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Samenvatting

Precieze plaats bepaling (PPP) is een Globaal Navigatie Satelliet System (GNSS) methode
van processen met als doel het leveren van hoge positie nauwkeurigheid zonder de noodzaak
voor een basis station in de nabijheid van de gebruiker, of een dicht netwerk van referentie
stations. Om deze doelstelling te bereiken gebruikt PPP de zeer exacte fasewaarnemingen
van de draaggolf naast de grovere pseudoafstandsmetingen. Voordat de fasemetingen bij
kunnen dragen aan de positie oplossing, moeten de constante fase meerduidigheden wor-
den geschat uit de metingen. Verder worden, om een accurate positie te berekenen, een
aantal methodes gebruikt om de bijdragen van fouten te minimaliseren. Een dun bezaaid
wereldwijd netwerk van referentiestations schat GNSS satelliet banen en klok afwijkingen
met hoge nauwkeurigheid, en stelt deze data ter beschikking aan de gebruiker. A piori
modellen worden gebruikt om te corrigeren voor hydrostatische troposfeer vertragingen,
relativistische effecten, draaggolf fase opwinding, fase centrum verschillen en variaties. Wij
zullen ons vooral richten op gebruikers dichtbij het aardoppervlak, wat betekent dat ver-
plaatsingseffecten (bijv. door belasting door de oceanen en de vaste aardgetijden) ook
moeten worden beschouwd. De natte troposfeer vertraging wordt meestal geschat uit de
data, en, in conventionele PPP, worden de ionosfeer vertragingen te niet gedaan door ob-
servaties op twee frequenties te combineren in een kleiner aantal ionosfeer-vrije observaties.
De nauwkeurigheid die PPP levert op basis van GPS is heel hoog, slechts enkele mm voor
24u statische data.

Echter, PPP heeft een aantal tekortkomingen welke in dit proefschrift worden behandeld:

� De noodzaak om de ionosfeer vertragingen te verwijderen en de fase meerduidigheden
te schatten resulteert in een relatief zwak model. Dit leidt tot lange (re)initialisatie
tijden voordat een accurate positie berekend kan worden. In dit proefschrift wordt
een alternatieve aanpak gentroduceerd, gëımplementeerd en getoetst welke niet
een ionosfeer-vrije combinatie vormt, maar de ionosfeer-vertragingen schat uit de
observaties. Ten eerst worden (gelinearizeerde) GNSS observatie vergelijkingen
gëıntroduceerd en het functionele PPP model afgeleid. Hieruit bepalen we de te
schatten parameters, en behandelen we de mogelijkheid om de ionosfeer schatting
in te perken door externe ionosfeer data te gebruiken. Dit wordt bereikt door ob-
servaties met ionosfeer model waardes te corrigeren en alleen de residuele ionosfeer
vertraging te schatten. Ten slotte wordt een dynamisch model voor de residuele
ionosfeer vertraging bepaald en worden positie resultaten gepresenteerd.

� Een accuraat stochastisch model voor PPP ontbreekt nog, wat leidt tot het subopti-
maal wegen van de verschillende observaties-types, een inadequate kwaliteitsbeschri-
jving van de oplossing, en onbetrouwbare hypothese toetsing. In dit proefschrift wor-
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den de stochastische eigenschappen van het PPP model onderzocht, beginnende bij
de nauwkeurigheid van de (real-time) satelliet baan en klok afwijkingen, gevolgd door
de nauwkeurigheid en correlaties van de GNSS observaties. Wat betreft deze laatste,
wordt een nieuw ontwikkelde methode gëıntroduceerd gebaseerd op het geometrie-
vrije model. Deze analyse bevat ook een schattingsprocedure om vertragingen in
pseudoafstandsmetingen veroorzaakt door signaalreflecties (multipath) als een auto-
regressief proces te schatten, welke ook gebruikt kan worden om een dynamisch
model voor tijd-gecorreleerde parameters op te stellen. Als laatste is een bijna zuiver
variantie componenten schattingsalgoritme toegepast op het complete PPP model,
met als resultaat een accurate kwaliteitsbeschrijving van de geschatte posities.

� Integriteitscontrole (integrity monitoring) welke hypothese toetsing gebruikt om
fouten te detecteren in het model, die niet worden gedekt door de verwachte onzek-
erheden, is nog niet goed ontwikkeld voor PPP. Dit onderwerp is gerelateerd aan
bovenstaande punten, aangezien een accuraat stochastisch model is vereist voor
intergriteits-controle, en omdat het schatten en inperken van de ionosfeer vertrag-
ing essentieel is voor een hoge mate van integriteit. Het geometrie-vrije model is
opnieuw gebruikt in tijdsgedifferentieerde vorm om de integriteitsaspecten van multi-
frequentie GNSS modellen en hun kracht om fouten zoals een slip in de fasemetingen
te analyseren. De nulhypothese en alternatieve hypothesen worden gepresenteerd en
de kleinste nog detecteerbare fouten (Minimal Detectable Biases, MDB) vastgesteld
voor verschillende soorten fouten. Analytische uitdrukkingen worden gepresenteerd,
ondersteund door numerieke resultaten.

De geometrie-vrije analyse van de ruis op pseudoafstands- en fasemetingen, liet een goede
overeenstemming zien met theoretische uitdrukkingen die de ruis op de metingen relateren
aan de parameters van de tracking-loops van de ontvanger en signaal-ruis verhouding.
Echter, over langere tijds-intervallen zijn ook sterke variaties van the pseudoafstandsmetin-
gen waargenomen, welke het fouten budget domineren als er geen rekening mee wordt
gehouden. Het modelleren van tijd series met signaalreflecties (multipath) als een auto-
regressief proces AR(k) van orde k, toonde aan dat de geschatte AR(1) parameter bijna
altijd zeer significant is, wat een sterke tijdscorrelatie aanduid van de tijd series met sig-
naalreflecties. Het AR(1) model past ook een veel beter met de data dan een AR(0) model
met alleen witte ruis, en vermindert de variantie van de residuen aanzienlijk.

Analyse van de real-time precieze producten liet zien dat in vergelijking tot voorspelde
satelliet banen, de voorspelde satelliet klokken relatief slecht zijn en daardoor de gecom-
bineerde fout domineren. De kwaliteit van nieuwe producten met kortere vertragingen is
veel hoger en benaderd posteriori producten. Er is ook een sterke correlatie tussen de baan
en klok producten, een gevolg van het schattings-proces, maar ook door het gebruik van
specifieke fase centrum verschillen. Gebruikers kunnen daarom beter de satelliet baan en
klok producten van dezelfde leverancier nemen en kunnen producten beter niet door elkaar
gebruiken.

Analyse van het tijdsgedifferentieerde geometrie-vrije model liet een sterke impact van het
inperken van de ionosfeer variaties over de tijd op intergriteitscontrole zien. Instantane
detectie van individuele slips in data gemeten op twee of drie frequenties bleek een hoge
kans op succes te hebben onder gematigde ionosfeer condities. Detectie van fase-slips in
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data gemeten op een enkele frequentie is moeilijker en kan leiden tot een vertraging in
detectie. De MDB voor instantane pseudoafstandsfouten is, met uitzondering van data
op een enkele frequentie, niet gevoelig voor ionosfeer condities; de precisie van de code
metingen is de enige bepalende factor. Toetsing voor een simultane fase-slip op elke
frequentie leidt tot een zeer uitgerekte MDB ellips of hyper-ellipsöıde als de ionosfeer
niet wordt ingeperkt, wat erop duidt dat specifieke combinaties van slips erg moeilijk te
detecteren zijn. Het inperken van de ionosfeer vertraging verkleint de MDB ellips als de
precisie van de ionosfeer pseudo-observatie toeneemt.

De positie resultaten laten zien dat zonder correcte modellering, de pseudoafstandsobser-
vaties niet significant bij kunnen dragen aan de oplossing op basis van fasewaarnemingen,
zonder de nauwkeurigheid te verslechteren. Hiernaast past de formele kwaliteitsbeschrijv-
ing van de oplossing slecht met de empirische positie fouten, als tijdsgecorreleerde effecten
worden verwaarloosd. Na deze beide problemen te hebben opgelost, is de kracht van het
gecombineerde model getoond door de uitstekende conversie prestaties in zowel de statis-
che als kinematische gevallen. Het inperken van de atmosfeer vertragingen met model
waarden verbetert de initiële conversie van de positie schatting verder.



Summary

Precise Point Positioning (PPP) is a Global Navigation Satellite System (GNSS) processing
method with the objective of providing high positioning accuracy without the need for a
nearby base station or dense network of reference stations operated by the user. To reach
this objective, PPP uses the very precise carrier phase measurements in addition to the
coarse pseudorange measurements, and precise satellite orbits and clock offsets. Before
the carrier phase measurements can contribute to the position solution, the carrier phase
biases must be estimated from the measurements. Additionally, to compute an accurate
position, a number of approaches are used in PPP to reduce the error contributions. A
sparse global network of reference stations estimates very accurate satellite orbits and
clock offsets, and provides these to the user. A priori models are used to correct for the
hydrostatic troposphere delay, relativistic effects, carrier phase wind-up, phase center offsets
and variations. We will mainly consider users on or close to the surface of the Earth, which
means that site displacement effects (e.g. ocean loading and solid Earth tides) also should
be taken into account. The troposphere wet delay is often estimated from the data, and,
in conventional PPP, the ionosphere delays are eliminated by combining dual-frequency
observations in a reduced number of ionosphere-free observations. The accuracy provided
by PPP based on GPS is very high; just a few mm for 24h of static data.

However, PPP can still be improved in a number of areas which are addressed in this
dissertation:

� The need to both eliminate the ionosphere delays and estimate the carrier phase
ambiguities results in a relatively weak model. This leads to long (re)initialization
times before an accurate position can be computed. In this dissertation a different
approach is proposed, implemented and tested that does not form the ionosphere-
free combination, but estimates the ionosphere-delays from the observations. First
the (linearized) GNSS observation equations are introduced and the functional PPP
model is derived. From this we determine the estimable parameters, and treat the
possibility of constraining the ionosphere estimation by use of external ionosphere
data. This is achieved by correcting the observations with ionosphere model values
and estimating only the residual ionosphere delay. Finally, a dynamic model for the
residual ionosphere delays is determined and positioning results are presented.

� An accurate stochastic model for PPP is lacking, which leads to a suboptimal weight-
ing of the different observation types, an inadequate quality description of the solu-
tion, and unreliable hypothesis testing. In this dissertation the stochastic properties
of the PPP model are studied starting with the accuracy of the (real-time) satellite
orbit and clock offsets, and continuing with the accuracy and correlation of the GNSS
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observations. For the latter a newly developed method is introduced based on the
geometry-free model. This analysis also includes an estimation procedure to model
pseudorange multipath errors as an auto-regressive process, which can also be used
to construct a dynamic model for time-correlated parameters. Finally, an almost
unbiased variance component estimation algorithm is applied to the complete PPP
model, and an accurate quality description of the positioning results is obtained.

� Integrity monitoring, which uses hypothesis testing to detect errors in the model
which are not covered by the expected uncertainties, is not well developed for PPP.
This subject is related to the previous points, since an accurate stochastic model
is required for integrity monitoring and estimating and constraining the ionosphere
delay, is key to high integrity performance. The geometry-free model is used again
in time-differenced form to analyze the integrity aspects of (multi-frequency) GNSS
models and their power to detect errors such as cycle-slips on the carrier phase
measurements. The null hypothesis and alternative hypotheses are presented and the
Minimal Detectable Bias (MDB) is derived for different kinds of errors. Analytical
expressions are provided supported by numerical results.

The geometry-free analysis of pseudorange and carrier phase measurement noise revealed
a good agreement with the theoretical expressions linking the measurement noise to the
receiver tracking loop parameters and signal-to-noise ratio. However, strong variations of
the pseudorange code measurements over longer time periods were also observed, which
dominate the error budget if not accounted for. Modeling of multipath time series as an
autoregressive process AR(k) of order k, showed that the estimated AR(1) parameter is
almost always significant to a very high level, which indicates strong time correlation of
the multipath time series. Indeed the AR(1) model fits the data much better than a white
noise or AR(0) model does, significantly reducing the residual variance.

Analysis of the real-time precise products showed that compared to the satellite orbit
prediction, satellite clock prediction is relatively poor and thus dominates the combined
error. The quality of newer products with shorter delays is much higher and approaches
the post-processed products. There also exists strong correlation between the orbit and
clock products, resulting from the estimation process, but also due to the use of specific
phase center offsets. Users should thus obtain the satellite orbit and clock products from
the same provider and not mix products.

Analysis of the time-differenced geometry-free model revealed the strong impact of con-
straining the ionosphere variations over time on the integrity performance. Instantaneous
detection of individual slips in dual- and triple-frequency data was found to have a high
probability of success under moderate ionosphere conditions. Detection of phase-slips in
single-frequency data is more difficult and may lead to a delay in the detection. The size of
the smallest pseudorange outliers which can still be detected is, except for single-frequency
data, insensitive to the ionosphere conditions; the precision of the code measurements is
the only determining factor. Testing for a simultaneous phase-slip on each frequency leads
to a very elongated MDB ellipse or (hyper)ellipsoid if the ionosphere is not constrained,
indicating that specific combinations of slips are very difficult to detect. Constraining the
ionosphere delay shrinks the MDB ellipse when the precision of the ionospheric pseudo
observable increases.
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The positioning results show that without proper modeling, the pseudorange observations
cannot contribute significantly to the carrier phase solution without degrading the accuracy.
Furthermore the formal quality description of the solution poorly fits the empirical position
errors if time-correlated effects are neglected. After solving both these issues, the strength
of the combined model was demonstrated by the excellent convergence performance in
both the static and kinematic case. Constraining the atmosphere delays to model values
further improves the initial convergence of the position estimation.
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Introduction 1
1.1 Background

The Global Positioning System (GPS) has changed the navigation landscape dramatically.
The positioning, velocity and timing (PVT) services offered by GPS receivers are nowadays
commonplace and can be found in many appliances and applications. Moreover, society
has become very dependent on these services and relies heavily on the continued availability
of GPS.

The GPS system was designed in the seventies by the US military and is to date still con-
trolled and operated by the US military, although under agreement with the US department
of transportation for the provision of GPS civil services. The very dependency on US con-
trolled satellite navigation systems has prompted the European Union (EU), amongst other
reasons, to develop its own Global Satellite Navigation System (GNSS), called Galileo.
The first two Galileo test satellites were launched in 2005 and 2008, respectively, the con-
stellation currently consists of 10 satellites (ESA, 2015), and full operational capability is
planned for 2020 (ESA, 2012). At the same time the GPS constellation, consisting of
31 satellites, is undergoing a modernization program (gps.gov, 2015); the Russians have
revived their own GLObal NAvigation Satellite System (GLONASS), consisting of 24 satel-
lites (IAC, 2015), and the Chinese government is completing their GNSS BeiDou, with a
current constellation of 17 satellites (beidou.gov.cn, 2015).

Satellite navigation is based on measurements of the travel time of a coded time signal
transmitted by each GNSS satellite. The user receiver calculates its position, velocity and
time using travel time measurements to multiple GNSS satellites in view. The receiver uses
in its computation the satellite positions, satellite clock errors and some other information
which is broadcast by the GNSS satellites themselves (broadcast ephemerides). This is
called stand alone positioning, because it does not depend on data sources other than the
GNSS system itself.

The accuracy of GPS stand alone positioning based on code observations and broadcast
ephemerides is 3-5 meters (standard deviation), and similar for GLONASS and BeiDou.
However, for certain applications, e.g. road tolling, geo-information, geodesy and geo-
physics, the accuracy of standalone GPS is not enough. Also, although GPS is very
reliable, the integrity of standalone GPS is not enough for airplane approaches or other
‘Safety-of-Life’ (SoL) applications.

These issues are addressed to some extend by the introduction of new GNSS systems and
new and upgraded GNSS signals. Firstly, the users will benefit from the ability to use
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multiple GNSS systems simultaneously in order to obtain improved accuracy and integrity.
A necessary condition is that the GNSS systems are interoperable and compatible: a system
of systems. The main impact will be a sharp increase in the number of available satellites
and the reduced dependency on a single provider. Secondly, the new GNSS systems and
modernized GPS will feature new frequencies and signals. In particular, the introduction of
new frequencies (e.g. L5), increased bandwidths and improved modulation techniques (e.g.
BOC, Alt-Boc). Thirdly, also the ground segment and satellite hardware is undergoing an
improvement, resulting in improved satellite clocks and more accurate satellite orbits.

In order to address the integrity and accuracy issues with contemporary GPS, Satellite Based
Augmentation Systems (SBAS) such as the American Wide Area Augmentation System
(WAAS), the European Geostationary Navigation Overlay Service (EGNOS) and Japanese
Quasi-Zenith Satellite System (QZSS) have been developed. The European SBAS became
operational in 2009. An SBAS monitors the regional GPS performance and relays this
information to the users in that region through a (geostationary) satellite using a GPS like
L1 signal. An SBAS provides corrections to the GPS orbits and clocks in real-time, gridded
ionosphere delays corrections over the region of interest, and information on the accuracy
and integrity of the GPS signals. The accuracy of an SBAS enabled receiver is typically
better than one meter, thanks to the SBAS corrections and carrier phase smoothing of
the code measurements inside the receiver. Integrity of the signal in space is provided by
the so-called integrity flag; unless the integrity flag is set the satellite may not be used
for SoL applications. Therefore, in general, the SBAS solution will use fewer satellites
than standalone GPS. The level of integrity is provided by so-called horizontal and vertical
protection levels. Galileo system integrity will be integrated within system by means of the
Galileo SoL service.

Integrity at the system level alone is not sufficient to guarantee integrity at the user
level. These systems must be complemented by Receiver Autonomous Integrity Moni-
toring (RAIM). RAIM provides for the integrity at the user level by cross checking the
GNSS observations, using statistical methods and hypothesis testing such as the Detection-
Identification-Adaptation (DIA) procedure developed at Delft University of Technology.
The Minimal Detectable Biases (MDB) and protection levels, the so called External Relia-
bility Levels (ERL), provided by RAIM depend to a large extend on the number of available
satellites. RAIM is complementary to system integrity provided by e.g. SBAS and Galileo,
and to some extent it could even replace SBAS in the future.

To get the highest possible accuracy from GNSS it is no longer sufficient to use only the
code measurements or carrier phase smoothed code measurements in a stand alone or SBAS
mode. Key to high accuracy applications, firstly developed in geodesy, has been the use
of the very precise, but ambiguous, carrier phase measurements in a relative measurement
setup with two or more receivers. Since the ambiguities are unknown they will have to
be estimated, which can lead to long initialization times. However, since the ambiguities
in a relative measurement setup must be integer, the initialization times can be reduced
strongly by integer estimation of the ambiguities, which is called Ambiguity Resolution
(AR). One such application is GPS-RTK (Real-Time Kinematic), whereby GPS data is
processed in a differential mode together with observations from a nearby base station
with precisely known coordinates. This makes it possible to form double differences of the
phase observations in which the fractional parts of the ambiguities at the side of both the
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receiver and satellite are eliminated. The resulting integer ambiguities can then be resolved
by using e.g. the Least-squares AMBiguity Decorrelation Adjustment (LAMBDA) method
developed at Delft University of Technology (Teunissen, 1994). In addition, many error
sources are eliminated in the double difference because they are almost identical for both
receivers. The resulting position solution relative to the base station can be as precise as
a few mm to cm.

GNSS signals are affected by propagation delays in the Earth’s atmosphere; a frequency
dependent delay which originates in the ionosphere and a frequency independent delay
which originates mainly in the troposphere. The ionospheric delays as function of the
baseline length is a determining factor for the success rate of ambiguity resolution. If
the baseline is very short (<10km), the ionospheric delay is almost equal for the base
station and the user and is removed in the single difference, making successful ambiguity
resolution possible. If the base line length increases, the ionospheric delay will start to
differ for the base station and the user, and will not be removed in the single difference,
thus decreasing the ambiguity resolution success rate. This means that for RTK a dense
network of reference receivers is needed in the objective area. Such a network is expensive
to set up and maintain. Therefore methods have been developed and are being developed
that can still work when the baseline length increases. These methods rely on ionospheric
modeling and interpolation of the ionospheric delay. Network RTK is one such method and
makes baseline lengths of up to 100km possible. The baseline lengths can be increased
even further (to a few hundred km) with Wide Area RTK processing (WA-RTK), which
relies on improved ionospheric modeling and additional measurement corrections for e.g.
the satellite clocks. However, with increasing baseline lengths the time needed to reach
highly accurate positions also increases.

A different, but related, method is Precise Point Positioning (PPP). PPP is a stand alone
positioning method with the objective to provide high positioning accuracy (ideally similar
to RTK) without the need for a nearby base station or dense network of reference stations.
The stand alone approach of PPP, brings with it a number of challenges. Error contributions
on the range observations, which in relative positioning are eliminated by taking differences
between the observations of two receivers, will now have to be estimated or removed in
a different way. Therefore, PPP relies on precise satellite orbits, clocks, differential code
biases, and ionospheric models from a service provider to correct these errors. For real-
time positioning or navigation these high accuracy products need to be available in (near)
real-time as well. Additionally site displacement effects (e.g. ocean loading and solid Earth
tides), which are greatly reduced in relative positioning, will now have to be taken into
account through proper modeling. And finally, for a stand alone receiver, the carrier phase
ambiguities are not integer with conventional precise satellite orbit and clock products
(since the fractional part at the side of the satellites cannot be eliminated) which leads to
long initialization times. For kinematic applications, the accuracy provided by PPP based
on GPS is currently at dm-level and as good as a few mm for static observations over a 24
h period.

One of the advantages of PPP over RTK and WA-RTK is that it is truly global and does
not depend on local elements which may or may not be present. Also, PPP will work
equally well over land as over the oceans, and can be used on aircraft and (low Earth)
orbiting satellites. However, integrity is currently not provided with PPP systems, and
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it takes considerable time (10-30 minutes) for a PPP solution to converge to decimeter
accuracy. Also, because the carrier phase ambiguity needs to be initialized every time after
a loss of lock to the satellite signal, it is difficult to use PPP in build up or heavily forested
areas, where there are a lot of interruptions and reflections (multipath) on the signals.

1.2 Research objectives

The ultimate goal of Precise Point Positioning is to have a world wide, stand alone po-
sitioning system with centimeter accuracy, meter integrity (99%) and short initialization
time that is able to work under all operational conditions. Several (related) shortcomings
of the conventional PPP algorithms include the treatment of several time correlated errors
as white noise or even neglecting them altogether, the lack of a realistic stochastic model
of GNSS observables, and not constraining the ionosphere delays either in time or to model
values. Also lacking is a robust integrity algorithm to detect errors in the observations and
ambiguity resolution for PPP is not not yet fully developed.

The main objectives of this thesis are the following:

Our first objective is to set up the functional PPP model from the observation equations;
identify weak points of conventional PPP algorithms and their causes. The conventional
ionosphere-free linear combination will be scrutinized and an optimal way of treating the
ionosphere delay will be determined.

The second objective is to provide an accurate stochastic model for the GNSS observations
and precise satellite products. This is required for the optimal estimation of the position and
a realistic quality description of the position solution. But it is also essential for integrity
monitoring, based on hypotheses testing, and ambiguity resolution, which among others
relies on the variance matrix pertaining to the estimated float ambiguities.

The third objective is to improve integrity monitoring for PPP. Since PPP relies heavily
on the carrier phase measurements and the assumption that the carrier phase biases are
constant, we aim at detecting cycle slips (and pseudorange outliers) at the earliest possible
stages. Cycle slip detection is closely related to ambiguity resolution, as cycle slips can be
viewed as time differenced ambiguities.

The fourth objective is to reduce the initialization and re-initialization times without de-
teriorating the final accuracy. Long initialization times (following from long convergence
times of the estimated ambiguities) prevent fast and accurate positioning. In this thesis
we would like to provide an approach to mitigate this problem.

1.3 Contributions of this research

The main contributions of this research, to reaching these objectives, are:

1. The PPP observation model is derived and all rank defects are identified and solved.
The model is compared to the conventional PPP model and weak points and possible
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improvements in the latter are described. The treatment of the ionosphere delays
receives special attention.

2. An analysis technique of the quality of the precise satellite orbit and clock offsets is
developed and applied to the products of a number of PPP providers. A distinction
is made between errors that do and do not impact a user of the precise products.

3. An analysis technique is developed to create an accurate and complete stochastic
model for GNSS observations and error sources including (time) correlation. This
analysis technique is based on linear combinations of short and zero baseline mea-
surements, which makes it possible to separate the different contributions to the
variance of the observations.

4. An integrity monitoring algorithm which uses a time differenced approach to de-
tect errors on the observations is developed. These algorithms can be applied in
preprocessing, i.e. before the observations are added to the navigation algorithms.

5. A rigorous PPP algorithm (and implementation thereof) is presented, which makes
optimal use of all available data, including external atmosphere models, and provides
accurate position estimates.

6. The positioning model is modified to improve the quality description of the solution
for both the static and kinematic case and for both the pseudorange, carrier phase
and the combined model.

7. An iterative method to fine-tune the elevation dependent weighting of pseudorange
and carrier phase measurements is introduced and tested.

8. An iterative approach to estimating unmodeled group delays in the form of antenna
patterns and satellite biases is derived and successfully applied to reduce systematic
errors in the position estimates.

1.4 Outline of the thesis

Chapter 1 is an introduction to this thesis.

Chapter 2 provides an overview of Precise Point Positioning.

Chapter 3 introduces the (linearized) GNSS observation equations including all the different
parameters involved. Several different approaches to using these observations for PPP are
treated both with the original observations and ionosphere-free linear combinations of the
observations.

In Chapter 4 the approaches described in chapter 3 are extended to complete functional
navigation models highlighting the single and dual frequency algorithms (the stochastic
model is treated in chapters 6 and 8) and the estimable parameters at the user side are
determined.
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Chapter 5 describes the precise satellite orbit and clock data provided by PPP service
providers to PPP users, their quality and latencies. It also provides results from an analysis
of the quality of real-time precise products from several different sources.

In chapter 6 a newly developed method to derive an accurate and realistic model of
the stochastic properties of GNSS measurements is presented. This method is based on
geometry-free baseline analysis, but the results are generally applicable and here applied
to PPP. Measurements from a short and zero baseline are combined using linear combina-
tions of the observations, in order to derive accurate estimates of the stochastic properties
of the observables. This analysis is then extended to include a stochastic description of
pseudorange multipath errors.

In chapter 7 the integrity of single-receiver, single-channel, multi-frequency GNSS models
is studied. The uniformly most powerful invariant test statistics for spikes and slips are
derived and their detection capabilities are described by means of minimal detectable biases
(MDBs). Analytical closed-form expressions of the phase-slip, code-outlier and ionospheric-
disturbance MDBs are given, thus providing insight into the various factors that contribute
to the detection capabilities of the various test statistics. This is also done for the phaseless
and codeless cases, as well as for the case of a temporary loss-of-lock on all frequencies.
The analytical analysis presented is supported by means of numerical results.

In chapter 8 Precise Point Positioning results processed with the derived functional and
stochastic models are presented. An iterative method for Variance Component Estimation
is introduced and applied, as well as a method to estimate group delays in the form of
antenna patterns and satellite biases.

Chapter 9 will summarize the conclusions of this thesis as well as present recommendations
for future research.
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2.1 Historical perspective

During the last decade of the 20th century dense networks of continuously operating GPS
receivers were established in populated areas of the US, Japan and Europe. To keep the
computational burden associated with the data analysis of such networks economically
feasible, Zumberge et al. (1997) pioneered a novel technique in 1997. The approach is
to first determine precise GPS satellite positions and clock corrections from a globally
distributed network of GPS receivers, together with the receiver positions, troposphere
delay and other parameters, as is done routinely by analysis centers of the International
GNSS Service (IGS). Then, in the second step, called Precise Point Positioning (PPP), the
GPS data from the dense networks is analyzed one receiver at a time using the satellite
orbits and clock corrections from the previous step. During this second step the receiver
position, troposphere delay and phase ambiguity parameters are computed. Beyond a
certain number of receivers the quality of satellite orbits and clock corrections do not
further improve significantly by including more receivers in the global network. The current
number of receivers in the global IGS network is over 300 (Kouba, 2009a), but the number
of receivers used for the computation of the precise GPS satellite positions and clock
corrections is in the order of 100. The exact number varies per IGS data center and the
type of product. Zumberge et al. (1997) showed that the quality of the station parameters
determined in the PPP step is equal to the quality of the station parameters in the global
network, and also comparable in quality to results from a simultaneous network analysis of
all data together.

The new processing technique was called Precise Point Positioning because of the similarity
to the more common concept of GPS Point Positioning with pseudo range data and broad-
cast ephemerides. In PPP the more accurate satellite orbits and clock corrections from the
IGS analysis centers are used instead of the broadcast ephemerides. But PPP improves on
Point Positioning also through two other important aspects: it uses the much more precise
carrier phase measurements, and it conventionally uses dual frequency measurements in
order to eliminate the ionospheric delays. Therefore, PPP requires a dual frequency GPS
receiver with carrier phase tracking. Because PPP uses the more precise carrier phase data
it is necessary to estimate the carrier phase ambiguities along with the station position and
receiver clock parameters. To obtain the best possible precision also troposphere delay pa-
rameters are estimated (zenith delay and optionally gradient parameters). Zumberge et al.
(1997) report a few-millimeter precision for a 24 hour period in horizontal components and
centimeter precision in the vertical component.
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The best PPP results are obtained if the same models and software are used by the user as
for the global network, or at least if the same conventions are used. This is because PPP
can be considered a step-wise network adjustment of the global network with one or more
additional PPP receivers: the first step consists of the global network adjustment and the
second step of a PPP receiver (or a PPP network), using the results from the first step.
The third step, back substitution of the results of the second step to improve the first step,
is omitted because of its small impact. Also, during the second step the satellite orbits
and clock parameters can be fixed because the PPP user will not be able to improve the
satellite orbits and clock parameters. This implies that PPP is not truly a point positioning
technique, but in essence also a relative or differential technique that does share a number
of properties with GPS baseline processing. However, in baseline processing many effects
(earth tides, loading, atmosphere) just cancel out by single differencing the observations
from two receivers, which in PPP have to be taken into account explicitly. It is therefore
essential that the same models and corrections are applied in the PPP step as in the global
adjustments, and this is often best guaranteed when the same software is used.

One of the characteristics PPP shares with (long) baseline processing is that it relies
primarily on the carrier phase data. To accurately estimate the carrier phase ambiguities it
is necessary to collect observations over a long time span. The minimum time span is about
half an hour to an hour. This is not a problem for static application which typically processes
time spans of one day. If a network of PPP stations is processed, integer ambiguities may
be resolved between the PPP stations, resulting in a much improved relative positioning
between these PPP stations. Ambiguities between the PPP network and the global network,
as well as ambiguities for single PPP stations, were originally not solved, but developments
on this point are discussed in section 2.3.2.

Another characteristic of PPP is that it uses satellite orbits and clock corrections from a
different source than the GPS ephemerides. Precise satellite ephemeris and satellite clock
information have been available from the IGS since 1992 (Beutler et al., 1999). At first
this orbit information was only available with a latency of about two weeks, limiting PPP
to post-processing applications whereby the PPP solution is computed afterwards (outside
the receiver) after downloading orbits and clocks from the Internet. For post-processing the
receiver can both be static, resulting in daily (station) coordinates, or kinematic resulting in
time-series of receiver coordinates. The processing is usually based on a batch least-squares
adjustment or a smoothing filter.

Since then precise IGS products with significantly smaller latencies have become available
including predicted orbit and clock information, opening the door for real-time applications
of PPP. Nowadays there are several commercial and non-commercial providers of real-time
precise orbit and clock data. An overview of the service providers and their products is
given in chapter 5.

In order to perform PPP in real-time, a receiver must have an internet connection or some
other communication link to such a provider of real-time satellite orbit and clock data.
The processing for real-time applications, which is often done inside the receiver, is a
kinematic solution based on a Kalman filter type of processing. Because with a real-time
Kalman filter only measurements from the past can be processed some time will be needed
for the solution to converge to the required level of accuracy. This period depends very
much on the available number of satellites and quality of the data, but is typically about
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30 minutes to reach decimeter-level under normal conditions (Bisnath and Gao, 2009b).
Another difference between static and real-time processing is that, while only carrier phase
measurements might be used for static applications with daily position estimates, for real-
time processing the carrier phase measurements are used together with the pseudo range
measurements. Good quality pseudo range measurements have a beneficial effect on the
convergence time for real-time applications.

Although PPP was developed as a dual frequency technique it can also be used with
multiple frequencies or even with only a single frequency. Instead of the ionosphere free
linear combination single frequency PPP relies on either external ionosphere delay data
(Le, 2004; Le and Tiberius, 2006a; de Bakker et al., 2014) or a linear combination of
code and carrier phase data to eliminate the ionospheric delay (Yunck, 1996). Global
Ionosphere Maps (GIM) computed by IGS analysis centers (IGS, 2015b) are currently the
global ionosphere models with the highest accuracy.

2.2 Performance and limitations of PPP

As mentioned, Zumberge et al. (1997) report a few-millimeter daily precision in horizontal
components and centimeter precision in the vertical component. This precision has been
improved even further since then along with the improvements in IGS orbit and clock
corrections obtained by the different IGS analysis centers. This precision is more than
sufficient for many applications including most real-time applications. A measurement
duration of several hours before this precision is reached is however not acceptable for
many applications, especially considering kinematic receivers. Therefore, the challenge
for PPP is not so much to improve on the obtained precision but rather to shorten the
time to reach a high precision. The convergence period has been studied since the first
publications on the PPP technique. Witchayangkoon and Segantine (1999) tested the PPP
implementation of the Jet Propulsion Laboratory (JPL), using the precise IGS products and
measurements from a static receiver, and found that the repeatability of the PPP solutions
ranged from 10 to 20 cm after one hour of observations, and this decreased to a few
centimeters after 12 hours, finally reaching 1 cm after 24 hours. Kouba and Héroux (2001)
report that cm convergence is reached after processing 2-3 h of observations from an IGS
station using precise IGS orbits and clocks products in static mode. They also mention
that the convergence time can be decreased to only 30min when high-rate satellite clock
products are used.

As precise products with smaller latencies became available, the focus of PPP research has
shifted to real-time PPP processing (Kechine et al., 2003; Héroux et al., 2004; Gao and
Chen, 2004). Kechine et al. (2003) verified the Internet-based PPP service from the JPL
and found 20-30 minutes to achieve dm accuracy for all position coordinates in kinematic
processing. Gao and Chen (2004) obtained cm accuracy after 20min using the JPL real-
time products in static mode, and report the same accuracy for kinematic processing, but
do not mention the convergence period. Landau et al. (2008) report 0.1m accuracy after
90min for real-time static PPP vs a final accuracy of 20mm. For kinematic positioning a
final accuracy of 40mm was achieved and a convergence time of 2 hours. Bisnath and Gao
(2009a,b) found 10cm accuracy after 20-25min for an airborne platform in kinematic mode.
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Table 3.3 on page 23 provides a more complete overview of the reported PPP performance
by different authors.

Our main focus will also be on methods and algorithms that can be used for real-time,
kinematic applications of single receiver PPP, with the goal of decreasing the time to reach
a high positioning accuracy and providing a rigorous quality description of the computed
position. Several methods and algorithms to reach this goal are explored in the following
sections and chapter 3. For real-time PPP applications the timely availability of satellite
orbit and clock products with sufficient accuracy is a prerequisite, which is the subject of
chapter 5.

Despite the improvements made in PPP the performance is still far removed from RTK
performance which routinely achieves 10mm-20mm accuracy (rms) with average initializa-
tion times of 20 s or less (Landau et al., 2008). However, the development of PPP is not
finished. A number of research groups work on the use of more than two frequencies and
multiple systems for PPP as well as integer ambiguity resolution for PPP.

2.3 PPP developments

2.3.1 GNSS evolution and multi-frequency, multi-constellation PPP

Presently, a significant increase in the available global navigation satellite systems, frequen-
cies and signals is ongoing. GPS is in the process of modernization. This is achieved by
replacing older satellites by new satellites with expanded and improved capabilities. The
civil L2C signal, providing ’true’ dual frequency capabilities to civil users thereby making
L1 aided tracking of L2 obsolete, is becoming available on more and more satellites (cur-
rently about halve of the constellation, gps.gov, 2015). Even more importantly, the newest
GPS satellites (currently about one third of the constellation) also transmit an additional
(wide-band) signal on the L5 frequency primarily designed for safety-of-life applications.
The last Block IIA satellites will soon be decommissioned (currently there are only three
left). GLONASS, the Russian GNSS, has been fully replenished and at present has 24
active satellites as reported by the GLONASS Information-Analytical Center (IAC, 2015).
Planned modernizations of GLONASS include an additional signal transmitted on the L5
frequency, and a switch from Frequency-Division Multiple Access (FDMA) to Code-Division
Multiple Access (CDMA) which would increase potential interoperability with other GNSS.
Galileo, the European GNSS, is still under development. Two GIOVE (Galileo In-Orbit
Validation Element) test satellites were launched, GIOVE-A in 2005 and GIOVE-B in 2008,
both for testing purposes and to reserve the radio frequencies that Galileo is intended to
use. The GIOVE satellites have been followed by four IOV (In-Orbit Validation) Galileo
satellites in 2011 and 2012, and six FOC (Full Operational Capability) Galileo satellites
in 2014 and 2015 (ESA, 2015). The full Galileo constellation is planned to exist of 30
satellites by the end of 2020 (ESA, 2012). The Galileo system will transmit navigation
signals on four different carrier frequencies: L1/E1, L5/E5a, E5b and E6, two of which
(E5a and E5b) can also be tracked together as one extra wide-band (Alt-BOC) signal with
unprecedented accuracy. The Chinese BeiDou Navigation Satellite System (BDS) was
designed to provide independent regional navigation in the first stage and global coverage
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by 2020. Currently the regional system is fully operational, and the first satellite of the
second stage has already been launched starting the transition towards a global navigation
system (beidou.gov.cn, 2015). The Japanese (QZSS) is intended to operate first four,
later seven satellites that provide regional time-transfer and positioning services thereby
augmenting the GNSS performance in and around Japan (qzss.go.jp, 2015). The Indian
Regional Navigation Satellite System (IRNSS) is intended to operate with a minimum of
seven geosynchronous satellites covering the Indian region. Currently, four satellites are in
orbit (Mruthyunjaya, 2014; isro.org, 2015).

Within the IGS a Multi-GNSS Experiment (IGS MGEX) is currently undertaken in parallel to
the regular IGS operations, which focuses on the tracking of newly available GNSS signals.
Goals include the study and determination of inter-system calibration biases, comparison
and testing of equipment and processing software and finally producing multi-GNSS IGS
products (Montenbruck et al., 2013). MGEX is now moving towards mainstream IGS and is
expected to be part of the operational part of the IGS soon. MGEX stations have become
IGS stations already (Maggert, 2015); formats are ready for the new signals and systems.

The realized and expected upgrades of and additions to the available GNSS signals can have
a range of improvements on many GNSS applications including PPP. Some of the more
important ones are: the higher accuracy of the new signals will improve the convergence
time, the availability of many more satellites will drastically improve PPP availability and
RAIM performance, and both the availability of more frequencies and satellites will improve
the potentials of ambiguity resolution.

The availability of additional satellites and signals can significantly improve PPP perfor-
mance. The first real-time GPS and GLONASS combined PPP service, providing precise
orbit and clock products for both systems, has been developed by Fugro based on their
network of 40 ground stations (Melgard et al., 2010) and has since been extended with
Galileo and BeiDou (Tegedor et al., 2015).

The German Aerospace Center and the German Federal Agency of Cartography and
Geodesy setup the COoperative Network for GIOVE Observation (CONGO) with local
support from several international partners, which has produced the first real-time precise
orbit and clock products for the Galileo In-Orbit Validation Element (GIOVE) satellites
(Montenbruck et al., 2009). Precise Point Positioning with the BeiDou system has also
been demonstrated at Wuhan university (Shi et al., 2012; Zhao et al., 2013).

Multi-GNSS positioning also brings new challenges, as so-called Inter-System Biases (ISBs)
are introduced in the model. To use multiple systems simultaneously in an optimal manner,
these biases must be studied, and if possible corrected or eliminated (Gao, 2008; Odijk and
Teunissen, 2013a) (see also section 4.2).

2.3.2 PPP and RTK

In many respects PPP and RTK are similar concepts, a single user is able to obtain a
more accurate position by taking advantage of a (regional or global network of) reference
station(s). However, there are also a number of differences: The RTK technique relies
on estimation or elimination of GNSS errors in the observation space (the most basic
approach is to provide all observations from the nearest reference station to the user and
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form double difference observations), while the PPP technique uses the state space model,
in which the GNSS error sources are separated and modeled individually. The success of
RTK lies in the fixing of the double differenced ambiguities to their integer values, which
enables fast high accurate positioning. Ambiguity resolution is possible due to the strong
spatial correlation of several error sources in GNSS processing including the ionosphere
delays, which are consequently reduced in the double differences. In its application this
means that RTK is limited to relatively short distances to the nearest reference station.
PPP, being a global positioning approach, cannot exploit the spatial correlation of error
sources to perform ambiguity resolution. Additionally, the initial focus of PPP was on post-
processing applications, where ambiguity resolution is of less importance. As a consequence,
the global precise products that a PPP user can obtain from service providers were not
optimized for ambiguity resolution (e.g. the satellite clock products are aligned with the
pseudo range measurements), but this is in the process changing.

Wübbena et al. (2005) proposed the PPP-RTK method which combines the state space
approach from PPP but applies it to RTK networks. Advantages with respect to RTK are
that the state space model offers a more efficient method to transmit the correction data
to users (both the amount of data is reduced, and the same corrections can be used by
any number of users), and, due to the advanced error modeling, the inter-station distances
can be larger. In this respect the PPP-RTK approach resembles network RTK and the
Wide-Area RTK method (Hernandez-Pajares et al., 2008). The advantage of PPP-RTK
with respect to PPP is that, due to a redefinition of the precise corrections and the shorter
baselines, fast ambiguity resolution becomes possible and with it fast accurate positioning.
However, one limitation of PPP-RTK is that the dependency of the performance on the
baseline length is reintroduced, as shown in e.g. (Mervart et al., 2008), and is in that sense
not truly global. Our focus will be on (global) PPP not PPP-RTK specifically. However,
since both PPP and PPP-RTK share the state space approach, the models and methods
are closely related.

PPP-RTK has grown in popularity as it has been shown by several authors that it makes
fast positioning with cm-level accuracy possible. Many subtly different approaches have
been proposed (Weber et al., 2007; Laurichesse and Mercier, 2007; Banville et al., 2008;
Collins et al., 2008; Ge et al., 2008; Geng et al., 2009; Laurichesse et al., 2009; Bertiger
et al., 2010; Teunissen et al., 2010; Loyer et al., 2012; Lannes and Prieur, 2013), but were
shown by Teunissen and Khodabandeh (2015) to be essentially identical if an optimal es-
timation procedure is used. However, the interpretation of the estimated parameters can
differ per method as a different S-basis is chosen to solve the rank deficiencies (Baarda,
1973; Teunissen, 1985; de Jonge, 1998). The common approach is to estimate additional
PPP products or corrections on the existing PPP (clock) products, from a regional network
of reference receivers, but estimation from a global network is also possible (Gabor and
Nerem, 1999; Ge et al., 2008). These additional precise products can be used to eliminate
the fractional ambiguities at the side of the satellites, thereby making single receiver am-
biguity resolution possible. Ambiguity resolution for PPP will be treated in more detail in
section 3.5.
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3.1 System time

Before we introduce the observation equations, first we will choose a common time scale
to work in. When a single GNSS is used, the choice is trivial. Each GNSS has its own
system time and each satellite (and each user receiver) has its offset with respect to this
system time. The satellite clock offsets are provided to the user together with the satellite
positions. In principal, if multiple GNSS are tracked, the satellite clock offsets provided by
each separate system refer to a different system time. However, since a PPP user relies on a
(global) network of reference receivers to provide precise clock offsets, the service provider
simply needs to choose a time scale and compute offsets for each satellite with respect
to this system time (the related but distinct problem of inter-system biases in treated in
section 4.2).

The choice of time scale by the service provider is arbitrary, because we can change from
one to another by simply applying the time offset between the different time scales. In
practice, since GPS was the first fully functional and still is the most ubiquitous GNSS, GPS
time is often used also when considering multi-GNSS positioning. GPS time is referenced to
Coordinated Universal Time (UTC). However, unlike UTC, which is corrected periodically
with an integer number of leap seconds, GPS time is a continuous time scale since midnight
on the night of January 5, 1980/morning of January 6, 1980. The GPS Operational Control
System (OCS) controls the GPS time scale to be within one microsecond of UTC (modulo
one second) (IS-GPS-200D, 2004).

In the following, the chosen system time is simply indicated by t and the satellite and
receiver clock offsets by δts and δtr, respectively. The time of reception, which is the time
at which the receiver makes the measurements, will be called tr. Due to the receiver clock
offset this will not be equal to the ‘time tags’ which are given to the measurements by the
receiver. These receiver time tags will be called tk and it follows that: tr = tk − δtr. For
GNSS measurements, which are collected at discrete time instants, k then indicates the
time epoch of the measurement.

3.2 Observation equations

With these timing conventions in place, the observation equations can now be introduced
as follows. The pseudo range code and carrier phase observation equations for receiver
r, satellite s and frequency f at time of reception tr, based on Teunissen and Kleusberg
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(1998), are:

P s
r,f (tr) = ‖rs (tr − τ sr )− rr (tr)‖+ c0δtr (tr)− c0δt

s (tr − τ sr ) +
T sr (tr) + Isr,f (tr) + c0d

s
r,f (tr) + εsr,f

(3.1)

Φs
r,f (tr) = ‖rs (tr − τ sr )− rr (tr)‖+ c0δtr (tr)− c0δt

s (tr − τ sr ) +
T sr (tr)− Isr,f (tr) + λfA

s
r,f + c0δ

s
r,f (tr) + εsr,f

(3.2)

where P and Φ are the code and phase observables in meters, ‖rs (tr − τ sr )− rr (tr)‖ is
the geometric range (also expressed as ρsr(tr, tr − τ sr )) between the satellite position rs
at time tr − τ sr and the receiver position rr at receiver time tr with τ sr the travel time
of the signal, c0 is the speed of light, T is the tropospheric delay, I is the ionospheric
delay, λ is the carrier wavelength, A is the constant carrier phase ambiguity expressed in
cycles, d and δ contain any other systematic delays on the code and phase measurements,
respectively, and ε and ε are the random code and phase measurement errors, indicated by
the underscore in (3.1) and (3.2), and thereby also the code and phase observables become
random variables.

Now we will introduce a more convenient notation using index k (time epoch of the mea-
surement) to indicate time dependent parameters. It is important to note that in the actual
processing of the data, the time difference between the time of reception and the time of
transmission must still be used. Equations (3.1) and (3.2) then simplify to:

P s
r,f,k = ‖rsk − rr,k‖+ c0δtr,k − c0δt

s
k + T sr,k + Isr,f,k + c0d

s
r,f,k + εsr,f (3.3)

Φs
r,f,k = ‖rsk − rr,k‖+ c0δtr,k − c0δt

s
k + T sr,k − Isr,f,k + λfA

s
r,f + c0δ

s
r,f,k + εsr,f

(3.4)

The observation equations are not linear in the receiver (or satellite) position and will
have to be linearized before they are combined and used in the positioning algorithms.
For this reason the ’so-called’ observed-minus-computed measurements will be formed.
However, before introducing the linearized equations and positioning algorithms based on
these equations, several aspects of the parameters in (3.3) and (3.4) will be discussed.

Position The main goal of GNSS is determine the position of the user receiver in a certain
reference frame. In relative positioning, the position solution will be in the same reference
frame as the known position of the reference receiver. In PPP the position solution will
be in the reference frame of the satellite positions which is the International Terrestrial
Reference Frame (ITRF) for IGS products and World Geodetic System 1984 (WGS84,
which is aligned with ITRF) for GPS broadcast orbits with or without precise corrections.
However, even a stationary receiver will be subject to certain displacements which are not
accounted for in the ITRF. These displacements are related to deformations of the solid
Earth, the pliability of which can be described by the ’so-called’ Love and Shida numbers.
The displacement effects are very similar for receivers at relatively short distances, and as
a result they are largely eliminated in a relative setup. In PPP the displacements cannot
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be eliminated and they will have to be modeled and then applied to the position solution
to determine the precise position of a stationary receiver in the ITRF:

rr,k = rr,ITRF + ∆rr,k (3.5)

where rr,k is the solution of the positioning algorithm, rr,ITRF is a constant position in the
ITRF, and ∆rr are the modeled site displacements of a stationary receiver with respect
to the ITRF. Equation (3.5) shows the convention that the site displacement corrections
should be subtracted from the position solution. Table 3.1 summarizes the different site
displacement effects and their magnitudes. For a comprehensive treatment see Petit and
Luzum (2010).

Table 3.1: Site displacement corrections (∆rr,k)

Displacement effect Magnitude
[cm]

Solid earth tides: The gravitational forces that cause the ocean
tides, also act on and deform the solid Earth. This deformation
causes a permanent displacement, which can reach up to 12 cm
in mid latitudes, and a periodic displacement with predominantly
semi diurnal and diurnal periods of changing amplitudes (Kouba,
2009a), just like the ocean tides. The solid Earth tides can be
modeled by spherical harmonics (expressions provided in McCarthy
and Petit, 2003), of which only the second-degree tides and a height
correction term are necessary for 5mm precision (McCarthy, 1989;
Kouba, 2009a). The periodic part averages out over 24-hours of
static positioning, but due to the permanent part, the solid Earth tide
correction cannot be neglected for precise positioning even in this
case. Additionally, neglecting the periodic part could significantly
affect the other estimated parameters.

radial 30
horiz. 5

Polar tides: The rotational axis of the Earth is not constant in
ITRF, which leads to periodical deformation and site displacements.
The site displacements are predominately seasonal or have Chandler
(∼430 day) periods and as such do not even out over a 24 hour
period. The corrections to latitude, longitude and height can be
determined from the pole coordinate variations from the mean poles
(McCarthy and Petit, 2003; Kouba, 2009a).

height 2.5
horiz. 0.7
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Displacement effect Magnitude
[cm]

Ocean loading: The ocean tides exert a load on the under lying
and surrounding solid Earth, thereby creating site displacements with
diurnal and semi diurnal periods (by convention it does not have a
permanent part). This effect depends on the local geography of the
ocean and land masses and is strongest in coastal regions.
Therefore, it does not have to be taken into account for positioning
far from the shore. Also, for long observation times the effect is
reduced since it will even out to some extend over 24 hours of data.
For highly precise positioning close to the ocean it does need to be
taken into account. The ocean loading displacement can be deter-
mined with a general expression (available from McCarthy and Petit,
2003; Kouba, 2009a) and station specific amplitudes and phases,
which can be calculated separately or, for most ITRF stations, can
be obtained from tables.

radial <5
horiz. <2

Atmospheric loading: Similar to the oceans, the atmosphere
also exerts a load on the solid earth beneath. Thus changes in
the pressure distribution of atmosphere, following from temperature
changes, lead to deformations of the Earth’s crust. Petrov and Boy
(2004) report that this effect can be up to 2 cm for the vertical
component; Urquhart (2009) mentions that 2 to 3 cm vertical dis-
placements can occasionally occur due to pressure systems moving
over the Earth. However, generally these effects are much smaller
with magnitudes below 1 cm (Kouba, 2009a). The horizontal com-
ponents are generally smaller by a factor of 10 (Petit and Luzum,
2010), with values up to 3 mm (Petrov and Boy, 2004). Petit and
Luzum (2010) provide models for the systematic effects caused by
the diurnal heating of the atmosphere by the Sun. Predicted mag-
nitudes do not exceed 1.5 mm.

max:
vert. <3

horiz. <.3

typical:
vert. <.15

horiz. <.015

Which effects from table 3.1 are to be taken into account depends on the application at
hand, and the target accuracy. For very accurate (static) positioning in ITRF, or relative
positioning w.r.t. a known position in ITRF, all of these effects might be relevant and
should be modeled. However, if an accuracy of e.g. 10 cm is acceptable, or for dynamic or
kinematic applications that might not be able to reach sub decimeter accuracy, only the solid
earth tides have to be taken into account. Also, for airborne applications or positioning that
is not strictly in ITRF, the displacement effects are not applicable. Finally, the possibility
to model ocean loading depends on the availability of the necessary amplitudes and phases
for the user location.

Reference frame transformations Although strictly not a site displacement effect, ref-
erence frame transformations can lead to errors in the calculated positions of about 3cm
in the horizontal plane. For highly accurate transformations between Earth fixed and in-
ertial reference frames, the Earth Rotation Parameters (ERP) are needed. Whether such
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transformations are necessary depends on the used reference frame for the positioning, and
the used precise products with their underlying reference frames. The IGS products are
provided in ITRF and so, no ERP are needed if the user works directly in the same reference
frame. When computing the range this should be done in a non-rotating frame or quasi
inertial frame. If done in an Earth fixed frame additional corrections are necessary to take
Earth’s rotation into account, but these do not require very accurate knowledge of ERP
(rotational speed is sufficient). A second reason for using a quasi inertial frame is when
orbit determination is done. However, this is not necessary for PPP. Therefore, for PPP
all computations can be done in an earth fixed frame provided we make small corrections
for Earth’s rotation.

Clocks and differential delays At both satellite and receiver GNSS observations con-
tain frequency and signal dependent hardware delays. One way of representing this is by
considering a different clock-offset for each code and phase observable. However, in the
above equations a common clock has been introduced and the differential hardware delays
are contained in the d and δ terms. However, if we introduce both a common clock and
individual hardware delays, we introduce also a rank deficiency in the equations which we
will solve in chapter 4 by recombining this common clock with a specific combination of
the hardware delays.

The broadcast GPS satellite clock offsets are provided for the ionosphere-free linear combi-
nation of dual frequency P-code range observations (this ionosphere-free linear combination
will be introduced later), including the satellite code hardware delays for this combination
(IS-GPS-200D, 2004). Since the standard approach to PPP, as proposed by JPL, is also
to use the ionosphere-free linear combination of dual frequency GPS code and phase mea-
surements, the precise satellite clock products (of both IGS and JPL) are also provided for
this combination. Using these clock corrections with the original pseudo range code (and
phase) observables introduces a bias in the observations. This bias can be removed by ap-
plying the differential hardware delays, also called differential code biases (DCBs), provided
with the clock products. For the broadcast clock offsets, the DCBs are also provided in the
navigation message. The IGS also provides these satellite DCBs on a regular basis together
with their other products. Unlike the clock offsets which change rapidly over time, and as
such must be treated kinematically, the DCBs are generally only changing slowly.

This is relevant for single frequency users (who obviously cannot form the dual frequency
ionosphere-free combination) but, as will be shown later, also for dual frequency users who
are interested in unbiased ionosphere delay estimates (either if the ionosphere delay is the
parameter of interest or if the positioning is to be aided by the use of an external absolute
ionosphere model).

Signal travel time The signal travel time in the observation equations is the distance
between the satellite and the receiver (plus any delays) divided by the speed of light:

τ sr = 1
c0

(
‖rs (tr − τ sr )− rr (tr)‖+ T sr (tr) + Isr,f (tr)

)
+ dsr,f (tr) (3.6)

One complicating factor here is that the travel time appears on both sides of eq. (3.6). To
compute the travel time, which depends on the distance, one already needs the satellite
position at the time of transmission. Therefore, eq. (3.6) has to be solved iteratively (or
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by means of a Taylor expansion, Jin, 1996), first using an approximate travel time and
then using the solution of eq. (3.6) to improve on the approximation. GPS satellites travel
with a velocity of about 4000 m/s and a maximum velocity in the direction of the user
of about 1300 m/s for users on the surface of the Earth. This means that, to keep the
range error due to the satellite motion below 1 mm (which easily meets the requirements
for PPP applications), the travel time should be accurate to .77µs (or 231 meters at the
speed of light). This is larger than the delays that can be expected from the atmosphere
(van der Marel, 2009) and the other delay terms in eq. (3.6) see table 3.4. A convenient
consequence is that the delays in eq. (3.6) can in fact be ignored for the determination of
the satellite positions.

Troposphere Considering the delay of GNSS signals traveling through the atmosphere,
the atmosphere can be divided in two main parts. The upper part, called the ionosphere,
is a dispersive medium which means that the propagation delay is frequency dependent
and acts differently on code and phase measurements (see below). The lower part, called
the troposphere, is non-dispersive and acts equally on all signals and frequencies. The
troposphere delay itself can also be split in two main contributions namely the hydrostatic
delay, caused by dry air and water vapor in hydrostatic equilibrium, and the wet delay only
caused by water vapor.

Modern troposphere delay models usually make this distinction and the (slant) tropospheric
delays are then modeled as the sum of a hydrostatic delay and a wet delay (Kleijer, 2004).
For a GNSS receiver tracking multiple satellites, both parts of the troposphere delay can be
approximated by the product of the delay in zenith direction, evaluated at the receiver posi-
tion, and an elevation dependent mapping function, evaluated separately for each satellite.

This can be expressed with the following equation:

T sr,k = ms
h,r,kTzh,r,k +ms

w,r,kTzw,r,k (3.7)

where T sr,k is the total troposphere slant delay, ms
h,r,k and Tzh,r,k are the hydrostatic map-

ping function and hydrostatic zenith delay and ms
w,r,k and Tzw,r,k are the wet mapping

function and wet zenith delay. Two models for the troposphere zenith delay widely used
in GNSS processing are the Hopfield model (Hopfield, 1969) and the Saastamoinen model
(Saastamoinen, 1972). For optimal results, both these models need meteorological data
from the receiver position in real-time. For many users this data is not available and instead
values derived from the standard atmosphere are used. However, this will degrade the qual-
ity of the modeled troposphere zenith delay since it will no longer reflect actual conditions
at the user position and time. Another option is to use the EGNOS model which relies
on averaged (empirical) parameters and seasonal variations (RTCA, 2001). This model
does not use or require meteorological data from the user, which means that this model
will not reflect temporal local weather conditions either. However, several papers report
that it performs better than the Hopfield or Saastamoinen models if these rely on standard
atmosphere values (Qu et al., 2008; Xinlong et al., 2009). The IGS also provides high
accurate zenith troposphere delay information but with a latency of 2 to 3 hours which
means it is not available for real-time applications (IGS, 2015b), and only for stations in
the IGS network.

There are many different mapping functions to translate the modeled zenith delays to
(slant) delays from the satellites to the receiver. Most current mapping functions use so-
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called continued fractions to express the elevation dependence of the troposphere delay
(Kleijer, 2004). Differences between the mapping functions consist of the way in which
the coefficients of the continued fractions are determined, and whether or not additional
meteorological input from the user in needed. Some of the most commonly used map-
ping functions that take meteorological input are those of Ifadis (1992), with coefficients
determined from real weather profiles, and Herring (1992), with coefficients determined
from radiosonde data. Mapping functions that do not take meteorological input are those
of Niell (1996), with coefficients also determined from radiosonde data, and the EGNOS
model, which comes with its own mapping function (RTCA, 2001).

Another approach for troposphere delay modeling is to use (predicted) numerical weather
models (Niell, 2001; Boehm et al., 2005; de Haan and van der Marel, 2004), these models
can provide more accurate troposphere mapping, reflecting actual weather conditions at
the user location, at the cost of more extensive computations and and depending on the
availability of such models to the user. The now often used Vienna Mapping Functions
(Boehm et al., 2006) and Global Mapping Functions (Boehm et al., 2006) are based on
European Centre for Medium-range Weather Forecast (ECMWF) data.

Troposphere models alone are not accurate enough for PPP, and therefore a (residual)
troposphere parameter is estimated together with the position solution. Troposphere delay
estimation can be performed on an epoch-by-epoch basis or, for filter or batch applications,
an assumption can be made about the variability of the troposphere in time to setup a
dynamic model and so strengthen the estimation model.

Even when the troposphere is estimated with the position solution, troposphere models can
improve the positioning performance for two reasons. Firstly, the model values can be used
to initialize the estimation and strengthen the dynamic model for the troposphere delay as
will be discussed in chapter 6. For this reason model values for the troposphere delay can
be used to correct the observations a-priori in order to form the observed-minus-computed
observations, treated in section 3.3:

∆T sr,k = T sr,k − T sr,k|0 = T sr,k −ms
h,r,kTzh,r,k|0 −ms

w,r,kTzw,r,k|0 (3.8)

Secondly, because the mapping functions for the hydrostatic and wet delays are quite
similar it is difficult to estimate both a residual hydrostatic and wet delay separately in
the processing. The a priori hydrostatic delay can be modeled with much higher accuracy
than the wet delay (Kleijer, 2004). As a result, the residual delays are (mainly) dominated
by the residual wet delays. Therefore, only a residual wet delay will be estimated in the
processing with the appropriate wet mapping function:

∆T sr,k ≈ ms
w,r,k∆Tzw,r,k (3.9)

In the discussion above the (residual) troposphere delay was assumed to be horizontally
isotropic (e.g. the troposphere delay at any point in time depends on the satellite elevation,
but not the azimuth angle). This model can be refined by parameterization of horizon-
tal (azimuth) gradients (Chen and Herring, 1997; Bar-Sever and Kroger, 1998; Kleijer,
2004; Boehm and Schuh, 2007). Troposphere gradients are used in a number of software
packages, and can improve the latitude component of the position estimation at mm level
(Ghoddousi-Fard, 2009), but are not treated in this thesis.
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Ionosphere The ionospheric delay can be split into a propagation effect, which can be
approximated with a Taylor-series of the third order, and an effect due to the bending
of the signal (Odijk, 2002). For the first-order delay the following inversely proportional
relationship between the delay and the squared frequency holds:

Isr,f,k = f 2
i

f 2
f

Isr,i,k = γfIsr,i,k (3.10)

The first-order delay has opposite effect on code and phase observations (i.e. the phase
is actually advanced). The second-and third-order delays, commonly referred to as the
ionospheric higher order terms, plus bending terms may be up to 5 cm at mid-latitudes
for low elevation angles. For relative GPS applications over distances up to 400 km these
terms can safely be neglected (Odijk, 2002). PPP is not a relative positioning technique,
which means that neglecting the higher order terms may result in a small error in the
positioning solution. However, since the global networks that produce the PPP orbits and
clock products only consider the first order term this should also be our approach to be
consistent with these products and obtain the best results (this is actually a general ’rule’
which will be highlighted in a later section).

The size of the ionosphere delay depends on the number of free electrons on the path that
the GNSS signal travels through the atmosphere, quantified by the Total Electron Content
(TEC). This depends on the path length, which increases with decreasing satellite elevation,
and the electron density of the atmosphere. The electron density displays regular variations
with the geomagnetic latitude, time of day, seasonal variation, and an 11 year solar cycle.
There are also irregular variations of the electron density, the frequency of occurrence and
severity of which may themselves depend on the regular variations, including ionospheric
storms and Traveling Ionospheric Disturbances (TID). Finally, ionospheric scintillation may
cause sudden changes in phase of the received signal or degrade signal strength (Odijk,
2002; Memarzadeh, 2009).

Several (global) models exist to estimate and correct for the ionosphere delays. These
include the often used Klobuchar model (Klobuchar, 1987), which has been integrated in
the GPS system for single frequency users. The Klobuchar model can correct for about
50% of the ionosphere delay (IS-GPS-200D, 2004; Memarzadeh, 2009), which suffices for
single frequency applications that do not require a very high accuracy. In a similar vein
the NeQuick model (Radicella, 2009) is intended for single frequency users of the Galileo
system. The NeQuick model has been reported to be able to correct for 60-70% of the
ionosphere delay (Galileo OS-SIS-ICD, 2008; Memarzadeh, 2009), thereby outperforming
the Klobuchar model. The Global Ionospheric Maps (GIM) from the IGS provide even more
accurate ionosphere model values. GIMs are routinely produced based on measurements
from the IGS reference network (IGS, 2015b), and contain maps with gridded TEC values.
For real-time applications the predicted GIMs from the Center for Orbit Determination in
Europe (CODE) can be used (Schaer et al., 1998). GIMs can be used to correct for about
80% of the ionosphere delay (Memarzadeh, 2009).

Alternatively, dual frequency measurements can be used to exploit the dispersive nature
of the ionosphere expressed in eq. (3.10) to estimate or eliminate the ionosphere delay.
Ionosphere delay estimation can be performed on an epoch-by-epoch basis (mathematically
equal to ionosphere elimination) or, for filter or batch applications, an assumption can be
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Table 3.2: GNSS frequencies, wavelengths and ionospheric dispersion factors
GNSS band L1/E1 L2 L5/E5a E5b E5 E6

f [MHz] 1575.42 1227.60 1176.45 1207.14 1191.795 1278.75
(f0 = 10.23 MHz) 154f0 120f0 115f0 118f0 116.5f0 125f0
λf = c0/f [cm] 19.03 24.42 25.48 24.83 25.15 23.44
γf = f 2

1 /f
2
f [-] 1 1.6469 1.7933 1.7032 1.7474 1.5178

made about the variability of the ionosphere in time to setup a dynamic model and so
strengthen the estimation model.

Dual frequency estimation of the ionosphere is more accurate than even the best global
ionosphere models. Consequently, a dual frequency receiver is generally able to reach a
higher position accuracy than a single frequency receiver. However, this does not mean
that ionosphere models are not valuable even for dual frequency users, because the model
values can be used to initialize the estimation and strengthen the dynamic model for the
ionosphere delay as will be discussed in chapter 6. For this reason model values for the
(first order) ionosphere delay can be used to correct the observations a-priori in order to
form the observed-minus-computed observations, treated in section 3.3:

∆Isr,f,k = Isr,f,k − Isr,f,k|0 = Isr,f,k − γfIsr,i,k|0 (3.11)

Neglecting the higher order terms and only a first order residual ionosphere delay is esti-
mated:

∆Isr,f,k ≈ γf∆Isr,i,k (3.12)

In the following we will also replace the total ionosphere delay, which is different for each
observable, in the general observations by the first order term according to (3.10) (the
ionosphere delay on a reference frequency, usually L1, with the appropriate ionosphere
dispersion factor γf ). Table 3.2 provides the ionosphere dispersion factors for the code
observables on all GPS and Galileo frequencies if L1 is chosen as reference frequency (for
the phase observables these are the same but negative).

Carrier phase ambiguities The carrier phase measurements are much more precise than
the code measurements, however the carrier phase measurements contain a constant but
unknown bias called the carrier phase ambiguity. Only when these biases are known or
estimated with enough accuracy can the position solution be estimated from the very
precise carrier phase measurement. Otherwise the position solution will rely on the less
precise code measurements. Under certain conditions the carrier phase ambiguities can be
resolved to an integer number of cycles. In this case methods such as LAMBDA can be
used to successfully solve the ambiguities even after a very short measurement duration.
This is the basis of Real Time Kinematic. RTK relies on a relative measurement setup
to form and solve the integer ambiguities by ‘so-called’ double differencing. These double
differences are formed by taking the single differences between the measurements of two
receivers and the difference between the measurements to one reference satellite and all
other satellites (Kaplan and Hegarty, 2006; Misra and Enge, 2006). PPP is not a relative
setup (we only have one receiver) making this approach impossible. Therefore, in PPP
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the ambiguities are generally not resolved to integer numbers, but instead estimated as
real-valued constant biases. When these real-valued ambiguities have converged, PPP can
provide very precise positions for the user receiver, but this does take significantly longer
than for RTK. Possibilities of solving the carrier phase ambiguities in PPP as integer
numbers are discussed in section 3.5.

Table 3.3 provides an overview of the achieved PPP performance reported by different
authors.
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Table 3.3: Performance of Precise Point Positioning

Performance Settings Comment Source
Accuracy Convergence Signals Products Real-time Dynamics Ambiguities

1 cm 24h GPS L1,L2 IGS no static float proof of concept Zumberge et al. (1997)
20 cm 1h GPS L1,L2 JPL (IGS) no static float Witchayangkoon and Segantine (1999)
few cm 12h
1 cm 24h

40 cm rms 5min GPS L1,L2 IGS+NRCan no - float code+phase Gao and Shen (2001)
1 cm 2-3h GPS L1,L2 IGS no static float Kouba and Héroux (2001)

10 cm 20-30 min GPS L1,L2 JPL yes kinematic float Kechine et al. (2003)
1 cm 20min GPS L1,L2 JPL yes static float IGS station Gao and Chen (2004)
1 cm - kinematic vehicle and airborne

40-50 cm rms 10-20 min GPS L1 JPL yes kinematic float vehicle Gao et al. (2006)
20-90 cm rms marine (height biased)

50-100 cm 95% 2-3 min GPS L1 IGS no kinematic float unfavourable conditions Le and Tiberius (2006a)
20-50 cm 95% favourable conditions

5 cm 3 h GPS L1,L2 IAC (IGS) no static float GLONASS improves Cai and Gao (2007b,a)
6 cm GPS L1,L2

GLO L1,L2
convergence not accu-
racy

1 cm few h GPS L1,L2 IGU orbit + yes kinematic float clock estimated via Weber et al. (2007)
1 cm few min Real-time clock fixed NTRIP

10 cm 1h GPS L1,L2 NRCan yes static float Collins et al. (2008)
2 cm 90% fixed

5 cm 3d rms 1h GPS L1,L2 CODE final no static float IGS station, hourly data Geng et al. (2008)
3 cm 1d kinematic vessel, hourly data

2 cm 3d rms static fixed IGS station, hourly data
1 cm 1d kinematic vessel, hourly data
10 cm 90min GPS L1,L2 IGS yes static float final accuracy 2cm Landau et al. (2008)
4 cm 2h kinematic reference station
1 cm 30min GPS L1,L2 JPL yes static float IGS station Bisnath and Gao (2009a,b)

10 cm 20-25min kinematic airborne
17 cm 3d rms - GPS L1,L2 CONGO yes static float GIOVE decreased Cao et al. (2010)
31 cm 3d rms GPS L1,L2

GIOVE E1,E5a
accuracy but increased
availability

40 cm 27min GPS L1,L2 Fugro G2 yes static float final accuracy 10cm Melgard et al. (2010)
40 cm 17min GPS L1,L2

GLO L1,L2
15-30 cm 90min GPS L1 RETICLE yes kinematic float stationary high-end re-

ceiver
van Bree and Tiberius (2012)

2.5 cm 2h GPS L1,L2 IGS no static float adding GIOVE Monge et al. (2014)
1 cm 10h improved accuracy

0.7 cm 24h GPS L5 did not
7-18 cm 1h GPS L1,L2 IGS no static float clock offsets Odijk et al. (2015)

Continued on next page
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Table 3.3 – continued from previous page

Performance Settings Comment Source
Accuracy Convergence Signals Products Real-time Dynamics Ambiguities

1-5 cm fixed from 110 km baseline
11-38 cm 2h30min BDS B1,B2 WUM float in Australia
3-12 cm fixed
9-17 cm 30min GPS L1,L2 IGS float
1-5 cm BDS B1,B2 WUM fixed

4-10 cm 2h GPS L1,L2 MGEX no static fixed Rabbou (2015)
3-7 cm GPS L1,L2

GLO L1,L2
GAL, BDS

dual-frequency
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The position accuracy for PPP is a function of the measurement duration, and most
authors provide information on both the achieved accuracy and the time it took for the
position solution to converge to this accuracy. Unfortunately, almost each author specifies
the achieved accuracy for different measurement durations and often uses different metrics
to describe the achieved accuracy. Therefore, it is difficult to compare results between
authors, but several observations can still be made. The time to reach 1cm accuracy has
decreased significantly over the years from 24h to only 30 minutes, which might be a result
of the improvements of the precise orbit and clock products. Kinematic processing provides
less accurate positions and has longer convergence times than static processing. Single
frequency PPP converges much faster than dual frequency PPP but reaches a lower final
accuracy. Ambiguity resolution for PPP improves the position accuracy and convergence
times. Finally, additional GNSS so far do not improve accuracy but have a positive effect
on convergence and availability.

A final, important note about these published results is that, although Bisnath and Gao
(2009a) stress the importance of integrity monitoring for PPP few other authors mention
integrity for PPP, and even less actually provide integrity results.

Other systematic effects dr,f,k, δr,f,k All other systematic errors on the code and phase
Line-Of-Sight (LOS) observations are summarized in table 3.4.

Table 3.4: Line-Of-Sight effects (dr,f,k, δr,f,k)

Range effect description Magnitude
[m]

Satellite Antenna Phase Center Offsets (PCO): GNSS mea-
surements are made between the phase centers of the receiver and
satellite antennas. Therefore, the satellite positions used for navi-
gation should also refer to the antenna phase center. For the GPS
broadcast navigation message this is indeed the case, and as a re-
sult PPP corrections based on the broadcast message such as those
available from Internet-Based Global Differential GPS (IGDG) from
the Jet Propulsion Laboratory (JPL) (Muellerschoen et al., 2000a)
also refer to the antenna phase center. However, the force models
used for satellite orbit modeling by the International GNSS Service
(IGS) refer to the satellite center of mass, and as a result the IGS
GPS precise satellite coordinates and clock products also refer to
the satellite center of mass (Kouba, 2009a). In this case the satel-
lite orientation should be determined from its position relative to
the position of the Earth and the position Sun and apply the known
satellite antenna offsets from the center of mass.

1
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Range effect description Magnitude
[m]

Antenna Phase Center Variation (PCV): On top of the con-
stant antenna phase center offsets, the antenna phase center also
varies with direction of the signal traveling from the satellite to the
receiver. For most GNSS antennas the strongest variations are with
the antenna bore-sight angle (for the satellite antenna this is the
nadir angle and for an untilted receiver antenna this is the zenith
angle or 90° minus the elevation angle), and it is often assumed
that the phase center is constant about the bore-sight (i.e. sym-
metric with azimuth angle). However, the variations with azimuth
cannot always be neglected. The PCVs of many receiver antennas
with elevation (and azimuth) used on IGS stations were measured
in an anechoic chamber or on a short baseline in the field using a
robot capable of tilting and rotating one of the antennas, and have
in turn been used to determine the PCVs of GPS satellite antennas
with nadir angle (not with azimuth) by reprocessing more than 10
years of GPS data (Schmid et al., 2007). Measured PCVs for both
receiver antennas and satellites are available online (IGS, 2010).

0.04

Higher order ionosphere delays and bending: As mentioned be-
fore, the observation equations only take the first order ionosphere
delay into account. Higher order terms, plus bending terms can
reach up to 5 cm at mid-latitudes (Odijk, 2002), but are generally
significantly smaller. One might consider to also take these higher
order terms into account. However, global PPP networks that de-
termine the satellite positions and clocks do not. Which means that
if these precise products are used with higher order terms, the pro-
cessing is performed in an inconsistent manner thereby degrading
the solution. Therefore, the best approach is to conform to the net-
work processing and account for the higher order terms only in the
stochastic model.

0.05
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Range effect description Magnitude
[m]

Phase wind-up: GNSS signals are Right-Hand Circularly Polar-
ized (RHCP) and as a result a rotation of the satellite or receiver
antenna will change the measured carrier phase (this does not im-
pact the code measurements). The size of this effect called phase
wind-up or phase wrap-up (PWU) is equal to the carrier wavelength
for one complete rotation of the antenna around its bore-sight axis.
Consequently for dual frequency receivers PWU is the same on both
frequencies, but simply scaled by the wavelength. Rotation of the
satellite antennas are related to the antenna being oriented towards
the Earth, and the solar panels being oriented towards the Sun.
These rotations are relatively slow and can be predicted quite ac-
curately from the relative positions of the receiver, the satellite and
the Sun. However, when the Sun, the satellite and the Earth are
on a straight line (either when the satellite is in the shadow of the
Earth, or vise versa) this rotation can reach one revolution within
less than half an hour (Kouba, 2009a), and might be less predictable.
For these instances the particular satellite is best not used. Rota-
tion of the receiver antenna depends very much on the platform.
A stationary antenna will only be impacted by the slow rotation of
the Earth, while an antenna on a moving platform will primarily be
impacted by the movement of the platform. If a separate receiver
clock is estimated for the code and phase observations, then the
carrier phase clock will fully absorb the PWU effect. However, when
a common clock is estimated, uncompensated PWU effects will im-
pact the other estimates as well (especially the vertical component).
Since GNSS antennas are generally pointed upwards, PWU is closely
related to the platform heading. If the platform makes several turns
in the same direction the PWU can reach a magnitude of several
wavelengths. If platform heading information is available (e.g. with
multiple antennas) this effect can be determined and corrected. For
a single antenna platform without other means of determining the
heading (or attitude) this is not straight forward. However, for highly
dynamic platforms (e.g. aircrafts) using the position differences in
time can already provide an improvement of the height estimates
(Le and Tiberius, 2006b).

0.10
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Range effect description Magnitude
[m]

Instrumental delays: As mentioned before, there are frequency
and signal dependent hardware delays at both satellite and receiver.
These can be taken into account by defining a clock parameter per
observable, but in (3.3) and (3.4) we chose to define a common
clock parameter and account for the hardware delays in the terms
which contain any other systematic effects on the code and phase
measurements. However, this ’absolute’ common clock is generally
not estimated, instead the clock with respect to one of (or a com-
bination of) the observables is estimated. Therefore, the absolute
values of the hardware delays are not really essential, but rather
the differential hardware delays are important. The precise satellite
clocks from a PPP provider will also already contain the satellite
hardware delays pertaining to a certain observable (generally this
is the ionosphere-free code observable, see later). When this clock
is applied to a different code observable (e.g. for single frequency
PPP) it is important to apply the necessary satellite differential code
bias. These DCBs are available from the IGS (Kouba, 2009a).
Phase measurements also have these differential biases. As will be
shown later, for ambiguity resolution these differential phase biases
should also be known together with the initial phase at the satel-
lite. Conventional PPP algorithms do not resolve the ambiguities
to integers, but rather estimate them as real-valued parameters. In
this case the differential phase bias cannot be separated from the
ambiguity parameter, nor would this be helpful in any way. Instead
they are simply lumped in the positioning algorithm and estimated
as a different real value.
At the side of the receiver we have similar differential biases. How-
ever, they are less stable than the satellite hardware delays and are
dependent on temperature and change over time. Generally, the
necessary receiver hardware delays are estimated (together with a
receiver clock parameter), or eliminated in a between satellite differ-
ence.

0.60
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Range effect description Magnitude
[m]

Multipath: Multipath is a physical process where a GNSS antenna
receives a signal not only by the direct path (LOS) from the satellite,
but also by indirect path(s) after one or more reflections. The impact
of these reflected signals can be observed on pseudo range code, car-
rier phase and carrier-to-noise density ratio (C/N0) measurements
from a receiver. The reflected signals generally arrive at the antenna
with a certain delay, which causes a phase difference between the
LOS signal and the multipath signal, a different (elevation) angle,
which can lead to different attenuation by the antenna, and possibly
with changed polarity due to the reflection. The superposition of
the direct and multipath waves can lead to a significant increase
or decrease in the C/N0 measurements, but more importantly they
can lead to biased code and phase measurements (Braasch and van
Dierendonck, 1999).
Because multipath is one of the dominant error sources for GNSS,
much effort has been spent over the previous decades to combat
the averse effects of multipath on receiver performance in different
ways. These include, but are not limited to, antenna design to block
or attenuate reflected signals, and signal and tracking loop design to
reduce the impact of multipath on the pseudo range measurements
(Irsigler et al., 2004). For modern receivers multipath can typically
lead to range errors in the order of meters for code measurements
and in the order of centimeters for phase measurements.
An important distinction w.r.t. multipath should be made between
static and dynamic platforms. For a static receiver, the same object
can reflect certain satellite signals for a long time, leading to slowly
changing biases in the range measurements (i.e. the multipath error
is highly correlated in time). For a dynamic receiver on the other
hand, different reflecting objects will come into and leave view much
faster, leading to a much more white noise-like error on the range
measurements. Multipath is generally not treated in the functional
positioning model, but instead via the stochastic model.

>1 code
.01 phase
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Range effect description Magnitude
[m]

Relativity: In GPS positioning both general relativity, due to differ-
ence in the curvature of space-time close to the surface of the Earth
and at the orbital height of the GPS satellites, and special relativity,
due to the high relative velocity of the GPS satellites with respect to
a GPS user (on Earth), play an important role. For static users on
Earth or users (slowly) traveling over the surface of the Earth, these
relativistic effects can be corrected in two steps. The first step is
already taken care off on board of the GPS satellites by a small inten-
tional offset of the frequency standard of the satellite clocks. This
frequency offset correction is valid for circular orbits, but since GPS
orbits are actually slightly elliptical a second correction is needed.
This second correction, which depends on the actual satellite po-
sition and velocity, must be applied by the user (de Jonge, 1998).
An expression for this correction is provided in the GPS Interface
Control Document (IS-GPS-200D, 2004).

<10

3.3 Linearized observation equations

The observation equations are not linear in the satellite and receiver positions. Therefore,
in order to estimate the receiver position with a least squares adjustment, the observation
equations will have to be linearized. A first order Taylor expansion of the observation
equations eqs. (3.3) and (3.4) around an approximate value x0 gives:

P s
r,f,k = P s

r,f,k|0 +
∑ ∂P s

r,f,k

∂x

∣∣∣∣∣
x0

∆x+ 1
2
∑ ∂2P s

r,f,k

∂x2

∣∣∣∣∣
x1

∆x2 + εsr,f (3.13)

Φs
r,f,k = Φs

r,f,k|0 +
∑ ∂Φs

r,f,k

∂x

∣∣∣∣∣
x0

∆x+ 1
2
∑ ∂2Φs

r,f,k

∂x2

∣∣∣∣∣
x1

∆x2 + εsr,f (3.14)

The third term on the right-hand side of both equations represent the second order re-
mainder of the Taylor expansion with x1 between x0 and x0 + ∆x. This term cannot be
neglected, unless ∆x is small enough, which means we already need to have good approx-
imations of the satellite and receiver positions. Teunissen (1989) provides an upper bound
for the second order remainder, which is evaluated for GPS in Tiberius (1998), and shows
that, if the approximate position is within a hundred meters from the actual position, the
second order remainder is below mm level. This can be achieved by iteratively solving the
linearized system and use the solution as a new approximation in the following iteration
until the solution no longer changes significantly. P s

r,f,k|0 and Φs
r,f,k|0 are the computed

observations:

P s
r,f,k|0 =

∥∥∥rsk|0 − rr,k|0
∥∥∥+ c0δtr,k|0 − c0δt

s
k|0 + T sr,k|0 + Isr,f,k|0 + c0d

s
r,f,k|0 (3.15)

Φs
r,f,k|0 =

∥∥∥rsk|0 − rr,k|0
∥∥∥+ c0δtr,k|0 − c0δt

s
k|0 + T sr,k|0 − Isr,f,k|0 + c0δ

s
r,f,k|0 (3.16)
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Model values for the troposphere delay and/or ionosphere delay can also be included in the
computed observation, in which case only residual delays are estimated. If the models are
unbiased, the residual delays have an expected value of zero, which can be used for the initial
estimate of, and the dynamic model for the unknown (state) vector. For practical reasons,
one could also opt to include an ambiguity term in the computed observation (e.g. to
keep the corresponding state vector element small), but since at first the actual ambiguity
is completely unknown, this does not strengthen the positioning model. We can now
introduce the linearized observations also called Observed Minus Computed observations
(OMC):

∆P s
r,f,k ≡ P s

r,f,k − P s
r,f,k|0 (3.17)

∆Φs
r,f,k ≡ Φs

r,f,k − Φs
r,f,k|0 (3.18)

Evaluating the first order partial derivatives in (3.13) and (3.14) gives the following ex-
pression for the linearized observation equations:

∆P s
r,f,k = es∗r,k∆rsk − es∗r,k∆rr,k + c0∆δtr,k − c0∆δtsk+

ms
w,r,k∆Tzw,r,k + γf∆Isr,i,k + c0∆dsr,f,k + εsr,f

(3.19)

∆Φs
r,f,k = es∗r,k∆rsk − es∗r,k∆rr,k + c0∆δtr,k − c0∆δtsk+

ms
w,r,k∆Tzw,r,k − γf∆Isr,i,k + λfA

s
r,f + c0∆δsr,f,k + εsr,f

(3.20)

where es∗r,k are the unit direction vectors from the receiver to the satellite. In PPP the
satellite orbits and clocks are not estimated or adjusted by the user, but kept fixed at the
values determined from the estimation by the global network. Therefore, we can remove
the satellite positions and clock offsets from the observation equations as we will not
estimate these. However, the remaining effects do contribute to the stochastic model. As
mentioned before, if we take into account the frequency and signal hardware delays, there
actually is a different clock for each observable. The impact of the PPP products on the
differential hardware delays will be treated later. For now we will only consider the common
satellite clock. Removing the satellite clock and orbit results in the following two derived
observations:

∆P s

r,f,k ≡ ∆P s
r,f,k − es∗r,k∆rsk + c0∆δtsk (3.21)

∆Φs

r,f,k ≡ ∆Φs
r,f,k − es∗r,k∆rsk + c0∆δtsk (3.22)

Note that, since the orbit and clock values are already used in the linearization, the ac-
tual values of ∆rsk and ∆δtsk in eqs. (3.21) and (3.22) are zero. In the following, ∆ is
dropped from the notation except for the receiver (and satellite) positions and the OMC
observations. Rewriting eqs. (3.19) and (3.20) for these new observations results in:

∆P s

r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms
w,r,kTzw,r,k + γfIsr,i,k + c0d

s
r,f,k + εsr,f (3.23)
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∆Φs

r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms
w,r,kTzw,r,k−γfIsr,i,k +λfA

s
r,f + c0δ

s
r,f,k + εsr,f (3.24)

Applying the PPP products changes not only the expectation of the observations, but also
the dispersion. If we split (3.21) and (3.22) into the expectation and dispersion we get:

E
{

∆P s
r,f,k

}
= −es∗r,k∆rr,k + c0δtr,k +ms

w,r,kTzw,r,k + γfIsr,i,k + c0d
s
r,f,k

D
{

∆P s
r,f,k

}
= Qεs

r,f
+ es∗r,kQ∆rs

k
esr,k + c2

0Qδts
k

(3.25)

E
{

∆Φs

r,f,k

}
= −es∗r,k∆rr,k + c0δtr,k +ms

w,r,kTzw,r,k − γfIsr,i,k + λfA
s
r,f + c0δ

s
r,f,k

D
{

∆Φs

r,f,k

}
= Qεs

r,f
+ es∗r,kQ∆rs

k
esr,k + c2

0Qδts
k

(3.26)

where Qεs
r,f

and Qεs
r,f

are the covariance matrices of the code and phase observables and

Q∆rs
k

and Qδts
k

the covariance matrices of the precise satellite position and clock products.
Here we made the underlying assumption that the satellite orbit and clock products are
unbiased and that any errors can be accounted for in the stochastic model. If this is not
the case, a small residual term would remain in the expectation of the derived observa-
tions. Using an external troposphere or ionosphere model in the observed-minus-computed
observables (as shown above), impacts the variance of the observable similarly. From equa-
tions (3.23) and (3.24) it is clear that the applied precise products also generate (strong)
correlation between the observables. For the variance of the original observations (includ-
ing multipath) an elevation dependent weighting is often used and is reported to produce
better results than elevation independent weighting, but the quality of the corrections will
generally not depend on satellite elevation. As mentioned before, the uncertainty in real-
time precise products is generally dominated by uncertainty of the satellite clocks, and
unless there is strong multipath or interference, this is often larger then the uncertainty
of the measurements. In this case a homogeneous weighting scheme for all observations
seems an obvious choice, however, the correlation between the observations should not be
neglected.

3.4 PPP algorithms

One aspect of PPP which strongly affects the strength of the model and is closely related to
the integrity performance is the treatment of the ionospheric delay. Since the intentional
degradation of the accuracy by the US government, known as selective availability, was
turned off in 2000, the ionosphere delay is the dominant error source for GNSS users. In
relative positioning such as RTK, for short baselines, the ionospheric delay is eliminated
in the between-receiver differences. In network RTK and Wide Area RTK, the baseline
lengths can be increased through accurate modeling of the ionospheric delays (although
the convergence time increases with the baseline length). In PPP an ionosphere-free linear
combination of the observations is often used to eliminate the ionospheric delay. Besides
eliminating the ionosphere delay, this has the additional advantage of decreasing the CPU
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load (by halving the design matrix). The widely used ionosphere-free combinations for single
frequency users and GPS dual frequency users will be treated in the following paragraphs.

The ionosphere-free combinations also have several disadvantages. The single frequency
ionosphere-free observable is ambiguous (like a phase observable), has a noise level compa-
rable to the code observable and is vulnerable to code multipath. In this respect it combines
the worst properties of the code and phase observables. The dual frequency ionosphere-free
observable has increased measurement noise, makes it impossible to use a priori information
of the ionosphere, and is said to destroy the integer nature of the ambiguities. In fact, the
dual frequency ionosphere-free linear combination does still contain a combination of the
integer ambiguities, but has a very short virtual wavelength (for GPS L1, L2 this is 0.63cm,
see section 3.5).

If the ionosphere is not eliminated with a linear combination, external information on the
ionosphere delay can be used from an ionosphere model or ionosphere maps, which can
account for around 80% of the error (Memarzadeh, 2009). However, for PPP the remaining
error is still too large.

Therefore, another approach can be considered to account for the remaining ionosphere
delay, which is to estimate it each epoch from the measurements, taking into account
the differential code and phase biases of the satellite and receiver. For this reason, the
ionosphere delay is included in the state vector of the filter. This makes it possible to
use a priori information (on the non-white noise stochastic properties) of the ionosphere
(i.e. in the form of a dynamical model in the time update equation, like is done with
the troposphere delay). Unlike the troposphere delay, the ionosphere delay cannot be
accurately described by a single parameter for all satellites. Instead the ionosphere delay
needs to estimated separately for each satellite. Therefore, an inherent disadvantage is the
increased size of the state vector in the Kalman filter. This approach to the ionosphere
delay respects the integer nature of the ambiguities and will improve RAIM performance.

In the following several linear combinations of the observations are considered. These
combinations are made from different observations to the same satellite. This means that
the geometric range, the troposphere delay and the satellite and receiver clock offsets are
the same for each observable. Therefore, the following more concise observation equations
can be used instead:

P s
r,f,k = gsr,k + γfIsr,i,k + c0d

s
r,f,k + εsr,f (3.27)

Φs
r,f,k = gsr,k − γfIsr,i,k + λfA

s
r,f + c0δ

s
r,f,k + εsr,f (3.28)

where g contains the geometric range, the troposphere delay and the satellite and receiver
clock offsets, the relation given by (3.10) for the first order ionosphere delay has been
substituted. Equations (3.27) and (3.28) form the geometry-free model (Odijk, 2008),
so-called because the receiver satellite geometry is no longer present in the equations. The
(linear) geometry-free model is often used for GNSS data analysis (see also chapter 6).
Here it is used to facilitate a good understanding of the linear combinations involved.
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3.4.1 Positioning with ionosphere free linear combinations

As shown above, the first order ionosphere delay (which is by far the largest part) impacts
the code and phase observables on different frequencies according to a simple relation
depending on the frequencies of the carrier waves. This relation can be used in several
different ways to remove the ionosphere delay from the observations.

3.4.1.1 Single frequency algorithms

Since the first order ionosphere delay is equal in size and opposite in sign on the code
and phase observable on the same frequency, the ionosphere delay can be eliminated in the
code-plus-carrier (CPC) combination (Yunck, 1996). This ionosphere-free combination can
be used as the primary observable for single frequency GNSS applications, and is defined
as follows:

CPCsr,f,k ≡
1
2
(
P s
r,f,k + Φs

r,f,k

)
(3.29)

with eqs. (3.27) and (3.28):

CPCsr,f,k = gsr,k + 1
2A

s
r,f + 1

2c0
(
dsr,f,k + δsr,f,k

)
+ 1

2
(
εsr,j + εsr,j

)
(3.30)

Compared to the original observations the following characteristics of the code-plus-carrier
can be noted. The combined geometry term (range, clock and tropospheric delay) are the
same as in the original observations; the first order ionosphere delay is removed. The CPC
observations contain an ambiguity parameter like the carrier phase observations, but the
variance of the noise will be close to half that of the code observations (if we assume that
the code noise is much larger than the phase noise and there is no correlation) which is
still much larger than the noise on the phase measurements. Finally, the miscellaneous
range errors will now be a combination of the code and phase terms. This also means that
the CPC combination is vulnerable to code multipath which is generally much stronger
than phase multipath. In section 4.5 an observation model with estimable parameters is
introduced that corresponds to this linear combination.

3.4.1.2 Dual frequency algorithms

With dual frequency observations, two different ionosphere-free linear combinations can be
made; one for the code and one for the phase observables. The first order ionosphere delay
is equal on different carrier wave frequencies except for the different dispersion factors γf
and can thus be eliminated. We define the linear combination of frequencies a and b as:

P s
r,LC,k ≡ aP s

r,a,k + bP s
r,b,k (3.31)

Φs
r,LC,k ≡ aΦs

r,a,k + bΦs
r,b,k (3.32)



3.4 PPP algorithms 35

with eqs. (3.27) and (3.28), expressing the ionosphere delay on frequency f0 = 10.23 MHz
as Isr,0,k and using fi = kif0 this gives:

P s
r,LC,k = (a+ b)gsr,k + ( a

k2
a

+ b
k2
b
)Isr,0,k+

c0(adsr,a,k + bdsr,b,k) + (aεsr,a,k + bεsr,b,k)
(3.33)

Φs
r,LC,k = (a+ b)gsr,k − ( a

k2
a

+ b
k2
b
)Isr,0,k + c0

f0
( a
ka
Asr,a + b

kb
Asr,b)+

c0(aδsr,a,k + bδsr,b,k) + (aεsr,a,k + bεsr,b,k)
(3.34)

The ionosphere can now be eliminated while keeping the original range term by choosing:{
a+ b = 1
a
k2
a

+ b
k2
b

= 0 (3.35)

which works out as:
a = k2

a

k2
a−k2

b
= γb

γb−γa

b = −k2
b

k2
a−k2

b
= −γa

γb−γa

(3.36)

Equations (3.33) and (3.34) then become the following ionosphere-free linear combinations:

P s
r,IF,k = gsr,k + c0

k2
a−k2

b
(k2
ad

s
r,a,k − k2

bd
s
r,b,k) + 1

k2
a−k2

b
(k2
aε
s
r,a,k − k2

b ε
s
r,b,k) (3.37)

Φs
r,IF,k = gsr,k + c0

(k2
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b
)f0
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k2
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(k2
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s
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bδ
s
r,b,k)+
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r,a,k − k2
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s
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(3.38)

or:

P s
r,IF,k = gsr,k + c0

γb−γa
(γbdsr,a,k − γadsr,b,k) + 1

γb−γa
(γbεsr,a,k − γaεsr,b,k) (3.39)

Φs
r,IF,k = gsr,k + 1

γb−γa
(γbλaAsr,a − γaλbAsr,b) + c0

γb−γa
(γbδsr,a,k − γaδsr,b,k)+

1
γb−γa

(γbεsr,a,k − γaεsr,b,k)
(3.40)

Besides eliminating the first-order ionosphere delays and keeping the original geometry term
(range, clocks and troposphere delay), several remarks can be made about these linear
combinations. The miscellaneous range errors on both code (dsr,f,k) and phase (δsr,f,k) are
now combinations of the two frequencies, as is the ambiguity term in the ionosphere-free
phase combination. Furthermore, the noise level of the ionosphere-free combinations is
increased. If we assume the same variance of the observables on both frequencies and no
cross-correlation, the standard deviation of the noise is increased by a factor of

√
a2 + b2.

Table 3.5 on page 42 shows the values of a, b and the noise multiplication factor for all
dual-frequency combinations of the GPS and Galileo frequencies. The table shows that the
increase in measurement noise is at least a factor of 2.6, but even much higher for certain
other combinations of frequencies.
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Finally, note that taking the L1 frequency as reference frequency for the ionosphere delay
instead (γL1 = 1), and dropping the subscript on the dispersion factor of the L2 frequency
(γL2 = γ), gives the familiar expression for the ionosphere-free combination of the GPS L1
and L2 frequencies (which we will call L3), with a noise multiplication factor of 3.0:

P s
r,L3,k = γ

γ − 1P
s
r,L1,k −

1
γ − 1P

s
r,L2,k (3.41)

Φs
r,L3,k = γ

γ − 1Φs
r,L1,k −

1
γ − 1Φs

r,L2,k (3.42)

In section 4.7 an observation model with estimable parameters is introduced that corre-
sponds to this linear combination.

3.4.1.3 Multi-frequency algorithms

As mentioned previously, recent GPS satellites started to transmit a ranging signal on an
additional frequency (the L5 frequency see table 3.2) and other GNSS including Galileo
and BeiDou also transmit on multiple frequencies. This section provides some exploratory
computations and general considerations for triple-frequency PPP. A third frequency creates
new possibilities to combine signals. We could e.g. consider a linear combination that keeps
the original range term, eliminates the ionosphere and minimizes the observation noise. It
should be noted that from an estimation point of view, this is strictly speaking not allowed
since the information content is not preserved; we only present it here to illustrate how an
additional frequency impacts the PPP estimation problem. For frequencies a, b and c:

P s
r,LC3,k ≡ aP s

r,a,k + bP s
r,b,k + cP s

r,c,k (3.43)

Φs
r,LC3,k ≡ aΦs

r,a,k + bΦs
r,b,k + cΦs

r,c,k (3.44)

If we again assume the same variance of the observables on each frequency and no cross-
correlation, we can split these equations in the expectation and dispersion as follows (using
eqs. (3.27) and (3.28)):
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}
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(3.45)
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An ionosphere-free combination with original range term and minimal measurement noise
can now be derived by choosing:

a+ b+ c = 1
a
k2
a

+ b
k2
b

+ c
k2
c

= 0
min(a2 + b2 + c2)

(3.47)

Using these expressions, a can be solved as follows:
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(3.48)

Note that in this expression for a, kb and kc are interchangeable. Similar expressions can be
derived for b and c by exchanging ka and kb or ka and kc, respectively. Table 3.5 shows the
values of a, b, c and the noise multiplication factor for each possible combination of 3 GPS
or Galileo frequencies. The table shows that the improvement with respect to the best dual
frequency combinations is quite marginal. The best triple-frequency combinations have a
noise multiplication factor of 2.55 for GPS and 2.51 for Galileo compared to 2.59 for the
best dual-frequency combinations of both systems.

Positioning with this ionosphere-free linear combination, while possible, does not seem to
offer significant benefits and as mentioned would not be rigorous due to the reduction in
information content. Also the assumption of equal variance for the observables on each
frequency is generally not valid, as we will see in chapter 6. However, it does illustrate that
the simultaneous estimation of position and ionosphere delays does not become a trivial
problem in multi-frequency PPP, in fact the performance might resemble dual-frequency
PPP if two favorable frequencies can be chosen. A third frequency also opens the possibility
to form two independent ionosphere-free combinations for PPP, which holds benefits for the
reliability of the system. The redundancy can be used to detect errors in the observations.
However, several fundamental problems of these linear combinations remain. Elimination
of the ionosphere will still prevent the use of external ionosphere models as well as dynamic
models. Also, combining multiple observables will always result in increased noise levels.

3.4.2 Positioning with original observations

The ionosphere-free combinations introduced in the previous section are not the only, and
in fact not the optimal way, to perform PPP with single or multi-frequency receivers. The
fixed combinations of both single frequency and dual frequency data have disadvantages.
For the single frequency combination it was already mentioned that the observable contains
an ambiguity parameter like the carrier phase measurements, but the variance of the noise
and multipath are close to half that of the code observations, which essentially combines
the worst characteristics of the original observables. For the dual frequency combination we
can observe that we basically lose half of our observations only to eliminate the ionosphere
delay. In the process, the resulting observables become noisier than the original observables
due to the propagation of uncertainty (by a factor 3.0 in the case of GPS L1 L2). From
these considerations it should become clear that the decision to form the linear combinations
should not be taken lightly. In the following sections we will have a closer look at other
means to deal with the ionosphere delay.
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3.4.2.1 Single frequency algorithms

The single-frequency model using the original observations is introduced in section 4.3
for the code observables only, in section 4.5 for the phase observables, and a combined
observation model with estimable parameters is introduced in section 4.7 for the code and
phase observables.

As we will see, single frequency PPP is in many ways similar to dual frequency PPP which
is treated in more detail in this dissertation. However, there are also some important
differences. The first is the treatment of the ionosphere delay. Given the disadvantages of
the CPC combination, elimination of the ionosphere as in eq. (3.29) is not preferable for
high precision positioning, nor can the ionosphere be estimated each epoch without creating
a very weak positioning model. Therefore, single frequency PPP must rely on external
ionosphere models or measurements. The Klobuchar ionospheric model, parameters for
which are broadcast via the GPS navigation messages, can compensate some 50% of the
ionospheric delay leaving residual range errors in the order of meters. This is obviously not
acceptable if we are interested in highly precise positions with at least submeter accuracy.

Both IGS and JPL also generate global ionosphere maps (GIM), containing (vertical) Total
Electron Content estimates of the atmosphere in a grid over the Earth. A user can determine
the ionosphere pierce point for each tracked satellite and determine the local TEC value via
interpolation. This TEC value can be converted first to a slant TEC value with a mapping
function, and then to the expected ionosphere delay on the tracked signal and carrier. These
slant delays can then be applied as corrections to the measurements to remove (most of)
the ionosphere from the observations, making submeter accuracy possible (Le, 2004; Le
and Teunissen, 2006; Le and Tiberius, 2006a; van Bree and Tiberius, 2012; de Bakker
et al., 2014).

Another point of attention was already raised in the discussion of the hardware delays,
namely that the satellite clocks provided by PPP services pertain to the ionosphere-free
linear code combination. To properly use these clocks for single frequency measurements,
the appropriate differential code biases need to be applied (Kouba, 2009a).

Due to the high accuracy of GIMs, single frequency code observations after corrections
from a GIM often have a higher precision than the ionosphere-free linear combination of
dual frequency code measurements, but this is not true for the phase measurements. It is
therefore not unexpected that single frequency PPP typically has shorter convergence time,
but lower final accuracy than dual frequency PPP as shown by Keshin et al. (2006). This
is an important finding, because it indicates that there is an opportunity for improvement
of dual frequency PPP convergence times if GIMs are available. In general if we consider
that dual frequency data contains all single frequency data and more besides, there is no
reason why dual frequency PPP should perform worse than single frequency PPP, aside
maybe from certain practical issues.

An optimal solution for dual frequency PPP with GIMs, should first benefit from the
ionosphere model to achieve fast convergence of the estimated ionosphere and the position
solution, and then benefit from the dual frequency measurements to improve the ionosphere
estimates as well as the position accuracy. The following section describes how this might
be achieved.
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3.4.2.2 Dual frequency algorithms

The dual frequency model using the original observations is treated in great detail in
sections 4.4, 4.6 and 4.8, where the observation model with estimable parameters is derived
for code-only, phase-only and the combined code and phase model, and section 4.9 where
external ionosphere data is introduced. Chapter 8 also focuses on implementations of these
models.

As we will show, with dual frequency data instead of eliminating the ionosphere delays
for each satellite, the ionosphere can also be estimated from the measurements. If no
additional constraint is put on the estimation this is in fact mathematically equivalent
to the elimination of the ionosphere. However, the estimation of the ionosphere offers a
number of advantages:

1. While the elimination (as described in section 3.4.1.2) is performed separately for
code and phase measurements, the estimation can be combined for the code and
phase measurements, since the (first order) ionosphere effect is equal in size on code
and phase (and opposite in sign). This effectively decreases the number of unknown
parameter, strengthening the model. The combined ionosphere delay estimation for
code and phase can be achieved by extending the vector of unknown parameters with
one entry for the ionosphere delay per satellite. The corresponding column in the
design matrix contains the dispersion factors γ as introduced in eq. (3.10).

2. On a similar note, while the ionosphere elimination is performed on an epoch-by-
epoch basis, the estimation can be combined for multiple epochs, again strengthening
the model. Either directly, by performing a batch solution, or by using a dynamic
model for the ionosphere delay in a Kalman filter. This dynamic model should reflect
the variability of the ionosphere in time.

3. The explicit estimation of the ionosphere delay also offers the opportunity of using
external model values as additional (pseudo) observations. Or alternatively, the
measurements can be corrected a-priori with the model values while estimating a
residual ionosphere error, which than has an expectation value of zero which can
be used to initialize the unknown parameter and translates into a stronger dynamic
model (see chapter 6). Ideally, this should allow the dual frequency PPP algorithm
to converge as fast as single frequency PPP.

4. Finally, eliminating the ionosphere has implications for ambiguity resolution, which
will be treated in section 3.5. When using the original observations on the other
hand and estimating the ionosphere, a unified approach to ambiguity resolution can
be taken using the LAMBDA method. In this approach the algorithm itself chooses
the optimal combinations for ambiguity fixing from all available ambiguities, while
still allowing partial ambiguity fixing.

3.4.2.3 Multi-frequency algorithms

The advantages of using the original observations also hold for the multi-frequency case.
The dual frequency model can easily be extended for additional frequencies, and the algo-
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rithms will automatically profit from the available observations. The additional frequencies
also bring great benefit for integrity monitoring, which uses the redundancy in the model
to detect errors in the observations such as outliers in the code observations and slips in
the carrier observations. If the ionosphere is constrained, the reliability of the constraint
can also be tested. Integrity monitoring will be explored in chapter 7, in which the impact
of the available frequencies and observables receives careful attention.

3.5 Ambiguity resolution for PPP

As mentioned before, one of the weak points of conventional dual-frequency PPP is the
considerable time for a PPP solution to converge to sub-decimeter accuracy (see table 3.3
for some typical performance figures). It is also difficult to use PPP in build up or heavily
forested areas, where there are a lot of interruptions and reflections (multipath) on the
signals, because the carrier phase ambiguity needs to be initialized every time after a loss
of lock to the satellite signal. The convergence time of the ambiguity estimation in PPP
would greatly benefit from fast integer ambiguity resolution. This applies to initialization
of the receiver, acquisition of an additional satellite, and after momentary loss-of-lock to
one or more satellites. Therefore, considerable effort has been spend over the last years to
investigate the possibilities of AR with PPP by several GNSS groups worldwide.

Ambiguity resolution, which lies at the heart of the RTK method, aims to find or eliminate
all unknown biases on the carrier phase measurements, because under these conditions, the
carrier phase observations can be considered as very accurate pseudo range measurements,
needed for precise positioning. In RTK a relative setup with at least two receivers is used to
ensure that the ambiguities are of integer nature. In the between-receiver single differences
the satellite clocks (including hardware delays) and initial phase terms at the side of the
satellite are eliminated and in the between satellite differences the receiver clocks (including
hardware delays) and initial phase terms at the side of the receiver are eliminated. The
resulting double difference integer ambiguities can then be resolved very efficiently with
e.g. the LAMBDA method developed at Delft University of Technology (Teunissen, 1994).
The relative setup for RTK has the additional advantage that many error sources including
the ionosphere delay, which might otherwise prohibit successful ambiguity resolution, are
greatly reduced for short baselines.

In PPP no between receiver difference can be created, since we only have one receiver.
This means that the satellite clocks (including hardware delays) and initial phase terms at
the side of the satellite cannot be eliminated and that the ionosphere delay (and other error
sources) have to be dealt with in another way. In most PPP implementations the latter is
achieved by means of the ionosphere-free linear combination. However, this does not solve
the problem for AR and, if implemented incorrectly, even exacerbates the problem.

This leads to the identification of three main obstacles for ambiguity resolution in conven-
tional PPP implementations:

1. The conventional ionosphere-free linear combinations of code and phase reduce the
number of observables per satellite by two, but only one unknown parameter is
eliminated. If this approach is taken, a single-frequency ionosphere-free model is
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obtained. However, the virtual wavelength of the ionosphere-free linear combination
is very small compared to the L1 or L2 wavelengths and the combined observations
are noisier by a factor three.

2. The need to simultaneously estimate (or eliminate) the ionosphere delays and the
carrier phase ambiguities, leads to a very weak model, in which ambiguities cannot
be solved easily.

3. The satellite clocks, hardware delays and fractional ambiguities cannot be eliminated
by single differencing between receivers.

These obstacles are described in the following sections.

Virtual wavelengths The success rate of ambiguity resolution increases with increasing
wavelength, which is quite intuitive if one considers that it becomes easier to distinguish
between two integer values of the ambiguity if these are spread further apart by a larger
wavelength. Therefore we will now consider the wavelength of the Ionosphere-Free (IF)
linear combination which is the primary observable for conventional PPP implementations.
Equation (3.38) showed that the ionosphere free linear combination contains the following
ambiguity terms, which we will call the ionosphere-free ambiguity λIFA

s
r,IF:

λIFA
s
r,IF = c0

(k2
a − k2

b )f0
[kaAsr,a − kbAsr,b] (3.49)

to show how the ionosphere-free combination impacts ambiguity resolution, we will now
only consider the integer part of the ambiguities expressed as λfNf with λ the wavelength
and N the integer ambiguity. The fractional parts of the ambiguity will be discussed in the
following section. Equation (3.49) then becomes (with λ0 = c0/f0):

λIFN
s
r,IF = λ0

k2
a − k2

b

[kaN s
r,a − kbN s

r,b] (3.50)

Now the term on the right hand side before the square brackets, which acts as the
ionosphere-free wavelength, should be made as large as possible while maintaining the
integer nature of the term between brackets. Note from table 3.2 that, next to the integer
ambiguities N s

r,f , the terms kf are also integer, except for the Galileo E5 frequency. How-
ever, in this case we can both divide f0 by 2 and multiply kf by 2 to make it an integer.
The wavelength can be found with the greatest common divisor (gcd) as follows:

λIFN
s
r,IF = gcd(ka, kb)λ0

k2
a − k2

b

[
kaNa − kbNb

gcd(ka, kb)

]
(3.51)

Proof Given N s
r,f ∈ Z, kf ∈ N, ka > kb and λ0 > 0; if ka and kb have a

common divisor d1 > 1, than d1λ0
k2
a−k2

b

[
ka
d1
Na − kb

d1
Nb

]
= λ0

k2
a−k2

b
[kaN s

r,a − kbN
s
r,b] with[

ka
d1
Na − kb

d1
Nb

]
∈ Z and d1λ0

k2
a−k2

b
> λ0

k2
a−k2

b
. If ka and kb have another common divisor

d2 > d1, than d2λ0
k2
a−k2

b

[
ka
d2
Na − kb

d2
Nb

]
= λ0

k2
a−k2

b
[kaN s

r,a − kbN
s
r,b] with

[
ka
d2
Na − kb

d2
Nb

]
∈ Z

and d2λ0
k2
a−k2

b
> d1λ0

k2
a−k2

b
. Thus λIF = diλ0

k2
a−k2

b
is at a maximum when di is the greatest common

divisor of ka and kb. Since ka
gcd(ka,kb)

and kb
gcd(ka,kb)

are coprime by definition, λIF cannot be

increased beyond gcd(ka,kb)λ0
k2
a−k2

b
.
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Taking GPS L1/L2 as an example with kL1 = 154 and kL2 = 120 we find:

λL3N
s
r,L3 = 2λ0

1542 − 1202

(
77N s

r,L1 − 60N s
r,L2

)
(3.52)

which means λL3 = 2λ0/ (1542 − 1202) ≈ 0.63cm. This wavelength is very short and also
considering the amplified noise characteristics, it will be very difficult indeed to resolve
the IF ambiguities. In fact, this gives rise to the common, but strictly speaking incorrect,
assumption that the dual frequency ionosphere-free carrier phase ambiguity is by definition
not of integer nature (also noted by Collins, 1999).

To investigate whether this conclusion changes when considering other (newer) GNSS
frequencies, table 3.5 shows the virtual wavelength (also compared to L1) and noise multi-
plication factor for each dual-frequency combination of GPS and Galileo frequencies. The
last column shows the wavelength divided by the observation standard deviation, in relation
to the L1 frequency. The L1-only case represents a single-frequency short baseline model,
in which the ionosphere can be eliminated by between receiver single differencing. The

fa-fb-fc a b c σIF

σL1
λIF

λIF

λL1

λIF

λL1

σL1

σIF

L1-L2 2.55 1.55 2.98 0.0063 0.0331 0.0111
L1-L5 2.26 1.26 2.59 0.0028 0.0147 0.0057
L2-L5 12.26 11.26 16.64 0.1247 0.6553 0.0394
E1-E5a 2.26 1.26 2.59 0.0028 0.0147 0.0057
E1-E5b 2.42 1.42 2.81 0.0060 0.0315 0.0112
E1-E5 2.34 1.34 2.69 0.0014 0.0076 0.0028
E1-E6 2.93 1.93 3.51 0.0036 0.0190 0.0054
E5a-E5b -18.92 -19.92 27.47 0.0419 0.2203 0.0080
E5a-E6 -5.51 -6.51 8.53 0.0611 0.3208 0.0376
E5b-E6 -8.19 -9.19 12.30 0.0172 0.0905 0.0074
E5-E6 -6.61 -7.61 10.08 0.0071 0.0375 0.0037
L1-L2-L5 2.33 -0.36 -0.97 2.55 7.56e-13 3.97e-12 1.56e-12
E1-E5-E6 2.38 -1.25 -0.13 2.69 1.81e-15 9.49e-15 3.53e-15
E1-E5a-E5b 2.31 -0.84 -0.48 2.51 7.33e-14 3.85e-13 1.54e-13
E1-E5a-E6 2.27 -1.24 -0.02 2.59 2.64e-13 1.39e-12 5.37e-13
E1-E5b-E6 2.49 -1.24 -0.25 2.79 2.24e-13 1.18e-12 4.21e-13
E5a-E5b-E6 -4.83 -1.01 6.84 8.43 6.31e-12 3.32e-11 3.93e-12

Table 3.5: Ionosphere-free virtual wavelengths and noise scale factors, the triple frequency
combinations were optimized for the noise scale factor.

table shows that all combinations score quite poorly in the last column. Even for the most
advantageous combinations, GPS L2-L5 and Galileo E5a-E6, the wavelength is more than
25 times smaller w.r.t. the noise standard deviation than for the L1 frequency. Even though
several of the newer signals have higher precision than the GPS L1C/A code observations,
they cannot make up for this factor of more than 25. Nevertheless, ambiguity resolution
for PPP has been one of the most significant advances in the GNSS field achieved over
the last years.

Wide-Lane & Narrow-Lane

Several approaches to ambiguity resolution for PPP, that circumvent these difficult
ionosphere-free ambiguities, have been proposed by different authors, which we will intro-
duce below. A number of them rely on the ‘so-called’ Wide-Lane (WL) and Narrow-Lane
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(NL) combinations, which are known to have preferable properties for ambiguity resolution,
although as we will show, the second step does not actually involve the narrow lane ambi-
guity. For frequencies a and b with fa > fb, the wide-lane combination contains the carrier
phase measurement on fa minus the carrier phase measurement on fb both expressed in
cycles. This is multiplied by a scale factor, chosen such that the WL combination contains
the original range term g. As will be shown below, this scale factor is then the (virtual)
wavelength of the wide-lane combination. The wide lane combination can be expressed as
follows:

Φs
r,WL,k = λWL

λa
Φs
r,a,k −

λWL

λb
Φs
r,b,k (3.53)

We will again only consider the integer part of the ambiguities; with eqs. (3.32) and (3.34)
this gives:

Φs
r,WL,k = (ka − kb)λWL

λ0
gsr,k − ( 1

ka
− 1

kb
)λWL

λ0
Isr,0,k + λWL(N s

r,a −N s
r,b)+

f0λWL(kaδsr,a,k − kbδsr,b,k) + λWL

λ0
(kaεsr,a,k − kbεsr,b,k)

(3.54)

as mentioned λWL is now chosen such that the WL combination contains the original range
term g, which means that:

λWL = λ0
ka−kb

a = ka
ka−kb

b = −kb
ka−kb

(3.55)

The wide-lane observation equation then becomes:

Φs
r,WL,k = gsr,k + 1

kakb
Isr,0,k + λWL(N s

r,a −N s
r,b)+

c0
ka−kb

(kaδsr,a,k − kbδsr,b,k) + 1
ka−kb

(kaεsr,a,k − kbεsr,b,k)
(3.56)

For the GPS L1 and L2 frequencies the wide-lane wavelength can then be computed as
86cm ≈ 4.53λL1 which is very large, and the very reason that the wide-lane combination
is so popular for AR. The ionosphere dispersion factor for the wide-lane combination is
ka/kb if fa is taken as ionosphere reference frequency or about 1.28 for GPS L1/L2. This
is opposite in sign to the L1 and L2 ionosphere phase delay and in between the L1 and L2
ionosphere phase delay in size. Table 3.6 provides the factors a and b for the wide-lane
of all GPS and Galileo frequency combinations, as well as the noise scale factor, assuming
equal and uncorrelated noise on each frequency, and the wavelength (also compared to
GPS L1). The table shows that for certain combinations the wavelength but also the noise
scale factor is very large indeed. To solve the wide-lane ambiguities the narrow-lane
code combination can be used, because it has the same ionosphere dispersion factor as the
wide-lane phase combination. The narrow-lane combination for frequencies a and b with
fa > fb is defined as the sum of the measurement on fa and fb when both are expressed
in cycles. This is again multiplied by a scale factor, the narrow-lane wavelength, chosen
such that the NL combination contains the original range term g:

P s
r,NL,k = λNL

λa
P s
r,a,k + λNL

λb
P s
r,b,k (3.57)
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WL NL WL/NL

fa-fb a b σWL

σL1
λWL

λWL

λL1
a b σNL

σL1
λNL

λNL

λL1

λWL

λL1

σL1

σNL

L1-L2 4.53 -3.53 5.74 0.86 4.53 0.56 0.44 0.71 0.11 0.56 6.36
L1-L5 3.95 -2.95 4.93 0.75 3.95 0.57 0.43 0.71 0.11 0.57 5.53
L2-L5 24.00 -23.00 33.24 5.86 30.80 0.51 0.49 0.71 0.12 0.66 43.55
E1-E5a 3.95 -2.95 4.93 0.75 3.95 0.57 0.43 0.71 0.11 0.57 5.53
E1-E5b 4.28 -3.28 5.39 0.81 4.28 0.57 0.43 0.71 0.11 0.57 6.00
E1-E5 4.11 -3.11 5.15 0.78 4.11 0.57 0.43 0.71 0.11 0.57 5.75
E1-E6 5.31 -4.31 6.84 1.01 5.31 0.55 0.45 0.71 0.11 0.55 7.47
E5a-E5b -38.33 39.33 54.92 9.77 51.33 0.49 0.51 0.71 0.13 0.66 72.59
E5a-E6 -11.50 12.50 16.99 2.93 15.40 0.48 0.52 0.71 0.12 0.64 21.76
E5b-E6 -16.86 17.86 24.56 4.19 22.00 0.49 0.51 0.71 0.12 0.63 31.10
E5-E6 -13.71 14.71 20.10 3.45 18.12 0.48 0.52 0.71 0.12 0.64 25.61

Table 3.6: Wide-lane and narrow-lane virtual wavelengths and noise scale factors.

with eqs. (3.31) and (3.33) this gives:

P s
r,NL,k = (ka + kb)λNL

λ0
gsr,k + ( 1

ka
+ 1

kb
)λNL

λ0
Isr,0,k+

f0λNL(kadsr,a,k + kbd
s
r,b,k) + λNL

λ0
(kaεsr,a,k + kbε

s
r,b,k)

(3.58)

to keep the original range term g in in the NL combination, we take:

λNL = λ0
ka+kb

a = ka
ka+kb

b = kb
ka+kb

(3.59)

The narrow-lane code observation equation then becomes:

P s
r,NL,k = gsr,k + 1

kakb
Isr,0,k + c0

ka + kb
(kadsr,a,k + kbd

s
r,b,k) + 1

ka + kb
(kaεsr,a,k + kbε

s
r,b,k)

(3.60)

As mentioned, the ionosphere dispersion factor for the narrow-lane code combination is
identical to the wide-lane phase combination. For GPS L1 and L2 the narrow-lane wave-
length is 10.7 cm. Table 3.6 shows factors a, b, the noise scale factor (again assuming
equal and uncorrelated noise), and the narrow-lane wavelength for all GPS and Galileo
dual-frequency combinations. Note that the differences between the narrow-lane combina-
tions of different frequencies is much smaller than the differences between the wide-lane
combinations. We can now subtract the narrow-lane code combination from the wide-lane
phase combination as follows:

Φs
r,WL,k − P s

r,NL,k = λWL(N s
r,a −N s

r,b)+
c0

ka−kb
(kaδsr,a,k − kbδsr,b,k)− c0

ka+kb
(kadsr,a,k + kbd

s
r,b,k)+

1
ka−kb

(kaεsr,a,k − kbεsr,b,k)− 1
ka+kb

(kaεsr,a,k + kbε
s
r,b,k)

(3.61)

This combination is known as the Melbourne-Wübbena (MW) combination and is often
used to fix the wide lane ambiguities in long baseline or network solutions, and has been
adopted by the PPP research community. Even with the large multiplication factor for the
phase noise, the MW combination is still dominated by the code noise. The rightmost
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column of table 3.6 shows the wide-lane wavelength divided by the narrow-lane code noise
for all GPS and Galileo dual-frequency combinations, both with respect to the GPS L1
single-frequency case. A number larger than one in this column means that the (wide-
lane) ambiguity can be solved more easily than the L1 ambiguity on a short baseline. One
caveat is that the GPS L1 ambiguities are generally solved with a geometry-based model,
while the geometry term is eliminated in the MW combination. The attractiveness of the
MW combination for ambiguity resolution is now clear: it has a large wavelength (for GPS
L1/L2 λWL ≈ 4.53λL1) relatively low noise σNL ≈ 0.71σL1, and is free of the combined
range term and ionosphere delay. Table 3.6 also shows that some combinations, sometimes
called extra wide-lane combinations, e.g. GPS L2-L5 and Galileo E5a-E5b, are even more
easy to fix than most wide-lanes.

When the wide-lane ambiguity for frequencies a and b is fixed it can be added to the phase
observations on fb, thereby eliminating the Ab ambiguity and replacing it with the Aa
ambiguity. This changes the effective wavelength of the ionosphere free phase combination,
and leads to the following ambiguity term, from eq. (3.50):

λIFN
s
r,IF = λ0

ka + kb
N s
r,a (3.62)

Note that this is the same wavelength as the narrow-lane we found in eq. (3.59)
λIF|WL-fixed = λNL and it is also referred to as narrow-lane (Ge et al., 2008), but the ambi-
guity N s

r,a should not be confused with the narrow-lane ambiguity N s
r,NL = N s

r,a +N s
r,b. In

fact, solving the wide-lane and narrow-lane ambiguity to integer values would not guarantee
the original ambiguities to be integer (Teunissen, 1995). Table 3.7 shows the properties
of the ionosphere-free combination for each GPS and Galileo dual-frequency case after the
wide-lane ambiguity has been fixed. The rightmost column again compares the wavelength
divided by the observation noise to the GPS L1 case. If we compare these results to the
results in table 3.5, we notice an obvious improvement. For GPS L1/L2 the ionosphere-free
wavelength is now increased by a factor 17 and for GPS L1/L5 and Galileo E1/E5a there
is even an improvement of a factor 39. However, despite these improvements, ambiguity
resolution for these combinations is still significantly more difficult than for the L1 single-
frequency ionosphere-free case (i.e. on a short baseline). Also note that the extra wide-lane
combinations, such as GPS L2/L5 and Galileo E5a/E5b, for which the wide-lanes can be
solved with relative ease, now perform very poorly.

We can extend this analysis to the multi-frequency case as follows. As we saw in ta-
ble 3.6, the wide-lane combination has favorable properties for ambiguity resolution for
each dual-frequency combination. These combinations can obviously still be made when
more frequencies are available. Therefore, we will now assume that all wide-lane ambiguities
can indeed be fixed. In that case we can derive an optimal ionosphere-free combination
to solve the final ambiguity. If the wide-lane ambiguities are solved, eq. (3.46) can be
rewritten as:

E
{

Φs
r,LC3,k

}
= (a+ b+ c)gsr,k − ( a

k2
a

+ b
k2
b

+ c
k2
c
)Isr,0,k+

c0
f0

( a
ka

+ b
kb

+ c
kc

)Asr,a + c0(aδsr,a,k + bδsr,b,k + cδsr,c,k)
D
{

Φs
r,LC3,k

}
= (a2 + b2 + c2)σεs

r,k

(3.63)

Rather than minimizing the measurement noise, which leads to very small wavelengths as
we saw in table 3.5, instead we maximize the wavelength divided by the measurement noise
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fa-fb-fc a b c σIF

σL1
λIF|WL

λIF|WL

λL1

λIF|WL

λL1

σL1

σIF

L1-L2 2.55 -1.55 2.98 0.11 0.56 0.19
L1-L5 2.26 -1.26 2.59 0.11 0.57 0.22
L2-L5 12.26 -11.26 16.64 0.12 0.66 0.04
E1-E5a 2.26 -1.26 2.59 0.11 0.57 0.22
E1-E5b 2.42 -1.42 2.81 0.11 0.57 0.20
E1-E5 2.34 -1.34 2.69 0.11 0.57 0.21
E1-E6 2.93 -1.93 3.51 0.11 0.55 0.16
E5a-E5b -18.92 19.92 27.47 0.13 0.66 0.02
E5a-E6 -5.51 6.51 8.53 0.12 0.64 0.08
E5b-E6 -8.19 9.19 12.30 0.12 0.63 0.05
E5-E6 -6.61 7.61 10.08 0.12 0.64 0.06
L1-L2-L5 2.32 -0.31 -1.00 2.55 0.11 0.57 0.22
E1-E5-E6 2.36 -1.30 -0.06 2.69 0.11 0.57 0.21
E1-E5a-E5b 2.31 -0.86 -0.45 2.51 0.11 0.57 0.23
E1-E5a-E6 2.24 -1.30 0.06 2.59 0.11 0.57 0.22
E1-E5b-E6 2.47 -1.28 -0.19 2.79 0.11 0.56 0.20
E5a-E5b-E6 -4.87 -0.95 6.82 8.44 0.12 0.64 0.08

Table 3.7: Wide-lane and narrow-lane virtual wavelengths and noise scale factors, the triple
frequency combinations were optimized for the wave length divided by the noise scale factor
(last column).

to optimize for ambiguity resolution:
a+ b+ c = 1
a
k2
a

+ b
k2
b

+ c
k2
c

= 0
max(( a

ka
+ b

kb
+ c

kc
)/
√
a2 + b2 + c2)

(3.64)

This optimization leads to the following expression for a:

a =

(
kakb

4 + kakc
4 − kb4kc − kbkc4

)
ka

2

ka
4(kb3 − kb2kc − kbkc2 + kc

3) + kb
4(ka3 − ka2kc − kakc2 + kc

3) + kc
4(ka3 − ka2kb − kakb2 + kb

3)
(3.65)

Note that in this expression for a, kb and kc are again interchangeable, and similar ex-
pressions can be derived for b and c by exchanging ka and kb or ka and kc, respectively.
Table 3.7 shows the values of a, b, c, the noise multiplication factor, the wavelength, and
the wavelength divided by the noise multiplication factor compared to GPS L1, for each
possible combination of 3 GPS or Galileo frequencies. Comparison to table 3.5 shows that
these new linear combinations are very similar, but have much larger wavelengths. How-
ever, if we compare the triple-frequency combinations to the dual-frequency combinations
we see that there is no great improvement at all. The performance of each combination
is in fact very similar to the performance of the optimal subset of two frequencies out of
the available three frequencies. This analysis is by no means exhaustive, or a proposed
approach for practical use, but it does illustrate that the problem of ambiguity resolution
for PPP is not easily solved by considering multiple frequencies.

The wide-lane, narrow-lane approach improves on the conventional ionosphere-free combi-
nation w.r.t. ambiguity resolution for PPP, and undoes the wasteful reduction of observ-
ables by two to eliminate a single unknown. Several variations on the wide-lane approach
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introduced above are used by Laurichesse and Mercier (2007); Collins et al. (2008); Lau-
richesse et al. (2009); Ge et al. (2008); Geng et al. (2009). A comparison between these
models is made by Teunissen and Khodabandeh (2015), which shows that they are all
equivalent models and also equivalent to the more generally applicable model introduced
by de Jonge (1998). The only differences lie in the manner in which the rank defects in the
model are solved (the so-called S-basis, Baarda, 1973; Teunissen, 1985; de Jonge, 1998),
different parametrization (where the parameters of one model are linear combinations of
the parameters of another model), and the elimination of the ionosphere. This changes
the parameters which are estimated and their interpretation, but should not impact the
position estimates if rigorously estimated. However, several critical remarks can still be
made on the ionosphere-free, wide-lane, narrow-lane approach.

Ambiguity decorrelation

Firstly, the wide-lane combination is only one of many possible integer combinations of the
carrier phase observables, each with its own (virtual) wavelength, ionosphere dispersion and
noise multiplication factor, and not necessarily the optimal combination. Attractive com-
binations for ambiguity resolution have a large wavelength (wide-lane), a small ionosphere
impact (ideally ionosphere-free) and low observation noise. Collins (1999) identifies, for
the GPS L1 L2 observables, 37 independent wide-lane combinations, 73 combinations that
reduce the ionosphere impact and an infinite number of (narrow-lane) combinations that
reduce the noise level. With the present increase in the number of available GNSS frequen-
cies, these numbers have increased manifold. Identifying the optimal linear combination
for each set of frequencies becomes an arduous task, especially considering that it depends
on the variance matrix of the observables and potential ionosphere constraints which may
change over time.

Choosing the optimal combination, considering all three criteria combined, is directly related
to the decorrelation step of the LAMBDA method (Teunissen, 1994, 1997b). The LAMBDA
method combines the ambiguities themselves, rather than combining the observations, but
with the same goal: to create linear combinations of the ambiguities which are more easily
solved than the original ambiguities. Teunissen (1997b) further shows that, while the
wide-lane combination does significantly decorrelate the L1-L2 ambiguities, especially for
the ionosphere-float model, it is not by definition an optimal decorrelation. Depending on
the stochastic properties of the observations and the treatment of the ionosphere, further
decorrelation is possible. Note: ambiguity decorrelation does not improve the success rate
in the case of an integer least squares approach which employs an ambiguity search; rather
it improves the efficiency of the ambiguity search. However, in the case of bootstrapping
and/or partial ambiguity resolution, the overall success rate, or number of ambiguities
which can be solved with a given success rate, does increase (Teunissen, 1998c). The
same holds true when using the fixed wide-lane combination, but to a lesser extend. It is
with these considerations in mind that, for the work introduced in chapter 7 and continued
in Teunissen and de Bakker (2013) where we consider cycle-slips as a type of ambiguity in
the time-differenced model, we use the LAMBDA decorrelation rather than a fixed set of
linear combinations.

A second potential weak point of the wide-lane, narrow-lane approach is that the wide-lane
ambiguities are solved on a satellite-by-satellite basis by some authors, thereby neglecting to
exploit the correlation between the ambiguities. While the Ambiguity Dilution of Precision
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(ADOP) approximation in Teunissen and Khodabandeh (2015) suggests that the difference
is small, it is still not an optimal approach. If all ambiguities are solved together the success
rate will be higher.

A third disadvantage of the ionosphere-free, wide-lane, narrow-lane approach was already
mentioned in section 3.4. Taking advantage of external ionosphere models, or constraining
the dynamics of the ionosphere delays, becomes complicated.

Therefore, the use of the original observables, without forming or depending on certain spe-
cific linear combinations, will remain the optimal approach. The dual frequency model can
easily be extended for additional frequencies, and the algorithms will automatically profit
from the available frequencies and signals. The LAMBDA method for ambiguity resolution
will also automatically determine the optimal ambiguities (or ambiguity combinations) to
fix.

Finally, as illustrated by table 3.7, ambiguity resolution in an ionosphere-float model (i.e.
the ionosphere-delay is not constrained) remains difficult, even if the estimation itself is
rigorous. We will again encounter this for the time-differenced model in chapter 7, where
we will also see that this problem is not solved by considering additional GNSS frequencies.
There always remains one combination of ambiguities which is very difficult to solve, and
as long as this is not solved, the carrier phase observations do not act as very precise
pseudo range observations, in fact the improvement might be marginal (Odijk et al., 2014).
The solution to this problem must come from constraining the ionosphere. In the time-
differenced model this constraint follows from the smooth behavior of the ionosphere over
time, which greatly benefits cycle-slip detection. In the positioning model however, this
constraint currently still follows from the spatial correlation of the ionosphere and is thus
related to the baseline lengths. Global ionosphere models are not yet as accurate as one
might wish for fast ambiguity resolution.

Fractional ambiguities and uncalibrated hardware delays The carrier phase ambiguity
as introduced in eq. (3.4) is not integer, because it includes initial phase terms at the
receiver and satellite:

Asr,f = λ
(
N s
r,f + ϕsf,0 − ϕr,f,0

)
(3.66)

where N s
r,f is an integer number of cycles, and ϕsf,0 and ϕr,f,0 are the initial phase at the

satellite and receiver in cycles. In RTK, double differencing eliminates the initial phase
terms together with the receiver and satellite phase clocks, thereby making ambiguity
resolution possible. For a stand alone receiver as is used in PPP, the fractional part at the
side of the satellites cannot be eliminated (standard products from IGS and other service
providers estimate carrier phase clocks for the ionosphere free linear combination, which are
biased by an ionosphere free SD ambiguity, and then line these up with code observations
destroying the intrinsic integer properties). Therefore, ambiguity resolution for PPP should
take a different approach.

The fractional ambiguities at the side of the user can still be eliminated by a between
satellite single difference. In Banville et al. (2008) a different approach to the receiver
phase delays is proposed, namely to estimate (or actually calibrate) them a-priori from a
test set-up with a GPS signal simulator. However, test result show that separating the
receiver clock from the ambiguities is difficult and the differential delays are not constant
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between reinitialization of the receiver. Banville et al. (2008) state that between-satellite
single differencing is still the best approach to eliminate receiver phase biases. This is in
line with earlier results that show that the hardware delays of user receivers are generally
not constant, but will vary with a.o. temperature (Liu et al., 2004).

The fractional ambiguities at the side of the satellite should be treated in a different way.
A network of reference stations can be used to generate corrections for the user that can
be used to eliminate these single difference satellite fractional ambiguities. Due to the
rank defect in the PPP model, the fractional ambiguities cannot be estimated directly, but
estimable parameters can be defined, which when used as corrections achieve the same
goal (Teunissen and Khodabandeh, 2015). Estimates of these parameters are transmitted
to a PPP user together with any other corrections. The PPP user could then use these
as corrections on the measurements between satellite single differences to create integer
ambiguities. Note that this approach in fact leads to double differenced ambiguities, the
second difference being between the PPP user and the reference network (Teunissen and
Khodabandeh, 2015).

3.6 Conclusions and outlook

We conclude with a summary of some of the more important findings in this chapter, which
guide the further research presented in this thesis. To combine the best characteristics of
single frequency and dual frequency PPP, an optimal PPP algorithm should both use
external atmosphere models if available and estimate, not eliminate, (residual) atmosphere
delay parameters on the measurements. For the estimated residual parameters dynamic
models can be used to benefit from the limited variability of the atmospheric delays in
time (e.g. the generally smooth behavior of the atmospheric delays). For these reasons,
the original observables should be used for PPP, instead of any linear combinations. This
also provides greater flexibility for including additional frequencies and to benefit from the
(expected) GNSS evolutions.

The current lack of integrity information for PPP should be solved by improving the stochas-
tic model for PPP and rigorously applying propagation of uncertainty and hypotheses test-
ing. Finally, the possibilities and opportunities of ambiguity resolution for PPP should be
studied.
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4.1 Systems of equations

Not all unknown parameters that appeared in the observation equations of chapter 3 are
estimable, due to rank deficiencies in the design matrix. S-system theory can be applied
to obtain an estimation model of full rank and a correct interpretation of the estimable
parameters (Baarda, 1973; Teunissen, 1985; de Jonge, 1998). For Precise Point Positioning,
this problem appears both at the network side and at the user side. In this chapter we will
take a closer look into which parameters are estimable and which are not at the user side;
any rank deficiencies at the network side are considered solved. However, some remarks
are included that explain the consequences of choices made to solve the rank deficiencies
at the network side.

For the analysis of the rank deficiencies, we will use subsets of the observation model which
include the relevant parameters for the rank deficiency under investigation, but exclude as
many other parameters as possible. Also it will be investigated which unknowns can already
be estimated from carrier phase measurements only and can thus be expected to have a
high accuracy, and which unknowns can only be estimated from the less precise code
measurements.

During the following derivations, we will come across the models that represent each of the
previously introduced single and dual-frequency approaches to PPP considering the primary
observations (i.e. single frequency ionosphere-free, dual frequency ionosphere-free, single
frequency original observations, and dual frequency original observations). We will setup
linearized models of the form ∆y = A∆x + ε, where ∆y contains the OMC observations,
A is the design matrix, ∆x are the adjustments to the approximate values of the unknowns,
and ε contains the measurement noise. In general a matrix is rank defect if the columns
and/or rows of the matrix are not linearly independent. If design matrix A has a rank
deficiency in the rows (i.e. the number of rows is larger than the rank of the matrix), the
system is over determined, which generally is not undesirable. However, if design matrix A
has a rank deficiency in the columns, the system is under determined and the solution of
the unknown parameters will not be unique. Therefore, we will inspect the design matrices
for (column)rank deficiencies, which can be found with the following expression:

Av = 0 ∃ v 6= 0 (4.1)

That is if a vector v 6= 0 exists that satisfies Av = 0, matrix A is (column)rank defect.
Any existing rank deficiencies found in this way can be solved by a reparameterization of the
unknown parameters, as is done below, or by regularization of some or all of the unknowns,
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as will be treated later. In the following we will consider a single epoch of data whenever
possible, but some rank deficiencies can only be studied by including multiple epochs. In
this case another important aspect with regards to the rank deficiencies is the treatment
of the unknown parameters for different epochs. The unknowns can either be estimated
each epoch (temporal parameters), held constant over time (global parameters), or given
a dynamic model (constrained parameters). Dynamic models will be treated later; for now
we will only consider global and temporal parameters.

4.2 Instrumental delays and multi-GNSS Precise Point Positioning

In chapter 3 the PPP observation equations were derived as eqs. (3.23) and (3.24):

∆P s
r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms

w,r,kTzw,r,k + γfIsr,i,k + c0d
s
r,f,k + εsr,f (4.2)

∆Φs

r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms
w,r,kTzw,r,k − γfIsr,i,k + λfA

s
r,f + c0δ

s
r,f,k + εsr,f (4.3)

We will now split the residual LOS delays, dsr,f,k and δsr,f,k, in four parts:

1. LOS delays which we correct for using accurate models including relativistic effects,
carrier phase-wind up, antenna phase center offsets and phase center variations.

2. LOS delays which we do not correct, but account for in the stochastic model including
multipath (and higher order ionosphere terms, if we do not correct for these).

3. Instrumental delays at the side of the satellite, dsf and δsf , which are assumed equal
for all receivers, but different for each observable and satellite.

4. Instrumental delays at the side of the receiver, dr,f and δr,f , which are assumed to
be equal for all tracked satellites, but different for each observable and receiver.

The last two groups of instrumental delays form an important subject of this chapter.
As we will see, they cannot be determined in an absolute sense, but certain differential
terms are estimable. Depending on their context, these delays may have different names.
E.g. in the GPS broadcast navigation message the differential term between observables
P1 and P2 is called the group delay differential; the differential terms between P1 and
L1C/A and between P2 and L2C are called inter-signal corrections. In the context of
the precise products from the IGS, instrumental delays on the code measurements are
called differential code biases (DCB), while similar hardware delays on the carrier phase
observables, of particular interest for ambiguity resolution, are sometimes called differential
phase biases (DPB) or uncalibrated (phase) hardware biases. Inter-system biases (ISB),
which occur when signals from different GNSS are tracked (on the same frequency), can
also be considered as a special case of these instrumental delays. If a receiver tracks
satellites s and q from two different GNSS A and B, then dr,f and δr,f are not the same
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for these observables:

∆P s

r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms
w,r,kTzw,r,k + γfIsr,i,k + c0 dr,f,k|A + c0d

s
f,k + εsr,f

∆P q

r,f,k = −es∗r,k∆rr,k + c0δtr,k +mq
w,r,kTzw,r,k + γfIqr,i,k + c0 dr,f,k|B + c0d

q
f,k + εqr,f

∆Φs

r,f,k = −es∗r,k∆rr,k + c0δtr,k +ms
w,r,kTzw,r,k − γfIsr,i,k + λfA

s
r,f + c0 δr,f,k|A +

c0δ
s
f,k + εsr,f

∆Φq

r,f,k = −es∗r,k∆rr,k + c0δtr,k +mq
w,r,kTzw,r,k − γfI

q
r,i,k + λfA

q
r,f + c0 δr,f,k|B +

c0δ
q
f,k + εqr,f

(4.4)

Remember that the inter-system time-offset was already treated in section 3.1, and is
here considered absent (δtr,k|A = δtr,k|B = δtr,k). If we rewrite the receiver instrumental
delays for GNSS B as dr,f,k|B = dr,f,k|A + dr,f,k|AB and δr,f,k|B = δr,f,k|A + δr,f,k|AB, we
have introduced the ISB for code dr,f,k|AB and phase δr,f,k|AB. Note that a very similar
case exists when two different signals are tracked from the same GNSS and on the same
frequency, e.g. L2P and L2C. With respect to inter-systems biases there are four different
cases to consider (Odijk and Teunissen, 2013a,b; Teunissen, 2014):

1. All satellites are from a single GNSS. This is a trivial case in which no ISB occur.

2. All receivers, both in the network and at the user side, are of the same make and
model including the firmware version. In this case ISB are present, but equal for all
receivers and can be ignored since they are eliminated in the positioning algorithms,
either directly, when observations are differenced for baseline processing, or via the
precise clock and bias corrections, in the case of PPP.

3. Inter-system biases are estimated, or separate receiver clock offsets are estimated by
the rover receiver. In this case the model will be weaker than if the same number of
satellites is tracked from a single GNSS. Also, if for a specific GNSS, only a single
satellite is tracked, it will not contribute to the position solution.

4. Inter-system biases are corrected by means of a look-up table of previously estimated
values. This option is viable because the ISBs are very stable in time and can indeed
be calibrated in this manner.

In the following we will only consider one instrumental code delay and one phase delay on
each frequency at the side of the receiver. This covers the case where only a single GNSS
is tracked, the case where a single type of receiver is used in both the network and by the
user to track any number of GNSS, and the case where different types of receivers are used
to track any number of GNSS, but all inter-system biases are known and can be corrected.

4.3 Single frequency code-only

We will start with the simplest positioning model of all, the single frequency code-only
positioning model. Equation (4.5) combines eq. (3.23) for m satellites but only one epoch
of single frequency data. The satellite positions and clocks have been subtracted from
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the observations as in eq. (3.21), and for the residual LOS delays it is assumed that the
satellite hardware delays are removed together with the satellite clocks (as explained later
this is a fair assumption), the receiver hardware delays are still included in eq. (4.5).

E
{[

∆P S
r,f,k

]}
=

[
−eS∗r,k cum cum mS

r,k γfIm
]


∆rr,k
δtr,k
dr,f,k
TZ,r,k
IS
r,1,k

 (4.5)

where bold symbols are used for vector or matrix notation, capitol S in superscript indicates
a vector with one row per tracked satellite, um is an m× 1 vector with ones, and Im is an
m×m unit matrix.

From eq. (4.5) several things can be deduced:

1. From single frequency code-only observations the ionosphere cannot be estimated
since there is one unknown ionosphere delay per observation. Therefore, a single
frequency user will have to rely on an external ionosphere model to correct the
observations for the ionosphere delay.

2. The model contains a rank deficiency between the receiver clock offset and the
receiver hardware delay. This is solved by combining these two unknowns into a single
observable-specific clock: dtr,f,k = δtr,k+dr,f,k. In general we can say, that estimated
clocks in GNSS positioning never represent the common or ‘true’ clock offset, but
rather clocks that pertain to a specific observable and include the hardware delays
corresponding to that observable. Therefore, we will use these observable specific
clock offsets in the following analyses rather than the ‘true’ clock offset.

3. The columns in the design matrix that contain the unit vectors from the receiver to
the satellite have different entries for each satellite, and as a result no rank deficiencies
exist between these columns and any other columns of the design matrix if enough
satellites are tracked. The same goes for the columns pertaining to the troposphere
zenith delay, which entries contain the mapping function evaluated for each satellite,
and in this regard, the estimation of a zenith troposphere delay can be seen as the
estimation of a fourth receiver coordinate. This result does not change when more
epochs of data are considered, since the satellite (and possibly receiver) positions
change, thereby changing the unit vectors and troposphere mapping parameters.
Therefore, we can neglect the columns containing the unit vectors and mapping
parameters in the following analyses of the rank deficiencies. So, in order to keep
the models as concise as possible, we will assume that the troposphere is corrected
a priori (i.e. it no longer appears in the functional model), and, if multiple epochs
are considered, that the user position is static.

Equation (4.5) now further simplifies to the well known single point positioning model with
the receiver coordinates and receiver clock offset as the only unknowns:

E
{[

∆P S
r,f,k

]}
=

[
−eS∗r,k cum

] [ ∆rr,k
δtr,f,k

]
(4.6)
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The minimal required number of satellites and the redundancy depend on the user dynamics
(static or kinematic) and on the choice whether the zenith troposphere delay is estimated.
Appendix D contains redundancy tables for each of the models discussed in this chapter.

4.4 Dual frequency code-only

Dual frequency observations can be used to estimate (or eliminate) the ionosphere de-
lay, and in fact this is the main reason why GNSS provide ranging signals on multiple
frequencies. Therefore, the ionosphere is again included in the functional model. Also,
using multiple observables means that there is a separate clock per observable at both
the receiver and the satellites. In the following model these separate satellite and receiver
clocks are included in the vector of unknown parameters to show their impact on the rank
deficiencies.

E

{[
∆PS

r,P1,k
∆PS

r,P2,k

]}
=
[
−eS∗r,k cum Im −cIm
−eS∗r,k cum γIm −cIm

]


∆rr,k
dtr,P1,k
dtr,P2,k

IS
r,k

dtSP1,k
dtSP2,k


(4.7)

In eq. (4.7) and following analyses, all entries in the design matrix which have been left
empty are actually filled with zeros. From a single receiver with an unknown position and
and clock offset (as is generally the case in PPP positioning) the satellite clock offsets
cannot be estimated, so they must be provided by a network or reference receiver. In
network or baseline processing the satellite clock offsets might indeed be provided per
observable, but in classical SPP or PPP this is not the case. In these processing techniques
two linear combinations of the clocks are introduced: the ionosphere-free combination and
the ionosphere combination:

dtSP3,k = + γ
γ−1dt

S
P1,k − 1

γ−1dt
S
P2,k

dtSPI,k = − 1
γ−1dt

S
P1,k + 1

γ−1dt
S
P2,k = 1

γ−1d
S
P1P2,k

(4.8)

The ‘ionosphere-free clock’ dtsP3,k is then indeed provided to the user via the broadcast
messages or the precise products intended for PPP and can be subtracted from the obser-
vations following eq. (3.21). The ionosphere linear combination dtsPI,k reduces to a satellite
differential hardware delay dsP1P2,k also called differential code bias (DCB), as shown. In
eq. (4.7) this DCB can now be lumped with the ionosphere delays. If the user is not
interested in the absolute ionosphere estimate and no constraint is put on the absolute
ionosphere delay in the estimation, the DCB can simply be ignored since it only biases the
ionosphere estimate as follows:

ĪS

r,k = IS
r,k − c

γ−1d
S
P1P2,k (4.9)

If the user is interested in the absolute ionosphere delay, or if the ionosphere estimation is
constrained by e.g. an external ionosphere model, then the observations should be corrected
for the satellite DCB. In the case of single frequency code observations described above,



4.4 Dual frequency code-only 55

a user would also need the DCB to derive the observation specific satellite clock from the
ionosphere-free satellite clock. For this reason the DCB is indeed provided together with
the satellite clock offset both for the broadcast ephemerides and for the precise ephemerides
(satisfying our earlier assumption in section 4.3). An advantage of providing the ionosphere-
free clock together with the satellite DCB over providing the satellite clocks for both signals
individually, lies in the fact that the DCB is much more stable over time than the satellite
clocks themselves, which greatly reduces the necessary update rate for this correction and
thereby reduces the amount of data that needs to be provided to the user. In any case,
whether the observations are corrected for the DCB or not, the dual frequency code-only
positioning model no longer contains unknown satellite clock parameters and simplifies to:

E

{[
∆P S

r,P1,k
∆P S

r,P2,k

]}
=

[
−eS∗r,k cum Im
−eS∗r,k cum γIm

] 
∆rr,k
dtr,P1,k
dtr,P2,k

IS
r,k

 (4.10)

This model still contains a rank deficiency between the receiver clock offsets and ionosphere
delays. An elegant way to solve this rank deficiency is to introduce the ionosphere-free linear
combination and the ionosphere linear combination of the receiver clock offsets as well:

dtr,P3,k = + γ
γ−1dtr,P1,k − 1

γ−1dtr,P2,k

dtr,PI,k = − 1
γ−1dtr,P1,k + 1

γ−1dtr,P2,k = 1
γ−1dr,P1P2,k

(4.11)

The ionosphere-free clock is then estimated together with the receiver coordinates, while
the ionosphere linear combination again reduces to a differential code bias but now for the
receiver. If no additional constraints are put on the ionosphere delay or the DCB estimate,
these two unknowns cannot be separated and are simply lumped in the estimation process
as follows:

ĪS

r,k = IS
r,k + c

γ−1dr,P1P2,k (4.12)

For a GNSS user who is not interested in the absolute ionosphere estimates this approach
suffices, since the DCB will only bias the ionosphere estimates. The dual frequency code-
only model then simplifies to:

E

{[
∆P S

r,P1,k
∆P S

r,P2,k

]}
=

[
−eS∗r,k cum Im
−eS∗r,k cum γIm

]  ∆rr,k
dtr,P3,k

ĪS

r,k

 (4.13)

If, on the other hand, a user is interested in the absolute ionosphere delay, and wants to
constrain the receiver DCB or ionosphere estimates these unknown parameters should not
be lumped and the receiver DCB should be estimated as a separate unknown. Estimating
one receiver clock and a receiver DCB can still provide some advantage over the estimation
of two separate receiver clocks since the DCB is more stable over time than a receiver clock
parameter and, consequently, the DCB estimation can be constrained with a more strict
dynamic model. In this case the dual frequency code-only model follows as:

E

{[
∆P S

r,P1,k
∆P S

r,P2,k

]}
=

[
−eS∗r,k cum cum Im
−eS∗r,k cum γcum γIm

] 
∆rr,k
dtr,P3,k

1
γ−1dr,P1P2,k

IS
r,k

 (4.14)
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N.B. The model presented in eq. (4.14) is only valid if some additional constraint on the
ionosphere delay or DCB is used (since it is rank deficient otherwise). Such a constraint may
e.g. come from a dynamic model that also assumes some knowledge on the expectation of
the absolute value of the ionospheric delay or DCB. One way to constrain the ionosphere
delay that is used in this dissertation is to correct the observations a priori with an external
ionosphere model and estimate only a residual ionosphere delay (i.e. the error of the
external model is estimated). For this estimate of the residual ionosphere we can assume
an expectation of zero with some uncertainty depending on the accuracy of the model.
After all, if the expectation of the error in the external ionosphere model would be unequal
to zero (without any other knowledge of the specific measurement conditions) the model
should be corrected with this expectation. The zero mean expectation for the ionosphere
residual solves the rank deficiency in eq. (4.14). It is important to note that constraining the
ionosphere in this way, not only impacts the ionosphere estimation itself, but strengthens
the entire model thereby also impacting the estimation of the other unknown parameters.
The use of an external ionosphere model is expanded on more later in this chapter for the
single frequency code & phase models.

4.5 Single frequency phase-only

Phase-only processing is similar to code-only processing in many ways, however there are
also some differences. The main difference lies in the fact that the carrier phase measure-
ments are biased by constant but unknown ambiguities. Therefore, these ambiguities need
to be estimated together with the other unknown parameters. Equation (4.15) combines
eq. (3.24) for m satellites, where the satellite positions have been subtracted from the
observations conform eq. (3.22), but not yet the satellite clock offsets to show the impact
of the satellite hardware delays on the phase-only model. Similar to the single frequency
code-only model, the ionosphere delays cannot be estimated from the single frequency
phase-only model either. Therefore, we will assume that the observations are corrected a
priori by means of an external ionosphere model. This leads to the following single epoch
phase-only positioning model:

E
{[

∆φSr,f,k
]}

=
[
−eS∗r,1 cum λfIm −cIm

] 
∆rr,1
δtr,f,k
AS
r,f

δtSf,k

 (4.15)

As mentioned before, the satellite clocks (in this case δtsf,k) cannot be estimated from a
single receiver with unknown position and clock offset, so they must be provided to the
user. In a baseline or network processing setup, these clock products might indeed be
provided to the user, but for classical SPP or PPP this clock product is not provided. Only
a single clock offset per satellite is provided and, to ensure that the pseudo range code
observations are unbiased, they lined up with the code clocks (i.e. they include the satellite
code hardware delay). In particular the ionosphere-free code clock dtsP3,k is provided as
shown in section 4.4. The difference between these two clocks reduces to a differential
code-phase bias (DCPB) as follows:

δtSf,k − dtSP3,k = δSP3Lf,k = δSf,k − γ
γ−1d

S
P1,k + 1

γ−1d
S
P2,k (4.16)
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Since this DCPB is generally not provided to an SPP or PPP user, it cannot be removed
from the functional model. And, because it cannot be estimated separately from the
ambiguities, these parameters are lumped as follows:

ĀS
r,f = AS

r,f − c
λf
δSP3Lf,k (4.17)

Equation (4.17) reveals why ambiguity resolution is not possible for this observation model.
The estimated ambiguity parameters are biased by the differential hardware delays at the
side of the satellite, thereby negating their integer nature. For ambiguity resolution to
be possible the DCPB should be made available to the user, or the satellite phase clock
should be provided directly. This subject is further expanded upon in section 4.8 when the
dual-frequency code & phase model is treated and in section 3.5 where current approaches
to PPP ambiguity resolution are discussed.

An additional risk of lumping the ambiguity parameters with the hardware delays as in
eq. (4.17) is that it could also negate the constant nature of the estimated ambiguity
parameters since the differential hardware delays, although very stable, are not completely
constant. To prevent this last problem from occurring a slightly more complex method to
compute the precise clock offsets can be performed. By computing both the ionosphere-
free code and phase clock offsets, a PPP service provider can provide a user with the
satellite clock offsets estimated from the phase measurements but aligned with the code
measurements. This is achieved by adding the mean difference over the computation
period (e.g. one day) between both clock estimates to the phase clock before providing
this combination to the user. The result is that the user ends up with a clock product that
is unbiased with respect to the pseudo range observations while having a constant time
offset with respect to the phase measurements. A disadvantage of this method is that the
differences in the time behavior between the code and phase clocks are then introduced as
an additional error term in the OMC code observations. Given the relatively low precision
of the code observations this is assumed not to be critical as the code observations are
still dominated by the measurement noise and multipath. However, the more important
problem of the lost integer nature of the ambiguities is not resolved.

The single frequency phase-only model now simplifies to:

E
{[

∆φSr,f,k
]}

=
[
−eS∗r,k cum λfIm

]  ∆rr,k
δtr,f,k
ĀS
r,f

 (4.18)

Equation (4.18) still contains a rank deficiency between the receiver clock and the ambi-

guities, see eq. (4.1) with v∗ =
[

0∗3 λf −cu∗m
]
. This rank deficiency is solved with

another reparameterization of the unknowns. The ambiguity of the first (or a reference)
satellite is added to the receiver clock offset and subtracted from all other ambiguities:
δtr,f,k = δtr,f,k + λf

c
A1
r,f .

E
{[

∆φSr,f,k
]}

=
[
−eS∗r,k cum λf

0···0
Im−1

]  ∆rr,k
δtr,f,k
Ā1S
r,f

 (4.19)

where
0···0

Im−1 = [0m−1, Im−1]∗. It is clear that the user coordinates cannot be estimated
from a single epoch of phase-only data, because there are as many unknown ambiguity and
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clock terms as there are observations. Therefore, we will consider at least two epochs of
data in the following model. For now we will not consider any dynamic models for the time
varying unknown parameters, and in that case the described rank defects are repeated at
each epoch. For this reason, the reparameterization is also applied at each epoch leading
to the following multi-epoch single-frequency phase-only model:

E




∆φSr,f,1
∆φSr,f,2

...


 =


−eS∗r,1 cum λf

0···0
Im−1

−eS∗r,2 cum λf
0···0

Im−1
...

. . .
...





∆rr
δtr,f,1
δtr,f,2

...
Ā1S
r,f

 (4.20)

where vertical and diagonal dots have been used to indicate that similar entries would
continue if more epochs of data would have been included. All unknown parameters in
eq. (4.20) can now be estimated from the measurements and no additional rank defects are
present as long as there are enough satellites and measurement epochs (see table D.3 for the
redundancy). Equation (4.20), which was setup for single frequency phase only processing
without ionosphere delays, also closely resembles the positioning model based on the code-
plus-carrier combination (introduced in section 3.4.1.1) used as primary observable, since
the CPC observable eliminates the ionosphere delay and contains an ambiguity just like a
carrier phase observable.

4.6 Dual frequency phase-only

Just as in the dual frequency code-only case, a big advantage of the second frequency is
that the ionosphere can be estimated from the data. So the ionosphere delays are added to
the model as unknown parameters. Also, the clock offsets for both frequencies are included
to analyze their impact on the estimated parameters. This gives the following model for a
single epoch of data:

E
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∆φSr,L2,k
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=
[
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δtr,L1,k
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δtSL1,k
δtSL2,k


(4.21)

For the satellite clock biases a single user receiver is again dependent on a network from
a service provider. Ideally these should be both phase clocks, or one phase clock and the
differential phase bias. However, for classical SPP and PPP these clocks are not available,
instead the ionosphere-free code clock is provided. Therefore, we will again introduce the
ionosphere-free and ionosphere satellite clock offsets and, to solve a rank deficiency between
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the receiver clocks and the ionosphere delay we will also use the same combinations at the
receiver side:

δtSL3,k = + γ
γ−1δt

S
L1,k − 1

γ−1δt
S
L2,k

δtSLI,k = − 1
γ−1δt

S
L1,k + 1

γ−1δt
S
L2,k = 1

γ−1δ
S
L1L2,k

δtr,L3,k = + γ
γ−1δtr,L1,k − 1

γ−1δtr,L2,k

δtr,LI,k = − 1
γ−1δtr,L1,k + 1

γ−1δtr,L2,k = 1
γ−1δr,L1L2,k

(4.22)

The ionosphere clocks again reduce to differential hardware delays (in this case called
differential phase biases, DPB) as shown in eq. (4.22). These biases cannot be separated
from the ionosphere estimates and are therefore lumped in the parameter estimation:

ĪS

r,k = IS
r,k − c

γ−1δr,L1L2,k + c
γ−1δ

S
L1L2,k (4.23)

As mentioned before the precise clock products are traditionally aligned with the ionosphere-
free code observations. We can define the ionosphere-free phase clock with respect to the
code clock as follows:

δtsL3,k − dtsP3,k = δsP3L3,k = γ
γ−1δ

s
P1L1,k − 1

γ−1δ
s
P2L2,k (4.24)

which means that if we correct the observations for the provided satellite clocks we are left
with this differential hardware delay in the functional model:

E

{[
∆φSr,L1,k
∆φSr,L2,k

]}
=
[
−eS∗r,k cum −Im λ1Im −cIm
−eS∗r,k cum −γIm λ2Im −cIm

]


∆rr
δtr,L3,k

ĪS

r,k

AS
r,L1

AS
r,L2

δsP3L3,k


(4.25)

Equation (4.25) still contains several rank deficiencies. First we will solve the rank deficiency
between the ionosphere delay and the estimated ambiguity parameters. If we introduce the
ionosphere-free and ionosphere linear combinations of the ambiguities, it becomes clear
that the ionosphere ambiguity cannot be estimated separately from the ionosphere delays.
Therefore, these parameters are lumped as follows:

AS
r,L3 = + γ

γ−1λ1AS
r,L1 − 1

γ−1λ2AS
r,L2

AS
r,LI = − 1

γ−1λ1AS
r,L1 + 1

γ−1λ2AS
r,L2

¯̄I
S

r,k = ĪS

r,k −AS
r,LI = IS

r,k + 1
γ−1

(
λ1AS

r,L1 − λ2AS
r,L2

) (4.26)

These operations change the dual frequency phase-only model as follows:

E

{[
∆φSr,L1,k
∆φSr,L2,k

]}
=

[
−eS∗r,k cum −Im Im −cIm
−eS∗r,k cum −γIm Im −cIm

]


∆rr
δtr,L3,k

¯̄I
S

r,k

AS
r,L3

dsP3L3,k

 (4.27)
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The next rank deficiency that needs to be solved is between the ionosphere-free ambiguity
and the remaining satellite hardware delays. These parameters are lumped as follows:

ĀS
r,L3 = AS

r,L3 − dsP3L3,k (4.28)

Just as in the single-frequency model, the ambiguity parameters cannot be estimated sep-
arately from the other unknown parameters, which prevents ambiguity resolution. The
resulting model becomes:

E

{[
∆φSr,L1,k
∆φSr,L2,k

]}
=

[
−eS∗r,k cum −Im Im
−eS∗r,k cum −γIm Im

] 
∆rr
δtr,L3,k

¯̄I
S

r,k

ĀS
r,L3

 (4.29)

The final rank deficiency in the dual frequency phase-only model exists between the
ionosphere-free ambiguities and receiver clock offset. To solve this rank defect, we add
the first ambiguity to the clock offset and subtract it from all other ambiguities. The final
model for a single epoch then becomes:

E

{[
∆φSr,L1,k
∆φSr,L2,k

]}
=

 −eS∗r,k cum −Im
0···0

Im−1

−eS∗r,k cum −γIm
0···0

Im−1




∆rr
δtr,L3,k

¯̄I
S

r,k

ĀS−1
r,L3

 (4.30)

with δtr,L3,k = δtr,L3,k + 1
c
Ā1
r,L3. For the single frequency case we already showed that

the receiver coordinates cannot be estimated from a single epoch of phase-only data. This
result does not change by adding an extra frequency as can be seen from eq. (4.30). There-
fore, we must include at least one additional epoch to estimate all unknown parameters.
The minimal number of satellites depends on the number of measurement epochs and is
tabulated in table D.4. The multi-epoch model becomes:

E





∆φSr,L1,1
∆φSr,L2,1
∆φSr,L1,2
∆φSr,L2,2

...




=



−eS∗r,1 cum −Im
0···0

Im−1

−eS∗r,1 cum −γIm
0···0

Im−1

−eS∗r,2 cum −Im
0···0

Im−1

−eS∗r,2 cum −γIm
0···0

Im−1
...

. . . . . .
...





∆rr
δtr,L3,1
δtr,L3,2

...
¯̄I
S

r,1
¯̄I
S

r,2
...

ĀS−1
r,L3


(4.31)

4.7 Single frequency code & phase

Now we will consider a single frequency code and phase measurement model. Since the
ionosphere delay has a different sign for the code and phase measurements it can also be
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estimated from the combination of code and phase observations as follows:

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=
[
−eS∗r,k cum γfIm −cIm
−eS∗r,k cum −γfIm λfIm −cIm

]


∆rr
dtr,f,k
δtr,f,k
IS
r,k

AS
r,f

dtSf,k
δtSf,k


(4.32)

We again have a different satellite clock offset for each observable, which we would like
to remove from the observations. However, as mentioned earlier from the broadcast mes-
sage and precise products only the ionosphere code clock and differential code biases are
available. From these we can determine any of the pseudo range clocks but not the phase
clocks. If we define the satellite phase clock with respect to the code as follows:

δtSf,k = dtSf,k + δSPfLf,k (4.33)

we can remove the satellite code clock from all observables leaving only the differential
hardware delays δSPfLf,k = δSf,k − dSf,k. The satellite differential terms (or the phase clock
offset directly) could be estimated from a (network of) reference receiver(s), and as we will
show later, this is necessary for ambiguity resolution. However, at present this information
is not provided to PPP users. Therefore, this term cannot be estimated or corrected. By
simply applying the provided satellite clock offset and ignoring the differential term the
estimated ambiguities will be biased by the differential term:

ĀS
r,f = AS

r,f −
c

λf
(δSPfLf,k) (4.34)

This simplifies the single frequency code and phase model as follows:

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=
[
−eS∗r,k cum γfIm
−eS∗r,k cum −γfIm λfIm

]


∆rr
dtr,f,k
δtr,f,k
IS
r,k

ĀS
r,f

 (4.35)

The next rank defect that we solve is between the ambiguities and the receiver phase clock
offset, by adding the first ambiguity to the clock offset and subtracting it from all other
ambiguities:

δtr,f,k = δtr,f,k + λf
c

Ā1
r,f (4.36)

which gives:

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=
 −eS∗r,k cum γfIm
−eS∗r,k cum −γfIm λf

0···0
Im−1




∆rr
dtr,f,k
δtr,f,k
IS
r,k

Ā1S
r,f

 (4.37)
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At the side of the receiver there still is a rank deficiency between the clock offsets and
the ionosphere estimates. To solve this rank deficiency we reparameterize the receiver
clocks with an ionosphere-free and an ionosphere linear combination of the code and phase
clocks as follows (note that these linear combinations are not the same as those following
from dual frequency observations, but rather follow directly from the opposite sign of the
ionosphere in the code and phase observation equations):

dtr,IF,k = 1
2dtr,f,k + 1

2δtr,f,k
dtr,I,k = 1

2dtr,f,k −
1
2δtr,f,k = 1

2(dr,f,k − δr,f,k)
(4.38)

Note that both these clock parameters are now biased by the reference ambiguity. The
ionosphere combination of the clocks reduces to a biased differential hardware delay, which
is lumped with the ionosphere delay as it cannot be estimated separately.

ĪS

r,k = IS
r,k + c

2γf
(dr,f,k − δr,f,k) (4.39)

which gives:

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=

 −eS∗r,k cum γfIm
−eS∗r,k cum −γfIm λf

0···0
Im−1




∆rr
dtr,IF,k

ĪS

r,k

Ā1S
r,f

 (4.40)

Since an unknown ionosphere delay and ambiguity need to be estimated for each satellite,
the position cannot be solved from a single epoch of data. The multi-epoch model can be
formed as follows:

E





∆PS
r,f,1

∆φSr,f,1
∆PS

r,f,2
∆φSr,f,2

...




=



−eS∗r,k cum γfIm
−eS∗r,k cum −γfIm λf

0···0
Im−1

−eS∗r,k cum γfIm
−eS∗r,k cum −γfIm λf

0···0
Im−1

...
. . . . . .

...





∆rr
dtr,IF,1
dtr,IF,2

...

ĪS

r,1

ĪS

r,2
...

Ā1S
r,f


(4.41)

This model is very closely related to positioning with the code-plus-carrier linear combi-
nation of the observables introduced by Yunck (1996), where the ionosphere is eliminated
rather than estimated (previously discussed in section 3.4.1.1). An advantage of eq. (4.41)
is that a dynamic model can be introduced to strengthen the model. However, since this
single frequency code & phase model remains relatively weak, a more common approach
to single frequency PPP is to use an external ionosphere model to correct the code and
phase observations. In this case the number of unknown parameters decreases drastically,
thereby strengthening the model. If we determine the estimable parameters for this alter-
native model, we find that the lack of ionosphere parameters is not the only difference with
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the model of eq. (4.41). The parameterization of the satellite clocks remains identical to
eq. (4.33) and the satellite DCPB is again lumped with the ambiguities as in eq. (4.34).

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=
[
−eS∗r,k cum
−eS∗r,k cum λfIm

] 
∆rr
dtr,f,k
δtr,f,k
ĀS
r,f

 (4.42)

However, the receiver clock offsets must be treated differently. Since no receiver terms
can be lumped with the ionosphere delays, the receiver phase clock is instead defined as a
differential term with respect to the receiver code clock as follows:

δtr,f,k = dtr,f,k + δr,PfLf,k (4.43)

This differential hardware bias at the side of the receiver could also be combined with
each of the ambiguity parameters as we did previously for the satellite hardware delays.
However, especially for low-end receivers this differential delay might not be as constant over
time as the satellite delays. In this case biasing all ambiguity parameters by the receiver
differential hardware delay, means that they cannot be kept constant in the estimation
process. A better solution is to lump only the first ambiguity with the receiver hardware
delays, similar to the lumping of the receiver phase clock and the first ambiguity in the
phase-only models. The first ambiguity is also subtracted from all other ambiguities,
thereby forming the between satellite single difference ambiguities similar to the phase-only
model. These single difference ambiguities are then only biased by the satellite differential
hardware delays. This leads to the following single frequency code & phase model without
ionosphere estimation:

E

{[
∆PS

r,f,k

∆φSr,f,k

]}
=
 −eS∗r,k cum
−eS∗r,k cum cum λf

0···0
Im−1




∆rr
dtr,f,k
δ̄r,PfLf,k

Ā1S
r,f

 (4.44)

with:

δ̄r,PfLf,k = δr,PfLf,k + λf
c

Ā1
r,f (4.45)

Note: Ambiguity terms which are lumped with satellite (differential) hardware delays will
be indicated by Ā while ambiguity parameters that are lumped with receiver (differential)
delays will be indicated by δ̄. This difference in notation is used to remind the reader of
the fact that the latter might be far less stable over time. Contrary to the model with
ionosphere estimation of eq. (4.40), this model can be solved from a single observation
epoch, and, due to the much smaller number of unknown parameters, has a much shorter
convergence time. The minimal number of satellites is tabulated in table D.6. Variations on
this model apply ‘so-called’ carrier phase smoothing of the pseudo range observations, but
were shown to be suboptimal (Teunissen, 1991; Le and Teunissen, 2006; Le and Tiberius,
2006a). The model of eq. (4.44) can even compete with traditional dual frequency PPP for
short measurement duration and moderate ionosphere activity. An explanation is provided
by van der Marel and de Bakker (2012) who compare the precision of the ionosphere-free
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code observations that are formed in each of the approaches. In the dual frequency model
these rely on the ionosphere-free combination of eq. (3.41) which increases the multipath
and measurement noise by a factor three, while the single frequency model uses the external
ionosphere data to form the ionosphere-free observations. The precision then depends on
the quality of the ionosphere data, and especially for mid latitudes this often leads to pseudo
range observations of a higher quality then the dual frequency combination. Only when
the ambiguity estimates have sufficiently converged in the dual frequency model will the
phase observations start to drive the position solution and outperform the single frequency
model.

4.8 Dual frequency code & phase

In this section three dual-frequency code & phase models will be derived. For the first model
we will follow the same approach as each of the models derived so far, reparameterizing
the unknowns only when needed to solve the rank deficiencies in the model. In the second
model we will make one additional reparameterization of the ambiguity parameters that
is strictly speaking unnecessary but will be shown to be equivalent with the first model.
In the third model we will not use the knowledge that the ionosphere effect has equal
size and opposite sign on the pseudo range and carrier phase observations. Instead we will
estimate a separate ionosphere delay for the code and phase observations. This approach is
(obviously) suboptimal, but is studied non the less because it is identical to the elimination
of the ionosphere by forming the ionosphere-free code and phase observables which is the
traditional PPP approach. By deriving this model we will be able to show the differences
with the first and second model and comment on the corresponding disadvantages. In
eq. (4.46) the dual frequency code and phase model is presented with a different receiver
and satellite clock offset for each observable.

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im −cIm
−eS∗r,k cum γIm −cIm
−eS∗r,k cum −Im λ1Im −cIm
−eS∗r,k cum −γIm λ2Im −cIm





∆rr
dtr,P1,k
dtr,P2,k
δtr,L1,k
δtr,L2,k

IS
r,k

AS
r,L1

AS
r,L2

dtSP1,k
dtSP2,k
δtSL1,k
δtSL2,k


(4.46)
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As mentioned previously the ionosphere-free linear combination of the satellite code clocks
is generally provided by the broadcast products or the precise products from e.g. the IGS.
Therefore, we will reparameterize the satellite clocks as follows:

dtSP3,k = + γ
γ−1dt

S
P1,k − 1

γ−1dt
S
P2,k = dtSk + γ

γ−1d
S
P1,k − 1

γ−1d
S
P2,k

dtSPI,k = − 1
γ−1dt

S
P1,k + 1

γ−1dt
S
P2,k = dSPI,k = 1

γ−1d
S
P1P2,k

δtSL1,k = dtSP3,k + δSP3L1,k = dtSP3,k − γ
γ−1d

S
P1,k + 1

γ−1d
S
P2,k + δSL1,k

δtSL2,k = dtSP3,k + δSP3L2,k = dtSP3,k − γ
γ−1d

S
P1,k + 1

γ−1d
S
P2,k + δSL2,k

(4.47)

To solve the rank deficiency between the receiver clock offsets and the ionosphere delays,
similar combinations are introduced for the receiver clock offsets:

dtr,P3,k = + γ
γ−1dtr,P1,k − 1

γ−1dtr,P2,k = dtr,k + γ
γ−1dr,P1,k − 1

γ−1dr,P2,k

dtr,PI,k = − 1
γ−1dtr,P1,k + 1

γ−1dtr,P2,k = dr,PI,k = 1
γ−1dr,P1P2,k

δtr,L1,k = dtr,P3,k + δr,P3L1,k = dtr,P3,k − γ
γ−1dr,P1,k + 1

γ−1dr,P2,k + δr,L1,k

δtr,L2,k = dtr,P3,k + δr,P3L2,k = dtr,P3,k − γ
γ−1dr,P1,k + 1

γ−1dr,P2,k + δr,L2,k

(4.48)

With these redefined clock offsets the satellite clocks can now be removed from the model
by correcting both the code and phase observables. The model then becomes:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum cum Im −cIm
−eS∗r,k cum γcum γIm −γcIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm





∆rr
dtr,P3,k
dr,PI,k
δr,P3L1,k
δr,P3L2,k

IS
r,k

AS
r,L1

AS
r,L2

dSPI,k
δSP3L1,k
δSP3L2,k


(4.49)

From eq. (4.49) the rank deficiency between the ionosphere estimates, the ionosphere
code clocks, and differential code phase biases become clear. Just like we did in the dual
frequency code-only model we solve this rank deficiency by lumping the ionosphere code
clocks with the ionosphere delays as follows:

ĪS

r,k = IS
r,k + c

γ−1dr,P1P2,k − c
γ−1d

S
P1P2,k (4.50)

However, by applying this operation to the code and phase model we are also introducing
these differential code biases in the observation equations for the carrier phase. To com-
pensate for this effect the same differential code biases are also added to the unknown bias
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parameters in the phase observations but with opposite sign:

δ̄
S

L1,k = δSP3L1,k + 1
γ−1d

S
P1P2,k = δSL1,k − γ+1

γ−1d
S
P1,k + 2

γ−1d
S
P2,k

δ̄
S

L2,k = δSP3L2,k + γ
γ−1d

S
P1P2,k = δSL2,k − 2γ

γ−1d
S
P1,k + γ+1

γ−1d
S
P2,k

δ̄r,L1,k = δr,P3L1,k + 1
γ−1dr,P1P2,k = δr,L1,k − γ+1

γ−1dr,P1,k + 2
γ−1dr,P2,k

δ̄r,L2,k = δr,P3L2,k + γ
γ−1dr,P1P2,k = δr,L2,k − 2γ

γ−1dr,P1,k + γ+1
γ−1dr,P2,k

(4.51)

This changes the model as follows:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm





∆rr
dtr,P3,k
δ̄r,L1,k
δ̄r,L2,k

ĪS

r,k

AS
r,L1

AS
r,L2

δ̄
S

L1,k

δ̄
S

L2,k


(4.52)

The remaining rank deficiencies in eq. (4.52) exist between the differential hardware delays
and the ambiguity parameters. The satellite hardware delays cannot be estimated separately
from the ambiguities and are combined as follows:

ĀS
r,L1 = AS

r,L1 + c
λ1

(
γ+1
γ−1d

S
P1,k − 2

γ−1d
S
P2,k − δSL1,k

)
ĀS
r,L2 = AS

r,L2 + c
λ2

(
2γ
γ−1d

S
P1,k − γ+1

γ−1d
S
P2,k − δSL2,k

) (4.53)

The differential hardware delays that are lumped with the ambiguities in eq. (4.53) are what
prevent ambiguity resolution for dual frequency PPP. By applying the provided DCBs this
bias could be reduced to − c

λf
δSP3Lf,k but without any real benefit. Only if these last bias

terms are also provided for L1 and L2 is a user able to estimate the ambiguities without
additional biases, a prerequisite for ambiguity resolution. The initial phase at the side of
the satellite, here not explicitly shown, should then also be included in the phase bias terms
δSLf . The differential hardware biases at the side of the receiver are again lumped with
the first (or a reference) ambiguity as we did for the single-frequency code & phase model
without ionosphere estimation and similar to the lumping of the receiver phase clock and
the first ambiguity in the phase-only models.

¯̄δr,L1,k = δr,L1,k − γ+1
γ−1dr,P1,k + 2

γ−1dr,P2,k + λ1
c

Ā1
r,L1

¯̄δr,L2,k = δr,L2,k − 2γ
γ−1dr,P1,k + γ+1

γ−1dr,P2,k + λ2
c

Ā1
r,L2

Ā1S
r,L1 = ĀS

r,L1 − Ā1
r,L1

Ā1S
r,L2 = ĀS

r,L2 − Ā1
r,L2

(4.54)
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Equation (4.54) reveals that the ambiguities of the reference satellite are biased by an
additional receiver dependent term while the single difference ambiguities remain unbiased
by this term. This also means that a common bias in all satellite differential code phase
delays δSP3Lf,k pertaining to the same frequency f do not impact the estimation by the
user other then further biasing the undifferenced reference ambiguities. In practice this
common bias might depend on the method of solving the rank defect in the network
processing model used to estimates the satellite biases. A comparison of the PPP ambiguity
estimation process to that in a baseline or network setup reveals strong similarities and,
if the satellite bias terms mentioned previously are provided to the PPP user, can even
be considered equivalent. In baseline processing the double differenced ambiguities can
be fixed to integer values. This can either by achieved by forming the double differenced
observations, or by only parameterizing the ambiguities in double differenced form while
keeping the observations in undifferenced form (Odijk, 2002). The later approach is closest
to the PPP approach. Here the between satellite single differenced ambiguities are formed
in identical manner, and the (pseudo) double differencing is performed by applying the
differential phase hardware delays (including the initial phase) provided by a (network of)
reference receiver(s). The final model without ambiguity resolution becomes:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im λ1

0···0
Im−1

−eS∗r,k cum cum −γIm λ2
0···0

Im−1





∆rr
dtr,P3,k
¯̄δr,L1,k
¯̄δr,L2,k

ĪS

r,k

Ā1S
r,L1

Ā1S
r,L2


(4.55)

In this model there are no rank deficiencies and all parameters can be estimated from a
single epoch of data if enough satellites are tracked (see table D.7). However, remember
from the phase-only model that not all parameters can be estimated from one epoch of
phase measurements. It is then important to realize that the estimates from the first epoch
are only based on the code measurements and only later will the phase measurements start
to contribute to the estimation of the user position and other parameters.

Another approach to derive the dual frequency code and phase model, is to apply the
ionosphere-free and ionosphere combinations not only to the code biases, but to apply the
same combinations to the phase biases and the ambiguities as we did in the phase-only
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model. Equation (4.46) can then by written as:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum cum Im −cIm −cIm
−eS∗r,k cum γcum γIm −cIm −γcIm
−eS∗r,k cum cum −Im Im Im −cIm −cIm
−eS∗r,k cum γcum −γIm Im γIm −cIm −γcIm





∆rr
dtr,P3,k
dtr,PI,k
δtr,L3,k
δtr,LI,k

IS
r,k

AS
r,L3

AS
r,LI

dtSP3,k
dtSPI,k
δtSL3,k
δtSLI,k


(4.56)

with the following ionosphere and ionosphere-free combinations of the satellite and receiver
clocks as well as ambiguities:

dtSP3,k = + γ
γ−1dt

S
P1,k − 1

γ−1dt
S
P2,k

dtSPI,k = − 1
γ−1dt

S
P1,k + 1

γ−1dt
S
P2,k = dSPI,k = 1

γ−1d
S
P1P2,k

δtSL3,k = + γ
γ−1δt

S
L1,k − 1

γ−1δt
S
L2,k

δtSLI,k = − 1
γ−1δt

S
L1,k + 1

γ−1δt
S
L2,k = δSLI,k = 1

γ−1δ
S
L1L2,k

(4.57)

dtr,P3,k = + γ
γ−1dtr,P1,k − 1

γ−1dtr,P2,k

dtr,PI,k = − 1
γ−1dtr,P1,k + 1

γ−1dtr,P2,k = dr,PI,k = 1
γ−1dr,P1P2,k

δtr,L3,k = + γ
γ−1δtr,L1,k − 1

γ−1δtr,L2,k

δtr,LI,k = − 1
γ−1δtr,L1,k + 1

γ−1δtr,L2,k = δr,LI,k = 1
γ−1δr,L1L2,k

(4.58)

AS
r,L3 = + γ

γ−1λ1AS
r,L1 − 1

γ−1λ2AS
r,L2

AS
r,LI = − 1

γ−1λ1AS
r,L1 + 1

γ−1λ2AS
r,L2

(4.59)

To solve the rank deficiencies between the ionosphere and the hardware delays, we can
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then rearrange the code and phase biases as follows:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum cum Im −cIm −cIm
−eS∗r,k cum γcum γIm −cIm −γcIm
−eS∗r,k cum −cum cum cum −Im Im Im −cIm cIm −cIm −cIm
−eS∗r,k cum −γcum cum γcum −γIm Im γIm −cIm γcIm −cIm −γcIm





∆rr
dtr,P3,k
dr,PI,k
δr,P3L3,k
δr,PI+LI,k

IS
r,k

AS
r,L3

AS
r,LI

dtSP3,k
dSPI,k
δSP3L3,k
δSPI+LI,k


(4.60)

From eq. (4.60) the provided satellite clock parameter can be eliminated and the differential
code biases can be lumped with the ionosphere delays:

ĪS

r,k = IS
r,k + c

γ−1dr,P1P2,k − c
γ−1d

S
P1P2,k (4.61)

which leads to the following model:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum cum −Im Im Im −cIm −cIm
−eS∗r,k cum cum γcum −γIm Im γIm −cIm −γcIm





∆rr
dtr,P3,k
δr,P3L3,k
δr,PI+LI,k

ĪS

r,k

AS
r,L3

AS
r,LI

δSP3L3,k
δSPI+LI,k



(4.62)

There remains a rank deficiency between the ambiguities and the satellite hardware delays
which we solve as follows:

ĀS
r,L3 = AS

r,L3 − cδSP3L3,k
ĀS
r,LI = AS

r,LI − cδSPI+LI,k
(4.63)

Here one might observe that since the ionosphere combination of the satellite code hardware
delays dSPI,k are generally available the bias of the ionosphere ambiguity ĀS

r,LI could be
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reduced to only include differential phase delays. However, as long as the ionosphere
combination of the satellite phase hardware delays δSLI,k are not available this holds no
great advantage. The model now becomes:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum cum −Im Im Im
−eS∗r,k cum cum γcum −γIm Im γIm





∆rr
dtr,P3,k
δr,P3L3,k
δr,PI+LI,k

ĪS

r,k

ĀS
r,L3

ĀS
r,LI


(4.64)

And finally we combine the receiver hardware delays with the first ambiguity and form the
between satellite single difference ambiguity parameters as before:

¯̄δr,L3,k = δr,P3L3,k +1
c
Ā1
r,L3

¯̄δr,LI,k = δr,PI+LI,k +1
c
Ā1
r,LI

(4.65)

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum −Im cum

0···0
Im−1 cum

0···0
Im−1

−eS∗r,k cum −γIm cum
0···0

Im−1 γcum γ
0···0

Im−1





∆rr
dtr,P3,k

ĪS

r,k
¯̄δr,L3,k
Ā1S
r,L3

¯̄δr,LI,k
Ā1S
r,LI


(4.66)

The model we end up with in eq. (4.66) is equivalent with the model of eq. (4.55). The
only difference in the parameterization is that of the ambiguity parameters, but these can
be transformed from one to the other before or after the estimation process.

4.8.1 Two ionosphere parameters

In this section we present one more alternative for the dual frequency code and phase
model. The common approach to PPP is to form the ionosphere-free combinations of
both code and phase observations. In this approach the ionosphere is eliminated twice,
which is equivalent to estimating two ionosphere parameters per satellite. Namely one for
the code observations and one for the phase observations. This can be expressed in a (rank



4.8 Dual frequency code & phase 71

deficient) positioning model as follows:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im −cIm
−eS∗r,k cum γIm −cIm
−eS∗r,k cum −Im λ1Im −cIm
−eS∗r,k cum −γIm λ2Im −cIm





∆rr
dtr,P1,k
dtr,P2,k
δtr,L1,k
δtr,L2,k
IS
r,P,k

IS
r,L,k

AS
r,L1

AS
r,L2

dtSP1,k
dtSP2,k
δtSL1,k
δtSL2,k


(4.67)

Equation (4.67) has significantly more unknown parameters than the previously treated
models, and more parameter lumping will be needed to obtain a design matrix of full rank.
We start with the ionosphere parameters and the differential receiver and satellite hardware
delays. Since the ionosphere parameters for the code and phase observables are not linked
we can lump the differential hardware delays as we did in the code-only and the phase-only
models:

ĪS

r,P,k = IS
r,P,k + c

γ−1dr,P1P2,k − c
γ−1d

S
P1P2,k

ĪS

r,L,k = IS
r,L,k − c

γ−1δr,L1L2,k + c
γ−1δ

S
L1L2,k

(4.68)

In stead of a receiver and satellite clock offset per observable we are now only left with the
ionosphere-free clock offsets for both code and phase at both the receiver and satellite:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im −cIm
−eS∗r,k cum γIm −cIm
−eS∗r,k cum −Im λ1Im −cIm
−eS∗r,k cum −γIm λ2Im −cIm





∆rr
dtr,P3,k
δtr,L3,k

ĪS

r,P,k

ĪS

r,L,k

AS
r,L1

AS
r,L2

dtSP3,k
δtSL3,k



(4.69)
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Next we express the ionosphere-free phase clock at receiver and satellite with respect to the
ionosphere-free code clock. These reduce to differential code phase biases for the receiver
δr,P3L3,k and satellites δSP3L3,k as before. The provided ionosphere-free code satellite clock
offset can then be eliminated from the observations as follows:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm





∆rr
dtr,P3,k
δr,P3L3,k

ĪS

r,P,k

ĪS

r,L,k

AS
r,L1

AS
r,L2

δSP3L3,k


(4.70)

To solve the rank deficiencies between the ionosphere and the ambiguities we introduce the
ionosphere and ionosphere-free combinations of the ambiguities as we did in the previous
model and in the phase-only model:

AS
r,L3 = + γ

γ−1λ1AS
r,L1 − 1

γ−1λ2AS
r,L2

AS
r,LI = − 1

γ−1λ1AS
r,L1 + 1

γ−1λ2AS
r,L2

(4.71)

This changes the model as follows:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im Im Im −cIm
−eS∗r,k cum cum −γIm Im γIm −cIm





∆rr
dtr,P3,k
δr,P3L3,k

ĪS

r,P,k

ĪS

r,L,k

AS
r,L3

AS
r,LI

δSP3L3,k


(4.72)

A further lumping of the observations is needed to solve the rank deficiencies between
the ambiguities and the satellite hardware delays and between the ionosphere and the
ambiguities:

ĀS
r,L3 = AS

r,L3 − δSP3L3,k
¯̄I
S

r,L,k = ĪS

r,L,k −AS
r,LI

(4.73)
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


∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im Im
−eS∗r,k cum cum −γIm Im





∆rr
dtr,P3,k
δr,P3L3,k

ĪS

r,P,k

¯̄I
S

r,L,k

ĀS
r,L3


(4.74)
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The final rank deficiency in eq. (4.74) exists between the receiver differential hardware
delay and the ambiguities. Therefore, we again add the first ambiguity to the hardware
delay and subtract it from all other ambiguities:

δ̄r,P3L3,k = δr,P3L3,k + 1
c
Ā1
r,L3 (4.75)

The final model then becomes:

E




∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum Im
−eS∗r,k cum γIm
−eS∗r,k cum cum −Im

0···0
Im−1

−eS∗r,k cum cum −γIm
0···0

Im−1





∆rr
dtr,P3,k
δ̄r,P3L3,k

ĪS

r,P,k

¯̄I
S

r,L,k

Ā1S
r,L3


(4.76)

Close comparison of the vector of unknown parameters in eq. (4.66) and eq. (4.76) reveals
that 1 differential code phase bias and m− 1 (constant) ambiguity parameters have been
replaced by m additional ionosphere parameters, while all other parameters are identical.
This clearly makes the model of eq. (4.66) a stronger model if multiple epochs are con-
sidered, which will also improve the precision of the estimated parameters they have in
common including the user position. From this we can conclude that the often used PPP
model based on the ionosphere-free combinations of the code and phase observables is not
optimal.

4.9 Dual frequency code, phase & ionosphere

As mentioned before, the single-frequency PPP model can outperform the dual-frequency
model for short measurement duration if the former uses additional ionosphere information
from an external ionosphere model such as a Globel Ionosphere Map (van der Marel and
de Bakker, 2012). Since estimation should always improve or at least remain equal if more
information is added to the model, it is clear that dual-frequency PPP can also benefit
from using the additional ionosphere information. For this reason we will introduce the
dual-frequency code and phase model with external ionosphere data. As will become clear
the unknown ionosphere delay parameters can no longer be lumped with other unknown
parameters in this model. Therefore, we will now start with the model of eq. (4.49), i.e.
before the ionosphere is reparameterized, and add an ionosphere (pseudo) observable for
each satellite that comes from the ionosphere map. Additionally, since we can no longer
lump the satellite DCBs with the ionosphere parameters, they will need to be estimated or
corrected. Thus we will also include the DCBs, that can be seen as part of our external
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ionosphere data, as pseudo observables to our model:
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

∆PS
r,P1,k

∆PS
r,P2,k

∆φSr,L1,k
∆φSr,L2,k

ĨS

r,k

d̃
S

PI,k




=



−eS∗r,k cum cum Im −cIm
−eS∗r,k cum γcum γIm −γcIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm

Im
Im





∆rr
dtr,P3,k
dr,PI,k
δr,P3L1,k
δr,P3L2,k

IS
r,k

AS
r,L1

AS
r,L2

dSPI,k
δSP3L1,k
δSP3L2,k


(4.77)

The precision of the pseudo observations depends on the quality of the GIM. To show
the equivalence of the presented model with pseudo observables to a model where the
receiver observables are corrected with the ionosphere and DCB information we consider
the following transformation matrix:

DI =



1 −1 c
1 −γ γc

1 1
1 γ

1
1


⊗ Im (4.78)

When the observation vector is premultiplied with DI , we obtain corrected receiver ob-
servables (code and phase) and also keep the additional (pseudo) observables for the GIM.
Note that the transformation also impacts the covariance matrix of the observables in-
troducing additional variance and correlation on the corrected receiver observables. Since
the transformation matrix is of full rank and invertible, we do not loose any information
content in the transformation:

∆PS

r,P1,k

∆PS

r,P2,k

∆φSr,L1,k

∆φSr,L2,k

ĨS

r,k

d̃
S

PI,k


= DI



∆PS
r,P1,k

∆PS
r,P2,k

∆φSr,L1,k
∆φSr,L2,k

ĨS

r,k

d̃
S

PI,k


=



∆PS
r,P1,k − ĨS

r,k + cd̃
S

PI,k

∆PS
r,P2,k − γĨS

r,k + γcd̃
S

PI,k

∆φSr,L1,k + ĨS

r,k

∆φSr,L2,k + γĨS

r,k

ĨS

r,k

d̃
S

PI,k


(4.79)
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To form the positioning model for the corrected observations of eq. (4.79) we premulti-
ply the design matrix with the same transformation matrix. Since the transformation is
invertible the resulting model is equivalent to the model of eq. (4.77) where the receiver
observables were not corrected. The unknown parameters are kept identical and neither
the redundancy nor the rank of the design matrix are impacted:
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



∆PS

r,P1,k

∆PS

r,P2,k

∆φSr,L1,k

∆φSr,L2,k

ĨS

r,k

d̃
S

PI,k




=



−eS∗r,k cum cum
−eS∗r,k cum γcum
−eS∗r,k cum cum λ1Im −cIm
−eS∗r,k cum cum λ2Im −cIm

Im
Im





∆rr
dtr,P3,k
dtr,PI,k
δr,P3L1,k
δr,P3L2,k

IS
r,k

AS
r,L1

AS
r,L2

dtSPI,k
δSP3L1,k
δSP3L2,k



(4.80)

After this transformation the m unknown ionosphere delays only appear in the m obser-
vation equations of the ionosphere (pseudo) observations. Similarly the m unknown DCB
parameters only appear in the m observation equations for the DCB (pseudo) observa-
tions. Therefore, the ionosphere and DCB (pseudo) observables are free variates in the
transformed model. Free variates do not contribute to the solution of the remaining param-
eters in the adjustment and may therefore be omitted from the model (Teunissen, 2000a):
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


∆PS

r,P1,k

∆PS

r,P2,k

∆φSr,L1,k

∆φSr,L2,k




=


−eS∗r,k cum cum
−eS∗r,k cum γcum
−eS∗r,k cum cum λ1Im −cIm
−eS∗r,k cum cum λ2Im −cIm





∆rr
dtr,P3,k
dtr,PI,k
δr,P3L1,k
δr,P3L2,k
AS
r,L1

AS
r,L2

δSP3L1,k
δSP3L2,k



(4.81)
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If no dynamic model is available for the ionosphere delays, using the reduced model of
eq. (4.81) has the advantage that since it is not explicitly present in the state vector,
we can simply ignore it in the time update of a Kalman filter. If we do want to use a
dynamic model for the ionosphere delay we should use the complete model of eq. (4.77)
instead. Remaining rank deficiencies in eq. (4.81) exist between the ambiguities and the
hardware delays. These are solved similar to the previous models: the satellite hardware
delays are lumped with the ambiguity terms and the ambiguity of the first (or reference)
satellite is lumped with the receiver differential hardware delay and subtracted from all
other ambiguities:

E




∆PS

r,P1,k

∆PS

r,P2,k

∆φSr,L1,k

∆φSr,L2,k




=


−eS∗r,k cum cum
−eS∗r,k cum γcum
−eS∗r,k cum cum λ1

0···0
Im−1

−eS∗r,k cum cum λ2
0···0

Im−1





∆rr
dtr,P3,k
dr,PI,k
δ̄r,P3L1,k
δ̄r,P3L2,k
Ā1S
r,L1

Ā1S
r,L2


(4.82)

The model of eq. (4.82) is of full rank, and all unknown parameters can be estimated from
a single epoch of data. The redundancy and the minimal number of satellites are presented
in table D.8 for different numbers of epochs. An inspection of the table shows a high
redundancy of this model compared to the previously presented models.

One should note that the ionosphere (pseudo) observables from a GIM are generally strongly
correlated in time. Consequently the corrected observables are polluted by these time
correlated errors. This type of time correlated error can be dealt with via state vector
augmentation if it can be modeled as a Gauss-Markov process, similarly to the approach
suggested in section 6.3 for the pseudo range multipath errors. In this case we reintroduce a
(residual) ionosphere parameter per satellite to the model of eq. (4.81). Or we can directly
take the time correlation into account when introducing the ionosphere pseudo observables
as we will do in the next section.

4.9.1 Residual ionosphere estimation

As mentioned, errors in a Global Ionosphere Map, are often strongly correlated in time. To
see how we can deal with this time correlation we go back to the model of eq. (4.49) one
more time. We will again introduce ionosphere pseudo observations to the model but now
taking into account their time correlation. However, to keep the number of parameters to
a managable number we first combine the satellite DCBs with the ionosphere parameters
and make the necessary adaptions to the satellite differential phase delays:

ĪS

r,k = IS
r,k − cdSPI,k

δ̄
S

L1,k = δSP3L1,k + dSPI,k = δSL1,k − γ+1
γ−1d

S
P1,k + 2

γ−1d
S
P2,k

δ̄
S

L2,k = δSP3L2,k + dSPI,k = δSL2,k − 2γ
γ−1d

S
P1,k + γ+1

γ−1d
S
P2,k

(4.83)
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This reduces the model to:
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
∆PS

r,P1,k
∆PS

r,P2,k
∆φSr,L1,k
∆φSr,L2,k


 =


−eS∗r,k cum cum Im
−eS∗r,k cum γcum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm





∆rr
dtr,P3,k
dr,PI,k
δr,P3L1,k
δr,P3L2,k

ĪS

r,k

AS
r,L1

AS
r,L2

δ̄
S

L1,k

δ̄
S

L2,k



(4.84)

Similarly we combine the ionosphere pseudo observables from the GIM with the satellite
DCBs from the same:

˜̃I
S

r,k = ĨS

r,k − cd̃
S

PI,k (4.85)

For this combined pseudo observable we assume the following AR(1) process:

˜̃I
S

r,k = −a1
˜̃I
S

r,k−1 + εIk (4.86)

If we now add the additional observable to the model we need to extend the state vector
with an additional term per satellite which represents the time correlated error in the
ionosphere model:
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
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˜̃I
S

r,k




=


−eS∗r,k cum cum Im
−eS∗r,k cum γcum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm

Im −Im





∆rr
dtr,P3,k
dr,PI,k
δr,P3L1,k
δr,P3L2,k

ĪS

r,k

δIS
r,k
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r,L1
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r,L2

δ̄
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
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(4.87)

In this model the ionosphere pseudo observable does not have any observation noise (the
stochastic properties are completely captured by the time correlated error). Like before we
can pre-multiply the observations and design matrix with an invertible transformation matrix
to reach the following model with corrected pseudo range and carrier phase observables.
Note that now the variance matrix of the receiver observations does not change since the
pseudo observables have no observation noise:
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˜̃I
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


=


−eS∗r,k cum cum Im
−eS∗r,k cum γcum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm

Im −Im




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r,k
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
(4.88)

In this model the ionosphere pseudo observable has again become a free variate which we
can leave out of the model:
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
=


−eS∗r,k cum cum Im
−eS∗r,k cum γcum γIm
−eS∗r,k cum cum −Im λ1Im −cIm
−eS∗r,k cum cum −γIm λ2Im −cIm




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(4.89)



4.10 Summary and conclusions 79

The remaining rank deficiencies between the ambiguities and the hardware delays are solved
as before (the satellite hardware delays are lumped with the ambiguity terms and the
ambiguity of the reference satellite is lumped with the receiver differential hardware delay
and subtracted from all other ambiguities):

E
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(4.90)

The final model for the ionosphere corrected observations at first glance seems quite similar
to the model we found in eq. (4.55) where we did not use an external ionosphere model.
However, there are some important differences. Firstly, we now have to estimate the receiver
DCB, as we cannot lump it with the ionosphere parameters. Secondly, the estimated
differential code phase biases are subtly different as they are not biased by the ionosphere-
free combination of the receiver code clock offsets. And finally, in eq. (4.90) rather than
estimating the entire ionosphere delay we only estimate a residual ionosphere term. This
can be seen as the estimation of the error in the GIM model. The advantage of estimating
a residual term rather than the complete ionosphere delay is that we have an expectation
of zero for these parameters and we could add a pseudo observation for each additional
unknown, thereby not impacting the redundancy of eq. (4.81), and they can be constrained
with a much stronger dynamic model.

4.10 Summary and conclusions

When enough satellites and measurement epochs are available, the estimated receiver
coordinates are not affected by any rank efficiencies in the SPP and PPP models because
the unit direction vectors from the receiver to the satellites are different for each satellite.
This means that if no unmodeled errors occur, the position can be estimated without
biases. If a zenith troposphere delay parameter is included in the estimation it will also
remain unbiased, and in this respect the zenith troposphere parameter can be viewed as a
fourth coordinate for the estimation process.

The GNSS measurement model contains a rank deficiency between the clock offsets and
the hardware delays. As a result the estimated clocks are always biased by the hardware
delays. The specific combination of hardware delay terms depends on the used observations
and positioning model. It is therefore often more appropriate to consider the clock offset
that pertains to a certain observable rather than the unbiased clock offset of a satellite or
receiver.
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From single frequency code-only or phase-only observations the ionosphere cannot be esti-
mated, which means that single frequency users will have to rely on an external ionosphere
model to correct the observations for the ionosphere delay. The ionosphere can be esti-
mated from dual frequency observations or single frequency code and phase observations.
However, the estimates will be biased by differential hardware delays.

More generally, the analysis in this chapter revealed that, if the satellite clock offsets are
not provided for each observable some of the estimated parameters will become biased
by the satellite differential hardware delays. This does not always negatively impact the
user positioning, e.g. when no differential hardware delays are available and the ionosphere
delays are estimated without any additional constraints, the ionosphere estimates will be
biased and the estimated receiver clock offset will pertain to the ionosphere-free linear
combination, but without impacting the receiver position estimate.

However, if unbiased estimates are needed e.g. when we intend to strengthen the position-
ing model by means of external ionosphere information, the differential hardware delays (in
this case the DCBs) are required. Additionally the receiver DCB needs to be estimated as
it can no longer be lumped with the ionosphere delay parameters. To strengthen the model
in this way the ionosphere information can be added to the model in the form of pseudo
observables, or the receiver observables can be corrected with the ionosphere information,
both approaches leading to the same model. If the ionosphere model is not considered
accurate enough a differential term can be estimated without impacting the redundancy, if
the differential term has an expectation of zero.

Another case where unbiased estimates are needed is for ambiguity resolution. Thus for
ambiguity resolution to be possible for PPP, it is required that the satellite clock offsets are
provided for each observable and more specific the phase observations. These observable
specific satellite clock offsets do not all have to be provided in full, if at least one clock
offset is provided the other clock parameters can be expressed in the form of differential
delays. An advantage of providing some of the clock offsets as differential delays is that
these delays change much slower over time, which means that they can be provided to
the user with a lower update rate. The observable specific receiver offsets can also be
expressed as one full clock and a number of differential delays as shown in this chapter.
The advantage in this case is that due to their slower changes over time, a more strict
dynamic model can be used to strengthen the positioning model.

From the phase-only models, only between satellite single differenced ambiguities can be
estimated without being biased by receiver dependent terms, since a rank deficiency exists
between the ambiguities and the receiver clock offsets. In the dual frequency code and phase
model these rank deficiencies instead exist between the ambiguities and the differential
hardware delays, which means that also in this model only single differenced ambiguities
can be estimated without being biased by receiver dependent terms.

The phase-only models showed that the presence of the unknown phase ambiguities prevent
the estimation of the receiver position from a single epoch of data. For code and phase
(Kalman) filter implementation, this means that, if the ambiguities cannot be resolved from
a single epoch, the position coordinates and other unknown parameters are first estimated
from the code observations with the corresponding uncertainty. Only after the ambiguities
have been estimated with enough precision will the phase measurements start to contribute
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to the estimation of the other parameters.



Satellite Orbit and Clock Data for PPP 5
GNSS single point positioning techniques rely on satellite positions and clock offsets which
are estimated by a global network of GNSS receivers. Therefore, the positioning accuracy
that can be achieved by single point positioning is directly dependent on the accuracy
of the estimated satellite positions and clock offsets. This chapter will give an overview
of currently available satellite products in section 5.1 and develpoments in section 5.2,
before providing a quality analysis of several PPP products that are available in real-time in
section 5.3. In section 5.4, the results are compared to those of other authors, and finally
section 5.5 draws conclusions on the findings.

5.1 Sources of satellite orbit and clock products

5.1.1 Broadcast ephemerides

Basic GPS positioning relies on the satellite orbits and clock offsets determined by the
GPS Control Segment which currently includes 16 monitoring stations worldwide (gps.gov,
2015). The accuracy of the broadcast ephemeris is routinely monitored by the IGS analysis
centers and shows a clear improvement over the years. Currently the broadcast orbits have
a root-mean-square (rms) error of 1m and the satellite clock offsets have an rms error
of 1.5m and a standard deviation of 0.75m, computed by removing a constant bias per
satellite (IGS, 2015b,a). This is an accuracy improvement of a factor larger than 10 w.r.t.
the accuracy when selective availability was still in place and another improvement of a
factor of 2-3 since selective availability was switched off at 04:00 UTC on May 2, 2000.
However, the current accuracy is still not high enough for the purpose of PPP, which means
that we need another source of satellite orbit and clock products. Several initiatives have
been launched over the last decades to provide GNSS users with satellite orbits and clocks
of higher accuracy.

It should be noted that the GPS broadcast products are provided in a recent version of
the World Geodetic System 1984 reference frame (currently WGS84 G1150) while the
other products are provided in a recent version of the International Terrestrial Reference
Frame (currently ITRF2008). Differences between WGS84 and ITRF are at centimeter level
worldwide (NIMA, 2004) and no official (Helmert) transformation parameters are available.
In the following we will assume that the WGS84 coordinates are expressed in ITRF with
an accuracy of a few centimeters. However, since the errors in the broadcast products are
much larger, this should not impact the results provided in section 5.3, where we assess
the accuracy of the broadcast products by comparing them to the precise IGS products (in
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ITRF2008).

The GPS broadcast satellite orbit and clock information is transmitted to the user by
the GPS satellites as a set of parameters in the navigation message. These parameters
enable a user to determine the satellite positions and clock offsets via the closed form
formulae defined in the user algorithm for ephemeris determination in the GPS interface
specification (IS-GPS-200D, 2004). Several PPP products (introduced below) are provided
as corrections to the broadcast ephemeris solely to decrease the amount of data that needs
to be transmitted to the user. A user can simply evaluate the closed form formulae and
apply the corrections to the outcome. This is a simple deterministic procedure and does not
impact the stochastic properties of the PPP products. The Issue Of Data of the Ephemeris
(IODE) identifies the ephemeris that should be used for each of the corrections.

The accuracy of the GLONASS broadcast products has traditionally been worse than the
GPS broadcast products by a factor of 7-8 (Gibbons, 2006). This difference was due
to several factors including less stable clocks and orbits of the GLONASS satellites, and
a ground monitoring segment limited to Russian territory (Gibbons, 2008). Since then
a number of Antarctic research stations have been added to the GLONASS control and
monitoring segment (Cameron, 2010). In 2008 Wanninger (2008) reported that the 3-D
errors in GLONASS broadcast orbits were about three times larger than the GPS errors.
Heng et al. (2011b) report that this gap has been closed as the GLONASS broadcast
products have achieved sub-meter orbital accuracy over the years 2009 to 2011. However,
the less stable clocks of the GLONASS satellites further decrease the accuracy for single
point positioning (for differential positioning this is less of a problem as the satellite clocks
can be eliminated).

Unlike GPS, GLONASS positioning does not use closed form formulae to determine the
satellite positions from the ephemeris. Instead, GLONASS satellites broadcast their coor-
dinates and velocity for a reference time, which is updated every 30 minutes. To determine
the position at another time instant, within a 15 minute interval from the reference time,
the provided position has to be integrated numerically. This leads to a degradation in
the orbit accuracy of some 13cm (Heng et al., 2011b). The GLONASS Interface Control
Document (GLONASS, 2008) suggests the use of 4th order Runge-Kutta integration but
the integration step size is not prescribed, and can be chosen by the user. Consequently,
the determined satellite positions and clock offsets depend to some extend on the chosen
step size for the numerical integration. This last point is also important for GLONASS
precise products, if they are provided w.r.t. the broadcast products. The user should then
apply the same integration step size as the service provider.

Chen et al. (2013) investigated the accuracy of the BeiDou broadcast ephemerides and
found sub-meter accuracy for the satellites in an Inclined Geosynchronous Orbit (IGSO) or
Medium Earth Orbit (MEO) but a 2 m accuracy for the Geostationary (GEO) satellites.
Montenbruck et al. (2015) performed a simultaneous analysis of the broadcast products of
all available system and found 0.7 m accuracy for GPS, about 1.5 m for Galileo and BeiDou
and 1.9 m for GLONASS. QZSS was also included (one satellite only) and found to be
accurate to 0.6 m, all over a 12-month period in 2013/2014.
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5.1.2 Satellite Based Augmentation System corrections

In 1994 the Federal Aviation Administration (FAA) and the Department of Transportation
(DOT) of the United States started the development of WAAS to provide improved ac-
curacy, integrity, availability, and continuity for the use of GPS during all phases of flight
in civil aviation. WAAS is a Satellite Based Augmentation Systems (SBAS) that provides
additional messages transmitted by geostationary satellites to GPS users in a specific target
region (in this case North America). These messages contain corrections on main error
sources of GPS, and are computed from a network of monitoring stations located in and
around the target region.

In 2003 the WAAS signal became available for aviation across large parts of continental
North America, and in 2009 the first precision approaches were performed relying on WAAS
augmented GPS positioning. Following in the footsteps of WAAS, the Japanese Multi-
functional Satellite Augmentation System (MSAS) and the EGNOS have also become
operational, and plans are in place for an Indian GPS Aided Geo Augmented Navigation
system (GAGAN) and a Chinese Satellite Navigation Augmentation System (SNAS).

Since December 2001, Delft University of Technology is operating an EGNOS monitor
station, which is part of the EGNOS Data Collection Network (EDCN). The EDCN was
established by Eurocontrol to continuously monitor and independently assess the perfor-
mance of the EGNOS system. Just like WAAS, the EGNOS system provides corrections
on the satellite positions and clock offsets as well as corrections for the atmosphere for
user in a specific service area, in this case the European Civil Aviation Conference (ECAC)
Area. While the EGNOS network does track GLONASS satellites, corrections are currently
provided without any commitment (GSA, 2014). However, future plans are for EGNOS to
support multiple GNSS.

Current SBAS systems primarily focus on position integrity rather than position precision,
but SBAS corrections can be used in a PPP-like processing strategy, see e.g. (u-blox,
2015). An advantage of this approach is that the corrections can be retrieved free of
charge and without the need for an additional (internet) communication link. However,
the correction precision does not match that of dedicated PPP products.

5.1.3 Precise satellite and clock products from the IGS

Precise satellite ephemeris and satellite clock information, needed for PPP, have been
available from the International GNSS Service (then called International GPS Service) since
1992 even 2 years before its official start (Beutler et al., 1999). This orbit information is
determined in post-processing and at first was only available around two weeks after GPS
data acquisition. As a result, PPP was mainly of interest to the scientific and research
community for applications in which latency was not important. Since then much effort has
been put into decreasing the latency of precise IGS orbit and clock information, first leading
to the rapid orbits with about one day of latency and later to the ultra-rapid orbits with 3-9
hours of latency including a predicted part which can be used in real-time. Recently high-
accuracy ephemeris data have also become available in real-time from several commercial
services (introduced below), so that now PPP methods can be used for a wide range
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of real-time applications such as offshore positioning, aircraft navigation, high-precision
farming.

Table 5.1 displays the currently available IGS satellite orbit and clock products, their accu-
racy and latency compared to the GPS broadcast ephemeris (IGS, 2015b). This table was
downloaded from the IGS website in 2011 and has remained unchanged to 2015, but it is
likely to change as a result of the Multi-GNSS Experiment and IGS Real-time Service. For
post processing applications, where latency is not an issue, the rapid or even final products
can be used. These have accuracy at centimeter level for both satellite positions and clocks,
and, using proper PPP software, this results in mm position accuracy for static receivers.
This makes PPP a viable and user friendly alternative to network processing. A number
of web-based processing services are available including the Automatic Precise Position-
ing Service from JPL (Muellerschoen et al., 2000b), CSRS-PPP from Natural Resources
Canada (Mireault et al., 2008), GPS Analysis and Positioning Software from University of
New Brunswick (Leandro et al., 2007), magicGNSS from GMV (Ṕıriz et al., 2008) and
Trimble RTX-PP (Doucet et al., 2012). However, for (near) real-time applications (where
our main interests lie), only the predicted half of the ultra-rapid products qualify. The
ultra-rapid products, released four times per day, contain 48 hours worth of satellite orbits
and clock offsets: the first half computed from observations and the second half containing
predicted orbits and clock offsets. When the products first become available the measured
half is already 3 hours old and the satellite positions at the current epoch can only be
computed from the predicted half.

An inspection of the IGS ultra-rapid products (IGU) in table 5.1 reveals that even the
predicted half of the orbits has a high accuracy of about 5 centimeters. However, the
predicted half of the IGU satellite clocks have a root mean square (rms) of about 90
centimeters. The satellite clock products only reach a comparable high accuracy when
based on post-processing of the measurements (i.e. for the observed half of the ultra-rapid
products). It is obvious that the accuracy of the satellite clocks are the weak point of
the predicted part of the ultra-rapid products. The reason for this difference in accuracy
between the predicted clocks and orbits is that the physical process of the satellite oscillators
is less well behaved than the very steady movement of the satellites in their orbits. For
real-time PPP applications this remains a weak point of the presented IGS products.

One solution to this problem is to use the predicted IGS orbits and compute the satellite
clock separately from one or more reference stations. This clock solution then needs to be
provided to the PPP user together with the satellite orbits. This solution is the underlying
principle of the RETICLE system (Hauschild and Montenbruck, 2008). Corrections from the
RETICLE system are also included in the accuracy analysis in section 5.3. A more general
solution is to instead rely on corrections from a global network with smaller latencies, which
are available from several commercial services and is currently developed as IGS Real-time
Service.

The very high accuracy of the final products, which has been the subject of intensive studies
performed by the IGS based on independent laser ranging, and repeatability of the products
over long time intervals, makes it possible to assess the accuracy of all (near) real-time
products by comparison to the final products. This will be the approach in section 5.3.

(IGS, 2015b) also lists precise orbit and clock data for the GLONASS satellites, with a
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Table 5.1: IGS Products, downloaded in 2011 and unchanged to 2015 (IGS, 2015b)
IGS Product Table

GPS Satellite
Ephemerides & Satellite

Clocks

Accuracy
(rms)

Precision (σ)

Latency Updates Sample
Interval

Broadcast orbits ∼100 cm real time - daily
clocks rms ∼150 cm

σ ∼75 cm
Ultra-Rapid
(predicted
half)

orbits ∼5 cm real time at 03, 09,
15, 21 UTC

15 min

clocks rms ∼90 cm
σ ∼45 cm

Ultra-Rapid
(observed
half)

orbits ∼3 cm 3 - 9 hours at 03, 09,
15, 21 UTC

15 min

clocks rms ∼4.5 cm
σ ∼1.5 cm

Rapid orbits ∼2.5 cm 17 - 41 hours at 17 UTC
daily

15 min

clocks rms ∼2.3 cm
σ ∼0.75 cm

5 min

Final orbits ∼2.5 cm 12 - 18 days every
Thursday

15 min

clocks rms ∼2.3 cm
σ ∼0.60 cm

30s

Note 1: Orbit accuracies are 1D mean rms values over the three XYZ geocentric
components. IGS accuracy limits, except for predicted orbits, are based on
comparisons with independent laser ranging results and discontinuities between
consecutive days. The precision is better.
Note 2: The accuracy (neglecting any contributions from internal instrumental
delays, which must be calibrated separately) of all clocks is expressed relative to the
IGS timescale, which is linearly aligned to GPS time in one-day segments. The
standard deviation (σ) values are computed by removing a separate bias for each
satellite and station clock, whereas this is not done for the rms values.
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reported accuracy of 3 cm. However, there are several limitations:

1. For GLONASS, only IGS final products are available with a latency of 12 to 18 days
and a sample interval is 15min. At present only two IGS analysis centers compute (ul-
tra)rapid products CODE and ESA/ESOC, which is not enough for an IGS combined
product (Springer and Dach, 2010). Furthermore, only the latter contains satellite
clock data.

2. There are only separate GPS and GLONASS products from the IGS, no GPS +
GLONASS combined products are available. This means that these products might
not be fully consistent. CODE and ESA/ESOC do provide combined products
(Springer and Dach, 2010).

3. Torre and Caporali (2015) compared precise products from different analysis centers
for the available GNSS and report that, while results are very consistent for GPS,
precise products for other GNSS still show significant inconsistencies between analysis
centers.

5.1.4 Commercial services

5.1.4.1 Precise satellite and clock products from the JPL

Another source of PPP corrections is the Global Differential GPS (GDGPS) System from the
Jet Propulsion Laboratory (JPL). JPL estimates precise real-time orbit and clock solutions
from a global network of about 100 stations with their Real Time GIPSY software. Their
approach is to then subtract the GPS broadcast ephemeris from these precise products to
generate orbit and clock corrections for the user. In this way the amount of data that has
to be transferred to the user is minimized. The GDGPS system provides corrections to
the three coordinates of the GPS satellite positions and to the clocks, with accuracies and
latencies as reported in table 5.2, downloaded from the JPL website in 2011 and unchanged
to 2015 (JPL, 2015). The user can then add the corrections to the broadcast ephemerides
to recover the precise orbit and clock of the satellites. The correction messages also include
velocities of the orbital corrections, enabling the user to propagate the corrections into the
future, and be resilient to short data outages.

The JPL products are available to paying customers from several service providers (e.g.
Veripos, Navcom and Fugro), either as a main or backup service, via different media
including internet connection and geostationary satellite broadcast. These service providers
generally also offer PPP software to the user (either JPL licenced or in the case of Veripos
developed inhouse) next to a range of other GNSS related services.

The Veripos Ultra correction stream, which is based on the JPL network, recorded with a
Septentrio receiver L-band antenna are included in the accuracy analysis in section 5.3.

Comparison of the IGS products (table 5.1) to the JPL products (table 5.2) reveals some
differences in the conventions but more importantly some important differences in the
quality and latencies. The comparison is slightly complicated by the differences in the
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Table 5.2: JPL precise products, downloaded in 2011 and unchanged to 2015 (JPL, 2015)
Attribute Performance

Accuracy
Orbits
Clocks
URE

< 20 cm 3D rms
< 20 cm rms (after de-biasing and de-trending)

< 10 cm rms
Latency 4-6 seconds

Time span Complete information in 32 seconds

Frequency
Orbits
Clocks

30 seconds
1 second

reported accuracy measures (e.g. for the satellite orbits, the IGS reports 1D root-mean-
square (rms) values while JPL reports 3D rms values). If the correlation between the
directions and products would be available, one could be translated into the other, but
unfortunately it is not. Also the exact procedures are not reported here. That strong
correlation does exist between the products is revealed by accuracy of the User Range
Error (URE) in table 5.2 (which is a measure for the error that a user can expect on the
range if the precise satellite orbits and clocks are used) which is better than the accuracy
of precise satellite clocks. Despite the difficulties in the comparison of the IGS and JPL
products, the following can be observed:

The JPL products, even though based on observations, have a very low latency (∼5 s)
and can consequently be used for real-time applications, while the observation-based IGS
products have a latency of at least 3 hours, and cannot be used for real-time applications.
Therefore, a comparison of the accuracies for real-time PPP should primary focus on the
IGS predicted products vs the JPL corrections. Then it becomes clear that the IGS orbits
are somewhat better, but the predicted IGS clocks are worse than the JPL products. Even
if we compare the standard deviation of the IGS clocks to the rms of the JPL clocks
(since the latter have biases and trends removed) there remains a factor two difference.
Since the predicted IGS satellite clocks have the lowest accuracy of all real-time products
under consideration, it can be expected that real-time PPP will perform better with JPL
corrections than with IGS predicted products. This comparison will be extended with the
quality analysis in section 5.3.

5.2 Developments

As mentioned in section 2.3, two important developments in PPP are towards the use
of multiple constellations and ambiguity resolution. Much effort has been spent by the
providers of precise satellite orbit and clock products to support these developments.

As mentioned GPS + GLONASS products have been available from CODE and ESA/ESOC
for some time. Real-time precise orbit and clock products for the Galileo test satellites were
first made available based on the CONGO network (Montenbruck et al., 2009). Precise
products for the BeiDou system were developed at Wuhan university (Shi et al., 2012;
Zhao et al., 2013). The RETICLE system has also already been extended to provide multi-
constellation products in near real-time via the N-trip protocol. And the IGS started the
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Multi-GNSS Experiment (IGS M-GEX) with the provision of multi-GNSS IGS products as
one of its goals (Montenbruck et al., 2013), and has come close to being operational.

Commercial parties have also started to support multi-constellation PPP. Fugro first started
to provide combined GPS and GLONASS products (Melgard et al., 2010) and have since
extended this with Galileo and BeiDou (Tegedor et al., 2015). And Veripos has also
developed their own correction service.

Precise satellite orbit and clock products that allow the resolution of integer ambiguities
in PPP were made available by the Centre National d’Études Spatiales (CNES) as part
of their PPP-WIZARD project (Precise Point Positioning With Integer and Zero-difference
Ambiguity Resolution Demonstrator CNES, 2012; Laurichesse and Mercier, 2007). JPL
has added ambiguity resolution to their post-processing GIPSY-OASIS software, and sev-
eral other research institutes have also been working towards PPP products for ambiguity
resolution.

5.3 Quality analysis of real-time satellite orbit and clock products

This section contains an analysis and comparison of the quality of several real-time satellite
orbit and clock products, by comparison to the very accurate (non real-time) IGS final
products. Several authors have previously made similar analyses for the GPS broadcast
ephemerides, either considering the orbits only (Warren and Raquet, 2003) or both orbits
and clocks (Langley et al., 2000; Cohenour, 2009; Heng et al., 2011c,a). The IGS Analysis
Center Coordinator (ACC) also routinely monitors the accuracy of the broadcast and IGU
products by comparison to the IGS rapid or final products (IGS, 2015a). In Springer
and Hugentobler (2001) the IGS ultra-rapid orbits were shown to have an accuracy of
30cm. Heng et al. (2011b) characterized nominal GLONASS ephemeris errors in a similar
manner, but did not consider clock errors. The BeiDou broadcast ephemerides were studied
in a similar manner by Chen et al. (2013), and Montenbruck et al. (2015) performed a
comparison of all available GNSS.

Our main goal for this analysis is to obtain an accurate description of the quality of the
products, which can be used to setup the stochastic and/or dynamic model for the posi-
tioning filter and integrity monitoring. Therefore, our approach will be from the point of
view of the user and we will focus on the errors that impact the measured pseudo ranges.
First the methodology is described, then results are presented, and finally the results and
findings are compared to those found by the ACC and Heng et al. (2011c,a).

5.3.1 Methodology

In order to asses real-time PPP product accuracy, three different methods can be consid-
ered:

1. Direct comparison of satellite coordinates and clocks. This method simply evaluates
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the differences in the coordinates and clock offsets as follows:

∆xs = xsRT − xsIGS, ∆ys = ysRT − ysIGS,
∆zs = zsRT − zsIGS, ∆δts = δtsRT − δtsIGS

(5.1)

where xs, ys and zs are the satellite coordinates, δts is the satellite clock offset,
and the subscripts RT and IGS indicate, respectively, the Real-Time and IGS final
products. If we neglect the errors in the IGS final products (since they are much
smaller than the errors in the RT products), then the distribution of the differences
in eq. (5.1) correspond to the distribution of the errors in the RT products which
can thus be evaluated.

Instead of looking at the satellite position errors in x, y and z direction, we can also
consider the radial position error:

∆rs = ‖rsRT‖−‖rsIGS‖ =
√

(xsRT )2 + (ysRT )2 + (zsRT )2−
√

(xsIGS)2 + (ysIGS)2 + (zsIGS)2

(5.2)

For GNSS users on the surface of the Earth the radial position error of the satellite
is related to the ranging error by the angle between the satellite position vector and
the vector from the user to the satellite, called the (off) nadir angle η. The nadir
angle is related to the elevation angle θ as:

η = sin−1(cos(θ) RE

rGPS
) (5.3)

Figure 5.1 shows the geometrical relation between the radial and tangential position
error of the satellite (S) and the error in the range from the satellite to the user (U)
on the surface of the Earth for a satellite at the horizon all with respect to the center
of the Earth (O). The figure shows that the fraction of the radial position error that
impacts the range is cos (η). The size of this fraction is provided in the top pane of
fig. 5.2 as a function of the nadir angle η (top axis) and, for a user on the surface of
the Earth, as a function of the elevation angle θ (bottom axis).

For satellites at lower elevation angles the tangential satellite position error (perpen-
dicular to the radial direction) also impacts the geometric range from the satellite
to the user. Figure 5.1 shows that the fraction of the tangential position error that
impacts the pseudo range error is sin (η) for an error in the plane containing the
center of the Earth, the user and the satellite (errors perpendicular to this plane
have a projection of zero on the range). The size of this fraction is shown in the
bottom pane of fig. 5.2. The worst geometry is for large nadir angles correspond-
ing to low elevation angles and, for a user on the surface of the Earth, reaches a
maximum of about 0.24 (RE/rGPS) for satellites at the horizon. In other words,
the tangential position errors are decreased by a factor of at least 4 for satellites
with 0 degrees of elevation, and even much more for satellites with higher elevation.
Several authors have averaged the impact of the tangential errors on the range over
the footprint of the satellite, which gives a reduction of about a factor 7 for GPS
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satellites (Malys et al., 1997; Warren and Raquet, 2003; Heng et al., 2011c; Chen
et al., 2013; Montenbruck et al., 2015).

The radial errors can be used as a first indication of the range errors that can be
expected for high elevation satellites and is a more meaningful quality parameter
than the position error in e.g. the x direction. However, because the tangential
errors are generally not smaller than the radial errors (this is be confirmed by the
results below), they can not be neglected completely. A more general approach is
to project the satellite position error on the range from the satellite to the user.
As a consequence, the accuracy analysis becomes dependent on the user position.
However, for PPP products this should not have a large influence on the results since
PPP is intended for global positioning.

A more important shortcoming of the direct comparison of satellite positions and
clock offsets, is that it does not take into account that the errors in the satellite
positions can be correlated with the satellite clock errors (which is also confirmed by
the results). Therefore we will use the following combined comparison method.

2. Comparison in pseudo range domain. This method aims to determine the remaining
User Range Error (URE) due to the satellite orbits and clocks in the pseudo range and
carrier phase measurements if RT PPP products are used for positioning. For this
purpose, the RT satellite positions and clock offsets are combined with a (virtual)
user position to form a pseudo range. The same is done with the IGS final products
and the two are again compared to assess the accuracy of the RT products:

UREs
r,RT = ∆ρsr = ‖rsRT − rr‖ − cδtsRT︸ ︷︷ ︸

RT pseudorange

−

‖rsIGS − rr‖ − cδtsIGS︸ ︷︷ ︸
IGS pseudorange

 (5.4)

where, ρsr is the pseudo range between the user and the satellite, rsRT and rr are,
respectively, the satellite and user position vectors and c is the speed of light. As
before, the results of this method will to some extend depend on the chosen user
position. For our global quality analysis, the center of the Earth was chosen as user
position, but the influence of the user position is also shown when relevant.

Unobservable biases Some biases in the PPP products will not influence the posi-
tion solution of the user since they cannot be observed by a user (they are absorbed
by other parameters in the solution). Therefore such biases should also not be con-
sidered in the quality assessment of the PPP products from a user perspective. In
this analysis two such biases have been identified.

(a) Common clock or common mode bias. If all pseudo ranges measured at one
epoch have a common bias, this bias will be absorbed by the receiver clock bias
in the user algorithms. This does not influence the position. Therefore, in this
quality assessment, one common bias is removed from all UREs for each epoch
(this is simply the mean URE value per epoch) to determine the effective UREs:

UREs
r,RT,eff (t) = ∆ρsr (t)− 1

m

m∑
s=1

∆ρsr (t) (5.5)
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where m is the total number of satellites. In the results presented in this section
a common clock bias has been estimated and removed, except when explicitly
stated otherwise.

(b) Constant satellite bias. When relying only on phase measurements in PPP
(and without ambiguity fixing), the user is also insensitive to constant biases
in the PPP products since these biases will be absorbed by the estimated real-
valued phase ambiguities. PPP products which are computed by a network
using only phase measurements might include such biases. Also, PPP products
for GLONASS might contain this type of bias if the receiver front-end delays are
not estimated by the network. Even if the PPP corrections do not contain these
biases (which is generally the case for GPS), the floating phase ambiguity will
still absorb the mean value of all errors on the corrections for one satellite. In
order to assess the effective PPP product accuracy, when processing only carrier
phase measurements, these biases (which are simply the mean URE value per
satellite) should be removed from the URE.

UREs
r,RT,eff (t) = ∆ρsr (t)− 1

T

T∑
t=1

∆ρsr (t) (5.6)

where T is the total number of epochs considered. However, when processing
pseudo range and carrier phase measurements together, a user is sensitive to
this type of biases (they might in turn bias the estimated parameters or result in
biased residuals). Therefore, in the results presented in this section the constant
satellite biases have not been removed, except when explicitly stated.

If both types of biases 2a and 2b are to be removed, an unweighted least squares
approach can be used to estimate both simultaneously. A big advantage of method 2
is that it evaluates the errors that are introduced in the measurements of a PPP user.
Therefore, the results of this comparison can directly be used to setup the stochastic
model for positioning and integrity monitoring.

3. Comparison in user position domain. The final step in the accuracy analysis is to
translate the accuracy of the PPP products from the measurement domain to the
user position domain. There are several ways to perform this operation:

(a) Propagate the pseudo range errors to the position domain and then determine
the distribution. This can e.g. be achieved by a Best Linear Unbiased Estimation
(BLUE) where the pseudo range errors are used as observations. The errors in
the user position can then be determined as follows:

∆rr,RT =
(
A∗Q−1

RTA
)−1

A∗Q−1
RT∆ρsr,RT (5.7)

where ∆rr are the errors in the user position, QRT is the variance matrix of
the RT PPP products determined with method 2 and A is the design matrix.
This approach depends on a weighting scheme for the pseudo range errors (in
case of the BLUE the inverse of the variance matrix) and on the local satellite
geometry through A which should contain only satellites in view.
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(b) Propagate the variance matrix of the pseudo range errors to the position domain.
This is a more direct approach to translate the errors in the pseudo range to
the position domain. For the BLUE this can be performed as follows:

Qrr,RT =
(
A∗Q−1

RTA
)−1

(5.8)

where Qrr,RT is the variance in the user position due to the variance of the PPP
products.

Equation (5.8) is related to the Dilution of Precision (DOP) which is an often
used measure for the expected accuracy of GNSS positioning. The DOP relies
on three further assumptions:

i. the satellite products can be described by a scaled identity matrix (QRT =
σ2
RT I), simplifying eq. (5.8) to Qrr,RT = σ2

RT (A∗A)−1, where σ2
RT is the

variance of the pseudo range errors for the RT PPP products, and (A∗A)−1

is the correlation matrix.

ii. the user position and clock offset are the only unknown parameters, which
means (A∗A)−1 is a 4× 4 matrix.

iii. there is no correlation between the unknown parameters and the square
root of the trace of (A∗A)−1 captures the complete uncertainty in the
solution.

Neither of these three assumption is particularly well suited for PPP, where the
goal is to reach a very high accuracy (using a realistic variance matrix) and ad-
ditional unknown parameters (e.g. the troposphere zenith delay) are often also
estimated. The relation between eq. (5.8) and the DOP is here only presented
for reference. DOP can be expressed for all unknown parameters combined, then
called Geometric Dilution of Precision GDOP, or DOP can be expressed for a
combination of some components of the unknown parameters including the Po-
sition (PDOP), Horizontal component (HDOP), Vertical component (VDOP),
and Time (TDOP) each computed with a combination of the elements from
(A∗A)−1 (Langley, 1999). The uncertainty in each of these unknown parame-
ters can now be expressed as the uncertainty of the satellite products times the
corresponding DOP value (σ2

X = XDOPσ2
RT ), where X can be the geometry

or any of the DOP components (Wells, 1989).

The main advantage of method 3 is that it directly assesses the final effect of using
the PPP products on the estimated user position, and is a straight forward and
general manner to get a very first impression of the position accuracy that can be
achieved with the PPP products.

5.3.2 Results

5.3.2.1 IGS Ultra-rapid products (predicted part)

In this section IGS Ultra-rapid products are analyzed for a one year period from Jun 27, 2010
to Jun 25, 2011. Results from the periodic analysis of the IGS ACC shows an improving
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accuracy over time (IGS, 2015a). For the predicted orbits the curve has flattened out
around 2009, which means that results presented in this section are still representative of
the current performance in 2015. The satellite clock predictions on the other hand still
show improvement over the last few years. This is in no small part due to the gradual
replacement of older GPS satellites by new satellites of a different type with more stable
clocks. Results in this section distinguish between these different satellite types, so a reader
might focus on the newer satellites that better represent the current performance. More
importantly the methods and relations presented in this chapter are general and still apply.

As mentioned, only the predicted IGS products are available for real-time applications.
During real-time processing the prediction time will vary from 3 hours, when the ultra-
rapid products first become available, to 9 hours, just before the next ultra-rapid products
become available. Therefore, the following analysis first focuses on these 6 hours of the
IGS Ultra-rapid products, by comparison to the IGS final products. Then the impact of
the prediction time is studied by considering the entire 24 hours of predicted data in the
Ultra-rapid products. For convenience the acronym IGU will be used for the (predicted)
Ultra-rapid products and IGS for the final products in the tables and figures below (following
the IGS convention).

First the accuracy of the clock and orbit products are shown individually, then the impact
of the errors in the real-time orbit and clock products on the measured ranges is evaluated
by means of eq. (5.4). Figure 5.3 shows the distribution of the differences of the satellite
clock offsets between IGU and IGS separately for each GPS satellite by means of a boxplot.
Satellites are identified by their Pseudo-Random Noise (PRN) sequence. On each box, the
central mark is the median clock differences for that satellite, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually (McGill et al., 1978).
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Figure 5.3: Boxplot of IGU (predicted) satellite clock offset w.r.t. IGS final for period Jun
27, 2010 - Jun 25, 2011

Figure 5.3 reveals that the predicted clock offsets have a negative bias of 0.6m over this
period. Most boxes, which contain 50% of the data, are between -2m and 1m, only PRN6
has a larger negative bias than all other satellites. It can also be seen that the predicted
clock offsets have larger errors for the older GPS block IIA satellites (rms = 2.3m) than
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the newer block IIR and block IIF satellites (rms = 1.9m). However, the differences are
not very large and the errors on both old and new satellites seem much larger than the
claimed accuracy of 0.9m (see table 5.1). This apparent discrepancy will be resolved when
the common clock bias is removed below, and the difference between the GPS satellite
types will also become much more pronounced.

Besides this nominal distribution, clock outliers of over 50m were found for PRN30 on May
13 and 14, 2011 shortly before it was decommissioned (not included in fig. 5.3 for clarity).
Notice Advisory to Navstar Users (NANU) 2011042 issued by the United States Coast
Guard and the GPS Operations Center, warned not to use PRN30 from 20:55 on May 13,
but the IGU files kept including orbit and clock predictions of this satellite for some time
after. Figure 5.4 shows how the predicted IGU clock differs from the IGS final clock before
and during the occurrence of these outliers. The figure also shows the most recent IGU file
available at each epoch and the moment at which PRN30 was no longer supposed to be
used according to the NANU. The figure shows that the clock prediction starts to degrade
from 15:00 hours (during the validity of igu16355 12.sp3) and reaches an error of almost
9m just before the NANU message kicks in. After that the clock error quickly grows to
about 55m and remains at that level during the validity of igu16355 18.sp3. The standard
deviation of the satellite clock prediction (provided in the same file) reaches a maximum
value of 4.34m during this period. Although this standard deviation is higher than the
standard deviation of the other satellites, it does not account for the very large errors in
the clock predictions. At the start of igu16356 00.sp3 PRN30 is no longer included in the
IGU products.

To prevent these large clock errors from degrading the position solution, the GNSS user
should monitor the quality of the clock products and exclude misbehaving satellites from
the positioning algorithm. In this particular case, monitoring the advisory messages from
the GPS operator would suffice (even though the errors manifest themselves in the clock
products from the IGS), but in general this is the domain of integrity monitoring (see
chapter 7). The IGU products do not give warning of this type of error.

Figure 5.5 shows the error distribution of the satellite position in the radial direction (con-
form eq. (5.2)) again using a boxplot with one box for each GPS satellite. The errors in the
range generally stay well below 0.5m except for some large outliers on PRN21 and PRN25.
An inspection of the outliers on these satellites, reveals that in both instances the outliers
all occur within a relatively short period of 1-3 days.

Figure 5.6 shows the outliers for PRN21. It can be seen that the orbit accuracy starts
degrading at September 11, 2010, and that the large outliers of up to 3.5m occur between
12:00 on the 11th and 12:00 the next day. Figure 5.6 also shows missing data samples
during this period. Two IGU files do not contain any data for PRN21, which was apparently
excluded from the orbit estimation and prediction. In the IGU files where PRN21 is present,
no indication is given that the values may be wrong (such as a warning or unusually large
reported standard deviation).

Figure 5.7 shows the outliers for PRN25. For this satellite the degraded orbit prediction
occurs over the days December 22-25, 2010. During this period 7 IGU files do not contain
data for PRN25, but for those IGU files that do include PRN25, again no indication is given
that these predictions might be erroneous.
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Figure 5.4: IGU (predicted) satellite clock offset w.r.t. IGS final for PRN30
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Figure 5.5: Boxplot of IGU (predicted) satellite range w.r.t. IGS final for period Jun 27,
2010 - Jun 25, 2011
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Figure 5.6: IGU (predicted) satellite range w.r.t. IGS final for PRN21
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Figure 5.7: IGU (predicted) satellite range w.r.t. IGS final for PRN25
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Figure 5.8: Eclipsing GPS satellites

For the period with degraded prediction for PRN21, the IGS final products also do not
provide clock estimates for PRN21 for a significant number of epochs. The same is true
for the outliers found for PRN25, but to a lesser extend. This indicates that not only the
orbit prediction, but also the final orbit and clock estimation was difficult. This fact also
reveals a limitation of the presented method for the accuracy analysis, since missing data
in the IGS final products prevents the quantification of the errors in the real-time products
and might hide temporarily degraded accuracy. This does not prevent the quantification
of the accuracy under nominal conditions, but it does influence the determination of the
frequency of occurrence of outliers. To make sure we err on the side of caution, it will
be assumed that when a certain satellite is not present in the IGS final products (e.g. it
has been rejected from the estimation process), the real-time product will have a degraded
accuracy. This seems to be a reasonable assumption since generally there is no reason
to assume that real-time estimation or prediction would perform better than estimation in
post-processing.

One source of degraded estimation and prediction might be maneuvers performed by the
GPS satellites but too insignificant to warrant a NANU. GPS satellites perform such ma-
neuvers during eclipses in order to keep the solar panels oriented towards the Sun. These
maneuvers can involve antenna rotations of up to one revolution within less than half an
hour (Kouba, 2009a). To investigate whether the found outliers coincide with noon or
midnight eclipses, the eclipsing seasons for GPS satellites were determined with a routine
based on the work by Kouba (2009b). Figure 5.8 shows noon and midnight eclipses for
the GPS satellites during the period Jun 27, 2010 - Jun 25, 2011. Careful investigation of
fig. 5.8 shows that PRN25 was indeed in eclipsing season during December 22-25, 2010.
A routine to identify satellites in eclipsing season might thus help prevent the inclusion of
misbehaving satellites in the positioning. However, this does not offer full protection since
PRN21 was in fact not in eclipse when the outliers for that satellite occurred on September
11, 2010.
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As mentioned before, the IGU errors on the pseudo range are dominated by the clock errors,
which means that these outliers in the satellite positions do not cause exceptionally large
errors in the pseudo range and from that respect are not critical. However, since other
PPP services (e.g. RETICLE) combine IGU orbits with more accurate clock products, it
is important to know that errors of several meters can be present in the orbit data. Since
neither the IGU files nor the NANU messages provide warning for the temporarily degraded
performance, and since satellite eclipsing only explains part of the outliers, we must rely on
integrity monitoring to detect large orbit and/or clock errors and remove the corresponding
observations from the positioning filter.

Figure 5.9 again shows the error distribution of the satellite positions (in radial direction)
after removal of the large outliers identified above. The figure reveals a very narrow dis-
tribution for the orbit errors (e.g. a high accuracy) but with more, smaller outliers. The
strength of the positioning model and the chosen probability of false alarm will determine
which size of outlier can still be detected with a certain probability by the integrity algo-
rithms. It will also be important to determine what size of error can still be accepted, see
chapter 7. For now we will assume that these smaller outliers are part of the distribution
under nominal conditions. The radial accuracy is very high and similar for all satellites (rms
= 1.4cm). These radial errors are much smaller than the mean errors over all direction
both from our analysis (rms = 4.1cm), and the values provided by the IGS (rms = 5cm see
table 5.1). This difference in accuracy is directly related to the fact that GPS receivers on
the surface of the Earth, used to determine the satellite positions, are much more sensitive
to errors in the radial direction. Additionally, the (large) satellite velocities are almost
perpendicular to the radial direction.
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Figure 5.9: Boxplot of IGU (predicted) satellite range w.r.t. IGS final, after removal of
largest outliers, for period Jun 27, 2010 - Jun 25, 2011

A comparison of figs. 5.3 and 5.9 confirms that the errors in the predicted clock are much
larger than the errors in the satellite positions, and will thus dominate the errors in the
combined pseudo range according to eq. (5.4).

Figure 5.10 shows the comparison of the real-time IGU products against the IGS final
products in the pseudo range domain. This figure shows almost identical results as fig. 5.3
(except with opposite sign), which confirm that the clock errors drown out the (radial)
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position errors, and consequently dominate the pseudo range errors. Changing the user
position to any location on the surface of the Earth does not change this fact and results
for different user positions are not presented here.

−10

−5

0

5

10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
IIR−B IIA IIA IIR−M IIA IIR−M IIA IIA IIA IIR−A IIR−M IIR−A IIR−A IIR−M IIR−A IIR−M IIR−A IIR−B IIR−A IIR−A IIR−B IIR−B IIA IIF IIA IIA IIR−A IIR−M IIA IIR−M IIA

PRN number and SV type

∆
ρ
s r
[m

]

Figure 5.10: Boxplot of IGU (predicted) pseudo range (i.e. range minus clock) w.r.t. IGS
final (eq. (5.4)), for period Jun 27, 2010 - Jun 25, 2011

Three factors that do play an important role are the common clock bias introduced in
eq. (5.5), the satellite type, and the prediction interval, which are here discussed in turn.

Figure 5.11 shows the same results as fig. 5.10, but now after removal of the common
clock bias. Several observations can be made from a comparison of the two figures. In
general the residual errors are much smaller after the removal of the common clock bias,
which has absorbed the constant 0.6m bias as well as a time varying offset between the
IGU and IGS solutions. The overall rms value for all satellites is 0.9m, and only PRN6 is
significantly biased (1.3m). Further, differences between the satellites now are much more
pronounced, with much larger errors for the older block IIA satellites (rms 1.4m) compared
to the newer block IIR and IIF satellites (rms 0.35m). Although it should be noted that
some block IIA satellites (i.e. PRN4, PRN26 and PRN32) are performing better than the
other block IIA satellites. The residuals shown in fig. 5.11 lead to errors in the pseudo
ranges when using the IGU products for positioning. Therefore, for optimal results, the
stochastic model should account for these residuals and differentiate between the GPS
satellite types (or directly between the satellite vehicles).

The quality of the predictions degrades with increasing prediction interval. To show this
degradation we will now look at the complete prediction time of 0 to 24 hours for the IGU
products from the period Mar 27 - Apr 3, 2011. Figure 5.12 shows the error distribution
as a function of the prediction interval for block IIA satellites (top pane) and block IIR
and IIF satellites (bottom pane). The quality of the predicted orbit and clock products
reduces significantly with the prediction interval for both types of satellites. Although,
the degradation remains quite limited within the 3 to 9 hour window used for real-time
positioning, it should be taken into account in the stochastic model for positioning to
obtain realistic description of the accuracy of the position solution.

The degraded quality of the predicted satellite clocks in particular is also the incentive for
the estimation of the satellite clocks with much less lag between the measurements and
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Figure 5.11: Boxplot of IGU (predicted) pseudo range (i.e. range minus clock) w.r.t. IGS
final after removing a common clock bias eq. (5.5), for period Jun 27, 2010 - Jun 25, 2011
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Figure 5.12: Boxplot of IGU (predicted) pseudo range (i.e. range minus clock) w.r.t. IGS
final after removing a common clock bias versus prediction interval, for period Mar 27 - Apr
3, 2011
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the availability of the products (such as clock estimations of the RETICLE system).

5.3.2.2 RETICLE clock products

To assess the quality of the RETICLE products 24h of satellite clock estimates have been
collected on Mar 31, 2011 (combined with the corresponding IGU products). During this
period RETICLE products were available for 26 satellites for a total of 224,640 clock offsets.
This section first focuses on the quality of the satellite clock products and then looks at
the combined product. Figure 5.13 shows the distribution of the RETICLE clock offsets
w.r.t. the IGS final products separately for each GPS satellite. The figure shows that all
RETICLE clocks offsets for this period have a bias of about -2.4m with respect to the IGS
final products. The distribution about this mean has a standard deviation of 22cm, which
is much smaller than the IGU predicted clock offsets but still much larger than the IGU
orbit errors. Therefore, the errors in the pseudo range domain are still dominated by the
clock errors. In fact a boxplot of these errors would again be almost identical to fig. 5.13
with opposite sign and is not presented here.
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Figure 5.13: Boxplot of RETICLE satellite clock offset w.r.t. IGS final for 24 hours on
Mar 31, 2011

The improvement of the RETICLE clocks on the predicted IGU clocks becomes even more
apparent if we remove the common mode error, as presented in fig. 5.14. The results have
an overall rms of 9cm consisting of individual satellite biases of up to 20cm and standard
deviations of about 4cm. No large differences are apparent between the GPS satellite
types. If we compare these results to the IGU products (fig. 5.11) the improvement is very
clear indeed. For this comparison we should of course keep in mind that there is a large
difference in the length of the observed period (24h vs 1 year). The number of outliers
is indeed expected to grow with the observation period and this is visible by an increased
number of plus-signs in the IGU figures. The rms values on the other hand are not expected
to change significantly with an increasing observation period especially after subtraction of
the mean value per epoch and if enough samples are considered (here more than 200,000).

The errors in the pseudo range domain are still dominated by the clock errors, since the
orbit errors are significantly smaller, and thus almost invariant for the user position. The
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Figure 5.14: Boxplot of RETICLE pseudo range (i.e. range minus clock) w.r.t. IGS final
after removing a common clock bias (eq. (5.5)) for 24 hours on Mar 31, 2011

errors in the pseudo range that occur at a certain time and place does depend on the
subset of satellites in view and the quality of the clock estimates for those satellites at that
time.

5.3.2.3 JPL real-time products (collected from Veripos with L-band antenna)

To assess the quality of the JPL products from the Veripos Ultra service, 24h of satellite
orbit and clock corrections have been collected from 10:00 on Mar 31 until 10:00 on Apr
01, 2011. During this period JPL corrections were available for 24 satellites for a total of
50,644 corrections.

The JPL products refer to the satellite Antenna Phase Center (APC) to which the mea-
surements are made as described in table 3.4. The IGS products on the other hand refer
to the satellite Center Of Mass (COM) generally used for orbit modeling and estimation.
To obtain the APC from the COM the Phase Center Offsets (PCO) need to be applied.
For the IGS products this is left to the user, who must apply the PCOs published online by
the IGS. In the JPL corrections, the PCO have already been taken into account. However,
the PCOs used by different providers of satellite orbit data are not necessarily equal to or
even consistent with each other, which leads to considerable differences in the computed
APCs.

Schmid et al. (2007) made a comparison of i.a. the absolute PCOs used for the IGS
antenna model igs05.atx (since then replaced by igs08.atx) and the PCOs of the National
Geospacial-intelligence Agency (NGA) which are consistent with the broadcast ephemeris
results below. The IGS and NGA models agree that the Block IIR satellites actually consist
of 2 subgroups (called IIR-A and IIR-B) of which the Block IIR-B satellites have the smallest
radial PCO. However, large differences are found when comparing the mean values for each
of the blocks. The most extreme differences are the Block II/IIA satellites with the IGS
values being larger than the NGA values by 144 cm and the Block IIR-A satellites with
the IGS values being smaller than the NGA values by 44 cm. The JPL uses a set of
radial PCOs which differs even more from the IGS model in absolute sense and does not
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distinguish between different subgroups of the Block IIR satellites (Bar-Sever, 2012). The
exact differences between the IGS and JPL depend on block number, but are on average
1.5 m with the IGS radial PCOs being larger than the JPL values.

A comparison of the APCs between the JPL corrections, broadcast ephemerides, and the
IGS products will be dominated by these large differences in the PCOs. This is confirmed
by fig. 5.15 which shows the distribution of the radial orbit errors of the APC per satellite.
The figure shows that the satellite positions from the JPL products have a bias in the radial
direction of about 1.5m as well as (much smaller) individual satellite biases. These biases
are due to the different PCOs as discussed above.
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Figure 5.15: Boxplot of JPL radial satellite APC positions w.r.t. IGS final product for 24
hours on Mar 31 and Apr 01, 2011

Figure 5.16 shows the distribution of the satellite clock errors. The figure shows that
satellite clocks from the JPL products have a bias of about -2m (i.e. -6.7ns) with respect
to the IGS final products and again (smaller) individual satellite biases. Close inspection
of figs. 5.15 and 5.16 reveals that these individual satellite biases are very similar for the
satellite clocks offsets and radial position errors. Since the satellite clock difference in
eq. (5.4) has a minus sign, this means that the radial biases in the satellite APCs are
(largely) compensated by similar differences in the satellite clock offsets. Despite this
compensation, the large differences in APC will still lead to range differences for satellites
at lower elevation angles as discussed in section 5.3.1. In fact, the user range is only
indifferent to a (radial) PCOs and equal clock offsets if the satellite is directly over head
of a user.

To assess the accuracy of the real-time orbit products, the COM can be used instead of
the APC, since this should really describe the same physical point for all orbit products.
Therefore, the COM has been determined for the JPL orbit corrections by subtracting the
JPL PCOs. In order to keep a consistent set of PPP products and in order to assess the
quality of the real-time clock products, a similar operation is performed on the satellite
clocks. The radial part of the PCO is added to the clock offset (c∆δts + PCO · rs

‖rs‖).

Figure 5.17 shows the distribution of the radial orbit errors of the COM per satellite and
reveals that these are not biased and have an overall rms of 11 cm. Just like for the IGU
products this is significantly lower than the reported 3D accuracy of 20 cm (table 5.2).
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Figure 5.16: Boxplot of JPL satellite clock offsets w.r.t. IGS final satellite clock offsets for
24 hours on Mar 31 and Apr 01, 2011
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Figure 5.17: Boxplot of JPL radial satellite COM positions w.r.t. IGS final product for 24
hours on Mar 31 and Apr 01, 2011

The corresponding clock is shown in fig. 5.18. The figure shows that the overall bias in
the satellite clocks has actually increased in absolute sense to -3.5m (i.e. -12ns), but the
distribution around this mean value is much smaller with a standard deviation of 19cm.

Combining the orbit and clock products to assess the errors in the pseudo range domain,
eq. (5.4), leads to the results presented in fig. 5.19. The figure clearly shows an offset of
about 3.5m on all pseudo ranges computed with the JPL products with respect to those
computed from the IGS products. This bias is a combination of the biases in the satellite
clocks and the different PCOs of the satellites as already found in fig. 5.18. The common
mode error from eq. (5.5) will absorb some of the differences between the JPL and IGS
solution, which is treated below.

The JPL correction stream received from Veripos through the L-band antenna does not
provide corrections for all satellites simultaneously. Instead corrections are provided for up
to 8 satellites at a time, completing a full set of corrections in about 30s. The relatively
stable reference clock of the JPL network ensures that these corrections, received shortly



5.3 Quality analysis of real-time satellite orbit and clock products 107

−4.2

−4

−3.8

−3.6

−3.4

−3.2

−3

2 3 5 6 7 10 11 12 13 14 15 16 17 18 19 20 22 23 25 28 29 30 31 32
IIR−B IIA IIR−M IIA IIR−M IIA IIR−A IIR−M IIR−A IIR−A IIR−M IIR−A IIR−M IIR−A IIR−B IIR−A IIR−B IIR−B IIF IIR−A IIR−M IIA IIR−M IIA

PRN number and SV type

c∆
δt

s
+
P
C
O
·

r
s

‖r
s
‖
[m

]

Figure 5.18: Boxplot of JPL derived satellite clock offsets w.r.t. IGS final satellite clock
offsets for 24 hours on Mar 31 and Apr 01, 2011
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Figure 5.19: Boxplot of computed pseudo range (i.e. range minus clock) from JPL products
w.r.t. IGS final products for 24 hours on Mar 31 and Apr 01, 2011

after each other and with slightly different times of applicability, can be used together. So
to determine the mean value of the differences between the JPL corrections and the IGS
final products for all satellites at a certain epoch, conform eq. (5.5), the time of applicability
cannot be used directly. Instead a staircase function of time is introduced with steps of
30s, and the mean value is determined for each step of this function.

t30 = t−mod(t, 30) (5.9)

UREs
r,RT,eff (t) = ∆ρsr (t)− 1

m

m∑
s=1

∆ρsr (t30) (5.10)

The common mode error is treated in fig. 5.20. The top pane shows the results of the
comparison in computed pseudo range for all satellites before any biases are removed
conform eq. (5.4) (the data was down-sampled by a factor of 5 for the figures only).
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Several observations can be made from the figure. On top of the 3.5m bias between the
JPL and IGS solutions, a noisy, time varying, signal is very clearly visible in the time series
of each satellite. Also, there are smaller slowly changing biases between the satellites. The
middle pane of fig. 5.20 shows the estimated common mode (clock) error introduced in
eq. (5.10) (i.e. the mean value over all satellites per 30 second time step). The estimated
common mode error nicely follows the signal already seen in the top pane, and also absorbs
the 3.5m bias between the JPL and IGS products as expected. The bottom pane shows
the residuals after estimation of the common mode error. These represent the (residual)
errors in the JPL products which directly impact the position solution of a PPP user. The
figure shows that these residuals are characterized by slowly changing biases of up to 30cm
and noise at cm level.
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Figure 5.20: Pseudo range (i.e. range minus clock) computed from JPL corrections w.r.t.
IGS final. top - ‘raw’ computed pseudo range difference; middle - mean value per 30s; bottom
- computed pseudo range difference minus mean value per 30s

The errors in the JPL products for this period can thus be separated in the following
components: a constant bias of about 3.5m, a time varying (common mode) error with
rms of 11cm and slowly changing residuals with rms of 10cm. A user of the products is only
impacted by the last part and the stochastic model should be set up accordingly. These
residuals are also shown with a boxplot with one box for each GPS satellite in fig. 5.21.
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Figure 5.21: Boxplot of computed pseudo range (i.e. range minus clock) from JPL products
w.r.t. IGS final products after removing a common clock bias (eq. (5.10)) for 24 hours on
Mar 31 and Apr 01, 2011

Given the comparable precision of the JPL clocks and orbits, the correlation between the
clocks and orbit is of special interest. The correlation between the satellite orbit and clock
products is visualized in fig. 5.22. The left pane shows a scatter plot of each combination
of a radial APC position error (vertical axis) and a clock error (horizontal axis) and a 95%
confidence ellipse. Uncorrelated errors would appear in this plot as an elliptical point cloud
with principal axis in horizontal and vertical directions. What the figure shows are individual
point clouds for each of the different satellite types (the block IIF satellite PRN25 is even
biased by 1m with respect to the other satellites). The 95% ellipse is strongly elongated
with major axis in the direction of the line ∆rs = c∆δts which corresponds to strong
positive correlation. This is confirmed by the computed correlation coefficient of 0.91.
The correlation is largely due to the PCOs as described above.

To investigate the correlation of orbits and clocks (after correcting for the different PCOs),
the middle panel of fig. 5.22 shows the COM radial position errors and the corresponding
satellite clocks instead. All satellite point clouds are now centered at the same point.
However, to see the relevant correlation more clearly the common mode error should also
be compensated. In the right pane of fig. 5.22 the mean clock error per 30s (similar to
eq. (5.10) but applied to the clock offsets only, so as not to introduce any correlation
ourselves) has been removed. The results show that the orbits errors (rms 11cm) and
satellite clock errors (rms 16cm) are of comparable size and strongly correlated (correlation
coefficient of .75) leading to smaller combined errors (rms 10cm).

A conclusion from this analysis is that, to benefit from the precision of the JPL products, the
orbit corrections should only be used with corresponding clock corrections. First, because
this ensures consistency between the PCOs and clock offsets; otherwise errors in the order
of meters might be introduced. Secondly, even if the orbit or clock products are corrected
for differences in PCO, a mixing of products from different providers will degrade their
quality because the errors in the clock and orbits are correlated and only eliminated when
combined in the pseudo range combination. The only exception is when the combined
products have a similar correlation to the JPL products themselves, such as might be the
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case if new clock products are computed using the JPL satellite positions.
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Figure 5.22: left pane: Correlation of the satellite APC radial position errors and clock
errors of JPL products; middle pane: Correlation of the satellite COM radial position errors
and corresponding clock errors of JPL products; right pane: Correlation after removal of
mean clock error per 30s (similar to eq. (5.10) but applied to the clock offsets only) for 24
hours on Mar 31 and Apr 01, 2011

Given the strong correlation and rather large errors in the satellite APC positions, it becomes
especially interesting how the pseudo range errors depend on the user position. For this
reason fig. 5.23 shows the rms of all satellites combined for different positions on the Earth.
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Figure 5.23: Accuracy of the JPL products for all GPS satellites combined for different
positions on Earth, for 24 hours on Mar 31 and Apr 01, 2011

Figure 5.23 shows that the variation over the Earth is quite limited, as it should be for a
(global) PPP product. The rms over all satellites combined varies between 10.5 and 11.1
cm. However, another effect that influences the accuracy for a given point on Earth is
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the subset of satellites visible from that position at a certain time. To visualize this effect,
fig. 5.24 shows the rms of the errors in the pseudo range domain from the JPL products
for all satellites in view from that point on Earth over the 24h period. Note that during
these 24h the subset of satellites changes continuously and that the common mode error
has been estimated from the visible satellites only.
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Figure 5.24: Accuracy of the JPL products for all GPS satellites in view for different
positions on Earth, for 24 hours on Mar 31 and Apr 01, 2011

Comparison of figs. 5.23 and 5.24 reveals that the rms values decrease on average when
only the visible satellites are considered, and that the variation of the rms values with the
user position increases. An overall decrease of about 2% is related to the fact that the
common mode error is now estimated from a smaller number of satellites, the increase in
variation on the other hand is related to specific subsets of visible satellites, and whether
satellites with larger errors (e.g. PRN30) have long passes over a specific position on Earth.

5.3.2.4 GPS broadcast products

In section 5.1.1 it was already mentioned that the accuracy of the broadcast ephemerides
is not high enough for PPP. Therefore, results of the analysis of the broadcast products
are presented here mainly for reference and to show the analogy as well as the differences
between the Broadcast and JPL products. To do this the exact same period has been
processed again but now looking at the broadcast products. Like the JPL products, the
broadcast products refer to the antenna phase center. Figure 5.25 shows the APC of the
broadcast ephemerides compared to the IGS final products. Large biases are present in
the results, the size of which clearly depends on the satellite type. Figure 5.26 shows the
clock offsets of the broadcast ephemerides compared to the IGS final products, with similar
satellite type dependent biases as well as an overall bias of about -2.3m.

These satellite type dependent biases are again largely due to differences in the PCOs. To
make a fair comparison between the satellite orbits, the COM for the broadcast products has
been computed by subtracting the PCOs provided by the NGA (NGA, 2012). Figure 5.27
shows that the biases are now strongly reduced.
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Figure 5.25: Boxplot of broadcast radial satellite APC positions w.r.t. IGS final product
for 24 hours on Mar 31 and Apr 01, 2011

−6

−5

−4

−3

−2

−1

0

1

2 3 5 6 7 10 11 12 13 14 15 16 17 18 19 20 22 23 25 28 29 30 31 32
IIR−B IIA IIR−M IIA IIR−M IIA IIR−A IIR−M IIR−A IIR−A IIR−M IIR−A IIR−M IIR−A IIR−B IIR−A IIR−B IIR−B IIF IIR−A IIR−M IIA IIR−M IIA

PRN number and SV type

c∆
δt

s
[m

]

Figure 5.26: Boxplot of broadcast satellite clock offsets w.r.t. IGS final satellite clock
offsets for 24 hours on Mar 31 and Apr 01, 2011
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Figure 5.27: Boxplot of broadcast radial satellite COM positions w.r.t. IGS final product
for 24 hours on Mar 31 and Apr 01, 2011
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The top pane of fig. 5.28 shows the results of the comparison in computed pseudo range
for all satellites before any biases are removed (the data was down-sampled by a factor of
5 for the figures only). Several observations can be made from the figure. Firstly, there is
the overall bias mentioned before. Additionally several satellites have deteriorating clock
estimates over time. This is not surprising as the broadcast clocks are in fact predicted
values. The middle pane of fig. 5.28 contains the estimated common mode (clock) error
(i.e. the mean value over all satellites) and reveals that the bias slowly changes over time
from 3m to 2.5m. The bottom pane shows the residuals after estimation of the common
mode error. These represent the (residual) errors in the broadcast products which impact
the user. The figure shows that these residuals are now dominated by the deteriorated
clocks of some satellites. These residuals are also shown with a boxplot with one box for
each GPS satellite in fig. 5.29 in which it is easier to identify the worst satellites. Just as
for the IGU products, these are a number of Block IIA satellites (PRN 6, 10, 30, 32) and
one Block IIR-A satellite (PRN 28).
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Figure 5.28: Pseudo range computed from broadcast corrections (i.e. range minus clock)
w.r.t. IGS final. top - ‘raw’ computed pseudo range difference; middle - mean value per 30s;
bottom - computed pseudo range difference minus mean value per 30s

Figure 5.30 shows the correlation of the radial position errors and clock offsets from the
broadcast ephemeris. The left most pane, containing the satellite APCs and the broadcast
clocks, shows strong correlation of the broadcast products (correlation coefficient 0.83).
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Figure 5.29: Boxplot of computed pseudo range from broadcast products (i.e. range minus
clock) w.r.t. IGS final products after removing a common clock bias (eq. (5.10)) for 24 hours
on Mar 31 and Apr 01, 2011

However, just like for the JPL products this correlation is mainly due to the PCOs which
again explains the distinct cloud points for the different satellite types. If we correct for
the PCOs and look at the COM and corresponding clock instead (middle pane) all point
clouds converge, the correlation drops considerably, and the clock errors are clearly larger
than the radial position errors. The effect of removing the common clock bias (right pane)
is rather small, the clock errors (rms 58cm) are still much larger than the radial position
errors (rms 14cm) and the correlation remains relatively small (correlation coefficient 0.22).
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Figure 5.30: left pane: Correlation of the satellite APC radial position errors and clock
errors of broadcast products; middle pane: Correlation of the satellite COM radial position
errors and corresponding clock errors of broadcast products; right pane: Correlation after
removal of mean clock error per 30s (similar to eq. (5.10) but applied to the clock offsets
only) for 24 hours on Mar 31 and Apr 01, 2011
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5.4 Comparison to other analyses

As mentioned, the IGS ACC routinely monitors the accuracy of the broadcast and IGU
products as well as the IGS rapid and final products (IGS, 2015a). The IGS ACC provides
results from daily comparisons between the broadcast products and the IGS rapid products
by means of the weighted rms orbit errors, the rms clock errors and the standard deviations
of the clock errors. Similar to our analysis, the IGS rapid products are expected to be much
more accurate than the broadcast products, and as such these results might be considered
as describing the accuracy of the broadcast products. Additionally, weekly averages of the
7 Helmert transformation parameters (3 translation, 3 rotation, and 1 scale parameters) of
the Broadcast orbits with respect to the IGS Rapid products are provided. No results are
provided in the pseudo range domain.

If we consider GPS week number 1629, as a typical example, and focus first on the orbit
comparison, the IGS ACC finds a scale factor between -20 and -25 parts per billion (ppb)
and a weighted rms between 0.90m and 1.05m. These results are in line with our results
from section 5.3.2.4 for the APC. For the APCs we found an overall radial bias of 0.53m
which corresponds to a scale factor of 20.1 ppb, and a radial rms error of 0.93cm. It should
be noted that the IGS ACC results do not specify their weighting or whether the results are
3 dimensional or in a specific direction. For the satellite clocks the IGS ACC finds an rms
error between 3.5ns and 5ns and a standard deviation between 3ns and 4ns (after removing
a separate bias for each satellite clock). These results are also in line with our results if we
assume that the common clock offset between the IGS rapid products and the broadcast
products has been removed first (we found an rms error of 3.8ns after removing this bias).
Since we have not removed a separate bias for each satellite clock we cannot compare the
AC standard deviation results.

Despite the fact that our results for the APC and the satellite clock offsets provided by the
broadcast ephemeris are consistent with the results from the IGS ACC, they do not, in our
opinion, give a good representation of the quality of the broadcast products. As shown in
the left hand pane of fig. 5.30, the radial orbit errors are strongly correlated with the clock
errors mainly due to the use of a different set of phase center offsets. Taking the PCOs into
account (middle and right pane) removes most of the correlation and significantly reduces
the errors on both the clocks (rms 0.58m or 1.94ns) and radial positions (rms 0.14m). The
errors in the pseudo range domain are now dominated by the clock errors with an rms of
0.57m.

Heng et al. (2011a) have investigated the GPS signal in space integrity by analyzing all
broadcast ephemerides information since selective availability (SA) was switched off in 2000.
They compared satellite APCs from the broadcast products to the IGS precise products
after applying the PCOs. Trying PCOs from both the IGS and the NGA, they found that
the IGS PCOs led to biases in the radial direction and opted to use the NGA PCOs. This
is in line with our findings that the PCOs from the NGA are consistent with the broadcast
products. Unlike our approach in section 5.3.2.4, Heng et al. (2011a) do not mention
a similar consideration for the satellite clock offsets. Results show that, during the first
year after SA was switched off, many anomalies occurred on all satellites. Afterwards, and
specifically after 2004, anomalies were much less frequent. Heng et al. (2011c) show that
the clock performance dominates the performance in the pseudo range domain; the radial
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orbit errors are reported to have a standard deviation of 13 cm to 24 cm between the
blocks and the clocks of 38cm to 107cm. These results are conform our finding for the
broadcast products with an rms error of 14cm for the radial direction and 58cm for the
satellite clocks.

The IGS ACC also provides results from comparisons of IGU predicted results to IGS rapid
products as well as a log file of any events that may have impacted the IGU performance
or delivery. For the period under investigation the IGS ACC reports weighted rms errors
of about 2 cm for the orbits and 2 ns (i.e. 60cm) for the clock offsets. These results are
based on the first 6 hours of the predicted orbits and clocks. However, as mentioned the
IGU products have a latency of 3 hours which means that the prediction interval relevant
for real-time positioning is actually 3-9 hours, which is also the interval considered in
section 5.3.2.1. Therefore, the IGS ACC results should show a better accuracy than our
results. This is indeed the case since we found an orbit rms error of 4.1 cm on average
over all directions and a clock rms error of 90 cm. For the full 24 hours of prediction the
IGS ACC reports an orbit accuracy of about 5cm weighted rms. The IGS ACC does not
provide any results for the degradation of the clock predictions, even though this turns out
to be a dominant and growing error source in our analysis (fig. 5.12). Another reason that
might explain some of the differences between our results and the IGS ACC is the weighting
scheme which is not provided. This is quite crucial as we found an rms of 140 cm for the
block IIA satellites and only 35cm for the block IIR satellites. Results in the pseudo range
domain are again not provided by the IGS ACC.

The outliers we found in the IGU orbit products of satellites PRN21 and PRN25 are also
listed in the event log file of the IGS ACC. The eclipsing season of PRN25 was identified
as a possible cause of its misbehavior. No cause was found for the misbehavior of PRN21.
The absence of satellite PRN30 starting from igu16356 00.sp3 is also listed, the large clock
prediction errors in the preceding files is not mentioned.

5.5 Conclusions

In this chapter the orbit and clock offsets were both studied separately and combined. The
results showed that the errors in the orbit and clock products individually are actually larger
than the errors in the combined product as they impact the user. This is in part due to
correlation resulting from the estimation process, but also due to the use of different phase
center offsets. These different PCOs lead to differences in the computed satellite phase
center positions (mainly in the radial direction), which are for a large part absorbed by the
satellite clock offsets. It can thus be concluded that a PPP user should obtain the satellite
orbit and clock products from the same provider and not mix products.

This result also illustrates that the quality of a given PPP product can only be assessed
by analyzing the orbit and clock information together. Since neglecting the correlation
will not give a correct representation of the accuracy of the product. Performing the
quality assessment in the (pseudo) range domain also prevents possibly different PCOs
from clouding the comparison between products. Furthermore the significance of both the
common clock and constant bias per satellite were demonstrated. Whether these impact
the accuracy of the estimated parameters of interest, depends on the user algorithms and
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they should be treated accordingly.

Another finding was that compared to the IGS satellite orbit prediction the clock prediction
is relatively poor, and dominates the combined error. Additionally the clock prediction
for older GPS satellites is worse than for the newer satellites. If these products are used
for PPP, the stochastic model should reflect both these effects. It should be noted that
a number of older GPS Block IIA satellites has been decommissioned after the period
which was analyzed in this chapter. The Block IIR and newer satellites thus give a better
representation of the current performance.

In recent years the international GNSS community, including the IGS itself, has started
to focus on (near) real-time provision of precise satellite orbit and clock products. The
RETICLE clock products from DLR/GSOC are one such near real-time product. These
satellite clock offsets are estimated while keeping the satellite orbits fixed to the values
predicted by the IGS. In this case the products can be mixed since the same PCOs are used
by definition and errors in the orbit will (partially) be compensated by the computed satellite
clocks. Thanks to the near real-time aspect of these clock offsets the poor predictability
of the satellite clocks (and in particular the older GPS satellite clocks) plays a much less
significant role. The quality of these products is much higher and approaches the post-
processed products. In addition a separate treatment of the older GPS satellites in the
stochastic model is not needed (similar to the post-processed products).
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6
In general, when fitting a model to a physical process, a choice needs to be made whether
to treat certain parameters in a functional or in a stochastic manner. The parameters that
are included in the functional model are generally those we wish to estimate or for which we
have accurate models. For other parameters we often do not have enough knowledge of the
underlying process, and we have to suffice with a stochastic treatment of the parameters.

For Precise Point Positioning, the main error sources that have to be accounted for in the
stochastic model are pseudo range and carrier phase measurement noise and satellite orbit
and clock errors. Other error sources (e.g. atmospheric delays) can be modeled and/or
estimated in the positioning filter (see chapter 3 for a complete overview), although errors
in the model values must still be taken into account.

Multipath on GNSS pseudo range measurements can be approached from both angles.
With precise knowledge of the geometric and physical properties of reflecting objects, the
multipath detour and impact on the receiver can be determined from a functional multipath
model, with an approach known as ray tracing. In Tiberius et al. (2009) it was shown that
for specific cases a simple multipath model based on specular reflection can already predict
the observed multipath to some extend. Also from inspection of the receiver behavior itself,
either of the tracking loops directly or of the resulting measured range and carrier-to-noise
ratio (C/N0), certain multipath parameters can be determined via functional modeling. For
static receivers, another approach is to map the multipath delays a priori versus elevation
and azimuth (together with possible antenna delays), which we will explore in chapter 8.
However, since the multipath environment of an antenna is generally not known with
enough detail and can change rapidly for a moving receiver or due to reflecting objects or
temperature and humidity changes, a stochastic modeling approach is often preferred.

Since chapter 5 already treated satellite orbit and clock errors, this chapter will focus on
measurement noise and multipath errors. For this purpose, a geometry-free GNSS mea-
surement analysis approach is presented that separates the different contributions to the
measurement errors of pseudo range code and carrier phase observations at the receiver.
The analysis relies on linear combinations of the available observables and can be applied to
a single receiver setup, a short baseline setup, and/or a zero baseline setup. Quantitative
results are presented for the thermal code and phase measurement noise and for the correla-
tion between the observations. The influence of multipath on the different combinations of
observations is also determined. Comparison of the results with theoretical approximations
confirms the validity of the used approach.

The goal of this chapter is to provide insight into the stochastic properties of GNSS range
measurements which can be used to setup the stochastic model of the observations essential
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for positioning algorithms (chapter 8) and to the RAIM model (chapter 7).

Section 6.1 is an adaptation of de Bakker et al. (2009) and introduces the analysis method
for single frequency linear combinations and presents results of GPS, EGNOS and GIOVE
short and zero baseline measurements on the L1/E1 frequency. In section 6.2, which is
adaptated from de Bakker et al. (2012), the analysis method is extended to dual and multi
frequency data, and results are presented for short and zero baseline measurements of the
GPS L1C/A and L5Q signals as well as the GIOVE E1B and E5aQ signals. Section 6.3
focuses on multipath and other time correlated errors present in the pseudo range measure-
ments, and was previously published as de Bakker (2011) in an adapted form. Here results
are presented for several single receiver setups and for the GPS L1, L2 and L5 frequencies
as well as the GIOVE E1, E5, E5a and E5b frequencies. The data sets used in sections 6.1
and 6.2 were opportunity driven as they represent some of the earliest measurements made
to the Galileo In Orbit Validation Element (GIOVE) satellites. GIOVE A and B have since
been decommissioned and were followed by a number of IOV (In-Orbit Validation) and FOC
(Full Operational Capability) satellites, with similar if not identical characteristics (ESA,
2015). The methods presented in this chapter are generally applicable (see e.g. Cai et al.,
2015).

6.1 Single frequency analysis

Several useful single frequency linear combinations will be introduced and demonstrated
using some of the earliest datasets collected in the field with both GIOVE A and B; si-
multaneously collected GPS and EGNOS signals are also included. At the time of the
measurement campaign there was no publicly available GIOVE orbit data with sufficient
accuracy. This makes the geometry-free model ideal for this analysis, since it does not rely
on satellite orbit data.

6.1.1 Single frequency measurement campaign

On the 6th and 10th of July 2008 a short and zero baseline were measured respectively with
two identical Septentrio AsteRx1 single frequency receivers with Galileo enabled firmware.
The short baseline was measured, in a fairly benign radio environment, in a field near
Delft with virtually no obstacles within a radius of a few kilometers. The receivers were
connected to two identical Septentrio PolaNt survey antennas that were placed equally
oriented on tripods at 4 meters distance from each other. More details can be found in
Tiberius et al. (2008). The zero baseline was measured on a flat roof in Delft on top of a six
story building with both receivers connected through a signal splitter to a single Septentrio
PolaNt antenna. Sky visibility on the roof was unobstructed down to the horizon, but due
to the roof significant multipath effects occurred. The multipath mitigation technique of
the receivers was not applied during this measurement campaign. Table 6.1 summarizes
the relevant properties of the antennas and receivers. During the measurement campaign
GPS, EGNOS (European Geostationary Navigation Overlay Service) and Galileo satellites
were tracked by the receivers with a measurement rate of 1 Hz. A minimum of eight
GPS satellites were visible during the entire measurement period. Galileo, the European
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GNSS, at the time of these measurements had two test satellites in orbit: GIOVE A and B
(indicated in the graphs by E32 and E31 respectively). Both GIOVE satellites were visible
simultaneously for over 1.5 hours during the short baseline measurements and for over 2.5
hours during the zero baseline measurements. The E1BC signal from the GIOVE satellites
was tracked with a pure Binary Offset Carrier BOC(1,1) replica, not multiplexed BOC (for
GIOVE-B), but the corresponding loss is less than 1 dB (Hein et al., 2006). The GIOVE
satellites did not transmit usable navigation messages during the measurement campaign.
EGNOS, the European space based augmentation system, uses three geostationary satellites
of which two were tracked during the measurement campaign (S120 and S126). Figures 6.1
and 6.2 show the sky plots for the short and zero baseline measurements respectively.

Table 6.1: Receiver and antenna parameters and settings
Receiver AsteRx1
Manufacturer Septentrio NV
Frontend bandwidth >20MHz
Channel configuration 12 GPS channels

4 SBAS channels (2 used)
2 Galileo channels

Delay lock loop bandwidth 0.25 Hz (single sided)
Phase lock loop bandwidth 10 Hz (single sided)
Antenna PolaNt
Manufacturer Septentrio NV
Gain role off 10 dB
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Figure 6.1: Skyplot for the short baseline measurements (20:10-22:05 UTC 6th July 2008)

Table 6.2 summarizes important properties of the tracked signals. It is important to note
that the geostationary EGNOS satellites by definition move very little with respect to a
stationary receiver on Earth, so the multipath delay also changes very little. The received
signal strength is different for the three systems. However, as all results in this section are
presented with respect to a carrier-to-noise density ratio (C/N0) of 45 dB-Hz, this does
not influence the conclusions.
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Figure 6.2: Skyplot for the zero baseline measurements (23:05-01:50 UTC 10th/11th July
2008)

Table 6.2: GNSS signal specifics
Transmit BW Code rate Sub carrier Symbol duration

[MHz] [Mchip/s] [MHz] [ms]
GPS L1C/A 20.46 1.023 - 20
Galileo E1BC >20 1.023 1.023 4
EGNOS L1C/A 2.2 1.023 - 2

To visualize the influence of different conditions, receiver performance is often shown versus
the satellite elevation. In this section the measured C/N0 is used instead, because the
received signal strength is different for each GNSS. For comparison, the C/N0 versus
satellite elevation is presented in figs. 6.3 and 6.4 for the short and zero baseline respectively.
The elevation of the GIOVE satellites was computed from NASA two line elements. For
GPS the C/N0, presented in the figures for both receivers at the baseline, is averaged
over all satellites. The variation of the C/N0 with elevation is mainly due to the receiver
antenna gain pattern and multipath. Other influences are the distance to the satellite,
the satellite antenna gain pattern and the atmospheric losses. The transmitted power of
individual GPS satellites can also differ slightly. The differences between the short and
zero baseline results are due to the different multipath environments. The zero baseline
measurements show multipath that slowly changes with satellite elevation. This could be a
result of a reflective surface, in this case the roof, very close to the antenna. The antenna
was mounted only 0.1 m above the roof. The short baseline measurements show multipath
that changes more rapidly with satellite elevation. This could be a result of a reflective
surface, in this case the ground, further away from the antenna. The figures clearly show
that, for the same elevation, the measured C/N0 for one component of the GIOVE E1BC
signal is 3-4 dB-Hz lower than for the GPS C/A signal. This effect is mainly due to the
specified received power, which is lower for the GIOVE signal component than for the GPS
C/A signal and the actual transmitted power of the GPS satellites that tends to be above
specifications.
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Figure 6.3: Measured C/N0 versus satellite elevation for the short baseline showing both
receivers WEST and EAST averaged for all GPS satellites and only receiver WEST for
GIOVE and EGNOS satellites separately
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Figure 6.4: Measured C/N0 versus satellite elevation for the zero baseline showing both
receivers DLF6 and DLFX averaged for all GPS satellites and only receiver DLF6 for GIOVE
and EGNOS satellites separately

6.1.2 Linear combinations of single frequency observations

The single frequency observation equations for one satellite (expressed in units of range)
can be obtained by simplifying eqs. (3.3) and (3.4) as follows:

P = ‖rs − rr‖+ cδtr − cδts + T + I +m+ ζ + ε (6.1)

Φ = ‖rs − rr‖+ cδtr − cδts + T − I + µ+ A+ ξ + ε (6.2)

with P the pseudo range code observation, Φ the carrier phase observation, ‖rs − rr‖ the
geometric range, c the speed of light, δtr the receiver clock error, δts the satellite clock
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error, T the tropospheric delay, I the ionospheric delay, A the phase ambiguity, ε and ε
random code and phase measurement errors respectively with expectation equal to zero
(E {ε} ≡ 0; E {ε} ≡ 0).

Other systematic delays on the code and phase measurements have been separated based
on their variability over time, m contains the quickly varying code delays and is dominated
by the code multipath, µ contains the quickly varying phase delays and is dominated by
the phase multipath, ζ contains the slowly changing code delays including the instrumental
code delays, and ξ contains the slowly changing phase delays including the instrumental
phase delays, the phase windup and the phase center variations.

Geometry-free model In the geometry-free model (see e.g. Odijk, 2008) the first 4 terms
(‖rs − rr‖+cδtr−cδts+T ) at the right-hand side of eqs. (6.1) and (6.2), as well as other
non-dispersive delays, are equal for all observables and can be denoted by g:

P = g + I +m+ ζ + ε (6.3)

Φ = g − I + µ+ A+ ξ + ε (6.4)

Code-minus-Carrier A linear combination that can be used to determine the code noise
is the so-called Code-minus-Carrier (CC):

CC ≡ P − Φ ≈ 2I − A+m+ ζ − ξ + ε (6.5)

In this combination the lumped parameter g (geometric range, receiver and satellite clock
and tropospheric delay) is eliminated from the observation equation. The phase noise and
phase multipath are assumed to be an order of magnitude smaller than the code noise and
code multipath respectively and they are consequently neglected.

Stand alone receiver This section presents two methods to determine the code noise
from the Code-minus-Carrier measurements of a single receiver. The first is by fitting a
low order polynomial to the data and then subtracting this polynomial from the data. The
second, called time differencing, is by taking the differences between measurements from
consecutive epochs.

Low order polynomial fitting By fitting a low order polynomial to the code-minus-
carrier data, the slowly changing components can be removed from the data. This includes
the instrumental delays (Liu et al., 2004), the constant ambiguities, the low frequency
multipath and the low frequency ionospheric delay. This leaves twice the high frequency
ionospheric delay, the high frequency code multipath and the code noise. The expectation
E and dispersion D of the code-minus-carrier observations are:

E {CC − p (t)} ≈ 2dI + dm

D {CC − p (t)} ≈ σ2
P

(6.6)
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where p(t) is the low order polynomial, σP is the standard deviation of the code measure-
ment noise, dI and dm are the residual ionospheric and multipath delay respectively. The
top pane of fig. 6.5 shows the code-minus-carrier combination (solid line) and the fitted
polynomial (dashed line) for GPS PRN18 and the bottom pane shows the measured C/N0.
The periodic effect that is clearly visible in both panes is most likely caused by multipath.
PRN18 was selected for its distinct multipath pattern, but other satellites show similar
results. Figure 6.5 confirms that the polynomial does not follow the multipath variations
and consequently the multipath is not removed when the polynomial is subtracted from
the code-minus-carrier observations.

The order of the polynomial should be chosen such that it removes most of the ionosphere
delays while not significantly reducing the measurement noise that we want to quantify.
Additionally, the polynomial should be estimated from enough data points that its uncer-
tainty can be neglected in the dispersion of eq. (6.6). In the following we will use a second
order polynomial for data segments of 120 epochs. In this case the polynomial reduces the
random white noise by less than 1% while eliminating most ionosphere delays.
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Figure 6.5: Stand alone receiver code-minus-carrier observations for GPS PRN18 on short
baseline (top: undifferenced; middle: time differenced; bottom: measured C/N0). Both the
undifferenced observations and the measured C/N0 show a periodic effect, most likely caused
by multipath. The time differenced observations do not show these delays, but the variance
of the noise changes with the C/N0.

The standard deviation of the code-minus-carrier observations after subtraction of the poly-
nomial is presented in fig. 6.6 versus the measured C/N0 for each GNSS. Each data point
represents 120 epochs. For each GNSS the mean standard deviation of the observations for
a C/N0 of 45 dB-Hz is estimated by fitting a line to the data that describes the standard
deviation as a function of the measured C/N0. The slope of these lines follows from the
inversely proportional relation between the C/N0 (as ratio-Hz) and the variance of the
noise (see e.g. Braasch and van Dierendonck, 1999) and fits well with the data. These
results together with results from other analysis techniques are also provided in table 6.3
(there called 1Rx-UD short for single Receiver Undifferenced). It is clear that the GIOVE
satellites perform better than the GPS satellites for the same measured C/N0, because of
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the different signal modulation. The EGNOS satellites show a larger standard deviation
than both the GPS and GIOVE satellites, mainly due to the smaller transmit bandwidth.
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Figure 6.6: Stand alone receiver code-minus-carrier standard deviation versus the measured
C/N0 on short baseline for data segments of 120s with fitted line based on theoretical relation
for GPS, EGNOS and Galileo

Time difference In the difference between two epochs, the phase ambiguity is eliminated
and the ionospheric delay, multipath and instrumental delays are reduced. The expectation
and dispersion of the time differenced code-minus-carrier observations are:

E {∆CC} ≈ 2∆I + ∆m

D {∆CC} ≈ 2 (1− %∆)σ2
P

(6.7)

where ∆ indicates the time difference and %∆ is the time correlation coefficient (|%∆| < 1)
between two consecutive code observations. The standard deviation of the code measure-
ments is assumed to be constant from one epoch to the next. The middle pane in fig. 6.5
shows the time differenced code-minus-carrier observations for GPS PRN18. The multi-
path delays, present in the undifferenced code-minus-carrier observations (top pane), are
removed in the time differenced observations (∆m is small). The variations in the measured
C/N0 due to multipath (bottom pane) do still influence the variance of the time differenced
code-minus-carrier observations; careful inspection of fig. 6.5 shows that the variation in
the middle pane is larger when the C/N0 is smaller. For the time differenced observations
the standard deviation for a C/N0 of 45 dB-Hz has again been estimated by fitting a line
to the 120s data segments. This fitting of the data is very similar for each combination of
observations and therefore no more figures like fig. 6.6 are presented. Results are provided
in table 6.3 (1Rx-∆UD) after normalization to the undifferenced levels by division of the
standard deviation by

√
2. This is the factor by which the standard deviation increases by

differencing if there is no correlation.

Between receiver difference Measurements from two receivers tracking the same satel-
lites can be combined to remove common errors from the measurements. Traditionally,
the main purpose of taking the between receiver single difference (SD) is to eliminate
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the satellite clocks from the observation equations, but these are already removed in the
geometry-free code-minus-carrier combination. Now the fractional part of the phase am-
biguity and the instrumental delay at the satellite are removed. For a short baseline (SB)
the ionospheric delay is also removed, because the differential ionospheric delay can be
neglected for a short baseline (here only 4 m). The antenna hardware delays are reduced
in the single difference if the same antenna type is used at both ends of a short baseline,
which is true for this measurement campaign. For a zero baseline (ZB) the ionospheric
delay, the multipath errors and the antenna hardware delays are removed, because they are
the same for both receivers. The resulting observations contain the SD phase ambiguity,
the remaining SD hardware delay, the SD code noise and, for the short baseline, the SD
multipath error. The expectation and dispersion of the SD code-minus-carrier observations
are:

E {CCSD} ≈ −ASD + (ζ − ξ)SD + [mSD]SB

D {CCSD} ≈ 2 (1− [%SD]ZB)σ2
P

(6.8)

where %SD is the correlation coefficient between the code observations of the two receivers.
For the short baseline it is assumed that there is very little correlation between measurement
noise of the two receivers ([%SD]SB ≈ 0), but for the zero baseline a large part of the noise
is the same for both receivers (Gourevitch, 1996) giving a high correlation ([%SD]ZB 6= 0).
Therefore, an increase of the variance of the noise by a factor 2 is only a good assumption
for the SD short baseline observations. For multipath it is the other way round, multipath
is absent for the zero baseline ([mSD]ZB ≡ 0), but not for the short baseline ([mSD]SB 6= 0).
Subtraction of the mean value from the observations removes the phase ambiguity, which
is constant if there are no cycle slips, and reduces the remaining hardware delay. Figure 6.7
again shows the undifferenced code-minus-carrier observations for GPS PRN18 in the top
pane and the measured C/N0 in the bottom pane, but now for both receivers in the short
baseline setup. The multipath effects for the two receivers are similar but not the same.
The middle pane shows the SD code-minus-carrier observations. These observations still
contain multipath in the same order of magnitude as the undifferenced code-minus-carrier
observations. For the SD observations the estimated standard deviation for a C/N0 of
45 dB-Hz is again provided in table 6.3 (SB-SD and ZB-SD) after normalization to the
undifferenced levels.

Time difference By taking the difference between the SD observations of two epochs,
the phase ambiguity is eliminated and the remaining hardware delay and multipath are
reduced. This gives the following expectation and dispersion for the time differenced SD
code-minus-carrier observations:

E {∆CCSD} ≈ [∆mSD]SB

D {∆CCSD} ≈ 4 (1− %∆) (1− [%SD]ZB)σ2
P

(6.9)

The variance of the time differenced SD measurements is dependent on both the time
correlation between two epochs and the correlation between the observations from the
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Figure 6.7: Single difference short baseline code-minus-carrier observations for GPS PRN18
(top: undifferenced; middle: single difference; bottom: measured C/N0). The periodic effect
visible in the undifferenced observations and the measured C/N0 that is most likely caused
by multipath, is not removed in the single difference.

two receivers. Results for the estimated standard deviation of the time differenced SD
observations for a C/N0 of 45 dB-Hz are provided in table 6.3 (SB-∆SD and ZB-∆SD)
after normalization to the undifferenced levels.

Double difference Subtracting the measurements to one reference satellite from the
measurements to all other satellites, removes all common terms from the measurements.
Traditionally, the main purpose of taking the between satellite difference is to eliminate
the receiver clocks from the observation equations, but these are already removed in the
geometry-free code-minus-carrier combination. Now the fractional part of the phase am-
biguity and the instrumental delay at the receiver are removed. By taking the between
satellite difference and the between receiver difference the so called double differences
(DD) are formed. All terms that are removed in the SD are also removed in the DD. This
leaves the DD phase ambiguity, the DD code noise and, for the short baseline only, the
DD multipath error. The variance of the code noise increases by a factor 4 if there is
no correlation between the observations. The noise on the observations made to different
satellites is assumed to be uncorrelated. As pointed out with the SD, for the short baseline
the observations of the two receivers to the same satellite are also assumed to be uncorre-
lated, but this is not true for the zero baseline. The expectation and dispersion of the DD
code-minus-carrier observations is:

E {CCDD} ≈ −λN + [mDD]SB

D {CCDD} ≈ 4 (1− [%SD]ZB)σ2
P

(6.10)

Because all fractional parts of the phase ambiguities are removed the resulting DD ambi-
guities have an integer value (indicated by N) times the wavelength λ.
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Between satellite difference C/N0 As we have to combine two satellites for the between
satellite differences, a pseudo C/N0 is computed with the following equation:

(C/N0)12 = −10 log
{

1
2

(
10−

(C/N0)1
10 + 10−

(C/N0)2
10

)}
(6.11)

where (C/N0)12 is the between satellite difference carrier-to-noise density ratio; (C/N0)1
and (C/N0)2 are respectively the carrier-to-noise density ratios of the reference satellite
and the second satellite forming the satellite pair. This equation follows from the inverse
relation between the variance and the carrier-to-noise density ratio when expressed in ratio-
Hertz. A factor 1

2 is added to normalize the C/N0 to the undifferenced levels. A certain
value of the pseudo C/N0 can be interpreted as following from the difference between 2
observations with this same value of the C/N0. Table 6.3 shows the results for the standard
deviation of the DD code-minus-carrier observations for a C/N0 of 45 dB-Hz, for both the
short and zero baseline (SB-DD and ZB-DD).

Time difference In the time difference between the DD observations of two epochs (also
called triple difference), the phase ambiguity is eliminated and the multipath is reduced.
This gives the following expectation and dispersion for the time differenced DD code-minus-
carrier observations:

E {∆CCDD} ≈ [∆mDD]SB

D {∆CCDD} ≈ 8 (1− %∆) (1− [%SD]ZB)σ2
P

(6.12)

The expectation value is very close to zero especially for the zero baseline setup. Results for
the estimated standard deviation of the measurement noise are again provided in table 6.3
(SB-∆DD and ZB-∆DD).

Table 6.3: Normalized standard deviations of the code noise in meters for C/N0 = 45 dB-Hz
for all analysis techniques and each GNSS

Observation Comparison with GPS Galileo EGNOS
combination thermal noise Field Roof Field Roof Field Roof

1 1Rx-UD +multipath 0.20 0.38 0.14 0.39 0.59 0.90
SB-SD 0.20 0.14 0.60
SB-DD 0.20 0.14 0.60

2 1Rx-∆UD −time correlation 0.10 0.12 0.07 0.09 0.39 0.47
SB-∆SD 0.10 0.07 0.37
SB-∆DD 0.10 0.06 0.39

3 ZB-SD −common LNA noise 0.11 0.06 0.21
ZB-DD 0.11 0.05 0.23

4 ZB-∆SD −time correlation 0.07 0.04 0.16
ZB-∆DD −common LNA noise 0.07 0.04 0.16

Carrier phase analysis In all analyses so far the carrier phase acted as an accurate reference
in the code-minus-carrier combination. The noise of the carrier phase itself can be analyzed
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along similar lines using the DD carrier phase observations. A low order polynomial must be
fitted to the DD carrier phase segments in between cycle slips and receiver clock jumps in
order to remove carrier phase ambiguities, DD geometric range and clock synchronization
effects. For the short baseline this leaves the carrier phase measurement noise and the
carrier phase multipath. For the zero baseline multipath is removed in the between receiver
difference so this leaves mainly the phase noise. For the zero baseline the measurement
noise of the phase observations of the two receivers is correlated (Gourevitch, 1996), giving
the following expectation value and dispersion:

E {ΦDD − p (t)} ≈ [µDD]SB

D {ΦDD − p (t)} ≈ 4 (1− [%SD]ZB)σ2
Φ

(6.13)

The polynomial p(t) is again based on enough data points to safely neglect its uncertainty in
the dispersion of eq. (6.13). Results for the standard deviation of the DD phase observations
for a C/N0 of 45 dB-Hz are presented in table 6.4 for both the short and zero baseline
(SB-DD and ZB-DD). Because the results are very similar for each GNSS, no distinction
is made in table 6.4 between the different systems. This is in line with expectations
since the standard deviation of the carrier phase depends only on the C/N0 and not on
the signal modulation. Because the geometric effect of the receiver clock offset is not
completely removed by the polynomial fitting, there remains a small effect on the DD
phase observations proportional to the Doppler offset. As a result the stationary EGNOS
satellites perform slightly better than the other satellites.

Table 6.4: Normalized standard deviations of the phase noise in cycles for C/N0 = 45 dB-Hz
for all analysis techniques

Observation Comparison with Normalized noise
combination thermal noise standard deviation

1 SB-DD +multipath 0.0043
2 SB-∆DD −time correlation 0.0040
3 ZB-DD −common LNA noise 0.0014
4 ZB-∆DD −time correlation 0.0015

−common LNA noise

Time difference In the triple difference phase observations the DD geometric range and
the geometric effects of the clock offsets are reduced and the carrier phase ambiguities are
eliminated. In addition most of the phase multipath is removed leaving mainly the phase
noise. This gives the following expectation value and dispersion:

E {∆ΦDD} ≈ [(∆µ)DD]SB

D {∆ΦDD} ≈ 8 (1− %∆) (1− [%SD]ZB)σ2
Φ

(6.14)

Figure 6.8 shows the ∆DD phase observations for 120s data segments for each GNSS for
the short baseline observations. From this figure it can be concluded that the standard
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deviation of the phase observations as a function of the C/N0 is the same for each GNSS.
Therefore, the standard deviation for a C/N0 of 45 dB-Hz has been estimated from all
observations simultaneously (see table 6.4 SB-∆DD and ZB-∆DD).
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Figure 6.8: Short baseline ∆DD phase observations versus measured C/N0 for data seg-
ments of 120s. The three navigation systems perform very similar, so one line has been fitted
to all the data points

Comparison with theory Table 6.3 shows the standard deviation of the observations for
each of the discussed combinations for a C/N0 of 45 dB-Hz. These standard deviations
have been normalized to the undifferenced levels. To clarify the similarities and differences
in the normalized standard deviations of the code noise for the different combinations of
the observables, an analysis is presented here, with special attention for three effects that
influence the computed standard deviations. These are: multipath, time correlation of
the observations (resulting from the tracking loops) and correlation resulting from both
receivers tracking the same signal traveling through the atmosphere, antenna and Low
Noise Amplifier (LNA) in the zero baseline setup (Gourevitch, 1996). In table 6.3 the
different observation combinations are grouped based on how they deal with these three
effects. The first group (single receiver, short baseline SD and short baseline DD) does not
remove the multipath from the observations. Therefore, it is expected that the computed
noise for this group is larger than the theoretical thermal noise. The second group (single
receiver time difference, short baseline time difference SD, and short baseline time difference
DD) removes most of the multipath from the measurements. In addition the standard
deviation of the noise is further reduced if the measurements are positively correlated in
time. Therefore, it is expected that the computed noise is smaller than the theoretical
thermal noise if the correlation is positive. The third group (zero baseline SD and zero
baseline DD) also removes the multipath from the measurements. In addition the standard
deviation of the noise is further reduced because the measurements of the two receivers are
correlated as a result of being connected to the same antenna and LNA ([%SD]ZB = %LNA 6=
0). Therefore, it is expected that the computed noise is smaller than the theoretical thermal
noise. The noise levels of group two and three cannot easily be compared. The fourth
group (zero baseline time difference SD and zero baseline time difference DD) also removes
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the multipath from the measurements. In addition the computed standard deviation of the
code noise is further reduced by both the time correlation and the correlation resulting
from the antenna and LNA and so it is expected that this group has the smallest standard
deviation of the noise. The values in table 6.3 are very close to each other within each
group, with the exception of group one. This is an expected result, because the multipath
is very different for the field and roof environment. Using results of group three and four,
the time correlation of the observations can be determined by solving the following relation
for the time correlation coefficient %∆:

σ2
∆ = 2 (1− %∆)σ2 (6.15)

where σ and σ∆ are the (not normalized) standard deviations of the code noise of group
three and the corresponding time differenced code noise of group four respectively. Ap-
pendix A shows that this approach is equivalent to the determination of the autocorrelation
coefficient at a time delay equal to the measurement interval. When the correlation has
been determined, the undifferenced thermal code noise (σ) can be estimated by apply-
ing eq. (6.15) to the standard deviation of group two (σ∆). Here it is assumed that the
tracking loop time correlation is the same for the short and zero baselines. Amiri-Simkooei
and Tiberius (2007) showed that this is a good assumption for the baseline components.
The resulting estimated code noise represents thermal noise (without multipath and with-
out underestimation due to time correlation or correlation due to the LNA in the zero
baseline measurements). In a similar way using results of group two and four the correla-
tion between the zero baseline measurements mostly due to the LNA can be determined
([%SD]ZB = %LNA). Table 6.5 shows the results of these computations for each GNSS. The
results show significant correlation between the code observations made by two receivers in
the zero baseline setup as well as significant time correlation between code observations of
consecutive epochs. Neglecting this correlation may lead to an over optimistic stochastic
model. Table 6.5 also shows the theoretical thermal noise values for C/N0 = 45 dB-Hz
that have been determined with the formulas presented in (Sleewaegen et al., 2004) and
the receiver and signal properties given in tables 6.1 and 6.2. For the integration time the
symbol duration has been used and a common narrow correlator spacing has been assumed
for GPS and Galileo. For EGNOS a correlator spacing of 1

2 chip has been assumed. The
measured results are very close to the theoretical values for GPS and Galileo. For EGNOS
the measured values are somewhat higher than the theoretical values, which might be due
to the fixed geometry of the geostationary EGNOS satellites.

Table 6.5: Time correlation coefficient and zero baseline LNA correlation coefficient, ther-
mal noise estimate and theoretical value of the standard deviation of the code noise in meters
for C/N0 = 45 dB-Hz

%∆ [-] %LNA [-] σmeasured [m] σtheoretical [m]
GPS 0.63 0.49 - 0.64 0.16 - 0.19 0.18
Galileo 0.55 - 0.57 0.69 - 0.84 0.10 - 0.14 0.11
EGNOS 0.41 - 0.51 0.82 - 0.88 0.48 - 0.67 0.42

The same technique has been used to compute the time correlation, the correlation due to
the LNA and the thermal noise of the phase observations. The results of these calculations
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are presented in tables 6.4 and 6.6. The results are very similar for each GNSS and
no distinction is made in the tables between the different systems. Just like the code
observations, the phase observations made by two receivers in the zero baseline setup are
highly correlated. Unlike the code observations, the phase observations show very little
time correlation at a sampling rate of 1Hz. The measured values are relatively close to,
though somewhat higher than, the theoretical value determined with the formula presented
in (Sleewaegen et al., 2004) and the receiver and signal properties given in tables 6.1
and 6.2.

Table 6.6: Time correlation coefficient and zero baseline LNA correlation coefficient, ther-
mal noise estimate and theoretical value of the standard deviation of the phase noise in cycles
for C/N0 = 45 dB-Hz

%∆ [-] %LNA [-] σmeasured [cycles] σtheoretical [cycles]
-0.045 0.87 0.0039 0.0028

6.2 Dual and multi frequency analysis

In this section the geometry-free analysis is extended to dual and multi frequency observa-
tions. The well-known multipath linear combination, which relies on dual-frequency carrier
phase data, is introduced and again illustrated by means of a new measurement campaign
with GPS and both GIOVE-A and B. We analyze and address in particular the measure-
ments on the wideband signals at the L5/E5a frequency. We not only study random errors
in the data, but also systematic errors which dominate the data behavior over longer time
scales.

6.2.1 Dual frequency measurement campaign

This measurement campaign consists of two measurement setups. A zero baseline was
measured on May 29, 2009 with two Septentrio PolaRx3G receivers connected to a single
Leica AR25 3D choke ring antenna on top of a 14-floor building. A short baseline was
measured on June 1, 2009 with the same two Septentrio PolaRx3G receivers each connected
to its own Leica AR25 3D choke ring antenna installed on tripods in the open field about
6 meters separated.

GIOVE E1B and E5aQ signals were tracked from GIOVE-A and B and the GPS L1 C/A
and L5Q signals were tracked from GPS SVN49 (PRN01). Additionally, the GPS L1 C/A
signal was tracked from all other visible GPS satellites. Measurements were collected at a
1 second interval and stored in RINEX-format version 3 (Gurtner and Estey, 2007). For
further details on the measurement campaign the reader is referred to Tiberius et al. (2009).

In order to compare and to provide an independent check of the findings from this mea-
surement campaign, measurements from UNAVCO, contributors to the International GNSS
Service (Dow et al., 2009), of the L1 C/A, L2C and L5Q signals transmitted on June 1,
2009 by GPS SVN49 were also processed. These GPS-only data were collected with a 76-
channel Trimble NetR8 receiver able to track modernized GPS L2C and L5 signals (Trimble
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Navigation Limited, 2008b), and a Trimble GNSS choke ring antenna that supports all GPS
frequency bands (Trimble Navigation Limited, 2008a). The receiver was located on the
roof of the UNAVCO headquarters in Boulder, Colorado, USA.

6.2.2 Linear combinations for multi-frequency observations

For this multi-frequency analysis, we start with the geometry-free measurement eqs. (6.3)
and (6.4) and generalize them for frequency j:

Pj = g + f2
i

f2
j
Ii +mj + ζj + εj

Φj = g − f2
i

f2
j
Ii + µj + Aj + ξj + εj

(6.16)

where P and Φ are the code and phase measurements, g is a geometric term which includes
the geometric range between the receiver and satellite, the troposphere delay, the receiver
clock error, and the satellite clock error. The symbol f denotes the carrier frequency, Ii is
the ionosphere delay on reference frequency i, m and µ are the code and phase multipath,
A is the phase ambiguity, ζ and ξ are the instrumental code and phase delays, and ε and ε
are random code and phase measurement errors respectively. All quantities are expressed
in meters except frequency f is in Hertz.

Multipath linear combination

Using dual-frequency phase measurements and a single-frequency code measurement of
one receiver, we can eliminate the first-order ionospheric effect as well as the geometric
term g from eq. (6.16) with the multipath combination (see e.g. Estey and Meertens,
1999):

MPji = Pj −
f2
j +f2

i

f2
j−f

2
i
Φj + 2f2

i

f2
j−f

2
i
Φi (6.17)

with i 6= j. If the phase noise and phase multipath are neglected, this leads to the following
expectation and dispersion values of the multipath combination:

E {MPji} ≈ mj + ζj −
f2
j +f2

i

f2
j−f

2
i

(Aj + ξj) + 2f2
i

f2
j−f

2
i

(Ai + ξi)
D {MPji} ≈ σ2

P,j

(6.18)

The MP combination eq. (6.18) contains code multipath, a constant ambiguity term which
is a combination of the ambiguities of the two phase measurements, a combined hardware
delay and thermal noise. Subtraction of the mean value from the measurements removes
the phase ambiguities, which are constant if there are no cycle slips. The behavior of
receiver hardware delays was studied in Liu et al. (2004), with reported values for the
hardware delay change rates under normal conditions below 0.1 mm/s. Satellite hardware
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delay change rates are assumed to be constrained to even smaller values. Therefore, the
remaining differential hardware delays in eq. (6.18) will have little impact on short time
scales. The resulting time series is dominated by code multipath and thermal noise.

With the measured dual-frequency data two MP-combinations can be formed: one for the
code on L1/E1 and one for the code on L5/E5a. For the triple frequency UNAVCO data
many more MP-combinations can be formed with different, some very large, multiplication
factors. We have used MP15, MP21 and MP51 which have relatively small multiplication
factors and therefore are less impacted by phase errors.

When differencing consecutive epochs, the constant ambiguity terms are eliminated and the
slowly changing hardware delays are greatly reduced. This leads to the following expectation
and dispersion for the time-differences:

E {∆MPji} ≈ ∆mj

D {∆MPji} ≈ 2 (1− %∆)σ2
P,j

(6.19)

For the measured 1Hz data, the time-differenced multipath is very small and the residual
time series mainly shows the random effects captured in the dispersion. This dispersion
depends on the thermal noise and the time correlation.

Overview of linear combinations

Table 6.7 summarizes the single and multi-frequency linear combinations for the code and
carrier measurements introduced in this chapter. The linear combinations (l.c.) consid-
ered are the Code-minus-Carrier (CC) and the multipath (MP) combination in undiffer-
enced (UD), between-receiver single differenced (SD), double differenced (DD), and time-
differenced (∆) form. Table 6.7 also shows the expectation and dispersion values of each
combination for three different measurements setups: single receiver (1Rx), short baseline
(SB), and zero baseline (ZB).

Table 6.7: Expectation and dispersion values of different linear combinations
# Setup Diff. l.c. Expectation Correction Dispersion
1 1Rx UD CC 2I − A+m+ ξCC Polynomial σ2

P

1Rx UD MP m+ AMP + ξMP Mean σ2
P

SB SD CC mSD − ASD + ξSD Mean 2σ2
P

SB DD CC −λNDD +mDD Mean 4σ2
P

2 1Rx ∆ CC 2∆I + ∆m None 2 (1− %∆)σ2
P

1Rx ∆ MP ∆m None 2 (1− %∆)σ2
P

SB ∆SD CC ∆mSD None 4 (1− %∆)σ2
P

SB ∆DD CC ∆mDD None 8 (1− %∆)σ2
P

3 ZB SD CC −ASD + ξSD Mean 2 (1− %SD)σ2
P

ZB DD CC −λNDD Mean 4 (1− %SD)σ2
P

4 ZB ∆SD CC 0 None 4 (1− %∆) (1− %SD)σ2
P

ZB ∆DD CC 0 None 8 (1− %∆) (1− %SD)σ2
P

Column five (expectation) shows the systematic effects that are present in each of the linear
combinations. These include ionospheric delay I, hardware delays ξ, code multipath m,
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and carrier phase ambiguity A if real-valued or λN if integer-valued where N is the integer
number and λ the wavelength. Even though multipath is a very complex phenomenon that
is difficult to predict, it is considered a systematic effect in this approach. The undifferenced
CC combination contains the ionospheric delay; a second order polynomial is fitted typically
over a 120 seconds time span and subtracted to remove this effect. The ambiguity terms
which are present in some of the linear combinations are removed by subtracting the mean
value, as indicated in column six (correction) of table 6.7, using again a 120 seconds time
span.

Column seven (dispersion) contains the random effects that are present in each of the linear
combinations. This is the random measurement noise with variance σ2

P for the pseudorange
code impacted by correlation of the measurements. Similar to the single frequency case,
two important types of correlation are considered for the code measurements. These are
time correlation %∆, and correlation between the code measurements of the two receivers
in the zero baseline setup %SD. To determine these stochastic parameters, the linear
combinations in table 6.7 are again divided into four groups based on their dispersion and
remaining systematic effects.

From table 6.7 it may seem straightforward to determine the variance of the random thermal
measurement noise σ2

P directly from one of the linear combinations in group 1 of table 6.7.
However, this is not trivial because systematic multipath effects cannot easily be removed
from the measurements. Therefore, the indirect method introduced in the previous section
is used to determine σ2

P and both correlation parameters from groups 2, 3 and 4. This
method can be summarized as follows:

Multipath is strongly correlated over time spans of seconds, and therefore it is greatly re-
duced in time-differenced measurements such as those in group 2. Remaining ionospheric
delay and hardware delays can be neglected. Consequently, the variance of the random
errors in group 2 can be estimated accurately from the measurements. For zero baselines
in groups 3 and 4, the multipath is eliminated by single differencing. This means that the
variance of the random errors in groups 3 and 4 can also be estimated from the measure-
ments. In fact, the variance of the measurements will closely represent the dispersion given
in table 6.7. The estimated values will contain thermal noise as well as correlation between
the measurements. Since there are only three unknown parameters %∆, %SD and σP , they
can all be determined from the variance estimates of groups 2, 3 and 4. All computations
are performed with respect to a reference C/N0 of 45 dB-Hz.

6.2.3 Dual frequency results

First the random measurement noise on the new wideband signals is analyzed, then the
remaining systematic measurement errors in the linear combinations are highlighted.

6.2.3.1 Random measurement noise

Table 6.8 shows the standard deviations of the measurement residuals on the signals tracked
during the short baseline measurements in the field and the zero baseline measurements on
the roof for each of the discussed linear combinations. The measured time series were split
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into data segments of 120 seconds and the standard deviation for each of these segments
was determined. Based on these standard deviations, which were measured at different
C/N0, the standard deviation for a C/N0 of 45dB-Hz was estimated from all data. The
well known inversely proportional relation between the C/N0, expressed in ratio-Hz, and the
variance of the noise, reduces this estimation to a linear regression on a logarithmic scale
with only one unknown parameter (as was shown in fig. 6.6). Finally, for easy comparison
and for this table only, the increase in variance due to differencing has been compensated,
assuming zero correlation.

Table 6.8: Standard deviations of different measurement combinations and signals expressed
in meters. The standard deviations are estimated for C/N0 = 45dB-Hz based on data
segments of 120s and are normalized to undifferenced level.

Linear GPS L1 C/A GPS L5Q Galileo E1B Galileo E5aQ
Combination SB

Field
ZB
Roof

SB
Field

ZB
Roof

SB
Field

ZB
Roof

SB
Field

ZB
Roof

UD CC 0.27 0.43 0.10 0.14 0.20 0.27 0.07 0.07
UD MP 0.38 0.49 0.10 0.14 0.20 0.27 0.07 0.07
SD CC 0.28 0.11 0.21 0.07
DD CC 0.28 0.18 0.07
∆CC 0.15 0.18 0.05 0.05 0.11 0.12 0.04 0.04
∆MP 0.20 0.20 0.05 0.05 0.11 0.12 0.04 0.04
∆SD CC 0.15 0.05 0.11 0.04
∆DD CC 0.15 0.10 0.04
SD CC 0.20 0.05 0.16 0.04
DD CC 0.19 0.14 0.04
∆SD CC 0.13 0.04 0.10 0.03
∆DD CC 0.12 0.09 0.03

As expected, table 6.8 displays a high precision of the GPS L5Q and Galileo E5aQ signals
compared to the signals on the L1/E1 frequency. For the GPS L5Q and Galileo E1B
and E5aQ signals, the standard deviation of the CC combination is equal to the standard
deviation of the MP combination, showing that the ionospheric delay has been removed
successfully from the CC by fitting a second order polynomial without influencing the noise
characterization.

For the GPS L1 C/A signal the results for the CC combination represent the mean value
of all tracked GPS satellites, while the MP combination is only formed for SVN49. This
explains that we have different results for these combinations in table 6.8: 0.38 vs. 0.27,
and 0.49 vs. 0.43. For GPS SVN49 the code and carrier phase on L5 could only be
measured continuously for relatively high satellite elevation due to the sharp decrease of
C/N0 with elevation for the L5 signal. As a result, the multipath combination for the L1
C/A signal transmitted by SVN49 could also only be determined for high satellite elevation
and thus for relatively high C/N0 values of about 50dB-Hz for this signal. Note, the sharp
decrease of C/N0 with elevation with the demo payload on SVN49 (Marquis et al., 2009)
is only present on the L5 frequency. The standard deviation of the MP15 combination
for C/N0 = 45dB-Hz, could therefore only be extrapolated from the measured values at
higher C/N0, resulting in an inaccurate estimate.
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Comparison of GPS L5Q and Galileo E5aQ results reveals that, for undifferenced obser-
vations the GPS L5Q signal has a larger standard deviation by a factor of 1.5-2. This
is explicable because the majority of L5Q measurements were collected with high C/N0.
It should be noted that DD GPS L5Q results are not available because at the time of
measurements only one GPS satellite transmitted the L5Q signal.

The results in table 6.8 allow the estimation of the standard deviation, the time correlation,
and the ZB SD correlation as discussed in the previous section. The ZB SD correlation
expresses the relation between two different noise contributions, namely amplifier noise,
which includes sky and ground noise and which is equal for both receivers in the zero
baseline set-up, and internal receiver noise (Tiberius et al., 2009). The results from these
noise and correlation computations are presented in table 6.9, and compare well to the
single frequency results in table 6.5. In order to assess the sensitivity of our approach to
the length of the data segments, the entire processing has been repeated for data segments
of 1,800 seconds. For this data segment length, the UD CC and MP results are significantly
larger than those presented in table 6.8, especially for the L5Q and E5aQ signals. However,
such an increase is no longer present in the time-differenced and ZB SD measurements due
to the absence of multipath in these combinations. The final estimate of the pseudorange
measurement noise is only slightly larger for the longer data segments as shown in table 6.9.
The correlation values vary little.

Table 6.9: Time correlation, zero baseline correlation, measured and theoretical thermal
noise on code measurements

GPS Galileo
segments L1 C/A L5Q E1B E5aQ

%∆[-] 0.59 0.35 0.60 0.43
%ZB−SD [-] 0.51 0.28 0.30 0.43
σP [m] measured 120s 0.23 0.06 0.17 0.05
σP [m] measured 1,800s 0.24 0.07 0.18 0.06
σP [m] theoretical 0.18 0.06 0.11 0.06

Table 6.9 also shows the expected standard deviation using the theoretical expressions by
Braasch and van Dierendonck (1999) and Sleewaegen et al. (2004), and the receiver and
signal properties from Tiberius et al. (2009).

Both the GPS L5Q and the Galileo E5aQ wide band signals have thermal measurement
noise on the order of about 6 cm, which is much lower than seen for the E1B and especially
the L1 C/A signal.

The carrier phase measurement noise was also analyzed by forming the double difference
carrier phase (DDΦ) combination. Figure 6.9 shows part of the DDΦ time series in panes
1 and 3 and corresponding C/N0 values in panes 2 and 4 for both frequencies of GIOVE-
A and B. A 2nd order polynomial p (2) has been fitted, between receiver clock jumps to
remove the geometric effect and carrier phase ambiguity in the short-baseline (SB) set-up.
The E5a carrier phase measurements are noisier than the E1 carrier phase measurements.
This is in small part due to the larger wavelength, but the main reason is the lower received
signal power which can be seen in the C/N0 measurements. An interesting detail is that
the C/N0 measurements themselves are also noisier on E5a than on E1.
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Figure 6.9: Double difference phase measurements of GIOVE-A and B for E1 and E5a for
the short baseline. E5a is tracked here with lower signal power and consequently has more
measurement noise.

Analogously to the pseudorange code noise, the thermal carrier phase noise has been
estimated for GPS L1, Galileo E1, and Galileo E5a with respect to a C/N0 of 45dB-Hz.
Since only one GPS satellite was transmitting the L5Q signal, the GPS L5 carrier phase
noise could not be evaluated in this manner. Table 6.10 shows the results for the DDΦ
and time-differenced DDΦ for the short and zero baselines. Table 6.11 shows that the
measured values are very close to the theoretical expectations, and are comparable to the
single frequency results in table 6.6. There is little time correlation on these 1Hz phase
measurements, but the ZB SD correlation is significant.

Table 6.10: Standard deviation of DD and ∆DD carrier phase measurements in millimeters
for both measurement set-ups, estimated for C/N0 = 45dB-Hz based on data segments of
120s and normalized to undifferenced level.

Linear GPS Galileo
Combination L1 C/A E1B E5aQ
SB DDΦ 0.58 0.53 0.68
SB ∆DDΦ 0.52 0.53 0.69
ZB DDΦ 0.34 0.39 0.47
ZB ∆DDΦ 0.34 0.40 0.48

6.2.3.2 Systematic measurement errors

The expectations in table 6.7 show that the residuals of the linear combinations still contain
some systematic effects. Most of these effects can either be removed by detrending the
data, e.g. the ionospheric delay can be removed by fitting a second order polynomial to
the undifferenced CC measurements, or be neglected for the purposes of this study, e.g.
the slowly changing hardware delays. However, not all systematic effects fall into these
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Table 6.11: Time correlation, zero baseline correlation, measured and theoretical thermal
noise on carrier phase measurements

GPS Galileo
L1 C/A E1B E5aQ

%∆,Φ [-] -0.03 -0.02 -0.05
%ZB−SD,Φ [-] 0.57 0.44 0.53
σΦ [mm] measured 0.51 0.53 0.68
σΦ [mm] theoretical 0.54 0.54 0.72

categories. The most important remaining systematic effect, i.e. multipath, is not removed
from the undifferenced residuals or from the short baseline single differences.

Long term variations in the time series such as those that could result from multipath
from a nearby reflector eventually have little impact on the noise characterization through
tables 6.8 and 6.9, based on 120s data segments. However, multipath dominates the
residual time series on longer time scales as can be seen in fig. 6.10. Panels a), b) and
c) show for the short baseline measurements the MP51 combination, the measured C/N0,
and the satellite elevation for GIOVE-A, GIOVE-B and GPS SVN49. The mean value over
the full time span has been subtracted to present the variations more clearly. The MP
combination shows strong variations in the order of meters over long periods of time. This
type of variation was not encountered on the L1/E1 frequency.

These measurements have been carried out with the manufacturer proprietary multipath
mitigation intentionally disabled to show the ‘raw’ multipath effects. For comparison
fig. 6.11 shows the MP51 results for GIOVE-B from the roof measurements (ZB). These
results are very similar for both receivers, since multipath effects are largely the same for
both receivers for a zero baseline. The MP combination again shows strong variations in
the order of one meter. The pattern is typical of multipath with the strongest effects at
low satellite elevation.

Figure 6.12 shows the MP15 results for GPS SVN49 and GIOVE-B from the field mea-
surements. The very large variations found in the L5/E5a (MP51) results are not observed
with L1/E1 (MP15); note that the vertical axis ranges only from – 2m to +2m. There is a
slowly changing elevation dependent bias on the GPS SVN49 measurements on L1, which
was previously reported by Erker et al. (2009). This effect, caused by a signal reflection
inside the satellite (Langley, 2009), will not significantly influence our noise assessment due
to its slow nature, but does show up on the complete L1 C/A time series.

As mentioned above, the UNAVCO measurements of June 1, 2009 were also processed
and are presented for comparison. The top and middle panes of fig. 6.13 show the multi-
path combinations in, respectively, undifferenced and time-differenced form of the L1 C/A
(MP15) , L2C (MP21) and L5Q (MP51) signals for GPS SVN49 for this day. The time
series of the different frequencies are offset by 2 meters for visual purposes. The bottom
pane shows the C/N0 of the same signals. The MP combinations of each signal show
typical code multipath effects at the start and end of the time series, i.e. at low elevation,
with amplitudes of a few meters. Multipath effects on the L5Q signal are in the same order
of magnitude as those on the other two signals, which means that the higher signal band-
width does not reduce these effects. In addition, fig. 6.13 shows the previously mentioned
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Figure 6.10: Multipath combination, C/N0 and satellite elevation for field observations of
a) GIOVE-A, b) GIOVE-B and c) GPS SVN49.
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Figure 6.11: Multipath combination, C/N0 and satellite elevation for GIOVE-B for receiver
Rx1 located on the roof.
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Figure 6.12: MP15 combination for GPS SVN49 and GIOVE-B for the field measurements.

elevation dependent bias on L1 C/A (MP15), but also a clear long term systematic effect
on L5Q (MP51). This could be caused by elevation dependent differential hardware delays,
or other systematic effects, which are amplified differently in the multipath combinations.
The systematic effects are largely eliminated in the time-differences, resulting in a white
noise-like signal. Due to the 15 second measurement interval, the residual time-differences
are significantly larger than those for the PolaRx3G data which was measured at 1 Hz. The
measured C/N0 values for L5Q show the strong elevation dependence reported by Erker
et al. (2009).
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Figure 6.13: Multipath combinations, time-differences and C/N0 values of L1 C/A (MP15),
L2C (MP21) and L5Q (MP51) from UNAVCO measurements to GPS SVN49 on June 1,
2009. The time series within both the top and middle panes are offset by 2 meters for visual
purposes.

Figure 6.14 shows the standard deviation of the multipath linear combination as a function
of the mean satellite elevation for data segments of 600s (40 epochs with 15s measurement
interval) for a 7-day period of the UNAVCO measurements of GPS SVN49. The figure
shows that the L1 C/A code has the largest range in standard deviation with high precision
at high C/N0, noting that such large values are not reached for the other signals, and low
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precision for lower C/N0. The L2C signal shows a similar precision for midrange C/N0,
but the precision remains better for lower C/N0. The precision of the L5Q signal is also
comparable to the other signals, but this is reached for much smaller values of the C/N0,
which seems to indicate a better performance of this signal.
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Figure 6.14: Multipath combination standard deviation vs. C/N0 of the L1 C/A (MP15),
L2C (MP21) and L5Q (MP51) signals for GPS SVN49 for June 1-7, 2009 from the UNAVCO
measurements. Each marker represents the standard deviation of a data segment of 600s (at
1/15 Hz) at the mean C/N0 during the segment.

Figure 6.15 shows the same data but now as a function of satellite elevation. It does
not show this strong improvement of the L5Q signal with respect to the other signals,
although the L1 C/A signal still shows the widest range in precision. The connection
between figs. 6.14 and 6.15 is formed by the measured C/N0 as a function of elevation,
which mainly depends on the antennas of the receiver and, especially for L5, the satellite.
As can be seen, the standard deviation as a function of elevation is very similar for the three
signals despite the large differences in C/N0. This can be explained as follows: the standard
deviation for 600s data segments with 15s measurement interval is not just a function of
the C/N0, but it is also greatly impacted by multipath. Since multipath strongly depends
on elevation this becomes clearly visible in fig. 6.15.

Although these results are greatly affected by the strong elevation dependence of the C/N0
for L5Q and limited by the 15s measurement interval, this analysis shows that the expected
high performance of the wide band L5Q signal might not present itself in the presence of
multipath. The performance of future applications using the wide band signals on E5a
and L5 might be severely compromised by the variations on the multipath and code-minus-
carrier combinations which were measured in the field. Therefore, a better understanding of
their source is desirable. Multipath from a reflector close to the antenna is one effect that
could cause long term variations like those encountered on the CC and MP combinations
of the L5/E5a measurements seen in fig. 6.10. In Tiberius et al. (2009) this was explored
in more detail and, although no definite conclusion was reached, the most likely cause
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Figure 6.15: Multipath combination standard deviation vs. satellite elevation of the L1
C/A (MP15), L2C (MP21) and L5Q (MP51) signals for GPS SVN49 for June 1-7, 2009
from the UNAVCO measurements. Each marker represents the standard deviation of a data
segment of 600s (at 1/15 Hz) at the mean elevation during the segment.

is indeed severe multipath in combination with weak multipath rejection of the antenna.
Bedford et al. (2009) indicate that in the low frequency band (L5, E5a, E5b) the Leica
AR25 3D choke ring antenna has a front-back ratio which is 10dB lower than a traditional
2D choke ring antenna. This results from the design trade-off between multipath rejec-
tion and low elevation tracking of satellites, the latter of which has significantly improved
for the 3D antenna. The front-back ratio indicates the antenna’s directivity and resis-
tance to multipath, driven by the antenna’s shielding and sensitivity to left-hand circularly
polarized signals with respect to the right-hand circularly polarized line-of-sight signals.
Slowly changing differential hardware delays can also result in variations in the multipath
combinations on very long timescales. Such variations were found in the UNAVCO data
(fig. 6.13) and might also be present on our own measurements, but there they would not
be noticeable due to the very strong variations which are probably caused by multipath.

Figures 6.16 and 6.17 show the SD and DD data for the GIOVE-A and B satellites for
the short and zero baselines. The top pane of each figure shows the SD for each of
the satellites, while the middle panes show the DD between the satellites. The bottom
panes show the DD C/N0 which is a combination of the C/N0 for the two satellites, as
introduced in eq. (6.11), and gives a measure for the noise that can be expected in the DD
measurements.

Table 6.7 shows that the DD CC combination mainly contains the integer DD ambiguity,
code multipath and code noise. In the mean value of a time series of DD CC, the noise
term averages out leaving just the ambiguity and the multipath contributions. In addition,
for the zero baseline, the multipath is eliminated in the single and double differences. This
means that the expectation value of the mean of a time series of DD CC measurements,
divided by the wavelength, is equal to the integer ambiguity which thus can be determined.



144 Chapter 6. Geometry-free Analysis of GNSS Signal Stochastics

20:00 21:00 22:00 23:00 00:00
−5

0

5

D
D

 C
C

[m
]

20:00 21:00 22:00 23:00 00:00
−5

0

5

S
D

 C
C

[m
]

Single and Double Difference − E31−E32 L5 − Short Baseline

 

 

E31
E32

20:00 21:00 22:00 23:00 00:00
30

35

40

45

D
D

 C
/N

0
[d

B
−

H
z]

UTC 01−Jun−2009

Figure 6.16: Single and Double Difference Code-minus-Carrier measurements and DD
C/N0 for GIOVE-A and B for the short baseline.
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Figure 6.17: Single and Double Difference Code-minus-Carrier measurements and DD
C/N0 for GIOVE-A and B on the zero baseline.
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From figs. 6.16 and 6.17 it is clear that the strong multipath-like variations are indeed not
eliminated in the SD or DD for the short baseline, but they are eliminated for the zero
baseline (table 6.7). These multipath effects prevent successful geometry-free ambiguity
resolution on the short baseline, while successful geometry-free ambiguity resolution is
possible on the zero baseline (de Bakker et al., 2012).

In conclusion we can state that short and zero baseline measurements have revealed low
thermal noise of about 6 cm on both the GPS L5Q and the Galileo/GIOVE E5aQ signals
which is in line with theoretical expectations for these wide band signals. However, the
results also showed strong variations of the pseudorange code measurements over longer
time periods, the magnitude of the variations easily reaching up to 20 times the thermal
noise standard deviation. Despite being observed in what would generally be considered a
benign multipath environment, the most likely cause of these variations is severe short-range
multipath combined with low multipath rejection by the antenna.

Many applications might not be able to take full benefit of the high precision of the new
L5Q and E5aQ signals due to the presence of the strong multipath variations encountered
on the measurements.

6.3 Multipath analysis, variance and correlation estimation

The previous sections revealed that multipath is the dominant (unmodeled) error source on
the pseudo range observations over longer time spans. The most basic stochastic treatment
of multipath is to simply use a higher value for the expected variance of the (white) noise
of the pseudo range measurements (for which multipath is expected) which translates into
a decrease of the weighting in the positioning algorithms. An improved and often used
method is to use an elevation dependent or C/N0 dependent weighting scheme, since
multipath is often most severe for satellites with low elevation and C/N0.

For a kinematic receiver this approach might suffice, since the geometry of the reflecting
objects changes rapidly with respect to the user, resulting in a white noise-like multipath
environment. However, static receivers are often impacted by the same reflecting objects
for long time spans, since the GNSS satellite geometry only changes slowly. This leads to
high time correlation in the multipath delays, which should be taken into account. Also,
considering the new GPS L5 and Galileo E5 wide band signals, the white noise stochastic
approaches do not suffice if one wants to make optimal use of the increased precision of
these new signals. Section 6.2 confirmed the higher precision of these new signals based
on short and zero baseline measurements, but also revealed multipath delays on the L5/E5
measurements similar to those on the GPS L1C/A measurements. Simsky et al. (2008)
showed the improved multipath rejection of wide-band Galileo modulations, but also found
that this advantage does not hold for short-range multipath. Accounting for this multipath
in the white noise of the measurements, means that the L5/E5 signals get equal weight
as the GPS L1C/A signals in the positioning solution, thus taking no advantage of the
increased precision. Elevation dependent weighting might perform somewhat better, since
it can at least use the higher precision for satellites with high elevation. Although it should
be noted that significant multipath was also encountered at higher elevations in section 6.3.
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In this section we will investigate multipath together with (time correlated) measurement
errors on GNSS pseudo range measurements as a stochastic process in the measurement
domain. Multi-frequency data collected by static receivers will again be used to form the
multipath linear combination. From investigation of measured multipath time series in
the previous section and Tiberius et al. (2009), we found that multipath has strong time
correlation at 1 Hz and in this section it will be shown that it can be modeled by a low
order AR process.

The estimated multipath models can have a number of uses. Firstly, they can be used to
characterize the multipath environment as well as the multipath properties of the GNSS re-
ceiver and antenna, and the quality of the resulting pseudo range measurements. Secondly,
the estimated models provide a simple method to generate realistic artificial multipath time
series, which can e.g. be used in a GNSS (software) simulator. Thirdly, the detection of
multipath errors on the GNSS measurements with integrity algorithms will improve from
having a more realistic model for multipath time series.

Finally, GNSS positioning algorithms based on filtering techniques can greatly benefit from
the more realistic approach to multipath compared to a white-noise treatment of multipath.
This is done by extending the state vector with additional entries (see e.g. Salzmann and
Teunissen, 1990, appendix B.2).

Multipath linear combination

The following analyses are again based on the multipath linear combination, introduced in
eq. (6.17), for frequency j (all expressed in meters except frequency f in Hertz):

MPji = Pj −
f2
j +f2

i

f2
j−f

2
i
Φj + 2f2

i

f2
j−f

2
i
Φi (6.20)

with i 6= j. For the multi-frequency data considered in this section several different MP-
combinations can be formed with different, sometimes very large, multiplication factors.
We have used MP12 for the GPS L1 signal, MP15 for the GIOVE E1 signal, and for all
other signals the L1 frequency was used as the reference frequency i. These combinations
all have relatively small multiplication factors and are therefore impacted less by phase
errors. Filling in eq. (6.16) in eq. (6.20) and recombining the different terms leads to:

MPji = AMP + ξMP +mj + µMP + εj + εMP (6.21)

The MP combination contains a constant ambiguity term AMP which is a combination of
the ambiguities of the two carrier phase measurements, a combined hardware delay ξMP

pseudo range multipath mj and carrier phase multipath µMP , pseudo range measurement
noise εj and carrier phase measurement noise εMP . As mentioned before, subtraction
of the mean value from the measurements removes the carrier phase ambiguities, which
are constant if there are no cycle slips. The behavior of receiver hardware delays was
studied in Liu et al. (2004), with reported values under normal conditions below 10−4 m/s.
Satellite hardware delay change rates are assumed to be constrained to even smaller values.
Therefore, the remaining differential hardware delays in eq. (6.21) will have little impact
on short time scales. Furthermore, the carrier phase measurement noise and carrier phase
multipath are negligible compared to the pseudo range measurement noise, which is an
order of magnitude larger. Therefore, the resulting time series is dominated by pseudo
range multipath and measurement noise (which may also be correlated in time). And it is
these two effects that we wish to describe with an autoregressive process.
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6.3.1 Autoregressive process

For an autoregressive process of order k, notation: AR(k), we have:

k∑
i=0

aiX t−i = εt (6.22)

Where X t is the time series sample at time t, ε is a white noise process, and ai are the AR
parameters with a0 = 1 by definition. If we rewrite this, we can express the sample X t as
a function of previous sample values and a noise term:

X t = −a1X t−1 − . . .− akX t−k + εt (6.23)

From this expression it becomes clear that the AR parameters define the autocorrelation
of the time series. From eqs. (6.22) and (6.23) we can also observe that an AR(k) process
with the last AR parameter ak zero, is an AR(k-1) process. According to eq. (6.23), an
AR(0) process is in fact a white noise process, with:

X t = εt (6.24)

We can also write our white-noise process as an AR(1) process with a1 = 0, i.e.

X t = −a1X t−1 + εt, with a1 = 0 (6.25)

In this contribution we will look at time AR series X t that are wide-sense stationary. For
an AR(k) process to be stationary, all roots of the following polynomial should lie within a
unit circle (Priestley, 1981):

g(z) = zk + a1z
k−1 + . . .+ ak (6.26)

For k = 1 this simply means |a1| < 1. Also the white-noise process εt should have constant
variance σ2

ε . Furthermore we will only consider time series around their mean value, so:

E {X t} = 0 ∀ t (6.27)

6.3.1.1 Estimation of AR parameters

Different methods exist to estimate the parameters of an autoregressive process from an
AR time series. The approach we use is a least squares adjustment. To perform a least-
squares adjustment we will write the AR time series in the form of a model of observation
equations:

y = Ax+ ε (6.28)

The unknown AR parameters are contained in vector x. For the observation vector y
we use the samples of the time-series. But also the A matrix is built up of samples
of the time-series, with corresponding uncertainty. For an optimal estimation of the ‘true’
autoregressive parameters, an errors-in-variables models such as total least squares could be
used. However, we will not treat the entries of matrix A as stochastic variables. As a result
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our estimated parameters will to some extend differ from the ‘true’ values of the underlying
process; for the AR(1) model, the time correlation will be underestimated (Greene, 2002).
However, the estimated values will provide consistent prediction with similarly noisy input
parameters. The error vector ε contains the white noise process that drives the AR process.
For an AR time series with N samples, we can now fill in eq. (6.28) as follows:

Xk+1
Xk+2

...
XN

 =


Xk Xk−1 · · · X1
Xk+1 Xk · · · X2

...
...

. . .
...

XN−1 XN−2 · · · XN−k



a1
a2
...
ak

+


εk+1
εk+2

...
εN

 (6.29)

Note that vector y now has N – k entries. The best linear unbiased estimator and its
variance for this system are (using the inverse of the covariance matrix to weight the
observations):

x̂ =
(
A∗Q−1

y A
)−1

A∗Q−1
y y (6.30)

Qx̂ =
(
A∗Q−1

y A
)−1

(6.31)

For the variance of the y vector we can use a unit matrix scaled by the (constant) variance
of the white noise process, conform our assumption that the time series is wide sense
stationary.

Qy = σ2
εI (6.32)

This is not the variance of the AR process itself, but only the part that is not accounted
for by Ax in the model. This further simplifies the estimated parameters and their variance
to:

x̂ = (A∗A)−1A∗y (6.33)

Qx̂ = σ2
ε (A∗A)−1 (6.34)

The entries of the product of A∗A, which is a k× k matrix, contains inner products of the
columns of A, which themselves contain the AR time-series with different time offsets.

A∗A =


∑N−1
t=k X2

t

∑N−2
t=k−1XtXt+1 · · · ∑N−k

t=1 XtXt+(k−1)∑N−2
t=k−1XtXt+1

∑N−2
t=k−1X

2
t · · · ∑N−k

t=1 XtXt+(k−2)
...

...
. . .

...∑N−k
t=1 XtXt+(k−1)

∑N−k
t=1 XtXt+(k−2) · · ·

∑N−k
t=1 X2

t

 (6.35)

These entries are closely related to the auto-covariance of the AR time-series. If we look
at the unbiased estimate of the auto-covariance for a zero mean time series at delay τ :

R̂ (τ) = 1
N − |τ |

N−|τ |∑
t=1

XtXt+|τ | (6.36)
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We can recognize the elements of A∗A as the first k – 1 auto-covariance samples evaluated
over different intervals of the AR time-series. Now we can rewrite A∗A as:

A∗A =

(N − k)


R̂ (0){k,N−1} R̂ (1){k−1,N−1} · · · R̂ (k − 1){1,N−1}
R̂ (1){k−1,N−1} R̂ (0){k−1,N−2} · · · R̂ (k − 2){1,N−2}

...
...

. . .
...

R̂ (k − 1){1,N−1} R̂ (k − 2){1,N−2} · · · R̂ (0){1,N−k}


(6.37)

where braces are used to indicate the interval of the AR time series. For our wide sense
stationary AR process, the expectation of the auto covariance estimates is equal for these
slightly different intervals. For N →∞ the estimates of the auto covariance R̂ (τ) will go
to the actual auto covariance R (τ), and if N >> k which generally is the case (and also
in our approach), we can write:

A∗A ≈ N


R (0) R (1) · · · R (k − 1)
R (1) R (0) · · · R (k − 2)

...
...

. . .
...

R (k − 1) R (k − 2) · · · R (0)

 (6.38)

If we call the matrix with auto covariances Rk, we find the following asymptotic expression
for the variance of the AR parameter estimates:

Qx̂ = σ2
ε

N
R−1
k (6.39)

This result is conform Mann and Wald (1943). However, for the problem at hand we do
not know the variance of the white noise process and we will estimate it from the least
squares residuals ε̂.

ε̂ = y − Ax̂ (6.40)

The unbiased estimate of the variance is:

σ̂2
ε = ε̂∗ε̂

N − 2k (6.41)

where N − 2k is the redundancy.

6.3.1.2 Testing significance of AR parameters

After estimation of the AR parameters we want to be able to determine whether the
parameters are significant at a certain level of significance α. Since we do not know
beforehand how many AR parameters we need to estimate, in order to describe the AR
time series, we will use a step by step approach.

This step by step approach can be described as follows. We start off by estimating an
AR(1) process from the data, and then test the significance of the â1 estimate. If this is
significant we now estimate an AR(2) process and test the significance of the â2 estimate.
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We repeat this increasing the AR order by one each time until the significance test fails.
So if we estimate an AR process of order k, we test âk for significance. Because we expect
that, if the time series behaves as an AR(k-1) process, the âk estimate will not significantly
differ from zero.

This step by step approach is attractive because it is straight forward and intuitive. How-
ever, it does have some limitations. Firstly, the stop criterion is rather greedy. The fact
that âk is not significant for an AR process of a certain order does not guarantee that
the âk parameter for an AR process of order one higher is not significant. Secondly, the
tests we perform are all one dimensional since we only test âk where we could also per-
form more-dimensional tests to see if all combinations of two or more of the estimated AR
parameters are also significant.

To test the significance of the AR parameters, we have the following null hypothesis H0
and alternative hypothesis Ha:

H0,k : E
{
y
}

= Ax, c∗kx = 0 (6.42)

Ha,k : E
{
y
}

= Ax, c∗kx = ∇, with ∇ 6= 0 (6.43)

where c is a k-vector with zeros except for the kth entry which is a one. Under H0 ak is
zero, while under Ha ak is unequal to zero. The test statistic v for this test with unknown
σε is (Teunissen et al., 2007):

v = c∗kx̂

σ̂ε

√
c∗k (A∗A)−1 ck

= âk
σ̂âk

(6.44)

with the following decision rule:

reject H0,k if |v| > tα/2 (N − 2k) (6.45)

where tα/2(N−2k) is the critical value for α/2 from the t-distribution with N−2k degrees
of freedom. We have chosen a 2-sided test, because we do not make any assumptions on
the sign of ak under the alternative hypothesis.

6.3.2 Multipath measurement campaign

In this subsection the methods described above to model multipath time series as an
AR process is applied to measurements collected with different receivers and antennas.
Table 6.12 shows the receiver and antenna combinations that have been used, as well as
the measurement period and tracked signals.

Each of the hardware configurations in table 6.12 was measured at TU Delft GNSS obser-
vatory platform and combines a high-end receiver with a high-end antenna. This should
limit, but not eliminate, the multipath impact and provides insight into the (time corre-
lated) pseudo range errors that are still experienced with such a high-end hardware setup.
The antenna used for DLF5 was replaced in Feb 2011 and this provides the opportunity
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to compare the measurements from one receiver (PolaRx2) when used with two different
antennas (at different locations). Currently, DLF5 and DLF1 are connected to the same
antenna, which makes it possible to make a comparison between the two receivers. The
DLF1 setup also provides the opportunity to compare many of the currently available GPS
and GIOVE signals.

DLF5 GPS L1C/A signal

The first dataset is 24 hours of measurements from the permanent receiver DLF5 collected
on January 1, 2011. DLF5, part of the EGNOS Data Collection Network, is a Septentrio
PolaRx2 receiver connected to a Leica AT504 antenna, located on top of a 6 story building
in Delft, the Netherlands. The data has been split into 1476 data segments of 600-s each,
for which the multipath linear combinations of eq. (6.21) have been formed. For each of
these data segments, we have estimated the parameters for AR processes of increasing order
(here up to order 4). The estimated AR parameters for the L1 C/A signal are presented in
figs. 6.18 to 6.21, and the empirical mean and standard deviation of the estimated values
are displayed in table 6.13.

Table 6.12: Hardware setups considered in this section, the measurement period and tracked
signals

Stat Receiver Antenna Date Time Signals Remark
DLF5 Septentrio

PolaRx21
Leica AT504 Jan 1, 2011 24h GPS L1C/A,

L1P, L2P
Part of EGNOS
monitoring network

Leica AR25
3D chokering

Sep 7, 2011

DLF1 Trimble
NETR91

Leica AR25
3D chokering

Sep 7-13,
2011

7·24h GPS L1C/A,
L2(Z-tr.), L2C,
L5I+Q
GIOVE E1B+C,
E5aI+Q, E5bI+Q,
E5I+Q

Part of IGS
MGEX network

1 Receivers were used with default tracking loop bandwidths and without applying pseudo range smoothing

Table 6.13: Estimated AR parameters order 1-4 for the GPS L1 C/A signal measured
with DLF5 based on 600-s data segments, and the estimated σε at 90[◦] of elevation and at
C/N0=50dB-Hz

â1 â2 â3 â4 σ̂ε[m]
µ σ µ σ µ σ µ σ at 90◦ 50dB-Hz

AR(0) 0.18 0.20
AR(1) -0.90 0.034 0.07 0.08
AR(2) -1.2 0.16 0.31 0.14 0.07 0.08
AR(3) -1.2 0.14 0.22 0.16 0.073 0.10 0.07 0.08
AR(4) -1.2 0.14 0.21 0.14 0.071 0.078 0.004 0.084 0.07 0.08

Figure 6.18 shows a histogram of the AR(1) parameter estimated for each of the data
segments. The AR(1) parameter has empirical mean µ = −0.90 and standard deviation
σ = 0.03 for this dataset. From these results it is clear that the data indeed behaves like
an autoregressive process with a relatively high a1 parameter, which suggests strong time
correlation of the multipath time series (an a1 parameter of –0.90 at 1 Hz corresponds to a
correlation time of 9.5s). Multipath is not the only possible source of this time correlation,
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since the receiver tracking loops may also result in correlated measurements. Because the
estimates are distributed closely around the mean, the time correlation apparently does not
vary widely between the 600-s intervals. For this dataset the estimated AR parameter is
always smaller than 1 in absolute sense (|â1| < 1), which is one of the conditions for an
AR(1) time series to be wide sense stationary, conform our earlier assumption.

DLF5 GPS L1CA Estimated AR(1) parameters ( 1476 datasets of 600 epochs each)
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Figure 6.18: AR(1) parameter estimated for the GPS L1 C/A signal measured with DLF5.

Figure 6.19 shows histograms of the estimated AR(2) parameters and again reveals a strong
signal, as will be confirmed by our parameter significance tests below. Estimation of an
a2 parameter also significantly changes the estimate of the a1 parameter, since now the
time correlation is captured by the combination of the two parameters. The estimated
parameter pairs still satisfy condition of eq. (6.26), which means that all estimated AR
processes are stable.

DLF5 GPS L1CA Estimated AR(2) parameters ( 1476 datasets of 600 epochs each)
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Figure 6.19: AR(2) parameters estimated for the GPS L1 C/A signal measured with DLF5.

Figures 6.20 and 6.21 show the parameters for an AR(3) and an AR(4) model, respectively,
estimated from the same DLF5 dataset. The higher order AR parameters get smaller with
increasing AR order; in fact the mean values of the estimates of a3 and a4 are smaller than
their empirical standard deviations. The method described in the previous section is used
to test the significance of the parameters and to determine the appropriate order of the
AR process.

We test the kth parameter for an AR(k) process starting with k = 1. Instead of evaluating
the hypothesis at a fixed level of significance, with an accept or reject, we choose a slightly
different approach. We compute the probability αâk that the test statistic will take a value
that is at least as extreme as the observed value of the statistic when the null hypothesis
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DLF5 GPS L1CA Estimated AR(3) parameters ( 1476 datasets of 600 epochs each)
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Figure 6.20: AR(3) parameters estimated for the GPS L1 C/A signal measured with DLF5.

DLF5 GPS L1CA Estimated AR(4) parameters ( 1476 datasets of 600 epochs each)
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Figure 6.21: AR(4) parameters estimated for the GPS L1 C/A signal measured with DLF5.
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is true: this is called the observed level of significance. If the observed level of significance
is smaller than the critical level of significance the null hypothesis is rejected; we can then
say that the parameter is statistically significant and we increase the AR order by one.
The main advantage of this approach is that we can count the number of times the null
hypothesis is rejected for different levels of significance. Figure 6.22 shows a cumulative
histogram of the observed (2-sided) level of significance of the estimated AR parameters.
The figure can be interpreted as follows: if we look at a significance of e.g. 0.1 we find
that 100% of the data segments have a significant AR(1) parameter. So we estimated an
AR(2) process and found the estimated a2 parameter to be significant for 98% of the data
segments for this level of significance. For these 98% an AR(3) process is estimated and
for 65% of the total number of data segments the a3 parameter is found to be significant.
Finally we estimated an AR(4) process for these 65% and found a significant a4 parameter
for 24% of the total number of data segments.
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Figure 6.22: Percentage of datasets with significant AR parameters as function of the level
of significance α for the GPS L1 C/A signal measured with DLF5.

A level of significance of 0.1 is still very large: it means we have 10% probability of wrongly
rejecting the null hypothesis (false alarm rate), and wrongly assume that the parameter is
significant. Therefore, fig. 6.23 provides the same data on a logarithmic x-axis in order
to show more details for smaller levels of significance. Figure 6.23 reveals that for these
smaller levels of significance the estimated a4 parameter is only significant for a small
percentage of the data segments. For this small percentage of the data segments we could
of course continue to estimate AR processes of increasing order, but the following practical
considerations may lead us to a different approach.

If we look at filtering techniques for positioning, it is not feasible to work with AR processes
of such high orders. For each order we need to extend the state-vector with an additional
element, both increasing the computational burden and weakening the positioning model
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Figure 6.23: Percentage of datasets with significant AR parameters as function of the level
of significance α, plotted on a logarithmic scale for the GPS L1 C/A signal measured with
DLF5.

by increasing the number of unknown parameters. Also, for integrity monitoring similar
reservations hold, as the number of (multi-dimensional) tests we would need to perform
increases dramatically. For multipath simulations, on the other hand, higher order models
do not pose any real problem. However, it is questionable what the gain would be of using
AR models of orders much higher than those considered in the positioning filter. For these
reasons, and given the weak signal for the AR(4) parameter (â4 : µ = 0.004) and the fact
that it is only significant for a small percentage of the data segments, we will not consider
higher order models here.

As described in the previous sections, the multipath linear combination is dominated by
pseudo range multipath and measurement noise. Multipath depends amongst other things
on elevation with the strongest multipath effects generally occurring at low satellite eleva-
tion. Measurement noise mainly depends on the carrier-to-noise ratio and certain receiver
properties. The C/N0 in turn depends strongly on the antenna gain pattern, which means
that the measurement noise also strongly depends on elevation. Due to strong dependency
of the C/N0 on the elevation, the two mechanisms described above cannot really be sepa-
rated from each other. Therefore, the impact of the elevation and C/N0 on the estimated
AR processes is here studied together.

Figure 6.24 shows the estimated AR(1) parameter versus the measured C/N0. These DLF5
results only reveal a small dependency of the estimated AR parameters on the C/N0 (or the
elevation angle). However, the estimated σε of eq. (6.41) does show a strong dependency
on elevation and C/N0.

Figure 6.25 shows the estimated σε as a function of the C/N0 for different orders of the
AR process including AR(0), the white noise process. Each marker in the figure represents
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DLF5 GPS L1CA Estimated AR(1) parameters vs C/N
0
 ( 1476 datasets of 600 epochs each)
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Figure 6.24: AR(1) parameter vs. C/N0 estimated for the GPS L1 C/A signal measured
with DLF5.

the estimated σε for one multipath time series of 600 epochs (at 1 Hz). The figure shows
a sharp decrease in the estimated σε from an AR(0) to an AR(1) model, which indicates
that an AR(1) model fits the data much better than a white-noise process does. The figure
also reveals a very clear decrease of the estimated σε with increasing C/N0. It turns out
that this decrease can accurately be described by an inversely proportional relation between
the C/N0, expressed in ratio-Hz, and the variance of the noise. This relation is known to
describe the thermal measurement noise of a GPS receiver as mentioned in the previous
sections (Braasch and van Dierendonck, 1999). This indicates that the tracking loops of
the receiver play an important role in the formation of the time correlated errors captured
in the multipath time series. This could also explain why the AR parameters, and thus the
time correlation, does not vary strongly with elevation.

The relation found between the standard deviation of the noise and the C/N0 only has
one unknown parameter, which is the standard deviation of the noise at a reference C/N0.
This parameter has been estimated from the data points for each of the AR processes at
the (arbitrary) reference C/N0 of 50 dB-Hz. The resulting relations are presented in the
legend of fig. 6.25 and are also represented by the black lines drawn through the data
points (results are also displayed in table 6.13). The estimated standard deviation of the
noise decreases by a factor of more than 2 from an AR(0) to an AR(1) process.

Extending the AR model beyond the first order further decreases the estimated σε. This
is not surprising, as a more complex model (with more parameters) will always fit the
data better, which leads to smaller residuals. And smaller residuals directly decrease the
estimated σε as is clear from eq. (6.41). However, fig. 6.25 and table 6.13 reveal that the
effect of adding more AR parameters is much less pronounced. In fact, the lines for AR(2)
to AR(4) lie almost on top of each other and computed values are well below cm level.
This shows that the added benefit from this increase of complexity of the model, and the
related increase in computational burden, may not be beneficial.
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Figure 6.25: Estimated σε vs. C/N0 for the GPS L1 C/A signal measured with DLF5.

Figure 6.26 shows the same data as fig. 6.25 but now with the satellite elevation on
the horizontal axis. The estimated noise standard deviation decreases significantly with
increasing elevation angle. The lines drawn through the data points for each AR order
show a cosecant function (1/sin(e)) of the elevation with the standard deviation at 90
degrees of elevation estimated from the data. The formula for each of these lines is again
presented in the figure legend (results are also displayed in table 6.13). The results again
show a sharp decrease in the noise standard deviation from AR(0) to AR(1) and a much
smaller decrease from AR(1) to higher order AR processes. The cosecant function can be
used for elevation dependent weighting of the satellite measurements (Vermeer, 1997).

The connection between figs. 6.25 and 6.26 is formed by the measured C/N0 as a function
of elevation, which strongly depends on among others the antenna gain pattern. Therefore,
the weighting scheme that best fits the data will depend on the used antenna. Also, it is
clear that for this particular receiver and antenna combination the C/N0 model of fig. 6.25
provides a much better fit than the cosecant function of fig. 6.26: therefore, in this case,
it is more appropriate to base the pseudo-range weights on C/N0 instead of elevation.

The variations of σε with elevation and C/N0 between the 600-s data segments, suggests
that σε may also vary within the data segments. This might lead us to question our
assumption of wide sense stationarity for these 600-s time series, and it might be more
appropriate to shorten the data segment in order to limit the variation of σε within each
data segment. To investigate this further we have also estimated AR processes for shorter
data segments of 120-s and compared these to the 600-s results. Results of the 120-s
data segments are presented in table 6.14 and fig. 6.27. Table 6.14 shows the mean and
empirical standard deviation of estimated AR parameters for an AR process of order 1 to
4, and the estimated σε at 90 degrees of elevation and at C/N0=50dB-Hz determined
via curve fitting as described above. Figure 6.27 shows the observed significance of the ak
estimates for AR order 1 to 4. Comparing the 120-s results in table 6.14 to the 600-s results
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Figure 6.26: Estimated σε vs. elevation for the GPS L1 C/A signal measured with DLF5.

obtained previously in table 6.13, reveals that there are some differences. Especially the
mean value of the estimated a4 parameter is larger for the 120-s interval, but also all of the
empirical standard deviations are larger. If we look at the significance of the a4 estimate for
120-s data segments in fig. 6.27, and compare this to the 600-s results in fig. 6.23, we see
that it is even less significant for 120-s data segments than for the 600-s data segments.
This is directly related to the variance of the estimates as was shown in eq. (6.44). There
obviously is a trade-off for the length of the data segments. Shorter data segments limit the
variations of σε within the data segments thereby satisfying the conditions for wide sense
stationarity better, while longer data segments enable us to estimate the AR parameters
with much higher precision. Finally, table 6.14 shows that the estimated σε is lower for the
120-s second data segments, especially for the AR(0) process. This is directly related to
the time correlation which is partially removed by splitting the data in short segments.

Table 6.14: Estimated AR parameters order 1-4 for the GPS L1 C/A signal measured
with DLF5 based on 120-s datasegments, and the estimated σε at 90◦ of elevation and at
C/N0=50dB-Hz

â1 â2 â3 â4 σ̂ε[m]
µ σ µ σ µ σ µ σ at 90◦ 50dB-Hz

AR(0) 0.16 0.19
AR(1) -0.88 0.053 0.07 0.08
AR(2) -1.2 0.18 0.32 0.16 0.07 0.08
AR(3) -1.1 0.17 0.21 0.20 0.085 0.13 0.06 0.08
AR(4) -1.1 0.16 0.21 0.19 0.057 0.15 0.026 0.12 0.06 0.08

So far we have looked at results from DLF5 with the PolaRx2 receiver and Leica AT504
antenna. Now we will look at some other hardware setups and investigate the impact on
the estimated AR models. For this purpose a more recent dataset from DLF5 (Sep 7, 2011)
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Figure 6.27: Percentage of datasets with significant AR parameters as function of the level
of significance α for for the GPS L1 C/A signal measured with DLF5 for 120-s data segments.

is processed. In the meantime the antenna has been replaced with a multi GNSS Leica
AR25.R3 3D choke-ring antenna and placed at a different position at a few meters distance
from the old position. The receiver is still the Septentrio PolaRx2, and as it turns out the
differences between the results with the two antennas are not very large. The estimated
AR parameters only differ slightly and the estimated σε as a function of the elevation angle
is also very similar, except at low elevations angles, as can be seen from fig. 6.28, where
the new antenna setup performs slightly better and measurements are available at smaller
elevation angles.

A possible explanation for the similarities between the results with the two antennas is
that both antennas and sites are very similar regarding multipath, however, a more likely
explanation is that the multipath time series for DLF5 depend mainly on the receiver, i.e.
is dominated by measurement noise due to the tracking loops.

DLF1 GPS L1C/A signal

To investigate this further, a third dataset has been processed from the permanent receiver
DLF1. DLF1 is a Trimble NETR9 receiver and is connected to the same Leica AR25.R3 3D
choke-ring antenna as DLF5. The results for DLF1 are very different from those for DLF5.
Figure 6.29 shows the estimated AR(1) parameter, and comparison with fig. 6.18 for DLF5
immediately shows that the estimated value for DLF1 is much smaller in absolute sense.
This indicates that the time correlation of the pseudo range measurements is smaller for
DLF1. Figure 6.30 again shows the estimated σε as a function of satellite elevation angle.
The large reduction in the residuals for higher order AR processes that was found for DLF5
now only occurs for low elevation angles. It seems that the time correlation now depends
on the elevation angle. And indeed, the estimated AR parameters now show an elevation
dependence. Figure 6.30 also shows that an AR(2) process only gives a minor decrease
in the estimated noise parameter. Therefore, we will now focus on the AR(0) and AR(1)
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Figure 6.28: Estimated σε vs. elevation for the GPS L1 C/A signal measured with DLF5
on Sep 7, 2011 PolaRx2 receiver and AR25.R3 antenna.

processes.
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Figure 6.29: AR(1) parameter estimated for the GPS L1 C/A signal measured with DLF1.

Figure 6.31 shows the estimated AR(1) parameter as a function of the elevation angle and
azimuth angle in a skyplot. The color shows the value of the AR parameter. The white
gaps represent combinations of elevation and azimuth angles (mostly to the North of the
receiver) where no satellites have been measured. A general effect that can be seen is
that the AR value in absolute sense is larger for low elevation angles (at the outer circle of
the figure) and smaller for high elevation angles (in the center of the figure). Figure 6.31
also shows variations with the azimuth angle. Figure 6.32 shows skyplots of the estimated
noise parameter for an AR(0) and AR(1) process. These plots again show an increase of
this noise parameter with decreasing elevation angle. There is also a clear relation between
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Figure 6.30: Estimated σε vs. elevation for the GPS L1 C/A signal measured with DLF1.

the largest values of the AR(1) parameter (in absolute sense) in fig. 6.31 and the largest
estimates for the noise parameter for the AR(0) process in fig. 6.32. Apparently, the higher
noise values for the AR(0) and higher estimates of the AR(1) parameter are related, which
could point in the direction of multipath. The large values for the noise parameter in the
AR(0) process are significantly reduced in the AR(1) process, as can be seen in the skyplot
in the bottom pane of fig. 6.32.

DLF1 GPS L1CA Estimated AR(1) parameters skyplot (7565 datasets of 600 epochs each)
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Figure 6.31: Skyplot of AR(1) parameter estimated for the GPS L1 C/A signal measured
with DLF1.

Comparison of the DLF1 and DLF5 results, when both are connected to the same antenna,
shows that at low elevation angles, where we expect most multipath, both the DLF5 and
DLF1 measurements have a high time correlation. However, at high elevation angles, the
DLF1 results have much less time correlation than the DLF5 results. This is an indication
that the time correlation of the DLF5 (at high elevation) is related to the tracking loops
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DLF1 GPS L1CA Estimated noise std. skyplot 
(7565 datasets of 600 epochs each)
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Figure 6.32: Skyplot of estimated σε for AR(0) (left pane) and AR(1) (right pane) for the
GPS L1 C/A signal measured with DLF1.

of the receiver rather than the physical process of multipath.

DLF1 Different GNSS signals

The DLF1 hardware setup (Trimble NETR9 receiver and Leica AR25.R3 3D choke-ring
antenna) is able to track multiple GNSS including GPS, Galileo, GLONASS and EGNOS.
In this contribution, the following signals have been considered: GPS L1C/A, L2(Z-track.),
L2C, L5I+Q and GIOVE E1B+C, E5aI+Q, E5bI+Q, E5I+Q. Because several of these
signals are only transmitted by one or a few satellites, a complete week of data (Sep 7-13,
2011) has been processed in order for the results to have some statistical significance. To
keep the amount of results manageable, we focus on the AR(0) and AR(1) process, and
make use of boxplots (McGill et al., 1978) to present the results. Figure 6.33 shows the
estimated σε for an AR(0) process for each of the GPS and GIOVE signals tracked by
DLF1. Each box shows the distribution for one of the signals: the central mark is the
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually. The
boxplot shows different distributions for each of the signals but all 25 to 75 percentile boxes
are below 0.5m with whiskers and outliers extending upwards. Investigation of the elevation
dependence shows that the median and 25 and 75 percentiles are mainly determined by the
measurements at medium to high satellite elevations, while the top whiskers and outliers
describe the behavior for low satellite elevation. The elevation pattern in fig. 6.30 for the
residuals of the AR(0) process is quite typical for all signals except for the E5I+Q (AltBOC)
signal which clearly has less noise than all other signals. The high precision of the L5I+Q,
E5aI+Q and E5bI+Q signals, compared to the L1C/A signal, is not apparent from this
figure. All signals, except for the E5I+Q signal (and to a lesser extend the E1B+C signal)
show comparable maximum values for the noise parameter.

Figure 6.34 shows the estimated AR(1) parameter for each of the signals. The median
values differ quite a bit between the signals, with the E5I+Q (AltBoc) signal having the
smallest value and the E5bI+Q signal having the largest value. These values indicate
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Figure 6.33: Estimated σε for the AR(0) process for each of the GNSS signals measured
with DLF1.

different time correlation for these signals, but all signals have whiskers extending close
to -1. These data segments with the strongest time correlation again correspond to low
satellite elevation.
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Figure 6.34: AR(1) parameter estimated for each of the GNSS signals measured with
DLF1.

Figure 6.35 shows the estimated σε values for the AR(1) process. In this figure the differ-
ences between the L1C/A signal and the newer (wide-band) signals is very clear, especially
when looking at the top whiskers for each signal. While the top whisker of the L1C/A
signal still exceeds 0.6 meter, the other signals are constrained to significantly smaller val-
ues. The median values are not impacted so much, because the strong time correlation is
limited to lower elevation angles. If these AR(1) processes would be used in a positioning
algorithm, the smaller residuals for the wide-band signals make proper weighting of the
measurements possible (e.g. the wide-band measurements can be given more weight than
the L1C/A measurements).
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Figure 6.35: Estimated σε for the AR(1) process for each of the GNSS signals measured
with DLF1.

6.4 Conclusions

In sections 6.1 and 6.2 the different contributions of the code and phase measurement noise
have been investigated with a geometry-free model using measurements from short and zero
baselines as well as stand-alone receivers. Using the single, double and time differences of
the code-minus-carrier and multipath combinations, the code noise, code multipath delays,
and time correlation of the code observations have been quantified. From these investiga-
tions the undifferenced code noise without multipath could be estimated. The estimated
values were in good agreement with the theoretical formulae linking the measurement noise
to tracking loop parameters and the C/N0. Therefore, these theoretical expressions can
be used in the stochastic model to account for the pseudo range measurement noise.

The phase noise and phase multipath have also been studied from the double difference
phase observations. The results show that the estimated phase noise is close to the the-
oretical thermal noise and almost equal for each GNSS as expected. Unlike the code
observations the phase observations show very little time correlation at a sampling rate of
1Hz. This means that the theoretical relations again suffice for the part of the stochastic
model that accounts for the carrier phase measurement noise.

The observations made to different satellites turned out to be almost uncorrelated as
expected and consequently this correlation can be neglected in the stochastic model.

However, the results also showed strong variations of the pseudorange code measurements
over longer time periods, the magnitude of the variations easily reaching up to 20 times the
thermal noise standard deviation. These time correlated (multipath) errors were further
studied in sections 6.2.3.2 and 6.3. The multipath linear combination of GNSS measure-
ments, which is dominated by pseudo range multipath and (time correlated) measurement
noise was modeled as an autoregressive process. The estimated AR parameters, the stan-
dard deviation of the residuals and their dependence on e.g. satellite elevation differ for
each of the GNSS signals and are also different for the two receivers considered in this
chapter. However, the following general conclusion can be reached.

The AR(0), or white noise, model shows a clear dependency of the standard deviation
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of the residuals on satellite elevation where larger residuals are encountered for smaller
elevation angles. This can be translated to a white noise stochastic model with elevation
dependent weighting which can be used for positioning. However, the estimated AR(1)
parameter is almost always significant to a very high level, which indicates time correlation
of the multipath time series. Estimation of an AR(1) model reduces the estimate of σε
by a significant amount (especially for satellites with low elevation angles), which shows
that an AR(1) model fits the data much better than does a white noise or AR(0) model in
those cases. The AR(1) parameter itself does not show a strong dependency on satellite
elevation, but the standard deviation of the residuals does show this dependency. This
AR(1) model can be used for the stochastic model by extending the Kalman state vector
with an additional entry per signal with multipath. The transition matrix for these entries
then take the (constant) values of the estimated AR(1) parameters and the process noise
is taken as a satellite elevation dependent value. With increasing order the estimated AR
parameters decrease in magnitude and become less significant. Also the reduction in σε, an
indication of the improvement in the model fit, becomes negligible. Each increase in the AR
order leads to an additional filter state, thereby increasing the computational burden and
decreasing the strength of the model. Therefore, higher order AR models seem unattractive
for the stochastic model used for positioning based on this analysis.

This means that for the positioning algorithms the AR(0), or white noise process, and
AR(1) models are best suited. A user or application designer can then make a trade-off
between using a simple (elevation dependent) white noise model or a more accurate AR(1)
model at the cost of additional computational burden.

The correlation time of the multipath time series found in this chapter is in the order of 10 s,
which means that another approach to avoid this problem is to use a larger measurement
interval, e.g. 30 s. However, other time correlated errors, e.g. the ionosphere delays,
with longer correlation times cannot be dismissed in this way. Then autoregressive models
provide a much better alternative as we will show in chapter 8.



Geometry-free Integrity Monitoring 7
7.1 Introduction

For GNSS users the level of integrity (or reliability) quantifies the trust that the user
can place in the position solution. This goes beyond the concept of variance (or precision)
which can account for the uncertainty in the measurements, but does not provide protection
against (unexpected) systematic errors such as outliers or biases. Integrity operates at two
levels: reliable position estimates and reliable accuracy information. Statistical tests can be
applied to provide reliability to a user. These tests use the redundancy of the (positioning)
model to detect errors in the observations or external information, or more formally errors in
the functional and stochastic model assumptions. The null-hypothesis, under which there
are no model errors present, is tested against different alternative hypotheses that define
different types of model errors which might be encountered (Baarda, 1968; Teunissen,
2000b).

Bisnath and Gao (2009a) stresses the importance of integrity monitoring for any positioning
system, and especially for PPP processing where some parameters are estimated, while
others are obtained from a separate process. However, they also report that quantitative
quality measures of PPP results are often limited. Integrity monitoring for PPP has only
quite recently received more attention (Juan et al., 2012; Seepersad and Bisnath, 2013;
Feng et al., 2014; Jokinen, 2014). There are different ways to provide integrity to a GNSS
user. At system level, the GNSS provider (or in this case the PPP service provider) can
monitor the integrity of the system, and provide this information to the user (e.g. if
there is a satellite which produces large ranging errors) much like this is currently done for
SBAS systems. This will provide the user with more confidence in the position solution.
However, system level integrity cannot protect against errors caused by local events such
as multipath, interference or unexpected receiver behavior. In this chapter we will focus on
integrity aspects at user level, that can protect against local events.

The contents of this chapter is based on Teunissen and de Bakker (2012) and de Bakker
et al. (2009), and to a lesser extend Teunissen and de Bakker (2013). The remainder of this
introduction and sections 7.2 and 7.7 follow the analytical derivations and corresponding
numerical results of Teunissen and de Bakker (2012) with the exception of sections 7.4.3
and 7.7.3, which provide additional numerical results based on de Bakker et al. (2009). In
section 7.3 an insert with the main causes of cycle slips was added. Section 7.8 contains the
conclusions which are synthesized from Teunissen and de Bakker (2012) and de Bakker et al.
(2009); (cross)references have been adjusted to follow the conventions of this dissertation.

As mentioned, integrity monitoring and quality control can be exercised at different stages
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of the GNSS data processing chain (Teunissen, 1998a; Leick, 2004). These stages range
from the single-receiver, single-channel case to the multi-receiver/antenna case, sometimes
even with additional constraints included. An example of the latter is the quality control of
baseline-constrained GNSS attitude models (Giorgi et al., 2012), while geometry dependent
RAIM is an example of the single-receiver, multi-channel case (Teunissen, 1997a; Wieser
et al., 2004; Feng et al., 2006; Hewitson and Wang, 2006).

In this chapter, we study the single-receiver, single-channel model. It is the weakest model
of all, due to the absence of the relative receiver-satellite geometry. Despite its potential
weakness, there are several advantages to single-receiver, single-channel data validation.
First, since it is the simplest model of all, it can be executed in real-time inside the
(stationary or moving) receiver, thus enabling early quality control on the raw data. Second,
the geometry-free single-channel approach has the advantage that no satellite positions
need to be known per se and thus no complete navigation messages need to be read and
used. Additionally, such an approach also makes the method flexible for processing data
from any other (future) GNSS or for parallel processing, which could prove relevant when
considering large numbers of receivers.

We study the carrier phase-slip and code-outlier detection capabilities of the single-receiver,
single-channel model. For the integrity monitoring of carrier-phase data, various studies
can already be found in the literature. For dual frequency GPS data, for instance, methods
of carrier phase-slip detection are discussed and tested in (Lipp and Gu, 1994; Mertikas and
Rizos, 1997; Blewitt, 1998; Teunissen, 1998a; Gao and Li, 1999; Jonkman and de Jong,
2000; Bisnath and Langley, 2000; Bisnath et al., 2001; Liu, 2010; Miao et al., 2011; Cai
et al., 2013). More recent studies on triple-frequency carrier phase-slip detection can be
found in (Fan et al., 2006; Dai et al., 2009; Wu et al., 2010; Xu and Kou, 2011; Fan et al.,
2011; Lacy et al., 2012; Zhao et al., 2015). Our contribution differs from these previous
studies, because of its focus on the detectability of single-receiver, single-channel modeling
errors. Next to the phase-slip detection, the detectability of code-outliers is studied as well.
Our analysis is analytical, while supported by numerical results. Analytical expressions are
derived for the Minimal Detectable Biases (MDBs) of the uniformly most powerful invariant
tests (Baarda, 1967, 1968; Teunissen, 1990b). The MDB is an important diagnostic tool
for inferring the strength of model validation. Examples of such studies for geometry-
dependent and integrated GNSS models can be found in (Salzmann, 1991; Teunissen,
1998b; de Jong, 2000; de Jong and Teunissen, 2000; Hewitson and Wang, 2010).

This chapter is organized as follows. In section 7.2 we formulate the multi-frequency, single-
receiver, geometry-free GNSS model. This is done for an arbitrary number of frequencies.
An overview of the model’s redundancy for different measurement scenarios gives a first
indication of the model’s testability. In section 7.3 the uniformly most powerful invariant
test-statistics for spikes and slips are developed. It is shown how they can be applied
to test for code-outliers, phase-slips and ionosphere disturbances. The strength of these
test-statistics is described by their corresponding MDBs, for which lower bounds and upper
bounds are also given. Due to the relatively simple structure of the geometry-free model,
the expression for the MDB can be decomposed into a time-dependent and a time-invariant
component. The effect of the time-dependent component is shown in section 7.3, while
the characteristics of the time-independent part are studied in the sections following. The
detectability of phase-slips is treated in section 7.4. An analytical expression for the phase-
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slip MDB is derived and it is used to assess the single-, dual- and multi-frequency phase-slip
detectability for GPS and Galileo. To evaluate the influence of the code data, the analysis
is performed for both the case with code data present and without code data present. The
latter case is also of interest, for instance, when one wants to avoid the use of multipath
corrupted code data. In section 7.5, an analytical expression for the code-outlier MDB
is derived. It is used to study the code-outlier detectability for the single-, dual- and
multi-frequency GPS and Galileo case, including the case that phase data are absent.
In section 7.6, the MDB for an ionospheric disturbance is presented and analysed. The
detectability of temporary loss-of-lock on all phase observables is treated in section 7.7.
Finally, section 7.8 contains the summary and conclusions.

7.2 The multi-frequency, single-receiver geometry-free model

7.2.1 Functional model

The carrier phase and pseudorange (code) observation equations of a single receiver that
tracks a single satellite on frequency fj = c0/λj (c0 is speed of light, λj is jth wavelength
and j = 1, . . . , n) at time instant t (t = 1, . . . , k), are given as (Teunissen and Kleusberg,
1998; Misra and Enge, 2001; Hofmann-Wellenhoff and Lichtenegger, 2001; Leick, 2004),

φj(t) = ρ′(t)− γjI(t) + bφj + nφj(t)
pj(t) = ρ′(t) + γjI(t) + bpj + npj(t)

(7.1)

where φj(t) and pj(t) denote the single receiver observed carrier phase and pseudorange,
respectively, with corresponding zero mean noise terms nφj(t) and npj(t). The unknown
parameters are ρ′(t), I(t), bφj and bpj . The lumped parameter ρ′(t) = ρ(t) + c0δtr(t) −
c0δt

s(t) + T (t) is formed from the receiver-satellite range ρ(t), the receiver and satellite
clock errors, c0δtr(t) and c0δt

s(t), respectively, and the tropospheric delay T (t). The
parameter I(t) denotes the ionospheric delay expressed in units of range with respect to
the first frequency. Thus for the fj-frequency pseudorange observable, its coefficient is
given as γj = f 2

1 /f
2
j . The GPS and Galileo frequencies and wavelengths are given in

table 7.1. The parameters bφj and bpj are the phase bias and the instrumental code delay,
respectively. The phase bias is the sum of the initial phase, the phase ambiguity and the
instrumental phase delay.

Table 7.1: GPS and Galileo frequencies (f) and wavelengths (λ).
L1/E1 L2 L5/E5a E5b E5 E6

f (MHz) 1575.42 1227.60 1176.45 1207.14 1191.795 1278.75
λ (cm) 19.0 24.4 25.5 24.8 25.2 23.4

Both bφj and bpj are assumed to be time-invariant. This is allowed for relatively short
time spans, in which the instrumental delays remain sufficiently constant (Liu et al., 2004).
The time-invariance of bφj and bpj implies that only time-differences of ρ′(t) and I(t) are
estimable. We may therefore just as well formulate the observation equations in time-
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differenced form. Then the parameters bφj and bpj get eliminated and we obtain

φj(t, s) = ρ′(t, s)− γjI(t, s) + nφj(t, s)
pj(t, s) = ρ′(t, s) + γjI(t, s) + npj(t, s)

(7.2)

where φj(t, s) = φj(t)− φj(s), with a similar notation for the time-difference of the other
variates.

Would we have a priori information available about the ionospheric delays, we could model
this through the use of additional observation equations. In our case, we do not as-
sume information about the absolute ionospheric delays, but rather on the relative, time-
differenced, ionospheric delays. We therefore have the additional (pseudo) observation
equation

Io(t, s) = I(t, s) + nI(t, s) (7.3)

with the (pseudo) ionospheric observable Io(t, s). The sample value of Io(t, s) is usually
taken to be zero, and nI is then related to the power spectral density of the ionospheric
variations.

If we define:

φ(t) = (φ1(t), . . . , φn(t))∗
p(t) = (p1(t), . . . , pn(t))∗
y(t) = (φ(t)∗, p(t)∗, Io(t))∗
g(t) = (ρ′(t), I(t))∗
γ = (γ1, . . . , γn)∗
y(t, s) = y(t)− y(s)
g(t, s) = g(t)− g(s)

(7.4)

then the expectation E of the 2n + 1 observation eqs. (7.2) and (7.3) can be written in
the compact vector-matrix form

E {(y(t, s)} = Gg(t, s) (7.5)

where

G =

 en −γ
en +γ
0 1

 (7.6)

with en the n-vector of ones and γ = (γ1, . . . , γn)∗. This two-epoch model can be extended
to an arbitrary number of epochs. Let y = (y(1)∗, . . . , y(k)∗)∗ and g = (g(1)∗, . . . ,
g(k)∗)∗, and let Dk be a full rank k × (k − 1) matrix of which the columns span the
orthogonal complement of ek = (1, . . . , 1)∗, D∗kek = 0. Then dy = (D∗k ⊗ I2n+1)y and
dg = (D∗k ⊗ I2)g are the time-differenced vectors of the observables and parameters,
respectively, and the k-epoch version of eq. (7.5) can be written as

E {dy} = (Ik−1 ⊗G)dg (7.7)

where ⊗ denotes the Kronecker product. The Kronecker product of an a × b matrix
M = (mij) and a c×d matrix N = (nij) is an ac×bd matrix defined as M⊗N = (mijN).
For properties of the Kronecker product, see e.g., Rao (1973). The model of eq. (7.7), or
its two-epoch variant eq. (7.5), is called the time-differenced, single receiver geometry-free
model. It will be referred to as our null hypothesis H0.
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7.2.2 Stochastic model

The n × n variance matrices of the undifferenced carrier phase and (code) pseudo range
observables φ(t) and p(t) are denoted as Qφφ and Qpp, respectively. We assume these
variance matrices to be time-invariant and we also assume cross-correlation between phase
and code to be absent. Thus for the dispersion of the two-epoch model eq. (7.5) we have

D {y(t, s)} = blockdiag(2Qφφ, 2Qpp, σ
2
dI) (7.8)

where the scalar σ2
dI denotes the variance of the time-differenced ionospheric delay.

To determine the variance matrix of the time-differenced ionospheric delays, let D {I} =
QII be the variance matrix of the absolute ionospheric delay vector I = (I(1), . . . , I(k))∗.
The variance matrix of the time-differenced ionospheric delay vector dI = (D∗k ⊗ 1)I is
then given as D {dI} = D∗kQIIDk.

It is through the choice of QII that we can model the time-smoothness of the ionospheric
delays. If we assume that the time series of ionospheric delays can be modeled as a first-
order autoregressive stochastic process, then the covariance between I(t) and I(s) is given
as σ2

I%
|t−s|, with 0 ≤ % ≤ 1. The two extreme cases are % = 0 and % = 1. In the first case,

QII is a scaled unit matrix and I(t) is considered a white noise process. In the second
case, the variance matrix equals the rank-one matrix QII = σ2

Ieke
∗
k and I(t) is considered

a random constant. In the first case we have D {dI} = σ2
ID
∗
kDk, while in the second case

we have D {dI} = 0.

For the two-epoch case of eq. (7.8), the variance of the time-differenced first-order autore-
gressive ionospheric delay works out as

σ2
dI = 2σ2

I(1− %|t−s|) (7.9)

For two successive epochs we have σ2
dI = 2σ2

I(1− %), while for larger time-differences the
variance will tend to the white-noise value σ2

dI = 2σ2
I if % < 1. Thus σ2

I and % can be
used to model the level and smoothness of the noise in the ionospheric delays. We used
the above stochastic model for both our analytical and numerical analyses. The proper
value of σdI that can be used to constrain the model depends on the measurement interval,
which can be selected by the user, and the ionosphere variability, which itself depends on
i.a. the user latitude, (local) time of day, satellite elevation, and ionosphere activity. The
values for the expected conditions can be determined a priori from dual frequency carrier
phase observations, but the actual time-differenced ionosphere delay should be tested just
like the pseudorange and carrier phase measurements themselves. The detectability of
ionospheric disturbances is treated in section 7.6. For moderate ionospheric conditions
at mid-latitude (Delft, the Netherlands), an approximate range of σdI-values is given in
table 7.2, for measurements intervals of 1, 10 and 30 seconds with a cut-off elevation angle
of 10 degrees (Teunissen and de Bakker, 2013).

For the stochastic model of the measurement precision of the multi-frequency GNSS signals
we have used values reported by Simsky et al. (2008) and sections 6.1 and 6.2 (de Bakker
et al., 2009, 2012) which are based on real measurements. The precision of the Galileo E1
signal reported by these publications are in close agreement, for the E5a signal the more
conservative value of (Simsky et al., 2008) has been adopted. For the GPS L2 signal we will
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min. σdI max. σdI

1 sec 1.5× 10−3 3.0× 10−3

10 sec 2.0× 10−3 1.0× 10−2

30 sec 4.5× 10−3 2.5× 10−2

Table 7.2: Approximate range of values for σdI (m) when sampling with intervals of 1, 10
and 30 seconds, respectively, using a 10 degree cut-off elevation angle. These values were
obtained for a static receiver at mid-latitude (Delft) under moderate ionospheric conditions.

use the same value as for the GPS L1 signal. All zenith-referenced values are summarized
in table 7.3. To obtain the standard deviations for an arbitrary elevation, these values
still need to be multiplied with an elevation dependent function. Several authors studied
this dependence, either as function of signal-to-noise (SNR) ratios (e.g., carrier-to-noise
density ratio C/N0) or as function of elevation itself, e.g., (Euler and Goad, 1991; Ward,
1996; Langley, 1997; Hartinger and Brunner, 1999; Collins and Langley, 1999; Wieser
et al., 2005). Such weighting will also help suppressing the effect of multipath (de Bakker,
2011). For our purposes of studying and evaluating the MDBs, the differences between
these functions are negligible. The simplest function, being the cosecant as function of
elevation, has a value of about 4 at 15 degrees elevation and reaches its minimum of 1 at
90 degrees elevation.

L1 L2 L5 E1 E5a E5b E5 E6

p (cm) 25 25 15 20 15 15 7 15
φ (mm) 1.0 1.3 1.3 1.0 1.3 1.3 1.3 1.2

Table 7.3: Zenith-referenced standard deviations of undifferenced GPS and Galileo code
(p) and phase (φ) observables (sections 6.1 and 6.2; Simsky et al., 2008; de Bakker et al.,
2009, 2012).

7.2.3 Redundancy

A prerequisite for being able to perform statistical tests is the existence of redundancy. For
a full rank model, redundancy is defined as the number of observations minus the number of
unknown parameters. We have summarized the redundancy of the k-epoch model eq. (7.7)
in table 7.4.

We discriminate between the ionosphere-weighted case and the ionosphere-float case. Note
that ionosphere-weighted here refers to constraining the ionosphere variations over time,
this is related to but distinct from constraining the ionosphere variations over distance, i.e.
over a baseline. In the ionosphere-float case, no a priori information is assumed about the
ionospheric delays. Hence, in this case, all ionospheric delays are treated as completely
unknown. This results therefore in a redundancy reduction of k − 1, being the number of
unknown time-differenced ionospheric delays.

We also discriminate between the phase and code case, and the code-only (phaseless) and
phase-only (codeless) cases. When both phase and code data are used, the ionosphere-
weighted redundancy equals (k− 1)(2n− 1). Thus in this case, redundancy exists for any
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number of frequencies, provided k ≥ 2. That at least two epochs of data are needed is of
course due to the fact that we are working with time-differenced data. That already single-
frequency (n = 1) processing provides redundancy is due to the ionospheric information.
Without this information, there would be no redundancy in the single-frequency case, but
only in the dual- and multi-frequency cases, provided both phase and code data are used.

The phase-only and code-only redundancies are the same. In the phase-only and code-only
cases we have (k− 1)n observations fewer than in the phase and code case. Hence, this is
the number by which the redundancy drops when either the code data or the phase data are
left out. Thus in the phase-only or code-only cases, single-frequency testing is impossible
even if ionospheric information is provided.

Phase and Code Phase-only Code-only

I-weighted (k − 1)(2n− 1) (k − 1)(n− 1) (k − 1)(n− 1)
I-float 2(k − 1)(n− 1) (k − 1)(n− 2) (k − 1)(n− 2)

Table 7.4: Redundancy for k-epoch, n-frequency, iono-weighted and iono-float, single-
receiver geometry-free model eq. (7.7).

7.3 Testing and reliability

In this section we formulate our alternative hypotheses and present the corresponding test
statistics.

7.3.1 Outliers, cycle slips and loss-of-lock

We now formulate our alternative hypotheses for the single-receiver, geometry-free GNSS
model. They accommodate model biases such as outliers in the pseudo range data, slips
in the carrier phase data and loss-of-lock.

Recall that the undifferenced observational vector of epoch t is given as y(t) =
(φ(t)∗, p(t)∗, I(t))∗. Now assume that a model error has occurred in the data of epoch l
and that this (2n+1)-bias vector can be parametrized as Hb, where H is a given matrix of
order (2n+ 1)× q and b is an unknown vector having q entries. Then Hb is the difference
between the expectation of y(l) under the null hypothesis H0 and the expectation of y(l)
under the alternative hypothesis Ha. Thus E {y(l)|Ha} = E {y(l)|H0} + Hb. Through
the choice of matrix H, we can describe the type of model error. For instance, if all the
phase data are assumed erroneous, as would be the case after a temporary loss-of-lock on
all phase observables, then H = (In, 0, 0)∗ and q = n. But if only the pseudo range data
on frequency j is corrupted with an outlier, then H = (0, δ∗j , 0)∗ and q = 1, where δj is an
n-vector having a 1 as its jth entry and zeros elsewhere.

Apart from describing the model error through matrix H, we also need to specify the time
behavior of the model error. Here we consider spikes and slips. A model error behaves as
a spike if it occurs at one and only one epoch. A model error is said to behave as a slip
if it persists after occurrence. Examples of spikes are outliers in the pseudo range data or
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in the ionospheric delays. Examples of slips are cycle slips in the phase data or momentary
loss-of-lock (see insert for causes of cycle slips).

Causes of cycle slips are given by Hofmann-Wellenhof et al. (1997) as:

1. Obstruction of the satellite signal. When the satellite signals are obstructed and a
receiver (temporarily) loses lock, all integer ambiguities are reset causing a cycle slip
on all frequencies. If the occurrence of this event is registered by the receiver the loss-
of-lock indicator is set and, when the interruption is longer then the measurement
interval, is accompanied by missing data.

2. Failure of the receiver tracking loop. When a receiver fails to track a carrier wave
correctly this can lead to a cycle slip. A receiver tracks each carrier wave on a
separate channel. Therefore, the occurrence of cycle slips on different frequencies
can be considered as independent events. Given the relatively small probability of a
cycle slip occurring at a certain epoch under normal conditions, the probability of
multiple cycle slips occurring simultaneously is quite small.

3. Low carrier-to-noise density ratio (C/N0). When a receiver is tracking a satellite with
a low C/N0, e.g. a satellite with low elevation, the receiver may not be able to track
the carrier waves correctly, which can lead to a lot of cycle slips. The probability of
cycle slips occurring on multiple frequencies simultaneously also increases.

If we assume the model error Hb to behave as a spike at epoch l, then E {y|Ha} =
E {y|H0}+(sl⊗H)b, where sl is a k-vector having a 1 as its lth entry and zeros elsewhere.
Would we assume the error to be persistent, however, as would be the case after a loss-of-
lock or after a slip, then sl is a k-vector having zeros in its first l − 1 entries, but 1s in all
its remaining entries.

Thus with suitable choices for the vector sl and the matrix H, one can model outliers
in the code data, cycle slips in the phase data, disturbances in the ionosphere and even
a complete loss-of-lock. The formulation of the alternative hypotheses in terms of the
time-differenced data follows then from pre-multiplying E {y|Ha} = E {y|H0}+(sl⊗H)b
with D∗k⊗ I2n+1. The null- and alternative hypotheses treated in this chapter are therefore
given as

H0 : E {dy} = (Ik−1 ⊗G)dg
Ha : E {dy} = (Ik−1 ⊗G)dg + (D∗ksl ⊗H)b (7.10)

where

H
(2n+1)×q

=


(δ∗j , 0, 0)∗ (single carrier phase)
(0, δ∗j , 0)∗ (single pseudorange)
(0, 0, 1)∗ (ionosphere disturbance)
(In, 0, 0)∗ (phase loss-of-lock on all frequencies)

(7.11)

and

sl
k×1

=

 (
1
0, . . . , 0,

l
1, 0, . . . ,

k
0)∗ (spike)

(0, . . . , 0, 1, 1, . . . , 1)∗ (slip)
(7.12)
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In order to test H0 against Ha, the Uniformly Most Powerful Invariant (UMPI) test is used,
see e.g., (Arnold, 1981; Koch, 1999; Teunissen, 2000b). It rejects the null hypothesis in
favor of the alternative hypothesis, if

Tq = b̂∗Q−1
b̂b̂
b̂ > χ2

α(q, 0) (7.13)

where b̂, with variance matrix Qb̂b̂, is the Least-Squares Estimator (LSE) of b underHa. The
UMPI-test statistic Tq has a central χ2-distribution under H0 with q degrees of freedom,

Tq
H0∼ χ2(q, 0). Hence, with α being the probability of wrongful rejection, the critical value

χ2
α(q, 0) of eq. (7.13) is computed from the relation α = P[Tq > χ2

α(q, 0)|H0].

7.3.2 Test statistics for spikes and slips

In order to derive the appropriate test statistics, we first determine the least-squares esti-
mator of b in eq. (7.10). Here and in the following we assume D {dI} = σ2

ID
∗
kDk and

therefore D {y(i)} = blockdiag(Qφ, Qp, σ
2
I)

call= Q. The least-squares estimator of b and
its variance matrix is given in the following theorem.

Theorem 1 (UMPI test statistic) With the dispersion given as D {dy} = D∗kDk ⊗ Q,
Q = blockdiag(Qφ, Qp, σ

2
I), the least-squares estimator of b under Ha (cf. eq. (7.10))

and its variance matrix are given as

b̂(l, k) = (s̄∗l s̄l ⊗ H̄∗Q−1H̄)−1(s̄∗l ⊗ H̄∗Q−1)y
Qb̂b̂(l, k) = (s̄∗l s̄l)−1 ⊗ (H̄∗Q−1H̄)−1 (7.14)

and the uniformly most powerful invariant test statistic for testing H0 against Ha is given
as

Tq(l, k) = b̂(l, k)∗Qb̂b̂(l, k)−1b̂(l, k) = y∗
(
Ps̄l ⊗Q−1PH̄

)
y (7.15)

where s̄l = PDksl and H̄ = P⊥GH, with the projectors PDk = Dk(D∗kDk)−1D∗k, P⊥G =
I2n+1 −G(G∗Q−1G)−1G∗Q−1, Ps̄l = s̄l(s̄∗l s̄l)−1s̄∗l and PH̄ = H̄(H̄∗Q−1H̄)−1H̄∗Q−1.

Proof: See appendix C.

The bias estimator and its variance matrix are given the arguments l and k (with l ≤ k)
to emphasize that it is an estimator of an error occurring at epoch l, based on k epochs
of data.

From the Kronecker product structure of eq. (7.14) it follows that b̂(l, k) and its variance
matrix can be computed directly from its single-epoch counterparts. We therefore have
the following result.

Corollary 1 Let the single-epoch bias estimator and its variance matrix be given as

β̂(i) = (H̄∗Q−1H̄)−1H̄∗Q−1y(i)
Qβ̂β̂ = (H̄∗Q−1H̄)−1 (7.16)
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and define the (2n+ 1)× k matrix B̂k = [β̂(1), . . . , β̂(k)]. Then

b̂(l, k) = B̂ks̄l(s̄∗l s̄l)−1

Qb̂b̂(l, k) = (s̄∗l s̄l)−1Qβ̂β̂

(7.17)

and

Tq(l, k) =
s̄∗l B̂

∗
kQ
−1
β̂β̂
B̂ks̄l

s̄∗l s̄l
(7.18)

Note that the time dependency in the coefficients of eq. (7.18) is captured by s̄l, which
will be different for spikes and slips.

Spikes For spike-like biases the k-vector sl is a unit vector having a 1 as its lth entry. If
we make use of PDk = Ik − ek(e∗kek)−1e∗k, it follows that s̄l = δl − 1

k
ek and s̄∗l s̄l = 1− 1

k
.

For spikes, the bias expression eq. (7.17) therefore simplifies to

b̂(l, k) = k

k − 1

(
β̂(l)− 1

k

k∑
i=1

β̂(i)
)

= β̂(l)− 1
k − 1

k∑
i=1,i 6=l

β̂(i) (7.19)

This last expression clearly shows that b̂(l, k) is the difference of the local estimator β̂(l) and

the time-average of the β̂(i) over the error-free time instances i = 1, . . . , k; i 6= l. Under
Ha the mean of the local estimator is b and that of the time-average is zero. Although
one can use the local estimator β̂(l) as the bias-estimator, the local estimator does not
make use of the information that all other epochs are assumed to be bias-free. Hence, the
local estimator can be improved by including this information through subtraction of the
zero-mean time-average of the bias-free time instances.

For computational purposes it is easier to use the first expression of eq. (7.19), because
of the presence of the running average (which can also be computed recursively). We
therefore use this expression to formulate the corresponding test statistic for spikes. It
reads

Tq(l, k) = k

k − 1 ||β̂(l)− β̄(k)||2
Q−1
β̂β̂

(7.20)

with the running average β̄(k) = 1
k

∑k
i=1 β̂(i).

The test statistic of eq. (7.20) can be used for any l ≤ k. However, when l < k, there is
a delay in testing of k− l. For some applications this may not be acceptable or necessary.
For those cases one will use eq. (7.20) with l = k, which gives

Tq(k, k) = k − 1
k
||β̂(k)− β̄(k − 1)||2

Q−1
β̂β̂

(7.21)

Thus in this case, the test statistic is formed from the difference of the local bias estimator
β̂(i) for i = k and its time-average over the previous k − 1 epochs, β̄(k − 1).
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Slips For slip-like biases the k-vector sl is a vector having 1s as its last k− l+1 entries and
zeros elsewhere. If we make use of PDk = Ik−ek(e∗kek)−1e∗k, it follows that s̄l = sl− k−l+1

k
ek

and s̄∗l s̄l = (k−l+1)(l−1)
k

. We therefore have

b̂(l, k) = k

k − l + 1

(
1
k

k∑
i=1

β̂(i)− 1
l − 1

l−1∑
i=1

β̂(i)
)

= 1
k − l + 1

k∑
i=l

β̂(i)− 1
l − 1

l−1∑
i=1

β̂(i) (7.22)

This last expression clearly shows that in case of a slip, b̂(l, k) is the difference of two

time-averages of the β̂(i). The first time-average averages over all epochs that supposedly
contains the bias, while the second is the time-average over all bias-free epochs. Under
Ha, the mean of the first time-average is b, while that of the second time-average is zero.

Note that eq. (7.22) reduces to eq. (7.19) when l = k. This shows that one can not
discriminate between spikes and slips on the basis of one single epoch. That is, one needs
to have a delay (k > l) to be able to separate spikes from slips.

For computational purposes it is easier to use the first expression of eq. (7.22), because
of the presence of the running averages. We therefore use this expression to formulate the
corresponding test statistic for slips. It reads

Tq(l, k) = k(l − 1)
k − l + 1 ||β̄(k)− β̄(l − 1)||2

Q−1
β̂β̂

(7.23)

It is thus formed from the difference of two time-averages of the β̂(i), namely the time-
average over the epochs up to and including the time of testing k and the time-average
over the epochs up to time l at which the slip is assumed to have started. For l = k this
test statistic becomes identical to eq. (7.21).

7.3.3 Minimal Detectable Biases

Under the alternative hypothesis Ha, the test statistic Tq is distributed as a noncentral

χ2-distribution with q degrees of freedom, Tq
Ha∼ χ2(q, λ0), where λ0 = b∗Qb̂b̂(l, k)−1b is

the noncentrality parameter. The test of eq. (7.13) is an UMPI-test, meaning that for all
b, it maximizes the power within the class of invariant tests. Here power, denoted as ψ, is
defined as the probability of correctly rejecting H0, thus ψ = P[Tq > χ2

α(q, 0)|Ha].

The power of test eq. (7.13) depends on the degrees of freedom q (i.e., the dimension of b),
the level of significance α, and through the noncentrality parameter λ0, on the bias vector
b. Once q, α and b are given, the power can be computed. One can however also follow
the inverse route. That is, given the power ψ, the level of significance α and the dimension
q, the noncentrality parameter can be computed, symbolically denoted as λ0 = λ(α, q, ψ).
Figure 7.1 shows the relation between λ0 and ψ for different values of q and α. With λ0
given, one can formulate the following quadratic equation in b,

b∗Qb̂b̂(l, k)−1b = λ0 (7.24)
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Figure 7.1: Square-root of noncentrality parameter λ0 as function of power ψ for different
degrees of freedom q and different levels of significance α.

This equation is said to describe, for the test of eq. (7.13), the reliability of the null
hypothesis H0 with respect to the alternative hypothesis Ha. For q = 1, eq. (7.24)
describes an interval, for q = 2 it describes an ellipse and for q > 2 it describes an
(hyper)ellipsoid. Bias vectors b ∈ Rq that lie on or outside the ellipsoid of eq. (7.24) can
be found with at least probability ψ.

To determine the bias vectors that satisfy eq. (7.24), we use the factorization b = ||b||d,
where d is a unit vector (d∗d = 1). Substitution into eq. (7.24) and inversion gives

MDB(l, k) =

√√√√( λ0

d∗Qb̂b̂(l, k)−1d

)
d (d = unit vector) (7.25)

This is the celebrated Minimal Detectable Bias (MDB) vector of Baarda’s reliability theory
(Baarda, 1967, 1968). Its length is the smallest size of bias vector that can be found with
probability ψ in the direction d with test eq. (7.13). By letting d vary over the unit sphere
in Rq one obtains the whole range of MDBs that can be detected with probability ψ with
test eq. (7.13). For the one-dimensional case (q = 1), we have d = ±1 and therefore
MDB(l, k) = σb̂(l, k)

√
λ0.

Baarda, in his work on the strength analysis of general purpose networks, applied his
general MDB-form to data snooping thus obtaining the scalar boundary values (in Dutch:
‘grenswaarden’). Applications of the vectorial form can be found, for example, in (Mierlo,
1980, 1981; Kok, 1982b) for deformation analysis, in (Förstner, 1983) for photogrammetric
linear trend testing and in (Teunissen, 1986) for testing digitized maps. For recursive
testing, with application of testing time and types of error, the first innovation-based
vectorial MDB was given in (Teunissen, 1990a). Application of the generalized eigenvalue
problem to the vectorial form to obtain MDB-bounds can be found in e.g. (Teunissen,
2000b; Knight et al., 2010).
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Above it was assumed that the variance matrix Qb̂b̂ in the test statistic Tq is known, cf.
eq. (7.13). In case, however, the variance factor σ2 in Qb̂b̂ = σ2Gb̂b̂ is unknown, then the
Chi-square distributed test statistic needs to be replaced by the F -distributed test statistic
T ′q,df = b̂∗G−1

b̂b̂
b̂/(σ̂2q), in which σ̂2 is the unbiased estimator of the variance factor under

the alternative hypothesis and df is its degrees of freedom. This test statistic is distributed
under Ha as T ′q,df ∼ F (q, df, λ0), with the same noncentrality parameter as that of Tq
(Kok, 1982a; Koch, 1999). Therefore also in case σ2 is estimated, will the same MDB
expression be found as given in eq. (7.25). Hence, similarly as with the other statistical
parameters, the effect on the MDB, for the two cases σ2 known versus σ2 estimated, is
only felt through the scaling factor λ0. In this chapter we work with λ0 computed from
the Chi-square distribution.

If we substitute eq. (7.17) into eq. (7.25), the MDBs for spikes and slips work out as

MDB(l, k) = f(l, k) MDB(2, 2) (7.26)

with

MDB(2, 2) =

√√√√√
 2λ0

d∗Q−1
β̂β̂
d

d (7.27)

and

f(l, k) =
√

1
2

( 1
k − l + 1 + 1

l − 1

){
for spikes l = k
for slips l ≤ k

(7.28)

The MDBs get smaller if more epochs of data are used (k gets larger) and/or a more

precise bias-estimator β̂ is used (Qβ̂β̂ gets ‘smaller’). Note that the spike-MDB depends
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on k, whereas the slip-MDB depends on both l and k. Hence, the detectability of spikes
does not depend on the time instance of their occurrence, whereas the detectability of slips
does depend on these time instances; both depend on the amount of data. For k fixed,
the slip-MDB reaches its minimum at bk/2c + 1. Hence, for a given observational time
span, slips are best detectable if they occur ‘half way’ in the time span. The graph of the
function f(l, k) is given in fig. 7.2. It shows by how much the MDB(2, 2) improves when
l and k are larger than 2.

In the following, we present the MDBs for the two-epoch case (k = 2, l = 2). The corre-
sponding MDB-values for arbitrary epochs can then be obtained by using the multiplication
factor f(l, k) of eq. (7.26).

7.4 Detectability of carrier phase slips

In this section we present and analyze the phase-slip MDBs. This is done for the single-,
dual- and multi-frequency case. We also analyze the phase-slip MDBs in case code data
are absent.

7.4.1 Minimal detectable carrier phase slips

In the following, MDB values have been computed numerically using the complete set of
code and phase variances according to table 7.3, and analytical MDB expressions have
been derived for which the phase and code variance matrices have been simplified to
scaled unit-matrices, i.e., Qφφ = σ2

φIn and Qpp = σ2
pIn. For the standard deviation of

the scaled unit-matrices we have used the mean value of the standard deviations of the
available signals (except when explicitly stated otherwise). The MDB values from both the
numerical computations and the analytical expressions are presented graphically in figs. 7.3
to 7.6 and 7.8 to 7.13 (the dashed curves correspond to the analytical expressions, while
the full curves correspond to the MDBs computed from the actual variance matrices).
The differences between the two are shown to be small, especially when the used signals
have comparable precision, which indicates that the analytical expressions indeed give a
proper representation of the single-receiver, single-channel detectability. In some cases the
analytical approximations are so close to the numerical solution, that the curves lie on
top of each other. For all MDBs which pertain to an error on a single frequency, we have
chosen to compute the MDB for an error on the first frequency of the available frequencies.
For GPS this is the L1 frequency and for Galileo the E1 frequency when available.

The analytical expression for the multi-frequency phase-slip MDB is given in the following
theorem.

Theorem 2 (Phase-slip MDB): Let H = (δ∗j , 0, 0)∗, Qφφ = σ2
φIn and Qpp = σ2

pIn. Then
for k = 2, the MDB for a slip in the jth frequency carrier phase observable is given as

MDBφj = σφ

√√√√( 2λ0

1− 1
n′

)
(7.29)
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with scalar

1
n′

= 1
n

1
1 + ε

1 +
(γj − 1−ε

1+ε γ̄)2

1
n

∑n
i=1 γ

2
i −

(
1−ε
1+ε

)2
γ̄2 + 2σ2

φ
/σ2
dI

n(1+ε)

 (7.30)

where ε = σ2
φ/σ

2
p is the phase-code variance ratio and γ̄ = 1

n

∑n
i=1 γi is the average of the

squared frequency ratios γi = f 2
1 /f

2
i , i = 1, . . . , n.

Proof see appendix C.

Note that the slip MDB is scaled with σφ, the small standard deviation of the carrier phase
observable. Thus if the bracketed ratio of eq. (7.29) is not too large, small carrier phase
slips will be detectable. The bracketed term depends on λ0 and on n′. The scalar n′ is
dependent on ε, γi (i = 1, . . . , n) and σ2

φ/σ
2
dI . Hence, it depends on the measurement

precision, on the number of frequencies and their spacings, and on the smoothness of the
ionosphere. The MDB gets smaller if ε gets larger, i.e., if more precise code data are used.
The MDB also gets smaller if n gets larger, i.e., if more frequencies are used. Finally note
that the MDB-dependence on the frequency diversity (i.e., on γi, i = 1, . . . , n) is driven to
a large part by the smoothness of the ionosphere. This dependence is absent for σdI = 0
and it gets more pronounced the larger σdI gets.

We now analyze the slip MDB for the GPS and Galileo single-, dual- and triple-frequency
cases.

7.4.1.1 Single-frequency case

For the single-frequency case (n = 1), the carrier phase slip MDB eq. (7.29) can be worked
out to give

MDBφj = σp

√√√√2
(

1 +
σ2
φ

σ2
p

+ 2γ2
j

σ2
dI
σ2
p

)
λ0 (7.31)

This result shows that single-frequency phase slip detection is possible in principle, but
that its performance depends very much on the smoothness of the ionosphere and on the
measurement precision of code. If σ2

dI = ∞, then MDBφj = ∞, meaning that single-
frequency slip detection has become impossible. If the ionospheric delay is so smooth
that the ratio σ2

dI/σ
2
p may be neglected, we get with ε ≈ 0, MDBφ1 = σp

√
2λ0. Hence,

for a sufficiently smooth ionospheric delay, we may detect slips of about six times the
code standard deviation (here and in the following the reference value of the noncentrality
parameter is taken as λ0 = 17.02; it corresponds to q = 1, α = 0.001 and ψ = 0.80, see
fig. 7.1.

The numerical values of the GPS and Galileo single-frequency phase-slip MDBs are graph-
ically displayed in fig. 7.3 as function of σdI . It shows that the MDBs are approximately
constant for σdI ≤ 10−2 m, but then rapidly increase for larger values of σdI . The constant
values are about 146 cm for L1 and L2, 117 cm for E1, 88 cm for L5, E5a, E5b and E6 and
41 cm for E5. These three levels reflect the difference in the code measurement precision
of the signals. Since these single-frequency MDBs are all larger than their corresponding
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Figure 7.3: Single-frequency GPS and Galileo phase-slip MDBs for k = 2; dashed curves
are based on eq. (7.31).

wavelengths, time-windowing (N = k − l + 1 > 1 c.f. eq. (7.26)) will be needed to bring
the MDBs down to smaller values. Accepting a delay in testing is then the price one has
to pay for the increase in detectability.

7.4.1.2 Dual and multi-frequency case

It follows from eq. (7.29) that the dual- and multi-frequency phase-slip MDB is bounded
from below as

MDBφj ≥ σφ

√√√√2
(

n(1 + ε)
n(1 + ε)− 1

)
λ0 (7.32)

This lower bound is obtained for σdI = 0. Very small slips on a single frequency can be
detected (in order of a few cm), if the ionospheric delays are sufficiently smooth (σdI ≤ 10−2

m), even for the two-epoch case. This is confirmed by the S-shaped MDB graphs of fig. 7.4.
Note that the case of simultaneous slips on multiple frequencies are treated later. In the case
of a slip on a single frequency with smooth ionosphere delays, there is also no significant
difference between the dual-frequency and multi-frequency performance. This difference is
present though, for larger values of σdI . In particular the dual-frequency GPS phase-slip
MDBs, and the Galileo E1 E5a, increase steeply when σdI ≥ 10−2 m gets larger. For
the multi-frequency phase-slip MDBs the increase is much more moderate. All the multi-
frequency phase-slip MDBs remain less than 7 cm, whereas the dual-frequency MDBs are
all smaller than 22 cm. Those of Galileo are smaller than their GPS counterparts, due
to their improved code precision, except that L1-L2-L5 outperforms E1-E5a-E5b due to
a better distribution of the frequencies. We can also see that the analytical expression is
further removed from the numerical results for the E1-E5 combination, which is a result of
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Figure 7.4: Dual- and multi-frequency GPS and Galileo phase-slip MDBs on L1/E1 for
k=2; dashed curves are based on eqs. (7.29) and (7.30).

the large difference in precision between these two signals. The scaled unit matrix used for
the code variance approximates the actual variance matrix less well.

7.4.2 Cycle slip detection without code data

Since code data are generally much less precise than carrier phase data, one may wonder
whether code data are really needed for carrier phase slip detection. This is also of interest
for those applications where the code data are corrupted by multipath. In this section
we therefore investigate what happens when σp → ∞. The corresponding MDBs can be
obtained from Theorem 1 by taking the limit limσp→∞ MDBφj . We have the following
result.

Lemma 1 (Codeless phase-slip MDB): The codeless phase-slip MDB limσp→∞ MDBφj

follows from eq. (7.29) using

lim
σp→∞

(
1− 1

n′

)
=
(

1− 1
n

)
− (γj − γ̄)2∑n

i=1(γi − γ̄)2 + 2σ2
φ/σ

2
dI

(7.33)

or using the limit of the inverse

lim
σp→∞

(
1− 1

n′

)−1
=
(

1− 1
n

)−1
+ (γj − γ̄(j))2∑n

i 6=j(γi − γ̄(j))2 + 2σ2
φ/σ

2
dI

(7.34)

where γ̄(j) = 1
n−1

∑n
i 6=j γi is the average of the squared frequency ratios that excludes γj.

Proof The expression of eq. (7.33) follows from taking the limit of eq. (7.30). The expres-
sion of eq. (7.34) follows from inverting eq. (7.33) and rearranging terms.
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Figure 7.5: Dual-frequency GPS and Galileo phase slip MDB on L1/E1 without code data
for k = 2; dashed curves are based on eq. (7.35).

The above two expressions clearly show that within a set of n > 1 MDBs, the smallest
MDBφj is the one for which γj is closest to the average γ̄.

7.4.2.1 Single-frequency case

In the single-frequency case we have n = 1 and thus no frequency diversity, i.e.,
∑n
i=1(γi−

γ̄)2 = 0. This shows that n′ = 1 for n = 1, c.f. eq. (7.33), and that therefore MDBφj =∞.
Hence, phase-slip detection without code data is impossible for the single-frequency case
(see also the redundancy table 7.4).

7.4.2.2 Dual-frequency case

In the dual-frequency case (n = 2) we have (γj − γ̄)2 = 1
2(∑n

i=1(γi − γ̄)2). Hence, n′ = 1
c.f. eq. (7.33), if n = 2 and σdI = ∞. In that case dual-frequency phase-slip detection
without code data becomes impossible. In all other cases, however, we have

lim
σp→∞

MDBφj = σφ

√√√√(4 + (γ1 − γ2)2σ
2
dI
σ2
φ

)
λ0 (7.35)

This shows that very small phase-slips can be detected when the ionospheric delays are
sufficiently smooth. Figure 7.5 shows them to be less than 3 cm for σdI ≤ 10−2 m.
For larger values, the MDBs increase linearly, with the gradient driven by the frequency
diversity; the closer the frequencies, the less steep the increase is.

When we compare fig. 7.5 with fig. 7.4, we note that the phase-slip MDB values are not
too different for sufficiently small σdI , but that their differences increase for larger σdI .
Thus the presence of the code data are particularly needed when the ionospheric delays are
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Figure 7.6: Multi-frequency GPS and Galileo phase slip MDB on L1/E1 without code data
for k = 2; dashed curves are based on eq. (7.36).

not smooth enough. Codeless dual-frequency phase-data is sufficient to detect phase-slips
otherwise.

7.4.2.3 Multi-frequency case

In the multi-frequency case the general form of the codeless phase-slip MDB follows from
eqs. (7.29) and (7.34) as

lim
σp→∞

MDBφj = σφ

√√√√2
(

n

n− 1 + (γj − γ̄(j))2∑n
i 6=j(γi − γ̄(j))2 + 2σ2

φ/σ
2
dI

)
λ0 (7.36)

To discuss its dependence on the ionospheric variance and on the frequency distribution, we
start from the most optimal scenario. The MDB is smallest when σ2

dI = 0, in which case
the frequency dependence only includes the number of frequencies but not their diversity,

lim
σp→∞,σdI→0

MDBφj = σφ

√
2
(

n

n− 1

)
λ0 (7.37)

For σ2
dI 6= 0, the MDB is smallest if all frequencies are the same (γi = 1, i = 1, . . . , n),

i.e., if the vector γ = (γ1, . . . , γn)∗ is parallel to the vector en = (1, . . . , 1)∗. One would
then get the same MDB as eq. (7.37), i.e., the one that corresponds with σ2

dI = 0. This
can be explained as follows. If γ and en are parallel vectors, then the ionospheric delay
I(i) gets lumped with ρ′(i), c.f. eqs. (7.5) and (7.6), reducing the model in essence to an
ionosphere-fixed one. Thus in the absence of code data, the absence of frequency diversity
is best for phase-slip detection.

Now assume that not all components of vector γ are the same, but that instead all but one
of them are the same. Thus γi = γ̃, ∀i 6= j. Then the codeless phase-slip MDB eq. (7.36)
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works out as

lim
σp→∞

MDBφj = σφ

√√√√2
(

n

n− 1 + (γj − γ̃)2 σ
2
dI

2σ2
φ

)
λ0 (7.38)

This expression generalizes eq. (7.35) for n > 2. Its value goes to infinity for σ2
dI → ∞.

In this case, it is the lack of frequency diversity in the n − 1 phase data, φi, i 6= j, that
makes it impossible to solve for the ionospheric delay and therefore also for detecting a slip
in the jth frequency phase observable.

For the triple-frequency case (n = 3), the following bounds can be formulated,

σφ
√

3λ0 ≤ limσp→∞ MDBφj ≤ σφ

√
2
(

1 + (γj1−γj3 )2+(γj1−γj2 )2

(γj2−γj3 )2

)
λ0 (7.39)

with the cyclic indices (j1, j2, j3) = (1, 2, 3), (2, 3, 1), (3, 1, 2) depending on whether j = 1,
2 or 3. The lower bound corresponds with σ2

dI = 0, while the upper bound corresponds
with σ2

dI =∞.

These bounds show that very small phase-slips can be detected, even when the code data
are absent. This is confirmed by the graphs of fig. 7.6. All codeless phase-slip MDBs are
less than 10 cm and even as small as about 1 cm when σdI ≤ 3 × 10−3 m. For larger
values of σdI the differences in the triple-frequency MDBs become clearly visible. This is
due to their frequency dependence.

When we compare the codeless results of fig. 7.6 with the triple- and quadruple-frequency
results of fig. 7.4, no big differences can be seen. Hence, the impact of the code data
on the phase-slip MDBs becomes less pronounced if more than two frequencies are used.
The only noteworthy difference between the results of the two figures is the performance
of E1-E5a-E5b. This difference in performance, compared to the other triple-frequency
results, is due to the small frequency separation of E5a and E5b.

7.4.3 Carrier phase slips at other frequencies

So far only carrier phase slips on the first available frequency were considered. For a carrier
phase slip on a different frequency the results are very similar. However, the actual values
will depend on the carrier frequency combination and the carrier frequency on which the
slip occurs. Figure 7.7 shows the MDB for a slip on one of the phase observables of
dual frequency data as a function of the carrier frequencies. To highlight the impact of
the frequencies on the MDB a simplified stochastic model was again used with code and
phase variance matrices as scaled unit-matrices. For the standard deviation of the code
observables we have used 15 cm and for the carrier phase observables we used 1 mm.

The solid lines show the MDB for a slip on the first carrier phase observable which is
displayed in the legend. The horizontal axis shows the frequency of the second carrier
phase observable. The line corresponding to the L2 phase observable shows that the MDB
has a minimum value when the second phase observable has the same frequency. This
would correspond to a receiver tracking two identical, but independent signals from the
same satellite. The MDB increases with increasing distance between the two frequencies,
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which results in the largest MDBs in the figure for a carrier frequency combination including
L1 and E5a. The dotted lines show the MDB for the same carrier frequency combinations,
but now for a slip on the second phase observable. Careful inspection of the figure reveals
that for a given frequency combination the MDB is largest for a slip on the lowest frequency
(largest dispersion factor γ).
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Figure 7.7: MDB for a slip on the first (solid) or second (dotted) phase observable of dual
frequency data as a function of the carrier frequency of the second phase observable. The
carrier frequency of the first phase observable is given in the legend.

7.5 Detectability of code outliers

In this section we present and analyze the code-outlier MDBs. This is done for the single-,
dual- and multi-frequency case. We also analyze the code-outlier MDBs in case phase data
is absent.

7.5.1 Minimal detectable code outliers

The analytical expression for the multi-frequency code-outlier MDB is given in the following
theorem.

Theorem 3 (Code-outlier MDB): Let H = (0, δ∗j , 0)∗, Qφφ = σ2
φIn and Qpp = σ2

pIn. Then
for k = 2, the MDB for an outlier in the jth frequency code observable is given as

MDBpj = σp

√√√√( 2λ0

1− 1
m′

)
(7.40)
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with

1
m′

= 1
n

ε

1 + ε

1 +
(γj + 1−ε

1+ε γ̄)2

1
n

∑n
i=1 γ

2
i −

(
1−ε
1+ε

)2
γ̄2 + σ2

φ
/σ2
I

n(1+ε)

 (7.41)

where ε = σ2
φ/σ

2
p is the phase-code variance ratio and γ̄ = 1

n

∑n
i=1 γi is the average of the

squared frequency ratios γi = f 2
1 /f

2
i , i = 1, . . . , n.

Proof As the phase observables and code observables play a dual role in the two-epoch
model eq. (7.5), the code-outlier MDB can be found from the expression of the phase-slip
MDB eq. (7.29) through an interchange of the phase and code variance.

Although eqs. (7.40) and (7.41) have the same structure as eqs. (7.29) and (7.30), respec-
tively, there are marked differences between these expressions. First note that eq. (7.40) is
scaled by the standard deviation of code and not by that of phase as in eq. (7.29). Second,
the frequency-dependent term between brackets in eq. (7.41) is multiplied with the very
small phase-code variance ratio ε, while this is not the case with the bracketed term of
eq. (7.30). The consequences of these differences are that the dual- and multi-frequency
code-outlier MDBs are generally larger than those of the phase-slip MDBs and that they
are less sensitive to the number of frequencies and their spacing. The exception occurs in
the single-frequency case.

7.5.1.1 Single-frequency case

In the single-frequency case, for k = 2, the code-outlier MDB is identical to that of the
phase-slip MDB. This follows if we interchange the role of σ2

p and σ2
φ in eq. (7.31). For

k > 2, however, the MDBs differ of course. In case of a slip the multiplication factor is
1√
2

√
1

k−l+1 + 1
l−1 , while for a code-outlier it is 1√

2

√
1 + 1

k−1 .

7.5.1.2 Dual and multi-frequency case

We already remarked that in case of a sufficiently smooth ionosphere, the dual- and multi-
frequency phase-slip MDBs become relatively insensitive to the number of frequencies and
their spacings. This can be seen in fig. 7.4, but it also follows from the lower bound
eq. (7.32). The reason for this insensitivity lies in the fact that the frequency-dependent
bracketed term of eq. (7.30) reduces to 1 for σdI → 0. This effect is also present in
the code-outlier MDB bracketed term of eq. (7.41). However, with eq. (7.41) there is
the additional effect that the bracketed term is multiplied with the very small phase-code
variance ratio. Hence, the MDB is now also less sensitive to the number of frequencies and
their spacings for larger values of σdI . This means that one can expect the lower bound

MDBpj ≥ σp
√

2λ0 (7.42)

to be a good approximation to the code-outlier MDB. After all, this lower bound follows
from neglecting 1

m′
in eq. (7.41). Thus, for α = 0.001 and ψ = 0.80, giving λ0 = 17.02,

one can expect the code-outlier MDB to be about six times the code standard deviation.
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Figure 7.8: Dual- and multi-frequency GPS and Galileo code outlier MDBs on L1/E1 for
k = 2; dashed curves are based on eq. (7.40) and eq. (7.41).

This is confirmed by the graphs of fig. 7.8. The figure shows that the code-outlier MDBs
are not very sensitive to the available signals and frequencies. Additionally, the MDBs
are nearly constant with the variance of the time-differenced ionospheric delay (no MDB
variations are visible at the scale of this figure). Compare with phase-slip MDB fig. 7.4.
The two levels shown in fig. 7.8 correspond with the different code measurement precision
levels of the GPS L1 and Galileo E1 signals (cf. table 7.3). Figure 7.8 is the only figure
for which we have directly used the standard deviation of the L1 and E1 signals in the
analytical expressions (instead of the mean value of the available signals), since only the
precision of these signals has any impact on the size of the MDBs.

7.5.2 Code outlier detection without phase data

The lower bound of eq. (7.42) follows from taking the limit σ2
φ → 0 in eq. (7.40). We now

consider the other extreme, σ2
φ → ∞. It corresponds to code outlier detection without

the use of carrier phase data. The corresponding MDB will be larger than eq. (7.42).
Furthermore, the absence of carrier phase data will now make the MDB dependent on the
frequencies and the ionospheric variance. This follows, since the phase-variance limit of
eq. (7.41) reads

lim
σ2
φ
→∞

1
m′

= 1
n

+ (γj − γ̄)2∑n
i=1(γi − γ̄)2 + σ2

p/σ
2
I

(7.43)

We now again discriminate between the three cases n = 1, n = 2 and n > 2.
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7.5.2.1 Single-frequency case

Just like single-frequency codeless phase-slip detection is impossible, so is single-frequency
code-outlier detection without phase data. This follows directly from table 7.4, which
shows that redundancy is absent, when phase data is absent in case n = 1. It also follows
from eq. (7.43), which shows that m′ = 1 if n = 1.

7.5.2.2 Dual-frequency case

In the dual-frequency case, the phaseless code-outlier MDB is given as

MDBpj=1 = σp

√√√√(4 + (γ1 − γ2)2σ2
dI

σ2
p

)
λ0 (7.44)

It follows from interchanging the role of the phase- and code variance in eq. (7.35). The
expression in eq. (7.44) shows that the MDB gets larger (poorer detectability) if the fre-
quency separation gets larger (larger |γ2−γ1|). This is perhaps contrary to what one would
expect. However, one should not confuse the estimability of the ionosphere in the absence
of biases, i.e., under the null hypothesis H0, with the detectability of biases in the presence
of the ionosphere. Since the variance of the ionospheric delay can be shown to be inversely
proportional to |γ2 − γ1|, the ionospheric delay estimator gets indeed more precise when
the frequencies are further separated. The contrary happens however, with the outlier de-
tectability. The detectability of the outliers becomes poorer for larger frequency separation
and this effect becomes more pronounced for larger σ2

dI . This frequency dependence is
absent in case σ2

dI = 0.

The graphs for the dual-frequency phaseless code-outlier MDBs are given in fig. 7.9. Com-
pare this figure with fig. 7.5. The graphs in both figures show a similar shape. In the case of
the code-outlier MDBs, however, the graphs do not coincide because of the different levels
of code measurement precision of the signals. When we compare fig. 7.9 with fig. 7.8,
we also clearly show the impact of the phase data. With the phase data included, the
code-outlier MDB not only becomes smaller, but also the steep increase experienced in the
phaseless case for σdI ≥ 10−1 m is eliminated. Without the phase data, the code-outlier
MDB is more dependent on the smoothness of the ionospheric delay.

7.5.2.3 Multi-frequency case

The multi-frequency phaseless code-outlier MDB follows from interchanging the phase and
code variance in eq. (7.36). Their graphs are shown in fig. 7.10. When compared to
fig. 7.9, they seem to show the same behavior as in the dual-frequency case. This is
not true however. In the dual-frequency case the code-outlier MDB keeps growing with
increasing σdI , whereas in the multi-frequency case the MDB levels off for large enough
σdI . Hence, for larger values than σdI = 100 m, the graphs of fig. 7.10 would become
S-shaped, just like those of fig. 7.6.
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Figure 7.9: Dual-frequency GPS and Galileo code-outlier MDBs on L1/E1 for k = 2
without phase data; dashed curves are based on eq. (7.44).
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Figure 7.10: Multi-frequency GPS and Galileo code-outlier MDBs on L1/E1 for k = 2
without phase data; dashed curves are based on eqs. (7.40) and (7.43).
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7.6 Detectability of ionospheric disturbances

The analytical expression for the multi-frequency ionospheric disturbance MDB is given in
the following theorem.

Theorem 4 (Ionospheric MDB): Let H = (0, 0, 1)∗, Qφφ = σ2
φIn and Qpp = σ2

pIn. Then
for k = 2, the MDB for an ionospheric disturbance is given as

MDBdI = σdI

√√√√(1 +
σ2
d̂I
σ2
dI

)
λ0 (7.45)

with

σ2
d̂I =

2σ2
φ

nσ2
γ

[
1 + ε

(
1 + 4

1 + ε

γ̄2

σ2
γ

)]−1

(7.46)

where ε = σ2
φ/σ

2
p is the phase-code variance ratio, γ̄ = 1

n

∑n
i=1 γi is the average and σ2

γ =
1
n

∑n
i=1(γi− γ̄)2 is the ‘variance’ of the squared frequency ratios γi = f 2

1 /f
2
i , i = 1, . . . , n.

Proof Let d̂I, with variance defined by eq. (7.46), be the LS estimator of dI based on the
two-epoch model under H0, cf. eq. (7.10), using phase and code data only. Then it follows
from the structure of the model under Ha, that the LS bias estimator of the ionospheric
disturbance is given as the difference b̂dI = dI − d̂I. Therefore, its variance is given by
the sum σ2

dI + σ2
d̂I , from which the result follows.

The above result clearly shows what role is played by the a-priori ionospheric standard devi-
ation, σdI , the measurement precision, σφ and σp, and the distribution of the frequencies,
fi, i = 1, . . . , n. In case all n frequencies are equal, then σ2

γ = 0, and the MDB reduces
to

MDBdI = σdI

√√√√(1 +
σ2
p

σ2
dI

1 + ε

2nγ̄2

)
λ0 (7.47)

Although ionospheric disturbance testing is then still possible in principle, its performance
will then primarily be driven by the code variance. Figure 7.11 shows the MDB for the
single-frequency case (n = 1).

When there is a nonzero ‘variance’ in the frequencies, σ2
γ 6= 0, then codeless or phaseless

testing is possible as well. The codeless MDB follows from eq. (7.45) as

lim
σp→∞

MDBdI = σdI

√√√√(1 +
σ2
φ

σ2
dI

2
nσ2

γ

)
λ0 (7.48)

If we replace σ2
φ in this expression by σ2

p, we obtain the corresponding phaseless MDB.
Figures 7.12 and 7.13 show the codeless and phaseless MDBs for the different cases.



192 Chapter 7. Geometry-free Integrity Monitoring

10
−4

10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

σdI (m)

M
D

B
 (

m
)

 

 

L1
L2
L5
E1
E5a
E5b
E5
E6

Figure 7.11: Single-frequency ionospheric MDBs for k = 2; dashed curves are based on
eq. (7.47).

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
−1

10
0

σdI (m)

M
D

B
 (

m
)

 

 

L1 L2
L1 L5
L1 L2 L5
E1 E5a
E1 E5
E1 E5a E5b
E1 E5 E6
E1 E5a E5b E6

Figure 7.12: Dual- and multi-frequency codeless ionospheric MDBs for k = 2; dashed
curves are based on eq. (7.48).
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Figure 7.13: Dual- and multi-frequency phaseless ionospheric MDBs for k = 2; dashed
curves are based on eq. (7.48), with code variance replaced by phase variance.

7.7 Detectability of phase loss-of-lock

Phase loss-of-lock is defined as the simultaneous occurrence of an unknown multivariate
slip in all n carrier phase observables. To study its detectability, we first determine the
variance matrix of the multivariate slip under Ha and then provide bounds on the norm of
the phase loss-of-lock MDB-vector.

7.7.1 The variance matrix of the multivariate slip

In the presence of a phase loss-of-lock, the design matrix of the alternative hypothesis
defined by eq. (7.10) takes for k = l = 2 the form [G,H], with H = [In, 0, 0]∗. From
the structure of [G,H], it follows that the carrier phase vector φ(t, s) will not contribute
to the estimation of the parameters ρ′(t, s) and I(t, s) under Ha. These parameters are
therefore solely determined by the code observables and a priori ionospheric information. As
a consequence, the two-epoch bias estimator is given as the difference b̂ = φ(t, s)− φ̂(t, s),

where φ̂(t, s) = enρ̂
′(t, s) − γÎ(t, s) is the least-squares phase estimator based solely on

the code observables and a priori ionospheric information. Solving for ρ̂′(t, s) and Î(t, s),

followed by applying the variance propagation law to b̂ = φ(t, s) − enρ̂
′(t, s) + γÎ(t, s)

gives then the variance matrix of the multivariate slip. The result is given in the following
Lemma.

Lemma 2 (Variance matrix of multivariate slip) For k = l = 2 and H = (In, 0, 0)∗, the
variance matrix of the least-squares estimator of b in eq. (7.10) is given as

Qb̂b̂ = 2Qφφ + 2PenQppP
∗
en + σ2

dÎRenγγ
TR∗en (7.49)
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with σ2
dÎ = (1

2γ
∗Q−1

pp P
⊥
enγ + σ−2

dI )−1, P⊥en = In − Pen , Pen = en(e∗nQ−1
pp en)−1e∗nQ

−1
pp and

Ren = In + Pen .

Note that the variance matrix is a sum of three matrices, the entries of which may differ
substantially in size. The first matrix is governed by the precision of the phase observables
and will therefore have small entries. The second matrix is governed by the precision of
the code observables and will therefore have generally much larger entries than the first
matrix in the sum. The third matrix depends, next to the precision of the code observables,
also on γ and σ2

dI . Its entries will become smaller, if σ2
dÎ gets smaller. This happens for

smaller σ2
dI (smoother ionospheric delays) and/or larger γ∗Q−1

pp P
⊥
enγ (better code precision

and/or larger frequency diversity). Thus if σ2
dI = ∞, frequency diversity is needed (i.e.,

γ∗Q−1
pp P

⊥
enγ 6= 0) so as to avoid the entries of the third matrix in eq. (7.49) to become

infinite.

We now discuss the detectability of the phase loss-of-lock for n ≥ 2. The single-frequency
case n = 1 is already treated, cf. eq. (7.31), since phase loss-of-lock is then equivalent to
having a phase-slip.

7.7.2 Bounding the MDB vector

The variance matrix of eq. (7.49) can be used together with eq. (7.26) to determine
the phase loss-of-lock MDB-vector. Its length depends on the direction d in which the
multivariate slip occurred,

|| MDB|| =
√√√√ λ0

d∗Q−1
b̂b̂
d

(7.50)

For certain directions, this may result in a short vector, while for other directions, it may
be a long vector.

For its length, the following upper bound can be used,

|| MDB|| ≤ σd∗b̂

√
λ0 (7.51)

where σ2
d∗b̂

= d∗Qb̂b̂d is the variance of d∗b̂, with d being the unit vector that points in the
direction of the slip. The upper bound is easier to obtain as it avoids the inversion of the
variance matrix of eq. (7.49).

Considering eq. (7.49), it is not difficult to see in which directions the MDB-vector will
be short. If d ⊥ en, then P ∗end = 0, meaning that the second term of eq. (7.49) will not
contribute. And if d ⊥ span{en, γ}, then R∗end = 0 and P ∗end = 0, meaning that now also
the third term will not contribute. Thus

|| MDB|| ≤
√

2λ0d∗Qφφd if d ⊥ span{en, γ} (7.52)

This shows that the length of the MDB vector is very small indeed if d lies in the (n −
2)-dimensional space span{en, γ}⊥. In this case, the phase loss-of-lock has very good
detectability, since the MDB is then solely driven by the very precise carrier phase data.
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The situation changes drastically, however, if d is taken to lie in span{en, γ}. In that case
the large code variance dependent second and third term of eq. (7.49) will contribute as
well. The largest possible value that the length of the MDB vector can take corresponds
with d being the eigenvector of Qb̂b̂ with largest eigenvalue. The corresponding bounds for
the ionosphere-fixed and ionosphere-float case, are given in the following Lemma.

Lemma 3 (Phase loss-of-lock MDB upper bounds) Let Qφφ = σ2
φIn, Qpp = σ2

pIn. Then

|| MDB|| ≤


σp
√

2(1 + ε)λ0 if σ2
dI = 0

σp

√
2
(

1 + ε+ 2√
f−1

)
λ0 if σ2

dI =∞
(7.53)

with f = 1 +
(
σγ
γ̄

)2
, where σ2

γ = 1
n

∑n
i=1(γi − γ̄)2 and γ̄ = 1

n

∑n
i=1 γi.

Proof: see Appendix C.

The ionosphere-fixed upper bound corresponds with a slip in the en-direction, while the
ionosphere-float upper bound corresponds with a slip in the direction en +

√
n
||γ||γ. Thus

phase loss-of-lock is most difficult to detect if it results in a slip with such direction. For
example, for the ionosphere-fixed, dual- and triple-frequency (q = 2, 3) cases, the length
of the MDB-vector will then be about six to seven times the code standard deviation.

To conclude, we note that we can apply the duality of phase and code to the above lemma
and so obtain directly also the length of the MDB vector ||MDB||p that corresponds to the
case that the complete n-dimensional code vector is outlying. By interchanging the phase-
and code variance in eq. (7.53), we obtain

||MDB||p ≤


σp
√

2(1 + ε)λ0 if σ2
dI = 0

σp

√
2
(

1 + ε(1 + 2√
f−1

)
)
λ0 if σ2

dI =∞
(7.54)

The ionosphere-fixed upper bound is the same as in eq. (7.53), but the ionosphere-float
upper bound differs. In this second bound we note that the effect of frequency diversity (i.e.,
the effect of f) gets reduced due to its multiplication with the small phase-code variance
ratio ε. This corresponds to our earlier findings in section 7.5.1.2, where it was stated
that over the considered range of σ2

dI , the code-outlier MDB is much more insensitive to
frequency diversity than the phase-slip MDB is.

7.7.3 Numerical results MDB vector

Figure 7.14 and table 7.5 show results for the MDB ellipse for a simultaneous slip on both
frequencies of dual frequency GPS data. Figure 7.14 shows that the MDB ellipse is very
elongated, which confirms that certain combinations of simultaneous biases on L1 and L2
are more difficult to detect than others. The first column in table 7.5 gives the standard
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deviation of the time differenced ionospheric pseudo-observation and its two limiting cases:
ionosphere float and ionosphere fixed. The elongation of the ellipse is displayed in the
right most column showing the semimajor axis of the ellipse divided by the semiminor axis.
The MDB along the major axis and the direction of the major axis are displayed in column
two and three, respectively. For the ionosphere-float model considered here, the weakest
direction for error detection is given by the unit vector (0.62, 0.79)∗. In this direction a
bias of 7.27 m can just be detected with the chosen power and probability of false alarm.
This result reveals an important weak point of cycleslip detection with an ionosphere-float
model. After a momentary loss-of-lock to a satellite, specific combinations of simultaneous
slips can be present in the receiver data which are very difficult to detect.

The weakest direction for cycleslip detection depends on the ionospheric dispersion factors
γ. A combination of slips of unknown size on both phase observables of dual frequency
data with a time differenced model, is comparable to an undifferenced model with unknown
phase ambiguities. The directions of the principal axis of the ellipses presented in table 7.5
are therefore closely related to those pertaining to the well-known linear combinations used
for ambiguity float estimation.

For the ionosphere-weighted approach, the MDB ellipse shrinks and becomes less elongated
when the precision of the ionospheric pseudo observable increases. The weakest direction
also changes slowly, until it becomes equal to the line MDBL1 = MDBL2 for the ionosphere-
fixed model. At this point the uncertainty in the lumped parameter ρ′(t, s) becomes the
dominant factor instead of the uncertainty in the ionospheric delay I(t, s). This uncertainty,
which again results in a very elongated ellipse, impacts each of the phase observables
identically, resulting in the weakest direction for cycleslip detection given by MDBL1 =
MDBL2 for this situation.
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Figure 7.14: MDB ellipse of a simultaneous slip on both frequencies of GPS L1 L2 data
for different ionospheric models.
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Tables 7.6 and 7.7 display similar results as table 7.5 but now for, respectively, three and
four frequency data. Only the major axis is presented here because in this direction the
largest undetected slips can occur and the improvement in this direction resulting from the
ionospheric pseudo observable is most important. Analogous to the two dimensional case
the weakest direction for the ionosphere-fixed model is along the line MDBLi = MDBL1
for i = 2, . . . , n. When the precision of the ionospheric pseudo observable increases the
elongation of the ellipsoid first decreases significantly and finally increases slightly again
when the model starts to behave as the ionosphere-fixed model.

Table 7.5: Two dimensional MDB ellipses
σdI max (‖MDB‖) direction major axis max(‖MDB‖)

min(‖MDB‖)(m) (m) (L1, L2)∗
float 7.2697 (0.62, 0.79)∗ 69
1 6.6122 (0.62, 0.79)∗ 63
0.3 4.0199 (0.62, 0.78)∗ 39
0.1 1.7548 (0.64, 0.77)∗ 19
0.03 0.9916 (0.69, 0.73)∗ 20
0.01 0.8900 (0.70, 0.71)∗ 45
0.003 0.8777 (0.71, 0.71)∗ 99
0.001 0.8766 (0.71, 0.71)∗ 125
fixed 0.8765 (0.71, 0.71)∗ 129

Table 7.6: Three dimensional MDB ellipsoids
σdI max (‖MDB‖) direction major axis max(‖MDB‖)

min(‖MDB‖)(m) (m) (L1, L2, L5)∗
float 6.3597 (0.49, 0.60, 0.63)∗ 841
1 6.1363 (0.49, 0.60, 0.63)∗ 811
0.3 4.7020 (0.49, 0.60, 0.63)∗ 622
0.1 2.2065 (0.49, 0.60, 0.63)∗ 292
0.03 0.7829 (0.51, 0.60, 0.62)∗ 103
0.01 0.4363 (0.55, 0.59, 0.59)∗ 58
0.003 0.3769 (0.57, 0.58, 0.58)∗ 50
0.001 0.3712 (0.58, 0.58, 0.58)∗ 54
fixed 0.3705 (0.58, 0.58, 0.58)∗ 57

7.8 Summary and conclusions

In this chapter we presented an analytical and numerical study of the integrity of the multi-
frequency single-receiver, single-channel GNSS model. The UMPI test statistics for spikes
and slips are derived and their detection capabilities are described by means of the concept
of minimal detectable biases (MDBs). Analytical closed-form expressions of the phase-slip
and code outlier MDBs have been given, thus providing insight into the various factors that
contribute to the detection capabilities of the various test statistics. This was also done
for the phaseless and codeless cases, as well as for the case of loss-of-lock.
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Table 7.7: Four dimensional MDB hyper-ellipsoids
σdI max (‖MDB‖) direction major axis max(‖MDB‖)

min(‖MDB‖)(m) (m) (E1, E5a,E5b, E6)∗
float 3.1742 (0.42, 0.54, 0.53, 0.50)∗ 451
1 3.1509 (0.42, 0.54, 0.53, 0.50)∗ 448
0.3 2.9393 (0.42, 0.54, 0.53, 0.50)∗ 418
0.1 2.0136 (0.42, 0.54, 0.53, 0.50)∗ 286
0.03 0.7913 (0.43, 0.54, 0.53, 0.50)∗ 112
0.01 0.3585 (0.46, 0.52, 0.52, 0.50)∗ 51
0.003 0.2623 (0.49, 0.50, 0.50, 0.50)∗ 37
0.001 0.2521 (0.50, 0.50, 0.50, 0.50)∗ 38
fixed 0.2508 (0.50, 0.50, 0.50, 0.50)∗ 40

The MDBs were evaluated numerically for the several GPS and Galileo frequencies. From
these analyses it can be concluded that detectability of a single phase-slip in dual- and
triple-frequency data works well for two epochs (k = l = 2). Single-frequency phase-slip
detectability, however, is problematic, thus requiring more epochs of data.

From the codeless phase-slip MDBs it follows that detectability is not possible in the
single-frequency case, but that it is possible for the dual- and triple-frequency cases. In the
dual-frequency case the codeless phase-slip MDBs are less than 10 cm if σdI ≤ 3 cm, while
for the triple-frequency case this is already true for σdI ≤ 1 m. In the triple-frequency
case, the phase-slip MDBs get even as small as a few centimeters if σdI ≤ 3 cm. These
codeless results are important as it shows that in the presence of code multipath, one can
do away with the code data and then still have integrity for single phase slips.

The code outlier MDBs are, except for the single-frequency case, all relative insensitive
to the smoothness of the ionosphere. The effect of the frequencies is also hardly present
in the multi-frequency code-outlier MDBs. Their value is predominantly determined by
the precision of the code measurements. From the phaseless code-outlier MDBs it follows
that, except for the single-frequency case, code outlier detection is still possible. The
multi-frequency phaseless code-outlier MDBs all lie around 1 m for σdI ≤ 10 cm. They
increase rapidly, however, for larger values of σdI .

The hypothesis of a simultaneous slip on each phase observable of multi-frequency GNSS
data was shown to give a very elongated MDB ellipse or (hyper)ellipsoid with the
ionosphere-float model. These very elongated ellipses reveal a weak point of cycleslip
detection with an ionosphere-float model because specific combinations of slips, which can
be present in the receiver data after a momentary loss-of-lock to a satellite, are very diffi-
cult to detect. One way to remedy this shortcoming, which is related to the uncertainty in
the ionospheric delay, is to use an ionosphere-weighted model. For an ionosphere-weighted
approach, the MDB ellipse shrinks when the precision of the ionospheric pseudo observable
increases. For optimal performance of a cycleslip detection algorithm, including slip com-
binations that are difficult to detect, it is advisable to use an ionosphere-weighted model
in combination with a short time interval between the measurements.

The case where a combination of slips occurs on a subset of the available frequencies was
not treated separately in this chapter. However, it stands to reason that the single-slip and
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the complete loss-of-lock on all frequencies are the two extremes which bound this case.
Furthermore, it can be reasoned that if at least one frequency does not contain a phase
slip, a combination of slips in the weakest direction, as shown in tables 7.5 to 7.7, cannot
occur. Therefore, detection performance in this case will perform much better.



Results of Precise Point Positioning 8
In this chapter the models and theory presented in the previous chapters are applied to
collected dual-frequency GNSS data with the aim of both bringing the analysis of the func-
tional and stochastic models to a conclusion and to present the corresponding positioning
results. Staying true to our approach of separating the precise positioning problem into
smaller sub-problems the different user dynamics are first discussed in section 8.1, before
the phase-only processing model is treated in section 8.2, followed by the code-only pro-
cessing model in section 8.3. These two models are then combined in the code+phase
processing model in section 8.4, and the addition of atmosphere constraints is treated in
section 8.5. In section 8.6 the results are compared and discussed further.

8.1 User dynamics

(Precise) Point Positioning can be performed for different user dynamics summarized in
table 8.1.

Table 8.1: User dynamics in positioning algorithms and their application
Processing method Receiver movement

Stationary Moving

Fixed position Error analysis and atmo-
sphere monitoring

Error analysis (needs refer-
ence track)

Static processing Positioning and performance
analysis

N/A

Kinematic processing Performance analysis Positioning for unknown re-
ceiver dynamics

Dynamic processing Performance analysis Positioning for known re-
ceiver dynamics

1. Fixed position. In this method no actual positioning is performed, instead the receiver
coordinates are kept fixed to the known reference position (or reference track) and
are not allowed to change, which strengthens the model considerably. Since the other
unknown parameters including the receiver clock offset, troposphere and ionosphere
delays can still be estimated using this stronger model, this method is very well suited
for e.g. time transfer and atmosphere estimation. Additionally, the much stronger
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model makes it possible to analyze the errors on the pseudo range and carrier phase
measurements by studying the residuals of the Kalman filter.

However, the error analysis is sensitive to errors in the fixed position, which could
bias the results. This is particularly true for the temporal station displacements
(see table 3.1). The fixed station position can be obtained to a sufficient degree
of accuracy from a static processing using several weeks of data, using the same or
different software.

2. Static processing stationary receiver. In this method the receiver coordinates are kept
constant over time, but they are not fixed to any (known) position, and the estimated
coordinates are updated at each epoch. The accuracy of the estimated position so-
lution will increase as more epochs of data and more measurements are processed;
the last processed epoch is the final static solution. This processing technique can be
used to accurately determine an unknown position of a stationary receiver. Addition-
ally, if the receiver position is known (e.g. from a different measurement campaign),
the static position performance can be analyzed including the convergence behavior.

3. Kinematic processing. In this method the receiver position coordinates are not kept
constant, but instead are estimated anew at each epoch. Since the carrier phase
ambiguities are kept constant the accuracy will still improve over time, but this
convergence will be less pronounced than in the static case. This processing method
corresponds to the use of PPP for a moving receiver in a real world scenario, without
constraining the changes of the position over time. Additionally, if the receiver
position is known (from a different source), the kinematic processing performance
can be analyzed.

4. Dynamic processing. In this method the user position is not kept constant, but
the changes in position over time are constrained. This method can be used if a
dynamic model for the receiver position is available. This model should describe how
the position coordinates change over time, which can be anywhere from very smooth
predictable behavior to strong erratic behavior. In the first case the performance
might approach that of static processing, while the performance in the second case
will be close to that of kinematic processing. The dynamic model that can be used
depends strongly on the PPP application and user platform. The dynamic model
itself can be very simple where the previous position estimate is simply used as a
prediction of the current position with a certain precision, or more complex using
velocity, acceleration, and forces acting on the user.

In this dissertation the focus will be on the first three processing methods. First the position
coordinates are kept fixed to analyze the measurement errors and tune the stochastic model.
Then the performance of both static and kinematic positioning are determined. We will
now consider a data set from DLF1, a permanent receiver setup at the TU Delft GNSS
observatory platform already introduced in section 6.3. The setup consists of a Trimble
NETR9 receiver connected to a Leica AR25 3D choke-ring antenna; the IGS final products
were used to obtain precise satellite positions and clock offsets. Another permanent receiver
at the TU Delft GNSS observatory, named DELF, is part of the EUREF Permanent GNSS
Network (EPN). From the EPN solution of DELF, and the accurately known local geometry
at the observatory, the reference position for DLF1 was computed.
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(e) C/N0 of the L1C/A signal vs elevation
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Figure 8.1: GPS availability measures for June 1, 2012 measured at Delft



8.1 User dynamics 203

A representative dataset for a period of 30 days, from June 1 to to June 30, 2012, has been
processed. The day to day results are very similar. Figure 8.1 provides a first glace at the
first day of data. The skyplot in fig. 8.1(a) shows the look angles, i.e. the elevation angle
with respect to the horizon and the azimuth angle with respect to the North direction,
for all tracked GPS satellites. Since the GPS ground track repeats within 24 hours, no
begin or end point appear in the skyplot, except at 10 ◦ elevation at the outer edges of the
figure, which correspond to the elevation mask angle. Since the antenna has a free view of
the sky above 10 ◦ elevation, there are also no visible interruptions in the satellite tracks.
The large empty circle at the top of the plot, typical for locations at mid-latitude on the
Northern hemisphere, is due to the inclination of 55 ◦ of GPS satellite orbits which means
no satellites can be observed above the polar region.

Figure 8.1(b) shows the number of available satellites above the cutoff elevation angle of
10 ◦ versus the epoch number (the measurement interval is 30 s). The number of satellites
varies between 6 and 12, and is 8 or 9 on most epochs. Figures 8.1(d) and 8.1(f) show the
Dilution Of Precision (DOP, already introduced in section 5.3.1) for different (combinations
of the) unknown coordinates and clock offset. The DOP gives a first impression of how
the measurement uncertainty propagates to the estimated parameters; lower values of the
DOP correspond to better precision. By definition a combination of certain parameters
will have a higher DOP value than the individual components, e.g. the Geometry DOP
(GDOP), which combines the position and clock offset, is higher than both the Position
DOP (PDOP) and Time DOP (TDOP) individually. The variation of the DOP over time
depends on the number of available satellites, as can be seen from the correlation between
figs. 8.1(d) and 8.1(f) on the one hand and fig. 8.1(b) on the other hand (e.g. the highest
peak in the DOP lines, corresponds to one of the epochs with only 6 satellites in view), but
also on the relative geometry of the satellites and the receiver. This last point explains the
variations of the DOP values while the number of satellites remains constant. The DOP
values do not show any extreme excursions, which means that the positioning performance
is not expected to be poor at any time.

Figure 8.1(c) shows the satellite elevation angle versus time, and fig. 8.1(e) shows the
measured C/N0 at each elevation. The latter shows the typical curve with higher C/N0
values for higher satellite elevation (in this case the C/N0 increases from about 43 dB-Hz
at 10 ◦ elevation to 49 dB-Hz at 90 ◦ elevation). This curve is mainly due to the receiver
antenna gain pattern, and in smaller part due to the free-space loss which is higher at lower
elevation angles, the satellite antenna gain which is designed to cancel the free-space loss
variation and the slightly higher atmosphere attenuation at lower elevation angles. The
observed C/N0 values above 10 ◦ elevation are all reasonably high which indicates that the
measurements are expected to be of good quality.

This chapter will now continue with the first type of processing, i.e. with known user
position. The main goal is to evaluate the validity of the stochastic model and improve
it using Variance Component Estimation (VCE) (Förstner, 1979). Several parts of the
stochastic model can be isolated by only considering part of the available observables. For
that reason we start with phase-only processing.
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8.2 Phase-only processing

8.2.1 Fixed coordinates - Variance Component Estimation

In this section VCE is performed for the phase-only model with the following settings:

� The receiver coordinates are kept fixed at accurate reference values.

� The receiver clock offset and troposphere zenith delay are estimated kinematically.

� The slant ionosphere delay is estimated kinematically for each satellite.

� The ambiguities are estimated as real-valued constants.

� The observations from different satellites and different epochs are assumed to be
uncorrelated.

As explained in appendix G, the observation model then becomes equivalent to:

E
{[

∆φS
r,L3,k

]}
=
[
cum mS

r,k

0···0
Im−1

]  δtr,L3,k
TZ,r,k
ĀS−1
r,L3

 ; D
{[

∆φS
r,L3,k

]}
= QφSr,L3,k

(8.1)

In the software implementation the ionosphere is still estimated even though this does not
contribute to the parameter estimation or VCE. In order to illustrate the process of Variance
Component Estimation, a scaled identity matrix is used as the initial stochastic model:

QφL3
= σ2

φL3
I with σφL3 = 15 mm. (8.2)

The Local Overall Model (LOM) test and the measurement residuals are first considered to
analyze the validity of the stochastic model. The LOM test has an expectation value equal
to the redundancy if the stochastic model fits with the data (Teunissen, 2006, 2000a). If
the LOM test is divided by the redundancy (we will call this the normalized LOM), it has
an expectation of 1. If the empirical value is larger than 1 on average, the stochastic model
is too optimistic, and if it is smaller the stochastic model is too pessimistic. This is closely
related to the estimation of the variance of unit weight. In fact, if we consider a stochastic
model with a single variance component, and we multiply the normalized LOM test with
the variance used in the stochastic model, we end up with an unbiased estimator of the
actual measurement variance. However, in this case a single variance component does not
suffice. Figure 8.2(a) shows the normalized LOM test statistic. From the figure it is clear
that the mean value of the normalized LOM test is much smaller than 1, which indicates
that the stochastic model is too pessimistic. Additionally, fig. 8.2(a) shows the critical
value for the normalized LOM test and the test decision. The critical value varies with the
redundancy, and in this figure is never exceeded by the LOM test value. Therefore, the
test decision is accept (=1) at all epochs.

More details can be derived from fig. 8.2(b) which shows the measurement residuals (dots)
versus the satellite elevation, as well as twice their formal standard deviation (dashed lines).
Based on the residual plot in fig. 8.2(b) several observations can be made:
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(b) L3IF carrier phase residuals versus elevation;
elevation dependance of the residuals is not rep-
resented well by the formal 2-sigma values

Figure 8.2: Phase-only results with fixed position and scaled identity matrix as stochastic
model for June 1, 2012 measured at Delft

1. The formal 2-sigma values are for the most part close to 30 mm, but never above
this value, which can be explained as follows. By definition the formal residual
standard deviation is smaller than or equal to the measurement standard deviation.
The standard deviation of the observations on L1 and L2 was set to 5 mm in this
run, therefore the standard deviation of the ionosphere-free combination is 15 mm
(table 3.5), and hence the 2-sigma is 30 mm.

2. Whenever a satellite is first included in the positioning filter the residuals and the
corresponding 2-sigma values are zero. This happens when the filter is first started
and when a satellite first becomes available, at 10 ◦ elevation. The explanation
for this is that, when this happens, both the ionosphere delay and the ionosphere-
free combination of the ambiguities for that satellite are still completely unknown
(the same holds for the original ambiguities). Therefore, there is no redundancy for
the new observations and consequently their residuals are zero (see appendices F.3
and F.4). As more observations of these satellites are used, the ambiguity estimates
improve and the residuals grow closer to the measurement standard deviation.

3. On top of the effect mentioned in the previous point, the 2-sigma values also decrease
at low elevation angles in general, both for ascending and descending satellites. The
reason for this effect is that the troposphere mapping function has larger values
for lower elevation. Therefore, the low-elevation satellites contribute more to the
troposphere estimation and have smaller residuals.

4. The residuals are clearly larger for lower elevation angles, which is as expected as the
observation errors are generally larger at lower elevation, but this is not reflected in
the formal 2-sigma values. In fact this is one of the main motivations for this section,
as the goal is to tune the stochastic model to reflect the actual observation precision
including the elevation dependence.
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To obtain an accurate stochastic model of the elevation dependent measurement errors,
the iterative procedure described in appendix G is applied, in which the almost unbiased
variance component estimation is applied to groups of observations (in this case 1 ◦ elevation
bins). Figure 8.3(a) shows the VCE results after the first processing run (i.e. using the
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Figure 8.3: Phase-only VCE results with fixed position for June 1, 2012 measured at Delft;
the ionosphere-free combination is shown

scaled identity matrix as a stochastic model). The ’plus’-signs represent the results per
elevation bin and show a clear elevation dependence. This elevation dependence can be
modeled quite accurately by a number of common weighting functions; here shown are the
cosecant (=1/sin) and an exponential function of the form introduced by Euler and Goad
(1991). Only at high elevation angles do some larger deviations from the fitted curves
occur. Since these elevation bins contain far fewer observations than the bins at lower
elevation angles, these estimates are consequently less precise. As the VCE is iterated the
estimated variance for low elevation angles keeps increasing, and for the higher elevation
angles it keeps decreasing (see fig. 8.4). The VCE converges after 13 iterations to the
results shown in fig. 8.3(b). From these figures it is clear that the cosecant function can
no longer closely follow the binned values, while the exponential function can still be used
to model the elevation dependence accurately. Therefore, this is the model that is chosen
and used in all further processing. Also note that the deviations from the curve at higher
elevation angles are much reduced.

Figure 8.5(a) again shows the normalized LOM test statistic now for the converged variance
model. From the figure it is clear that the mean value of the normalized LOM test is now
much closer to 1 , which indicates that the stochastic model fits much better. Also,
the LOM test is now rejected (=0) for 3% of the epochs. In our testing approach we
follow Baarda (1968) in that we chose the probability of missed detection (β = 0.001)
and false alarm (α1 = 0.001) for the 1-dimensional test and compute the corresponding
non-centrality parameter. The same non-centrality parameter and probability of missed
detection are then used for the LOM test. One should note that the probability of false
alarm for the LOM test will in this case be much higher than the probability of false alarm for
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Figure 8.4: VCE iterations for phase-only model; the elevation dependence becomes more
pronounced after each iteration. The process converges after 13 iterations.

the 1-dimensional tests. For the data at hand the probability of false alarm for the LOM test
(α0) is 0.04 on average, and the LOM test rejection rate of 3% closely matches this number.
Figure 8.5(b) repeats the measurement residuals (dots) versus the satellite elevation for
the converged stochastic model, as well as twice their formal standard deviation (dashed
lines). The elevation dependence of the residuals, which was already present in fig. 8.2(a)
is now mirrored in the formal standard deviations, which give a close fit over the whole
elevation range. Based on these figures, the VCE can be considered a success. Figure 8.6
shows the unknown parameters that were estimated while keeping the receiver position
fixed. No reference values are available for these parameters, but the computed values do
not show any strange behavior. The receiver clock offset, expressed in meters, is small and
quite stable as could be expected from the hardware setup. The carrier phase ambiguities,
estimated as real-valued constants, converge quickly to their final values. The troposphere
estimate shows typical magnitude and variation in time. Since the ionosphere estimates
are biased (see eqs. (4.23) and (4.26)) only the variation over time can be assessed and is
also typical. The ionosphere delays are highest for low-elevation satellites and around local
noon.

8.2.2 Static positioning

With the stochastic model in place the positioning itself can now be performed, starting
with static positioning for the month of June, 2012. Differences between the day-to-day
results are quite small. Therefore, results for June 1 are here presented to illustrate the daily
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(b) L3IF carrier phase residuals versus elevation;
formal 2-sigma values fit well to residuals

Figure 8.5: Phase-only results with fixed position and converged stochastic model for June
1, 2012 measured at Delft

performance, before the aggregated results for the whole month of June are presented for
a general more detailed performance analysis. Figure 8.7 shows the estimated positioning
solution w.r.t. the accurate reference position in the East, North and Up directions, with
their formal standard deviations in lighter shaded patches, versus the observation time. The
left pane only shows the first hour of the processing run to highlight the initial performance
and convergence behavior, while the right pane shows all 24 hours and, by changing scaling
of the y-axis, highlights the performance after the initial convergence.

Several different periods can be distinguished in these time series of estimated positions.
The left pane shows that during the first 5 minutes or so, the solution varies erratically and
the errors change sign several times. After 5 minutes the errors start to vary more slowly
and begin to converge to the reference position. The position errors drop below 10 cm
after some 20 minutes and below 5 cm after 30 minutes, and the errors remain at this level
for some time. However, the right pane shows that the solution keeps improving in the
long run. The different convergence performance of the Up component w.r.t the horizontal
components also becomes apparent. Not only does it take longer for the error to drop below
2 cm (1h45m vs. 1h20m) and 1 cm (7h30m vs. 2h20m for the horizontal components),
but the Up component also shows an excursion of about 6 mm over the second half of the
day. The final position errors are 1.5 mm in the Up direction and below 1 mm for each
of the horizontal directions. The poorer performance of the position estimation in the Up
direction is due to the geometry of the positioning problem, which is disadvantageous for
height estimation as evidenced by the VDOP results in fig. 8.1(f).

Comparison of the position errors to the formal standard deviations of the position reveals
that during the first 30 minutes the position errors are at times larger than the standard
deviation but always in the same order of magnitude; after the first 30 minutes the standard
deviation becomes much smaller while the position errors decrease less drastically, leading
to position errors of up to 10 times the size of the formal standard deviations. This effect
will now be analyzed in more detail by considering the results of a number of positioning
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(a) Receiver clock offset (b) L3IF carrier phase ambiguity

(c) Troposphere delay (d) Ionosphere delay; values are biased by ambi-
guities

Figure 8.6: Estimated parameters fixed coordinates June 1, 2012 measured at Delft

filter runs together.

Figure 8.8 shows the positioning error time series for all 30 daily solutions for the month
of June 2012, in East, North and Up directions (solid lines, days are differentiated by color
hue). Each of the solutions behaves similar to the results previously seen in fig. 8.7; the
position errors are quite large when the positioning filter just starts and the estimated
position converges to the reference position as the observation period increases.

The position errors, different for each day and random to a large extend, still show some
systematism. This is especially clear between the 2nd and 8th hour into each run. E.g.
the Up component shows a positive error of on average 2 cm after 2 hours of processing,
which is mostly gone after 8 hours of processing. The size of the error as well as the exact
location in time varies for each day but seems correlated over different days evidenced by
the fact that the lines corresponding to consecutive days (displayed by neighboring color
hues) lie close to each other. Possible reasons for these position errors and their behavior
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Figure 8.7: ENU position errors (solid lines) and formal standard deviation (shaded
patches) for static positioning of data for June 1, 2012 in Delft

are (carrier phase) multipath, satellite hardware delays and receiver antenna delays, which
repeat every sidereal day along with the GPS constellation. Since the processing starts at
the beginning of each GPS day, the error signal is translated by about 4 minutes each day.
The size of the resulting position error, which dependents on the observation period, thus
also changes each day. These time-varying errors are also observed and further analyzed
in the kinematic position computations. The final position errors are at centimeter level,
and slightly higher in the Up direction. A slight bias in each of the directions can also be
observed; the reference position does lie within the spread of the individual solutions.

The formal standard deviations are also presented in fig. 8.8 (dashed lines), while different
for each run, the behavior as well as the numerical values are quite similar for each of the
runs. As we saw before the standard deviations are in the same order of magnitude as the
position errors as the filter starts, but become much smaller than the position errors as
more observations are accumulated. To further compare the formal precision of the position
solution to the empirical distribution of the estimated positions, the root-mean-square (rms)
position error of the 30 daily solutions is computed at each epoch into the run. The rms is
used instead of the standard deviation because we are interested in the distribution of the
solution about the reference position, not the distribution about the mean estimate. The
computed empirical rms is now compared to the mean formal standard deviation in fig. 8.9.
The North direction quickly asserts itself as the best determined direction, initially followed
by the Up direction and the East direction being most poorly determined. The empirical rms
in North, Up and East direction drops below 5 cm after 10, 20 and 30 minutes respectively.
After about 35 minutes the lines corresponding to the East and Up directions cross each
other, after which the East direction catches up to the North direction after about 1h45m
and both decrease further to some 3-4 mm, while the Up directions decreases more slowly
to about 5 mm. As shown in chapter 4 the receiver position cannot be computed with
the phase-only model from a single measurement epoch. A rigorous method to solve this
problem is to initialize the (Kalman) filter using two measurement epochs. However, in the
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Figure 8.8: Phase-only static positioning errors (solid lines) and formal standard deviations
(dashed lines) for 30 daily runs for DLF1 station during June, 2012; results show both
systematic and random effects.
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Figure 8.9: East, North and Up empirical rms error (solid lines) and formal standard
deviation (dashed lines) for static phase-only processing of June, 2012; formal standard
deviations decrease to much smaller values than empirical errors

software implementation a more practical approach is used that initializes the filter using
the code observations of a single epoch. The weight given to the code solution is very low
to minimize its impact on the eventual phase-only positioning, but it can still be observed
in fig. 8.9 where the empirical rms error (rmse) is initially smaller than the formal standard
deviation (std). After a few epochs this effect is no longer visible, and it obviously does
not appear in the code-only or code+phase models later in this chapter.

The figure shows that the empirical rms fits the formal standard deviation reasonably well
during the first 30 minutes or so, although the formal std. is somewhat smaller than the
empirical rms. However, as the observation period increases this discrepancy increases as
well, and after a few hours the formal standard deviation clearly does not represent the
empirical distribution any longer. This discrepancy in the results could be caused by two
related and in practice often difficult to distinguish problems. First, remaining unmodeled
systematic effects, e.g. limitations of the Earth tide models, can cause biased results,
and depending on the time behavior of the effect, these biases can be of a temporary
or permanent nature. Secondly, time correlated (random) errors such as those resulting
from the tracking loops of the receiver cannot properly be accounted for in the stochastic
model of the recursive least squares algorithm. In fact the recursive least squares method
(and also the Kalman filter) is based on the assumption that the measurements are not
correlated in time. This problem will be treated further in section 8.2.4.

8.2.3 Kinematic positioning

If the position of a moving receiver needs to be determined without knowledge of its
dynamic behavior, a kinematic processing strategy should be adopted. Figure 8.10 shows
the results for the kinematic positioning model for June 1, 2012. Compared to the static
results shown in fig. 8.7 the kinematic results are noisier, the accuracy improves more
slowly over time, and the position errors remain larger after the solution has converged.
Additionally, fig. 8.10 shows that after about 15 hours, the position solution degrades
significantly for a period of little over an hour. This degradation can be found in each of
the daily positioning results to some extend as will be shown in fig. 8.13. However, first a
much more severe degradation will be treated that occurred on 2 days during the month
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Figure 8.10: ENU position errors (solid lines) and formal standard deviation (shaded
patches) for kinematic positioning of data from June 1, 2012 in Delft

of June, see fig. 8.11.

On June 21 and June 27, an event caused significantly degraded carrier-to-noise ratios
(C/N0) for all satellites and signals tracked by the DLF1 receiver, and a complete loss
of observations for almost all satellites during a short period of time. This type of per-
formance degradation could be caused by a source of radio frequency interference in the
GPS frequency bands (or close to these bands if it can overcome the frequency filtering)
that is strong enough to cause saturation of the receiver front-end and disrupt the receiver
tracking loops (de Bakker, 2007), but other sources such as a disturbance of the antenna
cabling or signal blockage cannot be excluded. Figures 8.12(a) and 8.12(b) show the ob-
served C/N0 for the L1CA and L2P signals during these events, and reveals that the C/N0
on both frequencies is impacted so severely that it drops below the tracking threshold for
the majority of satellites. Figures 8.12(c) and 8.12(d) and figs. 8.12(e) and 8.12(f) show
the satellite signal availability and lock-of-loss indicators during these events for, respec-
tively, the original 1 Hz and decimated 30 second data which was later processed. For each
of the GPS satellites, indicated by their PRN numbers on the y-axis, all available pseudo
ranges are presented as circles, with a center dot if phase observation are also present.
Red crosses are presented if the receiver indicated a loss-of-lock on that frequency. The
figures show that, on June 21, the receiver either misses observations and/or experiences
loss-of-lock for all satellites during the possible interference event. On June 27, PRN12
and PRN17 are the exceptions, while the receiver again misses observations or indicates a
loss-of-lock for all other satellites. It is interesting to note that the L5 signal, only available
on PRN01 and PRN25 at the time of observation, is similarly impacted as the traditional
L1 and L2 signals. Generally, when a receiver loses lock of a carrier phase signal, the
corresponding ambiguity needs to be estimated anew when the receiver starts to track the
carrier phase again. Therefore, if an event causes a loss-of-lock for all satellite signals, while
processing all unknown parameters except the carrier phase ambiguities kinematically, the
positioning filter is effectively restarted, since all parameters are estimated again without
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(a) June 21, 2012

(b) June 27, 2012

Figure 8.11: Phase-only kinematic positioning errors (solid lines) and formal standard
deviation (shaded patches) during probable interference event

prior knowledge. This is exactly what happens on June 21 around 13:25. On June 27, a
slightly better performance might be expected since 2 satellites (PRN12 and PRN17) are
still being tracked during the probable interference event. However, closer inspection of
the processing result with a fixed receiver position reveals that in fact cycle-slips occur on
the carrier phase observations for these two satellites. For this reason June 21 and June
27 are excluded from the following convergence analysis, as a restart of the positioning
for two runs at different times would only complicate matters. For the static positioning
results this problem did not present itself since the position solution does not degrade if no
observations are present, additionally the newly estimated ambiguities converge relatively
fast when a good position estimate is already present. For the kinematic case presented
here the given situation illustrates the importance of the work started in chapter 7 and con-
tinued in Teunissen and de Bakker (2013) of (integer) cycle-slip detection and ambiguity
resolution in the time-differenced model.

Figure 8.13 shows the positioning errors for the remaining 28 daily solutions. The daily
solutions are quite comparable to each other, the position errors in the Up direction drops
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Figure 8.12: Carrier-to-noise ratios and signal availability for DLF1 receiver during prob-
able interference event on June 21 and June 27, 2012. The C/N0 values drop on all three
frequency bands (only two are shown) and the receiver loses track of almost all satellite
signals.
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below 50 cm within 30 minutes for all runs, and faster for the horizontal directions. Each
of the directions show some systematic behavior best visible after about the 1 hour into
each run, where all daily solutions are biased in a similar manner, just like we observed
in the static positioning results, but the more random behavior here takes over much
sooner than in the static case, and after about 3-4 hours the biases can no longer be
distinguished. As previously noted in fig. 8.10 the position solution degrades between 15
and 16 hours of processing, visible in each of the daily results, most notably in the Up
direction, but to a lesser extend also in the North direction. The exact time at which
the maximum position error occurs differs slightly for each run, which is directly related
to the GPS constellation which repeats every siderial day, i.e. about 23 hours 56 minutes
and 4.1 seconds. Figure 8.14 shows the same daily results, but now versus the time of
siderial day in which the degradation of each daily run is indeed closely aligned. (Note
that the repetition is only a close approximation, since length of sidereal day is not divisible
by the measurement interval of 30 seconds, and moreover the exact orbital period differs
slightly for each GPS satellite.) This systematic degradation of the position solution was
not observed in the static positioning results for two reasons. First, the static solution has
by this time converged to such a high precision, that new observations only have a small
impact on the solution, protecting it from temporally degraded observations. Secondly,
the stronger static model helps the integrity monitoring algorithm to identify the corrupted
observation(s) for which the model can than be adapted. In this case PRN25 and 27
have larger measurement residuals during this period, given the daily repeating pattern
most likely caused by multipath, and are rejected from the static positioning solution. The
weaker kinematic model is not able to identify these satellites before they cause the position
to degrade, but they are identified at some point, after which the position solution starts
to improve again.

Figure 8.15 shows the empirical rms position error (solid lines) and the mean formal standard
deviation (dashed lines) for the phase-only kinematic processing in the East, North and Up
directions. As previously observed, the empirical rms and formal standard deviation fit
reasonably well when the processing is just started, but the formal standard deviations
improve faster and to a higher precision than the empirical results. In the horizontal
directions the standard deviation decreases to 5-6 mm, while the rms does not improve
beyond 1-2 cm. In the Up direction the standard deviation decreases to 2-3 cm while
the rms stays in the 4-6 cm range. Additionaly, we see a peak up to 15 cm related to the
probable multipath problem discussed above. Although the discrepancy between the formal
and empirical quality measures is less pronounced for the kinematic case than for the static
case, it still needs to be addressed in a similar way. This is the subject of the following
section.

A final observation about fig. 8.15 is that the performance degrades somewhat at the end
of the day. This is due to the use of daily orbit and clock products from the IGS which
lead to degraded interpolation performance at the date change.

8.2.4 Carrier phase bias estimation

In both the static and kinematic positioning results presented so far, a common problem
was found that the formal standard deviation decreases to much smaller values that the
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Figure 8.13: Phase-only kinematic positioning errors (solid lines) and formal standard
deviations (dashed lines) for 28 daily runs for DLF1 station during June, 2012
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Figure 8.14: Phase-only kinematic positioning errors (solid lines) and formal standard
deviations (dashed lines) as a function of the siderial time of day for 28 daily runs for DLF1
station during June, 2012; a daily repeating pattern can be distinguished.
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Figure 8.15: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for kinematic phase-only processing of June, 2012; the position errors in the
up component are larger than the formal standard deviation.

rms of the empirical position errors as the filter converges. This problem is due to the
fact that the recursive least squares algorithm (and the Kalman filter) is based on the
assumption that the observation errors have no time correlation, while the actual errors are
not completely uncorrelated in time.

The solution then is to adjust the functional model in such a way that it captures the time
correlated errors to a large extend and leaves only uncorrelated measurement errors for
the stochastic model. To address this problem, we will now shortly revisit the phase-only
estimation models treated in chapter 4, starting with the complete, rank defect phase-only
model for a single epoch:

E

{[
∆φSr,L1,k
∆φSr,L2,k

]}
=
[
−eS∗r,k mm um um −Im Im −Im
−eS∗r,k mm um um −γIm Im −Im

]



∆rr
TZ,r,k
dtr,k
δr,L1,k
δr,L2,k
IS
r,k

AS
r,L1

AS
r,L2
δSL1,k
δSL2,k


(8.3)

The term δSL1,k and δSL2,k accounts for delays that can differ for each frequency, each epoch
and each satellite. In chapter 4 we took into account a constant part, which then becomes
lumped with the constant ambiguity term, a satellite clock offset which can be corrected by
external data, and a white noise component that is accounted for in the stochastic model.
Now we consider an additional component that changes over time but cannot be corrected
with external data, such as multipath, or residual time-correlated clock errors.

The L1 and L2 delays are transformed to ionosphere and ionosphere-free (δSL3IF,k and

δSLI,k) combinations in eq. (4.22), and the ionosphere combination was lumped with the
ionosphere parameter in eq. (4.23). Since the ionosphere parameter is allowed to change
freely over time, so are the other errors in the ionosphere combination. The ionosphere-free
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combination of these errors is lumped with the ionosphere-free ambiguities in eq. (4.28).
Since the ambiguities are estimated as constants, any variations in δSL3IF,k create (time-
correlated) errors in the model.

Therefore, the model can be improved by allowing the carrier phase bias parameters to
change over time. However, if we leave these errors to change over time freely, i.e. if we
estimate them as kinematic parameters, we end up with a model without any redundancy
which cannot be used to estimate the position or other parameters of interest. For this
reason we introduce a dynamic model for the carrier phase bias parameters that constrains
the time variation. Appendix B treats the convergence behavior of several dynamic models,
and presents the relation between the measurement noise, the process noise and the variance
of the estimated parameters in a fully converged filter. Since the lumped carrier phase bias
parameters do not have a zero-mean property we will use the random walk model.

To determine an appropriate value for the process noise, the equations in appendix B
are used to get a first rough estimate. The approach is then to adjust this value and
reprocess the data until the formal standard deviation of the position estimates matches
the empirical distribution of the positioning results. This approach turns out to work quite
well, because even though the estimated (position) parameters do change slightly due to
the model changes, the empirical (converged) distribution over the 30 days does not change
much. The formal distribution does change significantly as expected and, with a process
noise standard deviation of 1 mm, fits the empirical results much better as is evident from
figs. 8.16 and 8.17 for both static and kinematic positioning.

The kinematic positioning performance degradation at the end of the day, earlier observed
in fig. 8.15, is now more pronounced. This is not surprising since the time-varying phase-
biases also lead to a position solution that can change more easily with new observations.
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Figure 8.16: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for static phase-only processing with time-varying phase-biases for June, 2012;
agreement between formal and empirical measures is now much better.
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Figure 8.17: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for kinematic phase-only processing with time-varying phase-biases for June,
2012; formal and empirical measures agree very well.

8.3 Code-only processing

8.3.1 Fixed coordinates - Variance Component Estimation

In this section VCE is performed for the code-only model with the following settings:

� The receiver coordinates are kept fixed at accurate reference values.

� The receiver clock offset and troposphere zenith delay are estimated kinematically.

� The slant ionosphere delay is estimated kinematically for each satellite.

� The observations from different satellites and different epochs are assumed to be
uncorrelated.

The observation model then becomes equivalent to (note that this has become an epoch-
by-epoch processing model, since all remaining parameters are estimated kinematically):

E
{[

∆P S
r,L3,k

]}
=
[
cum mS

r,k

] [ δtr,L3,k
TZ,r,k

]
; D

{[
∆P S

r,L3,k

]}
= QPSr,L3,k

(8.4)

As before, first the observations are grouped in elevation bins, then the almost unbiased
estimator is applied to each bin and finally an elevation dependent function is fitted to the
bin values. For the elevation dependent function an exponential function is selected for
its good fit to the data at hand. The VCE is iterated until convergence. The Variance
Component Estimation process is initialized with the following scaled identity matrix:

QPL3
= σ2

PL3
I with σPL3 = 1.5 m. (8.5)

Figure 8.18(a) shows the results of different iterations of the VCE. The whole process
has already converged after just three iterations. Figure 8.18(b) shows the results of the
elevation dependent function fit for the final iteration of the VCE. A cosecant function has
been included to illustrate both the superior fit of the exponential function, but also that
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the cosecant function provides a reasonable alternative. Figures 8.18(c) and 8.18(d) show,
respectively, the normalized LOM test and the measurement residuals of the ionosphere-
free combination of the code observations. The mean value of the LOM test is 1.00 and
the percentage of failed LOM tests, where the w-tests are not rejected, of 4.1 % is also very
close to the mean probability of false alarm. The measurement residuals also fit very nicely
to the 2-sigma formal precision, at all elevation angles. Figure 8.19 shows the estimated
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Figure 8.18: Estimated parameters fixed coordinates June 1, 2012 measured at Delft

filter states with their formal standard deviations in lighter shaded patches. If we compare
these figures with the phase-only results in fig. 8.6, we find similarities in the shape of the
curves, but there are 3 noticeable differences. First, the estimated parameters are much
noisier, especially visible in the estimated troposphere and ionosphere delays (the receiver
clock is already quite noisy in the phase-only solution). Secondly, the formal standard
deviations are larger for the code-only processing. Both these differences follow directly
from the lower precision of the code observables. And thirdly, the absolute values of the
estimated ionosphere delays differ between the code-only and phase-only results. This last
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difference is in agreement with the findings in chapter 4, where to solve the rank defects in
the phase-only model, the ionosphere delays where lumped with the ionosphere combination
of the carrier phase ambiguities.

(a) Receiver clock offset

(b) Troposphere zenith delay (c) Ionosphere slant delay on L1

Figure 8.19: Estimated code-only state parameters (solid lines) and formal standard devi-
ations (shaded patches) for June 1, 2012 measured at Delft; the precision is poorer than for
the phase-only model, but the estimated ionosphere is not biased by ambiguities

8.3.2 Static positioning

With the code-only stochastic model in place, the code-only positioning can now also be
performed, starting with static positioning in this section. Figure 8.20 shows the positioning
errors in the East, North and Up directions again, with their formal standard deviations
in lighter shaded patches, versus the observation time. The initial errors in each direction
are in the order of 1 meter. The error in North direction decreases to 10 cm in about
10 minutes and eventually improves to below centimeter level. In the Eastern direction it
takes a full hour for the error to decrease to about 10 cm and it does not further improve.
The Up direction again shows the poorest performance, the error stays at about 1 m during
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the first 3 hours, after which it starts decreasing to the final value of about 50 cm. The
formal standard deviations again decrease faster than the empirical errors leading to position
errors of close to 10 times the size of the formal standard deviation in especially the Up
direction. Figure 8.21 shows the code-only static positioning error time series for all 30

Figure 8.20: ENU position errors (solid lines) and formal standard deviations (shaded
patches) for code-only static positioning of data from June 1, 2012 in Delft

daily solutions for the month of June 2012, in East, North and Up directions (solid lines,
days are differentiated by color hue). The position errors show strong wave-like patterns
that diminish over the day but do not disappear entirely, and additionally a significant
position bias is present, especially in the Up component of about 50 cm. The amplitude
and phase of the periodic errors changes slightly with each consecutive day, displayed by
neighboring color hues. These patterns are caused by pseudorange delays that repeat each
sidereal day with the GPS constellation, each processing run starting at a slightly different
time of sidereal day (remember that the solar day is longer by 3 minutes and 55.9 seconds).
There are several pseudorange delays that repeat with the GPS constellation including the
satellite hardware delays (which change with the visible satellites), and the multipath and
receiver antenna delays which change with the geometry of the satellites w.r.t. the user.
The instantaneous impact of these pseudorange delays on the positioning solution will
become clear from the code-only kinematic position computations in section 8.3.3. The
formal standard deviations of the daily results, also presented in fig. 8.21 by the dashed
lines, are very similar for each run. The formal standard deviation fits closely to the initial
position errors in East and North direction as well as the initial spread in the Up direction,
but it does not represent the systematic wave-like patterns over time, nor does it fit the
50 cm bias in Up direction. This is not surprising, because the standard deviation holds
information about the random errors in the estimation, and cannot account for such strong
systematic biases. These findings are confirmed by fig. 8.22 which shows both empirical
rms position errors and the mean formal standard deviation as a function of the processing
time based on the results from all 30 daily runs. The formal standard deviations initially fit
the empirical rms errors in the horizontal directions, but quickly decrease to much smaller
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Figure 8.21: Code-only static positioning errors (solid lines) and formal standard deviations
(dashed lines) for 30 daily runs for DLF1 station during June, 2012; strong systematic effects
are visible.
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values than the empirical rms errors; in the Up direction the mean standard deviation is
already smaller than the empirical rms from the start. An approach to deal with the found
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Figure 8.22: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for static code-only processing of June, 2012; the up component shows a large
error not covered by the formal standard deviation.

systematic pseudorange delays that cause the biased results is detailed in section 8.3.4.

8.3.3 Kinematic positioning

If the position is estimated kinematically the code-only model again becomes an epoch-
by-epoch processing model, similar to the fixed position code-only processing. In such a
model time correlated (zero-mean) measurement errors should not pose any problem, and
this is confirmed by the results. Figure 8.23 shows the positioning results for June 1, 2012,
which are quite noisy as expected from single epoch code-only solution. The errors in the
horizontal directions are in the meter range, while the errors in the Up direction are larger
by about a factor 2. The results of each day are again very similar but shifted in time
by about 4 minutes per day, and since the time into the processing run does not play a
role in these epoch-by-epoch results, fig. 8.24 combines the position errors for all 30 days
of June as a function of the time of sidereal day (each dot represents a single position
solution). The formal 2-sigma values, which are nearly identical for each day, are shown
by a single set of thin black lines. Figure 8.24 also shows a central moving average of the
position solutions with a window of 999 samples (i.e. 16.7 minutes with 30 time series of
30-second data) with a wider black line. Table 8.2 holds the statistics of the empirical
results. Comparison of the figure and the table reveals that the observed 0.5 m bias in the
Up direction is in fact not constant in time, but rather the mean value of a time-varying
signal that at times goes up to 2 meters. In the horizontal directions the moving average
only shows much smaller excursions (also relative to the size of the random, noise-like
errors). Overall, the formal 2-sigma values fit the empirical results quite well. This is
confirmed by the results in fig. 8.25 which, as for the previous processing schemes shows
the empirical rms (colored dots) and the formal standard deviation (black lines) of the 30
daily runs. The horizontal directions show a very good agreement between the empirical
rms and the formal standard deviation in fig. 8.25, not only in magnitude but also behavior
over time. The only problems with these single epoch code-only results are thus the strong
variations and the bias in the Up component, which at times lead to larger empirical errors
than the formal standard deviation predicts.
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Figure 8.23: ENU position errors for kinematic code-only positioning of data from June 1,
2012 in Delft

Figure 8.24: Code-only kinematic positioning errors as a function of the siderial time of
day for 30 daily runs for DLF1 station during June, 2012
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(m) mean sigma rms

East 0.05 0.55 0.55
North 0.03 0.79 0.79
Up 0.47 1.41 1.49

Table 8.2: Empirical kinematic code-only positioning results
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Figure 8.25: East, North and Up empirical rmse (dots) and formal standard deviation
(dashed lines) for kinematic code-only processing of June, 2012; the formal and empirical
measures fit very well for the horizontal components, but errors in the up component are at
times too large.
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8.3.4 Differential group delay estimation

The previous sections showed two systematic effects in the code-only solution, which cannot
be solved by adjusting the stochastic model. The first is a bias in the up direction of
0.5 m, and the second are large variations that repeat daily. The source of these effects
can be found by studying the pseudorange residuals of the processing with fixed position.
Figure 8.26 shows these residuals by means of a boxplot with a box per satellite (top left
pane). The figure clearly shows that the residuals contain a different bias for each satellite,
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Figure 8.26: Boxplot of ionosphere-free residuals from fixed position processing. Without
group delay corrections (top row), the residuals show a bias per satellite and an elevation
dependency. After applying group delay corrections (bottom row), these biases are no longer
present.

even though their expectation is zero (and as we found earlier the residuals of all satellites
combined are unbiased). The top right pane in fig. 8.26 again shows a boxplot of the
residuals but now each box represents a 5 ◦ elevation bin. This figure shows a bias in the
residuals that varies with elevation; the bias is positive at low elevation and negative at
high elevation angles. Smaller variations were also found with azimuth angle, as will be
shown in the following. These biases will in turn bias the estimated position (when this is
not fixed) and other estimated parameters.

The best way to deal with these errors depends on their properties, and especially their
variation in time and space. If the errors would change from day to day and from place to
place, the only solution would be to estimate them together with the unknown parameters.
Appendix E shows that the pseudorange biases in the ionosphere-free observations can
be estimated together with the other unknown parameters (including the position), but
at the cost of much lower redundancy thereby significantly weakening the pseudorange
processing model. However, if we assume that the biases are constant over a number
of days (an assumption that we will investigate later), they can be estimated from one
dataset, preferably while keeping the position fixed, and be used to correct the observations
while processing a different dataset. We will estimate a constant bias per satellite and,
following van der Marel and Gündlich (2003), an antenna group delay pattern to capture
the elevation and azimuth dependent variations. Note: a constant bias per satellite or a
constant antenna delay pattern will still cause a time varying bias in the position estimation
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because the available satellites, their observed observation, and the weight they obtain in the
estimation changes over time. This time varying signal will repeat when the constellation
repeats after one sidereal day. We will first consider a constant bias per satellite and then
extend it with an antenna delay pattern.

The precise satellite clock offsets from the IGS, which were used in these computations, are
referenced to the ionosphere free combination of the L1P and L2P signals. However, the
Trimble NetR9 receiver tracks the L1C/A and L2P codes. To account for the offset between
the L1P and L1C/A signals, the P1C1 bias (estimated by several IGS analysis centers) is
applied to the L1C/A signal. Equation (3.41) shows that they act on the ionosphere-free

linear combination via the scale factor γ
γ−1 = f2

1
f2

1−f
2
2

. That means that one interpretation

of our estimates is a correction to the P1C1 DCB if we divide them by this scale factor.
The advantage of this approach is that we can compare our results to those of the IGS
analysis centers. The P1C1 DCB also impacts the ionosphere estimates, but since we have
no truth data for these estimates we will not consider this effect here. This interpretation
of the biases is equivalent to the P1C1 estimation procedure proposed in Leandro (2009),
and results are in good agreement.

Figure 8.27 shows the estimated P1C1 biases for DLF1 and compares them to the val-
ues of the Center for Orbit Determination in Europe (CODE). Values range from -80 cm
and +65 cm (top pane) and show a very similar pattern, while differences (lower pane)
are between -15 cm and +15 cm. Leandro (2009) reports discrepancies with results from
CODE in the exact same range of -15 cm and +15 cm for a 10 days dataset from a single
station. This discrepancy is about halved when the mean value for 8 stations is consid-
ered. CODE routinely compares several methods to estimate the P1C1 biases, including
direct estimation from receivers tracking both the L1C/A and L1P signals, and estimation
with their network processing algorithms (CODE, 2015, on which their PPP products are
based). Differences between these methods can already reach up to 15 cm and significant
differences between receivers are also reported. (The CODE values presented here are
30-day averages computed from a global network with about 80 stations.)
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Figure 8.27: Estimated DCBs from ionosphere-free residuals of fixed position processing;
the estimates values largely correspond to the CODE values, but show differences of up to
15 cm.

The differences between our results, specific for DLF1, and the estimates from CODE can
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be caused by either receiver or antenna specific hardware delays (that also differ between
satellites) or the time-average of unmodeled effects such as multipath. Therefore, adding
more stations with different receivers and antennas to our estimation process is expected
to average these individual estimates out to the values estimated by CODE. However, in
the remainder of this section we will show the advantage of using DLF1-specific estimates.

Figures 8.28 and 8.29 show, respectively the code-only kinematic positioning results for
June 16, 2012 using the P1C1 DCBs from CODE and using the P1C1 DCBs computed
from DLF1 data for June 1, 2012.

Figure 8.28: Code-only kinematic position errors for DLF1 on June 16, 2012 using P1C1
DCBs computed by CODE for June, 2012; strong variations in the up component as well as
a significant bias are visible.

Figure 8.29: Code-only kinematic position errors for DLF1 on June 16, 2012 using P1C1
DCBs computed from DLF1 data for June 1, 2012; the bias in the up component remains,
but the strong variations are much reduced.

Comparing these two figures, shows that the slow variations in the estimated positions
and especially the Up component are largely reduced. The reduction in the standard
deviation and root-mean-squared errors of the Up component, presented in the figure
legends, are quite significant, although the random variations remain dominant. However,
more importantly, the bias in the up component has not been removed at all. Therefore,
we will now take one more step in modeling the group delays by means of an antenna delay
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pattern. While it is possible to extend our positioning model to include these antenna
parameters, we take a different approach based on the Gauss-Seidel method as explained
in appendix F.5. In this approach the group delay parameters (both satellite biases and
antenna pattern) are estimated in a second step from the residuals of the normal processing
model. The whole estimation then needs to be iterated while correcting the observations
for these estimated group delays. These iterations needed to obtain the final results are
an obvious disadvantage of this method. However, this disadvantage is offset by the
fact that it offers the possibility to try several models for the group delays without the
need to reprocess the complete (time dependent) GNSS model, and without adapting the
positioning software each time.

The antenna pattern is estimated from the residuals and the corresponding elevation and
azimuth angles by means of a least squares ridge estimator (Matlab implementation by
D’Errico, 2005). The delay is computed over a grid of points, while also constraining the
partial derivatives at the grid-points (much like a 2 dimensional spline). The relative weight
of the extra constraint with respect to the residuals and the distance between the grid-points
together determine the smoothness of the estimated antenna pattern. However, if a grid
of elevation and azimuth angles with constant interval is used, this actually leads to a very
uneven two-dimensional distribution of the grid-points (i.e. because all lines of constant
azimuth intersect at the zenith). Therefore, the elevation and azimuth angles are first
transformed with the Lambert azimuthal equal-area projection (Snyder, 1987), and the grid
fitting is performed in these transformed coordinates. This leads to a more uniform point
distribution and consequently to a more uniform smoothness. An additional advantage of
the Lambert projection is that no discontinuity occurs at 90 ◦ elevation or between 360 ◦

and 0 ◦ azimuth. The estimated antenna delay pattern is subsequently back transformed
to the elevation and azimuth angles and stored in the ANTEX file format (Rothacher and
Schmid, 2010). The ANTEX file is then used during positioning in a similar manner as the
antenna phase delay patterns. Figure 8.30 shows the estimated antenna delay pattern and
the elevation curves at different azimuth angles. At all azimuth angles the curves show the
same general trend of decreasing delays with increasing elevation to a common value at
zenith. Note that we cannot estimate the absolute value of the antenna pattern, instead
we keep the mean value at zero. The pattern and magnitude of the estimated delays is
in reasonable agreement with other authors, although a direct comparison is not possible
(Wübbena et al., 2008; Kersten and Schön, 2013).

After adopting the estimated group delay parameters, the variance component estimation
also needs to be iterated since the stochastic model should now reflect the errors of the
corrected observations. The new stochastic model in turn influences the estimated group
delay parameters to some extend, which leads to a multilevel iteration procedure. For-
tunately the iteration converges to cm level after only 2 iterations, and fig. 8.30 already
shows the end result of this iteration procedure.

Figure 8.31 shows the converged results of the new stochastic model, again after three
sub-iterations. Comparison to our earlier results in fig. 8.18(b) show that the measurement
variance has decreased. This is as expected since part of the errors that were previously
captured in the stochastic model, are now corrected. Figure 8.31 also shows a much better
fit of the fitted curves to the elevation bins, both the exponential function as well as the
cosecant function. The fit is still slightly poorer at high elevation, related to the smaller
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Figure 8.30: Estimated group delays as a function of elevation and azimuth (in the left
pane the different colored lines are for different azimuth angles); a strong dependency on
elevation is apparent while variations over azimuth are smaller.

number of samples in these bins.

Figure 8.31: VCE after group delay corrections; the variance level has decreased as part
of the errors have been removed.

8.3.4.1 Static positioning

With updated stochastic model and using the group delay estimates from June 1, 2012
(P1C1 DCBs and antenna delay pattern), the month of June 2012 has been reprocessed.
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Figure 8.32 again shows the rms of the empirical errors and the formal standard deviation
using identical processing options as those used in section 8.3.2. Comparison of this figure
to fig. 8.22 reveals a vast improvement in the empirical position errors in the Up component.
A moderate improvement in the East component can also be observed, while the North
shows a slight degradation after about 7 hours into the run (note that the scale in the left-
hand pane of fig. 8.32 is different from that in fig. 8.22). The rms errors in each direction
now converge to 5 cm or better. The empirical results also fit formal standard deviations
much better with the same exception that the empirical errors in the North component do
not decrease at the same rate as the formal standard deviation.
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Figure 8.32: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for static code-only processing after group-delay corrections for June, 2012

8.3.4.2 Kinematic positioning

As previously mentioned the code-only positioning model with kinematic position and at-
mospheric parameters is in essence an epoch-by-epoch model. The positioning performance
is therefore mainly governed by the current satellite geometry, repeating each sidereal day.
Figure 8.33 presents the performance as a function of the time of sidereal day. Each dot
represents a single position solution, the thin black lines represent the formal 2-sigma val-
ues, and the wider black line shows a central moving average of the position solutions
with a window of 16.7 minutes (i.e. 999 samples). Table 8.3 shows the mean, standard
deviation and rms errors of these results. Comparing this figure and table to fig. 8.24 and
table 8.2, respectively, reveals that the group delay corrections have indeed solved both
problems found in section 8.3.3: the strong variations in time are strongly reduced and
the bias in the Up component is almost completely removed. In fact all statistics provided
in the table are improved w.r.t. the original model. Figure 8.34 shows the empirical rms

(m) mean sigma rms

East -0.02 0.53 0.53
North 0.02 0.77 0.77
Up -0.05 1.26 1.26

Table 8.3: Empirical kinematic code-only positioning results after group delay corrections

(colored dots) and the mean formal standard deviation (black lines) of the 30 daily runs.
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Figure 8.33: Code-only kinematic positioning errors as a function of the siderial time of
day for 30 daily runs for DLF1 station during June, 2012

The empirical rms and the formal standard deviation show an almost perfect agreement in
both magnitude and behavior over time. This shows that our model now corresponds to
the actual observations very well, and that our assumption that the group delay parameters
are constant over a number of days (in this case up to a month) is valid.
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Figure 8.34: East, North and Up empirical rmse (dots) and formal standard deviation
(dashed lines) for kinematic code-only processing after group-delay corrections for June,
2012; the formal and empirical values are in close agreement.
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8.4 Code+phase processing

With the code and phase models now performing satisfactorily, this section combines both
types of observations in the code+phase model introduced in section 4.8. The code and
phase model improvements proposed in the previous sections are both applied (i.e. the
group delays are corrected with the a priori estimates for DLF1, and the ionosphere-free
phase biases are allowed to change slowly over time). The increased redundancy of the
code+phase model means that the stochastic model parameters can theoretically be esti-
mated more precisely (e.g. in a multilevel iterative process). However, the differences turn
out to be very small and we will keep using the previous results to obtain a more straight
forward comparison between the different processing models.

Figure 8.35 shows the empirical position rms errors and the mean formal standard devia-
tion versus the processing time for the daily runs for June, 2012 for the static case. As
expected, the position errors on the first epoch are at the level of the code-only solution
(fig. 8.32), but they improve much faster already reaching 30 cm after just 3 epochs (i.e.
90 s). The accuracy keeps improving to 2 cm in 1 h and 1 cm in 4 h, all while the formal
standard deviation gives a good representation of the empirical results. The accuracy keeps
improving to about 5 mm in the Up component, and even smaller in the horizontal compo-
nents. Compared to the phase-only solution (fig. 8.16) the code+phase solution performs
significantly better during the first 30 min; the phase-only solution only catches up com-
pletely after about 6 h. During the second half of the day, the phase-only solution even
performs slightly better than the code+phase solution in the Up component. This might be
due to the fact that the group delay modeling performed in section 8.3.4 is ultimately not
accurate enough to perform positioning with mm accuracy. Improvements that could be
considered include: estimation using multiple days of data, smaller elevation and azimuth
bins, or accounting for (small) variations over time.
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Figure 8.35: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for static code+phase processing of June, 2012; this model outperforms both
the phase-only and code-only models.

Figure 8.36 shows the kinematic results for the code+phase model. The size of the errors
again start at the code-only level, but decrease very fast to about 10 cm in 10 min. After
1 h the rms in the Up component has decreased to about 5 cm and about 2 cm in the
horizontal directions. This level of accuracy is the same as we observed for the phase-
only model (fig. 8.17), but there it was only reached after about 3 h. The performance
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degradation at the end of the day (related to the date change), is now again smaller
than for the phase-only model with time-varying phase biases. The addition of the code
observations increases the strength of the model, and the position solution becomes less
sensitive to temporarily degraded observations or corrections.
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Figure 8.36: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for kinematic code+phase processing of June, 2012; this model outperforms
both the phase-only and code-only models.

8.5 Code+phase processing with atmosphere constraints

In this section the code+phase model is further strengthened by adding both ionosphere
pseudo-observables from a Global Ionosphere Map (GIM) from the Center for Orbit De-
termination in Europe (CODE) and troposphere pseudo-observable from the EGNOS tro-
posphere model (RTCA, 2001) to the positioning algorithms. As detailed in section 4.9
this is equivalent to correcting the observables with the ionosphere and troposphere model
values and constraining the estimated residual atmosphere parameters. The stochastic
model of the code and phase observables are in this case not adjusted, but we do need to
derive appropriate dynamic models for the residual atmosphere parameters. To do this we
first estimate the residual atmosphere delays without any constraints and then apply the
auto-regressive parameter estimation method introduced in section 6.3.

Figure 8.37 shows the estimated ionosphere delays after correcting the observables with the
GIM values (see fig. 8.6(d) as reference for the full ionosphere delays). From the magnitudes
of the residual ionosphere delays, in the order of several decimeters, it is apparent that we
cannot ignore these effects if we want to obtain sub decimeter accurate positions (NB:
In single frequency PPP the ionosphere residuals are generally ignored and contribute to
the position errors). Even though the residual ionosphere delays for individual satellites are
not zero mean, the overall residual ionosphere delay can be approximated by a zero-mean
effect with very strong time correlation. Applying the first-order auto-regressive parameter
estimation method introduced in section 6.3 gives an AR(1) parameter of .9973 for these
30 s data (equivalent to a correlation time of about 3:08 [h:mm]). The standard deviation
of the white-noise process is estimated at 2 cm (also used for the process noise in the
Kalman filter), which gives a steady-state standard deviation of 27 cm (which is used to
initialize the estimated parameters).
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Figure 8.37: Residual ionosphere delay (solid lines) and formal standard deviation (shaded
patches) after applying GIM corrections for June 1, 2012

Figure 8.38 shows the estimated troposphere delay after correcting the observables with
the EGNOS troposphere model values (see fig. 8.6(c) as reference for the full troposphere
delay). The magnitude of the residual troposphere delay is in the order of several cen-
timeters; much smaller than the ionosphere residuals. The residual troposphere delay is
also approximated by a zero-mean effect with very strong time correlation. Applying the
first-order auto-regressive parameter estimation method again gives an AR(1) parameter of
.9972 for these 30 s data (equivalent to a correlation time of about 2:58 [h:mm]). The stan-
dard deviation of the white-noise process is estimated at 2 mm (also used for the process
noise in the Kalman filter), which gives a steady-state standard deviation of 3 cm (which
is used to initialize the estimated parameters). Since these values were estimated from the
phase measurements, which have mm-level precision themselves, the actual troposphere
effect might be even more smooth.

The 30 daily runs for June, 2012 were reprocessed now correcting the observations with the
atmosphere model values and applying the derived dynamic models to the estimated residual
atmosphere delays. Figure 8.39 shows the empirical and formal position results for the static
case. The atmosphere models already contribute to the solution on the first epoch, and the
initial position errors are indeed smaller than for the code-only solution. The initial position
rmse in both horizontal directions is already below 30 cm and the vertical position rmse is
at about 60 cm, compared to about 60cm and 90 cm without atmosphere corrections. As
both the atmosphere-free code+phase model and the atmosphere-constrained code+phase
model converge the performance differences are reduced, and after about 5 minutes the
atmosphere-free model catches up to the atmosphere-constrained model. The performance
of both models remains almost identical for the remainder of the 24 h period.
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Figure 8.38: Residual troposphere delay after applying EGNOS troposphere model correc-
tions for June 1, 2012

The kinematic results are presented in fig. 8.40 and show similar behavior. The initial
errors of the ionosphere-constrained model are smaller than for the ionosphere-free model
(in fact they are the same as the static results), but the ionosphere-free model catches up
after some time (in this case 2.5 minutes) and both models perform equivalently for the
remainder of the 24 h period. Banville (2014) found a similar performance improvement
by initializing the slant ionosphere delay estimates with GIM model values. Although our
integrated model is strictly speaking stronger, the high time-correlation of the ionosphere
model values explains that using only the initial value already gives most of the benefit.
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Figure 8.39: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for static code+phase processing and atmosphere constraints for June, 2012;
the errors during the initial convergence are reduced.
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Figure 8.40: East, North and Up empirical rmse (solid lines) and formal standard deviation
(dashed lines) for kinematic code+phase processing and atmosphere constraints for June,
2012; the errors during the initial convergence are reduced.

8.6 Comparison and conclusions

The performance of the different static positioning models presented in this chapter are
compared in fig. 8.41 by means of the empirical root-mean-square 3D position errors (i.e.
the Euclidean distance). The code-only solution before the group delays are corrected is
not included in fig. 8.41 because of its large position bias. The PPP service of Natural
Resources Canada (NRCan) was also used to process the same dataset and results are
included in the figure for comparison. In the left pane we can see the phase-only models,
both with constant and time-varying phase biases, start with large position errors but
a final accuracy below cm-level. (The first few minutes of the convergence curves are
distorted due to the fact that the phase-only model is initialized with a single epoch
code-only solution, as mentioned previously). The code-only solution with group delay
corrections has a smaller initial error, but does not reach cm-level accuracy within 24 h.
The code+phase model starts as the code-only model and improves to below cm-level
faster than the phase-only models, thereby combining the strong points of both observation
types. The best performing model is the code+phase model with atmosphere constraints,
which outperforms the regular code+phase model during the first 5 minutes. The NRCan
code+phase solution has larger initial position errors and converges more slowly than our
code+phase model. This can be explained from the lack of station specific group delays
and stochastic model, which means that the code observations cannot be used to their
full effect. After about 12 minutes the NRCan solution catches up to our code+phase
solution. However, the NRCan solution converges to a slightly different position than the
reference position which was derived from the EUREF Permanent GNSS Network (mm level
in horizontal components; cm level in vertical component). Although, direct comparison
to the results of other authors remains difficult, in general it can be concluded that our
performance compares quite favorably to most reported performance measures displayed in
table 3.3.

Similar results are presented in fig. 8.42 for the kinematic case. The PPP service of Natural
Resources Canada provides smoothed solutions (i.e. after forwards and backwards process-
ing) for kinematic datasets. This cannot fairly be compared to our filtered solutions (i.e.
after forwards processing only), and therefore no NRCan solution is included in fig. 8.42.
Our code-only solution, which is a single-epoch solution and does not converge, is also not
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Figure 8.41: Absolute empirical rmse for static positioning models for June, 2012; the
models including phase measurements all converge to similar accuracy, but during the initial
stages the code measurements and atmosphere constraints play an important role. The
NRCan solution converges to a slightly different point.

included. The code+phase models clearly have smaller initial errors and better convergence
behavior than the phase-only models, with the atmosphere-constrained model performing
best during the first few minutes. After about 2 h all models perform similarly with 2 no-
table exceptions. The phase-only model with constant phase biases performs worse around
15 h (related to the poor satellite geometry at this time), and the phase-only model with
time-varying phase biases around 23 h (related to the IGS orbit and clock products).
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Figure 8.42: Absolute empirical rmse for kinematic positioning models for June, 2012;
all models converge to similar accuracy, but during the initial stages, or when disturbances
occur, the code measurements and atmosphere constraints play an important role.

Sections 8.2.2 and 8.2.3 showed that the phase-only model with constant phase biases
provides a high positioning accuracy, but gives a poor quality description of the estimated
position. The formal standard deviation decreases too fast and becomes much smaller
than the root-mean-squared empirical position errors. In section 8.2.4 we showed that
estimating the phase biases as parameters that are allowed to change slowly over time,
significantly improves the quality description while keeping a high position accuracy.

In sections 8.3.2 and 8.3.3 the code-only model, before the receiver-antenna specific group
delays were modeled, was shown to provide a good initial position estimate with a reasonable
quality description. However, especially the height component shows strong variations in
time and is significantly biased with respect to the reference position. These effects are not
properly captured by the formal standard deviation of the estimates which is thus ultimately
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insufficient. This becomes even more apparent if the position is estimated statically. In
this case the estimated height remains quite poor, while the formal standard deviation
keeps decreasing. Section 8.3.4 demonstrated that improved group delay estimates (in the
form of a bias per satellite and a group delay antenna pattern) can effectively solve these
problems. In our example, group delays estimated from a single day of data could be used
to correct pseudorange observations made up to a month later, and significantly reduce
the strong time variations in the position estimates and the bias in the height component.

The problems found with the code-only model before the receiver-antenna specific group
delays were modeled, also prevent the pseudorange observations from contributing signif-
icantly to the code+phase solution. Either the measurement variance has to be set very
high, in which case the code observations get almost no weight in the least squares solu-
tion, or if the variance is not set high enough, the bias found in the pseudorange model
will also severely degrade the combined solution. In section 8.4 results of the code+phase
positioning model with receiver-antenna specific group delays and time varying phase bi-
ases were presented. The strength of this model is clear from the excellent convergence
performance in both the static and kinematic case, easily outperforming both the code-only
and phase-only models. Section 8.5 showed that constraining the atmosphere delays to
model values can further improve the initial convergence of the position estimation.



Conclusions and Recommendations 9
This chapter outlines the main conclusions that can be drawn from the work discussed
in the previous chapters and provides recommendations for research and practice. The
chapter is organized along the main objectives given in section 1.2.

9.1 Functional model

Atmosphere delays From an analysis of conventional PPP models in chapter 2 the treat-
ment of atmosphere delays was identified as a point for improvement. An atmosphere-
weighted approach was therefore introduced.

Single and dual-frequency GNSS PPP models differ in their approach to mitigate the
atmosphere delays. In the single-frequency approach the atmosphere delays are typically
corrected by means of external atmosphere models. In the dual-frequency approach the
ionosphere delays are typically eliminated by combining the dual-frequency observations
to a single ionosphere-free observation, while the (zenith) troposphere delay is estimated.
As a result single-frequency PPP already provides a relatively high accuracy after only a
few epochs, but will not improve beyond the accuracy of the used atmosphere models;
dual-frequency PPP takes longer to converge but eventually reaches a very high accuracy.

From an estimation point of view these two approaches can be considered as, respectively,
an atmosphere-fixed (to the model values) and an atmosphere-free (estimated without
any constraints) model. An atmosphere-free approach to single-frequency PPP is possible,
but leads to poor convergence performance. Similarly, an atmosphere-fixed approach to
dual-frequency PPP is also possible, but the position accuracy would degrade significantly.

To obtain the optimal compromise between these two extremes, the atmosphere-weighted
or atmosphere-constrained model was introduced in chapter 4. In this approach the external
atmosphere model values are used, but the (residual) atmosphere delays are also estimated
from the observations. Or, equivalently, the observations are corrected with the atmosphere
models and residual atmosphere delays are estimated in the positioning filter. The estimated
values can then be constrained, both in absolute sense (to the model values) as well as their
variation in time by means of a dynamic model (NB: neither is possible if the ionosphere
is eliminated).

If proper weight is given to the model values, the filter can benefit from the atmosphere
models, without being adversely impacted by their limited accuracy. The weight that
these models get is determined by the dynamic model used for the estimated parameters
including the initial variance. In chapter 6, a method was derived to estimate an auto-
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regressive process from a time series, which can also be used to construct a dynamic model
for time-correlated parameters. In chapter 8 this method was applied successfully to the
atmosphere delays and indeed improved convergence behavior over the atmosphere-free
model.

Rank defects When enough satellites and measurement epochs are available, the esti-
mated receiver coordinates are not effected by any rank efficiencies in the SPP and PPP
models because the unit direction vectors from the receiver to the satellites are different for
each satellite. This means that if no unmodeled errors occur, the position can be estimated
without biases. If a zenith troposphere delay parameter is included in the estimation it will
also remain unbiased, and in this respect the zenith troposphere parameter can be viewed
as a fourth coordinate for the estimation process.

The GNSS measurement model contains a rank deficiency between the clock offsets and
the hardware delays. As a result the estimated clocks are always biased by the hardware
delays. The specific combination of hardware delay terms depends on the used observations
and positioning model. It is therefore often more appropriate to consider the clock offset
that pertains to a certain observable rather than the unbiased clock offset of a satellite or
receiver.

From single frequency code-only or phase-only observations the ionosphere cannot be esti-
mated, which means that single frequency users will have to rely on an external ionosphere
model to correct the observations for the ionosphere delay. The ionosphere can be esti-
mated from dual frequency observations or single frequency code and phase observations.
However, the estimates will be biased by differential hardware delays.

More generally, the analysis in chapter 4 revealed that, if the satellite clock offsets are
not provided for each observable some of the estimated parameters will become biased
by the satellite differential hardware delays. This does not always negatively impact the
user positioning, e.g. when no differential hardware delays are available and the ionosphere
delays are estimated without any additional constraints, the ionosphere estimates will be
biased and the estimated receiver clock offset will pertain to the ionosphere-free linear
combination, but without impacting the receiver position estimate.

However, if unbiased estimates are needed e.g. when we intend to strengthen the position-
ing model by means of external ionosphere information, the differential hardware delays (in
this case the DCBs) are required. Additionally the receiver DCB needs to be estimated as
it can no longer be lumped with the ionosphere delay parameters. To strengthen the model
in this way the ionosphere information can be added to the model in the form of pseudo
observables, or the receiver observables can be corrected with the ionosphere information,
both approaches leading to the same model. If the ionosphere model is not considered
accurate enough a differential term can be estimated without impacting the redundancy, if
the differential term has an expectation of zero.

Another case where unbiased estimates are needed is for ambiguity resolution. Thus for
ambiguity resolution to be possible for PPP, it is required that the satellite clock offsets are
provided for each observable and more specific the phase observations. These observable
specific satellite clock offsets do not all have to be provided in full, if at least one clock
offset is provided, the other clock parameters can be expressed in the form of differential
delays. An advantage of providing some of the clock offsets as differential delays is that
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these delays change much slower over time, which means that they can be provided to
the user with a lower update rate. The observable specific receiver offsets can also be
expressed as one full clock and a number of differential delays as shown in this chapter.
The advantage in this case is that due to their slower changes over time, a more strict
dynamic model can be used to strengthen the positioning model.

From the phase-only models, only between-satellite single differenced ambiguities can be
estimated without being biased by receiver dependent terms, since a rank deficiency exists
between the ambiguities and the receiver clock offsets. In the dual frequency code and phase
model these rank deficiencies instead exist between the ambiguities and the differential
hardware delays, which means that also in this model only single differenced ambiguities
can be estimated without being biased by receiver dependent terms.

The phase-only models showed that the presence of the unknown phase ambiguities prevent
the estimation of the receiver position from a single epoch of data. For code and phase
(Kalman) filter implementation, this means that, if the ambiguities cannot be resolved from
a single epoch, the position coordinates and other unknown parameters are first estimated
from the code observations with the corresponding uncertainty. Only after the ambiguities
have been estimated with enough precision will the phase measurements start to contribute
to the estimation of the other parameters.

Ambiguity Resolution

Ambiguity resolution can be considered for the double difference between satellites and
between the PPP user and the network of reference stations, but also single differences
between epochs (i.e. cycle-slips) can be considered as integer ambiguities. Ambiguity
resolution between the PPP user and the reference network receives much attention from
several research groups around the world, and is is currently leading to a new type of PPP
products that enables ambiguity resolution. In chapter 7 the second type of ambiguity was
considered in the time-differenced model. The strong influence of the ionosphere on this
problem was found.

From this it was again concluded that the ionosphere variations over time (i.e. the dynamic
model) need to be constrained to realistic values for optimal performance. It can be
concluded that under moderate ionosphere conditions, errors smaller than the carrier phase
wavelength can be detected, enabling cycle-slip detection.

9.2 Stochastic model

Next to the functional PPP model, the stochastic model for PPP was also treated in
this dissertation. For PPP the stochastic model consists of two main parts: the GNSS
observations and the PPP products. A proper stochastic model is needed for optimal
weighting of the observations, to obtain an accurate quality description of the position
solution and to perform rigorous integrity monitoring. Additionally, if ambiguity resolution
is desired the stochastic model is important to maximize the success-rate.

Satellite Orbit and Clock Products For the above-mentioned reason the quality of the
precise satellite orbit and clock products were analyzed in chapter 5.
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� The orbit and clock offsets were both studied separately and combined. The results
showed that the errors in the orbit and clock products individually are actually larger
than the errors in the combined product as they impact the user. This is in part
due to correlation resulting from the estimation process, but also due to the use
of different phase center offsets. These different PCOs lead to differences in the
computed satellite phase center positions (mainly in the radial direction), which are
for a large part absorbed by the satellite clock offsets. It can thus be concluded
that a PPP user should obtain the satellite orbit and clock products from the same
provider and not mix products.

� Another finding was that compared to the IGS satellite orbit prediction the clock
prediction is relatively poor, and dominates the combined error. Additionally the
clock prediction for older GPS satellites is worse than for the newer satellites. If these
products are used for PPP, the stochastic model should reflect both these effects.
In recent years the international GNSS community has started to focus on (near)
real-time provision of precise satellite orbit and clock products. The RETICLE clock
products from DLR/GSOC are one such near real-time product. These satellite clock
offsets are estimated while keeping the satellite orbits fixed to the values predicted
by the IGS. In this case the products can be mixed since the same PCOs are used
by definition and errors in the orbit will (partially) be compensated by the computed
satellite clocks. Thanks to the near real-time aspect of these clock offsets the poor
predictability of the satellite clocks (and in particular the older GPS satellite clocks)
plays a much less significant role. The quality of these products is much higher and
approaches the post-processed products. In addition a separate treatment of the older
GPS satellites in the stochastic model is not needed (similar to the post-processed
products).

Measurement Noise In sections 6.1 and 6.2 the different contributions of the code and
phase measurement noise have been investigated with a geometry-free model using mea-
surements from short and zero baselines as well as stand-alone receivers. Using the single,
double and time differences of the code-minus-carrier and multipath combinations, the
code noise, code multipath delays, and time correlation of the code observations have been
quantified.

� From these investigations the undifferenced code noise without multipath could be
estimated. The estimated values were in good agreement with the theoretical for-
mulae linking the measurement noise to tracking loop parameters and the C/N0.
Therefore, these theoretical expressions can be used in the stochastic model to ac-
count for the pseudo range measurement noise.

� The phase noise and phase multipath have also been studied from the double differ-
ence phase observations. The results show that the estimated phase noise is close to
the theoretical thermal noise and almost equal for each GNSS as expected. Unlike
the code observations the phase observations show very little time correlation at a
sampling rate of 1Hz. This means that the theoretical relations again suffice for the
part of the stochastic model that accounts for the carrier phase measurement noise.
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� The observations made to different satellites turned out to be almost uncorrelated as
expected and consequently this correlation can be neglected in the stochastic model.

� The results presented in chapter 6 also showed strong variations of the pseudorange
code measurements over longer time periods, with the magnitude of the variations
easily reaching up to 20 times the thermal noise standard deviation. These time
correlated (multipath) errors were further studied in sections 6.2.3.2 and 6.3.

Multipath The multipath linear combination of GNSS measurements, which is dominated
by pseudo range multipath and (time correlated) measurement noise was modeled as an
autoregressive process. The estimated AR parameters, the standard deviation of the resid-
uals and their dependence on e.g. satellite elevation differ for each of the GNSS signals and
are also different for the two receivers considered in section 6.3. However, the following
general conclusion can be reached.

The AR(0), or white noise, model shows a clear dependency of the standard deviation
of the residuals on satellite elevation where larger residuals are encountered for smaller
elevation angles. This can be translated into a white noise stochastic model with elevation
dependent weighting which can be used for positioning. However, the estimated AR(1)
parameter is almost always significant to a very high level, which indicates time correlation
of the multipath time series. Estimation of an AR(1) model reduces the estimate of σε
by a significant amount (especially for satellites with low elevation angles), which shows
that an AR(1) model fits the data much better than a white noise or AR(0) model does in
those cases. The AR(1) parameter itself does not show a strong dependency on satellite
elevation, but the standard deviation of the residuals does show this dependency. This
AR(1) model can be used for the stochastic model by extending the Kalman state vector
with an additional entry per signal with multipath. The transition matrix for these entries
then takes the (constant) values of the estimated AR(1) parameters and the process noise
is taken as a satellite elevation dependent value. With increasing order the estimated AR
parameters decrease in magnitude and become less significant. In addition the reduction
in σε is much less pronounced. Since each increase in the AR order leads to an additional
filter state, thereby increasing the computational burden and decreasing the strength of
the model, higher order AR models are less attractive for positioning purposes.

This means that for the positioning algorithms the AR(0), or white noise process, and
AR(1) models are best suited. A user or application designer can then make a trade-off
between using a simple (elevation dependent) white noise model or a more accurate AR(1)
model at the cost of additional computational burden.

9.3 Integrity monitoring

In chapter 7 we presented an analytical and numerical study of the integrity of the multi-
frequency single-receiver, single-channel GNSS model. The UMPI test statistics for spikes
and slips are derived and their detection capabilities are described by means of the concept
of minimal detectable biases (MDBs). Analytical closed-form expressions of the phase-slip
and code outlier MDBs have been given, thus providing insight into the various factors that
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contribute to the detection capabilities of the various test statistics. This was also done
for the phaseless and codeless cases, as well as for the case of loss-of-lock.

� The MDBs were evaluated numerically for the several GPS and Galileo frequencies.
From these analyses it can be concluded that detectability of a single slip in dual- or
triple-frequency of observations works well for only 2 epochs of data. Single-frequency
phase-slip detectability, however, is problematic, thus requiring more epochs of data.

� From the codeless phase-slip MDBs it follows that detectability is not possible in
the single-frequency case, but that it is possible for the dual- and triple-frequency
cases. In the dual-frequency case the codeless phase-slip MDBs are less then 10 cm
if σdI ≤ 3 cm, while for the triple-frequency case this is already true for σdI ≤ 1
m. In the triple-frequency case, the phase-slip MDBs get even as small as a few
centimeters if σdI ≤ 3 cm. These codeless results are important as they show that
in the presence of code multipath, one can do away with the code data and then still
have integrity for phase slips.

� The code outlier MDBs are, except for the single-frequency case, all relatively in-
sensitive to the smoothness of the ionosphere. The effect of the frequencies is also
hardly present in the multi-frequency code-outlier MDBs. Their value is predomi-
nantly determined by the precision of the code measurements. From the phaseless
code-outlier MDBs it follows that, except for the single-frequency case, code outlier
detection is still possible. The multi-frequency phaseless code-outlier MDBs all lie
around 1 m for σdI ≤ 10 cm. They increase rapidly, however, for larger values of
σdI .

� The hypothesis of a simultaneous slip on each phase observable of multi-frequency
GNSS data was shown to give a very elongated MDB ellipse or (hyper)ellipsoid with
the ionosphere-float model. These very elongated ellipses reveal a weak point of
cycleslip detection with an ionosphere-float model because of specific combinations
of slips, which can be present in the receiver data after a momentary loss of lock to a
satellite and are very difficult to detect. One way to remedy this shortcoming, which is
related to the uncertainty in the ionospheric delay, is to use an ionosphere-weighted
model. For an ionosphere-weighted approach, the MDB ellipse shrinks when the
precision of the ionospheric pseudo observable increases. For optimal performance
of a cycleslip detection algorithm, including slip combinations that are difficult to
detect, it is advisable to use an ionosphere-weighted model in combination with a
short time interval between the measurements.

9.4 Positioning performance

Sections 8.2.2 and 8.2.3 showed that the phase-only model with constant phase biases
provides a high positioning accuracy, but gives a poor quality description of the estimated
position. The formal standard deviation decreases too fast and becomes much smaller
than the root-mean-squared empirical position errors. In section 8.2.4 we showed that
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estimating the phase biases as parameters that are allowed to change slowly over time,
significantly improves the quality description while keeping a high position accuracy.

In sections 8.3.2 and 8.3.3 the code-only model, before the receiver-antenna specific group
delays were modeled, was shown to provide a good initial position estimate with a reasonable
quality description. However, especially the height component shows strong variations in
time and is significantly biased with respect to the reference position. These effects are not
properly captured by the formal standard deviation of the estimates which is thus ultimately
insufficient. This becomes even more apparent if the position is estimated statically. In
this case the estimated height remains quite poor, while the formal standard deviation
keeps decreasing. Section 8.3.4 demonstrated that improved group delay estimates (in the
form of a bias per satellite and a group delay antenna pattern) can effectively solve these
problems. In our example, group delays estimated from a single day of data could be used
to correct pseudorange observations made up to a month later, and significantly reduce
the strong time variations in the position estimates and the bias in the height component.

The problems found with the code-only model before the receiver-antenna specific group
delays were modeled, also prevent the pseudorange observations from contributing signif-
icantly to the code+phase solution. Either the measurement variance has to be set very
high, in which case the code observations get almost no weight in the least squares solu-
tion, or if the variance is not set high enough, the bias found in the pseudorange model
will also severely degrade the combined solution. In section 8.4 results of the code+phase
positioning model with receiver-antenna specific group delays and time varying phase bi-
ases were presented. The strength of this model is clear from the excellent convergence
performance in both the static and kinematic case, easily outperforming both the code-only
and phase-only models.

Section 8.5 showed that constraining the atmosphere delays to model values can further
improve the initial convergence of the position estimation, without degrading the accuracy
of the converged solution. The advantage of the atmosphere constraints disappears after
several minutes of continuous observations.

9.5 Recommendations

Based on the research in this dissertation, the following recommendations can be made:

� For optimal PPP convergence, atmosphere delay estimation should be constrained
by the use of external atmosphere models. The constraint should accurately describe
the quality of the models in order to take maximum benefit without being affected
by errors in the models.

� Careful application of S-system theory is necessary to achieve a full-rank PPP model
without over-constraints, and makes proper interpretation of the estimated parame-
ters possible. This is particularly important for those interested in unbiased estimates
of atmosphere parameters and clock offsets.

� Ambiguity resolution should be considered as the next step in global PPP, for which
the first steps have been taken by several research groups. Related positioning models
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such as PPP-RTK and WA-RTK may lead the way. Resolving cycle-slips can be
considered as time-differenced ambiguity resolution, and should form an integral part
of PPP. Results show that ionosphere constraints play an integral role in resolving
cycle-slips.

� Compared to prediction of satellite clock offsets, (near) real-time estimation greatly
reduces the uncertainty of PPP products, and improves performance. However,
the correlation resulting from simultaneous orbit and clock estimation should be
considered by the user; only consistent combinations of products should be used.

� Theoretical formulae can accurately predict the expected noise on GNSS measure-
ments, but other effects, in particular multipath, are often the dominant error source.
The stochastic model should represent these effects including their time-correlation.
For high measurement rates, an auto-regressive process can capture the multipath
effects much better than a white-noise model can.

� The current lack of integrity information for PPP should be solved by improving the
stochastic model for PPP and rigorously applying propagation of uncertainty and
hypotheses testing.

� The MDB is a valuable tool to assess the integrity of the PPP system and, when
compared to the GNSS carrier wavelengths, gives an indication whether cycle-slips
can be detected.

� Very slow changes in the carrier phase biases can be neglected over short time inter-
vals, but should be considered over longer periods.

� Biases in pseudorange observations should be modeled to prevent contamination of
the carrier phase results.
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This derivation shows that, for a wide sense stationary time series, the expression %σ2
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∆y in fact gives the autocovariance Kyy (τ) = E {y (t) y (t+ τ)}−E {y}2 at time

delay τ .

If we have a wide sense stationary time series y (t) with mean value µ, then the expectation
value of y at each epoch is equal to the mean value:

E {y (t)} = E {y (t+ τ)} = µ (A.1)

for any time delay τ . For the variance of y we have (which also holds at each epoch):
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y (A.2)

If we now take the time differences of y as follows:

∆y = y (t+ τ)− y (t) (A.3)

we get the following variance for ∆y:

var (∆y) = E
{

(y (t+ τ)− y (t))2
}
− E {y (t+ τ)− y (t)}2 (A.4)

Since the expectation operator is linear, we can rewrite the second term as follows:

var (∆y) = E
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(y (t+ τ)− y (t))2
}
− (E {y (t+ τ)} − E {y (t)})2 (A.5)

Using eq. (A.1), we see that the second term is in fact zero, simplifying the variance for
∆y to:
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(A.6)

which can again be rewritten to:
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and:
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Given eqs. (A.1) and (A.2), the first and third terms in eq. (A.8) are also equal, which
simplifies the expression further to:

var (∆y) = 2E
{
y2 (t)

}
− 2E {y (t) y (t+ τ)} (A.9)
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If we now insert eqs. (A.2) and (A.9) into our ad hoc correlation estimator we get:
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or:
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∆y = E {y (t) y (t+ τ)} − E {y}2 (A.11)

which is equal to the expression for the autocovariance of a wide sense stationary time
series at time delay τ .



Appendix: Dynamic Models and Time CorrelationB
B.1 Recursive Least-Squares Convergence

The measurement update in our recursive least-squares algorithm can be expressed as
follows:
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(B.1)

In which the predicted state vector x̂k|K−1 for the current epoch k, based on measurements
from all previous epochs (denoted as K − 1), is combined with the measurements of the
current epoch y

k
in a least-squares sense. I, A and Q are, respectively, an identity

matrix, the design matrix and variance matrix. The predicted state and measurements of
the current epoch are assumed to be uncorrelated. The predicted state and its variance
matrix follow from the time update step as follows:{
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To study the convergence behavior of this system we will look at the variance matrix of
the estimator for x while assuming that Φk−1,k, Qwk

, Ak and Qyk
are all constant and

equal to, respectively, Φ, Qw, A and Qy (i.e. we have a static model). If this system fully
converges, i.e. if adding new observation yk+1 no longer improves the estimate of x, than
limk→∞Qx̂k+1|K+1

= Qx̂k|K
, this gives:

Qx̂k|K
=
((

ΦQx̂k|K
Φ∗ +Qw

)−1
+A∗Q−1

y A
)−1

(B.4)

which works out as:

Qx̂k|K
= ΦQx̂k|K

Φ∗ −Qx̂k|K
A∗Q−1

y A
(
ΦQx̂k|K

Φ∗ +Qw

)
+Qw (B.5)
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This non-linear matrix equation which describes the steady state of the filter is closely
related to the algebraic Riccati equation. This is more easily seen if we consider the
variance matrix of the predicted state Qx̂k|K−1

, and write the measurement update in the

equivalent model of condition equations (the so-called B-model, see e.g. Teunissen, 2001):

 x̂k|K = x̂k|K−1 +Qx̂k|K−1
A∗kQ

−1
vk

(
y
k
−Akx̂k|K−1

)
Qx̂k|K

= Qx̂k|K−1
−Qx̂k|K−1

A∗kQ
−1
vk
AkQx̂k|K−1

(B.6)

with Qvk
= Qyk

+ AkQx̂k|K−1
A∗k. In this case the fully converged variance

(limk→∞Qx̂k+1|K
= Qx̂k|K−1

) can be found as:

Qx̂k|K−1
= Φ

(
Qx̂k|K−1

−Qx̂k|K−1
A∗Q−1

vk
AQx̂k|K−1

)
Φ∗ +Qw (B.7)

which leads to the classic discrete time algebraic Riccati equation (Lancaster and Rodman,
1995), which can be solved numerically:

Qx̂k|K−1
= ΦQx̂k|K−1

Φ∗ −ΦQx̂k|K−1
A∗

(
Qy +AQx̂k|K−1

A∗
)−1

AQx̂k|K−1
Φ∗ +Qw

(B.8)

For more insight and some numerical examples we will also consider a model with only a
single unknown parameter x and observable y. Equations (B.1) to (B.3) then reduce to:

E

{[
x̂k|K−1
y
k

]}
=
[

1
ak

]
xk D

{[
x̂k|K−1
y
k

]}
=
[
σ2
x̂k|K−1

σ2
yk

]
(B.9)

{
x̂k|K−1 = φk−1,kx̂k−1|K−1
σ2
x̂k|K−1

= φ2
k−1,kσ

2
x̂k−1|K−1

+ σ2
wk

(B.10)


x̂k|K =

(
σ−2
x̂k|K−1

+ a2
kσ
−2
yk

)−1 (
σ−2
x̂k|K−1

x̂k|K−1 + akσ
−2
yk
y
k

)
σ2
x̂k|K

=
((
φ2
k−1,kσ

2
x̂k−1|K−1

+ σ2
wk

)−1
+ a2

kσ
−2
yk

)−1 (B.11)

A steady state is reached if limk→∞ σ
2
x̂k+1|K+1

= σ2
x̂k|K

while further assuming that φk−1,k,

σwk , ak and σyk are constant and equal to, respectively, φ, σw, a and σy:

σ2
x̂k|K

=
((
φ2σ2

x̂k|K
+ σ2

w

)−1
+ a2σ−2

y

)−1
(B.12)

Solving this equation for σ2
x̂k|K

gives:

σ2
x̂k|K

=
−
(
(1− φ2)σ2

y + a2σ2
w

)
±
√(

(1− φ2)σ2
y + a2σ2

w

)2
+ 4a2φ2σ2

yσ
2
w

2a2φ2 (B.13)
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Note that the discriminant of these roots is always positive. For the results to be meaningful,
the variance itself also needs to be positive. If 0 ≤ φ < 1, then the first term in eq. (B.13)
is always negative, which means that only one of the roots can ever be positive:

σ2
x̂k|K

=
−
(
(1− φ2)σ2

y + a2σ2
w

)
+
√(

(1− φ2)σ2
y + a2σ2

w

)2
+ 4a2φ2σ2

yσ
2
w

2a2φ2 (B.14)

We will now consider four special cases of these results, and look at the convergence as
more observations are accumulated. We will also consider what happens in these cases if
no observations are available from a certain epoch on. Simulated results are also provided
in fig. B.1.

1. σw → ∞. If the processing noise goes to infinite the predicted state gets less and
less weight, and in the limit the results become equivalent with purely kinematic
estimation. Equation (B.11) reduces to σx̂k|K = σx̂k|k = σy/a, with the matrix

equivalent Qx̂k|K
= Qx̂k|k

=
(
A∗Q−1

y A
)−1

. If no observations are available (or if

σy →∞) the estimator becomes undefined.

2. φ = 1, σw = 0. If the processing noise is zero and the transition matrix is an identity
matrix, a static or constant parameter is estimated. In this case the filter cannot
reach a steady state, but rather the estimation keeps improving and the variance
of the estimated parameters approaches zero σx̂k|K ↓ 0 and Qx̂k|K

↓ 0. When no

observations are available the estimated parameters and their variance remain the
same.

3. φ = 1, σ2
w > 0. This model, often called random walk, can be used to estimate

nonzero-mean parameters whose variation in time is limited but not zero. The vari-

ance of the estimated parameter approaches: limk→∞ σ
2
x̂k|K

= −σ2
w+
√
σ4
w+4σ2

yσ
2
w/a

2

2

with the matrix equivalent: Qx̂k|K
A∗Q−1

y A
(
Qx̂k|K

+Qw

)
= Qw. When no obser-

vations are available the variance grows to infinity and the parameter slowly becomes
undetermined again.

4. 0 < φ < 1, σw > 0. This is an observed first order autoregressive pro-
cess as seen in section 6.3.1. The steady state variances are those provided in
eq. (B.14) and eq. (B.5) for matrices. When no observations are available (or
σy →∞) the variance increases to a new steady state value; eq. (B.11) simplifies to:

σ2
x̂k|K

= φ2
k−1,kσ

2
x̂k−1|K−1

+ σ2
wk

with the following limit: limk→∞ σ
2
x̂k|K

= σ2
w

1−φ2 . The

matrix equivalent follows from eq. (B.3): Qx̂k|K
= Φk−1,kQx̂k−1|K−1

Φ∗k−1,k +Qwk
,

which is known as the discrete Lyapunov equation. An analytical solution of this
equation can be found by applying the following property of the vec-operator and
Kronecker product vec(ABC) = (C∗ ⊗A) vec(B). This leads to: vec

(
Qx̂k|K

)
=

(I −Φk−1,k ⊗Φk−1,k)−1 vec
(
Qwk

)
Note that of the presented models only the

AR(1) process has a defined variance at epoch 0 even before the first observations
are available.
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Figure B.1: Convergence of recursive estimation of a single unknown parameter

Another use of the presented equations is to compute the process noise if the steady state
variance is known. In this case eq. (B.5) can be solved for Qw as:

Qw =
(
I −Qx̂k|K

A∗Q−1
y A

)−1
Qx̂k|K

−ΦQx̂k|K
Φ∗ (B.15)

and for the random walk model:

Qw =
(
I −Qx̂k|K

A∗Q−1
y A

)−1
Qx̂k|K

−Qx̂k|K

=
(
I −Qx̂k|K

A∗Q−1
y A

)−1
Qx̂k|K

A∗Q−1
y AQx̂k|K

(B.16)

The equivalent single parameter equations are, respectively:

σ2
w =

σ2
x̂σ

2
y

σ2
y − a2σ2

x̂

− φ2σ2
x̂ (B.17)

σ2
w = a2σ4

x̂

σ2
y − a2σ2

x̂

(B.18)

B.2 Dynamic models and data-rate

In section 6.3 we estimated AR processes from multipath time series. These AR processes
can be used to extend the Kalman filter to take care of time correlated errors. The dynamic
model for a Kalman filter state is defined by the relevant entry in the transition matrix
f (which is the AR(1) parameter) and the variance of the process noise σ2

w. However,
both of these values depend on the data-rate of the Kalman filter. Therefore, the AR(1)
processes estimated in section 6.3 from 1Hz observations can only be used directly in a
1 Hz Kalman filter. However, the following equation can be used to recompute these values
for other data-rates. Firstly, the time correlation factor τ can be computed from the AR(1)
parameter, here f , and the time interval ∆t:

τ = −∆t/ln (f) (B.19)
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where ln is the natural logarithm. Then the steady-state variance σ2
0 can be computed

from the process noise and f :

σ2
0 = σ2

w/
(
1− f 2

)
(B.20)

Both τ and σ0 are independent of the data-rate. So now f and σw can be computed for
a different time interval as follows:

f = e−∆t/τ (B.21)

and:

σ2
w = σ2

0

(
1− f 2

)
(B.22)



Appendix: Proofs Integrity Monitoring C
The proofs in this appendix pertain to chapter 7, they were first published in Teunissen
and de Bakker (2012).

Proof of Theorem 1 (UMPI test statistic): First we prove eq. (7.14). Define

A = (A1, A2) = (Ik−1 ⊗G,D∗ksl ⊗H)
W = (D∗kDk)−1 ⊗Q−1

x = (dg∗, b∗)∗
(C.1)

Reduction of the system of normal equations A∗WAx̂ = A∗Wy for b̂ gives Ā∗2WĀ2b̂ =
Ā∗2Wy and thus

b̂ = (Ā∗2WĀ2)−1Ā∗2Wy , Qb̂b̂ = (Ā∗2WĀ2)−1 (C.2)

with Ā2 = P⊥A1A2 and P⊥A1 = I − A1(A∗1WA1)−1A∗1W . With the use of eq. (C.1) in
eq. (C.2), the result eq. (7.14) follows.

For the UMPI test statistic, we have Tq = b̂∗Q−1
b̂b̂
b̂ = y∗WĀ∗2(Ā∗2WĀ2)−1Ā2Wy. With the

use of eq. (C.1), this expression reduces to eq. (7.15). /

Proof of Theorem 2 (Phase-slip MDB): For an MDB with k = l = 2, we have, with
q = 1 (i.e., d = ±1), according to eqs. (7.16) and (7.26),

MDB =
√

2λ0

H∗Q−1P⊥GH
(C.3)

For a phase-slip MDB we have H = (δ∗j , 0∗, 0∗)∗, Q = blockdiag(σ2
φIn, σ

2
pIn,

1
2σ

2
dI) and

P⊥G = In − G(G∗Q−1G)−1G∗Q−1. Substitution into eq. (C.3) gives the phase-slip MDB
as

MDBφj = σφ

√√√√ 2λ0

1− 1
n′

(C.4)

with 1
n′

= δ∗jG(G∗σ2
φQ
−1G)−1G∗δj. A further simplification of this scalar expression gives

eq. (7.30). /

Proof of Lemma 3 (Phase loss-of-lock MDB upper bounds): We give the proof for the
ionosphere-fixed case. For the ionosphere-float case it goes along similar lines.
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To determine the eigenvalues of Qb̂b̂ (c.f. eq. (7.49)) for Qφφ = σ2
φIn, Qpp = σ2

pIn and
σ2
dI = 0, we need to determine the root ψ of

|2σ2
φIn + 2σ2

pe(e∗e)−1e∗ − ψIn| = 0 (C.5)

Let D be an n× (n− 1) basis matrix of the orthogonal complement of e. Then the n× n
matrix M = [D, e] is of full rank. Pre- and post-multiplication of the matrix in eq. (C.5)
with M∗ and M allows to reduce the determinantal equation into a product,

|(2σ2
φ − ψ)D∗D| |(2σ2

p − ψ)n+ 2σ2
pn| = 0 (C.6)

This shows that there are (n− 1) eigenvalues with the value ψ = 2σ2
φ and one eigenvalue,

the largest, with the value ψ = 2(σ2
φ+σ2

p) = 2σp(1+ε). Hence, for the MDB upper bound
we get

|| MDB||φ ≤
√
ψmaxλ0 = σp

√
2(1 + ε)λ0 (C.7)

This concludes the proof. /



Appendix: Redundancy Tables D
This appendix contains redundancy tables for each of the models discussed in chapter 4.
Only temporal parameters, for which we do not have any dynamic model, and global
parameters, which are held constant, are considered for these tables. Each table shows
the number of observations and unknown parameters, the redundancy and the minimal
number of satellites m as a function of the number of epochs k. The number of epochs
k is shown up to the value for which the minimal required number of satellites no longer
decreases. Both a static user position and a kinematic user position are considered, as well
as the models with and without the estimation of a zenith troposphere delay. In the single
frequency code-only and phase-only models the slant ionosphere delays are not estimated
(but should be corrected by a model), in the dual frequency models the ionosphere delays
are estimated and the single frequency code & phase model is shown with and without
ionosphere estimation.

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 m 4 m− 4 4 5 m− 5 5
2 2m 5 2m− 5 3 7 2m− 7 4
3 3m 6 3m− 6 2 9 3m− 9 3

k km k + 3 k(m− 1)
−3 1 +

⌈
3
k

⌉
2k + 3 k(m− 2)

−3 2 +
⌈

3
k

⌉
kinematic position

1 m 4 m− 4 4 5 m− 5 5

k km 4k k(m− 4) 4 5k k(m− 5) 5

Table D.1: Redundancy of the single frequency code-only model

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 2m m+ 4 m− 4 4 m+ 5 m− 5 5
2 4m 2m+ 5 2m− 5 3 2m+ 7 2m− 7 4
3 6m 3m+ 6 3m− 6 2 3m+ 9 3m− 9 3

k 2km k(m+ 1)
+3

k(m− 1)
−3 1 +

⌈
3
k

⌉ k(m+ 2)
+3

k(m− 2)
−3 2 +

⌈
3
k

⌉
kinematic position

1 2m m+ 4 m− 4 4 m+ 5 m− 5 5

k 2km k(m+ 4) k(m− 4) 4 k(m+ 5) k(m− 5) 5

Table D.2: Redundancy of the dual frequency code-only model



261

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 m m+ 3 −3 N/A m+ 4 −4 N/A
2 2m m+ 4 m− 4 4 m+ 6 m− 6 6
3 3m m+ 5 2m− 5 3 m+ 8 2m− 8 4
4 4m m+ 6 3m− 6 2 m+ 10 3m− 10 4
5 5m m+ 7 4m− 7 2 m+ 12 4m− 12 3

k km
m+ k

+2
m(k − 1)
−k − 2 1 +

⌈
3

k−1

⌉ m+ 2k
+2

m(k − 1)
−2k − 2 2 +

⌈
4

k−1

⌉
kinematic position

1 m m+ 3 −3 N/A m+ 4 −4 N/A
2 2m m+ 7 m− 7 7 m+ 9 m− 9 9
3 3m m+ 11 2m− 11 6 m+ 14 2m− 14 7
4 4m m+ 15 3m− 15 5 m+ 19 3m− 19 7
5 5m m+ 19 4m− 19 5 m+ 24 4m− 24 6

k km
m+ 4k
−1

m(k − 1)
−4k + 1 4 +

⌈
3

k−1

⌉ m+ 5k
−1

m(k − 1)
−5k + 1 5 +

⌈
4

k−1

⌉
Table D.3: Redundancy of the single frequency phase-only model

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 2m 2m+ 3 −3 N/A 2m+ 4 −4 N/A
2 4m 3m+ 4 m− 4 4 3m+ 6 m− 6 6
3 6m 4m+ 5 2m− 5 3 4m+ 8 2m− 8 4
4 8m 5m+ 6 3m− 6 2 5m+ 10 3m− 10 4
5 10m 6m+ 7 4m− 7 2 6m+ 12 4m− 12 3

k 2km m(k + 1)
+k + 2

m(k − 1)
−k − 2 1 +

⌈
3

k−1

⌉ m(k + 1)
+2k + 2

m(k − 1)
−2k − 2 2 +

⌈
4

k−1

⌉
kinematic position

1 2m 2m+ 3 −3 N/A 2m+ 4 −4 N/A
2 4m 3m+ 7 m− 7 7 3m+ 9 m− 9 9
3 6m 4m+ 11 2m− 11 6 4m+ 14 2m− 14 7
4 8m 5m+ 15 3m− 15 5 5m+ 19 3m− 19 7
5 10m 6m+ 19 4m− 19 5 6m+ 24 4m− 24 6

k 2km m(k + 1)
+4k − 1

m(k − 1)
−4k + 1 4 +

⌈
3

k−1

⌉ m(k + 1)
+5k − 1

m(k − 1)
−5k + 1 5 +

⌈
4

k−1

⌉
Table D.4: Redundancy of the dual frequency phase-only model

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 2m 2m+ 3 −3 N/A 2m+ 4 −4 N/A
2 4m 3m+ 4 m− 4 4 3m+ 6 m− 6 6
3 6m 4m+ 5 2m− 5 3 4m+ 8 2m− 8 4
4 8m 5m+ 6 3m− 6 2 5m+ 10 3m− 10 4
5 10m 6m+ 7 4m− 7 2 6m+ 12 4m− 12 3

k 2km m(k + 1)
+k + 2

m(k − 1)
−k − 2 1 +

⌈
3

k−1

⌉ m(k + 1)
+2k + 2

m(k − 1)
−2k − 2 2 +

⌈
4

k−1

⌉
kinematic position

1 2m 2m+ 3 −3 N/A 2m+ 4 −5 N/A
2 4m 3m+ 7 m− 7 7 3m+ 9 m− 9 9
3 6m 4m+ 11 2m− 11 6 4m+ 14 2m− 14 7
4 8m 5m+ 15 3m− 15 5 5m+ 19 3m− 19 7
5 10m 6m+ 19 4m− 19 5 6m+ 24 4m− 24 6

k 2km m(k + 1)
+4k − 1

m(k − 1)
−4k + 1 4 +

⌈
3

k−1

⌉ m(k + 1)
+5k − 1

m(k − 1)
−5k + 1 5 +

⌈
4

k−1

⌉
Table D.5: Redundancy of the single frequency code & phase model with ionosphere esti-
mation
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static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 2m m+ 4 m− 4 4 m+ 5 m− 5 5
2 4m m+ 6 3m− 6 2 m+ 8 3m− 8 3
3 6m m+ 8 5m− 8 2 m+ 11 5m− 11 3
4 8m m+ 10 7m− 10 2 m+ 14 7m− 14 2

k 2km m+ 2k
+2

m(2k − 1)
−2k − 2 1 +

⌈
3

2k−1

⌉ m+ 3k
+2

m(2k − 1)
−3k − 2 1 +

⌈
k+3

2k−1

⌉
kinematic position

1 2m m+ 4 m− 4 4 m+ 5 m− 5 5
2 4m m+ 9 3m− 9 3 m+ 11 3m− 11 4

k 2km m+ 5k
−1

m(2k − 1)
−5k + 1 2 +

⌈
k+1

2k−1

⌉ m+ 6k
−1

m(2k − 1)
−6k + 1 3 +

⌈
2

2k−1

⌉
Table D.6: Redundancy of the single frequency code & phase model without ionosphere
estimation

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 4m 3m+ 4 m− 4 4 3m+ 5 m− 5 5
2 8m 4m+ 7 4m− 7 2 4m+ 9 4m− 9 3
3 12m 5m+ 10 7m− 10 2 5m+ 13 7m− 13 2

k 4km m(k + 2)
+3k + 1

m(3k − 2)
−3k − 1 1 +

⌈
3

3k−2

⌉ m(k + 2)
+4k + 1

m(3k − 2)
−4k − 1 1 +

⌈
k+3

3k−2

⌉
kinematic position

1 4m 3m+ 4 m− 4 4 3m+ 5 m− 5 5
2 8m 4m+ 10 4m− 10 3 4m+ 12 4m− 12 3

k 4km m(k + 2)
+6k − 2

m(3k − 2)
−6k + 2 2 +

⌈
2

3k−2

⌉ m(k + 2)
+7k − 2

m(3k − 2)
−7k + 2 2 +

⌈
k+2

3k−2

⌉
Table D.7: Redundancy of the dual frequency code & phase model

static position without troposphere estimation with troposphere estimation
epochs observations unknowns redundancy min(m) unknowns redundancy min(m)

1 4m 2m+ 5 2m− 5 3 2m+ 6 2m− 6 3
2 8m 2m+ 9 6m− 9 2 2m+ 11 6m− 11 2

k 4km 2m+ 4k
+1

m(4k − 2)
−4k − 1 1 +

⌈
3

4k−2

⌉ 2m+ 5k
+1

m(4k − 2)
−5k − 1 1 +

⌈
k+3

4k−2

⌉
kinematic position

1 4m 2m+ 5 2m− 5 3 2m+ 6 2m− 6 3
2 8m 2m+ 12 6m− 12 2 2m+ 14 6m− 14 3

k 4km 2m+ 7k
−2

m(4k − 2)
−7k + 2 1 +

⌈
3k

4k−2

⌉ 2m+ 8k
−2

m(4k − 2)
−8k + 2 2 +

⌈
2

4k−2

⌉
Table D.8: Redundancy of the dual frequency code, phase & ionosphere model



Appendix: Group Delay Estimation E
This appendix treats group delay estimation from a single receiver starting with the code-
only PPP model. In section 4.4 it was assumed that the ionosphere-free satellite hardware
group delays were provided by the PPP network, and they were consequently removed from
the positioning model. This led to the code-only model which can be solved from a single
epoch of data, and has good convergence behavior.

However, it is also possible to estimate (corrections to) these delays together with the other
unknown parameters. If the ionosphere-free group delays are not removed from the model,
the rank defects can be solved as follows:

E

{[
∆P S

r,L1,k
∆P S

r,L2,k

]}
=

−eS∗r,k mm um um
0···0

Im−1
0···0

Im−1

−eS∗r,k mm um γum
0···0

Im−1 γ
0···0

Im−1




∆rr
TZ,r,k

dtr,k + dr,L3,k − d1
L3,k

dr,L4,k + I1
r,k − d1

L4,k
−d1S

L3,k
I1S
r,k − d1S

L4,k


(E.1)

Note that the delays cannot be estimated as kinematic parameters, but if multiple epoch of
data are used they can be estimated as constants or with a dynamic model. Compared to
the regular code-only model there are m−1 additional unknown bias parameters; estimation
of a zenith troposphere delay is optional in both models.

The estimation model can be strengthened further by adding the phase observations. The
rank defects in the code+phase model can then be solved as follows.

E


∆φSr,L1,k

∆φSr,L2,k
∆P S

r,L1,k
∆P S

r,L2,k


 =


−eS∗r,k mm um −um

0···0
Im−1 −

0···0
Im−1

−eS∗r,k mm um −γum
0···0

Im−1 −γ
0···0

Im−1

−eS∗r,k mm um um um um
0···0

Im−1
0···0

Im−1
0···0

Im−1

−eS∗r,k mm um γum um γum γ
0···0

Im−1
0···0

Im−1 γ
0···0

Im−1





∆rr
TZ,r,k

dtr,k + δr,L3,k +A1
r,L3,k − δ1

L3,k
−δr,L4,k + I1

r,k −A1
r,L4 + δ1

L4,k
dr,L3,k − d1

L3,k − δr,L3,k −A1
r,L3,k + δ1

L3,k
dr,L4,k − d1

L4,k + δr,L4,k +A1
r,L4 − δ1

L4,k
A1S
r,L3 − δ1S

L3,k
I1S
r,k −A1S

r,L4 + δ1S
L4,k

−d1S
L3,k

−d1S
L4,k + A1S

r,L4 − δ1S
L4,k


(E.2)
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Finally we can simplify the model again if we assume the position to be known, and neglect
the phase uncertainty w.r.t. the pseudo range uncertainty, as follows:

E

{[
∆P̄ S

r,L1,k

∆P̄ S

r,L2,k

]}
=

 um um
0···0

Im−1
0···0

Im−1

um γum
0···0

Im−1 γ
0···0

Im−1



dr,L3,k − d1

L3,k − δr,L3,k −A1
r,L3,k + δ1

L3,k
dr,L4,k − d1

L4,k + δr,L4,k +A1
r,L4 − δ1

L4,k
−d1S

L3,k
−d1S

L4,k + A1S
r,L4 − δ

1S
L4,k

 (E.3)



Appendix: Partitioned Models F
This appendix takes a closer look at models that contain a critical partition, i.e. a partition
with an equal number of observations and unknown parameters, and without redundancy.
The design matrix corresponding to this partition should be square and of full rank, which
also makes it invertible.

F.1 Models with critical partition 1

Suppose we have an observation model with the following structure:

E

{[
y1
y2

]}
=
[
A1a A1b
A2a A2b

] [
xa
xb

]
; D

{[
y1
y2

]}
= Qyy (F.1)

with A2b a square matrix of full rank. Since this makes A2b invertible, we can pre-multiply
this model with the following invertible transformation matrix Z:

Z =
[
Im1 −A1bA

−1
2b

Im2

]
(F.2)

This gives the following transformed model:

E

{[
ȳ1
y2

]}
=
[
Ā1a
A2a A2b

] [
xa
xb

]
; D

{[
ȳ1
y2

]}
= Q̄yy (F.3)

with:

ȳ1 = y1 −A1bA
−1
2b y2

Ā1a = A1a −A1bA
−1
2b A2a

Q̄yy = ZQyyZ
∗

(F.4)

Note that the unknown parameters xb now only occur in the observation equations of y2

F.2 Observation decorrelation

Suppose we have an observation model with the following structure:

E

{[
y1
y2

]}
=
[
A1a
A2a A2b

] [
xa
xb

]
; D

{[
y1
y2

]}
=
[
Q11 Q12
Q21 Q22

]
(F.5)
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in which unknown parameters xb only occur in the observation equations of y2. The
observations can be decorrelated by pre-multiplication with the invertible transformation
matrix Z:

Z =
[

Im1

−Q21Q
−1
11 Im2

]
(F.6)

This gives the following transformed model:

E

{[
y1
ȳ2

]}
=
[
A1a
Ā2a A2b

] [
xa
xb

]
; D

{[
y1
ȳ2

]}
=
[
Q11

Q̄22

]
(F.7)

with:

ȳ2 = y2 −Q21Q
−1
11 y1

Ā2a = A2a −Q21Q
−1
11A1a

Q̄22 = Q22 −Q21Q
−1
11Q12

(F.8)

Note that the observations y1 and ȳ2 are decorrelated and that the unknown parameters
xb now only occur in the observation equations of ȳ2

F.3 Models with critical partition 2

Suppose we have an observation model with the following structure:

E

{[
y1
y2

]}
=
[
A1a
A2a A2b

] [
xa
xb

]
; D

{[
y1
y2

]}
=
[
Q11

Q22

]
(F.9)

in which the observations y1 and y2 are uncorrelated, the unknown parameters xb only
occur in the observation equations of y2, and with A2b a square matrix of full rank. Since
this makes A2b invertible, we can pre-multiply this model with the following invertible
transformation matrix Z:

Z =
[
Im1

A−1
2b

]
(F.10)

This gives the following transformed model:

E

{[
y1
ȳ2

]}
=
[
A1a
Ā2a Im2

] [
xa
xb

]
; D

{[
y1
ȳ2

]}
=
[
Q11

Q̄22

]
(F.11)

with:

ȳ2 = A−1
2b y2

Ā2a = A−1
2b A2a

Q̄22 = A−1
2b Q22A

−∗
2b

(F.12)

Note that the structure of the model has not changed except that submatrix A2b is now
replaced with an identity matrix of equal size. Also note that the y1 observations were not
transformed.
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F.4 Models with critical partition 3

Suppose we have an observation model with the following structure:

E

{[
y1
y2

]}
=
[
A1a
A2a Im2

] [
xa
xb

]
; D

{[
y1
y2

]}
=
[
Q11

Q22

]
(F.13)

in which the observations y1 and y2 are uncorrelated, the unknown parameters xb only
occur in the observation equations of y2. The corresponding partitioned system of normal
equations is:[

A∗1aQ
−1
11A1a +A∗2aQ−1

22A2a A∗2aQ
−1
22

Q−1
22A2a Q−1

22

] [
x̂a
x̂b

]
=
[
A∗1aQ

−1
11 A∗2aQ

−1
22

Q−1
22

] [
y1
y2

]
(F.14)

The matrix on the left hand side is made block diagonal in two steps. In the first step we
pre-multiply the system with transformation matrix Z1:

Z1 =
[
Im1 −A∗2a

Im2

]
(F.15)

This gives:[
A∗1aQ

−1
11A1a

Q−1
22A2a Q−1

22

] [
x̂a
x̂b

]
=
[
A∗1aQ

−1
11

Q−1
22

] [
y1
y2

]
(F.16)

The second step is another pre-multiplication with transformation matrix Z2:

Z2 =
 Im1

−Q−1
22A2a

(
A∗1aQ

−1
11A1a

)−1
Im2

 (F.17)

which gives:

[
A∗1aQ

−1
11A1a

Q−1
22

] [
x̂a
x̂b

]
=
 A∗1aQ

−1
11

−Q−1
22A2a

(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11 Q−1

22

 [ y1
y2

]
(F.18)

The estimators x̂a and x̂b can now be solved by pre-multiplication with the inverse of this
diagonal block matrix (the inverse is another diagonal block matrix containing the inverses
of the blocks) as follows:

[
x̂a
x̂b

]
=
 (A∗1aQ−1

11A1a
)−1

Q22

 A∗1aQ
−1
11

−Q−1
22A2a

(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11 Q−1

22

 [ y1
y2

]
(F.19)

which gives:

[
x̂a
x̂b

]
=


(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11

−A2a
(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11 Im2

 [ y1
y2

]
(F.20)
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Variance propagation leads to:

D

{[
x̂a
x̂b

]}
=


(
A∗1aQ

−1
11A1a

)−1
−
(
A∗1aQ

−1
11A1a

)−1
A∗2a

−A2a
(
A∗1aQ

−1
11A1a

)−1
A2a

(
A∗1aQ

−1
11A1a

)−1
A∗2a +Q22


(F.21)

Several remarks can be made based on this result

� The y2 observations do not contribute to the estimation of the unknown parameters
xa. In fact the estimator x̂a is identical to the estimator of the smaller model where
y1 are the only observations and xa the only unknown parameters.

� The variance submatrix Q22 does not appear in the estimators x̂a or x̂b, and only in
the variance of x̂b. This means that any changes in this submatrix would not change
the solution of the model, except for the variance of the estimated parameters in xb.

The estimated observations are then given as:

[
ŷ1
ŷ2

]
=
 A1a

(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11

Im2

 [ y1
y2

]
(F.22)

Applying variance propagation once more:

D

{[
ŷ1
ŷ2

]}
=
 A1a

(
A∗1aQ

−1
11A1a

)−1
A∗1a

Q22

 (F.23)

And for the residuals:[
ê1
ê2

]
=
[
P⊥A1a

0m2

] [
y1
y2

]
(F.24)

with:

D

{[
ê1
ê2

]}
=
[
P⊥A1aQ11P

⊥∗
A1a

0m2

]
(F.25)

in which P⊥A1a is an orthogonal projector given by (see also Teunissen, 2000a)

P⊥A1a = Im1 −A1a
(
A∗1aQ

−1
11A1a

)−1
A∗1aQ

−1
11 (F.26)

The ê2 residuals and their variance are zero, which means that these cannot be used to
perform quality control of the y2 observations, and also that no VCE can be performed for
the Q22 variance submatrix.
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F.5 Block Gauss-Seidel Method for Partitioned Matrix

Suppose we have an observation model with the following structure:

E
{[
y
]}

=
[
Aa Ab

] [ xa
xb

]
; D

{[
y
]}

= Qyy (F.27)

in which the unknown parameters x are split in two groups. The corresponding partitioned
system of normal equations is:[

A∗aQ
−1
yyAa A∗aQ

−1
yyAb

A∗bQ
−1
yyAa A∗bQ

−1
yyAb

] [
x̂a
x̂b

]
=
[
A∗aQ

−1
yy y

A∗bQ
−1
yy y

]
(F.28)

If both diagonal blocks in the matrix on the left hand side are invertable, eq. (F.28) can be
solved with the iterative block Gauss-Seidel method (Ciarlet et al., 1989; Quarteroni et al.,
2010). The iterations for this model can be worked out as:

for k = 1, 2, . . .
x̂ka =

(
A∗aQ

−1
yyAa

)−1
A∗aQ

−1
yy

(
y −Abx̂

k−1
b

)
x̂kb =

(
A∗bQ

−1
yyAb

)−1
A∗bQ

−1
yy

(
y −Aax̂

k
a

) (F.29)

Only x̂0
b needs to be initialized and iterations can be stopped when the updates of the

estimated parameters are below a selected threshold.

In section 8.3.4 the above estimation scheme is used to estimate the positioning parameters
and other (time varying) parameters in the first step, while estimating the (constant) group
delays in a separate second step. Note that y − Aax̂

k
a are the residuals from the first

estimation step. y−Abx̂
k−1
b can then be interpreted as the observations corrected for the

group delays estimated in the previous iteration.



Appendix: Variance Component Estimation G
This appendix explains the Variance Component Estimation (VCE) approach used in chap-
ter 8, which applies the iterated almost unbiased estimator (Förstner, 1979) to different
groups of GNSS observations. This approach was previously demonstrated in Gündlich
and van der Marel (2003) which is in part based on Teunissen (2004). The observations
are grouped in satellite elevation bins, which makes it possible to accurately determine
the elevation dependent measurement variance. In this section VCE for the phase-only
model is considered, but similar derivations hold for the code-only model. In section 4.6
the following dual frequency phase-only functional model for a single epoch was found, see
eq. (4.30):

E


 ∆φS

r,L1,k
∆φS

r,L2,k

 =

 −eS∗r,k cum mS
r,k −Im

0···0
Im−1

−eS∗r,k cum mS
r,k −γIm

0···0
Im−1




∆rr
δtr,L3,k
TZ,r,k
¯̄I
S

r,k

ĀS−1
r,L3

 (G.1)

When combining measurements of multiple epochs of data we can define a dynamic model
for each of the unknown parameters. However, here we will only work with kinematic (the
ionosphere and clock offset) and static (the ambiguities) parameters.

The kinematic estimation of an ionosphere delay per satellite, leads to a number of unknown
parameters equal to the number of observations on a single frequency. This means that
we can write the complete observation model (i.e. for all epochs) as:

E


 ∆φS

r,L1,K
∆φS

r,L2,K

 =
[
A1a A1b
A2a A2b

]  x
¯̄I
S

r,K

 ; D


 ∆φS

r,L1,K
∆φS

r,L2,K

 = Qyy

(G.2)

in which A2b is a square matrix of full rank. As a result we can follow the derivations
presented in appendix F. First the ionosphere parameters are eliminated from the L1 obser-
vation equations as in appendix F.1. In this process the L1 observations are transformed
into the L3IF observations. Then the observations are decorrelated as in appendix F.2 by
transforming the L2 observations. Note this generally does not lead to the ionosphere com-
bination of observations, the actual combination depends on the chosen stochastic model
(in fact for a specific choice of the stochastic model the L2 observations even remain un-
changed). Appendices F.3 and F.4 then show that the second set of observations get zero
residuals which means that their variance components cannot be estimated.
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This is an extension of our findings in chapter 4, where we showed that transforming
the L1 and L2 observables into the ionosphere-free and ionosphere combination, then the
ionosphere observations become free variates if the ionosphere is estimated as a kinematic
parameter per satellite. Therefore, for the purpose of VCE, the dual frequency model
with unconstrained ionosphere estimation is equivalent with the following ionosphere-free
model. (Note that this also implies that the variance components for L1 and L2 cannot be
estimated separately.)

E
{[

∆φS
r,L3,k

]}
=

[
−eS∗r,k cum mS

r,k

0···0
Im−1

] 
∆rr
δtr,L3,k
TZ,r,k
ĀS−1
r,L3

 (G.3)

To derive a stochastic model for the phase measurements (as is the goal in section 8.2.1),
the position is kept fixed at the accurately known a-priori coordinates. In this case correc-
tions to the position are no longer estimated, which means the model simplifies as follows.

E
{[

∆φSr,L3,k + eS∗r,k∆rr
]}

=
[
cum mS

r,k

0···0
Im−1

]  δtr,L3,k
TZ,r,k
ĀS−1
r,L3

 with ∆rr = 0 (G.4)

Note that the fixed coordinates, including the displacement effects, need to be very accurate
indeed as their uncertainty is added to the measurement variance.

D
{[

∆φSr,L3,k + eS∗r,k∆rr
]}

= QφSr,L3,k
+ eS∗r,kQrr(e

S∗
r,k)∗ (G.5)

However, if the position is accurate enough the added variance may be neglected. In this
reduced model the variance matrix of the observations is a diagonal matrix since we assume
that the observations to different satellites and from different epochs are not correlated.
Therefore, we can use a simplified expression for the Variance Component Estimation given
in Gündlich and van der Marel (2003):

Fk = 1
rk

mk∑
i=1

ê2
ik/σ

2
yik

(G.6)

with F a multiplication factor that should be applied to update the measurement variance,
k corresponds to the observation group, mk the number of observations of group k, ê the
residuals, σy the observation standard deviation, and r the redundancy number given by:

rk =
mk∑
i=1

σ2
eik
/σ2

yik
(G.7)

with σe the residual standard deviation. With this expression we do not need the entire
variance matrix of the residuals, only the diagonal elements. An additional advantage is
that we can combine the residuals of different epochs of the recursive least squares without
having to take the correlation into account. As mentioned the VCE method is iterative
which means that the data should first be processed with an initial stochastic model,
which should then be updated with eqs. (G.6) and (G.7) before reprocessing the data and
repeating these steps until the stochastic model converges.
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To limit the number of additional estimated parameters (the variance components), which
is one of the pitfalls of VCE, an intermediate step is added to the procedure. Once the
variance component updates are computed for each elevation bin an elevation dependent
function is fitted to these values, and the fitted function is used as the updated stochastic
model. The exponential function of the form a(1 + be−θ/θ0), first introduced by Euler and
Goad (1991), where θ is the elevation angle provides a very good fit for the data at hand.
This function then limits the number of additional parameters to 3: a which is close to
the variance at high elevation angles, b which represents the increase in variance at low
elevation angles, and the reference elevation θ0 which governs the shape of the curve. In
this 3 parameter model b and θ0 can vary significantly due to relatively small changes in
the residuals, especially if the elevation cut-off angle is high, which can lead to an unstable
(iterative) estimation process. In this case it is advisable to fix the reference elevation to
e.g. 10 ◦ and only estimate a and b.
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