechanisms
Otto Lilienthal (1848-1896) made some of the first documented gliding flights us-
ing an early version of what one might compare to a modern hang-glider. Much
like hang-gliders Lilienthal could control the glider by changing the center of grav-
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Figure 1.3: Example of flight control surfaces

ity through shifting his body. The glider was difficult to control and eventually
Lilienthal fell from 17 meters when the glider lost lift. Lilienthal died saying:
"Kleine Opfer müssen gebracht werden" (small sacrifices must be made). In subse-
quent years Wilbur and Orville Wright built their own gliders. They were certain
that weight-shift control was not the way forward and came up with a method of
wing-warping to control the rolling motion of the aircraft. For pitch control they
employed a movable canard wing.

Finally, fixed wing aircraft settled on independent moving surfaces to control
pitching, yawing and rolling motion independently. The primary control surfaces
used for these motions are the elevator, the rudder and the ailerons. These surfaces
are controlled from a stick, or yoke, and the pedals in the cockpit. Two methods
are common in connecting the pilot controls in the cockpit to the control surfaces.
These methods are either cable and pulley systems, or push-pull control rod systems.
Next to the primary flight control surfaces, most civilian and military aircraft have
secondary flight control surfaces. Such secondary flight control surfaces include
trailing-edge flaps, leading-edge slats and airbrakes. These flight control surfaces
are typically used to control the amount of lift that the aircraft generates, either
through changing the wing surface or wing camber (slats and flaps), or through
lift ’dumping’ (airbrakes). Although most secondary control surfaces are typically
used symmetrically, airbrakes or spoilers are also used to aid the ailerons in roll
control.

Growth in aircraft size has made it more difficult for pilots to control the aircraft
because of the high forces needed to move the control surfaces. This created the
necessity to use additional power sources and subsequently hydraulic boosters were
introduced (at the end of the second World War) to lighten the physical workload
for pilots. This system is comparable to power-steering in a car. In a subsequent
step of evolution in flight control fully power-operated controls were introduced
that are irreversible because the aerodynamic hinge moment has no effect on the
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deflection of the surface. The advantage of this system is that it increases the
stiffness in the control system which improves the flutter characteristics of the
aircraft. At this moment in time the role of mechanical linkage between the cockpit
controls and the surface actuators was reduced to one of signaling and no longer
for the transmitting of power.

Obviously mechanical linkages are simple and reliable, but electrical signaling
allows for implementation of more complex and sophisticated flight controls, pos-
sibly enhancing the handling qualities of the aircraft. Traditional benefits of fly-
by-wire technology for civil aircraft are (Pratt 2000, p.19):

• the improvement of natural aircraft dynamic behavior, that is: stability, han-
dling qualities, turbulence suppression and passenger comfort;

• the provision of flight envelope protection that allows full pilot commands,
if necessary, without danger of either leaving the safe flight envelope or over-
stressing the aircraft;

• the increase in safety by reduction of pilot workload in routine control tasks,
which allow him to concentrate on higher level flight guidance tasks;

• the reduction of airline crew training costs by offering commonality within
an aircraft family (cross-crew qualification);

• the more efficient use of crew resources, as one pilot can fly different aircraft
types with the same type rating;

• configuration changes can easily be implemented, offering development flex-
ibility and growth potential;

• reduced operational costs, through improved maintainability and a higher
dispatch reliability;

• aircraft mass can be reduced, as heavy mechanical parts can be eliminated.

It is fly-by-wire that opens the door to fault-tolerant flight control. There no longer is a
mechanical linkage between the cockpit controls and the control surfaces. Hence,
it is possible to use the freedom to use each control surface individually, which
can be advantageous in a faulty scenario. Some examples include the follow-
ing:

• propulsion control: given the fact that the engines of a multi-engine aircraft
are mounted away from the center of gravity it is possible to create a mo-
ment in the yaw, roll and pitch direction, hence making it possible to control
the attitude of the aircraft.

• roll control using asymmetric use of flaps or elevator halves: normally exten-
sive mechanisms exist to make sure that flaps are extended symmetrically,
but if ailerons become inoperative, if might be important to be able to use
flaps or spoilers asymmetrically such that a rolling motion can be achieved
using alternative means.

• weight shift control: trim in the roll direction through pumping fuel from
one wing tank to another.
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Flight critical systems such as the flight control system (FCS), require the highest
integrity: system failures which would result in the loss of the aircraft have to be
extremely improbable, i.e. its probability has to be less than 10−9 per flight hour
(EASA 2016, AMC 25.1309). This requires redundant and highly reliable com-
ponents. Furthermore, additional redundant components are installed because
airlines need good dispatch rates, i.e. they want to continue with revenue flights
safely, even after certain failures have occurred and while being far away from
the maintenance base (Pratt 2000). Multiple redundant lanes or channels of com-
puting and actuation are used to achieve this. Additionally extensive integrity
monitoring is used to detect faults at the system level. Hardware and software di-
versity are also important aspects that contribute towards achieving the required
safety levels.

Given the knowledge that failures of the present-day flight control system and its
individual components are extremely improbable, it may be assumed that it is al-
ready particularly unlikely that a fault in an individual actuator or flight control
computer will be outright catastrophic. Why investigate FTFC then? Serious prob-
lems may arise when faults are injected at higher hierarchical level. Examples
thereof are situations in which all hydraulic pressure is lost and authority over
all primary control surfaces is lost. All the actuator redundancy in the world will
not currently solve this problem when hydraulics are the only power source for
the flight control surfaces. Another major issue is that structural damage to the
aircraft may cause the closed loop of aircraft and autopilot to become unstable.
Structural damage may also take the aircraft out of trim, or make it open-loop
unstable.

Structural failures
Structural defects lead to a change in the behavior of the system. An example of such
a failure can be the loss of a vertical fin. Losing the fin causes several problems:
the stability in yaw direction is lost, there no longer is a rudder to control yaw, and
loss of the rudder has probably caused a leak in the hydraulic system. This is a
striking example where the existing flight control law and hardware redundancy
are no longer valid.

Sensor failures
Sensor failures are not investigated in this thesis, but actuator failures are.

Actuator failures
Single actuator failures are served relatively well by means of hardware redun-
dancy. It is only when major systems start failing (e.g. total loss of hydraulics,
complete loss of elevator authority, etc.) that we are likely to need to control the
aircraft using secondary actuators or using secondary effects of the primary actu-
ators.

An alternative reasoning is that through inclusion of fault-tolerant flight control
hardware it may be possible to reduce the amount of redundant hardware. Soft-
ware does not cause a weight penalty, whereas hardware does. Another possi-
ble benefit lies in increased dispatch reliability, a major factor in operating econ-
omy.
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In summary, fault tolerant control methods can either reduce the necessity for
hardware redundancy or broaden the scope and number of faults that can be han-
dled. We focus on faults at the system level and assume that single actuator fail-
ures do not, or only slightly, affect the behavior of the closed loop of flight control
system, airplane structure and actuators, whereas a complete failure of a control
surface, loss of an engine or complete hydraulics will.

1.2.2 Failure detection and Fault-tolerant control overview

Fault: In the general sense, a fault is something that changes the behavior of a system such
that the system no longer satisfies its purpose (Blanke 2003).

Hence, fault-tolerant control has to prevent a fault from causing a failure at the
system level.

In larger systems different components typically each have their own purpose.
This means that a single fault in a component will in most cases change the per-
formance of the overall system. Fault tolerant control is an attempt at finding faults
swiftly and at subsequently stopping the propagation of the fault such as to pre-
vent damage to the overall system and human operators. It is the control system
that has to deal with this task. We strive to develop a control algorithm that adapts
to the faulty plant. Hence, in general the procedure to make a system fault-tolerant
consists of two steps (Blanke 2003):

1. Fault diagnosis: the existence of faults has to be detected and the faults have
to be identified; and

2. Control re-design: the controller has to be adapted to the faulty situation so
that the overall system continues to satisfy its goal.

Classification of Faults

Faults can be classified according to their location in the system, their nature or
their time-characteristics. When faults are ordered with respect to their location
we distinguish: actuator faults, plant faults and sensor faults (Verhaegen et al.
2010):

Actuator faults represent partial or total loss of control action. Partial loss of control
action can be the loss of range in an actuator, or it may be the loss of reaction speed.
Partially failed actuators produce only part of the nominal behavior. When full
loss of an actuator presents itself this may lead to an actuator that is stuck at a
certain position, or an actuator that is floating.

Sensor faults represent incorrect readings from the sensors that the system is fitted
with. Faulty sensors may provide the system with amplified versions of the orig-
inal system, a bias might be included, or the signal may be prone to high noise
levels. Either way, the quality of the signal is lost.
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Plant faults relate to faults that are associated with changes in the physical param-
eters of the system. These are the faults that can neither be attributed to actuators
or to the sensors. Typical examples would be failures of the system itself, such as
damage to the wing of an aircraft.

Faults are typically classified as either being additive or multiplicative. Sensor and
actuator faults can typically be modeled best as multiplicative faults and plant
faults are best modeled as additive faults.

Faults are not necessarily observable from the system behavior, but when they
are we have to take the effect into account. Fault tolerant control requires that
we detect that a fault has occurred and that the location of the fault is identified
together with identification of its severity

Fault tolerant control

Various control methods are suitable for fault tolerant control purposes. At a high
level of abstraction one can divide FTC methods into two categories: active and pas-
sive FTC (Jones 2005). Passive methods allow for fault accommodation, whereas
active methods use control reconfiguration as a starting point.

Robust control solutions are an example of passive FTC methods. In robust meth-
ods, the design of the controller is such that the closed-loop of plant and controller
is stable for a whole set of plants. This set can be designed such that certain faulty
behavior of the plant fits inside the set. The trade-off in selecting such a robust con-
trol law is that one trades performance for robustness. The advantage, however,
is that an online FDI system is not strictly required.

In active methods, one does make use of available FDI information and the entire
control loop is reconfigured as is necessary. It is possible that the structure of the
existing controller remains the same, but that the tuning of its parameters has to
be changed in order to accommodate for the fault. Active control reconfiguration
can become necessary.

The interested reader is referred to the following references for a generic intro-
duction to fault tolerant control Blanke and Schröder (2006), Patton (2015), Patton
(1997). Figure 1.4 provides a classification of fault tolerant control methods, ref
Edwards et al. (2010).

1.2.3 Fault tolerant flight control

As stated, FTFC unifies the topic matter of flight control and fault tolerant control.
Surveys of, and generic introductions to, FTFC are: Steinberg (2005), Edwards et al.
(2010), Zolghadri et al. (2014). Many control methods are suited to the purposes
of a fault-tolerant flight controller:

• Multiple model control - the multiple model concept is based on a set of
models, each model representing a different operating condition of the plant
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(e.g. a fault condition). A controller is designed for each plant model. Cen-
tral to the control method is an online method to determine a weighted com-
bination of the different controllers that is to be employed. A disadvantage
is that the method only considers a finite number of local models (i.e. fault
conditions).

• Multiple model and switching (MMST) - in multiple model and switching
control a series of models and controllers exist. For each time step the model
that is most representative is determined and the corresponding controller
selected. Most MMST controllers comprise a tuning mechanism that is ap-
plied to the model that corresponds to the active controller. Stability results
exist that require a sufficiently dense set of models and a sampling that is
fast enough.

• Interacting multiple models (IMM) - IMM attempts to relieve the limitations
of the previous two methods in the sense that every fault condition must
have been modeled a priori. A key assumption in IMM is that every failure
can be modeled as a convex combination of models in a set of models. In the-
ory multiple failures can be handled through combination of single failure
models.

• Control Allocation - desired forces and moments about the aircraft center of
gravity are inputs to this method. Based on these forces and moments, and
estimates of control effector efficiencies and stability derivatives, to compute
the inputs necessary to achieve such forces and moments.

• Adaptive feedback linearization - is based on a dynamic inversion controller
in an explicit model following architecture. An adaptive neural network is
used to adaptively regulate the error between the desired response model
and response of the vehicle. Control allocation is applied to generate indi-
vidual control effector commands (Wise et al. 1999).

• Sliding mode control - sliding mode systems are designed to drive the sys-
tem states onto a particular surface in the state space, named sliding surface.
Once the sliding surface is reached, sliding mode control keeps the states on
the close neighborhood of the sliding surface. Hence, sliding mode control
is a two part controller design. The first part involves the design of a sliding
surface so that the sliding motion satisfies design specifications. The second
is concerned with the selection of a control law that will make the switching
surface attractive to the system state (Shtessel et al. 2014).

• Eigenstructure assignment - in eigenstructure assignment a linear state feed-
back controller is obtained through pole placement after which the remain-
ing design freedom is used to align the eigenvectors as accurately as possi-
ble.

• Model reference adaptive control - The goal of adaptive model-following
is to force the plant output to track a reference model. This can either be
done in indirect form through online identification of the plant parameters,
or through direct estimation of the controller parameters.
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• MPC - applies online optimization to control multivariable systems and is
regarded for its ability to incorporate and accommodate various constraints.
MPC forms the main content matter of this thesis.

• Knowledge based methods - an artificial neural network (ANN) is a net-
work inspired by biological neural networks. ANN are typified by their
ability to accommodate changing behavior, in a certain sense learning what
has changed. ANN have been applied towards FTFC for purposes of fail-
ure detection and identification of a control surface (Napolitano et al. 2000)
and cancelation of residual errors in feedback linearization (Kim and Calise
1997).

Figure 1.4 provides a graphic overview of the methods listed above and Table 1.1
from Edwards et al. (2010) provides a comparison of fault tolerant control meth-
ods, applicable for reconfigurable flight control, considered in this survey. Filled
circles mean that the method has the indicated property while empty circles imply
that an author has suggested that the approach could be modified to incorporate
the property. The columns are explained as follows:

• Failures: Types of failures that the method can handle

• Robust: The method uses robust control techniques

• Adaptive: The method uses adaptive control techniques

• Fault Model:

– FDI: An FDI algorithm is incorporated into the method

– Assumed: The method assumes an algorithm which provides a fault
model

• Constraints: The method can handle actuator constraints

• Model Type: The type of internal model used

1.3 Model Predictive Control

Model predictive control (MPC) is central to the theory in this thesis, hence it
has to be discussed in this introductory chapter. MPC is a widely used and well
accepted controller design method in the process industry (ref. Allgöwer et al.
(1999); Biegler (2000); Camacho and Bordons (1995); Clarke et al. (1987a); Garcia
et al. (1989); Cutler and Ramaker (1979); Morari and Zafiriou (1989); Richalet et al.
(1978)). This motivates the extension of the benefits provided by the MPC frame-
work to high-bandwidth flight systems.

Various methods have been developed since the Seventies for the design of model
based control systems for robust multivariable control of industrial processes
(Boyd and Barratt 1991; Doyle et al. 1992, 1989; Garcia et al. 1988; Maciejowski
1989; Morari and Zafiriou 1989).
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Figure 1.4: Overview and classification of fault tolerant flight control methods.
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Table 1.1: FTFC methods, from (Edwards et al. 2010, p.84)

Method Failures Robust Adaptive Fault Model Constraints Model type
Actuator Structural FDI Assumed Linear Nonlinear

Multiple Model Switching and Tuning (MMST) • • • •
Interacting Multiple model (IMM) • • • ◦ •
Propulsion controlled aircraft (PCA) • ◦ • • •
Control Allocation (CA) • • ◦ •
Feedback Linearization (FL) • • • • •
Sliding Mode Control (SMC) ◦ a • • b • •
Eigenstructure Assignment (EA) • • •
Pseudo Inverse Method (PIM) • • •
Model Reference Adaptive Control (MRAC) • • • • ◦
Model Predictive Control (MPC) • • ◦ ◦ • • • • •

aCan handle partial loss of effectiveness of actuators, but not complete loss
bAssumes robust control can handle all forms of structural failures
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Predictive control was pioneered simultaneously by Richalet et al. (1976), Richalet
et al. (1978) and Cutler and Ramaker (1980). Model Predictive Control technology
has evolved from a basic multivariable process control technology to a technology
that enables operation of processes within well-defined operating constraints (All-
göwer et al. 1999; Bequette 1991; Qin and Badgewell 1997). The contributors to
the acceptance of MPC technology by the process industry since the 1980’s are the
following:

• MPC is a model based controller design procedure, which can easily han-
dle processes with large time-delays, non-minimum phase and unstable pro-
cesses.

• (Industrial) processes typically have limitations in, for instance, valve capac-
ity and other technological requirements and are required to deliver output
products against detailed quality specifications. MPC can handle such con-
straints in a systematic way during design and implementation of the con-
troller.

• Finally, MPC can incorporate structural changes, such as sensor and actuator
failures, changes in system parameters and system structure by adapting the
control strategy in between measurement samples.

However, the main reasons for its popularity are the constraint-handling capabili-
ties, the straightforward extension to multi-variable processes and, most of all, the
possibility to increase process quality and profit margins. From academic side the
interest in MPC initially came from the field of self-tuning control. The problem
of Minimum Variance control (Åström and Wittenmark (1973)) was studied while
minimizing the cost function

J(u, k) = E
{
( r(k + d)− y(k + d) )2

}
(1.1)

at time k, where y(k) is the process output signal, u(k) is the control signal, r(k)
is the reference signal, E(·) stands for expectation and d is the process dead-time.
To overcome stability problems with non-minimum phase plants, the cost func-
tion was modified by adding a penalty on the control signal u(k). Later this u(k)
in the cost function was replaced by the increment of the control signal ∆u(k) =
u(k) − u(k − 1) to guarantee a zero steady-state error. To handle a wider class of
unstable and non-minimum phase systems and systems with poorly known de-
lay the Generalized Predictive Control (GPC) scheme (Clarke and Mohtadi 1989;
Clarke et al. 1987a) was introduced with a quadratic cost function.

In GPC mostly polynomial based models are used. For instance, Controlled Au-
toRegressive Moving Average (CARMA) models or Controlled AutoRegressive In-
tegrated Moving Average (CARIMA) models are popular. These models describe
the process using a minimum number of parameters and therefore lead to effec-
tive and compact algorithms. Most GPC-literature in this area is based on Single-
Input Single-Output (SISO) models. However, the extension to Multiple-Input
Multiple-Output (MIMO) systems is straightforward as was shown by De Vries
and Verbruggen (1994) using a MIMO polynomial model, and by Kinnaert (1989)
using a state-space models.
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This text covers state-of-the-art technologies for model predictive process control
that are good candidates for future generations of industrial model predictive con-
trol systems. Like all other controller design methodologies, MPC also has its
drawbacks:

• A detailed plant model is required. Good insight in the physical behavior of
the plant is required or system identification techniques have to be applied
to obtain a good model.

• The methodology is open, and has given rise to many variations. Such vari-
ations include: IDCOM (Richalet et al. 1978), DMC (Cutler and Ramaker
1979), EPSAC (De Keyser and van Cauwenberghe 1982), MAC (Rouhani and
Mehra 1982), QDMC (Garcia and Morshedi 1986), GPC (Clarke et al. 1987a)
and (Clarke et al. 1987b), PFC (Richalet 1993), UPC (Soeterboek 1992).

• Although, in practice, stability and robustness are easily obtained by accu-
rate tuning, theoretical results on stability and robustness properties are dif-
ficult to achieve.

Industry specialists often prefer MPC for supervisory optimizing control of mul-
tivariable processes over other controller design methods, such as PID, LQ and
H∞. A PID controller is easily tuned but is basically limited to SISO systems.
LQ and H∞ can be applied to MIMO systems, but cannot incorporate constraints
in an adequate way. These techniques also exhibit difficulties in realizing robust
performance for varying operating conditions. Key element in model predictive
control is the use of a model that can simulate dynamic behavior of the process
at in a certain condition. In this respect, model predictive control differs from
most of the model based control technologies that have been studied in academia
in the Sixties, Seventies and Eighties. Academic research has mostly focused on
the use of models for controller design and robustness analysis of control systems
for quite some time. With their initial work on internal model based control, Gar-
cia and Morari (1982) made a first step towards bridging academic research in
the area of process control and industrial developments in this area. Significant
progress has been made in understanding the behavior of model predictive con-
trol systems, and a numerous results have been obtained on stability, robustness
and performance of MPC (Soeterboek (1992), Camacho and Bordons (1995), Ma-
ciejowski (2002a), Rossiter (2003)).

Since the pioneering work at the end of the Seventies and early Eighties, MPC
has become the most widely applied supervisory control technique in the process
industry. Many papers report successful applications (see Richalet (1993), and Qin
and Badgewell (1997)).

In the Eighties and Nineties MPC was mainly applied in the process industry,
since the slow dynamics permit the inter-sampling computations for model up-
date and optimal future control sequence determination. The dramatically in-
creasing available computer power now allows the extension of the computational
demanding MPC technology to high-bandwidth flight control systems (Keviczky
and Balas 2003).

The MPC scheme works as follows (see also Figure 1.5). A model (in our case
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Figure 1.5: The ‘Receding horizon’ in predictive control (van den Boom and Stoor-
vogel 2010, Fig 2.5., p.29)

a linear time-invariant discrete-time description of relevant process dynamics) is
used to predict the outcome y(k) (the controlled variables) of the process based on
an input sequence u(k) (the sequence of control inputs or manipulated variables)
supplied to the process and on past measurements of the process. The goal is to
achieve that a tracking error signal z(k) (often reflecting the difference between
the output signal y(k) and a given reference trajectory r(k)) that remains small
with reasonable control costs (related to e.g. energy consumption and pollution).
In many applications we will use the increment input ∆u(k) = u(k) − u(k − 1)
for this will automatically lead to an integrating action in the controller, which is
useful for reducing the steady state error. A cost criterion reflects the reference
tracking error and the control effort. The prediction horizon N is the number
of time steps at which the tracking error signal should be minimized. The op-
timal input sequence over a given horizon can now be computed by solving an
optimization problem (i.e. minimize the cost criterion over the allowed input se-
quences – and the corresponding y(k) predicted on the basis of the model – given
the information of the past behavior of the process). Let us look at the procedure
more closely.

Linear MPC uses a linear time-invariant (LTI) state-space representation for the
model:

x(k + 1) = Ax(k) +B∆u(k) +H e(k) (1.2)
y(k) = Cx(k) + e(k) (1.3)

where A ∈ Rn×n, B ∈ Rn×p, H ∈ Rn×m, and C ∈ Rm×n. The vector x ∈ Rn

represents the state, ∆u ∈ Rp the input, y ∈ Rm the output, e ∈ Rm is zero-mean
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white noise, and k ∈ Z is the discrete time counter. In this thesis we use a cost
function with one term that reflect the tracking error and one term that reflects the
control action. The following 2-norm cost function is introduced:

J(u, k) =

N∑

j=1

ẑT (k + j − 1|k)ẑ(k + j − 1|k) (1.4)

where we defined the cost signal

z(k) = Cz x(k) +Dz ∆u(k) + Ez e(k) + Fz r(k) (1.5)

in which ẑ(k+ j−1|k) is the prediction of z(k+ j−1) at time k, ∆ is the difference
operator such that ∆u(k) = u(k)−∆u(k − 1) and ẑ(k + j − 1|k) is the prediction
of z(k + j − 1) given the information up to time instant k.

A key advantage of MPC is that we can immediately accommodate for constraints
on the input and outputs of the process. This changes the optimization problem
only by incorporating the additional limitations. However, this renders the opti-
mization much more complex and will require more computation time.

In MPC the input is often taken to be constant from a certain point onward: u(k +
j) = u(k + Nc − 1) (or equivalently ∆u(k + j) = 0) for j = Nc, . . . , N − 1 where
Nc is the control horizon. The use of a control horizon leads to a reduction of the
number of optimization variables. This results in a decrease of the computational
burden, a smoother controller signal (because of the emphasis on the average be-
havior rather than on aggressive noise reduction), and a stabilizing effect (since
the output signal is forced to its steady-state value).

MPC uses a receding horizon principle. At time step k the future control sequence
∆u(k), . . . ,∆u(k+Nc− 1) is determined such that the cost criterion is minimized
subject to the constraints. At time step k the first element of the optimal sequence
(∆u(k)) is applied to the process. At the next time step the horizon is shifted, the
model is updated with new information of the measurements, and a new opti-
mization at time step k + 1 is performed.

By successive substitution of (1.5) in (1.2), estimates of the future values of the
output can be computed (Camacho and Bordons 1995). In matrix notation we
obtain:

z̃(k) = C̃x(k) + D̃ ũ(k) + Ẽ e(k) + F̃ r̃(k)

with

z̃(k) =








ẑ(k|k)
ẑ(k+1|k)

...
ẑ(k+N−1|k)







, r̃(k) =








r(k)
r(k+1)

...
r(k+N−1)







, ũ(k) =








∆u(k)
∆u(k+1)

...
∆u(k+N−1)







,

(1.6)
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C̃ =








Cz

CzA
...

CzA
N−1







, D̃ =












Dz 0 · · · 0 0

CzB Dz
. . .

...
...

CzAB CzB
.. . 0 0

...
. . . Dz 0

CzA
N−2B · · · CzB Dz












, (1.7)

Ẽ =










Ez

CzH
CzAH
...

CzA
N−2H










, F̃ = diag(Fz, . . . , Fz). (1.8)

where diag(A1, . . . , An) is defined as a block diagonal matrix with the blocks A1

through An on its diagonal. The cost function (1.4) can now be written as

J(u, k) =

N∑

j=Nm

ẑT (k + j − 1|k)ẑ(k + j − 1|k)

= z̃
T (k)z̃(k)

= (C̃x(k) + D̃ ũ(k) + Ẽ e(k) + F̃ r̃(k))T (C̃x(k) + D̃ ũ(k)

+Ẽ e(k) + F̃ r̃(k))

= ũ
T (k) (D̃T

D̃)ũ(k)

+2 (C̃x(k) + Ẽ e(k) + F̃ r̃(k))T D̃(k)ũ(k)

+(C̃x(k) + Ẽ e(k) + F̃ r̃(k))T (C̃x(k) + Ẽ e(k) + F̃ r̃(k))

= ũ
T (k)Hũ(k) + fT (k)ũ(k) + c(k)

This means that the cost function is quadratic in the control variable ũ(k) and so
by omitting the constant term c(k) we obtain:

J(u, k) = ũ
T (k)Hũ(k) + fT (k)ũ(k) (1.9)

In practical applications signals are always constrained. We consider the linear
constraint

C̃c(k)x(k) + D̃c(k)ũ(k) + Ẽc(k)e(k) + F̃c(k)r̃(k) + J̃u(k − 1) 6 h̃(k) (1.10)

with C̃c(k) ∈ Rl×n, D̃c(k) ∈ Rl×pN , Ẽc(k) ∈ Rl×m, F̃c(k) ∈ Rl×mN , J̃ ∈ Rl×p,
h̃(k) ∈ R

l for some integer l. Finally, we introduce the control horizon con-
straint

∆u(k + j) = 0 for j = Nc, Nc + 1, . . . , N − 1 (1.11)

to reduce computational complexity and to smoothen the input signal’s behav-
ior.

The MPC problem at time step k for linear time invariant systems is defined as
follows:
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Find the input sequence u(k), . . . , u(k+Nc−1) that minimizes the cost
function (1.9) subject to the inequality constraints (1.10) and subject to
the control horizon constraint (1.11).

Note that the MPC problem boils down to the following quadratic programming
problem

min
ũ(k)

ũ
T (k)Hũ(k) + fT (k)ũ(k)

subject to C̃c(k)x(k) + D̃c(k)ũ(k) + Ẽc(k)e(k) + F̃c(k)r̃(k) + J̃u(k − 1) 6 h̃(k)

In the absence of constraints (1.10) and (1.11) the solution can easily be found by
setting the gradient of the cost function to zero, resulting in

∇ũ(k)ũ
T (k)Hũ(k) + fT (k)ũ(k) + c(k) = 2Hũ(k) + f(k) = 0

and so for the unconstrained case we find the optimal solution ũ
∗(k) = −H−1f(k).

Using the receding horizon principle we can compute the optimal control signal
at time k as

∆u(k) = −EuH
−1f(k) (1.12)

where

Eu =








1 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0








(1.13)

The solution can be realized with a feedback law

∆u(k) = −K x(k) +De e(k) +Dr r̃(k) (1.14)

with K = EuH
−1

C̃, De = −EuH
−1

Ẽ and Dr = −EuH
−1

F̃.

Quadratic programming problems can be solved very efficiently. Various algo-
rithms to solve the quadratic programming problem exist: the modified simplex
method (algorithms that use a modified version of the simplex method are Wolfe’s
algorithm (Wolfe 1959) and the pivoting algorithm of Lemke (1968) are most ef-
ficient for small and medium-sized problems). The algorithm will find the opti-
mum in a finite number of steps. An alternative for large-sized quadratic program-
ming problems is the interior point method Nesterov and Nemirovskii (1994). A
disadvantage of this method is that the optimum can only be approximated. How-
ever, bounds for the approximation can be derived.

Predictive control design does not give an a priori guaranteed stabilizing con-
troller. To enforce closed-loop stability we can introduce the following infinite
horizon cost function N = ∞:

J(u, k) =
∞∑

j=1

ẑT (k + j − 1|k)ẑ(k + j − 1|k) (1.15)
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where rss is the steady-state reference signal, for which there holds r(k + j|k) =
rss for j ≤ 0. The steady state xss can be computed by solving the following
equations:

xss = Axss

zss = Cz xss + Fz rss = 0

The results are summarized in the following theorem:

Theorem 1.1
Consider the system

x(k + 1) = Ax(k) +H e(k) +B∆u(k)

y(k) = C x(k) + e(k)

z(k) = Cz x(k) +Dz ∆u(k) + Ez ê(k) + Fz r(k)

with r(k + j|k) = rss for j ≤ 0. Let P be the solution of the algebraic Riccati equation

P = ATPA− (ATPB + CT
z Dz)(B

TPB +DT
z Dz)

−1(BTPA+DT
z Cz) + CT

z Cz

The unconstrained infinite horizon standard predictive control problem of minimizing per-
formance index

J(v, k) =

∞∑

j=0

ẑT (k + j|k)ẑ(k + j|k) (1.16)

is solved by control law

∆u(k) = −K (x(k|k)− xss) +De e(k) (1.17)

where

K =(BTPB +DT
z Dz)

−1(BTPA+DT
z Cz)

De =− (BTPB +DT
z Dz)

−1(BTPH +DT
z Ez)

.

Proof: we consider the unconstrained infinite horizon standard predictive control
problem. The system to be controlled is described as:

x(k + 1) = Ax(k) +H e(k) +B∆u(k)

y(k) = C x(k) + e(k)

z(k) = Cz x(k) + Ez ê(k) +Dz ∆u(k) + Fzr(k)

with r(k + j|k) = rss for j ≤ 0. Prediction:

x̂(k+j+1|k) = A x̂(k + j|k) +H ê(k + j|k) +B v(k + j|k)

ẑ(k + j|k) = Cz x̂(k + j|k) + Ez ê(k + j|k) +Dz v(k + j|k)
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Choosing

x̄(k + j|k) =

[
x̂(k + j|k)
ê(k + j|k)

]

we obtain:

x̄(k+j+1|k) = Ā x̄(k + j|k) + B̄ v(k + j|k)

ẑ(k + j|k) = C̄ x̄(k + j|k) + D̄ v(k + j|k)

where

Ā =

[
A H
0 0

]

B̄ =

[
B
0

]

C̄ =
[
Cz Ez

]

D̄ = Dz

(1.18)

Substitution in the performance index leads to:

J(v, k) =

∞∑

j=0

ẑT (k + j|k)Γ(j)ẑ(k + j|k)

=

∞∑

j=0

(
x̄T (k + j|k)C̄T C̄x̄(k + j|k)

+2x̄T (k + j|k)C̄T D̄ v(k + j|k) + vT (k + j|k)D̄T D̄ v(k + j|k)
)

=

∞∑

j=0

x̄T (k+j|k)Q̄x̄(k+j|k) + x̄T (k+j|k)S̄v(k+j|k)

+ vT (k+j|k)R̄v(k+j|k)

where
Q̄ = C̄T C̄ =

[
Cz Ez

]T [
Cz Ez

]
,

S̄ = C̄T D̄ =
[
Cz Ez

]T
Dz,

R̄ = D̄T D̄ = DT
z Dz.

(1.19)

Minimization of the performance index is equivalent to the design of an LQR reg-
ulator with the solution

v(k) = (B̄T P̄ B̄ + R̄)−1(B̄T P̄ Ā+ S̄T )x̄(k) (1.20)

where P ≥ 0 is the smallest positive semi-definite solution of the discrete time
Riccati equation

P = ĀTPĀ− (ĀTPB̄ + S̄)(B̄TPB̄ + R̄)−1(B̄TPĀ+ ST ) + Q̄
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which exists due to stabilizability of (Ā, B̄) and invertibility of R̄. Note that
[
P1 P2

PT
2 P3

]

=

[
AT

1 0
AT

2 0

] [
P1 P2

PT
2 P3

] [
A H
0 0

]

−

([
AT 0
HT 0

] [
P1 P2

PT
2 P3

] [
B
0

]

+

[
S1

S2

])

×

(
[
BT 0

]
[
P1 P2

PT
2 P3

] [
B
0

]

+

[
B
0

])−1

×

(
[
BT 0

]
[
P1 P2

PT
2 P3

] [
A H
0 0

]

+
[
ST
1 ST

2

]
)

+ Q̄

=

[
ATP1A ATP1H
HTPT

1 A HTPT
1 H

]

−

[
ATP1B + S1

HTP1B + S2

]

(BTP1B +DT
z Dz)

−1

×
[
BTP1A+ ST

1 BTP1H + ST
2

]
+

[
Q1 Q2

QT
2 Q3

]

P1 = ATP1A− (ATP1B + S1)(B
TP1B +DT

z Dz)
−1(BTP1A+ ST

1 ) +Q1

P2 = ATP1H − (ATP1B + S1)(B
TP1B +DT

z Dz)
−1(BTP1H + ST

2 ) +Q2

P3 = HTP1H − (HTP1B + S2)(B
TP1B +DT

z Dz)
−1(BTP1H + ST

2 ) +Q3

so we can write

v(k) = (B̄TPB̄ + R̄)−1(B̄TPĀ+ S̄T )x̄(k)

= K̄ x̄(k)

= (BTP1B +DT
z Dz)

−1
[
BTP1A+ ST

1 BTP1H + ST
2

]
[
x̂(k)
ê(k)

]

= −K x(k|k) +De e(k|k)

which constitutes the discrete time LQR problem, where

K =(BTP1B +DT
z Dz)

−1(BTP1A+DT
z Cz)

De =− (BTP1B +DT
z Dz)

−1(BTP1H +DT
z Ez)

.

�

Bitmead et al. (1990) showed that infinite horizon cost function (1.16) is equivalent
to the following cost function

min
ṽ(k)

J(ṽ, k) = min
ṽ(k)

{(

x(k +N |k)− xss

)T

P0

(

x(k +N |k)− xss

)

+

N∑

j=1

ẑT (k + j − 1|k)ẑ(k + j − 1|k)






, (1.21)
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where P0 is the solution to the Riccati equation

ĀTP0Ā−Ā
TP0B(BTP0B +BTCTQCB)−1BTP0Ā

+ATCTQ(I − CB(BTCTQCB)−1BTCT )QCA− P0 = 0, (1.22)

where Ā = A−B(BTCTQCB +R)−1BTCTQCA.

Note that cost function (1.22) is a finite horizon cost function with an additional

terminal cost
(

x(k + N |k) − xss

)T

P0

(

x(k + N |k) − xss

)

. The predictive control
law, minimizing (1.21), results in a stable closed loop (Bitmead et al. 1990).

The main disadvantage of the terminal cost function is that it can only handle
the unconstrained case. If we introduce a terminal constraint set we can ensure
closed-loop stability for the constrained case in a non-conservative way:

Theorem 1.2 (Gilbert and Tan (1991), Scokaert and Rawlings (1998),
Sznaier and Damborg (1987)) Consider the LTI system (1.2)-(1.3) with cost function
(1.21). Let the signal constraints be defined by

F̃x(k − 1) +Gr̃(k) +Hũ(k) 6 h̃, (1.23)

where F̃, G, H, and h̃ are constant matrices. Let r(k) = rss for k ≥ 0, and consider the
linear control law

v(k + j|k) =
(

(BTP0B +BTCTQCB)−1BTP0Ā+

(BTCTQCB)−1BTCTQCA
)(

x(k + j|k)− xss

)

. (1.24)

Finally let W be the set of all states for which 1.23 holds under control law 1.24, and
assume

D ⊂ W . (1.25)

Then the predictive control law, minimizing (1.21), subject to 1.23 and terminal constraint

x(k +N |k) ∈ D, (1.26)

results in a stable closed loop.

1.3.1 MPC in flight control

First advances in the direction of MPC for use in flight control system applications
have among others been reported in Heise and Maciejowski (1996), Singh et al.
(1995), Maciejowski and Jones (2003).

This thesis investigates the applicability of MPC for reconfigurable flight control
because we deem it particularly suitable to the task in view of the advantages (and
disadvantages) mentioned in the leading paragraphs of 1.3. These are repeated
here for reasons of convenience.

Advantages of MPC:
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• one can modify the model that is used in the computation phase of MPC
in between the time steps (i.e. the state-space system matrices) because it is
optimization based.

• one can change the plant constraints on the input, output and states in be-
tween the time steps

• MPC has some inherent robustness against modeling errors and disturbances
because it recomputes the optimal input sequence at each time step.

Drawbacks of MPC:

• a stability proof is more difficult to provide

• modeling and control in the discrete-time domain is not always very well
accepted

• MPC can be computationally intensive for complex systems, with the risk of
calculation not completing before the end of the sampling interval/discrete
time step.

• switching between models is not necessarily a smooth phenomenon.

It is also important to notice that MPC can be seen as a control allocation method
that takes dynamics into account. Formulated in reverse, control allocation is
MPC with a prediction horizon equal to N = 1. Both MPC and Control Allo-
cation offer maximum flexibility in the distribution of desired control effort over
the available actuators but MPC will generally give a smoother response. Control
allocation methods are quite well-known in flight control theory literature.

1.4 Towards MPC based FTFC

This section forms a prelude to the main body of this thesis. The research objec-
tives include the synthesis of MPC type controllers that allow for different levels
of performance, or otherwise formulated, controllers that allow for gradual degra-
dation of performance or more strict operational constraints for the system under
control. Research constraints and assumptions are also presented here.

1.4.1 Synthesis of the research objectives

Formulating the research objectives requires a clear framework of what it is that
should be achieved. This thesis focuses on the application of modern control meth-
ods towards reconfigurable flight control. The latter does not mean that methods
described in this thesis are not applicable to other systems, but the focus is on air-
craft due to the relevance demonstrated in the introductory section of this chap-
ter.

Aircraft are designed with safety aspects in mind. Extensive redundancy is typi-
cally built into the flight control system. Most airliners have two, three, or even
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four engines and can sustain normal flight with one or several engines inopera-
tive. The same redundancy is available in other aircraft systems. Typical airliners
use multiple actuators per control surface, or they have multiple control surfaces
altogether. Even flight-control computers and sensors typically have double our
triple backups. This form of redundancy is well suited to tackle problems that
arise when single failures arise. Where lies the need for more complicated FTFC
then? It is useful when a surface becomes inoperative altogether, when multiple
systems fail such that some or all primary flight controls are lost.

It is the objective of this thesis to investigate fault tolerant flight control in the
event of actuator or plant faults. Table 1.1 suggests that model predictive control
(MPC) is a very suitable for use as fault tolerant flight control method due to its
ability to incorporate various constraints. In summary, it is the objective of this
thesis to investigate the use of MPC as FTFC method.

An MPC problem is sought, changing the objective function when necessary, such
that the controller offers three distinct levels of performance:

• level 1: nominal operation, existing autopilot works properly.

• level 2: operation in which the desired closed-loop performance can be real-
ized within the operational constraints (including input constraints).

• level 3: operation in which not all operational constraints can be met, but
the plant is still stabilizable.

nominal inputs lead to nominal matching

nominal behavior attainable

plant stabilizable

Figure 1.6: Illustration of different performance levels that can be attained with
controller matching.

For obvious reasons, level 1 performance will only be attainable in those cases
where the plant has no failures. Level 2 performance is achievable in case of actua-
tor failures and only when redundant actuators are available such that the original
closed-loop behavior can be matched. The final level, level 3 performance can be
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regarded as a back-up mode. Level 3 abandons all desire to match the original
behavior, but focuses on stabilization of the plant. Level 1 is subset of level 2,
and level 2 is a subset of level 3 behavior. Figure 1.6 illustrates this. Because of
reasons that focus on stability of the closed loop it is desirable that these three
performance levels are included into one multi-objective cost-function such that
switching between different cost-functions can be avoided.

A potential feasibility recovery technique for level 3 performance is based on pri-
oritization of the constraints. The constraints are ordered from lowest to high-
est priority. In the (nominal) optimization problem becomes infeasible we start
by dropping the lowest constraints and see if the resulting reduced optimization
problem becomes feasible. As long as the problem is not feasible we continue
by dropping more and more constraints until the optimization is feasible again.
This means we solve a sequence of quadratic programming problems in the case
of infeasibility. The algorithm minimizes the violations of the constraints which
cannot be fulfilled. Note that it may take several trials of dropping constraints
and trying to find an optimal solution, which is not desirable in any real time
application.

Figure 1.7 shows how the MPC framework is applied to achieve conformance with
the performance levels introduced in the previous section (Figure 1.6)

 

 

 

Replacement controller Original controller 

LTI controller LTI MPC 

Constrained MPC 

Constrained MPC 

With additional inputs 

Constrained MPC 

With constraints prioritization 

Level 1 

Level 2a 

Level 2b 

Level 3 

Figure 1.7: Illustration of different performance levels that can be attained with
controller matching.
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Research constraints and assumptions

In the remainder of this thesis, and in investigating the use of MPC as FTFC
method, it is assumed that we are dealing with fixed wing aircraft. The assump-
tion is made that it is possible to control all actuator surfaces independently in
the nominal and fault-free case (e.g. left and right wing aileron are independent).
Finally, we assume that the aircraft has some redundancy in actuators such that
at least one alternate means of control around one of the rotational axes exists.
The engines and (possibly asymmetrical use of) secondary control surfaces are
assumed to be good candidate alternate means. Furthermore, trimmed flight is as-
sumed to still be possible. Control methods are developed that allow us to make
efficient use of the remaining control surfaces.

In this thesis it is assumed that failure detection and identification information
becomes available following the introduction of a fault. For instance, use can be
made of an online identification algorithm such as described by Lombaerts (2010).
This method continuously identifies the aerodynamic aircraft parameters from on-
line measurement data. In that sense, it is not explicitly a failure detection and
isolation method, but it rather is an online identification method. Furthermore, it
does not identify changes in the physical aircraft parameters like mass and inertia.
It is, however, very well possible to extract actuator failure information from the
fact that some actuator efficiency is identified to be zero (no effectiveness lost, e.g.
the actuator has locked into place).

This thesis poses an exploration of possibilities. There exist many obstacles before
practical application of such methods will become feasible in real life situations.
Such limitations include the current deterministic methods for clearance of flight
control laws that appear to not handle changing controller parameters very well,
and acceptance by flight crews due to the inherent loss of situational awareness
associated with fault tolerant flight control. These aspects are not investigated in
this thesis.

1.5 Organization of the thesis

This thesis is organized into the following chapters:

• Chapter 1: Introduction

• Chapter 2: MPC based controller matching

• Chapter 3: Model Predictive Control and Feedback Linearization

• Chapter 4: Polytope projection

• Chapter 5: Boeing 747 simulation study

• Chapter 6: Conclusions and Recommendations

Chapter 1 introduces the justification and high level goals of MPC based FTFC
and Chapter 2 computes an MPC formulation that (in the nominal case) approxi-
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mates an existing linear time-invariant controller as Maciejowski and Jones (2003)
show that MPC is suitable as fault tolerant control method, but that initial tuning
of the MPC controller is not a straightforward problem. The presented method
extends existing literature with a method that allows for replication of an orig-
inal controller that includes direct output feedback in the form of an MPC con-
troller.

Chapter 3 takes into account the fact that an aircraft has nonlinear dynamics and
investigates the combination of nonlinear inversion of the aircraft dynamics and
model predictive control. The method requires a computationally efficient projec-
tion method for the input constraints of the aircraft as these are affected by the
nonlinear inversion. Chapter 4 introduces the aforementioned computationally
effective projection method.

Chapter 5 applies the methods of Chapters 2, 3 and 4 to a detailed simulation
model of a Boeing 747-100 aircraft that allows for the inclusion of a variety of
system and actuator faults.

The thesis concludes with conclusions and recommendations in Chapter 6.
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MPC based controller matching

This chapter investigates the qualities of a method for finding both a state-
observer and the cost function associated with a model predictive con-
troller based on an already existing linear time invariant output feedback
controller. The goal of this exercise is to retain the properties of the exist-
ing controller, while adding the constraint handling capabilities of MPC.
Consistent satisfaction of constraints is deemed an enabling quality for
the application of MPC as a fault-tolerant controller for the aircraft bench-
mark under consideration.

2.1 Introduction

MPC is one of the few control methods that can actively take constraints into ac-
count. Such constraints include input, state, and output constraints. It is hypothe-
sized here that the latter makes MPC especially suitable for FTC purposes, whilst
actuator faults can be accommodated for through adaptation of the constraints
(Maciejowski 2002b). Additionally, the internal model can be changed to incor-
porate knowledge of faults that affect the dynamics of the system under control.
Furthermore, MPC has a certain degree of fault-tolerance to actuator faults, even
if the fault is not detected (Maciejowski 1998).

Although MPC is a serious candidate for FTC purposes in theory, it has been ar-
gued by Maciejowski and Jones (2003) that proper tuning of MPC is required in
order to construct an MPC problem that has acceptable fault-tolerant properties.
In general, however, this chapter will look to replace an existing controller with
MPC such that constraint handling properties can be incorporated. The existing
controller generally has been tuned to exhibit desired transient response, hence
construction of MPC through matching of an existing controller offers a good start-
ing point.

The objective of this chapter is to match an existing linear time-invariant (LTI),
possibly dynamic, controller with MPC such as to incorporate the desired con-

29
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straint handling capabilities. These constraint handling capabilities can be of vital
importance in case of a failure. More precisely: a controller is sought that will
retain transient behavior of the nominal closed loop while input and state con-
straints permit this. If this is no longer possible, the solution should at least be
stabilizing. In doing so the aforementioned burdensome tuning of an MPC cost
function is avoided. Furthermore, the influence of different failures on the tunable
parameters in the MPC problem will be investigated.

2.2 Problem definition and chapter structure

Starting point of this chapter is the desire to match an existing and accurately
tuned controller using MPC. Two different theories available in the literature are
discussed that allow us to derive the corresponding cost-function for the MPC
problem. The first method obtains the tuning parameters in the cost function
through direct computation. The second method takes a general dynamic con-
troller which is subsequently manipulated such that an estimator-regulator form
of the original controller is obtained. In Section 2.4 a new method for MPC con-
troller matching for plants with direct output feedback is put forward.

2.3 Controller matching using MPC

This section is limited to the investigation of linear time invariant (LTI) plants and
controllers. Nominal systems without actuator failures are studied, incorporation
of actuator failures is discussed at the end of the chapter.

The state space form is applied because of the multivariable nature of plant and
controller. Also the plant and controller are represented in discrete-time form,

controller

plant
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B z−1 C❜✲ ✲ ✲ ✲

✛
✻

✛

❇
❇
❇
❇
❇▼

Figure 2.1: Plant and controller; left: linear plant and controller, right: linear plant
and model predictive controller
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while assuming that this representation has been obtained through discretization
of a continuous time plant when necessary. As a starting point it is assumed that
the discrete-time representation of the plant is strictly proper and that it has state-
space dynamics

[
x(k + 1)
y(k)

]

=

[
A B
C 0

] [
x(k)
∆u(k)

]

. (2.1)

The original controller can either be static or it may have dynamics. Let the origi-
nal controller have the realization

[
xK(k + 1)
∆u(k)

]

=

[
AK BK

CK DK

] [
xK(k)
y(k)

]

(2.2)

or, alternatively, when it has no dynamics, let it be

∆u(k) = K x(k) (2.3)

for a state-feedback controller. Figure 2.2 provides a schematic representation of
the original plant and controller. Note that in this chapter it is assumed that the
reference signal equals zero (r(k) = 0, ∀k).

As a point of departure for the discussion on controller matching the following
papers by Cairano and Bemporad (2010), Maciejowski (2007) and Hartley and
Maciejowski (2009) are considered in conjunction with the following cost func-
tion

J(u, k) =
k+N−1∑

j=k

[
x̂T (j|k) ∆uT (j|k)

]
[
Q S
ST R

] [
x̂(j|k)
∆u(j|k)

]

(2.4)

Note that for a reference signal r(k) = 0 the cost signal (1.5), the cost function (1.4)
of Chapter 1 can be rewritten as

J(u, k) =

k+N−1∑

j=k

ẑT (j|k)ẑ(j|k)

=
k+N−1∑

j=k

(

Cz x(j|k) +Dz ∆u(j|k)
)(

Cz x(j|k) +Dz ∆u(j|k)
)

=
k+N−1∑

j=k

x̂T (j|k)CT
z Czx̂(j|k) + 2 x̂T (j|k)CT

z Dz ∆u(j|k)Cz x(j|k)

+ ∆uT (k + j − 1|k)DT
z Dz∆u(j|k)

=

k+N−1∑

j=k

x̂T (j|k)Q x̂(j|k) + 2 x̂T (j|k)S∆u(j|k)Cz x(j|k)

+ ∆uT (j|k)R∆u(j|k)

where Q = CT
z Cz , S = CT

z Dz , and R = DT
z Dz .
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2.3.1 Direct matching method

Cairano and Bemporad (2010) start their discussion of controller matching, the
replication of an existing controller, with the investigation of static controllers.
They formulate the MPC matching problem, where the weighting matrices in the
cost function must be tuned so that when the constraints are not active, the synthe-
sized MPC feedback law is equivalent to a given linear state-feedback controller. A
general solution, based on a bilinear matrix inequality (BMI), is introduced as well
as a parameterization of the problem that leads to a linear matrix inequality (LMI)
formulation. Two such parameterizations are introduced by Cairano and Bempo-
rad (2010). Finally, the design is extended to dynamic compensators.

Cairano and Bemporad (2010) pose the following problem:

Problem 2.1 (MPC matching): For a pre-assigned "favorite controller"

ufv(k) = Kx(k), K ∈ R
m×n (2.5)

define the MPC cost function such that the unconstrained MPC controller as discussed

in Section 1.3 is equal to the favorite controller, that is ufv = −EuH
−1

C̃x(k).

Problem 2.1 is immediately solved if

− EuH
−1

C̃x(k) = Kx(k) (2.6)

The following solution to problem is posed, first of all Eu is removed from (2.6)
setting:

H−1
C̃x(k) = −








κ0
κ1
...

κN−1







x(k) (2.7)

controller

plant

Kx

A

B z−1 C❡✲ ✲ ✲ ✲ ✲
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✛

Figure 2.2: Original plant with state-feedback
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where κ0 = K , and where κi ∈ Rm×m, i ∈ Z[1,N−1] are free matrices. Hence
(2.7) accounts for the whole optimal input sequence, but a match to the original
controller is only enforced for the first control action, which corresponds to the
receding horizon mechanism of MPC.

Now define the following matrices for use in the following lemma:

T =








A
A2

...
AN







, S =








B 0 · · · 0
AB B · · · 0
...

. . .
...

AN−2B · · · B








Q = diag(Q, · · · , Q), R = diag(R, · · · , R)

Lemma 2.1 (Cairano and Bemporad 2010): Let (K̂, Q̂, R̂, P̂ ) be any feasible solution of
the following problem

min
K,Q,R,P

J(K, Q,R, P ) (2.8)

s.t. Q ≥ 0, P ≥ 0, R ≥ σI (2.9)
(R+ S ′QS)K + S ′QT = 0 (2.10)
κ0 = K (2.11)

where K = [κ′0 . . . κ
′
N−1]

′, and J : RNm×m×Rn×n×Rm×m×Rn×n → R is an arbitrary
objective function. Then, the MPC strategy based on the optimal control problem where

we set Q = Q̂, P = P̂ , R = R̂, solves Problem 2.1.

Proof: see Cairano and Bemporad (2010).

The latter gives rise to a non-convex mathematical problem due to the bilinear con-
straint (2.10). J remains free to be chosen in this problem, but for obvious reasons,
the resulting optimal triplet (Q,R, P ) affects the behavior when constraints are ac-
tive. A possible choice for J is to specify a triplet (Q̄, R̄, P̄ ) of desired weights and
set

J(K, Q,R, P ) = ||Q − Q̄||+ wR||R− R̄||+ wP ||P − P̄ || (2.12)

where wR, wP ∈ R0+ and ||.|| is any matrix norm. The solution that is introduced
to construct an LMI problem based on (2.8) is to consider the following convex
problem in LMI constraints

J∗ = min
Q,R

||(R + S ′QS)K̄ + S ′QT || (2.13)

s.t. P ≥ 0, Ri ≥ σI, i = 0 . . .N − 1 (2.14)
Qi ≥ 0, i = 1 . . .N − 1 (2.15)

The second method introduced by Cairano and Bemporad (2010) pertains to match-
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ing based on the inverse LQR problem. The latter involves solving

min
Q,R,P

J(Q,R, P ) (2.16)

s.t.P ≥ 0, R ≥ σI,Q ≥ 0 (2.17)
P = A′PA+ A′PBK +Q (2.18)
B′PA = −(B′PB +R)K (2.19)

where J is convex (e.g. as in (2.12)). Let Q̃, R̃, P̃ be any feasible solution (not nec-
essarily the optimal one) of (2.16). Then the MPC strategy based on the optimal
control problem (2.5) where we set Q = Q̃,P = P̃ , R = R̃, solves Problem 2.1.
Cairano and Bemporad (2010) include dynamic controllers by including the dy-
namics of the controller in the dynamics of the plant and consequently applying
the previously introduced theory for static controllers.

2.3.2 Matching observer based realization of controllers

Construction of an MPC problem based on an existing output feedback controller
requires two steps in this section. The first step consists of obtaining an observer-
based realization of the original controller. The work of Bender and Fowell (1985)
and Alazard and Apkarian (1999) provides a method for obtaining a combination
of an observer and a state-feedback gain from a given linear time-invariant output
feedback controller. This methodology has subsequently been improved upon by
Alazard (2002) and Delmond et al. (2006) where an optimal control problem is con-
structed for which the optimal solution is the existing output feedback controller.
A comprehensive overview of the theory of observer based realizations can be
found in the recent book by Alazard (2013).

It was proposed by Maciejowski (2007) to use such an observer-based realization
as the basis for a second step during which an MPC cost-function is calculated.
This methodology has subsequently been investigated further by Hartley and Ma-
ciejowski (2009), who explore the trade-offs and design decisions that are involved
in this procedure. This section draws heavily upon what has been introduced in
the previous two references, while acknowledging that the provided information
is tailored with the application example in mind.

Obtaining an observer-based realization of the controller

In order to simplify what is to follow, it is assumed throughout the chapter that
both the plant and original controller are represented in discrete time. Whilst both
are typically provided in a continuous time representation, it is assumed that both
have been discretized before obtaining the observer based realization. As a start-
ing point it is assumed that the discrete-time representation of the plant is strictly
proper and that it has state-space dynamics (2.1). Additionally, let the original sta-
bilizing controller have the realization (2.2), and let the order of the plant be n, and
let the order of the controller be nK , respectively. Here, only the situation where
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nK ≤ n is considered for that is the situation which will be encountered in the ex-
ample in this chapter and in Chapter 5, despite the unmodified controller having
nK > n. Furthermore, both the plant and controller realization are assumed to be
minimal, thus not having any uncontrollable or unobservable modes.

It must be stressed that both the plant and the controller are assumed to be strictly
proper. While most physical systems are strictly proper, this does not hold true for
controllers which typically include some form of direct feedthrough term ∆u(k) =
DKy(k). This requirement stems from the fact that it is only possible to construct a
controller with direct feedthrough using a combination of a discrete time observer
and MPC in a very limited number of cases. It is therefore assumed that the origi-
nal controller is made proper through direct inclusion of the feedthrough term in
the plant model, making the plant model

[
x(k + 1)
y(k)

]

=

[
A+BDKC B

C 0

] [
x(k)
∆u(k)

]

, (2.20)

as shown in Figure 2.3 or, alternatively, that the feedthrough term is passed to
the plant via a low-pass filter or a unit delay, hence creating extra states in the
controller.

Given the controller and plant pair, we search for an observer, in this case having
a predictor structure, of the form

x̂(k + 1) = (A−HC)x̂(k) +B∆u(k) +Hy(k), (2.21)

whereH is the observer gain, such that the controller state and the estimated state
are related via a transformation T , as in xK = T x̂(k). The observer and (positive)
state-feedback representation of the original controller in this case yield

[
x̂(k + 1)
∆u(k)

]

=

[
A−HC +BK H

K 0

] [
x̂(k)
y(k)

]

(2.22)
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Figure 2.3: Plant and controller; left: linear plant and controller with direct
feedthrough, right: linear plant and proper model predictive controller
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where K is the state feedback gain. In order to ensure that the original closed
loop remains unchanged, both (2.2) and (2.22) must have identical input-output
behavior. That, combined with the fact that xK = T x̂(k) gives rise to the controller
and observer gains

K = CKT (2.23)
H = T †BK (2.24)

where T † is a right inverse of T (see Bender and Fowell (1985) and Alazard and
Apkarian (1999) for a complete derivation). At this point it must be remarked
that alternative observer formulations exist, e.g. the filter estimator, which can be
applied in a similar manner (see Hartley and Maciejowski 2009).

Finding T requires solving of the non-symmetric and rectangular Riccati equa-
tion

[
−T I

]
[
A+BDKC BCK

BKC AK

]

︸ ︷︷ ︸

=Acl

[
I
T

]

= 0 (2.25)

which can be done through application of standard invariant subspace techniques
such as the Schur method for solving algebraic Riccati equations, which was in-
troduced by Laub (1979). The Schur decomposition (Golub and van Loan 1996)
of a matrix A reads as follows: if A ∈ Cn+nK×n+nK , then there exists a unitary
Q ∈ Cn+nK×n+nK such that

QHAclQ = S = D +N (2.26)

where D = diag(λ1, . . . , λn+nK
) and N ∈ Cn×n is strictly upper triangular. The

Hermitian adjoint QH of Q is defined by QH = Q̄T , where Q̄ is the component-
wise conjugate of Q. Furthermore, Q can be chosen such that the eigenvalues λi
appear in any order along the diagonal of D. Using this result a solution to the
Riccati equation can be computed through suitably partitioning of Q as

Q =

[
Q11 Q12

Q21 Q22

]

Q11 ∈ R
n×n, Q22 ∈ R

nK×nK (2.27)

which leads to the solution
T = Q21Q

−1
11 . (2.28)

With respect to this result it must be remarked that, in general, there exist finitely
many solutions to the above problem. These solutions correspond to a different
choice of eigenvalues from the group of closed loop eigenvalues. The partition-
ing of the subspaces of Acl determines which poles appear in the state feedback
dynamics and which states appear in the observer error dynamics. Remark: split-
ting conjugate pairs of eigenvalues leads to a solution for T that contains complex
numbers, and hence to a complex solution for K and H respectively, which is to
be avoided.

Under the assumption that indeed nK < n, the observer based controller will be
a non-minimal realization of the original controller. Hence, the closed loop of the
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plant and observer based controller will contain n− nK poles that did not appear
in the original closed-loop system. The observer modes corresponding to these
poles lie in the nullspace of T and are unobservable through K . Furthermore,
they are freely assignable through the choice of alternative T † (see Delmond et al.
(2006) or Hartley and Maciejowski (2009) as on how to do so).

Relationship between Cairano and Maciejowski methods

Cairano and Bemporad (2010) try to match a model predictive controller to an
existing linear controller and pose their MPC problem as

V(x(k)) = min
U(k)

N−1∑

i=0

[
x(i|k)
u(i|k)

]T [
Q 0
0 R

] [
x(i|k)
u(i|k)

]

+ xT (N |k)Px(N |k) (2.29)

s.t. x(i + 1|k) = Ax(i|k) +Bu(i|k) (2.30)
xmin ≤ x(i|k) ≤ xmax (2.31)
umin ≤ u(i|k) ≤ umax (2.32)
x(0|k) = x(k) (2.33)

They pose an LMI problem and search for a triplet Q,R, P such that u(k) = Kx(k)
for the first time step.

Hartley and Maciejowski (2009) choose another route and pose the MPC problem
as follows

V(x(k)) = min
U(k)

N−1∑

i=0

[
x(i|k)
u(i|k)

]T [
Q S
ST R

] [
x(i|k)
u(i|k)

]

+ xT (N |k)Px(N |k)(2.34)

s.t. x(i + 1|k) = Ax(i|k) +Bu(i|k) (2.35)
xmin ≤ x(i|k) ≤ xmax (2.36)
umin ≤ u(i|k) ≤ umax (2.37)
x(0|k) = x(k) (2.38)

and set
[
Q S
ST R

]

=

[
KTRK −KTR
−RK R

]

(2.39)

where R can be chosen freely. Through this choice of weighting matrices the
optimization problem has an optimum cost of zero and hence P is a zero ma-
trix.

As can be seen, the only difference between both approaches is that Hartley and
Maciejowski (2009) allow for off-diagonal entries (S) in the cost function, whilst
Cairano and Bemporad (2010) do not. The choice that Hartley and Maciejowski
(2009) make immediately leads to u∗ = Kxwhen no constraints are active, whereas
Cairano and Bemporad (2010) have to solve a rather involved set of LMIs in order
to compute Q,R, P such that the same holds.
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Note that the performance index (2.29) in Cairano and Bemporad (2010) is equiva-
lent to performance index (2.34) in Hartley and Maciejowski (2009) for S = 0. If S
is not zero for the performance index (2.34), it can be transformed in performance
index (2.29) by introducing an input-feedback u = v − R−1 S x and substituting
this in (2.34). We obtain:

xT Qx+uTSx+ xTSTu+ uT Ru

=xT Qx+ (vT − xTSTR−1)Sx

+ xTST (v −R−1 S x) + (vT − xTSTR−1)R (v −R−1 S x)

=xT (Q − STR−1S − STR−1S + STR−1 S)x+ vT S x− vT RR−1 S x

+ xTST v − xT ST RR−1 v + vT Rv

=xT
(

Q− STR−1S
)

x+ vT Rv

=xT Q̄ x+ vT Rv

which result in a new performance index (2.29) where v is the new control variable
and Q̄ = Q− STR−1S.

MPC formulation

Now that an estimator form of the original controller has been obtained it is pos-
sible to replace the state-feedback with a predictive controller such that its opti-
mal solution is equal to the state feedback law u(k) = Kx̂(k). A candidate cost-
function that corresponds to this requirement is

∑∞

k=0 (u(k)−Kx̂(k))TR(u(k)−Kx̂(k))

=
∑∞

k=0

[
xT (k) uT (k)

]
[
KTRK −KTR
−RK R

] [
x(k)
u(k)

]

︸ ︷︷ ︸

=l(k)

(2.40)

for any input weighting matrix R = RT > 0 (Kreindler and Jameson 1972).

Typically MPC implementations perform an optimization over a finite but reced-
ing horizon. A infinite horizon implementation can be obtained by using the can-
didate cost-function over a finite horizon of length N and using the discrete-time
algebraic Riccati equation P as terminal cost. The finite horizon cost function is
then

(
N−1∑

k=0

l(k)

)

+ xT (N)Px(N) (2.41)

although for N is large enough, the terminal cost is negligible. Additionally, since
the cost-function represents a quadratic programming problem, linear and ellip-
soidal constraints may be added to the controller without having to sacrifice the
fact that minimization over these cost-functions leads to a globally optimal solu-
tion. These constraints are enforced over the finite prediction horizon N .
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The cost-functions (2.40,2.41) presented above, have a very intuitive physical in-
terpretation, i.e. in the absence of constraints the input will match the input that
would have resulted from the state-feedback gain K . However, in the presence of
constraints it is not at all guaranteed that the properties of the original controller
are maintained. Furthermore, it might be more intuitive to opt for the use of other
objectives in the cost-function. Especially in failure cases it may be beneficial to
minimize the difference between the predicted state trajectory and the state trajec-
tory that would have resulted from the state-feedback gain. The latter opens up
the possibility to achieve the same control goals whilst using different and redun-
dant actuators in case of an actuator failure.

2.4 MPC for controllers with direct feedthrough ma-

trix

This section presents a solution to the limitation that the observer based realiza-
tion of an existing LTI controller does not include direct output feedback. Direct
output feedback always remains a separate element in parallel to the observer
and state-feedback. It is this fact that makes inclusion of the direct output feed-
back into the final MPC problem more difficult, as the MPC problem takes the
state estimate x̂(k) as its input. Common solutions are to include this term into
the plant dynamics prior to MPC design, or to include delay terms between the
plant input and the direct feedback term. The first solution makes satisfaction of
the input constraints complex and the other changes the dynamics of the closed
loop.

In order to arrive at this solution the Youla parameterization of an LTI controller is
used as starting point. From Figure 2.4 one can see that this parameterization can
include direct output feedback in the form of the term De, whereas the remainder
constitutes the combination of an observer and state-feedback gain.

From Theorem 1.1 in Section 1.3 we learn that the infinite horizon control law is
given by

∆u(k) = −K xc(k|k) +De ê(k|k)

where
ê(k|k) = y(k)− C xc(k|k)

Substitution in the controller gives the following form:

xc(k + 1) = (A−BK −HC −BDeC)xc(k|k) + (H +BDe) y(k)

v(k) = (−K −DeC)xc(k|k) +De y(k)

Let an arbitrary LTI controller be given by

x′c(k + 1) = AK x′c(k|k) +BK y(k)

v(k) = CK x′c(k|k) +DK y(k)
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where x′c is the state of the LTI controller. Now there must exist a state transforma-
tion such that x′c(k) = T xc(k) and

TAK = (A−BK −HC −BDeC)T

TBK = H +BDe

CK = (−K −DeC)T

DK = De

From the second and third equation we derive with H = TBK −BDe and KT =
−CK −DeCT and we find

TAK−(A−BK −HC −BDeC)T =

= TAK −AT +B(−CK −DeCT ) + (TBK −BDe)CT +BDeCT

= TAK −AT −BCK −BDeCT + TBKCT −BDeCT +BDeCT

= TAK − (A+BDeC)T −BCK + TBKCT

=
[
T I

]
[

AK −BKC
−BCK A+BDeC

] [
I
−T

]

=
[
T I

]
Acl

[
I
−T

]

The transformation matrix T can be found using the method presented in Section
2.3.2, Equation 2.25 onward. With the transformation matrix T we can derive the

controller

plant

∆u y

B z−1 −C

A

A

B z−1 C

−K H❞

❞❞

❞

✲

✲ ✲ ✲ ✲

❄✲✲✲ ✲

✛

❄

✛

✻

✛ ✛

✻❍❍❍❍❍

✟✟✟✟✟✛
✻

✛De
ê

Figure 2.4: Youla parameterization, observer and state feedback
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state feedback K and output feedback H as follows:

H = TBK −BDK

K = −CKT
−1 −DKC

or

K = −CKT
† −DKC

where T † is the Moore-Penrose pseudo inverse of T in case the controller order is
smaller than that of the palnt nK < n.

controller matching

Now that an estimator form of the original controller has been obtained it is possi-
ble to replace the state-feedback with a predictive controller such that its optimal
solution is equal to the state feedback law

∆u(k) = −K xc(k|k) +De ê(k|k) .

A possible candidate cost-function that corresponds to this requirement is

∑∞

k=0 (∆u(k) +K x(k|k)−De e(k))
TR(∆u(k) +K x(k) −De e(k))

=
∑∞

k=0

[
xT (k) eT (k) ∆uT (k)

]





KTRK −KTRDe KTR
−DT

e RK DT
e RDe DT

e

RK RDe R









x(k)
e(k)
∆u(k)





=
∑∞

k=0 zT (k) z(k)

=
∑∞

k=0

[
xT (k) eT (k) ∆uT (k)

]





CT
z Cz CT

z Ez CT
z Dz

ET
z Cz ET

z Ez ET
z Dz

DT
z Cz DT

z Ez DT
z Dz









x(k)
e(k)
∆u(k)





This gives us:
[
Cz Ez Dz

]
= R1/2

[
F −De I

]
(2.42)

for any input weighting matrix R = RT > 0.

Note that the matrixR in equation 2.42 can be chosen freely. It is important to scale
the input signals in an adequate way (see Bryson 1975, p.149). Let the required
range of the i-th input be given by e given by ri, so |ui | ≤ ri, for i = 1, . . . , p. Then
a scaling matrix can be given by

R = diag(r−2
1 , r−2

2 , . . . , r−2
p )

The variables r−2
i > 0 are a measure of how much the costs should increase if the

i-th input ui(k) increases by 1.
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Design considerations

Several choices have to be made in the process that has been outlined in the pre-
vious sections. Some of these have been addressed already, such as the choice
to discretize both the plant and controller before starting the reverse-engineering
process, but others have yet to be mentioned. This section is all but an exhaustive
discussion of these design considerations and the reader is referred to Hartley and
Maciejowski (2009) and Alazard (2013) for an in-depth discussion of such issues.
The properties mentioned here, represent those that are of importance in the dis-
cussion of the simulation example in this Chapter.

It was already mentioned in Section 2.3.2 that it is of importance that the con-
troller is strictly proper. The two options that were mentioned for situations where
this is not true consisted of adding the feedthrough term DK to the plant directly,
through loop-shifting, or alternatively, of adding a filter or unit delay on the output
of the controller. The latter results in additional states in the controller, which may
have a negative influence on the stability margins of the closed-loop. On the other
hand, this does allow to satisfy hard input constraints, whereas loop-shifting does
not, due to the fact that the observer error comes into play when making predic-
tions of the output over the horizon.

Additionally, when nK ≤ n, the process of designing a state-feedback and ob-
server realization of the original controller leads to two distinct problems involv-
ing poles. First of all, one has to distribute the closed loop eigenvalues over the
state feedback dynamics (A + BK) and the observer error dynamics (A − HC).
Although all ordering of eigenvalues among the two sets gives the same closed-
loop behavior (in discrete-time), it appears to be a wise choice to allocate the fast
closed-loop poles to the observer poles. The reason for doing so is that the model-
predictive controller relies on the estimated state x̂ and therefore it is of great im-
portance that the quality of the estimated states is high. The other design choice
related to pole locations stems from the fact that when nK ≤ n, n− nK free poles
appear in the observer realization. These can be placed freely whilst the corre-
sponding observer error dynamics lie in the null-space of T , but they come into
play as soon as one of the constraints becomes active.

2.5 Simulation Example

This example is based on data presented by van Keulen (1991) on the real-time sim-
ulation and analysis of the automatic flight control system of the Boeing 747-200.
The aforementioned reference is based on data presented by Hanke and Nordwall
(1970); Hanke (1970) which links this example to the full nonlinear aircraft model
and simulations in Chapter 5. In the thesis van Keulen (1991) presents a (continu-
ous time) linearization of the symmetric equations of motion of the 747 aircraft in
combination with descriptions of the 747 autopilot system. The state-space matri-
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ces below are for cruise conditions (V = 423 ft/sec and h = 5000 ft).

[

A B

C D

]

=

















0 0.286 −0.572 0 0

−0.00947 −0.529 0 0.967 −0.0383

0 0 0 1.0 0

0.00239 −1.22 0 −0.631 −1.65

0 0 1.0 0 0

0 0 0 1.0 0

















the states of this system are, u (ft), α (deg), θ (deg), q (deg/sec) and the input is
the elevator δe. A full overview of the inner loop of the autopilot is presented in
Figure 5.6, which can be simplified to the following transfer functions

δe = −3.32(θref − θ)−
294s

(s+ 20)(s+ 10)(s+ 0.5)
q

The discrete time state-space form (sample time Ts = 0.1s) of the plant is

[
A B
C D

]

=











1.0 0.0279 −0.0572 −0.00147 2.73 · 10−5

−9.09 · 10−4 0.943 2.64 · 10−5 0.0911 −0.0114
1.36 · 10−5 −0.00587 1.0 0.0967 −0.00809
2.87 · 10−4 −0.115 −7.76 · 10−6 0.933 −0.16

0 0 1.0 0 0
0 0 0 1.0 0











and the discrete time state-space representation of the controller is

[
AK BK

CK DK

]

=







0.135 −0.560 0.705 0 0
0 0.368 0.795 0 0
0 0 0.951 0 1.0

0.406 −0.457 0.575 3.320 0







Application of the theory in this Chapter and Section 2.4 in particular leads to the
following matrices for the infinite MPC problem described in Section 1.3

K =
[
134.0 130.0 −154.0 −9.91

]

H =







−9.06 · 10−5 0.00737
0.0379 0.101
0.0268 0.09
0.531 0.114







De =
[
3.32 0

]

Simulations were made comparing the closed system for three different controllers:

1. the original controller;

2. an infinite horizon MPC controller;

3. an finite horizon MPC controller (horizon N=5).
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The Figures 2.5 through 2.7 show the results of the simulation when the model
is initiated in an off-equilibrium condition (pitch angle θ0 = 0.15 [rad]. What is
shown are the elevator input (Fig 2.5), the state-response (for the pitch angle θ only,
Fig. 2.6) and the difference (error) between the pitch rate response for the three
controllers 2.7). What can be seen from the figures is that the matching procedure
leads to a controller with behavior that is identical to the original controller. All
controllers show stabilizing behavior as the pitch angle θ returns to zero.

2.6 Conclusions

This chapter has introduced methods for obtaining a state observer in combina-
tion with a model-predictive controller. Based on a linear time-invariant repre-
sentation of both the existing autopilot and the aircraft it is possible to arrive at
such a controller structure. When the original controller contains both a direct
feedthrough term and integral action, this goal cannot be achieved without the
necessary caution. Section 2.4 presents a novel way to do so. In the absence of in-
put constraints this controller shows tracking performance that is on par with the
original output feedback controller without requiring extensive tuning of the cost-
function weighting matrices and quantities such as the prediction horizon.

In the presence of constraints, however, the performance of the reverse-engineered
controller cannot always be guaranteed, especially when one or more constraints
become active. Whilst the desire to introduce constrained control to the aircraft
benchmark is a driving force in this work, it is deemed very instructive to inves-
tigate different cost-function formulations for the MPC problem. Specifically cost-
functions that do not weigh the difference between the predicted state-feedback
quantities and the input are assumed to be of great value. Methods that weigh
the difference between the predicted plant state and the predicted closed loop dy-
namics are thought to be more than worth the investigation. The latter can offer
better ways to make use of the available redundancy in the sense of actuators. Ad-
ditionally, further future work on the applied aircraft model should also include
an exhaustive investigation of the different ways in which the closed-loop poles
may be distributed among the observer error-dynamics and the state-feedback
dynamics, as well as where to place the free poles in the controller.
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Figure 2.5: Comparison of the elevator input δe for a) the combination of the ob-
server based realization of the original controller plus infinite horizon MPC, and b)
the same for finite horizon MPC, and c) of the original controller for the example
in Section 2.5.
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Figure 2.6: Comparison of the state behavior θ (pitch angle) a) the combination of
the observer based realization of the original controller plus infinite horizon MPC,
and b) the same for finite horizon MPC, and c) of the original controller for the
example in Section 2.5.
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Figure 2.7: Comparison of the error when comparing the state (pitch angle θ) be-
havior for the example in Section 2.5. Two errors are shown, a) the difference
between the original controller and the infinite horizon MPC controller based on
reverse-engineering, and b) the difference between the finite horizon and the infi-
nite horizon implementation of the aforementioned MPC controller.
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3 CHAPTER

Model Predictive Control and
Feedback Linearization

This chapter features the combination of model-based predictive control
and the inversion of the dynamics of the system under control into a con-
strained and globally valid control method for fault-tolerant flight-control
purposes. The fact that the approach allows for the incorporation of con-
straints creates the possibility to incorporate additional constraints in case
of a failure. Such failures range from relatively straightforward actuator
failures to more complicated structural breakdowns where, through the
addition of constraints, the aircraft can be kept within its remaining flight
envelope. Furthermore, the method is model-based, which allows modi-
fication of the system model in case of a failure. Both of these properties
lead to the fault-tolerant qualities of the method presented.

3.1 Introduction

Starting point of this chapter is again the assumption that model predictive con-
trol (MPC) is well-suited to the needs of a reconfigurable control method. The
latter is also concluded by Jones (2005) where MPC is compared to several other
control methods that are deemed suitable. The previous statement is motivated
through inspection of the following properties of MPC: as a control strategy MPC
is based on online optimization that applies a model of the system under control,
which means that the internal model may be changed in between the time steps
of the optimization algorithm; furthermore, MPC is a constrained control method
which means that actuator failures, like jammed control surfaces can relatively
easily be incorporated and hence, accommodated for; and finally, MPC inherently
incorporates a control allocation method, which indicates that it is also possible
to give preference to the use of certain actuators in order to perform a maneuver.
The multi-variable setting is natural to MPC, hence strengthening the motivation

49
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of its suitability as a reconfigurable control method. Therefore, MPC has a defi-
nite advantage over many other control methods. This advantage does come at
a cost however, for MPC requires an optimization problem to be solved at every
time step. Furthermore, a proof of closed-loop stability is more difficult to pro-
vide.

In the particular case of reconfigurable flight control, which is what we strive for,
we have to take into account that the system under control has nonlinear dynam-
ics. More specifically, aircraft have nonlinear kinematics, as well as nonlinear aero-
dynamics. We would like to take this knowledge into account whilst this can be
of importance in the case of a failure. In modeling dynamic systems, one can
use systems structures that vary in complexity. Linear time invariant systems
are amongst the most simple implementations of a dynamic model, but these are
only valid in a relatively small region around the chosen equilibrium point. A
fully nonlinear model, based on first principles modeling, offers a far more pre-
cise representation of the physical system, but these models can be very complex.
In this chapter we will investigate the use of a nonlinear system model in combi-
nation with MPC. We assume that nonlinearities in the dynamics of the aircraft
may become of special importance once a failure has been introduced to the sys-
tem.

The theory of MPC, however, is not very well developed where the control of
nonlinear systems is concerned. It may be concluded from different surveys on
MPC (Mayne et al. 2000; Bemporad and Morari 1999; Qin and Badgwell 2003; Ma-
ciejowski 2002b) that MPC is well-suited to LTI systems. The main reason for this
lies in the structure of the optimization problem that forms the basis of MPC. MPC
in combination with an LTI system model will lead to a convex programming
problem, whereas a nonlinear system model will only lead to a convex program-
ming problem in very specific cases. Hence, no guarantees for the convergence of
the optimization problem can be given in cases where a nonlinear system model
is used. It is for this reason that it is deemed worthwhile to combine MPC with a
nonlinear control method in order to obtain a reconfigurable flight control system.
Dynamic inversion is such a method. It allows for the inversion of the nonlinear
kinematics of the aircraft such that linear and time-invariant behavior is obtained.
This linear behavior can be controlled with one of the commonly available MPC
algorithms. Some special measures are needed though, because of the intercon-
nection between both control methods and constraints.

The combination of MPC and NDI into one controller is not new. An example of
the combination of MPC and feedback linearization (FBL), which is a more strict
variation upon NDI, in order to obtain globally valid and constrained control for
the flight of a re-entry vehicle is to be found in van Soest et al. (2006), and the com-
bination of robust MPC and feedback linearization is evaluated in van den Boom
(1997). The theory presented in this chapter differs from existing literature in two
aspects; the first of which is that the combination of NDI and MPC is not only ap-
plied as a form of globally valid and constrained nonlinear control, but also as a
reconfigurable method; the second difference lies in the fact that it is assumed here
that the system has control effector redundancy in the nominal and fault-free case,
i.e. that it is over-actuated. The latter is not the case in the previously mentioned
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references. Next to these, Kale and Chipperfield (2005) provide an application
of robust MPC to achieve reconfigurable behavior, linear subspace identification
and predictive control are synthesized into one in Hallouzi and Verhaegen (2008),
NDI and online identification of the aerodynamic derivatives of the aircraft are
combined in Lombaerts et al. (2009). An example that considers the use of MPC,
without NDI, in a simulation of the Bijlmermeer accident scenario is to be found
in Maciejowski and Jones (2003).

In order to tackle the previously mentioned challenges, we introduce the sug-
gested synthesis between model-predictive control (MPC) and a nonlinear dy-
namic inversion method (NDI) in the following sections. Section 3.2 provides the
motivation for this setup, and furthermore, the section provides a clear introduc-
tion as to how both methods interact. Section 3.2.2 and 3.2.3 provide a discussion
of the theory of MPC and dynamic inversion, whereas Section 3.2.5 introduces
control allocation, and Section 3.2.4 is on the mapping of constraints, together pro-
viding the theory that is required to make the proposed combination of MPC and
dynamic inversion interact correctly. Sections 3.3 and 3.4 conclude the chapter
and provide a simulation example and summary and conclusion.

3.2 Overall Control-Setup

Figure 3.1 provides an overview of how MPC and NDI are combined in this chap-
ter. The concept of a combination between NDI and MPC such as to form a re-
configurable, globally valid, nonlinear, and constrained controller seems intuitive,
but there are several interconnection issues that require attention. Such issues are
caused by the fact that the number of system inputs is in general much larger than
the number of states that are to be controlled, which is actually a prerequisite for
FTFC. The latter forces us to include control allocation in between the NDI block
and the aircraft. This will be elaborated upon in Section 3.2.5. Furthermore, it is
not a priori clear how the constraints on the inputs relate to the constraints of the
MPC controller.

Subsection 3.2.1 introduces the model structure and section 3.2.2 introduces dy-
namic inversion. The next subsection provides the details of the MPC strategy
that has been applied. Finally, subsection 3.2.5 provides details on how to dis-
tribute the desired control effort over the physical inputs.

For reasons of clarity, several assumptions, mainly because of simplicity, are posed
here that hold throughout the entire chapter. It is assumed that new system pa-
rameters will become available, e.g. through online identification of the aerody-
namic parameters based on the work presented by Lombaerts et al. (2009). Other
assumptions that are made are that full-state information is to be available, and
more importantly, we assume that there are redundant control effectors, such that
these can be applied in case a primary actuator fails. Finally, it is such that this
method is best suited for failures of actuators/control surfaces and structural fail-
ures of the airframe. Sensor failures are not considered here.
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MPC NDI
CONTROL

ALLOCATION
ẋ = f(x) + g(x)u
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r ν u

x
x x x

Aircraft

fnew, gnew,Unew,Xnew

Reconfigurable controller

Figure 3.1: Overview of the complete FTFC loop and the individual components.
Additionally, the FDI block is shown to stress the importance of a failure detection
method that delivers a new system description and a new set of constraints after
the introduction of a failure.

3.2.1 Model Structure

This section starts with an introduction of the system-type that is considered and
continues to present the aspects that are involved in the combination of feedback
linearization and model predictive control. In this chapter we consider nonlinear
discrete-time systems, that are modeled to be affine in the input, like

x(k + 1) = f(x(k)) + g(x(k))∆u(k) (3.1)
y(k) = h(x(k)) (3.2)

where x(k) ∈ Rn is the state vector, where u(k) ∈ Rm is the vector of inputs,
and where k indicates that this system is a discrete-time system with sampling-
interval T . Furthermore, f(x) ∈ Rn×1, g(x) ∈ Rn×m. Both the input u ∈ U and
x ∈ X belong to a polyhedral set, i.e. they can be written as

U = {∆u ∈ R
m|Au ∆u ≤ bu}, (3.3)

X = {x ∈ R
n|Ax x ≤ bx} (3.4)

for some matrices Au, Ax and vectors bu, bx. Furthermore, it is assumed that the
output y(k) = x(k), such that h(x(k)) = x(k).

It must be remarked that it is also possible to apply FBL to the system in contin-
uous time. This, however, leads to issues with respect to the control allocation
problem such as depicted in Figure 3.1. The control allocation will consist of a
constrained quadratic programming problem and will necessarily be performed
in discrete-time. It is therefore more logical to perform all steps in discrete-time,
and as such, to discretize the nonlinear system before applying FBL.

3.2.2 Nonlinear Dynamic Inversion

Feedback linearization is a control method that will obtain linear and decoupled
input-output behavior through application of a static and nonlinear feedback law.
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Aspects like relative degree, partial feedback linearization and uncontrollable in-
ternal dynamics are important issues within the standard framework of feedback
linearization as presented by Isidori (1995); Slotine and Li (1991). Feedback lin-
earization in its most basic form, (partial) input-state linearization, is what is ap-
plied here. Input-state linearization avoids the aforementioned issues to some
extent. The presented implementation applies the concept of a virtual input and
hence allows for the use of the available control effector redundancy in a further
step, whereas FBL in its purest form does not.

It is necessary to include dummy outputs in 3.1 for input-state linearization when
m ≥ n in order to be able to apply FBL, since u and y, or x in this particular
case, are required to be sized equally. Alternatively, it is possible to introduce a
virtual input w(x(k),∆u(k)) = g(x(k))∆u(k), z ∈ Rn and to split up the problem
of input-state, or possibly partial state, linearization and control allocation, such
that

x(k + 1) = f(x(k)) + w(x(k),∆u(k)), (3.5)

where z(x(k), u(k)) is assumed to be a virtual input of the system that can be used
for linearization purposes. This relation between w(x(k),∆u(k)) and ∆u(k), and
how to make use of the freedom therein, is the topic of Section 3.2.5 on control
allocation.

It is clear to see that in order to invert the nonlinear dynamics, a choice of

w(k) = g(x(k))∆u(k) = −f(x(k)) + ν(k), (3.6)

will result in decoupled closed-loop behavior that equals

x(k + 1) = ν(k), (3.7)

where ν(k) ∈ Rn is a new input to the inverted system. The latter equation shows
that the chosen control law decouples the system, such that the closed-loop consti-
tutes a series of integrators in parallel, but optionally, through proper selection
of z(k) the linear dynamics can incorporate some desired dynamics such that
x(k + 1) = Adesx(k) + ν(k). Furthermore, it is clear to see that when the number
of inputs m is smaller than the number of states n, it will be impossible to invert
the entire dynamics. When m = n there will exist a unique solution to Equation
(3.6) and when m > n then there will exist a whole set of solutions ∆u(k) to this
equation. It is necessary to make the remark that it is assumed in this chapter that
m > n, and hence input redundancy exists. Therefore, the input u(k) will have to
be allocated at every discrete-time step. The latter is commonly called nonlinear
dynamic inversion (NDI) instead of FBL.

In summary, the input-state linearization that is presented in this section leads
to LTI behavior that relates ν(k) to x(k), and retains freedom in the allocation of
∆u(k). A restrictive result of the above is that the original input constraints on
∆u(k) must now be mapped into constraints on ν, since ν(k) will be controlled
using model predictive control (see Figure 3.1). The next section will introduce an
MPC algorithm that has been tailored to this situation, such that this issue can be
avoided to a large degree.
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3.2.3 Model predictive control

Now that a linear discrete-time system (3.7) has been obtained through NDI, it is
straightforward to apply model predictive control (MPC). MPC makes use of a sys-
tem model that provides a description of the dynamic behavior of a system. Linear
MPC typically uses linear time-invariant (LTI) systems in state-space form

x(k + 1) = Ax(k) +B∆u(k) (3.8)
y(k) = Cx(k) (3.9)

For reasons of simplicity we do not take the noise signal e(k) into account in this
Chapter.

We choose to use the objective function, where the prediction horizon is chosen
equal to N , as follows

J(u, k) =

N−1∑

i=Nm

(x̂(k + i|k)− xr(k + i))
T
Q (x̂(k + i|k)− xr(k + i))

T
+

N−1∑

i=1

∆u(k + i− 1|k)TR∆u(k + i− 1|k) (3.10)

where x̂(k + i|k) is the predicted value of x(k + i) at time k. xr(k) ∈ Rn is the
reference state and Q � 0, R ≻ 0 are a state weighting matrix and an input weight-
ing matrix respectively. Note that this objective function corresponds to a perfor-
mance signal

z(k) =

[
Q1/2(x(k + 1)− xr(k + 1))

R1/2∆u(k)

]

=

[
Q1/2A

0

]

x(k) +

[
Q1/2B

R1/2

]

∆u(k)

+

[
−Q1/2xr(k + 1)

0

]

r(k) (3.11)

If we introduce the following variables

x̃ =








x(k + 1|k)
x(k + 2|k)

...
x(k +N |k)








, x̃r =








xr(k + 1|k)
xr(k + 2|k)

...
xr(k +N |k)








ũ =








∆u(k|k)
∆u(k + 1|k)

...
∆u(k +N − 1|k)








, ν̃ =








ν(k|k)
ν(k + 1|k)r

...
ν(k +N − 1|k)r







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and

Q̃ = IN ⊗Q,

R̃ =





1 0 . . . 0
0 0 . . . 0
0 0 . . . 0



⊗R (3.12)

where IN is an identity matrix of size N , and where the operator ⊗ indicates the
Kronecker product of two matrices. The Kronecker product of two matricesA and
B is defined as

A⊗B =






a11B . . . a1nB
...

. . .
...

am1B . . . amnB






where aij is the i, j-th entry of matrixA ∈ Rm×n. Now, using relationship (3.7) the
above objective function (3.10) can be expanded into

J(ν(k)) = (x̃ − x̃r)
T Q̃(x̃− x̃r) + ũ

TRũ

= (ν̃ − x̃r)
T Q̃(ν̃ − x̃r) + ũ

TRũ

= ν̃T Q̃ν̃ − 2x̃Tr Q̃ν̃ − 2x̃Tr Q̃x̃r + ũ
TRũ. (3.13)

In order to be able to take into account the constraints on the physical input u(k) it
is necessary to incorporate Equation (3.6) which denotes the relationship between
ν(k) and u(k) and the constraints on input u(k) as in (3.3). Both of these can be
expanded over the horizon as follows






g(x(k)) 0 . . . 0
...

...
. . .

...
0 0 . . . g(x(k +N − 1))






︸ ︷︷ ︸

=C̃(x)

ũ(k) =








−f(x(k))
−f(x(k + 1))

...
−f(x(k +N − 1))








︸ ︷︷ ︸

=b̃eq(x)

+ν̃(k) (3.14)

and

(IN ⊗Au)
︸ ︷︷ ︸

=Ãu

ũ(k) ≤
[
1 1 . . . 1

]T
⊗ bu

︸ ︷︷ ︸

=b̃u

(3.15)

Hence, it can be concluded that the optimization of cost-function (3.13) subject to
(3.14) and (3.15) will produce the optimal vector ν̃∗(k). It must be noted, however,
that ũ(k) appears in the equality constraint (3.14) and that the same constraint also
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depends nonlinearly on the state x̃(k). ũ(k) is an independent variable and there-
fore it is necessary to append it to the cost-function (3.13) such that the constraints
can also be incorporated into the problem as follows

min
ν̃,ũ

[
ũ
ν̃

]T [
R 0

0 Q̃

] [
ũ
ν̃

]

+

[
0

−2x̃Tr Q̃

]T [
ũ
ν̃

]

(3.16)

s.t.
[

C̃ | − INn

]
[
ũ
ν̃

]

= b̃eq (3.17)

[
Ãu 0

]
[
ũ
ν̃

]

≤ b̃u (3.18)

The minimization of (3.16), s.t. (3.17) and (3.18) leads to a feasible ũ∗ and an opti-
mal ν̃∗. Note that the above Equation 3.17 incorporates the relationship between
the virtual input w, the physical input ∆u, and the variable ν (see remark). The
latter may be interpreted as if the dynamic inversion were embedded into the
MPC problem. It must be noted, however, that it is not possible to weight the
input ũ(k) during this phase because that impairs the state-tracking capability of
the controller. The argument of the optimization ũ∗ is not unique, since g(x(k))
is a wide matrix. Hence, it is possible to pose a second optimization problem in
the form of a control allocation problem, which will be the subject of one of the
following sections.

One issue, that was already mentioned in the previous paragraph, is that the
equality constraint (3.17) depends on the state in a nonlinear fashion. This con-
straint therefore has to be approximated such that it is either constant or linearly
dependent of the state at time k. Several possible approximations are:

1. Assume that x(k) is constant over the horizon such that

C̃ ≈ In ⊗ g(x(k)), b̃eq ≈
[
1 1 . . . 1

]T
f(x(k));

2. Apply the input that was computed for the previous time step to predict the
evolution of the state over the horizon;

3. Assume that the system state will follow the reference state according to a
stable and linear time-invariant (LTI) reference system;

4. Exploit a Jacobian linearization of f(x(k)) and g(x(k)) to obtain a local LTI
model that can be applied to predict the evolution of the state over the hori-
zon.

It is acknowledged here that what is presented in this section is a tailor-made MPC
implementation, and refer to Maciejowski (2002b) for an in-depth investigation
of MPC and its properties in general. Furthermore, experience has shown that
the proposed MPC problem is computationally very intensive. The latter is pre-
dominantly caused by the fact that both the physical input u and the input of
the inverted system ν are free variables which simultaneously appear in the MPC
problem, together with the relation between them and the constraints on the input
u.
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Now define matrix F (x) ∈ Rn×n be such that f(x) = f(0) + F (x)x(k). We now
obtain

∆u ≈ Gl(x)
(

ν(k)− F (x(k))x(k) − f(0)
)

where Gl(x) is a pseudo left-inverse of G(x). For the prediction we can find matri-
ces C̃F , D̃F and Ẽf such that

ũ(k) ≈ C̃F (x)x(k) +Df (x)ν(k) + Ẽf (x) f(0)

If we assume that x(k) is constant over the horizon we obtain the objective func-
tion

J(ν̃) ≈ ν̃T (Q̃+DT
f R̃Df )ν̃

T + 2ν̃T (C̃fx(k) + Ẽff(0)− Q̃ x̂r(k))

+(C̃fx(k) + Ẽff(0)− Q̃ x̂r(k))
T R̃(C̃fx(k) + Ẽff(0)− Q̃ x̂r(k))

= ν̃THν̃ + ν̃Tµ+ c (3.19)

From a computational point of view it is much more desirable to solve a MPC
problem of the following form

min
ν̃

ν̃THν̃ + ν̃Tµ+ c (3.20)

s.t. Ãν ν̃ ≤ b̃ν (3.21)

which is a function of ν only. The latter is possible, but requires a relationship
between the constraints on ∆u and those on ν which can be computed by means of
a constraint mapping algorithm, which will be the topic of the next section.

3.2.4 Constraint mapping through polytope projection

In order to arrive at the computationally less expensive MPC problem in (3.20) we
require the mapping of the polytope U that bounds u(k) to a polytope that bounds
ν(k) via the relationship

g(x(k))∆u(k) = −f(x(k)) + ν(k) (3.22)

or, when the state is plugged in (according to one of the previously mentioned
approximations)

ν(k) = G∆u(k) + f

where G = g(x)|x=x(k) and f = f(x)|x=x(k). It can very easily be shown that
when ∆u lies inside a convex set, that ν will also be bound to lie inside a convex
set. This holds true since we have assumed that m > n and hence the projec-
tion matrix G projects U onto a lower dimensional subspace. Such a projection
preserves convexity.

Performing this mapping must be done every time step and is very closely related
to the subject of computational geometry. It is however well-known that projec-
tion methods, like vertex enumeration methods and Fourier-Motzkin elimination,
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as are described in Preparata and Shamos (1985), are computationally very expen-
sive and therefore not suitable for this application which will typically be applied
to systems with fast dynamics. Even the more advanced and much faster meth-
ods like the equality set projection algorithm in Jones et al. (2004) was shown to
be prohibitive where computational complexity is concerned.

It is, however, possible to very efficiently compute the bound Aνν ≤ ν using the
results of the following proposition:

Define the sets U and V as follows:

U = {∆u ∈ R
n| − 1 ≤ ∆ui ≤ 1, i = 1, . . . , n} (3.23)

and
V = {v ∈ R

m, w ∈ R
n | v = Gu, u ∈ W} (3.24)

The following theorem shows how to rewrite the set V of (4.7) on page 73 into the
following form:

V = {ν ∈ R
m | − bν ≤ Aνν ≤ bν}. (3.25)

Theorem 3.1 (Hypercube projection) Given the sets U and V as defined in (3.24)-

(3.25), and a matrix G ∈ Rm×n , m < n. Let s =

(
n

m− 1

)

and define the set

T = {T1, T2, . . . , Ts} where the matrices Ti ∈ Rn×(m−1), i = 1, . . . , s are all possible
combinations of (m − 1) columns of the unit matrix In×n, and let T⊥

i ∈ Rn×(n−m+1)

consist of all remaining (n−m+ 1) columns of the unit matrix In×n.

For all i = 1, . . . , s we can define the row-vector, if the rank(GTi) = (m− 1) then choose
ai as

ai = Ker((GTi)
T ) ∈ R

m×1, (3.26)

and the scalar value
bi = |aTi GT

⊥
i | 1̄n−m+1,

where | · | denotes the element-wise absolute value. Now define

Aν =








aT1
aT2
...
aTs







, bν =








b1
b2
...
bs







,

then the set V can be written as

V = {v ∈ R
m | − bν ≤ Aν v ≤ bν}

Remark: the method introduced in Proposition 3.1 can be extended to apply to
projection of zonotopes. Zonotopes are polytopes that are point-symmetric about
the origin. The extensions toward generic convex polytopes is given in Chapter
4

Proposition 3.1 provides a very efficient algorithm to project the constraints that
limit the physical system input ∆u onto a set of constraints on ν, thus greatly
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simplifying MPC problem (3.16) and reducing it into problem (3.20). Next to that
it can be remarked that, although ∆u was assumed to lie inside a hypercube, the
presented method holds equally well for constraints of the form

ui ≤ ∆ui ≤ ūi (3.27)

where ui and ūi define componentwise lower and upper bounds on the increment
input signal. The latter more general problem reduces to the case where ∆u is
assumed to lie inside a hypercube when the input is appropriately scaled and
translated. This linear transformation must then be reversed after the projective
step.

An example that illustrates the projection of a hypercube in R3 onto R2 using a
random projection matrix G is provided in Figures 3.2 and 3.3. The algorithm has
been tested extensively using different dimensions m and n. Especially for higher
dimensions (e.q. u ∈ R10−R30 this polytope projection has a clear advantage over
other geometric projection methods. Since inputs of physical systems generally
have upper and lower bounds, the assumption that u is constrained to lie inside a
box-like set is deemed only mildly restrictive.

We have now succeeded at separating the NDI part of the controller from the MPC
part. The latter reduces the overall controller from one very large optimization
problem into two smaller problems (MPC and NDI). MPC has now been covered,
what remains is to show how NDI can be incorporated into a efficient control
allocation scheme. This will be the topic of the next section.

3.2.5 Computationally Efficient Control Allocation

The previous sections have shown that it is possible to construct a globally valid,
but constrained and nonlinear controller by means of a combination of MPC and
FBL. Until now, however, we have only computed the FBL input ν∗k in the pre-
vious section, which is related to the desired forces and moments z(k) via the
relationship ν(k) = f(x(k)) + z(k). These desired forces and moments need to be
translated, since in general the number of inputs is known to be larger than the
number of controlled states. It is desirable to allocate the available inputs such
that the desired forces and moments are achieved, and such that for instance, the
absolute size of the inputs is minimal, or such that the change of the input with
respect to the previous time step is minimized.

Hence, sincem ≥ n there is freedom in choosing u. One way to solve this problem
involves the following quadratic programming problem

min
∆u

J(∆u(k)) = u(k)TQuu(k)

+∆u(k)TRu∆u(k) (3.28)
s.t. g(x(k))u(k) = −f(x(k)) + ν∗(k)

Au(k) ≤ b
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Figure 3.2: Part 1 of the projection example:
this cube in R3 represents the original con-
straint on the variable u.
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Figure 3.3: Part two of the projection exam-
ple: the depicted polytope represents the con-
straints on the variable ν that follow from the
relationship ν = Gu + f and the affine pro-
jection of he bounds on u onto bounds on ν
using this relationship.
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where ν∗(k) is the optimal input resulting from MPC (3.20), ∆u = u(k)− u(k − 1)
and where Qu, Ru � 0 are input weighting matrices.

The above optimization problem may be interpreted as follows: given one fea-
sible input ν∗(k) that results from the MPC step, this control allocation problem
will find a u(k) that satisfies the mixed objective posed above: a weighted mini-
mization of the inputs and minimization of the change of u(k) with respect to the
previous time step, while satisfying the control allocation goal by means of the
equality constraint g(x(k))u(k) = −f(x(k)) + ν(k). The goal of this cost-function
is bi-fold: on the one hand it is desired to minimize the 2-norm of the input, which
can be interpreted as the desire to apply small inputs, whereas on the other hand
the minimization of the 2-norm of ∆u(k) makes the controller much less aggres-
sive. The second item can be compared to the addition of integral action to the
controller.

At this point it must be remarked that both MPC and the control allocation method
that is presented in this section require computation of a quadratic program with
a QP-solver. Although efficient implementations of QP-solvers exist, it must be
noted that both MPC and control allocation account for the bulk of the computa-
tional effort that is required in the entire flight control setup which is presented in
this paper. It goes without saying that the latter is an important aspect in flight
control applications.

Furthermore, as a result of the fact that MPC, FBL, control allocation are imple-
mented as individual entities here, there no longer is a link between which input
is applied towards which goal, i.e. it is not a priori such that this controller will
apply ailerons to achieve a certain roll rate. It might for instance be such that the
controller of this setup will apply differential spoilers to achieve the same control
action. This can be avoided to a certain degree through an appropriate choice of
the weighting matrices Qu and Ru.

Both issues lead to the conclusion that in the nominal case it is better, i.e. when
failures are absent, to apply only a reduced subset of the available inputs. This is
especially true for the example which will be presented in Chapter 5, where the
total number of individual inputs equals 30. It is therefore suggested to fly with a
reduced set of inputs as long as (3.28) is feasible. This reduced set of inputs will
in general consist of the primary actuators (e.g. elevator, rudder, ailerons, engine
thrust). It is this approach that allows for a significant speed-up of the control allo-
cation algorithm and, furthermore, it forces the controller to apply more ’natural’
control inputs in the nominal case.

When (3.28) is not feasible, e.g. in a failure case, this means that the chosen subset
of inputs is no longer sufficient to achieve the desired control action. What we
present here is an intelligent method to compute the set of most effective inputs
such that it can still be avoided to use the full set of inputs. This method is based
on the unconstrained solution to the optimization presented in (3.28). Using this
unconstrained solution it is possible compute what the effectiveness of each input
is, such that they can be ranked accordingly.

It is, however, problematic that the actual control allocation is somewhat hidden in
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the complete problem in the form of an equality constraint. We therefore start this
search for the set of most effective inputs from the Lagrange dual of the control
allocation problem (3.28). Therefore we combine the equality constraint and cost-
function, whilst leaving out the input constraints (Au < b). For reasons of clarity
we will represent the control allocation problem in shorthand notation:

min
w

wTHw + fTw (3.29)

s.t. Aww = bw

where w = ∆u(k), H = (Qu + Ru), f
T = 2u(k − 1)Qu. The corresponding La-

grangian equals

L(w, λ) = wTHw + fTw + λT (Aww − bw) (3.30)

Since L(w, λ) is a convex quadratic function of w we can find the minimizing w
from the optimality condition

∇wL(w, λ) = 2Hx+ f +AT
wλ = 0 (3.31)

which yields

w = −
1

2
H−1(f + AT

wλ) (3.32)

and therefore the dual cost-function is

g(λ) = L(−
1

2
H−1(f +AT

wλ), λ)

= −
1

4
λTAwH

−1AT
wλ− (

1

2
fTHAT

w − b)λ (3.33)

Now remember from convex optimization theory that max g(λ) ≤ min J always
holds. The dual cost-function has its maximum when

−
1

2
AwTH

−1AT
wλ−

1

2
fTHAT

w − b = 0 (3.34)

Obviously the minimum λ∗ of the latter is not unique because this problem is un-
derdetermined and remember that in the latter the constraints are not taken into
account. Solving (3.34) can be reformatted as a least-squares problem where

λ∗ = argmin
λ

|| − (
1

2
AwH

−1AT
w)λ

−(
1

2
fTHAT

w − bw)||
2
2 (3.35)

One possible solution, the so-called minimum 2-norm solution can easily be com-
puted using the singular value decomposition of −(12AwH

−1AT
w) such that

−(
1

2
AwTH

−1AT
w) =

[
U1 U2

]
[
Σ 0
0 0

] [
V T
1

V T
2

]

= U1ΣV1 (3.36)
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The minimum 2-norm solution to (3.35) now equals

λ∗ = V1Σ
−1UT

1 (−
1

2
fTHAT + b) (3.37)

This result can now be applied to obtain the unconstrained minimizer of the orig-
inal cost function and control allocation problem. (3.32) relates λ∗ to the uncon-
strained minimum w∗. Using this unconstrained solution we finally arrive at the
following

∂J

∂w
|w=w∗ = Hw∗ + fT (3.38)

which gives an indication of how the individual inputs contribute to the mini-
mization of the cost-function J based on a ranking of the magnitude of the partial
derivatives. Based on this knowledge, whilst remembering that w = ∆u, a new
and larger set of inputs can be selected from the available inputs when the control
allocation problem based on the reduced set of inputs is no longer feasible. This
approach can be characterized as being a ranking of the set of available inputs
ordered based upon their effectiveness in the current situation. Obviously, this
method says nothing regarding how many inputs are required to regain feasibil-
ity of the optimization problem, some iterations are hence necessary. The major
benefit lies in the computational attractiveness of this methods when compared to
optimizing over all available inputs.

It is this control allocation strategy that completes the FTFC setup that has been
presented in this section, and the next section will show the merits of this FTFC
method by means of an example that involves the nonlinear equations of motion
of a fixed-wing aircraft.

3.3 Simulation Example

This example is loosely based on the (simplified) nonlinear longitudinal equations
of motion of a fixed wing aircraft where the symmetric stability and control deriva-
tives data of a Citation business jet is applied (Mulder et al. 2006, Table B-1, p.546).
We describe the dynamics as follows.

ẋ = f(x) + g(x)u (3.39)

where x is the state vector and u = [δeT ]
T the vector of inputs. The state vector

comprises the states x = [V, γ, q, θ]T , where V is the airspeed [m/s], γ [rad] the
flightpath angle, q [rad/s] and θ [rad] the pitch attitude. The input vector consists
of the elevator angle δe [rad] and the thrust [N]. The equation elements f(x) and
g(x) are as follows:

f(x) =







−g sin(γ)−D/m
(−g cos(γ)/V ) + L/(mV )

(1/Iyy)M
q − ((−g cos(γ)/V ) + L/(mV ))







(3.40)
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Table 3.1: stability and control derivatives for the Cessna Ce550, based on (Mulder
et al. 2006, Table B-1, p.546)

CM0
= 0.0009 CX0

= 0 CZ0
= -1.1360

CXu
= -0.2199 CZu

= 2.2720
CMα

= -0.4300 CXα = 0.4653 CZα
= -5.1600

CMδe
= -1.5530 CXδe

= 0 CXδe
= -0.6238

and

g(x) =







−Du/m cos(α)/m
Lu/(mV ) sin(α)/m
(1/Iyy)Mu 0
−(Lu/(mV ) − sin(α)/m







(3.41)

where g is the gravitational acceleration, Iyy the moment of inertia about the pitch
axis. The lift (L) and drag (D) forces and the pitching moment M can be expressed
as follows:





M
L
D



 =
1

2
ρV 2S





1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)









CM0
+ CMα

α
CX0

+ CXu
(u/V ) + CXα

α
CZ0

+ CZu
(u/V ) + CZα

α



 (3.42)





Mu

Lu

Du



 =
1

2
ρV 2S





1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)









CMδe

CXδe

CZδe



 (3.43)

The stability and control derivatives are listed in Table 3.1 and are representative
for straight and level flight (γ = 0, q = 0) where the airspeed V = 59.9 [m/s] and
the pitch attitude θ = 0.0163 [rad]. The inputs required for steady trimmed flight
in this condition are δe = −0.0039 [rad] and T = 56.2 [kN]. The nonlinear state
equations are also linearized to obtain the following state space-matrices:

ẋ = f(x) + g(x)u ≈ A(x− xtrim) +B(u− utrim) (3.44)

where

A =







−0.4128 −9.8100 0 58.3724
0.0021 0 0 12.6444

0 0 0 −1.0006
−0.0021 0 1.0000 −12.6444







(3.45)

B =







7.2936 2.1985× 10−4

−0.0020 3.589411× 10−6

−3.6138 0
0.0020 −3.589411× 10−6







(3.46)

In constructing the nonlinear dynamic inversion we will set the desired behavior
to match the linearized state space system. The effect of this choice is that non-
linearities to be canceled through dynamic inversion are small in the vicinity of
this operating point and that hence the effect of modeling mismatches is smaller
in such case.
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In this particular example there are two inputs and four states. Common sense
dictates that the number of states to be controlled are to be reduced. A logical
choice for such reduction is to focus on the airspeed and pitch rate. This reduces
f(x) and g(x) to where

f̃(x) =

[
−g sin(γ)−D/m

(1/Iyy)M

]

(3.47)

and

g̃(x) =

[
−Du/m cos(α)/m

(1/Iyy)Mu 0

]

(3.48)

which together with reduced state space matricesAr andBr and xr = [V q]T leads
to the dynamic inversion control law

u = (g̃−1(x))(−f̃ (x) +Ar(xr − xrtrim ) +Br(ν − utrim) (3.49)

where ν is the new input to the inverted system.

An MPC controller in the sense of Chapter 2 is applied here although, admittedly,
an original controller must be found for that first. To this purpose a discrete time
state feedback controller of the form ur = −Fxr(k) is chosen that places the poles
of the linearized system (A,B) at pdes = [0.9048, 0.9512]T after zero-order-hold
discretization of (A,B) with sampling time Ts = 0.1 [s]. The resulting state feed-
back matrix is obtained through pole placement and equals

F =

[
0 −0.1384

2.67× 103 4.5901× 103

]

(3.50)

An MPC controller is subsequently constructed along the lines of Section 1.3, i.e.
matching the original controller through MPC, in this case matching the state feed-
back controller. While this is not strictly necessary, the latter design choices are
representative of the case where one wishes to match the behavior of an original
autopilot, hence the matching of the linearized system and controller.

Figures 3.4 and 3.5 show the simulation results for the closed loop of plant, NDI
and state-feedback/MPC for an initial condition that has an airspeed 10 m/s
above the trimmed condition. The NDI controlled states converge nicely but note
that the flight path γ in 3.5 slowly diverges. This is due to the fact that this vari-
able is not controlled in this example. Typically flight control systems consist of
an inner loop and an outer loop. The inner loop controls the fast variables and
the outer loop controls the slower variables. Flight path control would typically
be implemented in an outer loop. This example foregoes the design of the outer
loop.

3.4 Discussion and conclusion

A method that combines the constraint handling capabilities of MPC with NDI
has been introduced. The challenge thereof lies in the resulting nonlinear transfor-
mation of the original input constraints of the plant. This is both computationally
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ν 1
[r

ad
]

original controller
MPC implementation

ν 2
[N

×
1
0
8
]

t [s]
0 5 10 15 20 25 30

0 5 10 15 20 25 30

2

4

6

8
×10−4

-3.95

-3.94

-3.93

-3.92
×10−3

Figure 3.4: Inputs ν1,2 to the dynamic inversion part of the closed loop of plant,
dynamic inversion and either state feedback controller or the equivalent MPC con-
troller (prediction horizon N = 20).

intensive and the expansion of this transformation over the prediction horizon
remains an approximation due to the nonlinear plant.

A drawback of the methods introduced is that NDI or feedback linearization is
known to be very sensitive to modeling errors and MPC is a computationally in-
tensive methods. Even the comparatively simple example introduced at the end
of this chapter supports the notion that these properties do not combine well with
a system that has fast dynamics such as an aircraft.

Having said this, this thesis does present a method to perform the mapping of
constraints onto the inputs of the NDI controller in an efficient manner. Chapter 4
investigates the matter of constraint mapping more in-depth. This alleviates one
aspect of the aforementioned issues. Also the example shows the feasibility of the
method as a whole.
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Figure 3.5: States for simulation of the closed loop of plant, dynamic inversion
and either state feedback controller or the equivalent MPC controller (prediction
horizon N = 20).
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4 CHAPTER

Polytope projection

This chapter investigates the projection of a polytope onto a lower dimen-
sional subspace. Projection methods that depend on the vertex descrip-
tions of the original polytope and its image under projection can be very
computationally expensive. Methods are proposed here that make use of
the halfspace description to the maximum extent possible. This particu-
larly relevant to the theory in Chapter 3 of this thesis, but there is also a
link with optimization algorithms in general.

4.1 Introduction

In the MPC procedure of Chapter 3 feedback linearization has been applied that
linearizes and decouples the system under control. The actuator input signal u(k)
is mapped onto a new linearized input signal v(k) at each time step k using

v(k) = Gu(k) + f

Note that for a large aircraft we have that the number of control surfaces is much
larger than the six degrees of freedom we need to control it. This means that with
u ∈ Rn and v ∈ Rm we have n≫ m (for a Boeing 747 aircraft we have n = 30 and
m = 6).

If we have to solve the MPC problem the constraints will have the form

Aũ(k) ≤ b

where

ũ(k) =








∆u(k)
∆u(k + 1)

...
∆u(k +N − 1)








69
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with ∆u(k) = u(k) − u(k − 1). The following paragraphs provide details as on
how to include either constraints on the input increments, the inputs themselves,
or the combination of these both in this format.

It is this constraint set in variable u(k) that we need to project onto Rm such that
we arrive at the new constraint set required for the MPC problem

Avv(k) ≤ bv

Increment Input constraints:

Input constraints in MPC are usually given in the form of upper and lower bounds
on the individual incremental inputs:

∆ui,min ≤ ∆ui(k) ≤ ∆ui,max , ∀i ∈ [1, n]

where the index i denotes the i-th input. We obtain the constraint:

ũmin ≤ ũ(k) ≤ ũmax

or [
I
−I

]

ũ(k) ≤

[
ũmax

−ũmin

]

(4.1)

where

ũmin =








∆umin

∆umin

...
∆umin








and the same holds for ∆ũmax.

(Non-increment) Input constraints:

If we deal with an MPC problem with (non-incremental) inputs we consider the
constraints:

ui,min ≤ ui(k) ≤ ui,max , ∀i ∈ [1, n]

Define

ũ
′(k) =








u(k)
u(k + 1)

...
u(k +N − 1)








Then we obtain the constraint:

ũ
′
min ≤ ũ

′(k) ≤ ũ
′
max

or [
I
−I

]

ũ
′(k) ≤

[
ũ
′
max

−ũ
′
min

]
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with ũ
′
max, ũ

′
min defined similar to ũmax and ũmin. Now let

M =









I 0 0 . . . 0

I I
. . .

...
...

...
. . . 0

I I . . . I









∈ R
Nn×Nn, L =








I
I
...
I







∈ R

Nn×n,

Then with

ũ
′(k) =








u(k)
u(k + 1)

...
u(k +N − 1)








=








∆u(k) + u(k − 1)
∆u(k + 1) + ∆u(k) + u(k − 1)

...
∆u(k +N − 1) + ∆u(k +N − 2) + . . .+∆u(k) + u(k − 1)








=M ũ+ Lu(k − 1)

We obtain the constraint

ũ
′
min ≤M ũ+ Lu(k − 1) ≤ ũ

′
max

or [
M
−M

]

ũ(k) ≤

[
ũ
′
max − Lu(k − 1)

−ũ
′
min + Lu(k − 1)

]

(4.2)

Mixed Input constraints:

If we have constraints on both inputs and increment inputs we have to consider
the intersection of both constraints and we obtain







I
−I
M
−M






ũ(k) ≤







ũmax

−ũmin

ũ
′
max − Lu(k − 1)

−ũ
′
min + Lu(k − 1)







(4.3)

General constraints:

In Chapter 1 we introduced the model predictive control problem with inequality
constraint (1.10):

F̃(k)x(k − 1) + G̃(k)r̃(k) + H̃(k)ũ(k) + J̃(k)u(k − 1) 6 h̃(k)

or with Au = H̃(k) and bu = h̃(k)− F̃(k)x(k− 1)− G̃(k)r̃(k)− J̃(k)u(k− 1)

Auũ(k) 6 bu (4.4)
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Note that in the constraints (4.3) the final constraints have the form of (4.4) where
bu is affine in a variable u(k − 1), x(k − 1) and/or r̃(k), which are known at time
sample k. Now define the set of all ũ(k) that satisfy (4.4) as U , or

U = {ũ ∈ R
m |Au ũ ≤ bu}. (4.5)

then U is a convex polytopic set.

Now consider the projection

ṽ(k) = G̃ ũ(k) + f̃

where
G̃ = IN ⊗G

with IN the N ×N identity matrix, and

f̃ = [1 1 . . . 1]T ⊗ f

which constitutes an affine transformation of the original input constraints on ũ.
This projection forms the starting point for the remainder of this chapter as this is
the problem we would like in a computationally efficient manner.

4.2 Projection

For ease of notation we use u and v instead of ũ and ṽ in this section. Suppose
u ∈ U where U is in a convex polytopic set. The set of all feasible linearized input
signals is defined as

V = {v ∈ R
m, u ∈ R

n | v = Gu, u ∈ U}

which constitutes the projection of actuator space U on the space V . Note that due
to the fact that U is a polytope we find that V will also be a polytope, which means
that there exist a matrix A and a vector b, such that

V = {v ∈ R
m |Av ≤ b}

As already stated in Chapter 3, it is important to find an efficient and fast algo-
rithm to compute that matrix A and vector b for the MPC algorithm to use at each
time step.

Various methods for such projection of constraints, i.e. polytope projection, exist
and the interested reader is referred to technical reports such as those by Jones
et al. (2004) and Fukuda (2004) for an introduction to the theory of polyhedrons,
polytopes and their associated terminology. Jones et al. (2004) provide an orthog-
onal polytope projection method and list a brief overview of associated literature
on the matter. Well-known polytope projection methods include Fourier-Motzkin
elimination and methods based on the vertices of the polytope.
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Fourier-Motzkin (FM) elimination in linear inequalities, first described by Fourier
in 1824, is in fact similar to Gaussian elimination for linear equalities. In FM elim-
ination the original polytope in Rn is recursively projected one dimension lower
(Rn−1) until the required dimension is reached. The disadvantage of the method
is that it generates many redundant inequalities at each iteration. Removing the
redundant inequalities makes this method computationally expensive.

Vertex based projection methods apply the vertices, the extreme points of the poly-
tope that is to be projected, as projection of the individual vertices onto a lower
dimension by multiplying each vertex with G. The disadvantage is that recon-
struction of the convex hull of the image under projection is again computation-
ally expensive as typically the number of vertices that describe the polytope is
much larger than the number of linear inequalities that describe it (the half-space
description) and as projection of the vertices leads to many redundant vertices that
have to be removed in order to arrive at an irredundant (minimal) description of
the projected image. A hypercube in Rd, the higher-dimensional equivalent of
a box in R3 or a square in R2, for instance requires 2d linear inequalities for its
half-space description, whereas it has 2d vertices.

This chapter continues to provide a method that has lower computational com-
plexity than the aforementioned methods but is tailored to the projection of hy-
percubes, which is applicable to the projection problem in the introduction of this
chapter when each individual input is bound to a range between a maximum
and a minimum value. The method is computationally efficient as it is based
on half-space description of the hypercube only. The chapter concludes with an
extension of the hypercube projection methods to general polytopes that uses a
mix of the vertices and the half-space description of the original and the projected
polytope.

Problem definition

The Projection problem is defined as follows:
Given a convex polytope U ,

U = {u ∈ R
n, Auu ≤ bu} (4.6)

a projection matrix G ∈ Rm×n,m < n in

v = Gu

compute matrix A and vector b such that

V = {v ∈ R
m, u ∈ R

n | v = Gu, u ∈ U} (4.7)

reduces to
V = {v ∈ R

m |Av ≤ b} .

Goal is to find a computationally efficient manner of performing a polytopic pro-
jection, where possible avoiding the application of linear programming methods
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and the use of the vertices of the polytope. The preferred method is one that makes
use of the halfspace description only. Such methods are relevant in a whole range
of problems.

In Section 4.3 we will consider the projection of a hypercube. In Section 4.4 we
will look at the projection of a convex polytope.

Some definitions

Definition 4.1 (hypercube). A hypercube is the equivalent of a square in n dimensions.
The n-hypercube can be described as follows

W = {u ∈ R
n| − 1 ≤ ui ≤ 1, i = 1, . . . , n} (4.8)

Definition 4.2 (n-zonotope). A convex n-polytope that is point-symmetric about the
origin, i.e. the faces of the zonotope are defined as

[
A
−A

]

x ≤

[
b
−b

]

for x ∈ R
n

Remark: Note that a zonotope is point-symmetric, so if a point v is in the interior
of the zonotope also −v will be in the interior of the zonotope.

Definition 4.3 (vector of ones) The vector 1̄p = [1 1 . . . 1]T is a vector in R
p.

Definition 4.4 (matrix kernel ) The kernel of a matrix A ∈ Rm×n with n > m and
rank(A) = m, is defined as

Ker(A) = {x ∈ R
n×(n−m) | Ax = 0 }

4.3 Hypercube projection

In this section we consider the projection of a hypercube onto a lower dimension.
First of all note that the projection with projection matrix G of a hypercube pre-
serves convexity and hence the image of the projection on R

m will also be a closed
and convex polytope. Furthermore, the closed convex polytope will be point-
symmetric about the origin, i.e. a zonotope. The convex hull of the image results
from the projection of the hull of the original hypercube.

More specifically, the inequalities that define the hull of the image are formed
through projection of the (m− 1)-faces of the hypercube that have exactly (m− 1)
degrees of freedom.

4.3.1 A Projection algorithm

This section introduces a computationally cheap method for the projection of hy-
percubes onto a lower dimensional subspace.
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Theorem 4.1 (Hypercube projection) Given U , G ∈ Rm×n , m < n and V as defined

in (4.6),(4.7). Let s =

(
n

m− 1

)

and define the set T = {T1, T2, . . . , Ts} where the

matrices Ti ∈ Rn×(m−1), i = 1, . . . , s are all possible combinations of (m− 1) columns
of the unit matrix In×n, and let T⊥

i ∈ Rn×(n−m+1) consist of all remaining (n−m+ 1)
columns of the unit matrix In×n.

For all i = 1, . . . , s we can define the row-vector ai. If the rank(GTi) = (m − 1) then
choose ai as

ai = Ker((GTi)
T ) ∈ R

m×1, (4.9)

and the scalar value
bi = |aTi GT

⊥
i | 1̄n−m+1,

where | · | denotes the element-wise absolute value. Now define

A =








aT1
aT2
...
aTs







, b =








b1
b2
...
bs







,

then the set V can be written as

V = {v ∈ R
m | − b ≤ Av ≤ b}

Proof:

Let us now consider (m− 1)-face i of a hypercube. Note that

[
Ti T⊥

i

]T [
Ti T⊥

i

]
=

[
I 0
0 I

]

Any ui on this face can adequately be described as

ui = Ti η + T⊥
i w

where η is a free variable in Rm−1, wi ∈ −1, 1∀i ∈ [1, n−m+1]. Then plugging in
v = Gu gives:

v = G (Ti η + T⊥
i w).

Now consider ai as defined in (4.9), then ai is orthonormal with respect to face i,
so

aTi GTi η = 0

This gives us:
aTi v = aTi GT

⊥
i w (4.10)

Note that any hypercube in R
n has exactly 2n−m+1 faces with m− 1 degrees of

freedom which are parallel to face i and hence lead to the same ai after projection.
The vector w, however, differs up to a permutation of the sign of its entries. We
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now aim to find the boundary faces by finding the maximum value bi,max and
minimum values bi,min such that

bi,min ≤ aTi GT
⊥
i w ≤ bi,max , ∀ w ∈ B

n−m+1

One may compute the maximum value as

bi,max = bi = max
w∈Bn−m+1

aTi GT
⊥
i w = |aiGT

⊥
i |1̄n−m+1

Because of the symmetry we find bmin = −bi and so

−bi ≤ aTi v ≤ bi

�

4.3.2 Examples

Example 4.1 (Example of hypercube projection)

This is an example of the projection of a cube in R3 onto R2. The projection matrix is
chosen to be

G =

[
1 1 0
1 −1 1

]

with v = Gu.

We derive

Ti ∈ {T1, T2, T3} =











1
0
0



 ,





0
1
0



 ,





0
0
1











and

T⊥
i ∈ {T⊥

1 , T
⊥
2 , T

⊥
3 } =











0 0
1 0
0 1



 ,





1 0
0 0
0 1



 ,





1 0
0 1
0 0











Figure 4.1 gives a graphical representation of both the original cube and the image after
projection. Indicated in red in the cube are four parallel edges of the cube. They correspond
to the case i = 1. A description of u lying on these edges can be given as

u = T1 η + T⊥
1 w =





1
0
0



 η +





0 0
1 0
0 1



 w

where η is a free scalar variable and w ∈ B2. The mapping of these edges in R2 now gives:

v = GT1η +GT⊥
1 w =

[
1 0 0
1 0 0

]

η +

[
1 0
−1 1

] [
±1
±1

]

We compute

a1 = Ker((GT1)
T ) =

[
1
−1

]



4.3 Hypercube projection 77

and

b1 = |aT1 GT
⊥
1 |1̄2 = |

[
2 −1

]
|

[
1
1

]

= 3

Repeating the steps for the other two sets of parallel edges of the cube leads to the polytope
description of the image which equals:

−





3
3
2



 ≤





1 −1
1 1
1 0



 v ≤





3
3
2





Figure 4.1: Left: original hypercube in R3, and right the image after projection.
Also indicated in the figure in red in the cube are four parallel faces (in this case
the edges) that have n − 1 degrees of freedom, the red lines in the image on the
right are the images of the projection of these four edges

Example 4.2 (Example of hypercube projection from R8 to R2) Starting point of
this example is the projection matrix G ∈ R

8×2:

G =

[
23 −6 −11 −6 24 2 22 −7
−9 −5 −10 24 −15 −37 0 9

]
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Using the algorithm we derive

A =































0.3644 0.9312
−0.6402 0.7682
−0.6727 0.7399
0.9701 0.2425
0.5300 0.8480
0.9985 0.0540

0 1.0000
0.7894 0.6139
−0.3644 −0.9312
0.6402 −0.7682
0.6727 −0.7399
−0.9701 −0.2425
−0.5300 −0.8480
−0.9985 −0.0540

0 −1.0000
−0.7894 −0.6139































b =































93.1243
126.6285
126.3952
92.8911
89.3578
96.5887
109.0000
93.4944
93.1243
126.6285
126.3952
92.8911
89.3578
96.5887
109.0000
93.4944































In figure 4.2 the resulting 2-dimensional zonotope is given (boundaries are given by the
red solid lines). Also the projection of all 1-dimensional faces of the original 8-dimensional
hypercube are given (blue dotted lines).

4.3.3 Projection of a hypercube after a linear mapping

Theorem 4.1 can be extended to hold for hypercubes subject to a linear mapping,
i.e. a linear translation and/or scaling. A hypercube subject to a linear mapping
can be described as follows

U = {u ∈ R
n, w ∈ R

n | u =M w + u0, −1 ≤ wi ≤ 1, i = 1, . . . , n}

The projection
v = Gu

becomes
v = GM w +Gu0

after substitution of the linear mapping. Setting the new variables v′ = v − Gu0
and G′ = GM leads to the projection of the hypercube in w

U ′ = {w ∈ R
n | − 1 ≤ wi ≤ 1, i = 1, . . . , n}

onto v′ using
v′ = G′ w

which is identical to the projection problem of Theorem 4.1 and after substitution
of the original variables leads to the following description of the image after pro-
jection:

V = {v ∈ R
m | bmin ≤ Av ≤ bmax}
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Figure 4.2: Projection of hypercube in R
8 onto the 2-dimensional plane. The pro-

jection of all 1-dimensional faces are given as dotted lines. The faces of the 2
dimensional zonotope are given in red.

with

A =








aT1
aT2
...
aTs







, bmin =








bmin,1

bmin,2

...
bmin,s







, bmax =








bmax,1

bmax,2

...
bmax,s







,

where
ai = Ker((GM Ti)

T ) ∈ R
m×1

bmin,i = −|aTi GT
⊥
i |+ aiT Gu0

bmax,i = |aTi GT
⊥
i |+ aiT Gu0

4.4 Projection of a convex polytope

In this section we aim for projection of polytopes (constraint sets) as described
by Equations (4.3). This can be interpreted as the projection of a convex polytope
that is the result of intersection of two hypercubes, both after linear mapping. The
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presented theory, however, generalizes to convex polytopes as a whole. Let a
convex polytope Wθ be given by

Wθ = {w ∈ R
n | Aww ≤ bw}. (4.11)

where Aw ∈ Rp×n and bw = α + β θ ∈ Rp×1, where p > n and θ is a free parame-
ter.

Remark 4.1 Note that this description covers the feasibility regions described in (4.1)-
(4.4) where w = ũ. The vector θ is known at time sample k and contains values of
u(k − 1), x(k − 1) and/or r(k).

Let S = {S1, . . . , SL} be the set of all n× p submatrices of the p× p identity matrix
such that the matrix SiAw is invertible. Let ξi = {νi,1, νi,2, . . . , νi,n} be the set of
indices of the corresponding selected rows of the identity matrix. Now

vi = (SiAw)
−1Siβ θ + (SiAw)

−1Siα = τi θ + σi

is a vertex of the region Wθ if Aw vi ≤ bw, or in terms of θ if

(Aw(SiAw)
−1Si − I)β θ ≤ (I −Aw(SiAw)

−1Si)α

Alternatively, with Ri = (Aw(SiAw)
−1Si − I)β and Qi = (I − Aw(SiAw)

−1Si)α
we obtain that zi = τi θ + σi is an active vertex of Wθ if Ri θ ≤ Qi. The term active
vertex in this context indicates that a vertex non-redundant in the description of
the polytope Wθ. All possible vertices zi are given by the set

Z = {z1, . . . , zL}

Define the set Lθ = {ℓ1, ℓ2, . . . , ℓnθ
} with all the indices for vertices zi ∈ Z that are

active for a given θ. The set of active vertices for a given θ is equal to

Zθ = {zℓ1 , zℓ2, . . . , zℓnθ
}

Then polytope Wθ can now be written as:

Wθ = Co(zℓ1 , zℓ2 , . . . , zℓnθ
)

Now consider the projection of Wθ that leads to the set V = {v ∈ Rm, w ∈ Rn | v =
Gw, w ∈ Wθ,m ≤ n}. This set can now be written as

V = Co(Gzℓ1 , G zℓ2 , . . . , G zℓnθ
)

Removal of the redundant vertices in V can for instance be achieved through solv-
ing ℓn linear programming problems. After removing all redundant vertices, we
obtain

Vθ = Co(Gzm1
, G zm2

, . . . , G zmnv
)

where the indices to the vertices in Zθ that lead to the vertices of Vθ after projection
are given by

µθ,G = {m1,m2, . . . ,mnv
}
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To find the half-space description of this projected polytope Vθ we start to consider
all possible (m − 1) faces of the polytope Wθ , as the projection thereof will form
the faces of Vθ.

To find these faces we consider the set T = {T1, . . . , TK} of all (n − m + 1) × p
submatrices of the p×p identity matrix such that for some index q the matrix Tq A
has full row-rank, which means that (m−1) face q is spanned by at leastm vertices
from the set Z .

Let ηq = {πq,1, πq,2, . . . , πq,n−m+1} be the set of indices of the corresponding se-
lected rows of the identity matrix. Note that if ηq ⊂ ξi, then zi is a vertex on the
q-th (m − 1) face. The indices of the active vertices in Z (for given θ) that are on
the q-th (m− 1) face are denoted by

ψq,θ = {pq,θ,1, . . . , pq,θ,nq
}

For a given pair θ, G the active vertices that are on the q-th (m− 1) face are given
by the set

φq,θ,G = µθ,G ∩ ψq,θ = {λq,θ,G,1, . . . , λq,θ,G,n̄}

If the number of vertices in φq,θ,G is at least equal to m (or #(φq,θ,G) ≥ m), then
the mapping of the q-th (m − 1) face will be a face of the mapped polytope. First
we compute a point, strictly inside the final polytope (if the final polytope is not
degenerated):

z0 = (Gzm1
+Gzm2

+ . . .+Gzmnv
)/nv .

Let the set of active (m − 1) faces be given by Qθ,G = { q | #(φq,θ,G) ≥ m } =
{t1, . . . , tM}. Compute for all i = 1, . . . ,M :

ai = Ker(([Gzpti,θ,1
. . . G zpti,θ,nq

])T ) ∈ R
m×1, (4.12)

and the scalar value
bi = aTi Gzpti,θ,1

,

and
si = sign(bi − aTi z0)

Now define

A =








s1 a
T
1

s2 a
T
2
...

sM aTM







, b =








s1 b1
s2 b2
...

sM bM







,

then the set V can be written as

V = {v ∈ R
m | Av ≤ b}

Example 4.3 (Projection of a simplex in R9 onto R2 ) This example illustrates the
theory introduced in Section 4.4 through projecting a (scaled) simplex in R9 that has the
form

W = {w ∈ R
n | Aww ≤ bw}
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with

Aw =



















−1 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 −1
1 1 1 1 1 1 1 1 1



















, bw =



















0
0
0
0
0
0
0
0
0
2



















onto R2 with v = Gw and the projection matrix

G =

[
4.30 1.00 4.00 3.65 2.15 1.05 4.40 3.75 0.60
4.55 4.30 1.70 2.70 2.00 0.65 4.05 4.90 3.15

]

.

The resulting image under projection is

V = {v ∈ R
m | Av ≤ b}

with

A =













−0.9823 0.1871
0.3911 −0.9203
0.9858 −0.1678
−0.9445 0.3285
−0.2132 0.9770
0.5369 0.8437
0.9806 0.1961













, b =













0
0

7.3161
0.9363
7.9760
12.2944
10.2177













Figure 4.3 shows the resulting image under projection. It can clearly be seen that the
method in Section 4.4 produces the faces of the image (in red lines) and that the projection
of all other (m− 1)-faces of the original polytope onto R2 produces half spaces that are not
a face of the image (dash-dotted in blue).

4.5 Discussion and conclusion

A computationally efficient method for the projection of convex polytopes to lower
dimensional spaces has been introduced that is suitable for the projection of hyper-
cubes. The efficiency advantage stems from the fact that the algorithm foregoes
the projection of the vertices, but applies the polytope more efficient half-space
description instead. Extension of the method towards generic convex polytopes
has been shown to be feasible but is computationally more intensive in the sense
that both the vertex description and the half-space description are involved. The
complexity increase is bounded, however, due to the fact that removal of redun-
dancies is necessary in one step only. Determination of the exact computational
complexity of the method remains future work.
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Figure 4.3: Example of the projection of the image under projection onto R
9 of

a simplex in R9. The red lines show the faces of the image, whereas the blue
dash-dotted lines show that the projection of all other (m− 1)-faces of the original
polytope are not a face of the image.
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5 CHAPTER

Boeing 747 simulation study

This section applies MPC towards fault tolerant flight control. The meth-
ods proposed in Chapters 2 and 3 are tested in conjunction with a detailed
simulation model of a Boeing 747 aircraft. The particular aircraft type is
of interest as it was involved in one of the most well-known aircraft disas-
ters of the Netherlands, i.e. the Bijlmerramp, that occurred in Amsterdam,
the Netherlands in 1992.

5.1 Introduction to the Boeing 747 model

The benchmark simulation model applied in this thesis is a precursor to the REcon-
figurable COntrol for Vehicle Emergency Return (RECOVER) Matlab/Simulink
model described in (Edwards et al. 2010, Section 6.3 onward). The simulation
model includes a generic 6 degree of freedom (DOF) nonlinear aircraft model and
aircraft specific modules including aerodynamics, flight control system and en-
gines. The baseline flight control system model reflects the hydro-mechanical
system architecture of the Boeing 747-100/200. Also included are sensor mod-
els, an autopilot and a mechanism to introduce different (failure scenarios to the
plant). The aircraft specific modeling data and parameters are based on the data
presented by Hanke (1970, 1971). The simulation model includes an classical au-
topilot, sensors models and has been modified to resemble a fly by wire aircraft in
the sense that the original 11 control inputs have been separated such that each of
the 26 aerodynamic surfaces and the four engines can be controlled separately. A
schematic of the simulation model is depicted in Figure 5.1.

5.2 Modeling the benchmark

As MPC will be employed in discrete time a nonlinear set of equations for a fixed
wing aircraft is introduced here in discretized form. This is not the standard pre-

85
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                       Benchmark Generator B747 Model 
Modern Controller  

Pilot Controls to 

Actuators 
Actuators Airframe 

Classical  

Autopliot 

Classical  

Autothro!le 

Turbulence 

trim 

Sensors 

Reference 
trajectory 

Scenario 

 

Engines 

trim condi"on 

AP mode 

AT mode 

ATT/LOC/GS 

IAS 

Actuator failures 

Engine failures 

Airframe failures 

Figure 5.1: Detailed schematic of the GARTEUR benchmark showing model com-
ponent relationships including test maneuver and failure scenario generation and
fault injection (adapted from Edwards et al. (2010, p.197))
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Figure 5.2: Front view of the Boeing 747. (Hallouzi 2008)
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Figure 5.3: Side view of the Boeing 747. (Hallouzi 2008)
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X B

X V

YB YV

r

ψ χ

β VTAS

Figure 5.4: Top view of the Boeing 747. (Hallouzi 2008)

Table 5.1: aircraft states

p roll rate
q pitch rate
r yaw rate
VTAS true airspeed
α angle of attack
β sideslip angle
γ flight path angle
θ pitch angle
φ roll angle
ψ yaw angle
χ tracking angle
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Table 5.2: inputs of the Boeing 747 model

Control no. Description Mechanical limits Operation rate
1. Right inner aileron -20/20 deg 40/45 deg/s (↓/↑)
2. Left inner aileron -20/20 deg 40/45 deg/s (↓/↑)
3. Right outer aileron -25/25 deg 45/55 deg/s (↓/↑)
4. Left outer aileron -25/25 deg 45/55 deg/s (↓/↑)
5. Spoiler panel # 1 0/45 deg 75 deg/s
6. Spoiler panel # 2 0/45 deg 75 deg/s
7. Spoiler panel # 3 0/45 deg 75 deg/s
8. Spoiler panel # 4 0/45 deg 75 deg/s
9. Spoiler panel # 5 0/20 deg 75 deg/s
10. Spoiler panel # 6 0/20 deg 25 deg/s
11. Spoiler panel # 7 0/20 deg 25 deg/s
12. Spoiler panel # 8 0/20 deg 75 deg/s
13. Spoiler panel # 9 0/45 deg 75 deg/s
14. Spoiler panel # 10 0/45 deg 75 deg/s
15. Spoiler panel # 11 0/45 deg 75 deg/s
16. Spoiler panel # 12 0/45 deg 75 deg/s
17. Right inner elevator -23/17 deg 37 deg/s
18. Left inner elevator -23/17 deg 37 deg/s
19. Right outer elevator -23/17 deg 37 deg/s
20. Left outer elevator -23/17 deg 37 deg/s
21. Stabilizer -12/3 deg 0.2 to 0.5 deg/s
22. Upper rudder surface -25/25 deg 50 deg/s
23. Lower rudder surface -25/25 deg 50 deg/s
24. Outer flaps 0/25 deg 1.8 deg/s
25. Inner flaps 0/25 deg 1.8 deg/s
26. Thrust engine # 1 0.7/1.7 EPR1 -
27. Thrust engine # 2 0.7/1.7 EPR -
28. Thrust engine # 3 0.7/1.7 EPR -
29. Thrust engine # 4 0.7/1.7 EPR -

EPR = Engine Pressure Ratio
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sentation of aircraft flight dynamics in that sense. The reader is directed to Cook
(2003) and Mulder et al. (2006) as discretization of nonlinear dynamic systems is
not at all trivial. In this chapter the nonlinear system is sampled with sampling in-
terval T and first order Euler integration is applied. The difference equation (3.1)
is obtained from the original nonlinear system equation as follows

ẋ = f(x) + g(x)u ≈
x(k + 1)− x(k)

T
(5.1)

⇔

x(k + 1) ≈ Tf(x(k)) + x(k) + Tg(x(k))u. (5.2)

It is acknowledged here that the Euler method, which is a first-order method, is
typically associated with an integration error that is proportional tot the sampling
interval T . This makes the Euler method less accurate than higher order methods
such as the Runge-Kutta type methods. There are two specific reasons why Euler’s
method is applied here. For one, use of higher order methods would complicate
the dynamic inversion of the nonlinear aircraft model in Section 5.6.1 unnecessar-
ily. Next to that, and more importantly, the simulation settings for the benchmark
model are such that the Euler method is applied in the simulation. Hence, the
Euler method is chosen over higher-order methods for discretization.

First, we model the discretized but nonlinear equation for the airspeed V of the
benchmark aircraft and linearize this. Subsequently, we perform the same actions
for the equations that belong to the three attitude states. Additionally, in the first
instance we will assume that the forces (X,Y, Z) and moments (L,M,N ), that
enter the system equations, are inputs to the system.

The nonlinear and discretized state equation for the airspeed is given as follows:

V (k + 1) = V (k) +
T

mac





cosα cosβ
sinβ

sinα cosβ





T 



FX(k)
FY (k)
FZ(k)



 (5.3)

where α and β are the angle of attack and sideslip angle, respectively, and mac is
the mean aerodynamic chord. The variable T is again the sampling interval.





φ(k + 1)
θ(k + 1)
ψ(k + 1)



 = T





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ









p(k)
q(k)
r(k)



+





φ(k)
θ(k)
ψ(k)



 , (5.4)

where φ, θ, ψ are the roll-, pitch and yaw angle and p, q, r are the roll-, pitch- and
yaw rate. The following equations govern the states p, q, r,





p(k + 1)
q(k + 1)
r(k + 1)



 =



−TJ−1
ac





0 −r q
r 0 −p
−q p 0



Jac −





1 0 0
0 1 0
0 0 1













p(k)
q(k)
r(k)





+TJ−1
ac





ML(k)
MM (k)
MN (k)



 , (5.5)
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where

Jac =





Ixx 0 −Ixz
0 Iyy 0

−Ixz 0 Izz



 (5.6)

and where I∗∗ indicates the inertia.

What remains now is to introduce expressions for the forces F = [FX , FY , FZ ]
T

and moments M = [ML,MM ,MN ]T . The forces are the sum of the external forces
and the contribution of the aerodynamics, and the moments are dependent of the
aerodynamics only, which leads to the expressions:

F = Fgrav + Fwind + Faero + T, (5.7)
M = Maero, (5.8)

where the subscripts indicate the contribution of gravity, the wind and the aero-
dynamic model, respectively. We model the aerodynamics as follows

Faero =
1

2
ρV 2S(CFx

[1 α α2 α3 β β2 β3 pb

2V

qc

2V

rb

2V
]T

+CFu
u), (5.9)

Maero =
1

2
ρV 2S





b 0 0
0 c 0
0 0 b



 (CMu
u+ CMx

×

[

1 α α2 α3 β β2 β3 pb
2V

qc
2V

rb
2V

]T
)

, (5.10)

where ρ is the air density, S, b, c are the wing area, wing span and wing chord,
respectively. The input variable u is a vector composed of the control surfaces
and engines of the aircraft. In this chapter we make use of a subset of these con-
trol effectors. In this particular case we apply our controller to the four elevator
surfaces, the four ailerons, the two rudder halves and the four engines, hence
u ∈ R14.

The aerodynamic parameters CFx
, CMx

∈ R3×10 and CFu
, CMu

∈ R3×14 are deter-
mined online through a recursive identification method, using the approach pre-
sented by Lombaerts et al. (2009). Although not strictly required in the nominal
and failure-free case, the identification method is applied in both the nominal and
the failure case. Because of the fact we apply data from recursive identification,
we do not have to model failures explicitly. As an example one might consider a
rudder that has become stuck. Such a failure will result in a change in the basic
aerodynamic parameters to account for the static aerodynamic moment that this
creates. Furthermore the effectiveness of the rudder itself will be reduced to zero.
Additionally, although not applied here, it is possible to include direct knowledge
of actuator failures in the controller. The uncertainty caused by failures of the air-
craft structure or actuators is considered to be small because of the relatively fast
response of the identification algorithm. Gravity is incorporated as follows

Fgrav =





−mg sin θ
mg sinφ cos θ
mg sin cos cos θ



 (5.11)
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5.3 Autopilot model

In contrast to the plant model, a linear representation of the autopilot (for the
given flight condition) was manually extracted from the simulation model. A min-
imal realization of this controller has 15 states, 9 inputs and 14 outputs. The closed
loop of the controller and linear aircraft is asymptotically stable and both the lin-
ear controller and aircraft were evaluated in closed loop with, or in comparison
with, the original nonlinear aircraft model. The latter has led to good confidence
in both the model and the controller. Both the controller and the aircraft model
were discretized using zero order hold sampling (ZOH) with a sampling interval
h = .05 [s].
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Figure 5.5: General autopilot structure for the Boeing 747-200, adapted from van
Keulen (1991)
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aileron control






δair
δail
δaor
δaol






=







1
−1
1
−1






[−T1p−K1φ+ T2ψ] (5.12)

elevator control







δeir
δeil
δeor
δeol






=







1
1
1
1






[−T3q + T5T4K2h− T5T4K3ḣ− T5θ] (5.13)

rudder control (yaw damper)

[
δru
δrl

]

=

[
1
1

]

[−T9(T7 + T8)φ+ T9T6ψ̇] (5.14)

throttle (auto-throttle)






δTn1

δTn2

δTn3

δTn4






=







1
1
1
1






[T10V ] (5.15)



5.4 Taking MPC towards fault tolerance 93

T1 =
−825.1

0.178s+ 1
(5.16)

T2 =
793.5s+ 634.8

2.5s+ 1
(5.17)

T3 =
−149.2s

0.01s3 + 0.305s2 + 2.15s+ 1
(5.18)

T4 =
0.0175s+ 0.0011

0.65s2 + s
(5.19)

T5 =
−167.4s− 33.48

s
(5.20)

T6 =
579.3

s2 + 4.048s+ 1.354
(5.21)

T7 =
21.72

s2 + 4.048s+ 1.354
(5.22)

T8 =
3953

s2 + 20s+ 100
(5.23)

T9 =
31.2s+ 0.3744

s2 + 32.1s+ 3.2
(5.24)

T10 =
−0.2s− 0.01

s
(5.25)

5.4 Taking MPC towards fault tolerance

We assume that FDI information is available with respect to the status of the in-
puts and possible faults thereof is available (possibly with a delay). FDI, without
a doubt, is a very difficult aspect of FTC, but with ever more complex condition
monitoring systems becoming available it is possible to assume that such informa-
tion is available. In this section we focus specifically at incorporation of actuator
failures. To be able to provide alternatives when primary controls fail we need
sufficient control effector redundancy. Therefore we first concentrate on that is-
sue.

5.4.1 Control effector redundancy

An aircraft can rotate freely about three axes. In normal flight the rotation around
the lateral axis, called pitch, is controlled by the elevators, the rotation around the
longitudinal axis passes, called roll is mainly controlled by the ailerons (rudder
also has a secondary effect on the roll angle), and finally the rotation around the
vertical axis, called yaw, is mainly controlled by the rudder (the ailerons also have
a secondary effect on the yaw angle). In the case of an aircraft with disabled flight
controls, we can use the redundancy in the control surfaces to control the aircraft.
For example, in normal flight, the pitch angle is controlled by the elevators. If
there is a failure in the elevators, one can control the pitch angle using thrust if
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basic angle primary control back up control
surface surface

pitch angle elevators thrust, ailerons
yaw angle rudder thrust
roll angle ailerons rudder, elevators

Table 5.3: primary and back up (or secondary) control surfaces for the rotations
about three axis of the aircraft.

the engines are mounted under the center of gravity. Increasing the thrust will
increase the pitch angle, decreasing the thrust will decrease the pitch angle. If the
ailerons are decoupled, they can also be used to control the pitch angle. Further-
more, if the engines are used in a asymmetrical way, the pilot can, in case of a
rudder failure, use differential thrust to control the yaw angle of the aircraft. In
the same way, if we use the elevators and ailerons in an asymmetric way, we can
use the ailerons to control the pitch angle and the elevators to control the roll an-
gle. In Table 5.3 the primary and back up (or secondary) control surfaces are given
for the rotations about three axis of the aircraft.

The primary control inputs of an aircraft are thrust (∆uthr), ailerons (∆uail), el-
evators (∆uele) and rudder (∆urud). Let us first consider the decoupling of the
ailerons. In nominal operation, the values of the left and right aileron are asym-
metric, so

∆uail,l = ∆uail ∆uail,r = −∆uail

where ∆uail is the nominal control variable. We add a control variable ua,2 to be
able to decouple the ailerons:

∆uail,l = ∆uail + ua,2 ∆uail,r = −∆uail +∆ua,2

For nominal flight we do not need this additional variable so then ∆ua,2 = 0.

We follow a similar procedure for the elevators. In nominal operation, the values
of the left and right aileron are symmetric, so

∆uele,l = ∆uele ∆uele,r = ∆uele

where ∆uele is the nominal control variable. We add a control variable ∆ue,2 to be
able to decouple the elevators:

∆uele,l = ∆uele +∆ue,2 ∆uele,r = ∆uele −∆ue,2

In nominal operation all four engines are controlled by the same thrust value
∆uthr. In the perturbed case we add three new variables ∆ut,2, ∆ut,3, and ∆ut,4
and decouple the engines:

∆uthr,1 = ∆uthr +∆ut,2 +∆ut,4

∆uthr,2 = ∆uthr +∆ut,3 −∆ut,4

∆uthr,3 = ∆uthr −∆ut,3 −∆ut,4

∆uthr,4 = ∆uthr −∆ut,2 +∆ut,4
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where ∆uthr is the nominal control variable. For nominal flight we do not need
this additional variable so then ∆ut,2 = ∆ut,3 = ∆ut,4 = 0.

The new variables have to be included in the MPC problem. The number of vari-
ables will increase. Let ∆uo =

[
∆uail ∆uele ∆uthr ∆urud

]T be the vector
with the original four control variables (elevator, aileron, thrust, and rudder) and
let the 4 × 4 matrix R be the weighting matrix in cost function (2.4) on page 31.
When extending the vector with the new additional variables

∆uadd =
[
∆ua,2 ∆ue,2 ∆ut,2 ∆ut,3 ∆ut,3

]T (5.26)

we have to apply a new larger vector Dz to include the new variables into the
cost signal (1.5) on page 16. By choosing Dz,add with sufficiently large entries we
guarantee that even with the new variables included, the nominal behavior will
remain the same in unperturbed flight. The new cost signal is now given by

z(k) = Cz x(k) +Dz ∆u(k) +Dz,add∆uadd(k) + Ez e(k) + Fz r(k) (5.27)

Using this updated MPC formulation we obtain a new MPC controller that will
give the same original behavior, but now with the possibility to add constraints
that may reflect failures into the problem with sufficient control effector redun-
dancy to obtain the same performance in the perturbed case.

5.4.2 How to include failures into the MPC problem

We will focus on actuator faults in this chapter. Several types of actuator failures
exist: stuck, reduced rates, reduced range and floating inputs cover the spectrum.
We will mainly be looking at failures that can be accounted for through adaptation
of the input constraints.

As to model changes due to structural failures of the system, we will not actively
discuss these in this chapter because it is logical that the existing controller is not
a priori stabilizing for the plant subject to structural damage. We will, however,
rely on the inherent passive robustness of the MPC controller.

Sensor failures are not investigated, whilst we assume these to be available in
redundant quantities in our flight control examples.

In normal operating conditions, the optimization algorithm provides an optimal
solution within acceptable ranges and limits of the constraints. A drawback of
MPC is that we are using (hard) constraints, which may lead to infeasibility: There
is no possible control action without violation of the constraints. When there is
no feasibility guarantee, stability cannot be proven. If a solution does not exist
within the predefined ranges and limits of the constraints, the optimizer should
have the means to recover from the infeasibility. Three well-known algorithms to
handle infeasibility are the soft-constraint approach (Zheng and Morari 1995), the
minimal recovery time approach (Rawlings and Muske 1993), and the constraint
prioritization approach (Vada et al. 1999). The feasibility recovery technique we
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will discuss is based on the priorities of the constraints. The constraints are or-
dered from lowest to highest priority. In terms of flight control this means that
constraints related to passenger comfort and energy consumption will have a low
priority, where control actuator limitations and structure integrity of the aircraft
have a high priority. If the (nominal) optimization problem becomes infeasible we
start by dropping the lowest constraints and see if the resulting reduced optimiza-
tion problem becomes feasible. As long as the problem is not feasible we continue
by dropping more and more constraints until the optimization is feasible again.
This means we solve a sequence of quadratic programming problems in the case
of infeasibility. The algorithm minimizes the violations of the constraints which
cannot be fulfilled. Note that it may take several trials of dropping constraints
and trying to find an optimal solution, which is not desirable in any real time
application.

An example of such a disaster involved the El Al Boeing 747 freighter aircraft that
crashed in the Bijlmermeer-area, near Amsterdam, The Netherlands, in 1992. In
this particular case separation of the two right wing engines caused significant
loss of controllability and, next to that, structural changes, that eventually led to
the crash. A simulation study has shown that this failure was likely to be surviv-
able, given the correct control inputs and a wisely chosen trajectory (Smaili 1997).
This example, and many others, have clearly indicated that it is desirable to de-
velop automatic fault-tolerant flight control mechanisms that can assist the pilots
in extraordinary situations.

The introduction of fly-by-wire systems has created the possibility to redistribute
control effort over the actuators in an automated fashion. It has been the increase
of computational power of such flight control systems that now enables the inves-
tigation of fault-tolerant (FTFC) techniques. An overview of control methods that
can be applied for FTFC purposes has been compiled by Jones (2005). The latter
reference makes a clear distinction between passive and active methods. Passive
methods are designed to accommodate failures through control design that is ro-
bust with respect to a set of system failures which has been defined a priori. Active
methods, on the other hand, assume that a fault detection and identification (FDI)
method is available that provides online failure information such that the FTFC
controller can be adapted online.

This chapter investigates the use of MPC for FTFC purposes with application to a
simulation model that represents the aircraft that was involved in the previously
mentioned disaster which took place over Amsterdam in 1992. The successful
use of MPC for this aircraft in the given accident scenario has been shown by
Maciejowski and Jones (2003), yet at the same time it was mentioned as one of
their main conclusions, that considerable tuning of the MPC cost-function had
been required in order to achieve the good results that were obtained. The latter
observation has led to the notion that an existing controller can be used to obtain
a state-observer and initial tuning of an MPC cost-function (Maciejowski (2007))
through a process of reverse-engineering. The application of such a process of
reverse engineering as to obtain a valid MPC cost function is the main interest of
Section 5.5. The readily available autopilot will be used as a basis for this MPC
design. Once obtained, this cost-function will be applied in an example in order
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to investigate its usefulness in simulations with constraints present.

The chapter continues with the introduction of simulation results on the theory
of NDI and MPC in Section 5.6. Section 5.6.1 introduces the relevant equations of
motion of the benchmark aircraft and applies the NDI theory to these. The chapter
wraps up with a discussion and conclusion in Section 5.7.

5.5 MPC reverse engineering: a simulation example

Two important design considerations come into play when reverse-engineering
the existing controller into observer based form. First of all, the controller is not
strictly proper. In this case this problem has been tackled through addition of a
unit delay in three channels, hence leading to a total augmented controller having
18 states. Next to that, the controller has built-in integral action, hence requiring
augmentation of the plant model with a number of states equal to the number of
inputs, thus leading to a plant model with 28 states and disturbance states. De-
spite starting out with a controller order greater than the plant order (nK > n),
we end up with a plant controller pair for which nK ≤ n. Both the augmented
controller and plant have been used to obtain a state observer and MPC cost-
function as per section 2.3.2. Initially the prediction horizon was selected to be
N = 10.

An experiment was performed in order to verify the quality of obtained MPC con-
troller in comparison to the linear time invariant version of the autopilot. The ex-
ample consists of a reference tracking task. The aircraft is initialized at an altitude
of h = 980 [m] whilst flying straight and level with an airspeed of approximately
V = 92 [m.s−1]. Subsequently, at t = 10 [s] a right hand turn of 180 [deg] is ini-
tiated and after t = 150 [s] a descent toward h = 50 [m] is initiated. Figure 5.8
shows a subset of 6 of the aircraft’s states when flown in closed loop with either
the nominal controller or the MPC controller. Three different trajectories can be
distinguished from the figure: the nominal response of the aircraft in closed loop
with the original LTI controller, the same situation when using the MPC controller
and, finally, a situation in which one outboard aileron is blocked in its neutral posi-
tion. All three trajectories show that it is possible to fly the same trajectory with the
reverse-engineered controller and that the state responses match relatively closely.
It must be remarked, however, that in all situations the input constraints had to be
softened after one step of the prediction horizon such that the controller and plant
continued to show stable behavior. An investigation of this fact suggests that ei-
ther the quality of the estimated states is not good enough, or that the chosen MPC
cost function and the desire to include constraints while tracking a reference do
not coincide well.
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5.6 MPC and NDI: Simulation Results

5.6.1 Dynamic inversion of the benchmark model

Starting with the airspeed equation 5.3 we choose, using the notational convention
of Section 3.2.2, the virtual input z1 as

z1(k) =
T

mac





cosα cosβ
sinβ

sinα cosβ





T 



FX(k)
FY (k)
FZ(k)



 , (5.28)

such that when
z1(k) = (ades − 1)V (k) + ν1(k), (5.29)

the state equation 5.3 becomes linear and is represented as

V (k + 1) = adesV (k) + ν1(k). (5.30)

Performing NDI for the attitude states requires some additional steps, whilst they
do not depend on the external forces and moments directly. Starting are the equa-
tions for the attitude states as in 5.4. In order to apply NDI we shift these equations
one step in time in order to arrive at





φ(k + 2)
θ(k + 2)
ψ(k + 2)



 = T





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sin φ
cos θ

cosφ
cos θ



 (k + 1)×





p(k + 1)
q(k + 1)
r(k + 1)





+





φ(k + 1)
θ(k + 1)
ψ(k + 1)



 ,

substituting 5.6 in order to arrive at




φ(k + 2)
θ(k + 2)
ψ(k + 2)



 =





φ(k + 1)
θ(k + 1)
ψ(k + 1)



+ T





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 (k + 1) (5.31)

−



TJ−1
ac





0 −r q
r 0 −p
−q p 0



 Jac −





1 0 0
0 1 0
0 0 1













p(k)
q(k)
r(k)





+TJ−1
ac





ML(k)
MM (k)
MN(k)



 .

Using the same method that was applied for the airspeed, we choose the virtual
input

z2(k) = TJ−1
ac





ML(k)
MM (k)
MN (k)



 . (5.32)
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Choosing this virtual input to equal

z2(k) = (Ades − I)





φ(k + 1)
θ(k + 1)
ψ(k + 1)



− T





1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0 sinφ
cos θ

cosφ
cos θ



 (k + 1)

−



TJ−1
ac





0 −r q
r 0 −p
−q p 0



Jac −





1 0 0
0 1 0
0 0 1













p(k)
q(k)
r(k)



 , (5.33)

leads to the linear and time-invariant closed-loop behavior




φ(k + 2)
θ(k + 2)
ψ(k + 2)



 = (Ades − I)





p(k + 1)
q(k + 1)
r(k + 1)



+ ν2(k), (5.34)

where Ades ∈ R3×3 is the desired linear time invariant behavior and where ν2 is
the input to the linearized system. At this stage we may conclude that when z1
and z2 satisfy equation (5.29) and (5.33) that the linear state behavior equals







V (k + 1)
φ(k + 2)
θ(k + 2)
ψ(k + 2)






=

[
ades 0
0 Ades

]







V (k)
φ(k + 1)
θ(k + 1)
ψ(k + 1)






+

[
ν1(k)
ν2(k)

]

. (5.35)

In summary, we may apply MPC to the linear system of equation (5.35), provided
that the input u from (5.9)-(5.10) is allocated such that the virtual inputs z1, z2 in
(5.28) and (5.32) satisfy equations (5.29) and (5.33). Additionally, the physical con-
straints are entered into the problem to arrive at the MPC problem (3.16,3.17,3.18)
and the control allocation and weighting problem (3.28) from Section 3.2.

In this section we evaluate the performance of the combination of MPC and NDI
as a reconfigurable control method. We do so in two individual examples. The
first example involves a so-called stabilizer runaway of the benchmark aircraft.
The second example shows the simulation results when one of the maneuvers
from the benchmark assessment criteria is flown.

5.6.2 Reference tracking: stabilizer runaway

Here, it will be shown that the control strategy proposed in this chapter allows re-
tention of a trim condition and tracking of a reference with the benchmark aircraft
in the event of a failure.

In this particular example, it is shown that a combination of the reconfigurable
controller and the online identification algorithm can retain stability after the in-
troduction of the stabilizer runaway failure at time t = 10 [s]. At this time the
stabilizer moves to its extreme trim angle of 2o. Next to that, it is shown that, de-
spite the stabilizer being inoperative and stuck at an extreme position, it is still
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possible to track a doublet-like reference signal with the pitch rate q [rad/s] using
another combination of the control surfaces.

The states that are controlled are the roll attitude φ, the pitch attitude θ and the
yaw attitude ψ, respectively. The inputs that are used in this example are the four
different aileron surfaces, the four elevator surfaces, the two rudder surfaces, and
the stabilizer trim angle. The other inputs, including the engines, remain at their
trim value for the initial condition.

Figure 5.9 depicts the results that were obtained in simulation. Several important
notions can be derived from this figure. First of all, it can be seen from the figure
that, although the online identification is initialized with data that was obtained
off-line, it takes approximately 3 [s] for the closed loop to stabilize the system for
the reference state p, q, r = 0. Furthermore, it is clear to see, that although a failure
is introduced at t = 10 [s] relatively little effect is noticeable in the state-response.
The latter indicates that the controller successfully succeeds at redistributing the
desired control effort over the remaining control surfaces and that the FDI algo-
rithm identifies the new situation quickly. And finally, it is easily seen from the
figure that in spite of the failure of the stabilizer, it is still possible to track a ref-
erence on the pitch rate. It is assumed that extensive tuning of parameters like
the state- and input weighting matrices Q,Qu, Ru, the selected sampling interval
T , and the prediction horizon N will lead to greatly improved tracking behav-
ior.

What remains to be said about this example is that the computational complexity
of the control method is quite high. It is expected that this can be greatly improved
upon through a more efficient implementation of the controller. Furthermore, al-
though not visible in the provided results, the online identification algorithm suf-
fers from lack of excitation when the system is controlled to be in steady-state for
extended periods of time. Both of these issues are not addressed in here, but will
be the topic of future research.

5.6.3 Right turn and localizer intercept

What may be concluded from the previous example is that the method is very
much dependent of the quality of the model that is identified online. This holds
particularly true for control based on NDI in this setting. Because of the fact that
the aircraft is simulated in closed loop with the controller, it is also very important
that the quality of the initial estimate of the aircraft parameters is high. Further-
more, the aerodynamic model of the benchmark may basically be regarded to be a
black-box system, hence it is not possible to use exact knowledge of this model for
testing purposes. This, combined with the fact that the control method is partic-
ularly sensitive to tuning of the weighting matrices in both MPC and the control
allocation method, makes it difficult to achieve proper results for flying full ma-
neuvers from the list of assessment criteria. In order to show the applicability of
the method, provided that the uncertainty of the aerodynamic model is not too
high and that the tuning of the controller is appropriately chosen, we show an ex-
ample maneuver that was obtained through simulation of the benchmark where
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the aerodynamics have been replaced by a static but still nonlinear model.

Figures 5.10, 5.11 and 5.12, which are included at the end of the paper, show the
results when the aircraft is made to fly a turn to the right followed by a localizer
intercept. Figure 5.10 shows a subset of the aircraft states and the angle between
the aircraft heading and the localizer beam λ during this particular simulation ex-
ample. Also indicated in the figure, in red and yellow bands, are the assessment
specifications. Figure 5.11 and 5.12 show the accelerations of the aircraft and the
horizontal trajectory of the aircraft. The results presented here consider a flight in
a fault-free scenario, but given the simplified aerodynamic model, different fail-
ure scenarios, with stuck control surfaces perform equally well. What may be
concluded from this simulation is that the combination of MPC and the inversion
of the nonlinear aircraft kinematics through NDI is valid for FTFC purposes, pro-
vided correct knowledge of the aerodynamics of the aircraft is available.

5.7 Conclusion

This chapter has presented, in the form of simulation examples, the theory pre-
sented in Chapters 2 and 3, i.e. tuning of an MPC controller based on an ex-
isting controller and the combination of model predictive control and nonlinear
dynamic inversion into a constrained and globally valid control method. Using
the proposed control methods, it is possible to implement a reconfigurable flight
controller. The reconfigurable properties are a result of efficient distribution of
the desired control effort over the remaining and redundant control inputs. Fur-
thermore, the method can take into account various input, state and output con-
straints. The latter is particularly useful when actuators get stuck or become un-
available. Similar results have been achieved when building a controller through
reverse engineering of the original autopilot.

Practical issues that will be the topic of future research are related to the construc-
tion of a more computationally efficient adaptation of this controller. Additionally,
it will have to be taken into account that in one example a recursive identification
scheme is applied in a closed-loop setting whilst this is not explicitly accounted
for at the moment. Increased robustness of the fault tolerant flight control method
will be of great importance in applications where there is latency in the failure
detection and identification system. Robustness with respect to modeling uncer-
tainty is required to guarantee stability until new and accurate failure information
becomes available after a failure has occurred.
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Conclusions and Recommendations

6.1 Discussion & Conclusions

This thesis has investigated the applicability of MPC for fault tolerant flight con-
trol purposes. Its inherent constraint handling capabilities and use of an internal
plant model were the main cause of interest for the application of MPC. From lit-
erature it is known that tuning of the cost function, i.e. the underlying weighting
matrices, may not be very straightforward, especially in flight control examples,
and that it is therefore of interest to base controller design on that of an existing
controller. Also the dynamic equations of motion of an aircraft are nonlinear, it
is therefore worthwhile to establish control methods that can accommodate these
nonlinearities, while still allowing for the inclusion of constraints on states or in-
puts. Both aforementioned methods have been investigated in the thesis. The
results of the investigation are described in more detail below. Also, the thesis
has introduced the notion of levels of performance in case of operating in fault
conditions, whereby MPC controllers can be applied such that plant performance
degrades gradually with increasing fault complexity, but stability is maintained
as long as possible.

A method for obtaining a state observer in combination with a model-predictive
controller has been introduced. Based upon a linear time-invariant representation
of both the existing autopilot and the aircraft it is possible to arrive at such a con-
troller structure. When the original controller contains both a direct feedthrough
term and integral action, this goal cannot be achieved without the necessary cau-
tion. Section 2.4 presented a novel way to do so. In the absence of input constraints
this controller shows tracking performance that is on par with the original out-
put feedback controller without requiring extensive tuning of the cost-function
weighting matrices and parameters such as the prediction horizon. The latter
opens the door to reconfigurable and fault tolerant flight control as constraints can
now be taken into account in the MPC criterion. Such constraints can be used to
include faults (e.g. stuck control surfaces) and maintain stable behavior although
it has to be remarked that the behavior of the closed loop will start to deviate from
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the original closed loop behavior as the system moves out of its unconstrained
space.

Chapter 3 has shown a method that combines the constraint handling capabilities
of MPC with NDI. The challenge thereof lies in the resulting nonlinear transfor-
mation of the original input constraints of the plant. This is both computationally
intensive and the expansion of this transformation over the prediction horizon re-
mains an approximation due to the nonlinear plant dynamics. A drawback of the
methods introduced is that NDI or feedback linearization is known to be very sen-
sitive to modeling errors and MPC is a computationally intensive method. Even
comparatively simple examples support the notion that these properties do not
combine well with a system that has fast dynamics such as an aircraft. It must
be noted that, despite the fact that a nonlinear control method is combined with
MPC, the constraint mapping presents a limitation on the closed loop as these are
currently kept constant over the prediction horizon whilst the system itself can
move through state-space in a nonlinear fashion.

Having said this, this thesis does present a method to perform the mapping of
constraints onto the inputs of the NDI controller in an efficient manner. Chapter
4 investigates the matter of constraint mapping more in-depth . This alleviates
one aspect of the aforementioned issues. Chapter 4 introduced a computationally
very efficient method for the projection of convex polytopes to lower dimensional
spaces that is suitable for the projection of hypercubes. The efficiency advantage
stems from the fact that the algorithm foregoes the projection of the vertices, but
applies the more efficient half-space description instead.

Chapter 5 has presented the combination of model predictive control and non-
linear dynamic inversion into a constrained and globally valid control method.
Using the proposed control method, it is possible to implement a reconfigurable
flight control-law that is valid throughout the flight envelope. The reconfigurable
properties are a result of efficient distribution of the desired control effort over
the remaining and redundant control inputs. Furthermore, the method can take
into account various input, state and output constraints. The latter is particularly
useful when actuators get stuck or become unavailable. Similar results have been
achieved when building a controller through reverse engineering of the original
autopilot.

6.2 Recommendations

This thesis poses an exploration of possibilities. There exist many obstacles before
practical application of such methods will become feasible in real life situations.
Such limitations include the current deterministic methods for clearance of flight
control laws that appear to not handle changing control parameters very well, and
acceptance by flight crews due to the inherent loss of situational awareness asso-
ciated with fault tolerant flight control. These aspects have not been investigated
in this thesis.
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Recommendations for future work on MPC based on the reverse engineering of
an existing controller (Chapter 2) include the following: In the presence of con-
straints the performance of the reverse-engineered controller cannot always be
guaranteed, especially when one or more constraints become active. Whilst the
desire to introduce constrained control to the aircraft benchmark is a driving force
in this work, it is deemed instructive to investigate different cost-function formu-
lations for the MPC problem. Specifically cost-functions that do not weigh the
difference between the predicted state-feedback quantities and the input are as-
sumed to be of great value. Methods that weigh the difference between the pre-
dicted plant state and the predicted closed loop dynamics are thought to be more
than worth the investigation. The latter can offer better ways to make use of the
available redundancy in the sense of actuators. Additionally, further future work
on the applied aircraft model should also include an exhaustive investigation of
the different ways in which the closed-loop poles may be distributed among the
observer error-dynamics and the state-feedback dynamics, as well as where to
place the free poles in the controller.

As to the projection of polytopes presented in Chapter 4 there appear to exist
extensions towards generic non-symmetric polytopes appear feasible, but lead to
redundant half spaces. This theory and an efficient method for the removal of the
redundant half spaces are recommended for future research.

Further practical issues that will be the topic of future research are related to the
construction of a more computationally efficient implementation of this controller.
Additionally, it will have to be taken into account that the online identification
schemes applied in a closed-loop may cause estimation bias. Increased robust-
ness of the fault tolerant flight control method will be of great importance in ap-
plications where there is latency in the failure detection and identification system.
Robustness with respect to modeling uncertainty is required to guarantee stabil-
ity until new and accurate failure information becomes available after a failure
has occurred.
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Summary

C
urrent jet fighters and modern airliners are hugely complex pieces of machin-
ery. The drawback of this complexity lies in the number of systems and sub-

systems that may fail for one reason or another. Given the systems complexity of
aircraft it is no longer easily possible for the crew to establish what exactly has
happened when these fail. This motivates the need to provide means for the diag-
nosis of failures and automated recovery, i.e. fault tolerant flight control.

In general the procedure to make a system fault-tolerant consists of two steps: 1)
Fault diagnosis: the existence of faults has to be detected and the faults have to
be identified, 2) Control re-design: the controller has to be adapted to the faulty
situation so that the overall system continues to satisfy its goal. This thesis fo-
cuses on the latter through the application of modern control methods towards
reconfigurable flight control.

This thesis investigates fault tolerant flight control in the event of actuator or plant
faults. A literature survey suggests that model predictive control (MPC) is very
suitable for use as fault tolerant flight control method due to its ability to incorpo-
rate various constraints. Application of MPC in this setting is the central topic in
this thesis.

MPC is applied in two different ways in the text. First, a method is presented for
finding both a state-observer and the cost function associated with a model predic-
tive controller, based on an already existing output feedback controller. The goal
of this exercise is to retain the properties of the existing controller, while adding
the constraint handling capabilities of MPC.

The second way features the combination of model-based predictive control and
the inversion of the dynamics of the system under control into a constrained and
globally valid control method for fault-tolerant flight-control purposes. The fact
that the approach allows the incorporation of constraints creates the possibility to
incorporate additional constraints in case of a failure. Such failures range from
relatively straightforward actuator failures to more complicated structural break-
downs where, through the addition of constraints, the aircraft can be kept within
its remaining flight envelope. Furthermore, the method is model-based, which
allows adaptation of the system model in case of a failure. Both of these proper-
ties lead to the fault-tolerant qualities of the method presented. Projection of a
polytope onto a lower dimensional polytope is an important element in the com-
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bination of MPC and dynamic inversion. A method is presented that avoids the
computation of the polytope’s vertices and the application of linear programming
methods.

The theory presented in this thesis is applied to a benchmark model which consti-
tutes a detailed simulation model of a Boeing 747-200 aircraft, like the aircraft that
crashed in the Amsterdam Bijlmer area in 1992.



Samenvatting

M
oderne straaljagers en verkeersvliegtuigen zijn buitengewoon complexe ma-
chines. Het nadeel van complexiteit ligt in het aantal systemen en subsyste-

men dat om welke reden dan ook foutief gedrag kan vertonen, of anderszins kan
falen. Daarnaast is het zo dat de systeemcomplexiteit van vliegtuigen het in ze-
kere gevallen moeilijk maakt voor de vliegers om vast te stellen wat er is gebeurd
als deze systemen falen. Het voorgaande motiveert en justifieert onderzoek naar
methoden voor foutdiagnose en foutherstel, oftewel fout-tolerante vliegtuigbestu-
ring.

In het algemeen vergt het maken van een fouttolerant systeem twee stappen: 1
foutdiagnose: het optreden van een fout moet onderkend worden en geïdentifi-
ceerd, 2 foutherstel: de regelaar moet worden aangepast aan de foutsituatie opdat
het systeem als geheel de bedoelde functie blijft vervullen. Dit proefschrift onder-
zoekt het laatstgenoemde onderwerp door toepassing van moderne regeltechnie-
ken ten behoeve van fout-tolerante vliegtuigbesturing.

Dit proefschrift onderzoekt fout-tolerante vliegtuigbesturing in het geval van fou-
ten in de actuatoren of het systeem (vliegtuig) zelf. Uit literatuuronderzoek blijkt
dat modelgebaseerd voorspellend regelen (model predictive control, MPC) bijzonder
geschikt is voor dit doel vanwege de mogelijkheid om diverse systeembeperkin-
gen op te leggen en mee te nemen in de berekening van het stuursignaal. De
toepassing van MPC vormt het centrale onderwerp van dit proefschrift.

MPC wordt op twee verschillende manieren toegepast. Allereerst wordt een me-
thode gepresenteerd die een toestandschatter en kostenfunctie van een MPC rege-
laar bepaald aan de hand van een bestaande lineair tijd-invariante regelaar. Het
doel van deze methode ligt in het behoud van de eigenschappen van de bestaande
regelaar, terwijl tegelijkertijd de mogelijkheden om systeembeperkingen mee te
nemen worden toegevoegd om daarmee fouten op te vangen.

De tweede methode bestaat uit de combinatie van een MPC regelaar en het inver-
teren van de niet-lineaire dynamica van het te besturen systeem. Deze combinatie
leidt tot een regelaar die in het gehele werkgebied van het te besturen systeem
geldig is en fouten mee kan nemen door de introductie van systeembeperkingen.
Fouten beslaan het bereik van relatief eenvoudig falen van actuatoren tot com-
plexe beschadigingen aan de structuur van het vliegtuig of systeem. Door het
toevoegen van beperkingen aan de regelaar kan het vliegtuig in die toestand(en)
worden gehouden waarin een verdere stabiele en bestuurbare vlucht mogelijk is.
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Deze elementen leiden tot de fout-tolerante eigenschappen van de gepresenteerde
regelmethode. Het projecteren van polytopen naar een lager-dimensionele ruimte
is een belangrijk element in de eerder genoemde combinatie van regeltechnieken.
In dit proefschrift wordt daartoe een (rekentechnisch) efficiënte methode gepre-
senteerd.

De in dit proefschrift gepresenteerde theorie wordt toegepast op een aangepast
simulatiemodel van een Boeing 747-200 vliegtuig, het type vliegtuig dat in 1992 in
Amsterdam Bijlmermeer is neergestort.
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