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Summary

This research focuses on testing and modelling the viscoelastic response of
bituminous binders. The main goal is to find an appropriate response model for
bituminous binders. The desired model should allow implementation into
numerical environments such as ABAQUS. On the basis of such numerical
environment, Delft University of Technology (TU) is developing mechanistic
asphalt mixture design tools. These tools are based on Meso scale mechanics.
For Porous Asphalt (PA) performance, such a tool is readily available in
ABAQUS. Implementation of an accurate viscoelastic response model for
bituminous mortar will improve the tool’s capability in explaining PA
performance at various temperatures and it is therefore a primary goal of this
research. In addition the response model is also thought to be of equal
importance for other meso mechanics tools for asphalt concrete mixtures that
will be developed in the near future.

To realise the main objective of the study, first an extensive Dynamic Shear
Rheometer (DSR) testing program was carried out on bituminous binder,
mastic and mortar. The program was carried out to get a better understanding
of the response behaviour of binders for various loading conditions. For the
pure binder and mastic testing, a cone and plate setup was developed. For the
mortar testing, a specially designed mortar column setup was utilized. The
frequency and time domain response of the binders was first analysed in the
linear viscoelastic range. Hereafter the frequency domain response of the
binders beyond the linear range response was investigated. The results showed
that binders exhibit nonlinear behaviour at higher levels of shear stress. At
relatively high temperatures, in the range of 30°C and above, mortar and mastic
show nonlinear behaviour at shear stresses as low as 10 kPa. At low
temperatures of 0°C and below, high shear stresses in the range of 1 MPa were
observed to cause nonlinear behaviour.

The second part of the study covers extensive modelling work. After a literature
survey, two response models were first selected as a basis for further research;
i.e. the Huet-Sayegh (HS) and the Burgers’ model. These models were then
utilised to describe the frequency domain response data. It was observed that
the Burgers’ model requires a number of Kelvin-Voigt elements to accurately
describe experimental data. The HS model on the other hand presented an
accurate description of response data. However, the HS model lacks the
capability of explaining viscous deformation. For this reason the HS model was
extended by adding a linear dashpot in series. The modified Huet-Sayegh
(MHS) and the generalized Burgers’ model were then used to describe the
frequency domain response of various materials. Results have shown that the



MHS description of the response data excels that of the generalized Burgers’
model.

For time domain use in numerical environments, incremental formulations of
the response models were obtained. The formulations were coded and the
numerical outputs were then validated by performing various simulations. The
formulations were used to simulate time domain response tests. In this process
parameter determination was first performed on the basis of frequency domain
data. The parameters were then used to simulate time domain creep and
relaxation tests. The simulation results showed that the frequency domain
master curve data provided accurate material information for simulating the
time domain response. The result further underlines the fact that binder’s
behaviour is intrinsic, and as such their behaviour in frequency and time
domain is related. It is this intrinsic behaviour of the binders that was described
by the generalized Burgers” and the MHS models.

Hereafter the models were finally implemented into ABAQUS, and they are
made available for use in the meso mechanics PA design tool. The results from
the PA design tool showed that both models lead to comparable results. The
pros and cons of the models for practical application were evaluated. For
relatively small numerical models, the MHS model is suggested because of its
simplicity in the number of model parameters and its high accuracy in
describing material response. However, for computationally intensive
numerical models, the use of the generalized Burgers’ model is suggested
because of its high computational efficiency in numerical environments.

Finally, the nonlinear response of binders was analyzed using Schapery’s
nonlinear theory. Numerical formulation of the theory that incorporates the
generalized Burgers” model was adopted. The formulation was coded into a
User Subroutine Material code (UMAT) for use in ABAQUS. In the UMAT code
an iterative scheme for obtaining correct stress state was incorporated at the
material level. Results from the code were verified by performing various
simulations. Application of the Schapery’s nonlinear theory in the PA design
tool showed that the effects of nonlinear behaviour are negligible at
temperatures of 10°C and below. However, at 20°C and above, distinct and
significant differences between linear and nonlinear simulations are observed.
From the results it is concluded that common binders may be modelled as being
linear viscoelastic for temperatures of 10°C and below. At 20°C and above
nonlinear response becomes significant and, it needs to be considered in meso
mechanistic computations.
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Samenvatting

Dit onderzoek concentreert zich op het meten en modelleren van de visco-
elastische respons van bitumineuze bindmiddelen. Het doel is de ontwikkeling
van een bruikbaar respons model voor bitumineuze bindmiddelen. Dit model
moet geschikt zijn voor implementatie in numerieke analyse systemen als
ABAQUS. Op basis van dergelijke numerieke systemen ontwikkelt de
Technische Universiteit Delft (TUD) een mechanistisch mengselontwerp
instrument op meso schaal. Voor het ontwerp van Zeer Open Asfalt Beton,
ZOAB, is zo'n instrument beschikbaar in ABAQUS. Implementatie van een
nauwkeurig visco-elastisch respons model voor mastiek zal de mogelijkheden
voor het verklaren van ZOAB-gedrag bij verschillende temperaturen vergroten
en is daarom een tweede hoofddoel van dit onderzoek. Bovendien is de
verwachting dat een nauwkeurig visco-elastisch respons model voor
bindmiddelen ook van belang is voor andere mechanistische mengselontwerp
methodieken op meso schaal die in de toekomst zullen worden ontwikkeld.

Om het hoofddoel te bereiken is begonnen met een uitgebreid
onderzoeksprogramma op bitumineuze bindmiddelen met de Dynamic Shear
Rheometer (DSR). Het doel van dit programma was om beter inzicht te krijgen
in het respons gedrag van bindmiddelen bij verschillende lastcondities. Voor
het testen van puur bitumen en mortel is een Cone & Plate geometrie
ontwikkeld. Voor het testen van mastiek is gebruik gemaakt van speciaal
ontworpen proefstukjes in de vorm van mastiekkolommetjes. Eerst is de
lineaire visco-elastische respons van bindmiddelen in het frequentie- en
tijdsdomein geanalyseerd. Daarna is, in het frequentiedomein, de respons
buiten de lineair elastische range onderzocht. De resultaten maakten duidelijk
dat  bindmiddelen niet lineair = gedrag  vertonen bij hogere
schuifspanningniveaus. Bij relatief hoge temperaturen, 30°C en daarboven,
vertonen mastiek en mortel niet lineair gedrag bij lage spanningen van 10 kPa.
Bij lage temperaturen van 0°C en lager, zijn schuifspanningen in de orde van 1
MPa nodig om niet lineair gedrag te veroorzaken.

Het tweede deel van de studie behelst omvangrijk modelleringwerk. Na een
literatuurstudie zijn twee responsmodellen geselecteerd voor verder gebruik in
deze studie, het betreft het Huet-Sayegh (HS) en het Burgers’” model. Beide
modellen zijn eerst gebruikt om frequentiedomein data te beschrijven. Gebleken
is dat het gegeneraliseerde Burgers’” model meerdere Kelvin-Voigt elementen
moet bevatten om de laboratorium data nauwkeurig te beschrijven. Het HS
model laat een nauwkeurige beschrijving van laboratorium data zien. Maar
helaas kan het HS de ontwikkeling van viskeuze vervorming niet beschrijven.
Hierom is het HS model uitgebreid met een lineaire viskeuze demper in serie.
Het aangepaste Huet-Sayegh model (MHS) en het gegeneraliseerde Burgers’



model zijn hierna gebruikt om de frequentiedomein data van diverse
materialen te beschrijven. De resultaten tonen dat het MHS model de data beter
beschrijft dan het gegeneraliseerd Burgers’ model.

Voor numerieke simulaties in het tijJdsdomein zijn de responsmodellen
incrementeel geformuleerd. De incrementele formulering in het tijdsdomein is
gevalideerd met verschillende numerieke simulaties. Hierna zijn diverse
tijddomein respons tests gesimuleerd. Hierbij zijn tijdsdomein kruip en
relaxatie tests gesimuleerd op basis van responsparameters die bepaald zijn uit
frequentiedomein data. De resultaten van dit werk geven aan dat
frequentiedomein master curve data een nauwkeurig inzicht geven in het
tijdsdomein respons gedrag. De resultaten onderstrepen het feit dat
bindmiddelen een intrinsiek gedrag kennen en dat hun gedrag in frequentie- en
tijdsdomein dus gerelateerd is. Het intrinsieke gedrag van bindmiddelen wordt
beschreven door zowel het gegeneraliseerde Burgers’ model en het MHS
model.

Hierna zijn de modellen geimplementeerd in ABAQUS en gebruikt in een
mechanistisch ZOAB ontwerp instrument op meso schaal. De resultaten van het
ontwerpinstrument tonen dat de modellen vergelijkbare resultaten geven. De
voor- en nadelen van de modellen voor praktisch gebruik zijn bekeken. Voor
relatief kleine numerieke modellen wordt het MHS geadviseerd omdat dit
model met een beperkt aantal parameters een zeer nauwkeurige beschrijving
van het respons gedrag geeft. Voor modellen die meer rekenkracht vragen
wordt het gegeneraliseerde Burgers’ model geadviseerd omdat dit model
rekenkundig zeer efficiént is.

Als laatste is het niet lineaire respons gedrag van bindmidden geanalyseerd met
behulp van Schapery’s theorie. Bij de numerieke formulering van deze theorie
is gebruik gemaakt van het gegeneraliseerde Burgers” model. Op basis van de
formulering is een User Subroutine Material code (UMAT) voor gebruik in
ABAQUS geschreven. De UMAT code bevat en iteratie proces voor het
verkrijgen van de juiste spanningssituatie. De UMAT code is met diverse
simulaties geverifieerd. Toepassing van het niet lineaire gegeneraliseerde
Burgers” model in het ZOAB ontwerp instrument toont dat de effecten van niet
lineair gedrag verwaarloosbaar zijn bij temperaturen van 10°C en lager. Bij
temperaturen van 20°C en hoger worden duidelijk verschillen tussen lineaire en
niet lineaire simulaties gevonden. De resultaten geven aan dat reguliere
bindmiddelen lineair visco-elastisch gemodelleerd kunnen worden bij
temperaturen van 10°C en lager. Bij 20°C en hoger wordt de niet-lineaire
respons van belang in mechanistische mengselontwerp methodieken op meso
schaal.
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INTRODUCTION

Introduction

oads play a vital role in promoting the social and economic wellbeing of

a society. Transport of goods, people and services from one place to the

other within reasonable cost and time is made possible with the
availability of good roads. To ensure a good level of service for road users, it is
important that road conditions are kept to a certain acceptable standard.

The ability of roads or pavements to deliver the required level of service is
governed by the pavement service life. The pavement service life is determined
in relation to its performance with respect to various distress types. The most
common distress types observed in flexible pavements include, but are not
limited to, permanent deformation, longitudinal unevenness, cracking,
disintegration and wear. Figure 1-1 presents examples for the aforementioned
distress types.

W

Figure 1-1 Rutting, disintegration and cracking in pavements [13, 16, 17]
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Distresses have a significant effect on the pavement’'s ability to meet its
functional and structural requirements. The functional requirements of a
pavement include traffic safety, riding comfort and noise reduction. Whereas
structural requirements involve bearing capacity, surface cracking, longitudinal
and transversal evenness, roughness and texture [14]. On Dutch motorways, the
most common types of distress that necessitate maintenance intervention are
related to damage of the top layer. Disintegration (ravelling) is by far the most
predominant type of distress observed in motorways. To a lesser extent, rutting,
and cracking are also observed [4].

The challenge to road managers is, therefore, to keep the road networks to an
acceptable standard such that the functional and structural requirements are
met. Doing so requires regular pavement maintenance. On today’s densely
trafficked motorways however, frequent maintenance activity is not desired as
it disrupts traffic flow, reduces network availability and causes undesired
traffic congestion on road networks. To strike a balance between road quality
and network availability; cost-effective, long-life and low-maintenance
pavements are sought. This in turn demands application of innovative
materials for pavements, and necessitates the use of improved pavement design
methods. Relevant performance models should also be introduced to predict
the required type and amount of maintenance needed to keep the pavements in
an optimal condition.

1.1 Causes of Top-Layer Distresses

Generally pavement distresses are caused by deterioration of the pavement
quality due to traffic and disintegration of the road building materials due to
climatic conditions. Experience has shown that, due to a myriad of factors
involved, finding the specific cause of a pavement distress is quite complex.
Therefore, the main causes and influencing factors for selected top-layer
distresses that are of prime importance in Dutch motorways are discussed
hereafter.

1.1.1 Ravelling

Application of a Porous Asphalt (PA) layer as a wearing course on primary
road networks in the Netherlands is mandatory for environmental reasons. In
the majority of cases ravelling is by far the decisive factor for PA maintenance.
Ravelling is the loss of stone from the road surface and is the result of
individual surface stones loosing their bond to the rest of the pavement surface.
This loss of bond may occur in two modes; i.e. cohesive failure, where failure
occurs within the bituminous mortar material, and adhesive failure, where
failure occurs in the form of detachment at the stone-mortar interfacial zones
(Figure 1-2). Ravelling can also occur as a result of aggregate crushing.
However, this mode of failure is rarely observed and hence often considered
not detrimental for the service life of PA.

2
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To understand the mechanisms leading to ravelling, it is important that all the
factors affecting the cohesive and adhesive performance characteristics of the
materials are known. The main factors affecting the adhesive and cohesive
performance characteristics of the materials in PA are the traffic loading, the
environmental loading, mixture composition and the physiochemistry of the
asphalt mixture.

Cohesive

Adhesive

Figure 1-2 Schematic illustration of cohesive and adhesive failures [13]

Due to traffic loading, the pavement surface is subjected to signals of complex
combinations of normal, shear and tangential contact-stress [3]. The traffic
loading, combined with the presence of a high percentage of aggregates in PA
layers (geometry effects), results in a wide range of stress signals in both the
bituminous mortar and stone-mortar adhesive zones. Locally, in the mixture
high stresses may develop; these stresses are potential causes for initiation of
damage that ultimately leads to ravelling failure. Meso scale research on surface
seals and PA layers have shown the development of a wide range of stresses in
stone-to-stone contact areas within the bituminous mortar domain [7, 9, 19].

Due to the open structure of PA, the effect of the environmental loading is also
severe. The high percentage of voids in the mixture allows oxygen, water and
salt to penetrate easily into the surface layer resulting in deterioration of the
cohesive and adhesive properties of the materials. The open structure of the
material also makes it more vulnerable to ultra violent light and temperature
changes. Combined, these climatic effects cause a change in material
performance, i.e. aging. Research on the aging properties of asphalt materials
showed the drastic effect of aging such that just within two years of service the
binder in the PA mixture could behave brittle even for temperatures just above
0°C [5].

In addition to the mechanical and environmental loading, the chemical and
physical characteristics of the aggregates, i.e. the texture, shape, angularity, size
and mineralogical composition, influence the ravelling resistance of PA
mixtures [18].
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1.1.2 Rutting

The causes of rutting in Asphalt Concrete (AC) layers are well established
nowadays. Rutting is caused by a combination of densification (volumetric
change of the material), viscous flow and shear deformation, the later being the
dominant behaviour causing permanent deformation [15]. Similar to ravelling;
the rutting resistance of a mixture is a function of the mixture composition,
material characteristics and loading conditions.

Literature has shown that linear elastic and linear viscoelastic representation of
bituminous materials are not accurate enough for predicting permanent
deformation characteristics of AC layers [11, 15]. It has also been shown that the
load transfer mechanism within the mixtures is highly influenced by the
mixture composition. The assumption that AC mixtures are homogeneous
should, therefore, be improved to take the heterogeneous nature of the mixture
into account [15].

Unlike the traditional assumption where the contact stress under a wheel is
assumed to be uniform, literatures have shown the presence of a highly non-
uniform contact stress distribution in the vertical, lateral and longitudinal
direction [3]. Figure 1-3 illustrates the variation of the contact stress distribution
under a wheel for the vertical, lateral and longitudinal directions. This non-
uniform nature of the contact stress distribution needs to be considered for a
proper analysis of top-layer distresses.

Vertical contact stress Lateral transverse stress
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Figure 1-3 Contact stress distribution for a free-rolling truck tyre with 25 kN tyre load
and 500 kPa tyre pressure, arrows indicate direction of travel [3]
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1.1.3 Surface Cracking

Surface cracking in pavements occurs because of various reasons. It might be
associated with traffic loading or with temperature fluctuations, i.e. thermal
effects. At low temperatures the brittle behaviour of the binder due to aging in
combination with traffic loading accelerates the development of surface
cracking.

It is also possible that cracks initiated at the bottom of the asphalt layer
propagate to the surface. However, these types of cracks are associated with
structural performance of the pavement layers and are in a different category.

One of the major causes for traffic-related surface cracks is associated with the
contact stress distribution. As illustrated in Figure 1-3, high lateral shear
stresses are developed at the edge of the wheel. These stresses are the principal
factor in causing surface cracking. In order to capture the crack initiation
phenomenon, prediction of surface initiated cracks need to incorporate the non-
uniform nature of the load distribution [20]. Other than the loading, the
material behaviour in resisting crack initiation and propagation, and the
geometrical (boundary) effects, such as narrow pavements that cause
channelling of the traffic loads, determine the development of surface cracks in
the pavement.

1.2 Design Methods

1.2.1 Design Methods for Pavements

Classical pavement design procedures involve both empirical and mechanistic
methods. Methods used for mixture design are empirically based. For the
structural pavement design, mechanistic methods, such as multi layer linear
elastic programs, are widely used. Mixture design generally involves
determination of the optimum binder content for a specific aggregate gradation.
Depending on the mixture type, the mixture is then required to fulfil certain
requirements; void content, Marshall stability and flow criteria. Recently, as of
January 2008, the newly introduced CE marking rules as applied in the
Netherlands set a stricter criterion to be met for asphalt mixtures. In this
marking system the mixture properties such as fatigue performance, creep and
stiffness have to meet certain standard.

Multi layer programs are basically used to design the pavement thickness based
on structural responses, stresses and strains, which occur at the bottom of the
pavement structure. In this process, these stress and strain values are matched
with laboratory based performance criteria (such as fatigue and permanent
deformation characteristics). The differences between the laboratory and field
performances are adjusted with empirical correction factors that take into
account effects of healing and lateral wander. For a given set of materials, the
optimum design with respect to economy and performance is sought by
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continuously changing the thickness of the layers till the pavement structural
performance matches the specified performance criteria.

1.2.2 Approaches for Addressing Top-Layer Distresses

The approaches that need to be used for addressing top-layer distresses are
fundamentally different from other approaches that are used for addressing
structural problems. Structural design problems, like fatigue cracking, can be
addressed with the classical pavement design methods. However, distresses
observed at the top surface are not emanating from problems associated with
thickness design. Surface distresses are more of a material design problem than
a structural problem.

For example, at a meso scale, the ravelling performance of a PA layer is directly
related to the performance of the constituent materials, i.e. stones, bituminous
mortar and adhesive zones, to sustain the stresses and strains developed as a
result of external loading. Under the effect of mechanical and environmental
loading, failure in the constituent materials result in detachment of the
aggregates particles. Ravelling can therefore be viewed as a mixture design
problem. Similarly for rutting in AC layers, the rutting resistance of a mixture is
highly influenced by the load transfer mechanism, which in turn is a function of
the volumetric composition of the materials, i.e. aggregates and bituminous
mortar. In addition the deformation characteristic of the constituent materials is
also of prime importance.

The above discussion underlines the need for a mechanistic design approach
that allows evaluation of component material performance at a localized level
so as to predict localized distress at the pavement surface. With the three
important components in focus, i.e. loading, material behaviour and geometry,
the meso mechanics approach offers an ideal environment for addressing
mixture design problems. In this regard, early attempts on application of meso
mechanics models for evaluating the performance of road surfacing seals were
made in early 2003 and promising results were obtained (see Figure 1-4). In
recent developments, a meso mechanics based PA mixture performance design
tool developed at Delft University of Technology has also delivered
outstanding results in predicting mixture performance in terms of ravelling [6].

Figure 1-4 Prototype seal behaviour model, left: model overview, right: partial cross
section [8]
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1.2.2.1 Meso Mechanics for AC Mixture Design

Meso mechanics basically relies on the fundamental properties of the
component materials that make up the AC mixture composite to predict the
bulk behaviour of the mixture. This approach intrinsically allows a more
realistic examination of the meso structural material response behaviour, such
as stresses and strains in the component materials. It can therefore provide a
powerful tool for optimizing the mixture design on the basis of given
performance criteria. It has also the potential to eliminate costly tests to
characterize asphalt concrete mixtures for the design and control purposes. This
implies meso mechanics modelling has a tremendous potential benefits for AC
mixture design.

To exploit the full merits of meso mechanistic approach a reasonable and
accurate representation of the geometry, loading and material behaviour needs
to be used. Other possible factors influencing the different pavement distress
types, discussed qualitatively in the previous sections, can then be taken into
account implicitly through their effect on these three major factors. Figure 1-5
illustrates how the various factors can implicitly be taken into account under
the umbrella of a meso mechanics framework.

| Material Behaviour |
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Temperature Moisture
Moisture —\ Cohesive
Physiochemistry =™\ Physiochemistry
Adhesive Mechanical loads
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Mechanical loads

R Ravelling
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Figure 1-5 Cause and effect diagram for top-layer distresses (meso mechanics
framework)

1.2.2.2 Material Response

In meso mechanics applications, it has been shown that fairly accurate
representation of the meso structure can be obtained from the asphalt mixture
geometry. For this purpose, X-ray computed tomography (CT scans) can be
utilzed. Accurate representation of the contact stress distribution under a wheel
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is also available [3]. For material modelling, due to their simplicity, available
linear elastic and viscoelastic models are often used. However, from literature it
has, for example, been shown that linear viscoelastic assumption is not always
good enough to predict pavement distresses. In this regard, an extensive finite
element simulation that was made to investigate the rutting resistance of AC
mixtures has shown that linear viscoelastic approximation underestimates the
rutting development in AC mixtures [15]. For proper prediction, nonlinear
viscoelastic and elasto-visco-plastic models were suggested. Investigation on
bituminous binder’s response also showed the existence of nonlinear behaviour
[1, 2]. During development of the PA design tool, it has also been found that the
mortar bridge in the stone-stone contact area in a PA mixture is subjected to
complex states of stresses, which are varying both in time and space [10].
Relevant response models used for such computation need to be capable in
describing the material response for a wide range of loading conditions, i.e.
loading frequency and load levels.

The above discussion underlies the importance of appropriate material
response models for better prediction results. It emphasizes the material
modelling as the weakest link that hinder full utilization of the merits that meso
mechanics methods have to offer. The main goal of this research focuses on
bridging this gap. The primary goal is to provide a mortar response model that
can be adopted in the current PA design tool. However, it is anticipated that the
meso mechanical tools developed at the section of Road and Railway
Engineering of the Delft University of Technology will be broadened in the near
future. Focus will be on rutting, and fatigue cracking. This broadening demands
for a highly accurate mortar response model. The results from this research can
therefore be of equal importance for the meso mechanics tools that will be
developed in the near future.

1.3 Objectives and Scope of the Research

The main goal of this research is to provide an appropriate material response
model for use in the PA design tool [6]. This design tool is developed in the
commercially available finite element program environment, ABAQUS. The
tool is used to predict the life expectancy of PA. Basically, it translates the PA
surface load, the mixture geometry and the response behaviour of the mortar
into signals of stress and strain at various locations within the PA mixture. The
stress and strain signals obtained in the mortar and adhesive zones at various
locations within the mixture can then be translated into a lifetime expectancy
using relevant damage models [12]. A short description of the PA design tool is
attached in Appendix E.

At the current state the design tool utilizes a linear viscoelastic material model
with Prony series representation for modelling the mortar behaviour. However,
finite element simulations have shown that the stress signals resulting from
moving tyre loads create complex 3D stress and strain signals, which differ
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significantly from location to location, within the PA mixture. These results
have various implications with regard to the response model for the mortar. It
implies that the response model needs to incorporate the effects of the various
states of stress to which the material is subjected. In other words the response
model should reflect the material behaviour at various locations of the mixture
as a function of local loading conditions, which may in turn differ both in
magnitude and rate. The built-in material model in ABAQUS does not capture
these response phenomena.

The above discussions emphasize the need to incorporate a relevant response
model into the material library of ABAQUS. Hence this PhD research focuses
on modelling bituminous mortar response. The research has two main parts;
the first part involves a laboratory investigation of the response behaviour of
selected materials. The second part involves numerical modelling and
implementation work. For the laboratory work, test set-ups that were
developed for mortar response testing during the development of the PA
design tool project are used. A major part of the response investigation work is
conducted in a stress controlled environment. The mortar response behaviour
for various stress levels, frequencies and temperatures has been investigated.
For the numerical modelling work, a couple of candidate response models from
literature were selected. The selection was based on the models performance
against a list of prescribed demands. For nonlinear material behaviour
modelling, a suitable nonlinear theory has been selected. The selected response
models are numerically implemented into the Abaqus environment through
User Material Subroutines (UMAT). The material modelling work is integrated
in the framework of the PA design tool as shown in bold arrows in Figure 1-6.
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response - response volumetnc stress stress
tests models des1 gn pro gno ses research

Climate issues: Mlxture

-TempemMre, Test B anal ysis, i.e/|

-Aging .effects, |:> conditions response Modified

-Water ingress, calculatlon mi xture volumetry or
e app lication of different

component materials

Stress / Strain
in mixt ure
¢ omponents

Mortar Component
damage damage
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Adhesion Component Comp onent Final
damage damage =) |damage mixture
tests models calculation design

Figure 1-6 Research framework used for the PA design tool [6]

Once the material models were incorporated in the framework of the PA design
tool, simulations were made to evaluate the effects of the response models on
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the computed stresses and strains. Effects of the nonlinear material behaviour
on the results obtained from the PA design tool were also evaluated.

1.4 Organization of the Dissertation

This thesis consists of eight chapters. Chapter 1 gives the general introduction
on top-layer distresses in general and the ravelling problem in particular. It
outlines meso mechanics as a way forward to understand mixture related
problems and defines the specific objective and scope of this research within a
meso mechanics framework. It also states the importance of the geometry,
material behaviour and loading in a meso mechanics problem and outlines the
material modelling component as the main research topic.

Chapter 2, which is divided in two main parts, presents a literature review. The
first part of the chapter presents recent and past developments in meso
mechanics modelling approaches for asphalt concrete mixtures. The second part
presents a review on the linear and nonlinear modelling approaches for
material response with time dependent behaviour.

In Chapter 3, the research methodology is presented.

Details of the experimental work are presented in Chapter 4. Results of
laboratory tests and interpretation techniques are also discussed.

In Chapter 5 the one dimensional constitutive modelling of linear viscoelastic
materials is discussed. Methods of model parameter determination from
laboratory results are presented. Pros and cons of the selected response models
are discussed. Various numerical simulations that are performed to relate the
time and frequency domain response of the materials are presented.

In Chapter 6, modelling of nonlinear viscoelastic materials is covered.
Descriptions and numerical implementation techniques for the selected
nonlinear theory are presented. Determination of nonlinear model parameters
for binders is explained.

Chapter 7 presents the generalization of the one dimensional numerical
formulations for the various models into 3D form. This is performed both for
the linear and nonlinear viscoelastic models. The numerical formulations are
incorporated into ABAQUS through User Material Subroutines (UMAT).
Numerical outputs of the codes are thoroughly checked by performing various
routine calculations. Application of the response models to the meso
mechanistic PA design tool is presented. Using the 2D PA design tool, effects of
nonlinear behaviour on the computed stresses and strains are evaluated.

Chapter 8 presents conclusions and recommendations.

10



INTRODUCTION

References

[10].

Airey, G., Rahimzadeh, B., and Collop, A., Viscoelastic linearity limits for
bituminous materials. Materials and Structures, 2003. 36(10): p. 643-647.

Airey, G.D., Rahimzadeh, B., and Collop, A.C., Linear Rheological Behavior of
Bituminous Paving Materials. Journal of Materials in Civil Engineering, 2004.
16(3): p. 212-220.

De Beer, M., Fisher, C., and Jooste, F.J. Determination of Pneumatic/Pavement
Interface Contact Stresses Under Moving Loads and Some Effects on Pavement
with Think Asphalt Sufracing Layers. in Proceedings of the Eighth International
Conference Structural Design of Asphalt Pavements. 1997. USA.

Doorduyn, J. and Vos, L.A., ZOAB; hoe lang gaat het mee( in Dutch). 1997,
DWW: Delft.

Hagos, E.T., The Effect of Aging on Binder Properties of Porous Asphalt
Concrete. 2008, Delft.

Huurman, M., Lifetime Optimisation Tool, LOT, Main Report. 2008: Delft.
Huurman, M., Milne, T.I., and Van de Ven, M.F.C., Development of a structural
FEM for road surfacing seals, in ICCES. 2003: Curfu, Greece.

Huurman, M., Scarpas, T., Kasbergen, C., and T, M. Development of a structural
FEM for Road Surfaceing Seals. in International Conference on Computational &
Experimental Engineering & Sciences (ICCES' 03). 2003. Greece.

Huurman, M., Mo, L., Woldekidan, M.F., Khedoe, R.N., and Moraal, J., Overview
of the LOT meso mechanical research into porous asphalt raveling. Advanced
Testing and Characterisation of Bituminous Materials, Vols 1 and 2, 2009: p. 507-
518.

Huurman, M., Mo, L., Woldekidan, M.F., Khedoe, R.N., and Moraal, J. Overview
of the LOT meso mechanical research into porous asphalt raveling. in
Proceedings of the 7th Int. RILEM Symposium Advanced Testing and
Characterization of Bituminous Materials. 2009. Rhodes, Greece.

. Long, F.M., Permanent Deformation of Asphalt Concrete Pavements;

Development of nonlinear visco-elastic model for mix design and analysis, in
Ninth International Conference on Asphalt Pavements. 2002. p. 1:6-4.

. Mo, L., Damage Development In The Adhesive Zone and Mortar of Porous

Asphalt Concrete. 2010, Delft.

. Molenaar, A.A.A., Structural Pavement Design: Design of Flexible pavements.

2007, Delft.

. Molenaar, J.M.M., Performance related characterization of the mechanical

behavior of asphalt mixtures. 2004, Delft University of Technology: Delft.

. Muraya, P.M., Permanent Deformation of Asphalt Mixtures. 2007, Delft

Univeristy of Technology: Delft.

. Pavement-Interactive.org. Available from: http://pavementinteractive.org.
. Rijkswaterstaat. Available from: http://www.rijkswaterstaat.nl.
. van Lent, D., Molenaar, A., and van de Ven, M.F.C., The effect of specimen

preparation techniques on the surface characterstics of aggregate, in TRB 2009,
88th Annual Meeting. 2009: Washington DC, USA.

. Woldekidan, M.F., Performance study of C-Fix in PAC using a 2D finite element

model. 2006, Delft University of Technology.

11



CHAPTER 1

[20]. Wu, H., Mahoney, J.P., Turkiyyah, L.M., Pierce, J., Uhlmeyer, J., and Mulvaney,
R., Non-uniform tire pressure effects on surface initiated cracks with EverFlex: a

three dimensional FEA tool for flexible pavements, in 9th International
Conference on Asphalt Pavements. 2002. p. 1:8-2.

12



LITERATURE REVIEW

Literature Review

n this chapter the results of a literature survey on topics that are relevant to

the research project are presented. Since this project is one branch of a meso

mechanics project for PA design, the first half of the literature review
presents past and recent developments in meso mechanics studies. Special
attention is given to meso mechanics applications in the field of asphalt
concrete studies. The section that follows presents the fundamentals of time
dependent material modelling. This is particularly important for modelling the
bituminous mortar behaviour, which is the specific objective of this research.

2.1 Meso Mechanics Definition

Asphalt concrete is a composite material. For engineering analyses different
idealizations are used to model its response behaviour. For example, in
designing pavement layers using multilayer analysis programs the asphalt
concrete layer is assumed to be an infinite, isotropic and homogeneous layer.
This scale is referred as a macro scale.

For material characterization in the laboratory, asphalt concrete mixtures at
bulk scale are used. Similar to the assumptions at the macro scale, laboratory
performance of the asphalt concrete mixtures is approached based on a
homogeneous mixture behaviour assumption.

In a meso scale analysis, the heterogeneous nature of the asphalt mixture is
taken into account. At this scale, the constituent materials that make up the
asphalt mixture, i.e. the binders and stones, are assigned different material
properties. The interactions of these constituent materials dictate the bulk-scale
response behaviour.
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The micro scale goes one step further. It analyzes the heterogeneous nature of
the constituent materials. Pictorial illustrations of the various scales, as used in
this dissertation, are presented in Figure 2-1.

Figure 2-1 Asphalt concrete viewed at different scales (a) Macro scale, (b) Bulk scale, (c)
Meso scale and (d) Micro scale

The PA design tool which was developed by Huurman et al. [20, 23] acts at the
meso scale. It is, therefore, called a meso mechanics tool. This research also lies
under the same category. Therefore, Meso mechanics in this research refers to
the approach that is used to predict composite material properties based on the
characteristics of the component materials. In literature, the same approach is
sometimes referred as micromechanics. In this study, to avoid ambiguous use
of terminologies, the term meso mechanics has consistently been used for
studies that deal with the study of heterogeneous materials.

2.2 Meso Mechanics Approach

Meso mechanics is a mechanical analysis of composite or heterogeneous
materials based on the properties of the individual constituents that make up
the composite. One important goal of meso mechanics consists of predicting the
response of a composite material without testing it in the laboratory. This
contributes in reducing the number of expensive laboratory tests required to
characterize a given composite material. The second important use of meso

14
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mechanics is for analysis of localized effects. This includes evaluating local
stresses and strains in the different constituent materials for a given loading at a
macro scale. This is crucial to understand damage initiation and propagation in
the materials that ultimately determine the performance characteristics of the
materials.

Meso mechanics generally utilizes both Finite Element Methods (FEM) and
Discrete Element Methods (DEM). While FEM is a continuum approach which
is advantageous for describing quantitatively stress and strain distribution in
asphalt mixtures, DEM is discrete in nature and is suitable for analyzing
particulate systems by modelling the translational and rotational behaviour of
individual particles according to Newton’s second law. The latter has the ability
to model complex and continuously changing contact geometries, which makes
it very appropriate to model unbound granular materials [5, 46]. On the other
hand, FEM is better suited for applications in material performance models. In
such models, the ability of the materials to sustain repeated loads is predicted.
For example, for determining the fatigue performance characteristics of
bituminous mortar, the stresses and strains developed in the bituminous mortar
are required. FEM approaches directly provide these parameters, and DEM do
not.

2.2.1 Early Developments in AC Modelling

In the past two decades, the use of meso mechanics to predict the properties of
asphalt mixtures has become increasingly popular. In the early 1990s,
Rothenburg et al. [41] used a DEM approach to model the AC mixture response
and understand the effect of aggregate interaction on the mixture response
behaviour. In their model simple polygonal shapes were used to model the
aggregate particles (Figure 2-2). Contact laws were defined for the interaction
areas. Mechanical models comprising of springs and dashpots were utilized.
The results pointed out the effect of the granular-materials interaction on the
observed nonlinear trends in mechanical response of AC mixtures.

Figure 2-2 Forces Acting on Aggregate and Binder: (a) Forces Acting on Particles (b)
Aggregate-Aggregate Interaction (c) Aggregate-Binder Interaction [41]

In a similar approach a more advanced three dimensional simulation of AC
mixture response using DEM was made by Chang and Meegoda [8]. As shown
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in Figure 2-3, their model contains cylindrical particles of different size
connected by binder-aggregate and aggregate-aggregate contact points. To
simulate viscoelastic behaviour of the bituminous binder, the contact was
assigned viscoelastic behaviour. Kelvin-Voigt, Burgers” and Maxwell models
were employed. This work showed that the AC mixture response was better
captured when DEM is utilized.

Aggregates

Binder . ) .
Linear Viscoelastic Elements

Figure 2-3 Three-Dimensional Simulation of AC Mixture using DEM [34]

FE investigation on the influence of the meso structural properties on the macro
behaviour of pavement response was investigated by Sepehr et al. [44]. A multi
layer pavement structure with an elastic and homogeneous sub-grade, sub-base
and base layer properties was utilized. The top layer, AC, was modelled as a
composite. The meso scale geometry of the AC layer was modelled by assigning
different stiffness properties to the model elements. Air voids were simulated
by assigning some elements low stiffness values. Various simulations were
made, and the deflection of the pavement was studied. It was observed that
increasing the air voids from 1% to 5% resulted in 1.2% increase in pavement
surface deflection computed at the surface layer. It was also shown that
reducing the binder stiffness from 1000 MPa to 250 MPa resulted in 2.25%
increase in the deflection. Their analysis provided useful insights about the
influence of the meso structural properties on the macroscopic behaviour of the
pavement.

Bahia et al. [6, 29] used meso mechanics to analyze the behaviour of AC
mixtures. At meso scale, the aggregate particles were idealized with a round
geometry. Material properties were all assumed to be elastic. The study
evaluated the range of strain magnitudes that occur in the binder domain for
known strain levels applied at the mixture scale. From the simulation, a 1%
strain applied at the mixture level resulted in strain magnitudes of up to 46% in
the binder domain. This study highlighted the existence of high strain
magnitudes at a meso scale within the AC mixture.

16



LITERATURE REVIEW

Huurman et al. [21] used meso mechanics to get insight into the performance
characteristics of a surfacing seal (see Figure 2-4). Their model was used to
obtain the structural response of the surface seal as a function of the applied
load (mechanical and temperature), the structural geometry (grain size and
shape, binder film thickness, embedment to the base) and the applied materials
(properties of the binder and the base). The binder property was modelled with
a visco-elasto-plastic model. Stone particles and the base layer were modelled
linear elastically. Interface layers were introduced to model the adhesive
characteristics. The applied loads included lateral, vertical and transversal
loads. The results showed some interesting damage initiation phenomena in the
materials. The study underlined the importance of meso mechanics for
analyzing the performance of the seal layer in relation to stripping, permanent
deformation and fatigue.

.// J..J o

Figure 2-4 Surface seal models, Left: model overview, Right: partial cross section [21]

2.2.2 Recent Developments in AC Modelling

With the advancement in computational capacity of computers, meso
mechanics application for asphalt concrete has seen a significant development
in the last decade. Because of this reason a large amount of literature is
available in this field. In this section a brief review of selected literature relevant
to AC modelling is presented

Unlike the early stage developments in meso mechanics where meso scale
geometry of the component materials were idealized, imaging technology now
allows researchers to capture the meso scale geometry more accurately. Kose et
al. [29] utilized this technology to capture the meso scale structure of AC
mixtures. The study investigated the strain distribution within AC mixtures.
With good representation of the meso scale geometry, they utilized finite
element analysis to analyze the strain distribution within AC mixtures. Their
work showed that the binder strain in the asphalt mixture could reach up to 250
times more than that suggested by the macroscopic strain of the mixture
composite. Their study highlighted the importance of micro-mechanics and FE
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analysis in providing information on the stress and strain distribution within
the mixture structure.

In a similar category, Papagiannakis et al. [37, 49] studied the effect of meso
scale image processing on predicted mixture behaviour. Their FE model used to
simulate the dynamic response of AC mixtures showed promising results.
Abbas et al. [1, 2] have also demonstrated application of imaging technologies
to capture AC concrete mixture geometry. Based on uni-axial dynamic test
results, their model predictions resulted in over prediction of dynamic modulus
for mixtures with pen grade binder, and under prediction for mixtures made
with modified binders.

Buttlar and You [7] simulated the behaviour of AC mixture in the indirect
tension test using a Micro-fabric Discrete Element Modelling (MDEM). In this
approach the various material phases, aggregates and mastics, were modelled
as clusters of very small, discrete elements. Aggregates and mastics were
modelled as being elastic. The results emphasized the importance of aggregate
interaction in accurately simulating the stiffness of AC mixtures.

Wang et al. [47] utilized meso mechanics models to investigate top-down
cracking in AC wearing courses. Their model prediction showed the possibility
of top-down cracking to initiate at some distance down from the top surface.
Similarly Sadd et al. [42] used meso mechanical model to investigate crack
evolution under monotonic loading in the indirect tension test. In their FE
model the asphalt meso structure was incorporated by replacing the aggregate—
binder system with an equivalent finite element network that represents the
load-carrying behaviour between aggregates in the material. Their results
compared reasonably well with experimental data. Kim and Buttlar [28] also
simulated crack initiation and propagation in AC using a disk-shaped compact
tension test. The results demonstrated that fracture tests can be accurately
modelled using DEM (see Figure 2-5).

e i
o o »n

Force (kN)
&

O =
o O

0 0.2 0.4 0.6 0.8 1.0

Displacement [mm|]

Figure 2-5 Cracking: comparison between numerical and experimental results [28]
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Collop et al. [11] investigated the use of DEM to simulate the behaviour of a
highly idealized bituminous mixture in a uni-axial compressive creep test. The
mixture comprises 6,000 ideal single-sized spherical particles packed randomly.
Normal and shear contact stiffness between the particles were defined. For this
purpose a simple visco-elasto-plastic model was used. For the analysis, a DEM
package called PFC3D was utilized. The simulation results revealed that with
DEM it is possible to predict initial elastic, visco-elastic and visco-plastic
behaviour of the bulk bituminous mixture.

Dai et al. [12-14] used meso mechanics to predict uni-axial creep test data. In the
model, aggregates were modelled as rigid bodies. The binder was modelled as a
linear viscoelastic material. In the image processing, each irregular shaped
aggregate in the mixture is represented by an equivalent ellipse using a
computer algorithm (Figure 2-6). Comparison of the simulated creep stiffness of
the mixture with measured data revealed that the relative error between the
model prediction and test data were about 11.7%. They concluded that the
proposed micro-mechanical finite element model is applicable to predict the
global viscoelastic behaviour of asphalt mixtures. In their latest works, Dai and
You [13] improved the aggregate geometry which resulted in an improved
prediction. Comparison of DEM and FEM simulation results were comparable.
Similar works using DEM were also reported by Buttlar and You [12].

(©)

Figure 2-6 Uni-axial compression model [13]; (a) smooth surface of asphalt specimen,
(b) elliptical fitted aggregates, (c) image model with aggregate and mastic

Kringos et al. [30] developed a micro-mechanical finite element model to
simulate combined mechanical and moisture induced damage in asphalt
concrete mixtures. The model assigns a hyper elastic material property to the
stones and an elasto-visco-plastic material behaviour for the mastic that couples
moisture and mechanical effects together. The model requires the absorption
characteristics as well as the diffusion and the dispersion coefficients of the
materials. It comprises an interface layer representing the stone-mastic adhesive
zone. The model results have shown important mechanisms of moisture
infiltration to asphalt concrete mixtures.
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Huurman et al. [20, 22, 26, 35] used meso mechanics approach for evaluating
the ravelling performance of PA layers. The work is an extension of the
performance model developed earlier for surface seal layers [24]. The model
translates a moving wheel load into stress and strain signals in the bituminous
mortar and interface zones. In the development of the idealized 2D and 3D
models, the aggregate geometry was simplified with a uniform grain size
diameter (Figure 2-7). Equivalent aggregate sizes were determined based on the
volumetric proportion of the asphalt mixture. In addition to the idealized
models, the real shape of the aggregates was also modelled by using scan-
images of PA mixtures. The model takes into account the clear distinction
between the different phases, i.e. mortar, aggregate, interfacial zone and air
voids. The wheel loading used in the simulation were rigorously derived from
3D contact stress distributions under a wheel. Illustration on the contact stress
distribution under a wheel was shown in Chapter 1 (see Figure 1-3).

The models considered the aggregates as rigid bodies. The bituminous mortar
was considered as viscoelastic material. Elastic normal and shear stiffness
parameters were defined for the interface layer. By simulating a moving truck
load, stresses and strains obtained in the cohesive and adhesive zone were
translated into life time predictions. For this purpose, relevant damage models
developed specifically for the cohesive and adhesive zone in the PA mixture
were used. The results obtained from the simulation for various kinds of PA
mixtures were validated with full scale tests. The performance ranking of the
PA mixtures were consistent with the results obtained from the tests. The model
application to a case study, where causes of a severe winter damage to a stretch
of Dutch motorway with a PA surface layer was investigated, was also found to
be in good agreement with actual observations.

Figure 2-7 PA models: (a) idealised 2D (b) idealised 3D (c) 2D real [20, 25]
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2.2.3 Summary on Meso Mechanical Models

Meso mechanical models directly consider the characteristics of the meso
structure geometry, such as aggregate size, and nature, such as contact
evolution, interlocking, and localization in modelling AC mixtures. They also
explicitly provide information on the influence of changes in the meso structure
on material response when the material undergoes deformation. This approach
is valuable in relating meso structure properties to macroscopic response and
thus is very powerful to understand constituent material contribution to a
phenomenon observed at macro scale. The method consumes tremendous
computing time; however, with the increasing computation power of
computers the method is becoming more widely used.

2.2.3.1 FEM and DEM Approaches for AC Mixtures

Literature has shown that both FEM and DEM are used for modelling AC
mixtures. For selected cases researchers have reported results obtained using
both approaches are comparable [13]. In general, FEM, being a continuum
approach, has a better ability to quantitatively describe the stress and strain
distribution within an asphalt mixture than DEM. On the other hand, DEM has
a great advantage to model large displacements, where existing contacts are lost
and new ones are created during the deformation process. This phenomenon is
quite common in granular materials. Because of this reason DEM is a preferred
choice over FEM when modelling granular materials [5, 46].

2.2.3.2 Application to PA Mixture Design

The power of meso mechanics to provide insight on localized effects in different
phases of composite materials makes the approach best suited to understand
the ravelling failure phenomenon in PA. From the works of Huurman et al. [20,
22, 26, 35], very promising results were obtained using meso mechanics for PA
performance modelling. To utilize the merits of this approach to the fullest, it is
essential that correct material models for the constituents are used. Based on the
first findings, it is likely that the binder in a PA mixture exhibits nonlinear
properties due to the high stress and strain values. The different stress and
strain signals obtained in the binder also indicated the presence of various
loading rates in the material. These findings underlined the need to utilize
appropriate response models that can describe the response of the binder for a
wide range of loading magnitudes and rates in the meso mechanistic PA design
tool.

2.3 Modelling Time Dependent Material Behaviour

2.3.1 Introduction

Analysis of mechanical problems using continuum mechanics follows certain
physical laws. Mathematical expressions of the laws are required to analyze the
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stresses and strains within a physical object having prescribed boundary
conditions. The three most important formulas in continuum mechanics theory
include the kinematic equation, equilibrium equation and constitutive equation.
The kinematic equation relates displacements and deformations to strain within
the body. The equilibrium equation deals with the force balance within the
body. The constitutive relation defines the stress-strain relationship within the
body. Irrespective of the material type, linear or nonlinear viscoelastic, the
kinematic and equilibrium laws are common for all materials. The intrinsic
mechanical response behaviour of a material is only reflected in the constitutive
relation. As a result, theories in modelling the response of materials often refer
to the stress-strain constitutive relation.

Bituminous materials exhibit a time dependent mechanical behaviour. In other
words, they exhibit both viscous and elastic characteristics when undergoing
deformation. The time dependent behaviour of bituminous materials is
manifested through creep and relaxation. These phenomena are common to all
time dependent materials. While the term creep represents an increasing
deformation with time under a constant load, relaxation is the decrease in stress
with time under a constant deformation. The time dependent behaviour implies
the current stress within a material is influenced not only by the current strain
but the complete strain history. Likewise the current strain is also influenced by
the complete stress history. Because of this property, such materials in general
are said to have a memory. Constitutive modelling of time dependent materials
thus incorporates the time history effect in the stress-strain relationship.

Much work has been done on characterizing and modelling of time dependent
materials in general. This section covers a literature survey on testing and
modelling techniques applicable for time dependent materials in general and
bituminous materials in particular. The first part begins with linear
viscoelasticity and covers the fundamental approaches in modelling and
laboratory testing methods. The most common rheological models used in
modelling are also covered. Then reviews of the most widely used nonlinear
theories are given. Suitability of the available viscoelastic models for the PA
design tool is evaluated.

2.3.2 Modelling Linear Viscoelastic Materials

2.3.2.1 Linear Viscoelasticity

When a linear elastic material is loaded it results in an instantaneous
deformation which increases linearly with a linear increasing load. The
deformation remains as long as the load is maintained, and it recovers back to
its original position once the load is removed. Since the applied stress for an
elastic material is directly proportional to the resulting strain, obeying Hooke’s
law, the material is said to be linear elastic; otherwise it is called nonlinear.
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On the other hand, when a constant applied stress to a material results in a
continuous and constant rate of strain the material is referred as viscous. When
the load is removed the deformation remains permanent. Thus if the applied
stress and the resulting strain rate obeys Newton's viscosity law,c=7¢, the
viscous material is called linear; otherwise it is called nonlinear.

A viscoelastic material possesses characteristics of both elastic and viscous
materials and, as such, exhibits time dependent strain behaviour, which is
commonly referred to as creep. When a constant stress,o,, is applied on a
viscoelastic material, an instantaneous strain response, g,, is observed. It is then
followed by a continuously increasing strain. At the beginning, the strain rate
follows a decreasing trend. If the load is kept constant for a longer duration, a
linearly increasing strain with time is observed. When the load is removed, a
delayed recovery follows an instant elastic recovery (see Figure 2-8). The
unrecoverable deformation is called viscous deformation.

o(t) (a) &(?) )

& i Elastic def.
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Figure 2-8 Material response to a step load: (b) Elastic, (c) Viscous, (d) Viscoelastic

When the applied loads are very small, bituminous materials are usually
assumed to behave linear viscoelastic. If the time effects are taken out, the
stress-strain relation of the materials is therefore linear. If the material is linear
viscoelastic, doubling the applied load will result in doubling the response of
the material. The response of the material for various loadings has also an
additive effect. This implies that the overall response of the material is a result
of the various loads acting together, and equals the summation of the response
of the various loads acting independently on the material. This property follows
from the well known superposition principle, which is assumed to be valid for
most linear elastic and linear viscoelastic materials. However, if the applied
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loads are large, as in the case within the binder domain of an asphalt mixture
[6], bituminous materials exhibit a nonlinear behaviour. The approach for
modelling nonlinear viscoelastic materials is therefore different. Fundamental
approaches for modelling non linear viscoelastic behaviour are treated
separately at the end of this chapter.

2.3.2.2 Constitutive Relations for Viscoelastic Materials

Constitutive relations define the stress-strain relationship of the material. Due
to the time dependent nature of the relaxation modulus and creep compliance,
the stress-strain relationship of a viscoelastic materials is also time dependent.
Two forms of constitutive modelling are common for viscoelastic materials. The
first is called hereditary form, where the stress-strain relationship is expressed
in the form of hereditary integrals. The second form, known as differential
form, expresses the stress-strain relationship with differential operators of
polynomial orders.

a) Hereditary Integral Form

The basic approach used for modelling viscoelastic materials is similar with that
of elastic materials. In analogy with constitutive relations for elastic materials,
the stress in a viscoelastic material for a constant strain Ae, applied at time ¢,
can be given as:

o(t)=E(t-t,)Ae, 2-1

where
o(t) =time dependent stress
E(t-t,) =relaxation modulus

Ae, = strain step applied at time ¢,

0

If various strain steps are applied at various times, load application time ti
corresponding to strain step Ag,,then the stress response at any time t can be
obtained as the sum of the individual responses.

o(t) = ZH:E(t -t,)Ae, 2-2

Since any arbitrary stress-time curve can be approximated by the sum of a
series of step functions which correspond to a series of step-like increments in
load, Equation 2-2 can be generalized to a stress-strain relation in the form of
hereditary integral as:

o(t)= j.E(t -7)édt 2-3
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where:
o(t) = stress as a function of time
E(t-7) =relaxation modulus
& =strain rate at time 7

r = time integration (hereditary) variable

Equation 2-3 is the fundamental constitutive relation for linear viscoelastic
theory. It is referred as the hereditary integral or the memory function. The time
integration variable, 7, in the hereditary integral represents the importance of
the strain history for the stress at the current value. Following the same
approach, an equivalent relationship for obtaining the strain, given an arbitrary
stress signal, exists. Representing the deformation per unit stress, called creep
compliance of the material as D (t-7 ), where 7 denotes time history variable,
the corresponding relationship is given as:

et = j-D(t -T)odrt 2-4

The two hereditary integrals given in Equation 2-3 and Equation 2-4 are
defining the stress-strain relationship for a viscoelastic material, and are
fundamentals for linear viscoelastic theory. For numerical applications, the
creep and relaxation functions in the hereditary integrals are commonly
represented with various mechanical models. In ABAQUS the Prony
representation, discussed in Section 2.3.2.6, is used.

b) Differential Form

The other alternative for describing linear viscoelasticity is the use of
differential form for the constitutive relation. This form is widely used by
researchers in the past mainly because of its connection with the common
rheological models, which comprise spring-dashpot elements of various order
[45]. The general form for the differential constitutive relation is given as:

2 n 2

0 0 0 0 0"
+p—+p,—+.. HN=(q,+q—+q,—+.. t
(P, P TP pnat,,)d() (g, vl qnétn)«s()

2-5
P(D)o(t) = Q(D)e(?)

where:
o(t) = the stress as a function of time
g(t) = the strain as a function of time
al’l

P(D) =polynomials in D such that D=p, o
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n

Q(D) =polynomials in D such that D" =g, %

p,.q, =material constants

Constitutive relationships obtained using any combination of linear spring-
dashpot elements can be expressed by the general differential formulation
shown in Equation 2-5. Unlike the hereditary integrals, which involve time
history variabler, the differential form involves only the current values of
stress and strain plus their time derivatives. This form is suitable for numerical
applications and, therefore, widely used for solving engineering problems
involving viscoelastic materials. By properly choosing the number of terms
required in the differential series, the viscoelastic behaviour of a specific
material can be well represented [15-17].

In these constitutive relations, the material behaviour parameters need to be
determined before performing numerical calculations. The material behaviour,
expressed as creep and relaxation functions, is usually determined from
laboratory experiments. These functions are the fingerprints of the material. The
experimental methods used to obtain these viscoelastic material functions are
discussed in the following section.

2.3.2.3 Experimental Methods

a) Time Domain Tests

Relaxation and creep tests are the two most commonly used experimental
methods to investigate the time dependent behaviour of viscoelastic materials.
A creep test is characterized by an increasing deformation with time under a
constant stress. In a relaxation test, a constant strain is applied resulting in a
decreasing stress with time. Figure 2-9 gives an illustration of creep and
relaxation test results for viscoelastic materials.
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o, () = D(t—to).ao\

o(t)y=E(t-1t,).&,

Figure 2-9 Creep phenomenon (top), Relaxation phenomenon (bottom)

These tests are suitable particularly for investigating the viscoelastic properties
of materials for loading times larger than 1 second. For short loading times,
which correspond to high frequency loadings, these tests cannot provide
complete material information. This is mainly because it takes a finite time in
practice, typically in the order of 0.1 to 1 second, to apply a constant stress or
constant strain to the material [27]. Accurate material information for short time
scales, in the order of a fraction of seconds can, therefore, not be obtained from
time domain tests. Because of this reason, material information for short
loading times is indirectly obtained from dynamic tests. In a dynamic test,
material information is obtained as a function of loading frequency. This
information can then be converted into time domain data using Laplace or
Fourier transformations [15-17]. For conducting dynamic tests on bituminous
binders, a Dynamic Shear Rheometer (DSR) is commonly used. The test
principles, the frequency-time domain conversion methods are discussed in the
following sections.

b) Frequency Domain Tests

As discussed in the previous section, dynamic tests are required to obtain the
material response at very short loading times. The common approach is to
apply a periodically varying strain or stress signal with a fixed frequency. By
analysing the applied and the resulting periodic signals, intrinsic material
information can be extracted.
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8(0 o (1)

Figure 2-10 Input and output signal for dynamic test: strain control (left) and stress
control (right)

Since bituminous materials are viscoelastic, there is a phase lag between the
applied and the response signal in a dynamic test. In Figure 2-10 this phase lag
is denoted by Az . For a sinusoidal varying strain input with an amplitude ¢,and
frequency @, the resulting response signal is also sinusoidal in shape with a
phase lag, ¢ . In mathematical form it is expressed as:

e(t)=¢,sin(ot) and o(t) = o, sin(wt + J) 2-6

Using the basic theory of viscoelasticity (hereditary integral formulation) the
stress in a viscoelastic material for a sinusoidal strain signal can be obtained.
For a sinusoidal strain input the resulting formulation for the stress is

o(t)=¢, [w]g E(s) sin(a)s)ds} sin(wt) + &, {a)o‘f E(s) cos(a)s)ds} cos(art) 2-7

where:
s =t—7 where 7 is history variable

E(s) =relaxation function

In Equation 2-7 the expressions placed in bracket are functions of frequency
only. The first term is in phase with the applied sinusoidal strain while the
second term with the cosine expression is 90 degree out of phase. The
expressions in the two brackets are the components of the dynamic modulus of
the material. Equation 2-7 is expressed in terms of loss and storage modulus
components as [16, 17, 27]

o(t) = &, [ E'|sin(wr) + &, [ E "] cos(wr) 7.8

where:
E’ =storage modulus

E” =loss modulus
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By comparing Equation 2-6 and Equation 2-8, the fundamental relations for
analyzing dynamic analysis data that relate available experimental data, o, ¢,
andd, to the material property, E' and E” are obtained. After some
mathematical manipulations, the relations given in Equation 2-9 summarize
these fundamental relations for analyzing dynamic test data [27].

E'(w) = ﬁcos o0, and, E"(w)= ﬁsin5
&y &

E"(w) 2-9
(@)

tan o =

|E*(@)] = J(E"(@)) +(E ()’

where:
E’ =storage modulus
E” =loss modulus
0 =phase angle

|E*| =magnitude of the complex modulus

2.3.2.4 Interrelation between Viscoelastic Functions

With a steady state periodic excitation, the response of a material for short
loading times (high frequency) can be obtained from frequency domain tests.
To obtain the corresponding time domain material function, the frequency
domain material function needs to be converted.

a) Time and Frequency Domain Relationships

The method used to convert the frequency domain material functions to time
domain material functions involves Fourier or Laplace transformation. The
principle is valid for the material functions in different modes being shear,
extension and bulk modulus functions of a material. An illustration is given
below for interrelation between the time and frequency domain material
functions of the extension modulus [16, 17, 27]. The same principle can also be
used for material functions describing the shear and volumetric deformation
characteristics of the material.

E'(w)= a)T E(t)sin(et)dt = oF, [ E(1)]

2-10
E"(®)=o j E(t)cos(at)dt = oF, [E(1)]
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E*(w) =io.L[E(?)]

S=iw

where:
E(t) =extension modulus( relaxation modulus)
E'(@w) =loss modulus
E"(w) = storage modulus
Fs = one sided sine Fourier transform
Fc =one sided cosine Fourier transform
L[E(t)] =Laplace transform of the relaxation function

i =the complex notation

b) Interrelation between Creep and Relaxation Functions

In addition to the time and frequency domain relationship of a given material
function, there also exist relationships between the different material functions.
Since material properties are intrinsic, different material functions obtained
under different test conditions are interrelated to each other. This relation is
particularly useful in cases where the response of a material under a certain
excitation condition can be inaccessible to direct experimentation but may be
obtained from measurements under other realizable conditions. Such relations
are of importance in modelling because if the relaxation function, E(t), of a
material is known then the creep modulus, D(t), can be calculated and vice
versa. These relations are widely used in viscoelastic material modelling.
Equation 2-11 presents a relationship between the relaxation modulus and
creep compliance of a material [16, 17].

f f 1

[E(¢-)D(@)z = [ E(@)D(t—7)dr =t ¥ E(s)D(s)=— 2-11

0 0

S2

where:

E(s) =Laplace transform of the relaxation function

D(s) =Laplace transform of the creep function

s =Laplace transform variable

The form shown in Equation 2-11 is also valid for material functions obtained
from volumetric and shear loading conditions.
2.3.2.5 Thermo Viscoelasticity

In addition to the loading time, there are other effects which affect the
behaviour of viscoelastic materials such as temperature and load levels. In
relation to the load level, most engineering materials are assumed to behave
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linear for small loads. If the loads become higher, the material may exhibit
nonlinear behaviour. The nonlinear behaviour of materials is treated separately
at the end of this chapter.

For viscoelastic materials, the effect of temperature on the material property is
also significant. In the following section the modelling approach that is
commonly used to incorporate the temperature effect on the material response
is presented.

The Memory Function Approach

The memory function approach is based on Boltzmann superposition principle
and is the most widely used formulation in viscoelastic material modelling. In
this approach, the material remembers its past explicitly; its current response is
affected by events which happened in the past [27]. In essence this approach is
similar to the fundamental viscoelastic theory discussed in the previous

sections.
t
o6, T,&%) = [ K- r,T)d‘;—(T)dr 2-12
T
0

In this approach the effect of temperature is incorporated in the material
function and the hereditary integral formulation is used to obtain the stress in
the material. The past strain history is taken care of using the hereditary
integral.

Modelling Temperature Effects

In the memory function approach, the modulus function is dependent on
temperature and time. Researchers have investigated the effect of temperature
on the modulus and creep function. Their observation revealed that the material
function plots at various temperatures showed a similar shape. A shift of the
plots along the time axis results in one master curve. This principle is called
time-temperature superposition principle and is widely used to model
temperature effects on viscoelastic material properties [10, 16].
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Figure 2-11 Example of dynamic shear modulus data shifted along the frequency axis
for 40-60 pen grade bitumen

Figure 2-11 illustrates graphically the principle of time-temperature
superposition applied in frequency domain. The principle states that the
material function at temperature T and time t can be obtained from the material
function plot at reference temperature Tref evaluated at a reduced time tred.
Mathematically this principle can be written as:

E(,T) = E(tyeq =Tref ) tred =lar 2-13

where:
teeq = thereduced time
a, =the horizontal shift factor for a given temperature T
T =temperature

T = reference temperature

Materials that form a master curve following the time-temperature
superposition are called thermorheological simple materials. In addition to a
horizontal shifting, some materials require a vertical shifting. Such materials are
referred as thermorheological complex. At low load levels, bituminous
materials are usually considered as thermorheological simple. Higher load
levels in bituminous materials can result in thermorheological complex
behaviour [34].

a) Time-Temperature Shift Factor

The shift factor that is used in the time-temperature superposition principle is a
basic material property. This implies that the same factor remains applicable for
all other viscoelastic functions of the material, such as shear and bulk modulus.
In literature, several models are proposed for obtaining shift factors. Some of
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the commonly used models include the Log-polynomial, the Arrhenius and the
Williams-Landel-Ferry models. The shift factor in the Log-polynomial model is
given as:

Log a,[T]=b, +bT +b,T* +... 2-14

The terms bo ,b1 and b2 are model parameters for the polynomial function in
temperature. For the Arrhenius model, the following relation is used.

Log ar[T] = L, |11 2-15
O = _—— -
ST 50R| T Ty

a,[T] = shift factor for a given temperature T
= activation energy [J/mol ]
R = gas constant [J/mol/K]

Tr =reference temperature in K

Literature suggests that for temperatures below the glass transition
temperature, which is the temperature below which the material behaves
brittle, the Arrhenius model delivers good results [27].

The Williams-Landel-Ferry (WLF) model is given as:

C, (T-Ty)

Log a;[T]= C,+T-T
2 R

2-16

where:
Ci, C2 =model parameters

Tr = reference temperature in K

This model is applicable for ranges from just below glass transition to far above
glass transition temperatures [10, 27].

b) Vertical Shift Factor

For thermorheological complex materials, the change in temperature can no
longer be modelled only with a horizontal shift factor. For this, Ferry [15]
introduced a vertical shift factor, br, applied to a corrected or reduced modulus
Ep. The general formulation of this principle is given as:

E(t,T)=b,E, (ta,[T1,T,) 2-17

where:
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br = vertical shift factor for a given temperature T
Tr =reference temperature in K
a,;[T] =horizontal shift factor for a given temperature T

E, =reduced modulus(obtained after horizontal shifting)
2.3.2.6 Mechanical Models

a) General

From the previous sections, it is shown that information concerning the time
dependent nature of the materials is contained in the viscoelastic material
functions, such as relaxation and creep functions. To make use of these material
properties in pavement performance prediction models, most of which are
developed in numerical platforms, a relevant mechanical model needs to be
utilized. Physical models, comprising of springs and dashpots, are commonly
used to represent these material functions. There also exist analytic models that
are used for describing the material functions. Such models, apart from their
use in test result description, have limited applicability in a numerical
environment [9, 40]. The applicability of any of the mechanical or analytical
models to a particular problem in a numerical environment depends on the
ability of the chosen model to accurately characterize the experimentally
measured data, and also the model suitability for application in the chosen
numerical platform.

Following the constitutive relation for pure elastic materials, the linear
relationship between the applied stresses and the resulting strain in a material
is modelled using a linear spring. Similarly for Newtonian fluids, where there
exist a linear relationship between the applied stress and resulting strain rate, a
linear dashpot is used. Since viscoelastic materials show a combination of
viscous and elastic behaviour, a combination of linear springs and linear
dashpots is usually used to model their response behaviour. Constitutive
relations for such models are usually described by differential equations of an
integer order.

Mechanical analogies for viscoelastic materials can also be obtained with a
combination of springs and variable dashpots. The constitutive relation
defining the variable dashpot differs from the linear dashpot in that the
differential operators for the variable dashpots involve fractional (non integer)
orders [39]. In the following sections a selective overview of the representative
mechanical models in each category is presented.
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b) Models with Linear Spring and Linear Dashpot Elements

Maxwell Model

The Maxwell model is the simplest model that can be obtained using a spring-
dashpot combination (Figure 2-12). It is obtained by putting a linear spring in
parallel with a linear dashpot. During loading, the stress in the spring and the
dashpot remains always the same. However, the total deformation is obtained
by summing the individual element contributions.

E, n,

A=

Figure 2-12 Maxwell model

Denoting the total strain and stress in the system ase&(f)and o(¢) respectively,
the constitutive relation defining the Maxwell model, shown in Figure 2-12,
becomes:

et)=¢()+¢,() and o(t)=0.(t)=0,(t) 2-18

where the subscript s and d in the stress and strain terms refer to the spring and
dashpot element respectively. For a linear spring with spring constant, E,, and
a dashpot with viscosity, 7,, the stress and strain expressions given in Equation
2-18 can be merged together resulting in the following differential equation.

a(z)+%d(t) = 7,6 (0) 219

1

In Equation 2-19, the ratio E,/7;, is known as the relaxation time constant
usually denoted as 7. Comparing this constitutive relation with the general
form of the differential constitutive relation discussed in Section 2.3.2.2, it can
be seen that for the Maxwell model only the first two terms in the polynomial
series are required.

Solving the differential equation for a unit strain step and a unit stress step
separately results in the relaxation and creep compliance functions of the
Maxwell model.

E(l‘)=&=EleXp(—t/r) and D(t):@=i+i 920
& o, 1n E
where:
g, = constant strain

0, =constant stress

E(t) =relaxation function
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D(t) = creep compliance function

Figure 2-13 illustrates the response behaviour of a Maxwell material when
subjected to a constant stress and constant strain. In the illustration a constant
stress step of magnitude o, is applied for a time duration 0 < ¢ < ¢ which
results in a linear strain response. When the strain ¢ obtained at time t = ¢, is
kept constant for time t >¢,, an exponential decay of the stress is observed.

o(t)
o(t)=o,
%o o(t) = &,.E, exp(—(t/ 7))
t
0 t
‘O @i +11E) -7
_” - e(t)=¢

&
&, =0,/ E,
0 4

Figure 2-13 Maxwell model response

For frequency domain measurements, the time-frequency domain inter-

conversion methods discussed in the previous section can be employed to

obtain the material functions. The storage and loss modulus of a Maxwell

model subjected to a dynamic strain with radial frequency, @, are given as:
Ew®’t’ E

EV(a)) — 160 v ; E"(a)): 160 2

1+ @’7? 1+ @’r?

2-21

tan@d = —
EV

where:
E'(w) =storage modulus of the material
E"(w) =loss modulus of the material
@ =phase angle

E,,r =material parameters
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Important features of the Maxwell model are the linear viscous flow for a
constant stress and the exponential decay in stress for a constant strain. The
decay in stress follows a simple exponential function with a single relaxation
time. However, most real materials have different molecular constituents. The
different molecules respond to deformation in a different manner which results
in the material having a spectrum of various relaxation and creep/retardation
times. Such a material behaviour cannot be modelled with a single Maxwell
model and requires a combination of more response elements.

Voigt-Kelvin Model

Another model commonly obtained using a simple spring-dashpot combination
is the Voigt-Kelvin Element. This model is obtained by placing a linear spring in
parallel with a linear dashpot as shown in Figure 2-14. In this model, the total
stress in the system is the sum of the stresses in the spring and dashpot element.
The deformation in the spring and dashpot element remains equal.

s

o(l) G —J\/\/_—|~ = (1)
E

1

Figure 2-14 Voigt-Kelvin model

The governing constitutive equation for the Voigt-Kelvin model is given as

o(t)=Ee(®)+né@) 2-22

The response of the model for a strain step, ¢=g,H(t) whereé =¢g,0(t), or a
stress step, o =0,H(t), can be analyzed to obtain the relaxation modulus and
the creep compliance functions of the following form.

o =0
E(O)=HOE, +5(ty, - { R

2-23

p(ry=29 _ Ei (1—exp(—t /7))

Oy 1

where:
H(t) = unit step function

o(t) = Dirac delta function
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o, =constant applied stress

E,,n, =material parameters

E(t),D(t) =relaxation and creep functions

Figure 2-15 illustrates the response behaviour of the Voigt-Kelvin material

when subjected to a constant stress and constant strain. In the illustration a
constant step stress of magnitude o, is applied for time duration 0 < # < ¢, while
the strain g, obtained at time t = ¢,, is kept constant for time t > ¢, resulting in a
constant stress. Unlike the Maxwell model where the stress decays with time,
the single element Voigt-Kelvin model does not simulate a decaying stress, and
hence is not suitable for modelling materials showing relaxation behaviour.

o(t)

o(t)=o,

Oy

L o(t)=¢.E,

e(t)

1

g,
—(1—exp(—t/
E( p( !

€

0 L

Figure 2-15 Voigt-Kelvin model response

Similar to the Maxwell model, the frequency domain expression for the storage
and loss creep compliance for the Voigt-Kelvin model can be obtained as:

D, Dot
D'(w)=——-— and D"(w)=———
(@) 1+ w*t? (@) 1+ w*t?
D'(w)
where:

D'(w) = storage creep compliance
D"(w) =loss creep compliance

@ =rphase angle
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D,,r =material parameters

Unlike the Maxwell model, the Kelvin-Voigt model simulates the evolution of
creep with a decreasing slope as is observed in most viscoelastic materials.
However, as is the case for Maxwell model, a single retardation constant does
not describe the behaviour of real viscoelastic materials. As a result most
viscoelastic materials are modelled with a combination of Maxwell and Kelvin-
Voigt models.

Generalized Maxwell and Voigt-Kelvin Models

Because the basic Maxwell and Voigt-Kelvin models have simple expressions
for the relaxation and creep functions, they are not capable in characterizing
most material behaviours. The material functions of these basic models are
expressed by a single relaxation/retardation time. Real materials, however, have
a much broader relaxation/retardation spectrum. To describe the response
behaviour of such materials, a series of spring-dashpot combinations needs to
be used.

One of the common rheological models obtained by placing a series of Maxwell
elements in parallel is the Generalized Maxwell model, also known as Prony
series. Since the deformations in the parallel elements are equal, the relaxation
material function of this model can easily be obtained as a summation of the
relaxation function of each of the individual Maxwell elements. The number of
terms required for accurately modelling a given material response is
determined based on the quality of fitting on the measured response data.

E, n, E, n,

Figure 2-16 Generalized Maxwell model (left), and the form used in Abaqus (right)

Figure 2-16 illustrates the generalised Maxwell model. The built-in material
model in the commercially available FE software Abaqus, on which the meso
mechanics PA tool is developed, is of the form shown in the right figure. The
presence of the parallel spring implies that the model is intended for
viscoelastic solid materials. The parallel spring represents the rubbery modulus
of the material.
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Similar to the relaxation function for the single Maxwell model, the relaxation
function for the generalized Maxwell model with n terms can easily be obtained
as a summation of the functions of the individual terms as:

E(r)= ? = Z E exp(-t/t,) 2-25

0 i=1

Similarly for the frequency domain the corresponding expressions become

* Eo't’ 4
E'w)=) ——%= and E"(@)=)

l+o’r Fl+o't]

E oz,

i=l1

2-26

|E*(@)] = (E (@) +(E"(@))’

where E'(w)and E"(w)are the storage and loss modulus of the material and
|E*(@)|is the complex modulus. The mathematical simplicity of the relaxation
functions makes this model suitable for characterizing material behaviours
under strain controlled environments.

For stress controlled situations, deriving the creep compliance for the
Generalized Maxwell model is cumbersome. In this case, the convenient way of
modelling the creep behaviour is by using the Generalized Voigt-Kelvin model
(Figure 2-17). This model is obtained by placing a number of Voigt-Kelvin
models in series. In this model, the total strain in the system is obtained by
summing up the individual contributions. Since the individual creep response
of the each Voigt-Kelvin element is known, the creep compliance expression of
the generalized model can easily be obtained using summation.

n, ‘1.12
ML
D
0
D, D,

Figure 2-17. Generalized Voigt-Kelvin model

The generalised Voigt-Kelvin element, as described in most of the literature,
contains only a series of Voigt-Kelvin elements. The form shown in Figure 2-17
with a single spring and dashpot is also alternatively used. Mathematically a
spring response can be obtained when one of the Voigt-Kelvin elements
dashpots parameter goes to nil. Similarly a dashpot response can be obtained
when the spring value is set to zero. In reference to Figure 2-17, the
instantaneous response is captured by the spring element, the creep evolution is
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captured by the series of Kelvin-Voigt elements, and the single dashpot element
captures the viscous deformation. A version of this model with a single Kelvin-
Voigt element is called the Burgers’ model. This model is widely used for
modelling bituminous binder and mixture responses in the field of pavement
engineering [1].

The time and frequency domain expression for the creep compliance are given
as:

D(1) = D, +§Di(1—exp(—t/ri))+L

i=1 0

% D. 1 " Dot
D'(w)= D, + -— and D"(w) = + —
(@)=D, ;1+a}2r,2 (@) Z

1

2-27
ne ‘Fl+o’t’ 2

1
|E* (@)

|D*(@)| = =J(D(@)’ +(D"(@))’

If sufficient numbers of response elements are chosen, both the Generalized
Maxwell and Generalized Kelvin-Voigt model can describe the response curves
of most viscoelastic materials fairly well.

¢) Models with Parabolic Dashpot Elements

The constitutive relationships of models that are formed using the linear spring-
dashpot combinations result in a governing differential equation of an integer
order. While the suitability of such models for numerical applications is highly
commended, accurate description of material response with such models
usually result in a number of model parameters. In the case of bituminous
materials, the number of parameters in the order of 20 to 30 was observed [48].

The other alternative approach for modelling viscoelastic materials is by using
spring and parabolic dashpot combinations, where the constitutive relations of
the parabolic dashpot elements involve differential equations of non-integer
order. The non-integer order differential equations are also called fractional
derivatives. In comparison to models of linear differential orders, these models
characterize the viscoelastic material response with a limited number of model
parameters. Applications of such models in the field of pavement engineering
are also common [19, 36, 38, 39]. In this section the most representative models,
252P1D model and its precursors, Huet-Sayegh and Huet models, are
presented.

Huet Model

The Huet model [19] consists of a spring and two parabolic dashpots placed in
series as shown in Figure 2-18. This model is also called a power law model,
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mainly because its creep compliance, derived in the following sections, results
in a form of a power law [10].
AN

E, mm mn

Figure 2-18 Huet Model

The parabolic dashpots in the Huet model have different response
characteristics as compared to the linear dashpots. While the linear dashpot
constitutive relation involves a differential equation of the first order to relate
the applied stress to strain, the constitutive relation for the parabolic dashpot
involves differential operators of non-integer order (fractional derivatives).
Before the response characteristics of the Huet model are discussed, first the
response behaviour of a single parabolic dashpot is treated here. The
constitutive relation for the parabolic dashpot is given by the fractional
derivative of the form [39]:

am
ot"

o(t)=nz"" {g(t)} =" Q" {g(t)} 228

where:
n,,7,,m =dashpot parameters with 0 <m <1
Q = fractional differential operator with Q" =0" /ot"
o(t) = stress as a function of time

g(t) = strain as a function of time

When the values of the parameter, m, equals 1, the differential operator is equal
to the normal first order differential operator 0/0¢ for the linear dashpot, and
when m equals 0 Equation 2-28 reduces to the relationship between stress and
strain for a linear elastic spring with a spring constant E=7 /7 .For intermediate
values of m, the parabolic dashpot will have a viscoelastic response. This can
best be illustrated in a frequency domain where the dashpot response will
exhibit similar characteristics as a Kelvin-Voigt type element. Figure 2-19
illustrates the response of a single parabolic dashpot for a sinusoidal load. The
resulting phase angle is denoted by a variable ¢ [39].
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S.sin @
Linear Dashpot g
p=r/2 g
Parabolic dashpot N [T
. o=mmx/2 7,.m
+ Linear Spring S.cosp
=0

Figure 2-19 Response of a parabolic dashpot [39]

For parabolic dashpots all the deformations are fully recoverable once the
loading is removed. Hence the creep like evolution observed during the loading
phase will not result in permanent or viscous deformation.

The creep compliance of the Huet model is equal to the sum of the creep
compliances of the individual response elements. Obtaining the creep
compliance of the parabolic dashpot requires solving the fractional differential
equation for a constant stress. This involves integration to a fractional order.
Using classical fractional calculus, the Riemann-Liouville integral can be used to
obtain the m order integration of a function f(t)as:

"{f)} = j (t=5)""f(s)ds

F()

where the integration operation /" { f(¢)} represents the m order integration of a
function and I'(m)is a gamma function. Thus for a constant applied stressc,,
the strain in the parabolic dashpot with model parameters, 7,,7,and m, can be
obtained as:

=" Q" {60} Q" {5(0)] =

. = constant
11

Applying the Riemann-Liouville integral, the strain response of the parabolic
dashpot is obtained as:

O, O-
&‘(t):Im{ (r)n_ }— — (t—s5)""ds
1 mo ] mo 1 F(m)'[

2-29
o, 1 o
lrl'”’l I'(m+1)

gl(t) =
n

Equation 2-29 shows that the strain response of the parabolic dashpot follows a
power form. Since the total strain in the Huet model is the sum of the strain
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responses of each element, and the total stress is equal to the stress in the
individual elements, the strain response of the Huet model for a constant
applied stress can be obtained by summing the creep response of each response
element as:

D(t) = L + i m 3 t"
E, nI'(m+1) L' (n+1)

2-30
The frequency domain response of the Huet model can be obtained from the
time domain creep compliance using time-frequency domain conversion. The
complex creep compliance and complex modulus expressions are given by:

1-m l-n
D* () =——+ (i) " + (i)
E, m m,
1 E, 2-31
"(@)= D* T E T Er
(@) 14 20 Gz )+ B0 (o Y
1 2
Huet-Sayegh Model

The Huet-Sayegh model is an improved version of the Huet model. It is
obtained by placing a linear spring in parallel with the original Huet model.
Similar to the parallel spring in the Prony series model, the parallel spring in
the Huet-Sayegh model represents the rubbery modulus of the material; hence
it represents a viscoelastic solid material behaviour. The physical representation
of the model is given in Figure 2-20.

E _EO 771,m 772,”

Figure 2-20 Huet-Sayegh Model

For the Huet-Sayegh model, the time domain expression for the creep
compliance is not trivial. However, the frequency domain expression for the
complex modulus can easily be derived from the corresponding expression
obtained for the Huet model. Since the strains in the two parallel branches, the
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branch with the parallel spring and the branch with Huet model are the same,
and the total stress in the system is the sum of the stresses in the two branches,
the complex modulus expression can be obtained as

Eoo _EO
1+ (Eoo _EO)TI (l-an_])—m + (Eoo _EO)TZ (l'an_z)—n 2-32

m m,

E*(w)=E,+

If the value of the parallel spring constant is set to nil, £, =0, the expression
reduces to the original Huet model.

2S2P1D Model

The 2-spring, 2-parabolic-1-linear dashpot (252P1D) model of Di Benedetto and
Olard [36] is the latest in the improved versions of the Huet model series. The
252P1D model differs with the Huet-Sayegh model in that it incorporates a
linear dashpot in series with the parabolic dashpots. The physical
representation for this model is shown in Figure 2-21.

Figure 2-21 252P1D Model

The purpose of the linear dashpot is to improve the low frequency region fits of
the model to experimentally obtained response data. For describing frequency
domain measurements, the complex modulus expression can be obtained in a
similar way as for the Huet-Sayegh model. The complex modulus is given by:

Eoo_EO

E*(w)= Eo + ] _ ] _ . 1
1+0,(iwr)™ + 6, (iot)™" + (Piowr)

2-33

where:
0,,0,,f =model parameters
m,n = parameters with 0 <m,n<1
E, =rubbery modulus, modulus value at near zero frequency

E_ = elastic modulus, modulus at high frequency values

o0

Application of this model on the frequency domain response data of different
asphalt concrete mixtures has shown improvement in the low frequency region.
The model is used to simulate materials with a viscoelastic solid property, and
hence no viscous deformation. However, the peculiar case of this model, which
is obtained by removing the parallel spring, has been used in literature to
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simulate viscous deformations in bituminous binders [36]. For simulating
viscous deformations in asphalt concrete mixtures, addition of a linear dashpot
element in series with Huet-Sayegh model is suggested [40].

2.3.3 Modelling Nonlinear Viscoelastic Materials

Assumption of linear viscoelasticity remains valid for small loads only. For
large loads, most materials exhibit nonlinear behaviour [3, 4]. As a result, the
superposition principle used in developing the constitutive relation for linear
viscoelastic materials becomes inapplicable. Research work in the past has
shown that the task of obtaining a universal nonlinear constitutive model,
equivalent to those that exist in the linear theory, is challenging for various
reasons [10, 16]. Some of the reasons include the extent of experimental work
involved, the required computational power of computers, the ease of use for
application, the material behaviour complexity etc. Workable solutions in
dealing with nonlinear viscoelastic problems are therefore to seek for special
forms of constitutive relations by making reasonable simplifications. Such
models, even though not universal, can be adapted to deal with specific
nonlinear problems. However, their applicability is mainly based on the ability
of the models to describe the particular experimental data.

For viscoelastic materials, various nonlinear theories have been proposed in the
past. Most referred and representative works in nonlinear viscoelasticity
include Green-Rivlin’s theory [18], Christensen’s theory [10], modified
superposition principle (Leaderman [31], Findley [16], Locket [32]) and
Schapery’s theory [43]. These theories have many features in common with the
linear viscoelastic theory, and the most fundamental common aspect between
linear and nonlinear theories is that of the memory hypothesis. This hypothesis,
that the material has a memory for the past deformation events, is the basic
point in the development of both linear and nonlinear viscoelastic theory. The
most representative nonlinear theories from literature are discussed below.

2.3.3.1 Modified Superposition Principle

Leaderman’s [31] model, referred to as modified superposition principle, for
modelling nonlinear viscoelastic materials separates the creep behaviour of the
material into time and stress dependent part, and are additive. The
mathematical formulation of this model is given as [27]:

&(t) = ko + h(c)D(t)

For a general case of loading in one dimension, the model is expressed in a
single integral form as:

£(t) = ko(0)+ [ D(t —r)%(h(a(r»)dr 234
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where:
k  =material constant known as time independent compliance
h(o) =function representing the separation of stress dependent part

D(t) = function representing the separation of time dependent part

It has been reported that the constitutive relation can be used for a particular
type of nonlinear viscoelastic material, but the form is not sufficiently general to
describe all time dependent materials. This is mainly due to the empirical
nature of the functions in the constitutive relation. A form of the modified
superposition principle explored later by Findley [16] and co-workers is given
by means of Equation 2-35.

o) = j oe[o(r),t— 1] do(r)
- oo (7) dr

0

2-35

The modified superposition principle can be described as follows. When the
state of stress is abruptly changed from o, to o,at time¢,, the creep response
can be considered as if at this instant stress o, is removed and at the same time
stress o, is applied to the material. It is assumed that both procedures are
independent and are acting on an initially undeformed material. If the relation
between the stress and strain is linear, the stress ratio in the hereditary integral
reduces to the creep compliance of the material and hence linear viscoelasticity
theory is obtained. Otherwise, the obtained creep compliance would be a
function of stress to reflect the nonlinear behaviour of the material. The
laboratory work required to obtain the strain dependent nature of the relaxation
function is relatively simple for this approach. However, the fact that the
approach extends the Boltzmann superposition principle beyond the range of
its applicability without any rigorous theoretical support puts lots of
uncertainty for its universal applicability.

2.3.3.2 Green-Rivlin’s Theory

Green and Rivlin [18] described the nonlinear creep response of a viscoelastic
material by a polynomial stress-function. For uni-axial testing at constant stress,
their model is mathematically expressed as:

£,(t) = Ao,p,(t)+ Ao, p, () + Acp, () +... 2-36
where:
@/(t) =time dependent material functions

Ao, =applied constant stress

& (t) = the resulting creep strain
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This theory states that for different stress increments applied at different times
as shown in Figure 2-22, the resulting response is not only the direct
superposition of the response of the individual increments, as is the case for
linear viscoelastic materials, but also the sum of all the possible cross products
to account for nonlinearity.

Figure 2-22 Creep response to multiple steps of stress

Introducing a representation of the form Aoc,Ac,p,(t,t—t) to describe the
additional contribution to the time dependent strain in the nonlinear range due
to the cross effect of Ao applied at t=0 and Ao, applied at t=¢,, Equation 2-36
generalizes to the following form [16]:

g(t):Z(AO'i)gol(t—ti)+z (A )(AC ), (t—1,,1—1))

N N N o 2-37
+2. 2 Y (AT NAC NAG ), (E 1,1 =1t —1,) +...
i=0 j=0 k=0

An arbitrarily varying stress can be considered as a limiting case of Equation
2-37 consisting of an infinite number of infinitesimal step wise stress inputs and
can be written in general form in a multiple integral representations, the
simplest form of which is obtained when the third order (N=3) is considered
[32].

do do
e(t)= I(pl(t rl)—drl+.f'[¢2(t 7,,t—1,)———drdr,
0 dr, dr,
ttt d d d 2-38
odo do
+ t—1,, , ————drdr,d
M!%( Dol IR g, AT
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In this approach, it can be seen that the first integral term describes the linear
viscoelastic behaviour. Literature states that a minimum of two or more terms
are needed to characterize nonlinear viscoelastic materials [32]. The material
functions involved in this approach depend on several integration variables and
require an impractical number of tests for the determination of material
properties in the laboratory. Lockett [32] evaluated the experimental program
for determining the material functions in the simplest three order
approximation of the theory. It has been shown that the minimum number of
experiments required to reasonably characterize a material, for the one
dimensional case, is 78, some of which require two and three step deformations
(see Figure 2-22). In cases where higher order terms need to be included, the
experimental investigation becomes prohibitive.

2.3.3.3 Christensen’s Theory

Using the basic theory of linear viscoelasticity, Christensen [10] has developed a
nonlinear viscoelastic theory. The one dimensional form of the model is given
as:

o(t) =3G,e(t)+ i[1 + g(t)]j‘ G (t—-1)d @dr 2-39
2 0 dr

where:
G, =the rubbery shear modulus

G, =transient part of the shear relaxation modulus

This model explicitly assumes the material as incompressible. The model
reduces to the linear viscoelasticity form if the strain term, £(¢), is set to zero. In
the constitutive relation, the nonlinear effect is reflected through the
multiplying term [1+&(¢)] in front of the integral. It can be intuitively seen that
the multiplying factor is fixed in position and it approaches a value of one for
small values of strain. Thus if the material exhibits nonlinear behaviour for
small strain values, this model fails short to reflect the nonlinear behaviour. The
model also lacks flexibility to incorporate other forms of nonlinearity that may
arise due to aging, moisture and any other possible factors.

2.3.3.4 Schapery Nonlinear Theory

Schapery’s nonlinear theory is the most widely used nonlinear theory for
modelling time dependent materials. Its derivation is based on thermodynamics
of irreversible processes. Only the final form of the theory, which is widely
applied in nonlinear viscoelastic problems, is presented here. The one
dimensional representation of the theory resembles the constitutive relation for
the linear viscoelasticity, and as such can be considered as a direct extension of
the linear viscoelastic theory. Schapery’s theory in one dimension is given as:
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(0= D,0(0) + &, [ ADW' ") 4 (g.0(e)d 2-40

where:
Do = the instantaneous creep compliance
AD = the transient or time dependent part of the creep compliance
g,-8,8, =model parameters functions of o(¢)

w' = w(r) is areduced time

The reduced time is defined as:

©odt' odt'
w(t)= {—%(O_), w(r)= j o)

2-41
where a_(o)is a stress shift factor. It should be noted that if all the nonlinear
model parameters, g,,g,andg,, are assigned a value of 1, Equation 2-40
reduces to the hereditary integral form of the linear viscoelastic relation derived
in the previous section. The graphical representation for the transient and
instantaneous component of the creep compliance is illustrated in Figure 2-23.

D(t _tO) _,_,.—'-"'_'-'__'_'_'___-_'___
o I
0 .
/ —— AD(t-1,)
. l_ __________ :.l// ______ _ljo ....... -
Z‘0 tO

Figure 2-23 Transient and instantaneous creep response

The laboratory tests required for this model are simpler than that required for
other nonlinear theories. The nonlinear model parameters for the Schapery
model can be obtained from constant creep tests at various stress levels. For a
given stress level, the nonlinear parameter g,g, can be obtained by measuring
the vertical distance between the linear creep curve and the creep curve at
particular stress level. The same principle is also used for the parameter g,
which represents the nonlinear factor for the time independent part of the
compliance curve. Separation of the parameters g g, involves a two step creep
test [43].

Schapery’s theory is widely used for nonlinear viscoelastic modelling. This is
due to its rigorous theoretical foundation, and the simplicity of the laboratory
tests that are required for obtaining the model parameters. For bituminous
materials, other forms of nonlinearity, such as aging and moisture effects, have
also been suitably incorporated in the theory elsewhere [1, 2, 33].
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2.4 Summary

2.4.1 Meso Mechanics

Meso mechanics rely on the fundamental properties of the constituent materials
to predict the composite material behaviour. Its application in asphalt concrete
modelling has shown promising results. The approach intrinsically allows a
more realistic examination of meso structural material response behaviour, such
as stresses and strains in the component materials. This analysis provides
insight into damage initiation and propagation in asphalt concrete materials. It
can therefore provide a powerful tool for optimizing mixture design on the
basis of given performance criteria. Since surface distresses, like ravelling,
rutting and cracking, are mostly mixture related problems, the resistance of a
given asphalt mixture to any of these distress types can best be analyzed using
this approach. Meso mechanics has also a potential to minimise the amount of
costly asphalt mixture tests that are required for design and control purposes.

Results obtained using FEM or DEM for asphaltic concrete mixes have shown to
be comparable. For applications where continuous elements are analyzed, FEM
has an advantage over DEM. The later is advantageous to model large
displacements where new contacts are created during the simulations.

2.4.2 Response Models

2.4.2.1 LinearViscoelastic Models

The most commonly used viscoelastic response models in numerical
applications are models that comprise linear spring-dashpot combinations. The
suitability of any of these models for any particular problem is evaluated based
on the model ability to explain laboratory measured response data. The
generalized Voigt-Kelvin model and the generalized Maxwell model are the
two most widely used models in numerical applications. For applications in
bituminous material modelling, the generalized Voigt-Kelvin model and its
derivatives (such as the Burgers’ model) are widely used. The number of terms
to be used is determined based on the quality of the model fit to experimentally
obtained data. For bituminous materials, it has been observed that a minimum
of 15 to 20 terms are required for proper description of the material behaviour
for wide range of loading times.

An alternative approach for modelling viscoelastic materials is the use of
models that constitute linear spring, linear dashpot and parabolic dashpot
combinations. The constitutive relations for parabolic dashpots involve
fractional derivatives of non integer order. As compared to linear spring-
dashpot combination models, models that constitute parabolic dashpot have
found to be very capable in describing the material response for a wide range of
loading times with very few model parameters. Based on applications on
bituminous binders, it has been shown that the “equivalent” number of model
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parameters required by the generalized Maxwell model to give a comparable
quality of fit similar to models that constitute parabolic dashpots is 4 to 5 fold
higher. The tremendous reduction in model parameters and the excellent model
ability to characterize the response for a wide range of loading times make such
models very practical. However, their application in numerical environments is
limited mainly due to the higher computational memory required for storing
history effects. On the other hand, with the recent increase in computation
power of computers, application of these models can be considered practical.

2.4.2.2 Nonlinear Viscoelastic Theory

Among the available nonlinear viscoelastic theories, Schapery’s nonlinear
theory is the most widely used. The theory is based on rigorous theoretical
foundation. In terms of practical considerations, the number of laboratory tests
that are required to obtain the nonlinear parameters is reasonable.

Its application in modelling the nonlinear behaviour of bituminous materials
has shown good results. In addition to the effects of loading, the form of the
theory also allows inclusion of other nonlinearity factors, such as aging and
moisture effects on the properties of asphalt concrete materials [6].

Even though the creep and relaxation functions in the theory are commonly
represented using the generalized Kelvin-Voigt and the generalized Maxwell
models respectively (mainly for numerical reasons), the theory allows
implementation of any other response model in the constitutive relation.

References

[1]. Abbas, A., Simulation of the Micro-mechanical behavior of Asphalt mixtures using
the Discrete Element Method. 2004, Washington state university.

[2]. Abbas, A., Masad, E., Papagiannakis, T., and Harman, T., Micromechanical
Modeling of the Viscoelastic Behavior of Asphalt Mixtures Using the Discrete-
Element Method. International Journal of Geomechanics, 2007. 7(2): p. 131-139.

[3]. Airey, G., Rahimzadeh, B., and Collop, A., Viscoelastic linearity limits for
bituminous materials. Materials and Structures, 2003. 36(10): p. 643-647.

[4]. Airey, G.D., Rahimzadeh, B., and Collop, A.C., Linear Rheological Behavior of

Bituminous Paving Materials. Journal of Materials in Civil Engineering, 2004.

16(3): p. 212-220.

[5]. Baars, S.v., Discrete Element Analysis of Granular Materials. 1996, Delft.

[6]. Bahia, H., Zhai, H., Bonnetti.K, and Kose, S., Nonlinear Visco-elastic and Fatigue
Properties of Asphalt Binders. J. Assoc. Asphalt Paving Tech., 1999. 68: p. 1-34.

[7]. Buttlar, W. and You, Z., Discrete Element Modeling of Asphalt Concrete:
Microfabric Approach. Transportation Research Record: Journal of the
Transportation Research Board, 2001. 1757(-1): p. 111-118.

[8]. Chang, K.-N.G. and Meegoda, J.N., Micromechanical Simulation of Hot Mix
Asphalt. Journal of Engineering Mechanics, 1997. 123(5): p. 495-503.

[9]. Christensen, D.W. and Anderson, D.A., Interpretation of Dynamic Mechanical
Test Data for Paving Grade Asphalt Cements. J. Assoc. Asphalt Paving Tech.,
1992. 61: p. 67-116.

[10]. Christensen, R.M., Theory of viscoelasticity: An introduction. Second edition ed.
1982, New York: Academic press.

52



LITERATURE REVIEW

[11].

[12].

[13].

[26].

27].

[28].

[29].

[30].

[31].
32].

Collop, A.C., McDowell, G.R., and Lee, Y., Use of the Distinct Element Method to
Model the Deformation Behavior of an Idealized Asphalt Mixture. International
Journal of Pavement Engineering, 2004. 5(1): p. 1 - 7.

Dai, Q. and You, Z., Prediction of Creep Stiffness of Asphalt Mixture with
Micromechanical Finite-Element and Discrete-Element Models. Journal of
Engineering Mechanics, 2007. 133(2): p. 163-173.

Dai, Q. and You, Z., Micro-mechanical finite element framework for predicting

visco-elastic properties of asphaltic mixtures. J of Materials and Structures, 2008.
41(6): p. 1025-1037.

. Dai, Q., Sadd, M.H., and You, Z., 4 micro-mechanical finite element model for

visco-elastic creep and visco-elastic damage behavior of asphalt mixture. Int J
Numeric Anal Meth Geomech, 2006. 30: p. 1135-1158.

. Ferry, J.D., Viscoelastic Properties of Polymers 1961: John Wiley
. Findley, W.N., Lai, J.S., and Onaran, K., Creep and Relaxation of Nonlinear

Viscoelastic Materials with an Introduction to Linear viscoelasticity. 1976,
Amsterdam: North Holland publishing.

. Fliigge, W., Viscoelasticity. Second Edition ed. 1975, Berlin.Heidelberg,New

York: Springer-Verlag.

. Green, A.E. and Rivlin, R.S., The mechanics of non-linear materials with memory.

Archive for Rational Mechanics and Analysis, 1957. 1(1): p. 1-21.

. Huet, C., Etude par une méthode d’impédance du comportement visco-élastique

des matériaux hydrocarbonés. 1963, Faculté des Sciences de Paris: Paris.

. Huurman, M., Lifetime Optimisation Tool, LOT, Main Report. 2008: Delft.
. Huurman, M., Milne, T.I., and Van de Ven, M.F.C., Development of a structural

FEM for road surfacing seals, in ICCES. 2003: Curfu, Greece.

. Huurman, M., Mo, L.T., and Woldekidan, M.F., Unravelling Porous Asphalt

Concrete, Towards a Mechanistic Material Design Tool. Road Materials and
Pavement Design, 2009. 10: p. 233-262.

. Huurman, M., Mo, L., and Woldekidan, M., Mechanistic Design of Silent Asphalt

Mixtures. International Journal of Pavement Research and Technology, 2010. 3(2):
p. 56-64.

. Huurman, M., Scarpas, T., Kasbergen, C., and T, M. Development of a structural

FEM for Road Surfaceing Seals. in International Conference on Computational &
Experimental Engineering & Sciences (ICCES' 03). 2003. Greece.

. Huurman, M., Mo, L., Woldekidan, M.F., Khedoe, R.N., and Moraal, J. Overview

of the LOT meso mechanical research into porous asphalt raveling. in
Proceedings of the 7th Int. RILEM Symposium Advanced Testing and
Characterization of Bituminous Materials. 2009. Rhodes, Greece.

Huurman, M., Mo, L., Woldekidan, M.F., Khedoe, R.N., and Moraal, J., Overview
of the LOT meso mechanical research into porous asphalt raveling. Advanced
Testing and Characterisation of Bituminous Materials, Vols 1 and 2, 2009: p. 507-
518.

Jansen, K.M.B., Thermomechanical modeling and characterization of polymers.
2006, Delft: TU Delft Lecture Book.

Kim, H., Wagoner, M., and Buttlar, W. Towards Realistic Heterogeneous Fracture
Modeling of Asphalt Mixture Using Disk-Shaped Compact Tension Test Based on
Discontinuum Approach. in Transport Research Board, 85 Annual Meeting. 2006.
Washington, DC, USA.

Kose, S., Guler, M., Bahia, H., and Masad, E., Distribution of strains within
asphalt binders in HMA Using Image and finite element techniques. Journal of
Transportation Research Record National Research Council, 2000. 1728: p. 21-27.

Kringos, N., Scarpas, A., and Kasbergen, C., Three Dimensional Elasto-Visco-
Plastic Finite Element Model for Combined Physical-Mechanical Moisture
Induced Damage in Asphalt Mixes. Journal of the Association of Asphalt Paving
Technologists 2007. 76: p. 495-516.

Leaderman, H., Elastic and creep properties of filamentous materials and other
high polymers, in The Textile Foundation. 1943: Washington.

Lockett, F.J., Nonlinear viscoelastic solids. 1972, London: Academic press.

53



CHAPTER 2

33].

[34].
[35].

[36].

37].

[38].

[39].

[40].

[41].

[42].

54

Masad, E. and Somadevan, N., Microstructural Finite-Element Analysis of
Influence of Localized Strain Distribution on Asphalt Mix Properties. Journal of
Engineering Mechanics, 2002. 128(10): p. 1105-1114.

Medani, T.O., Design Principles of Surfacings on Orthotropic Steel Bridge Decks.
2006, Delft University of Technology: Delft.

Mo, L.T., Huurman, M., Woldekidan, M.F., Wu, S.P., and Molenaar, A.A.A.,
Investigation into material optimization and development for improved ravelling
resistant porous asphalt concrete. Materials & Design, 2010. 31(7): p. 3194-3206.
Olard, F. and Di Benedetto, H., General 252P1D model and relation between the
linear viscoelastic behaviours of bituminous binders and mixes. Vol. 4. 2003,
Paris, FRANCE: Lavoisier. 40.

Papagiannakis, A., Abbas, A., and Masad, E., Micromechanical Analysis of
Viscoelastic Properties of Asphalt Concretes. Transportation Research Record:
Journal of the Transportation Research Board, 2002. 1789(-1): p. 113-120.
Pellinen, T. and Oeser, M. Creep and recovery of linear and nonlinear rheological
bodies. in Proceedings of the International Conference on Advance
Characterization of Pavement and Soil Engineering Materials. 2007. Athens,
Greece.

Pronk, A.C., The Variable Dashpot. 2003, Ministry of water and transport,
Rijkswaterstaat: Delft.

Pronk, A.C. The Huet-Sayegh Model: A Simple and Excellent Rheological Model
for Master Curves of Asphaltic Mixes. 2005. Baton Rouge, Louisiana, USA:
ASCE.

Rothenburg, L., Bogobowicz, A., Haas, R., Jung, R.W., and Kennepohl, G. Micro-
mechanical modelling of asphalt concrete in connection with pavement rutting
problems. in Proceedings of the Seventh International Conference on the
Structural Design of Asphalt Pavements. 1992.

Sadd, M.H., Dai, Q., Parameswaran, V., and Shukla, A., Microstructural
Simulation of Asphalt Materials: Modeling and Experimental Studies. Journal of
Materials in Civil Engineering, 2004. 16(2): p. 107-115.

. Schapery, R.A., On the characterization of nonlinear viscoelastic materials.

Polymer Engineering & Science, 1969. 9(4): p. 295-310.

. Sepehr, K., Harvey, O.J., Yue, Z.Q., and El Hussein, H.M. Finite Element

Modeling of Asphalt Concrete Microstructure. in Proc. 3rd Intl. Conf. Computer-
Aided Assessment and Control Localized Damage. 1994. Udine, Italy.

. Tschoegl, N.W., The Phenomenological Theory of Linear Viscoelastic Behavior:

An Introduction. 1989, Berlin,Germany: Springer.

. Ullidtz, P., Distinct Element Method for Study of Failure in Cohesive Particulate

Media. Transportation Research Record: Journal of the Transportation Research
Board, 2001. 1757(-1): p. 127-133.

. Wang, L., Myers, L., Mohammad, L., and Fu, Y., Micromechanics Study on Top-

Down Cracking. Transportation Research Record: Journal of the Transportation
Research Board, 2003. 1853(-1): p. 121-133.

. Woldekidan, M., Huurman, M., and Mo, L., Testing and modeling of bituminous

mortar response. Journal of Wuhan University of Technology--Materials Science
Edition, 2010. 25(4): p. 637-640.

. Zelelew, HM. and Papagiannakis, A.T., Micromechanical Modeling of Asphalt

Concrete Uniaxial Creep using the Discrete Element Method. International Journal
of Road Materials and Pavement Design, 2010. 11(3): p. 613-632.



RESEARCH METHODOLOGY

Research Methodology

approach for gaining insights into top layer distresses. The approach can

be an excellent tool for designing better performing AC mixtures against
top-layer distresses such as ravelling, rutting and cracking. Results that were
obtained from meso mechanistic PA design tool have shown to be very capable
in explaining the ravelling phenomenon in PA surface wearing courses [8].

Chapter 1 and 2 outlined the potential and advantages of meso mechanics

It is known that regardless of the distress type being investigated, the results
obtained from a meso mechanistic approach mainly rely on three important
factors, which are:

e The loading
e The geometry
e The material behaviour

Based on the knowledge obtained during the development of a PA design tool,
it has been shown that a fairly accurate representation of the traffic loading can
be obtained by analyzing the contact stress distribution between the wheel and
the pavement. The contact stress distribution has previously been studied in
detail by De Beer et al. [3]. Effect of the environmental loading on the properties
of the binders has also been investigated in detail by Hagos [5]. With regard to
the meso scale geometry, reasonable representations can be made through a
volumetric analysis [9]. More accurate 2D and 3D meso scale geometries of the
mixture can also be obtained through CT scan analyses [1, 9]. The different
components in the mixture need to be described using different material
behaviour. Since the likelihood of aggregate crushing in the mixture is very
low, a rigid body assumption was made for the aggregates in the mixture.
Modelling interface layers were realized by assigning normal and shear
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stiffness parameters to a thin adhesive layer around the aggregates. For the
bituminous binder a linear viscoelastic assumption was made.

From the results, it has been learned that complex stress and strain signals
occur in the bituminous mortar and adhesive zone within a PA mixture. The
magnitude and shape of the stress signals vary from one location to the other.
The wide ranging of loading rates within the mortar domain implies that the
viscoelastic response models used in the PA design tool are required to reflect
the change in response characteristics of the mortar accordingly. In addition to
the loading rates, the material response models need to reflect the response
characteristics of the mortar for any existence of stress dependent behaviour.
For future application in solving rutting related problems, it has also been
emphasized that response models that incorporate viscous deformation
component are required. Based on these observations it was concluded that an
appropriate response model that can fulfil the aforementioned demands needed
to be sought. The response model available in the ABAQUS material library, the
Prony series, does not fulfil all these demands for various reasons. As explained
in the literature review section, the Prony series model in ABAQUS is meant for
viscoelastic solid materials. In addition, the model is linear viscoelastic and
hence does not incorporate any stress dependent behaviour of the mortar.

The research goal of this study is therefore focused in obtaining an appropriate
response model for the bituminous mortar. The model is also required to be
implemented in the commercially available FE program, ABAQUS. The
response model is mainly meant for use in meso mechanics applications for
asphalt concrete materials. However, it can also be equally applicable for other
applications in modelling asphalt concrete materials.

3.1 Research Approach

3.1.1 Setting the Demands

Based on the literature review and the first findings of the LOT design tool for
PA, the following points are regarded important in setting the demands for the
mortar response model:

e In the majority of cases, surface distresses such as ravelling and surface
cracking are observed after millions of single load repetition. In
comparison to the total amount of damage, the damage as a result of a
single load application can therefore be considered insignificant.

e In relation to the above point, material response characterization in the
laboratory should exclude any presence of damage in the response data.

e Asphalt mixtures in general exhibit features of viscous, elastic and
viscoelastic behaviour. Thus material response models need to
incorporate elements that can simulate elastic, viscous and viscoelastic
behaviour.
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e For reasons of practicality, those types of response models are preferred
that combine best response characterization features with the fewest
possible model parameters.

e For material response characterization in the nonlinear viscoelastic
range, simplicity in the required number of tests and model parameter
determination, and the model accuracy are of paramount importance to
guarantee practical application of the design tool.

It appears that the built-in viscoelastic material model in ABAQUS, the Prony
series, does not fully fulfil the criteria set for the mortar response model. Its’
first limitation is that it is a linear viscoelastic model, and hence it does not
incorporate any nonlinear behaviour. The second drawback is the lack of a
response element for simulating viscous deformation in bituminous materials.
As discussed in the literature review, the Prony series in ABAQUS is
fundamentally meant for modelling linear viscoelastic solids. To allow
simulation of viscous deformations, the general form of the Prony series (the
Prony series model with the absence of the parallel spring, also called the
general Maxwell model) needs to be used. This can be practically achieved by
assigning a small model parameter to the parallel spring. However, for
characterizing stress controlled experimental data, the analytical form of the
Prony series is not convenient. The alternative material model, with a suitable
analytical expression for characterizing stress controlled response data, is the
generalized Burgers’ model. This model is commonly used for modelling
bituminous material response. However, application of this model and
inclusion of any additional nonlinearity effects in the ABAQUS material library
requires writing separate user material subroutines.

3.1.2 Selected Response Models

There are a number of viscoelastic models available in literature. None of these
models can be considered as being universal. Suitability of any of these models
for a particular problem is judged based on the model ability to fulfil specified
demands that are deemed important in addressing any particular problem. For
asphalt concrete mixtures, most commonly used response models comprise
elements of a linear spring-dashpot combination. These kinds of models are
preferred for their efficiency in numerical environments. Other category of
response models comprises elements of a linear spring-dashpot and a parabolic
dashpot combination. Models of the later category are powerful in describing
material response for wide range of loading times. They also require very few
model parameters, and hence they are very practical for use. However, their
computational power demand in numerical environments is higher.

For modelling mortar response, one candidate response model from each
category is selected. In the selection process, more attention is given to the
important points listed in Section 3.2.1. The two selected models are the
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Burgers’ model and the Huet-Sayegh model. These models are widely used for
pavement design purposes; multilayer pavement design programs like
VEROAD [6] and ViscoRoute [2] include either one or both models in their
material model library.

For implementing the nonlinear behaviour of the mortar, a suitable nonlinear
theory has also been selected from literature. A short review of the selected
models and nonlinear theory are given below.

3.1.2.1 Burgers’ Model

The Burgers” model shown in Figure 3-1 is a commonly used response model
for modelling the response of asphalt concrete materials. Its preferred use is due
to a number of reasons: first, it is capable in simulating all the important
response characteristics asphalt concrete materials, i.e. elastic, viscous, and
viscoelastic. The second reason, like all other spring-dashpot combination
models is that it is computationally efficient in numerical environments. In
addition, it is suitable for response characterization in stress controlled mode.
The model is used in various viscoelastic pavement design programs [6, 17].

E
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Figure 3-1 Burgers” model

The main drawback of the Burgers’ model is that for a given set of model
parameters it can correctly describe the response of the material only for a
limited frequency window. For applications where the loading rate within the
material varies tremendously from one location to the other, application of
Burgers’ model results in a very severe limitation.

3.1.2.2 Huet-Sayegh (HS) Model

The HS model is an excellent model for AC mixture modelling. Its distinct
feature as compared to other response models is its ability to describe AC
mixture response for wide range of loading rates with very few model
parameters. In describing a master curve data covering wide range of
temperatures, the number of model parameters required to obtain comparable
quality of results can usually be 4 to 5 times higher if models of linear spring-
dashpot combinations, such as Prony series, are used. The other advantage of
the HS model is that the model parameters determination are straight forward
and can easily be performed using regression analysis in spreadsheet programs
like Excel.
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Figure 3-2 HS model (left) and 252P1D model (right)

The only disadvantage of the HS model is the absence of a response element to
simulate viscous deformations. It is, therefore, fundamentally suited to model
viscoelastic solid materials. A later version of HS model, the 252P1D model [15],
has an additional linear dashpot element in one branch of the HS model (Figure
3-2). The purpose of this linear dashpot is to improve the low frequency fit of
the model to an experimentally obtained response data. The general behaviour
of the model is therefore fundamentally similar to the original HS model.

3.1.3 Schapery’s Nonlinear Theory

At high stress levels, bituminous materials exhibit nonlinear behaviour. Among
the available nonlinear viscoelastic theories in literature, Schapery’s nonlinear
theory is widely used. As presented in the literature review section, the theory
is developed based on a sound theoretical background, and it is relatively
simple in form as compared to other nonlinear theories [18]. Schapery’s theory
requires a reasonable number of laboratory tests for model parameter
determination. In terms of practicality, this is advantageous as compared to
other nonlinear theories, such as the Green and Rivlin theory [4], which
requires an impractical number of laboratory tests for obtaining model
parameters. Literature has also shown that the Schapery’s theory is very
convenient to incorporate nonlinearity arising from other factors such as aging
and moisture effects [13]. Because of these advantages, the theory is selected for
use in meso mechanics applications in this research.

3.2 Methodology

The research approach involves experimental and numerical works. The
experimental part involves obtaining the response of the bituminous binders for
various loading conditions. In this research only mechanical loadings are
considered. Effects of environmental loadings such as aging and moisture effect
on binder properties are discussed elsewhere [5, 11]. The numerical work makes
use of response data obtained from the laboratory for developing the selected
response models. The selected models need also be formulated in an
incremental approach for implementation into the commercially available FE
program, ABAQUS. The model’s use in analyzing PA behaviour will be
demonstrated. Effects of nonlinear behaviour on the computed results will also
be evaluated. Figure 3-3 illustrates the general research layout.
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Figure 3-3 Research layout
3.2.1 Experimental Work

3.2.1.1 Stress Controlled vs. Strain Controlled Tests

Both stress controlled and strain controlled tests are widely used to obtain
material response data in the laboratory. Since the material properties are
intrinsic, different material properties obtained under different test conditions
are related to each other. In cases where material response data are not feasible
in strain controlled situation, stress controlled tests can provide the necessary
information and vice versa. Its implication on the choice of mechanical models
is that one model may appear analytically more convenient for describing a

60



RESEARCH METHODOLOGY

stress controlled data while the other is better suited to describe strain
controlled data. For example, the generalized Maxwell model is widely used for
characterizing results from strain controlled tests while, the generalized
Burgers” model is used for results obtained from a stress controlled test. In this
research, the majority of the laboratory tests on the bituminous mortar are
performed in the stress controlled mode.

3.2.1.2 Time Domain vs. Frequency Domain Tests

In general laboratory investigations of viscoelastic materials are conducted in
the time and frequency domain. Time domain measurements provide material
response data from intermediate to long loading durations. Frequency domain
tests are used to obtain material response for short loading periods. It has been
reported that applying a constant stress or strain to a test sample in practice
takes a finite time (typically 0.1 to 1 second) [10]. As a result material response
for short loading periods, less than 0.1 to 1 seconds, cannot be accurately
obtained from time domain test data. In reality, the pavement layer is subjected
to traffic loading at a high speed. The loading time for a vehicle travelling at 80
to 100 km/hr is in the order of 0.01 seconds. The relevant response data of the
bituminous mortar should therefore be obtained at short loading periods.
Because of this reason, the experimental works for obtaining response
behaviour of the mortar and bituminous binders in this research are mainly
conducted in the frequency domain.

3.2.2 Modelling Work

3.2.2.1 Basic Assumptions

When loads are applied to a bituminous material, time dependent deformation
behaviour is observed. Practice has shown that in comparison to shear
deformation, volumetric deformation component of a well compacted asphalt
mixture is insignificant [14, 19, 20]. From this it follows that time dependency of
the volumetric deformation can reasonably be considered to have little
significance. In case of oily substances like bituminous binders the resistance to
volumetric deformation is even higher due to the high bulk modulus of the
material. The bulk modulus of the mortar can therefore be considered time
independent. In modelling the mechanical behaviour of bituminous materials,
only the shear modulus is commonly considered to posses time dependent
behaviour [6, 7, 16].

The modelling assumption used in this research also follows a similar
approach. In the constitutive formulations the stresses and strains within the
loaded body are decomposed into shear and volumetric components. Based on
the above discussion, the volumetric deformation of the mortar is considered
time independent. The shear deformation will be modelled as time dependent.
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3.2.2.2 Response Modelling

The response modelling work is divided in two sections. The first section deals
with modelling of material response in the linear viscoelastic range. In this
section the two candidate response models selected in the previous section will
be used to describe experimentally obtained data. In the second section, the
models will be incorporated to a nonlinear viscoelastic theory so as to describe
any nonlinearity that might arise as a result of high stresses.

Linear Viscoelastic Range

The selected models will be used to explain the experimentally obtained data.
Based on the demands set for the mortar response model, appropriate
modifications are also made.

As discussed in previous section, the main drawback from the HS model is the
lack of a viscous response element and its difficulty in numerical application.
The model is however, capable in characterizing the response for a wide range
of loading rates with few parameters. In the case of the Burgers” model, the
main limitation is its response characterization for narrow frequency; its use in
numerical environments on the other hand is efficient.

Considering the pros and cons of both models, the following two approaches
are proposed to suit the demands set in the Section 3.2.1:

1. HS model

Modify the original HS model with a linear dashpot in series so as to
provide viscous response component. Investigate ways to numerically
implement the model in ABAQUS and evaluate the model efficiency in a FE
environment.

2. Burgers’ model

Utilize the generalized form of the Burgers” model so as to enable the model
to simulate the response of the bituminous materials for a wide range of
loading frequencies.

These two models will be made available in the ABAQUS material library. The
availability of the alternative material models in ABAQUS library provides
flexibility for the user in choosing between the generalized Burgers’ model and
modified HS model. The models’ suitability in terms of numerical efficiency,
model prediction accuracy and ease of use will also be discussed.

Nonlinear Viscoelastic Range

For modelling the nonlinear response of the bituminous mortar, Schapery’s
nonlinear theory will be used. For this theory, numerical formulation
techniques are available in literature. These formulations incorporate the
generalized Burgers” model in the nonlinear theory [12]. This formulation will
be adopted for use. In this work, the modified HS model application is limited
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to linear viscoelastic domain. Main reason for the limitation is attributed the

model suitability (computational efficiency) in nonlinear analysis. Further
details are given in the relevant chapters ahead.
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Materials, Experiments
and Results

complex stress and strain signals occur in the bituminous mortar within a

PA mixture. The magnitude and rate of the stresses vary from one
location to the other. The wide range in loading rates within the mortar implies
that the response models need also to reflect the change in response
characteristics of the mortar accordingly.

F rom the literature review presented in Chapter 2 it has been learned that

In order to obtain sufficient response data for the modelling work, an extensive
experimental program has been carried out. The details of the laboratory
investigation work are presented in this chapter. The chapter begins with a
description of the materials that are used in the research. The sections that
follow present a thorough description of the experimental setups and discuss
the relevant data interpretation techniques. In the last sections of the chapter,
the results of the experimental investigation are presented.

4.1 Materials

4.1.1 Bitumen

Two types of bitumen are used in this research; bitumen pen grade 40/60
(hereafter referred as B40/60) and bitumen pen grade 70/100 (hereafter referred
as B70/100). These two binders are commonly used in road construction in the
Netherlands. B70/100 is commonly used in PA surface layers. The source and
properties of these two binders are given in Table 4-1 below.

65



CHAPTER 4

Table 4-1 Source and types of bitumen used in the research

Pen Softening  Penetration source

[0.1 mm] Point [°C] Index
Bitumen 42 50 -1.57 Q8: Kuwait Petroleum
40/60 B.V.
Bitumen 93 45 -1.01 Q8: Kuwait Petroleum
70/100 B.V.

4.1.2 Mastic

Mastic is a combination of filler material and pure bitumen. For this research
one type of mastic is considered in the test program. To match the type of the
materials commonly used in PA layers, the B70/100 bitumen is selected for the
mastic. The filler composition comprises of fine fractions with a maximum grain
size of 63 microns. The weight percentages of the bitumen and filler in the
mastic are determined based on the Dutch RAW specifications (RAW 2005 [12])
for PA mixtures. As per the standard a bitumen-filler ratio of 1:1 by weight is
considered. The compositions of the mastic are given in Table 4-2.

Table 4-2 Mastic composition

Type of  Filler type B:F
Bitumen ratio
Mastic 70/100 Wigro 60K 1:1

The filler type used in the mastic, Wigro 60K, is limestone filler with 25%
calcium hydrate (lime).

4.1.3 Mortar

Mortar is a combination of bitumen, filler and fine sand. The fine sand in the
mortar has a maximum grain size of 0.5mm. This is based on an earlier PA
aggregate skeleton study [10] that showed the bituminous mortar in the top
layer of a PA mixture contains sand fractions smaller than 0.5 mm. Similar to
the procedure that was followed to determine the mastic composition, the RAW
specifications [12] for PA is used to obtain the weight proportions. Table 4-3
shows the selected PA mixture composition as per the RAW specification, from
which the mortar composition is derived.
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Table 4-3 PA mixture composition [12]

Sieve Density RAW spec.% retby Cumm. Cumm.%
sizemm) (Kg/m?®) % Retained weight % ret.  %ret.w bit ret.w.bit
C22.4-16.0 2778 0-5 2.5 2.5 2.40 2.39
Cl6.0-11.2 2774 15-30 20 225 19.14 21.53
C11.2-8.0 2762 50-65 35 57.5 33.49 55.02
C8.0-5.6 2765 70-85 20 77.5 19.14 74.16
C5.6-2.0 2677 85 7.5 85 7.18 81.34
2.0-0.063 2781 95.5 10.5 95.5 10.04 91.38
<0.063

(Filler) 2720 100 4.5 100 4.30 95.69
100 95.69

Bitumen 1030 4.50% 4.5 104.5 4.30 100

The crushed sand with the gradation given in Table 4-4 (left) was used as a
source. Through sieve analysis, a sand gradation with a maximum size of
0.5mm was obtained. The final composition of the mortar, by weight
percentage, is given as shown in Table 4-4 (right).

Table 4-4 Crushed sand (left) and final mortar composition by weight (right)

Sieve size % Cumm.

(mm) retained % ret. Mortar components % wt
2.0 8.2 8.2 Sand<0.5mm 34.8
0.5 49.0 57.2 Wigro 60K filler ~ 32.6
0.18 28.4 85.7 Bitumen(B70/100) 32.6

0.063 12.6 98.2
<0.063 1.8 100.0

Like the case for the mastic, Table 4-4 also shows that for the mortar the filler-
binder ratio of 1:1 by weight is kept unaltered.

4.2 Experimental Setups and Descriptions

4.2.1 Setting the Framework

To obtain good results from meso mechanistic performance models, it is
important that laboratory response investigations reasonably cover the ranges
of loading conditions the binder experiences in real pavements. Finite element
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simulations of a moving wheel on PA mixtures showed that the mortar in the
mixture is subjected to a complex 3D state of stress and strain. The magnitude
and rate of the stresses and strains within the mortar varies from one location to
the other within the mixture structure. This implies material response models
used in PA performance models need to represent the material response
behaviour for various loading conditions (stress levels, loading frequency and
temperatures).

In characterizing the material response in the laboratory, it is also important
that the field loading times are simulated as good as possible. The loading times
for a single wheel passage are usually very short, in order of 0.01 seconds (for
vehicle speed of 80 km/hr). Obtaining accurate material response data for such
short loading times requires conducting frequency domain tests.

The experimental work in this research therefore aims to obtain the response of
the binder, mastic and mortar for various stress levels at various loading rates
and temperatures. For the reason discussed above, the major part of the
experimental work is performed in the frequency domain. For this purpose the
Dynamic Shear Rheometer (DSR) has been utilized. Detailed descriptions of the
experimental setups used in testing the materials, i.e. the bitumen, mastic and
mortar, are presented below. The result interpretation methods are also
discussed.

4.2.2 The Dynamic Shear Rheometer

The DSR is commonly used to determine the rheological properties of
viscoelastic materials. In road engineering the DSR is used to determine the
complex shear modulus and phase angle of bituminous binders at different
temperatures and frequencies. For this research, a DSR machine AR2000ex is
used (Figure 4-1). This machine has a torque capacity of up to 0.2 Nm. The
machine is equipped with an Environmental Test Chamber (ETC). The ETC is a
test cabinet with an accurate temperature control system based on electrical
heating and gas cooling (using a liquid nitrogen storage vessel). This allows a
wide range of test temperatures varying from -150 °C up to +350 °C.
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Figure 4-1 DSR environmental test chamber(left); Liquid Nitrogen vessel(right)

4.2.2.1 Standard Test Methods

The standard testing procedure to obtain the response of bituminous binders
involves a small sample of bituminous binder sandwiched between two parallel
plates, also called test geometries. The specimen size and plate diameter to be
used depend upon the temperature. Usually a specimen size of 1 mm thickness
and 25 mm in diameter is used for intermediate to high temperatures. For low
to intermediate temperatures a specimen size with a thickness of 2 mm and an 8
mm plate diameter are used. During the test, a defined oscillating torque is
applied on the upper plate while the lower plate remains fixed and the angular
rotation is measured. Interpretation of the applied torque and the measured
deformations provide the material response information. The interpretation
process includes adjusting the raw data for the system factors that include
inertia effects and machine compliance factors. These factors are determined in
the calibration step before the test is executed. By taking into account all these
factors the torque and angular rotation signals deliver fundamental material
properties such as complex shear modulus |G*|, complex shear compliance
[J*1, and the phase angle o . Figure 4-2 illustrates the DSR test setup and the test
principles.
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Applied Torque B )
T =1, sin(wt)
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/

Figure 4-2 DSR test set-up and principles
The strain and the stress values reported by the DSR machine are those at the
rim of the test sample. Equation 4-1 to Equation 4-3 present the basic relations
used for obtaining the fundamental material properties.

OR 2T
Vmax =—— and < = -1
nR

T
] =222,
max

4-2
G *(0) =|G * (w)|cos 8 +i|G * (v)[sin
=G'+iG"
8 = wAt = atan(G”’/G’) 4-3

where:
R =radius of the cylindrical sample [mm ]
h =height of the cylindrical sample [mm ]
T =is the applied Torque [ N.mm ]

6 =rotation [ rad ]

Tmax = Maximum shear stress [ MPa ]
Ymax = Maximum shear strain [ - ]
|G*l =magnitude of the complex shear modulus [ MPa ]

G' =storage shear modulus [ MPa ]

70



MATERIALS, EXPERIMENTS AND RESULTS

G” =loss shear modulus [ MPa ]
i =complex notation
At =phase lag between the stress and strain signals [ s ]

8 =phase angle of the material for a given frequency, o,[ °]

For stress controlled tests, the creep compliance of the material is of interest.
The following relations are used to determine the shear compliance in a DSR
test.

|J * (w)| — Ymax
max

4-4
J*(0) =] ()| cos8 +i|J* (w)|sind = J'+iJ"

where:
Tmax = Maximum shear stress [ MPa |
Vmax = Maximum shear strain [ - |
IJ*I' = magnitude of the complex creep compliance [ MPa ]

]/ = storage creep compliance [ MPa ]
J” =loss creep compliance [ MPa ]
i =complex notation

8 =rphase angle of the material for a given frequency, o,[ °]

As illustrated in Figure 4-2 the shear stress and shear strain distribution across
the diameter of the cylindrical test sample is not uniform. The test setup is
basically meant for response measurements at very low stress levels where the
material is assumed to have linear viscoelastic behaviour. However, for
measurements at higher stress levels, where the bitumen response is likely to
become nonlinear, the non uniform nature of the stress distribution across the
sample geometry makes interpretation very difficult. One possibility to obtain a
uniform stress distribution across the diameter of the sample is to conduct uni-
axial dynamic tests. However, this option is not possible with the available
AR2000ex DSR machine with which only dynamic shear can be conducted.
With this limitation, the second possibility is to utilize a different test-geometry
to obtain a uniform shear stress distribution. Due to the geometrical advantage,
a cone and plate setup geometry has been used for this purpose.
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4.2.2.2 The Cone and Plate Setup

A) Description of the Test Setup

The geometrical advantage of the Cone and Plate (CP) setup is that it provides a
uniform shear rate and uniform shear stress distribution throughout the test
sample. When cone angles are low, the variation of the shear rate across the
diameter is very small. As the cone angle increases, the accuracy decreases. The
setup is commonly used for viscosity measurements for homogeneous samples.
The disadvantage of this setup is that the gap between the cone and plate
cannot be varied. The shear rate factor for each cone is therefore fixed. The
standard angles provided for viscosity measurements are 0.5°, 1.0°, 2.0° and 4.0°
with a 40 mm diameter plate. The tip of the cone is usually trimmed to avoid
possible variations in results associated with the sharp contact area. Figure 4-3
illustrates the setup for the cone and plate test.

Applied Torque, T
. i
10 i

Figure 4-3 Cone and Plate test set-up

For the CP setup the shear strain rate can be obtained as a function of the cone
angle at a given rotational speed. The shear stress is obtained from the applied
torque. Equation 4-5 and Equation 4-6 present the relationships that are used to
obtain the shear strain rate and shear stress respectively.

L ow
tano 4-5
3T
T= 3 cosa
2nR 4-6
where:

R = cone radius [mm ]

a =cone angle [ °]
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T =isthe applied torque [ N.mm ]
T = shear stress [MPa |

For measurements at intermediate and low temperature regions, the standard
cone geometries with 40 mm diameter would require a much higher torque
capacity than what is possible with the AR2000ex DSR machine. Table 4-5
presents the maximum shear capacity that can be achieved when the various
standard geometries are used.

Table 4-5 Maximum shear stress for standard CP geometries

Torque R T max

[N-mm | [mm] [ MPa] Cone angle [ ]
200 12.5 0.0489 0.5-4
200 20 0.0119 0.5-4
200 30 0.0035 0.5-4

The maximum values of the shear stresses that can be obtained using the
standard geometries are well below the desired values. From previous meso
mechanistic computations [6], much higher shear stress values are reported in
the mortar domain of PA mixture. To achieve higher shear stress values in the
DSR test, smaller diameter cones are developed for this project. Similar to the
standard PP geometries, an 8 mm diameter and a 25 mm diameter cones were
designed for measurements at low and high temperature regions respectively.
The maximum sample height at the rim of the cones is 2 mm and 1 mm for the 8
mm diameter and 25 mm diameter cone respectively. Figure 4-4 shows the 8
mm and 25 mm diameter geometries in a DSR setup.

Figure 4-4 CP setup, 8 mm diam. (left) and 25 mm diam. (right)
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For the selected geometries Table 4-6 presents the maximum shear stress that
can be achieved in the test setup.

Table 4-6 Maximum shear stress for the 8 mm and 25 mm diameter CP

geometries
hmax Gap
Torque R T max Cone angle [ mm [ m ]
[N-mm]  [mm]  [MPa] ] ]
200 4 1.33 26.565 2 065
200 12.5 0.05 4.574 1 65

B) Numerical Evaluation

A Finite Element (FE) model has been utilized to evaluate the stress uniformity
within the test sample. For this purpose FE models of the cone and plate setup
were prepared. By applying an oscillating torque, the resulting stress and strain
distribution within the sample can be evaluated. Figure 4-5 illustrates the FE
model for the 8mm diameter CP setup.

5, Mises

(Aug: 75%)

5, Mises

(Avg: 7T59%)
+1.400e+01

+1,400e+01
+1.325e+01
+1.250e+01

+1.175e+01
Steel +1,100e+01
+1.025e+01
+9.500e+00
+2,750e+00
+2.000e+00
+7,250e+00
+£,500e+00
+5.750e+00
+5.000e+00
+4,250e+00
+3.500e+00
+2,750e+00
+2.000e+00
+5,328e-04

+1.325e+01
+1,250e+01
+1.179e+01
+1.100e+01
+1.025e+01
+9.500e+00
+2.750e+00
+5.000e+00
+7.250e+00
+6.500e+00
+3.750e+00
+5.000e+00
+4.250e+00
+3.500e+00
+2.750e+00
+2.000e+00
+1.121e-032

Binder

=

Bottom plate

Figure 4-5 von Mises stress in a CP setup (left: section of the test setup, right:
part of the test material with the top steel rod removed)

For a sinusoidal varying applied torque the resulting shear stress values at
various nodal locations, which are marked with dots in Figure 4-5, are plotted
together in Figure 4-6 and Figure 4-7. Due to edge effects, the stress value
obtained for the nodal points at the outer periphery, located at a height of 2 mm
from the bottom plate, is nearly half the value obtained for other nodal points
(Figure 4-6). Apart from these locations, the shear stress values obtained at all
the other nodes are very comparable. Figure 4-6 presents the stress values
obtained at all nodal points plotted together. When the nodal points located in
the outer periphery of the sample are excluded, Figure 4-7 is obtained.
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Figure 4-6 Shear stress signals obtained at various nodal points
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Figure 4-7 Shear stress signals obtained at various nodal points (results at the
outer periphery of the sample excluded)

From Figure 4-6 and Figure 4-7 it can be seen that the CP setup delivers a
uniform shear stress distribution within the test specimen. Apart from the stress
distribution at the nodal points located at the outer periphery of the test sample,
the stress distribution inside the test sample is quite uniform. Thus from the
numerical evaluation it can be concluded that the CP geometry can indeed be
used to conduct constant stress measurements in a DSR setup.
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C) Sample Preparation

The procedure for test sample preparation is similar to the standard procedures
followed for the PP geometries. A silicone mould has been used to prepare the 8
mm and 25 mm diameter cylindrical samples. The 8 mm and the 25 mm moulds
produce a sample with a height of 3 mm and 2 mm respectively. In the pouring
procedure the binder is first heated to a temperature of 150°C. The hot binder is
then stirred for uniformity and poured into the mould. After cooling the
samples at room temperature the mould is placed in a refrigerator for about 10
minutes. The samples are finally extracted and are made ready for placement in
the DSR setup (see Figure 4-8).

Figure 4-8 DSR test samples (left: binder in a mould, right; extracted samples)

In the DSR machine the sample is placed on the bottom plate, and the top cone-
shaped plate is slowly lowered until a preset gap is reached. Similar to the PP
settings an extra 50 um thickness is allowed; hence the preset gap is set to 115
um. The excess binder that has been squeezed out is then trimmed with a hot
spatula. Before the test is run, the final gap is set to 65 pm. Once the testing
procedure is started the applied torque and rotational deformation are
recorded.

To interpret the applied torque and measured deformation into stress and
strain within the sample, transfer functions need to be developed. The relevant
test interpretation methods for the different cone geometries are presented
below.

D) Test Interpretation Methods

The built-in transfer functions with in the TA instrument for obtaining the shear
complex modulus and phase angle of the material are valid for the PP
geometries. As a result different transfer functions needed to be used for
interpreting the measured applied torque and measured angular displacement
in the CP setup. The transfer functions relating the applied torque with the
shear stress, and the shear strain with the angular deformation, can be given as
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1=k ST 3 4-7
2nR
0.R .
v =k, — 4-8
where:
T =is the applied Torque [ N.mm ]
7 =shear stress [ MPa |
k, = constant
R = cone radius
y =shear strain [ - ]
6 =rotation [ rad ]
h =specimen height at outer periphery
k, =constant

FE simulations showed that a radial deformation angle of 0.00492 rad is
obtained when a torque of 3.6 N-mm is applied. Accordingly the computed
shear stress and shear strain for a representative location in the test sample,
being a node located at 4/3 mm high from the bottom plate on the outer
periphery, are 2.53E-2 MPa and 9.85E-03 respectively. Combining these values
the transfer equation constants given in Equation 4-7 and Equation 4-8 can be
obtained. For plate diameters of 8 mm and 25 mm the values of these constants
are given in Table 4-7.

Table 4-7 Constants in the transfer function

Plate diameter Transfer functions values

[ mm | k, k,
8 0.942 0.99
25 0.992 1.0

4.2.2.3 The DSR Mortar Column Setup

A) Description of the Test Setup

The mortar contains bitumen, filler and sand particles with fine fraction of the
sand. The CP setup does not give consistent results for test samples containing
particulate materials. As a result the CP setup for DSR cannot be used for
response testing. Therefore, the special mortar test sample geometry developed
during the first phase of the PA design tool project [5] has been adopted for this
research. The mortar sample geometry is presented in Figure 4-9. The specimen
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has a total height of 20 mm. The sample ends are enclosed in a 4 mm steel ring
to allow clamping of the specimen into the DSR machine. Over the central 10
mm length, the specimen has a constant diameter of 6 mm.

8 mm 5

+—

4mm

|

$lmm ]
10mm
X @eémm Mortar
:‘1
4rmm
1 Steel ring

Figure 4-9 Mortar specimen (Left: FE model, Middle: Real specimen, Right:
specimen section)

The test procedure involves mounting the mortar sample into the DSR machine.
In the test procedure, two types of mounting procedures can be followed. The
first is using the steel end clamps. In this mounting procedure the mortar
column is fastened to the top rotating rod using the steel end clamp that is
designed to fit the steel rings which are used at the two ends of the mortar
column. The top rotating rod is then slowly lowered until the bottom end of the
mortar column is placed into the other steel end clamp that is firmly fixed with
the bottom plate (see Figure 4-10). In this procedure it is important that the
samples are kept straight for easy alignment into the end clamps. It is also
crucial that the screws are sufficiently tightened to ensure the sample is firmly
tixed at the two ends.

The second mounting procedure utilizes a two-component fast curing adhesive
glue (X60). In this mounting method, the sample is first glued to the top
rotating rod. On the bottom plate sufficient glue is placed, and the top rod (with
the mortar sample attached to it) is slowly lowered till the bottom end of the
sample comes in contact with the bottom plate. Additional glue is put at the
ends as required. Similar to the previous procedure mortar samples need to be
straight and enough glue needs to be used at the ends to ensure sufficient bond.
Figure 4-10 shows mortar samples mounted in a DSR machine using the two
mounting procedures. In the test, a sinusoidal torque is applied to the top bar.
The applied torque and the rotational deformation of the specimen are
measured and the phase difference between these two signals is determined.
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The difference in results between the two mounting procedures will be
discussed later on.

« T=T,.Sin(wt)

To

J T \\\
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TUDelft

Figure 4-10 Mortar specimen in a DSR test (left: glued ends, middle: steel end
clamps, right: typical load and displacement signals).

B) Sample Preparation

The sample preparation procedure involves heating the component materials to
a mixing temperature of 170°C. The bitumen, filler and sand are then
thoroughly mixed with a hot spatula to obtain a uniform mixture. The heated
mortar is then carefully poured into a special designed pre-heated mould made
of a silicone plastic. After filling, the mould is placed back in an oven for about
5 minute to remove air voids from the specimen. The mould is cooled down at
room temperature and then stored in a freezer, at a temperature of -10°C, before
the mortar columns are extracted. Figure 4-11 shows the pouring and extraction
of the mortar column samples.
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Sample extraction

Fie

B

Figure 4-11 Mortar specimen preparation

After cooling down, for about 2 hours in the freezer, the mould is split and the
samples are removed carefully. The samples are visually inspected to assure
that no air pockets or damages are present. Only undamaged samples with no
visual air pockets are used in the test program. Additional CT scan
measurements were also made on a randomly selected mortar sample to
examine the presence of air voids inside the mortar (Figure 4-12). The CT scan
results showed the presence of a small air void content, about 0.22% by volume,
in the mortar samples. For samples extracted without putting the mortar-filled
mould back to the oven, as part of the air void removal procedure, a higher air
void content of about 1.5% is obtained. Hence for this research the air void
removal procedure has been followed consistently.

Air voids

6 mm 6 mm

Figure 4-12 CT scan images showing air voids in mortar samples
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C) Test Interpretation Methods

Since the geometry of the mortar column is different from the standard DSR
geometries, relevant transfer functions need to be applied to obtain stresses and
strains in the test sample based on the measured torque and rotational
deformations. The effect of specimen geometry is analyzed by means of a FE
model. On the basis of the FE model the transfer function that relates the stress
and strain in the test specimen to the torque and rotational deformation were
obtained.

The transfer function to relate the applied torque with the shear stress, and the
shear strain with the angular deformation, was obtained based on the following
relations.

2T
=k — 4-9
nR
0.R
y=k, — 4-10
hegr
where:

T =is the applied Torque [ N.mm ]
t =shear stress [ MPa |

k, = constant

1

R = specimen radius, 3mm
y =shear strain [ - ]
6 =rotation [ rad ]
herr = effective height of the test specimen, 12.74mm

k, =constant

The constants in the relations were determined from FE model simulations.
Material properties for the mortar were set to have a shear modulus value of
100 MPa and a Poisson’s ratio of 0.45. A torque of 70 N.mm acting on the upper
steel ring was applied. The computed shear stress and strain at the outer edge
of the middle-straight section of the mortar column were 1.645 MPa and 0.0164
respectively. The corresponding rotational displacement of 0.06951 rad was
computed. Combining the applied torque with the induced stress, the stress
factor that accounts for the sample geometry can be calculated. In a similar
manner, the strain factor accounting for the sample geometry was obtained.
These constants are given in Table 4-8. The factor k,is taken unity for response
measurement. For fatigue tests, this factor can be adjusted to take into account
the stress concentration factor based on the observed location of fatigue failure
in the sample.
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Table 4-8 Constants used in the transfer function

Transfer functions values
ky ko heff [ mm ]
0.997 1.00 12.742

It can be seen from Table 4-8 that the effective height of the sample is a little
higher than the total height of the mortar column, which is 12.0 mm. This is a
combined effect of the slight contribution of the mortar deformation in the steel
rings, and also the geometrical effects at the end sections where the diameter of
the sample gradually changes from 6 mm to 7 mm. The geometrical effect can
be seen from the relatively high shear stress concentrations at the two ends of
the mortar column as shown in Figure 4-13.

Shear stresses

[MPa]
- Location of high 1.925
shear stresses
>~ Straight section 0.000
] = Location of high
shear stresses 1.925

Figure 4-13 Shear stress distribution along the height of the mortar sample

Figure 4-13 also shows that the stress distribution across the diameter of the
mortar sample is not uniform. As discussed in the previous sections, obtaining
uniform stress distribution across the sample diameter is important especially
for response characterization at higher stress levels. The convenient setup for
obtaining uniform stress distribution for the mortar sample in a DSR setup is
uni-axial testing. However, the available DSR machine was not capable of
performing uni-axial dynamic testing. Because of this limitation, it was decided
to conduct the mortar response measurements in the shear mode, and
numerically estimate the effects of the non uniform stress distribution on the
measured results. However, for measurements conducted at higher shear stress
levels, evaluation of the non uniform shear stress distribution on the measured
results requires relevant nonlinear models which are not readily available at
this stage. From a literature it became clear that nonlinear response
measurements for bituminous mortar with composition similar to this research
were not available. Hence, it was decided to conduct the numerical evaluation
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at a later stage when relevant nonlinear model and response data for the mortar
are available.

4.3 Experiments and Results

4.3.1 Experimental Plan

In this section the experiments that were carried out on the various binders are
presented. For the bitumen and mastic, the first series of experiments that were
conducted were for evaluating the quality of data from the CP setup. For
evaluation, a comparative approach was utilized, where CP response data
within the linear viscoelastic range are compared with similar data obtained
from the standard PP setup. Table 4-9 shows the experiments conducted for this
purpose. Two materials, i.e. pen grade bitumen and mastic, are used.

Second category of tests includes response testing at higher shear stress levels.
Table 4-10 shows the experiments performed to investigate the stress
dependent behaviour of the binders. Stress controlled tests at various stress
levels and various temperatures were conducted. Tests on B70/100 bitumen,
B70/100 mastic and B70/100 mortar were made. It is known that, the maximum
shear stress level reached in each of the tests is limited either by the maximum
torque capacity of the machine or the maximum torque level that the material
could carry. For the data analysis stage however, response data with the
presence of little or no damage are sought. This is to imitate the practical
observation that pavements last millions of load repetition; and thus the
damage incurred by a single wheel load on the pavement is insignificant.

To evaluate the effect of the shear stress level on the fatigue life of the binders,
supplementary fatigue and stress sweep tests were also conducted. This test
plan is presented in Table 4-11.

The last group of tests, the result of which will be presented in the relevant
sections in the next chapter, are time domain tests. These tests were mainly
conducted at low stress/strain levels to check the time-frequency domain
relationship. The types of tests conducted in this category were creep and
relaxation tests (see Table 4-12).

Table 4-9 Tests carried out for CP result verification

Materials Test type Geometry Temperature Remark
[°C]
B40/60 Frequency PP and -10to 60 Linear
sweep CP viscoelastic
B70/100 Mastic Frequency PP and -10to 60 Linear
sweep cP viscoelastic
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Table 4-10 Response tests at various stress levels (frequency domain)

Materials Test type Geometry Temperature  Stress range!
[°C]
B70/100 Frequency sweep CP -10 to 50 Low to high
B70/100 Mastic Frequency sweep CP -10 to 50 Low to high
Mortar Frequency sweep  Cylindrical -10 to 40 Low to high
columns

Table 4-11 Tests carried out to determine fatigue life cycles

Materials Test type Geometry Temperature
[°C]
B70/100 Stress/Time sweep  CP 10 - 20
B70/100 Mastic ~ Stress/Time sweep  CP 10-20
Mortar Stress/Time sweep  Cylindrical columns 10 - 20

Table 4-12 Time domain response tests

Materials  Test type Geometry Temperature Remark
[°C]
Mortar Creep/relaxation Cylindrical 10 - 20 Linear viscoelastic
columns

4.3.2 Bitumen and Mastic Response at Low Stress Levels

4.3.2.1 Results from CP and PP Setups

In order to evaluate the quality of the response data from the CP setup,
frequency sweep tests were conducted using the CP and the PP geometries.
Since binder response at low stress levels is linear viscoelastic, the response
obtained from the CP and the PP setups is expected to show good agreement.

Following the standard frequency sweep testing procedure, the 8 mm and the
25 mm parallel plate diameters were used for low and high temperature regions
respectively. Similarly for the CP setup, the 8 mm and 25 mm diameter cone
were used for the low and high temperature regions respectively. Table 4-13
summarizes the geometries used for the various temperature regions.

! The maximum stress varies for each temperature. For defining the lower stress limit,
the stress value that can provide measurable deformation is used.
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Table 4-13 Test geometries used at various temperatures

Type of test Temperature Diameter Geometry
[°C] [ mm |
-10°C to 20°C 8 Parallel plate
Frequency 30°C to 60°C 25 Parallel plate
sweep -10°C to 20°C 8 Cone and Plate
30°C to 60°C 25 Cone and Plate

From the frequency sweep test, the magnitude of the dynamic shear modulus,
G*, and the phase angle, 0, were obtained. In processing the data, appropriate
transfer functions that were presented in the previous sections were utilized.
Figure 4-14 to Figure 4-17 present the comparison between the results from the
CP and PP setups for B40/60 binder and B70/100 mastic.

1.E+03 -
1.E+02 -
1.E+01 -
[a
™ 0°C
£ 1.E+00 = 10C
=} A 20°C
— X 40°C
O 1.E-01 . s0C
Equality L.

1.E-02

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03
|G*| [MPa]_CP

Figure 4-14 Comparison of complex modulus data, results obtained at various
temperatures using the CP and PP setups (B40/60)
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Figure 4-15 Comparison of phase angle data, results obtained at various
temperatures using the CP and PP setups (B40/60)
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Figure 4-16 Comparison of complex modulus data, results obtained at various
temperatures using the CP and PP setups (B70/100 mastic)
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Figure 4-17 Comparison of phase angle data, results obtained at various
temperatures using the CP and PP setups (B70/100 mastic)

For the penetration grade bitumen, B40/60, Figure 4-14 and Figure 4-15 show
that the complex modulus and phase angle measurements obtained from the
CP and PP setups are in a good agreement. Figure 4-16 and Figure 4-17 show
the comparison between the CP and PP test results for the mastic. For the
measurements conducted at the lower temperatures, the CP setup appears to
deliver a relatively lower complex modulus in comparison to results from the
PP setup. The CP measurements conducted at higher temperatures, where the
25 mm diameter cone was used, show inconsistent (out-of-trend) results. This
can be seen from the phase angle data at a temperature of 50°C (Figure 4-17).
The observed variation in test results is believed to be due to the gap settings
and the cone angles used for the 25 mm diameter. At the tip of the cone and in
its vicinity, the particles in the test specimen, i.e. the filler materials, might
possibly get jammed. This effect is thought to be less for higher cone angles and
larger gap settings. Further investigations to find optimum gap setting and cone
angle have not been carried out. As a result, only the response data obtained at
low to intermediate temperatures, i.e. measurements made using the 2 mm cone
diameter, are chosen for use in this project.

A) Master Curve using Time-Temperature Superposition Principle

For the results obtained from the CP and the PP setup, master curves were
constructed using the Time-Temperature superposition principle. This principle
allows shifting the response data obtained at various temperatures with respect
to time or frequency to a selected reference temperature. The curve obtained in
this manner can be plotted as a function of reduced time or frequency. The
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amount of shifting required at each temperature can be obtained using the
Williams-Landel-Ferry (WLF) equation [4].
-CG(T-Th)

L = -
og ar Cy+(T—T)) 4-11

where:
C,,C, =constants
T =temperature [ °C ]
To =reference temperature [ °C ]

ar = shift factor

For describing the resulting master curves for the shear complex modulus, G¥,
and the phase angle, o, the Christensen Anderson (CA) model was chosen [3].

1022 Jiog2 o2 T
R
|G * ()| =G, 1+(&j K and  [8(w)| =90 1+[ij 4-12
S W wc
where:
|G*(w)| =magnitude of the complex shear modulus

G, =glassy modulus
w, =location parameter (cross over frequency) [ rad /s ]
w =reduced frequency [ rad /s ]
R =rheological index, R=log (Gg/G(w..))
8(w) =phase angle

Figure 4-18 and Figure 4-19 present the master curve plots for B40/60 bitumen
and B70/100 mastic respectively. The CP data used for the construction of the
master curve for the B70/100 mastic was from measurements conducted at low
to intermediate temperature regions only. The master curves were constructed
at a reference temperature of 20°C. For comparison purposes the data from the
CP and the PP setups are presented together.
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Figure 4-18 Master curve for B40/60 bitumen at 20°C
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Figure 4-19 Master curve for B70/100 mastic at 20°C

The shift factors that were used to construct the master curves and the CA
model parameters are given in Table 4-14. The parameters were determined
based on response data from the PP and CP setups.
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Table 4-14 Master curve parameters at reference temperature of 20°C
WLF Factors CA model parameters R2
Ci Cz Gy We R G* 3
g 0 DMPal  [mads] 0 O
B40/60 15718  135.546 480 303.564 1.268  0.999  0.996

B70/100 20.796  164.832 1100 34.47 1.259 0.989 0.997
Mastic

B) Summary and Discussions

The master curve for the mastic shown in Figure 4-19 was constructed using the
results from the 8 mm diameter cone covering temperature ranges between 0°C
and 30°C. The 25 mm diameter cone with a cone angle of 26.6° provided good
quality data for the pen grade bitumen at higher temperatures; the
corresponding results for the mastic in the same temperature range appeared to
be unrealistic (see Figure 4-17). Consequently, it was decided not to use the 25
mm diameter cone for mastic testing. The 8 mm diameter cone with a cone
angle of 2.29° was used to cover temperature ranges up to 30°C for the mastic.

From Figure 4-18 and Figure 4-19 it is observed that the master curves are well
described by the CA model. Master curves obtained from the CP and PP setups
showed a very good agreement. The good agreement between the two sets of
data indicates that the selected geometries for the CP setup can be used for
response testing. For low stress measurements it can reproduce the results from
the standard PP setup.

4.3.3 Bitumen and Mastic Response at High Stress Levels

4.3.3.1 B70/100 Bitumen

In the previous section the applicability of the CP setup for obtaining material
response at low stress levels for various temperatures were investigated. Using
the selected geometries the response investigation of the binders at higher stress
levels is discussed in this section.

Various DSR frequency sweep tests were conducted using the CP geometries.
Due to the limitation in the DSR maximum torque capacity, the maximum
stress level reached during the test is different at different temperatures. At low
temperatures the stiffer nature of the binders implies that higher stresses or
torque values can be achieved. In such cases the DSR maximum torque capacity
would be the limiting factor for determining the highest stress level during the
test. Due to the viscoelastic nature of the binders, the stiffness of the binders
decreases as the temperature increases. Thus large deformations are obtained
for relatively lower torque magnitudes in the intermediate to higher
temperature ranges. For such cases the material ability to sustain higher shear
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stresses would be the limiting factor for determining the highest stress level
during the test.

A) General Considerations

In obtaining the response data at various stress levels for a given temperature, it
was decided to use a single test specimen. This is mainly for two reasons. The
first reason is to avoid possible variations in test results that may arise due to
test sampling procedures. If different samples are used for different stress
levels, the effect of the stress on the response and variation in test results due to
sampling methods would be mixed. The second reason is the time consuming
nature of the frequency sweep test. Changing the test sample for each stress
level would require a considerable amount of time to cover various stress levels
and temperatures. For these reasons, it was decided to obtain material response
data as a function of stress level on a single specimen at a given temperature.

Another point of interest is the variation of the linear range with temperature
for bituminous materials. Airey et al. [1, 2] showed that the linear range of
bituminous binders decreases as temperature increases. The relationship
between loading time and temperature also implies that the linear range will
also decrease as the frequency decreases. Depending on the chosen frequency
window for the frequency sweep test, the material response for a given stress
level could therefore go through the nonlinear and linear responses at the lower
and higher frequency regions respectively. At extreme cases, especially for a
very high stress levels, the low frequency region loadings may introduce
damage to the test sample.

To filter out response data that may include damage, two control mechanisms
were introduced. The first is to optimize the frequency window based on trial
experiments. In determining the frequency window, consideration was also
given to frequency regions that are of interest for PA layer performance
computations. A frequency window of 1 Hz to 50 Hz was chosen for this study.
The second control mechanism that was used in this study is to monitor
damage in the test sample after each stress increment by conducting response
measurements at very low stress level. By comparing the response obtained at
the low stress level with the linear viscoelastic response, damage introduced to
the sample was monitored.

B) Frequency Sweep Test

The frequency sweep tests were conducted such that the measurement at a
given temperature begins with the smallest torque level and then progresses to
the higher torque levels in steps. After each torque increment the amount of
damage introduced to the sample was monitored by conducting a frequency
sweep measurement at the lowest torque level. By comparing the response
obtained at lowest torque level with the linear viscoelastic response data, an
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indication of damage incurred to the sample was obtained. Table 4-15 presents
the range of shear stress covered at each temperature for B70/100 bitumen.

Table 4-15 Stress ranges for B70-100 bitumen
Temperature [°C] 0 10 20 40 50
Stress range [ kPa]  20-850  15-850  10-210  0.4-32  0.2-10

Test results have shown a stress dependent behaviour both at low and high
temperature regions. For low temperature range, using the data at 0°C as an
example, Figure 4-20 and Figure 4-21 illustrate the complex modulus and phase
angle results for various shear stress levels. The corresponding results for
higher temperature regions are illustrated using the results obtained at 40°C
(see Figure 4-22 and Figure 4-23). Similar results covering the whole
temperature range varying from 0°C to 50°C are attached in Appendix A. In all
these plots, response data from test specimens in which damage reduces the
low-stress complex modulus values with more than 10% are excluded. The
approach used to define this damage limit will be discussed later on.
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Figure 4-20 Results at 0°C, complex modulus for B70/100
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Figure 4-23 Results at 40°C, phase angle for B70/100

Figure 4-20 to Figure 4-23 show a decreasing trend for the complex modulus for
an increasing shear stress. It is also evident from the results that the reduction
in complex modulus value for higher shear stress levels is accompanied by an
increase in phase angle.

To evaluate the reduction of the modulus values at the various frequencies the
normalized values have been used. When the G* values obtained at the various
frequencies at a given stress levels were normalized by the corresponding linear
viscoelastic G* values, Figure 4-24 and Figure 4-25 were obtained corresponding
to the results presented in Figure 4-20 and Figure 4-22 respectively. A
normalized G* value of 1 represents response data obtained at the linear
viscoelastic range. For higher shear stresses, a reduction in G* values result in a
normalized G* value of less than unity.
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Figure 4-25 Normalized G* at 40°C for B70/100

From the normalized G* plots shown in Figure 4-24 and Figure 4-25, it is
evident that the normalized G* values for a given stress level are not constant
for all frequencies. This indicate that the effect of the stress on the G* property
also depends on the loading frequency. This effect will be covered in detail in
the nonlinear modelling section in Chapter 5.

C) Monitoring Damage in the Test Sample

In performing the frequency sweep tests at various torque/shear levels, damage
on the test sample was monitored. For each test, following each torque
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increment the binder response at the lowest torque level were measured. The
checks were made at selected frequencies (see Figure 4-26). By comparing these
results with the linear viscoelastic material property the presence of damage in
the test sample were evaluated. Detailed explanation for this procedure is given
below.

For each sample placed in the DSR machine, first a frequency sweep in the
linear viscoelastic range is conducted. The complex modulus value obtained at
various frequencies in the linear measurement is denoted as G*(Ty), where Tj
is a torque in the linear range. On the same specimen, a second frequency
sweep test at a higher torque level, Ty, is conducted. To monitor the presence of
damage in the test sample due to the previously applied torque, T;, a third
frequency sweep test at few selected frequencies is conducted at a torque level
of Ty. The complex modulus values obtained here are denoted as G1(To). Then
again a frequency sweep at a higher torque value, T >T;, is conducted
followed by a check test at the lower torque level and so on.

To formulate it in a mathematical notation, after the i torque increment the
complex modulus that is obtained at the lowest torque level is denoted as
Gi(To), and the corresponding linear viscoelastic complex modulus value is
G*(To). For a given stress level and frequency, a parameter to monitor damage
(stiffness reduction ratio), r;, can be defined. It is given by:

. _Gi(To) 413
b GY(T)

In Equation 4-13, the complex modulus values, Gi(To)and G*(Tp), are both
obtained at the same torque level, To, which is a torque level in the linear
viscoelastic range of the material. The only difference between the two complex
modulus values is that the first value, G; (To), represents the low stress property
which is determined after the sample has previously been subjected to a higher
torque level. The latter complex modulus value, G*(To), represents the low
stress material property which is determined prior to any application of higher
torque levels to the test sample.

For the stiffness reduction ratio, i, a value of 1 implies that after the i torque
application the material still retains its linear viscoelastic property, hence no
damage is incurred to the material. A stiffness reduction ratio less than 1
indicates a change in the linear viscoelastic property. To illustrate results
obtained at low, intermediate and high temperature regions, Figure 4-26 to
Figure 4-28 present the stiffness reduction ratios obtained at 0°C, 20°C and 40°C
at various stress levels for B70/100. The stiffness reduction ratios were obtained
at discrete frequencies.
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Figure 4-26 Stiffness reduction ratios at 0°C for B70/100

1.20
1.00 s 8 &
A 8 e g

0.80

_ ¢ 100 kPa

— 0.60 © 135 kPa

" A 169 kPa
0.40

o 186 kPa

0.20 - o 203 kPa
0.00

1 10 100 1000

frequency [ rad /s |

Figure 4-27 Stiffness reduction ratios at 20°C for B70/100
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Figure 4-28 Stiffness reduction ratios at 40°C for B70/100

Figure 4-26 to Figure 4-28 show stiffness reduction ratios of less than 1 for
higher shear stress levels. This implies that the complex modulus of the binder
does not completely return to its original linear viscoelastic value once the
material experiences higher torque values. In other words, each torque
application practically introduces a limited damage to the test specimen. The
results also show that the values of the stiffness ratios, r;, obtained at various
frequencies corresponding to a given stress level are not constant. This indicates
that the damage by a given stress level to the test specimen is different at
different rates of loading. Further investigation on the effects of the applied
stress and load rate on the material damage are beyond the scope of this study
and are not covered here. For the data analysis in this work, a stiffness ratio
limit was chosen to avoid inclusion of data that included substantial amount of
damage to the response analysis. For this purpose the mean value of the
stiffness ratio at a given stress level was decided not to exceed 10%. The mean
value (rm ) of the stiffness ratios for a given shear stress level is calculated as:

1 n
== 4-14

To further examine the practicality of the 10% stiffness reduction criterion,
supplementary fatigue tests were carried out. Practice has shown that fatigue
failure in pavements occurs after millions of load repetitions. Stress values that
result in a few number of fatigue load cycles can therefore be considered
impractical, and hence may be excluded from the response data. Following this
practical assumption, some stress-controlled fatigue tests were conducted on
B70/100 bitumen. The stress values for the fatigue testing were selected from the
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stress region where nonlinear behaviour is apparent. This range was first
determined based on stress sweep tests. These tests are discussed below.

D) Stress Sweep and Fatigue Tests

The stress sweep results were meant to provide additional information to the
ranges of stress values where the nonlinear behaviour of the material is evident.
These tests were conducted at four selected frequencies; 0.1Hz, 1Hz, 5Hz and
10Hz. The fatigue results were then used to examine practical stress ranges for
the response modelling work. It is also used to evaluate the 10% stiffness
reduction criterion that was used to filter the frequency sweep response data.

l. Stress Sweep Results

The stress sweep tests were conducted at two selected temperatures. Figure
4-29 and Figure 4-30 present the stress sweep results obtained for B70/100 at
10°C and 20°C at four selected frequencies.
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Figure 4-29 Stress sweep results at 10°C for B70/100
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Figure 4-30 Stress sweep results at 20°C for B70/100

From Figure 4-29 and Figure 4-30 it can be seen that the nonlinear behaviour is
evident in the stress window ranging between 10 kPa to 1000 kPa. For selected
stress levels in this range, fatigue tests were conducted. The fatigue results were
analyzed using the dissipated energy approach, and the fatigue relation was
determined. Before bringing all the data together, the data processing is first
discussed.

Il. Fatigue Test Results

In analyzing the fatigue data, the Dissipated Energy Ratio (DER) were utilized
[11]. In this approach, the first step is the calculation of the energy lost per unit
volume during one complete cycle.

T
AW=| z.q.dt 4-15
0

where:
AW =The energy loss per unit volume per cycle
7 = Shear stress [ MPa |

Y = Shear strain rate

The energy loss per unit volume per cycle is obtained as:

AW = zr,y,sino 4-16
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where:
7, = Shear stress amplitude
7, = Shear strain amplitude

o0 =Phase angle

The DER, which can be used to evaluate the fatigue evolution process of a
material (Pronk et al. [11]), was obtained by dividing the cumulative dissipated
energy at the n' cycle with the dissipated energy at the n* cycle as:

AW,
DER::EL—— w7
A

n

where:
DER = Dissipated Energy Ratio
AW, =Dissipated Energy per cycle per unit volume at the i" cycle
AW, = Dissipated energy at the n* cycle

In this method, the fatigue life to crack propagation (Np) marking the transition
from the crack initiation to crack growth can be obtained from the plot of DER
vs. the number of load cycles. Figure 4-31 and Figure 4-32 present the DER vs.
number of load cycles plot for B70/100 for a selected stress values at 10°C and
20°C.

6.E+04

4 0.4 MPa & 0.5 MPa m 0.6 MPa

5.E+04

4 F+04 -

L]
T T T T T T 1

0 10000 20000 30000 40000 50000 60000 70000
Number of cycles| - |

Figure 4-31 DER vs. number of load cycles at 10°C, frequency 10Hz
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Figure 4-32 DER vs. number of load cycles at 20°C, frequency 10Hz

To obtain the fatigue life to initiation of cracking, Np, from the DER plots first a
tangent line was drawn to the initial straight section of the DER plot. The
intersection of this line with a horizontal tangent drawn to the maximum value
of the DER curve (see Figure 4-33) gives an indication to the fatigue life
resistance of the binder [11]. This value was used as the fatigue life in
determining the fatigue relation using the Wohler approach.
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Figure 4-33 Illustration; method of obtaining Fatigue life to crack initiation
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Fatigue Relation using the Wohler Approach

Following the Wohler’s approach, a logarithmic relation between the applied
stress and number of cycles to failure was established. Using the limited
number of fatigue tests conducted at temperatures of 10°C and 20°C, the
parameters for the fatigue relation given in Equation 4-18 were determined
using regression analysis.

N, = Az 4-18

where:
Nt =number of cycles to failure [ - ]
An =regression constants [ - ]

r =shear stress [ MPa ]
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Figure 4-34 Fatigue relations, stress controlled, 10 Hz

The model parameters for the Wohler’s approach are given in Table 4-16.

Table 4-16 Parameters for the fatigue relation using the Wohler’s approach

Temperature [ °C | n A R2
10 379 17402 0.996
20 326  243.82  0.876

The fatigue relations were then used to estimate practical shear stress levels that
need to be incorporated in modelling the response. The fatigue relations were
also used to evaluate the 10% stiffness reduction criterion that was used for
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filtering purpose while analyzing the frequency sweep test. All the results are
brought together in the summary and discussion presented below.

E) Summary of Results and Discussions

From the frequency sweep tests, a decrease in the complex modulus is observed
for an increasing level of shear stress. From Figure 4-24 and Figure 4-25 it is
observed that the normalized G* values for a given stress level are not constant
at all frequencies. In order to analyze the data at different temperatures, the
normalized G* values at the various frequencies at a given stress level were
averaged. Using the mean of the normalized G* values, the frequency sweep
data obtained at various stress levels for various temperatures is summarized in
Figure 4-35.
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Figure 4-35 Mean of the normalized G* values at various stress levels for
various temperatures, B70/100

A normalized G* value of 1 represents linear viscoelastic behaviour. For very
low shear stress levels, in the order of 1 kPa or less, Figure 4-35 shows that the
binder behaviour can practically be considered linear viscoelastic. For
temperatures of 20°C and below, nonlinear behaviour is evident for shear stress
values above 100 kPa. At high temperatures, the nonlinear behaviour is evident
at a much smaller stress level of about 10 kPa. These shear stress ranges for the
nonlinear behaviour of the binder are in good agreement with results reported
in literature [2].

It is to be remembered that the data points used in Figure 4-35 were obtained
using a damage limit of 10% (see Figure 4-26 and Figure 4-27). For similar work
in literature a different criterion has been used. In the work of Masad et al. [8]
the response data with a criterion of 25-30% stiffness reduction from the linear
viscoelastic stiffness value have been used. In reference to Figure 4-35, the
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minimum value for the mean of the normalized G* is about 0.78. This value is
equivalent to a 22% stiffness reduction from the linear viscoelastic value. This
shows that that the criterion used in this research lies in the lower margin of the
values used in literature.

I. Evaluation in Relation to Fatigue

The fatigue life of pavements in practice is known to be in millions. This implies
that shear stress values that result in a very short fatigue life are not of practical
significance in evaluating the long term performance of a pavement. To
examine the fatigue life cycles corresponding to the shear stress levels that were
incorporated in the response data, the fatigue relations at 10°C and 20°C were
utilized. Figure 4-36 presents the binder response for the various shear stress
levels together with the fatigue performance lines for the binder at 10°C and
20°C.
Shear stress [ kPa |
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Figure 4-36 Fatigue relations and mean of the normalized G* at various stress
levels for various temperatures, B70/100

If a laboratory fatigue life of 1 million load cycles is assumed, the field fatigue
life can be estimated by applying healing and lateral wander factors. With a
healing factor of 4 and lateral wander factor 1.5, the fatigue life in practice
would be about 6 million load cycles, which is realistic for heavy duty
pavements. For 10°C and 20°C, from Figure 4-36 a fatigue life of 1 million load
cycles corresponds to a shear stress level in the range of 80 kPa to 200 kPa.
Looking at the mean of the normalized G* at 10°C, for shear stress levels of 200
kPa or less, the nonlinear behaviour is very limited, and linear viscoelastic
behaviour can be assumed. From this, it can be argued that the nonlinear
behaviour of the binder may not have any practical significance in relation to
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the fatigue performance of the binder. The nonlinear response data at 10°C that
were obtained using the 10% damage criterion (covering shear stresses up to
500 kPa) may not thus be encountered in practice, as it results in a very short
fatigue life cycle (about 30,000 cycles at 10°C). However, this fatigue-related
evaluation is relevant only for low temperature regions. For higher
temperatures, other distress types such as rutting are important. For this kind of
distresses literature reported that linear viscoelastic assumption is not good
enough [10]. Similar to the low temperatures, evaluations to determine practical
stress limits at higher temperatures were not possible. Comprehensive
evaluation on the importance of the nonlinear behaviour for the various
temperatures was therefore decided to be made at a later stage with the help of
FE modelling work. Hence to obtain sufficient response data for all the binders,
it was decided to proceed with the 10% damage criterion.

4.3.3.2 B70/100 Mastic

A) Frequency sweep

Similar to the procedure followed for the B70/100 bitumen, a number of
frequency sweep tests were performed on the B70-100 mastic. For the reasons
discussed in Section 4.3.2.1, the 8 mm diameter cone was used to cover low to
intermediate temperature ranges, ie. 0°C up to 30°C. From the linear
viscoelastic response results presented in Section 4.3.2.1, it was shown that the
25 mm diameter did not provide good results for mastic testing. The response
behaviour for higher temperature regions for the mastic is therefore not
investigated. However, the data obtained at low to intermediate temperature
regions is considered sufficient for the modelling work in this research. Table
4-17 presents the range of shear stresses applied at the various test temperatures
on the B70/100 mastic.

Table 4-17 Stress ranges for B70/100 mastic
Temperature [°C] 0 10 20 30
Stress range [ kPa | 50-1268  20-1268  2-700  1-270

Figure 4-37 to Figure 4-40 illustrate the complex modulus and phase angle data
at various stress levels for temperatures of 0°C and 30°C.
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Figure 4-38 Frequency sweep results at 0°C; phase angle for B70/100 mastic
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Figure 4-40 Frequency sweep results at 30°C; phase angle

Similar results obtained for other temperatures, ranging from 0°C to 30°C, are
attached in Appendix B. For analyzing the effect of stress levels on the mastic
response at various temperatures, the normalized response data were used.
Corresponding to the results obtained at 0°C and 30°C, Figure 4-41 and Figure
4-42 present the normalized G* values at various stress levels.
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Figure 4-42 Normalized G* values at 30°C for B70/100 mastic

From Figure 4-41 it can be seen that a shear stress of 1.2 MPa causes the
complex modulus of the mastic to change by about 10%. However, at higher
temperatures, see Figure 4-42, a much smaller shear stress level of 53 kPa causes
the complex modulus to change by about 20%. This result has a practical
implication in pavement design computations. Since for all temperatures trucks
loads are constant, this implies that the effect of the nonlinear behaviour is
significant at higher temperatures.
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B) Summary of Results and Discussions

In this section the response data of the mastic obtained at various temperatures
are summarized. The utilized approach is similar to the one used for the
analysis of the B70/100 bitumen. At each stress levels, the mean of the
normalized G* values were calculated. Figure 4-43 summarizes the results
obtained at various temperatures.
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Figure 4-43 Mean of the normalized G* at various stress levels, B70/100 mastic

For a temperature of 20°C, Figure 4-43 shows that shear stress values in the
order of 100 kPa or more result in nonlinear behaviour. For lower temperatures,
10°C and 0°C, relatively higher shear stress in the range of 300 kPa and above
result in a nonlinear response. Higher temperature data are only available at
30°C. However, it can be seen from the trend that shear stress values in the
order of 10 kPa cause nonlinear behaviour at higher temperatures.

In Figure 4-44 the results obtained for the B70/100 bitumen are compared with
the mastic results. From the graph it can be seen that the shear stress range at
which nonlinear behaviour is evident appears to be similar for both the mastic
and the B70/100 bitumen.
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Figure 4-44 Mean of the normalized G*(open and filled marks represent the
B70/100 mastic and the B70/100 bitumen data respectively)

4.3.4 Mortar Response at Low Stress Levels

The previous sections have shown the response of the pure B70-100 bitumen
binder and B70-100 mastic for various shear stress levels at various
temperatures. In this section, results obtained for the mortar testing at low
stress levels are presented. As discussed in Section 0, the mortar column
samples can be mounted to a DSR machine following two mounting
procedures. Both procedures were used to obtain the response at low stress
levels. The mounting procedure which gave less scatter in response data was
adopted for response measurements conducted at higher stress levels. First the
results from the two setups at low shear stress level are discussed.

4.3.4.1 Frequency Sweep Results; Setup with Steel End Clamps

The steel end clamps were developed in the first phase of a PA design tool
project [7]. The purpose of the end clamps is to hold the mortar test specimen
firmly during testing. The mounting procedure involves first inserting the
mortar column to the top clamp. Then the screws on the steel clamp are
tightened. The top rotating bar is slowly lowered and the mortar column is
centred. Slowly the bottom end of the mortar column is inserted to the slot in
the bottom clamp. The mortar sample should be straight for easy alignment
with the bottom slot. All the screws holding the sample at the top and bottom
need to be securely fastened. Figure 4-45 shows the mortar sample and end
clamps in the DSR test setup.
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Figure 4-45 Mortar column DSR setup (left; test sample, middle;
mounted specimen, right; steel end clamps)

Using this setup torque controlled frequency sweep tests were conducted on 5
different samples. Temperature ranges from -10°C to 30°C were covered. The
results were used to form a master curve at a reference temperature of 10°C.
Figure 4-46 presents the master curve for the mortar based on results from 5
different tests.
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Figure 4-46 Master curves at Tref=10°C obtained for different samples

The solid lines in Figure 4-46 represent the Christensen Anderson (CA) model
fit to the master curve data. Quality of fit in terms of R square values were
obtained for the G* and 6. The shift factors used to obtain the master curve were
also described by the WLF formula. The parameters for the WLF formula, the
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CA model parameters and the regression coefficients for the master curve are
presented in Table 4-18.

Table 4-18 Master curve parameters at Tref=10°C

WLEF Factors CA model parameters R?
C Ca Gy We R G* 3
[ ] [MPa]  [rad/s] [ [ ]

Mortar 21.88 160.98 2760 6.83 1.37 0974 0991

A) Observations

Figure 4-46 shows that a slight scatter has been observed for the complex
modulus and phase angle data. The source of the scatter can be attributed to
various reasons. The sampling methods and the mounting procedure are
among the main possible sources for the data scatter. In the sample preparation
stage, great care were taken to avoid samples containing too much air voids. To
allow easy placement of the mortar sample into the clamps, the outer surface of
the steel rings needed to be cleaned with Heptane ("Wasbenzine’). In this stage
great care is needed to avoid any contact between the mortar sample and the
cleaning substance. During mounting, the centring of the mortar samples and
the fastening of the screws also involved a delicate procedure. It was observed
that when the steel rings are not perfectly circular in shape, difficulty was
encountered in inserting the rings into the end clamps. This process is believed
to introduce unaccounted deformation into the mortar sample.

Visual observation at the end of the testing also showed that, sometimes, the
steel end clamps fail to grip the sample firmly. This is also another possible
source for the scatter observed in the results.

4.3.4.2 Frequency Sweep Results; Setup with Glued Ends

Similar measurements on the mortar were conducted using the DSR setup with
glued ends. The mounting procedure involves gluing the mortar sample to the
top rotating rod of the DSR machine. For ease of handling the mortar samples
were first kept at a low temperature, in the range of 0°C to 10°C, before
mounting. The mortar column is glued on to the top rotating rod. Then glue is
placed in the bottom plate and the top rod is lowered till the sample touches the
glue on the bottom plate. Additional glue is put around the bottom ring to
provide good bond. The glued-end and the clamped-end setup in a DSR
machine were shown in Figure 4-10.

Five different mortar samples were tested under the same condition as in the
tests conducted with the steel end clamps. The frequency sweep results
obtained for these tests were used to form a master curve at a reference
temperature of 10°C. The CA model was used to describe the complex modules
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and the phase angle master curve data. Figure 4-47 presents the master curve
data from the glued end setup.
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Figure 4-47 Master curves at Tref=10°C obtained for 5 different samples

The shift factors that were used to construct the master curve are described by
the WLF equation. The WLF factors together with the CA model parameters are
given in Table 4-19.

Table 4-19 Master curve parameters at Tref=10°C

WLF Factors CA model parameters R2
Ci Co Gg ¢ R G* o
[-] [-] [MPa]  [rad/s] [-] [-] -]

Mortar 21.86 157.14 2460 4.16 1.32 0.994  0.995

A) Observations

As compared to Figure 4-46 the results presented in Figure 4-47 have shown a
better repeatability. This can also be seen from the higher R? values reported in
Table 4-19. The better repeatability observed in case of the glued end setup can
be attributed to many factors. In comparison with the steel end clamp setup, the
mounting procedure for the glued end setup involved a less delicate procedure.
The loosening of the end grips observed in the testing phase when using the
steel end clamp was avoided by using the glue.

The relative disadvantage in using the glued end setup is that vertical
alignment (centring) of the mortar sample is ensured with visual observation,
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whereas in the setup with the steel end clamp the circular slots guarantee
precise centring of the mortar sample. In spite of this, the glued end setup has
provided better repeatability, and it is therefore chosen for carrying out further
tests on the mortar with higher shear stress levels in this research.

4.3.5 Mortar Response at High Stress Levels

4.3.5.1 Frequency Sweep Test Results

Similar to the B70/100 bitumen and mastic testing procedures, a single mortar
test specimen was used to investigate the stress dependency at a given
temperature. As previously discussed, after each stress increment the potential
presence of damage was monitored by conducting response measurements at a
low stress level (linear viscoelastic range). With this method, the change in the
linear viscoelastic property is constantly monitored. Using the same criterion as
used for the B70/100 bitumen and mastic, a maximum of 10% reduction in the
complex modulus value (linear viscoelastic value) is used as a criterion to
define the maximum shear stress level. A frequency window of 1 Hz to 50 Hz
was chosen. Table 4-20 presents the range of stress covered at each temperature
for the mortar.

Table 4-20 Shear stress ranges covered in mortar response tests

Temperature [°C] -10 0 10 20 30

Shear stress range [ kPa] 10-2,420 10-2,420 1-1,115 1-911 1-300

For temperatures of 0°C and 20°C, Figure 4-48 to Figure 4-51 illustrate the
complex modulus and phase angle plots at various shear stress levels. Similar
plots for other temperatures are given in Appendix C.
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Figure 4-48 Frequency sweep result; complex modulus for mortar at 0°C
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Figure 4-49 Frequency sweep result; phase angle for mortar at 0°C
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Figure 4-51 Frequency sweep result; phase angle for mortar at 20°C

Following the procedure used for the B70/100 binder and the B70/100 mastic,
the G* values obtained at various shear stress levels for the mortar were
normalized with the corresponding G* values obtained at the lowest shear
stress level, i.e. the linear viscoelastic G*. As an example, the normalized G*
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values at various shear stress levels at 0°C and 20°C are presented in Figure
4-52 and Figure 4-53 respectively.

1.5E+00
— 1.OE+00 | g .
jao]
s
=
Zg 5.0E-01 ~
¢ 10 kPa B 1305 kPa x 1780 kPa % 2020 kPa
+ 2140 kPa = 2260 kPa e 2375 kPa
0.0E+00 T T T T T T
0 50 100 150 200 250 300 350

Frequency[ rad/s |

Figure 4-52 Normalized G* at various stress levels for mortar at 0°C
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Figure 4-53 Normalized G* at various stress levels for mortar at 20°C

From the data at 20°C in Figure 4-53, it can be seen that a normalized G* value
of about 0.75 is obtained for a shear stress of 490 kPa. In terms of the linear
viscoelastic complex modulus value, it translates to a 25% reduction. For the
results at 0°C (see Figure 4-52) a much higher shear stress level of 2.4 MPa gives
a normalized G* value of 0.9. This implies that at 20°C the mortar exhibit highly
nonlinear behaviour at a smaller shear stress levels as compared to the
behaviour at 0°C.
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A) Summary of Results and Discussions

In the above discussions, the mortar response results obtained at 0°C and 20°C
were used to illustrate the mortar response behaviour at low and intermediate
temperatures. Here the results obtained for all temperatures are summarized.
To allow evaluation of the shear stress ranges where nonlinear behaviour of the
mortar is evident at various temperatures, the mean of the normalized G*
values were calculated at the various stress levels. For temperatures varying
from 0°C to 30°C, Figure 4-54 summarizes the results obtained at various shear
stress levels for the mortar.
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Figure 4-54 Mean of the normalized G* values for the mortar

Figure 4-54 shows that at a temperature of 20°C shear stress values of 100 kPa
and above result in a nonlinear behaviour. For 10°C a relatively higher shear
stress in the range of 300 kPa causes a nonlinear response. At 0°C the mortar
shows nonlinear behaviour for shear stresses above 1 MPa. It can also be seen
that a much smaller shear stress value in the range of 10 kPa causes nonlinear
behaviour of the mortar at 30°C. These results appear to be similar with the
results obtained for the mastic in the previous section. For the sake of
comparison the normalized G* values for the mastic and the mortar are
presented together in Figure 4-55.

119



CHAPTER 4

J
z

0 0°C < 10°C o 20°C a4 30°C| B70/100 Mastic

Mean of the normalized G* | - ]
=
o

e 0°C & 10°C m20°C a 30°C| Mortar

e
n

1 10 100 1000 10000
Stress [ kPa |

Figure 4-55 Mean of the normalized G*; mortar and mastic

Figure 4-55 shows that with the exception of the 0°C data, the shear stress range
where the mortar and the mastic exhibit nonlinear behaviour is very similar. In
addition to the shear stress range, the values of the normalized G* at the various
shear stress levels also appear to be the same. Since the filler-binder ratio used
in the mastic and the mortar is the same, the above results may indicate that the
observed nonlinear behaviour of the mortar at intermediate and high
temperature regions is highly governed by the mastic behaviour.

Analysis of the mortar and mastic response data obtained at low stress levels
also lead to a similar conclusion. As shown in Figure 4-56, the master curves
that were obtained for the mastic and the mortar at a reference temperature of
10°C reveal similar response behaviour for frequencies lower than 1 rad/s. From
the time-temperature superposition principle that were used to construct the
master curve, the data corresponding to the reduced frequencies in the range of
1E-4 rad/s to 1 rad/s in Figure 4-56 represent the response for temperatures of
20°C and 30°C. For obtaining the master curve parameters for the mastic and
mortar, reference is made to Table 4-14 and Table 4-19 respectively.
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Figure 4-56 Master curves for the mortar and mastic at 10°C.

In contrary to the trend observed at higher temperatures, the nonlinear
behaviour of the mortar at 0°C is rather different as compared to the mastic.
From Figure 4-55 it can be seen that the mastic exhibit a nonlinear behaviour for
shear stress values of 300 kPa and above, whereas the nonlinear behaviour of
the mortar is evident for shear stress values greater than 1MPa. In terms of the
shear stress range covered in the test, it can also be seen that much higher shear
stress values have been realized in the mortar at 0°C. This difference in
response behaviour is also observed on the master curve results shown in
Figure 4-56, i.e. higher complex modulus values for the mortar at lower
temperatures. For the materials considered in this study, the above discussion
implies that in terms of the response, the presence of fine fractions of sand in
the mortar influenced the low temperature behaviour. For temperatures of 20°C
and above, the mastic and mortar response appeared to be similar both in the
linear as well as the nonlinear range.

B) Experimental observations

Specimen Geometry

The mortar column geometry was found to be suitable for response testing for
temperatures up to 30°C. Experimental attempts to apply the same geometry
for response investigations at higher temperatures were not successful. It was
observed that for temperatures of 40°C and above the mortar column showed
excessive creep due to temperature effects. Because of this reason the response
investigations conducted at higher temperatures were excluded from the
analysis.
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Testing and Data Processing

Due to inertia and machine compliance factors, the torque that is applied by the
DSR machine (raw torque) is not the same as the torque in the test sample. This
also applies to the raw deformations measured by the machine and the
resulting deformation in the test sample. The raw torque and raw deformations
measured by the machine therefore need to be adjusted for inertia and machine
compliance factors to obtain the true torque and true deformation in the test
sample. This has been extensively discussed elsewhere [9]. Following this
procedure, it has been observed that at higher frequencies (in the range of 200
rad/s and above) inertia and compliance factor corrections on a constant raw
torque resulted in a varying torque in the test sample. This has been illustrated
using the mortar test data at 10°C as shown in Figure 4-57 and Figure 4-58.
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Figure 4-57 Applied (raw) torque; mortar test conducted at 10°C
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Figure 4-58 Real torque in the mortar sample, test conducted at 10°C
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The main reason for the variation in torque observed at higher frequencies is
due to the resonance effect. This effect on mortar test results for frequencies in
the range of 150 rad/s to 200 rad/s has also been reported elsewhere [9].
Analysis of the data points for frequencies less than 200 rad/s showed that the
variation in torque lies within the range of + 5% from the mean value. Since it is
desired to characterize the mortar behaviour for constant torque covering a
range of frequencies, it has been decided that a * 5% variation in torque
magnitude is acceptable. Therefore, for the nonlinear response modelling work,
which is to be covered in Chapters 5 and 6, the data points corresponding to the
frequency range of 200 rad/s and above are excluded.

The above discussion also implies that mortar response and fatigue
measurements that are obtained at loading rates which lie in the vicinity of the
resonance frequency may lead to misleading results.

4.4 Conclusions

4.4.1 Experimental Setups

Two different experimental setups, i.e. the cone and plate and the mortar
column setup, were used in this research. For testing the penetration grade
bitumen and the mastic the cone and plate setup was used. For the mortar, the
DSR setup with a cylindrical shaped specimen was utilized. With these setups
response investigations were made at low and high shear stress levels. With
regard to the test setups the following conclusions were reached:

Cone and Plate Setup

e The cone and plate setup provides fairly uniform shear stress distribution in
the test samples.

e For B40/60 bitumen, the response results obtained from the 8 mm and 25
mm diameter cone and plate setups were found to be comparable with the
results obtained from the standard parallel plate geometries.

e For the mastic, the 25 mm diameter cone, with a cone angle of 4.57°, has
delivered inconsistent result (see Figure 4-17). The inconsistency is believed
to be a result of the small cone angle and small gap. In comparison to the
maximum size of the filler material in the mastic, higher gap settings and
higher cone angles may provide better results. This can possibly avoid
jamming of filler materials in the vicinity of the tip of the cone, where the
distance between the surface of the cone and the bottom plate is small.

e The 8 mm diameter cone, which has a larger cone angle of 26.57°, has
provided comparable results with the data obtained from the parallel plate
geometries (Figure 4-16 ). However, better quality response data may also be
obtained if higher gap setting (2~5 times the maximum size of the filler) is
used.
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Mo

rtar Column Setup

For mortar testing, either the steel end clamp or the glue can be used to
mount the sample into the DSR machine. The repeatability of the test results
were found relatively better in case of the glued ends.

For the setup with steel end clamp a contact slip between the end clamps
and the steel rings on the mortar has been observed in limited cases. This
introduces variability in the test results.

For mortar column testing, excessive creep due to temperatures effects was
observed at high temperatures. Because of this the mortar column setup is
not recommended for testing temperatures in the range of 40°C and above.
For lower temperature regions, 30°C and below, the test setup delivered
good results.

Due to resonance frequency effects the mortar column setup does not
provide good results for frequencies larger than 200 rad/s (Figure 4-58).

4.4.2 Test Results

Bin

der response investigations at various stress levels were performed.

Following each shear stress application the test sample has been monitored for
existence of any possible damage. A change in the complex modulus value of

10% was used as a threshold value to filter out response data that may possibly
include damage. Based on the data analysis, the following conclusions were
reached:
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e Nonlinear behaviour was observed at high shear stress levels for all the
binders.

e The stress range where nonlinear behaviour is observed varies with
temperature. At higher temperatures, i.e. above 30°C, shear stresses as
low as 10 kPa causes nonlinear behaviour in the mortar. At 0°C,
nonlinearity is apparent for shear stress values of 1 MPa and above.

¢ In the intermediate temperature range shear stresses within the range of
100 kPa to 300 kPa cause nonlinear behaviour in the binders. Shear stress
levels greater than 300 kPa cause nonlinear behaviour at 10°C for the
mastic and mortar. At 20°C, nonlinear behaviour is observed for shear
stresses greater than 100 kPa.

e The response behaviour of the mortar and the mastic has been found to
be similar for temperatures of 20°C and above. This observation has been
found valid for data obtained from the low stress as well as the high
stress measurements (Figure 4-55 and Figure 4-56).
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4.4.3 Implications

The nonlinear behaviour observed at high shear stress levels implies
material response models used in meso mechanics design programs need to
incorporate the observed nonlinear behaviour.

In view of constant axle loads on a pavement, both at low and high
temperatures, the effect of nonlinear behaviour on the pavement response is
expected to be highly pronounced at higher temperatures. This is because at
high temperatures the binders behave nonlinear at small shear stress levels.
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Modelling Linear Viscoelastic
Response of Binders

n Chapter 4 the response of bituminous binders for various shear stress

levels has been investigated. From the results it has been observed that the

response of the binders at high shear stress levels is nonlinear. Modelling
the nonlinear response of the binders will be treated in detail in the next
chapter. In this chapter, modelling the response of the binders in the linear
viscoelastic range is presented. For this purpose the two selected response
models, the Huet-Sayegh and the Burgers” model, have been utilized. In the
first half of the chapter, the ability of the Huet-Sayegh model to describe the
binder response in the frequency domain will be analyzed. Modifications that
are deemed necessarily are discussed, and methods of obtaining model
parameters from experimental data are presented. For applications in numerical
environments the time domain formulation of the model is presented. The
relationships between the time and frequency domain responses of the binders
have also been discussed. For these relations, numerical and experimental
verifications have been performed using a number of creep-recovery and
relaxation tests. The second half of the chapter covers similar modelling work
with the Burgers” model. Based on the obtained results the pros and cons of the
models are summarized, and the practical implications are discussed.

5.1 Response of Bituminous Materials

Bituminous materials have time dependent mechanical properties. The creep
compliance and the relaxation modulus functions are two commonly used
material functions that are used to characterize the time dependent behaviour.
In the frequency domain, the corresponding material functions are known as

127



CHAPTER 5

the dynamic creep compliance and the dynamic modulus. These functions are
unique and serve as the fingerprint of the material. It follows from the theory of
linear viscoelasticity that these material functions are interrelated. Hence, if the
relaxation modulus of a material is known the creep compliance can be derived
and vice versa.

Various forms of analytical expressions (models) are usually used to describe
the relaxation modulus and creep compliance data obtained from laboratory
tests [3, 10, 13]. The required model parameters to describe a given response
data can be determined by performing a regression analysis on experimental
data. For the Huet-Sayegh and the Burgers” model, the ability of the models to
describe experimentally obtained data is investigated in the following sections.

5.2 The Huet-Sayegh (HS) model

The HS model is an excellent model for AC mixture response modelling. It is
obtained by placing a parallel spring to the original Huet model [8]. Its distinct
feature as compared to other rheological models is its ability to describe AC
mixture response for a wide range of loading rates with a limited number of
model parameters [13, 17]. The physical representation of the HS model is given
in Figure 5-1.
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Figure 5-1 Huet-Sayegh model

5.2.1 The Model Behaviour in Frequency Domain

The mathematical representation of the HS model in frequency domain (for the
shear modulus G) is given by:

GHO)=G,+ 1+, (iot ()}T“I_f;o (iot,)™ >-1
1 1 2 2
where:
G, = instantaneous shear modulus value
G, = rubbery shear modulus value
1,T, = time constants
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m,,m, = parabolic dashpot coefficients
3,,6, = model parameters
i = complex number notation

The constants 1 and d2 are defined as:

5 _5(0.=G) ‘s
n;

Wheren, denotes model parameters for the parabolic dashpots. This model has
a total of six parameters and two time constants. For asphalt concrete response
modelling only one time constant is often used and the model parameter 02 is
taken as unity [8]. Consequently only six parameters are used to describe the
complete response of asphalt concrete covering various temperature and
frequency regions.

At extreme low and high values of frequencies, the model approaches to
limiting threshold values. For complex shear modulus data, these threshold
values are the rubbery shear modulus, G,, and the instantaneous shear
modulus, G, values (Figure 5-2). For intermediate values of frequencies, the
shape of the master curve is dictated by the parabolic dashpot parameters.
Parabolic dashpot coefficients values close to unity tends to make the S-curve
steeper. This results in a narrow spectrum of relaxation times. Dashpot
coefficient values close to nil tends to flatten the curve, implying less sensitivity
of the material response for loading frequency. Coefficients between zero and
one result in an S-shape curve with a moderate slope that describes the material
behaviour within wide relaxation spectrum.

Decreasing temp

m,; &m,> 1 ,-— Increasing temp

m, &m,> 0

|G*|

N

Go

f |arf

Frequency

Figure 5-2 The HS model characteristics

For materials obeying the time-temperature superposition principle, the effect
of temperature on the HS model parameters can be explained by applying the
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appropriate shift factors to the time related model variables, i.e. the dashpot
parameters.

5.2.2 Viscous Response Element

As discussed in the literature review section, for small loads asphaltic mixtures
exhibit a mix of elastic, viscoelastic and viscous properties. While the HS model
is capable of describing the response of such materials for wide frequency and
temperature ranges very well, the model principally lacks a response element
for simulating viscous deformation in asphalt mixtures.

In bitumen rich asphalt mixtures, such as dense asphalt concrete, the large stone
aggregates in the mixture more or less float in the bituminous mortar. In such
mixtures the contribution of the viscous deformation of the bituminous mortar
to the overall mixture deformation is significant. In this case, the only
disadvantage of the HS model, in contrast with the familiar Burgers” model, is
the lack of a viscous response element. In this regard, the wider use of the
Burgers” model for modelling permanent deformation characteristics of asphalt
mixture is partly attributed to its ability to capture viscous deformation [20]. As
an attractive alternative to the Burgers’ model, the inclusion of a viscous
deformation element in the HS model will make the model more
comprehensive for broader application. To capture linear viscous deformations,
the original HS model is therefore modified by adding linear dashpot element
in series.

5.3 A Modified HS Model (MHS)

The MHS model is obtained by placing a linear dashpot in series with the
original HS model. The linear dashpot element is for improving the low
frequency region fit of the model to experimental data. It also allows the model
to simulate viscous deformations. The physical representation of the model is
shown in Figure 5-3.
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Figure 5-3 MHS model
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5.3.1 The Model in Frequency Domain

The general behaviour of the model in frequency domain is similar to that of the
original HS model. However, the behaviour of the MHS model at very low
frequency regions resembles that of the Burgers” model. Unlike the original HS
model, where the limiting value at the lower frequency region is a non-zero
rubbery modulus value Go, the MHS model approaches a limiting value of nil at
very low frequencies. This is due to the presence of the linear dashpot element
which enables the model to simulate viscous deformations.

5.3.1.1 Model Parameter Determination

For model parameter determination from frequency domain data, the analytical
expression of the model in frequency domain is required. Since the total strain
in the MHS model is the sum of the strain in the linear dashpot and the strain in
the original HS model (Figure 5-3 ), the creep compliance of the MHS model can
be obtained by adding the compliances of the linear dashpot and the original
HS model as:

. G' G" 1
V(O =150 _I'LG*P "o

} =J'(0)—-1.J"(w) 5-3

In Equation 5-3 the term 7, is the linear dashpot parameter. The terms J*(w)wmss,
J'(w) and J"(®w) denote the complex, storage and loss creep compliances of the
MHS model. The terms G’, G” and |G*(w)! denote the expression for the loss
shear modulus, storage shear modulus and magnitude of the complex shear
modulus for the original HS model.

The expression for the storage and loss modulus values of the original HS
model is given by[17]:

G’=G0+A.G°;_G2° & G":B.%
A“+B A“+B

5-4

Further, the variables A and B in the storage and loss modulus expression are
obtained as:

n n : T : T
cos{ml 2) cos(m2 2) sin (ml 2) sm(m2 2) 55
A=1+9, +8 &B=3§ +8 i

(T)™ P (o)™ b (on)™ P (o)™

Given a set of data comprising the dynamic modulus and the phase angle
values, Equation 5-3 to Equation 5-5 can be used to determine the parameters
for the MHS model using simple regression analysis in an excel sheet. The
following procedure can be followed in the model parameter determination:
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e Define the error as the square of the relative difference between the
experimentally determined and model predicted values for all the data
points. This is done for the loss and storage compliances of the MHS model.

e Define the objective function as the sum of the squared standard errors
obtained for all the data points.

e Minimise the objective function (Equation 5-6) using multi-dimensional
non-linear least square regression techniques to determine all the model
parameters.

N ' 2 n 2
Objective function= Z[B—él} J{;T(")—l} ] 5-6

i=1 i

In Equation 5-6, J'; and J", denote the predicted storage and loss compliances
for the MHS model at the i frequency. The notations J' and J" represent the
measured storage and loss compliance at the i" frequency.

5.3.1.2 Model Application to Describe Frequency Domain Data

The MHS model has been used to describe several experimental data including
those obtained on penetration grade bitumen, mastic, virgin mortar, aged
mortar and bituminous mixtures. The response data obtained for the
penetration grade bitumen, the mastic and the virgin mortar are described in
Chapter 4. The response data for the aged mortar have been taken from a prior
research project. This particular mortar contains Cariphalte XS (polymer
modified) bitumen [9]. To illustrate the model’s ability to simulate the response
of asphalt mixtures, asphalt mixture data from literature have been used. The
two asphalt mixture response data that were obtained from literature include
the following:

e STAB 0/22 mixture response data that were obtained at temperatures
ranging from -10°C to 20°C. The stiffness modulus was measured in a
four point bending test (4PB) in the controlled displacement mode. The
data cover frequency ranges from 2 to 29.3 Hz [17].

e Response data for a Recycled Asphalt mixture (RAP) obtained at
temperatures ranging from -10°C to 50°C. The modulus was obtained
from dynamic tests in the uni-axial mode. The data covers a frequency
window ranging from 0.1 Hz to 25 Hz [19].

Figure 5-4 and Figure 5-5 illustrate the MHS model ability to describe frequency
domain response data for the mortar and mastic. In these figures the model
prediction with the absence of the linear dashpot is also included to illustrate
the contribution of the linear dashpot at low frequencies.
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The improvement in the phase angle fit of the MHS model at low frequencies is
attributed to the linear dashpot element. It should be noted that for Figure 5-4
and Figure 5-5, changing the parabolic dashpot parameters can provide better
tits for the MH model. However, in such approach the viscous deformations at
low frequencies would not be captured as true viscous deformations, rather it
would be captured as pseudo deformations. Hence, upon the removal of
applied loads all deformations are fully recoverable. The MHS model
parameters for the various binders are given in Table 5-1. It can be seen that the
Go value for the binders is nearly zero. For these binders it implies that the
parallel spring in the MHS model can be eliminated. In such case, the resulting
model is the same as the peculiar case of the 252P1D model [1, 13].

Similar model fits were also made on the asphalt mixtures. For the asphalt
mixtures, the shift factors used to construct the master curve were obtained
using the Arrhenius equation given in Equation 5-7. The MHS model fits to the
asphalt mixture response data are presented in Figure 5-6 and Figure 5-7.

) _exp[AH(l 1}]
—expAH[L_ 1
R(T T, 5.7

a; = the shift factor
R,AH = model parameters

T = the temperature in Kelvin

= the reference temperature in Kelvin

f = the frequency

f = the reduced frequency

From Table 5-1, it can be seen that the model parameter corresponding to the
series dashpot element, n,, is relatively very high for the RAP mixture.
Nevertheless, the contribution to the phase angle fit is reflected in Figure 5-6.
For the STAB mixture, due to the dense asphalt like behaviour of the mixture,
the linear dashpot contribution is more significant. It can also be seen that for
the STAB mixture the Evalue is close to nil indicating the viscous nature of the
mixture behaviour at higher temperatures (low frequencies).
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Table 5-1 MHS model parameters for various materials

MHS model parameters

Materials T m, m, d, T E, E, N;
[°C]  [-] [-] [-] [s] [MPa] [MPa] [MPas ]
RAP 44 047 017 099 171 45137 5793  121.0E7
STAB 10 0.14 0.477 1.646 1.21E-1 40480.5 1E-9 392.0E3
T m, m, d, T Go Go s
[°C]  [-] [-] [-] [s] [MPa] [MPa] [MPas]
B 70-100 20 0.57 0.182 0.25 2.03E-6 622.25 0 1.21
Mastic 20 0.699 0.259 0.046 1.36E-5 1052 1E-9 251

Virgin mortar 10 0.711 0.272  2.87E-2 5.41E-5 2699 1E-9 585.44
Aged mortar 10 0.460 0.189 8.9E-2 2.14E-5 3414.68  3E-9 9778.0

Table 5-2 Quality of fit to experimental data (R? values)

B 70-100 Mastic Virgin Aged STAB RAP

mortar mortar Mix Mix

G*, EX 0.989 0.998 0.994 0.989 0.991 0.996
¢ 0.997 0.992 0.997 0.961 0.995 0.984

The shift factor parameters for the binders and mixture data, as described by
the Arrhenius and WLF equations, are given in Table 5-3.

Table 5-3 Parameters for Arrhenius and WLF equations

Materials C, C, T, Materials AH R T.,
-1 [-] [°C] -] -1 e

B 70-100 16.91 144.45 20 RAP 216.18 8.62 4.4
Mastic 20.69 164.8 20 STAB 192.00 7.64 10

V.mortar 21.88 160.9 10
A. mortar  42.67 281.98 10

As shown in

Table 5-2, for all binders and asphalt mixtures high R? values have been
obtained. This shows the good agreement between the MHS model prediction
and the measured data. For the RAP mixture, the reduction in phase angle
observed at high temperatures is also well described by the model. In asphalt
mixtures, this phenomenon is observed at higher temperatures, and it is
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attributed to the viscous nature of the binder which results in a change of the
load transfer mechanism (aggregate interlock) within the asphalt mixture.

90

A. mottar o A. mortar
g 2000 ¢  Vmortar o * a72 ¢  V mortar
B . o .2 .
% 0 Mastic '5 O Mastic
g A B70-100 o B4 B70-100
— a.
< L.Eq 3
o s
= 1000 S 36
- =
= g18

=
O T T 0 T T T T
0 1000 2000 0 18 36 54 72 90
| G*| Measured Phase Measured

Figure 5-8 Comparison of predicted and measured response for binders

For the entire set of available binder data, i.e. 4 different master curves, Figure
5-8 presents the experimentally obtained values of the shear and phase angle
data plotted against the model prediction values as predicted by the MHS
model. In Figure 5-8 the solid line represents the line of equality (L.Eq).

Similarly for the STAB and RAP mixtures, excellent fits have been obtained.
Figure 5-9 summarizes the results obtained for the asphalt mixtures.
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Figure 5-9 Comparison of predicted and measured response for mixtures

Based on the above results, the following remarks can be made about the MHS
model in frequency domain.

e The good quality of fit, reflected in high R? values obtained for both the
complex modulus and phase angle data, suggests the model’s excellent
ability in describing bituminous materials response for wide range of
frequencies and temperatures.
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e For all cases of the binders, the parameter corresponding to the parallel
spring, Go, is close to nil. This suggests that the parallel spring in the
modified HS model can be eliminated in modelling the response of
binders. The resulting simplified model for the binders will therefore
be the Huet model with a linear dashpot in series, which is also a
particular case of the 252P1D model.

5.3.2 The Model in Time Domain

It has been shown in previous section that the analytical expression for the
dynamic creep compliance, hence the dynamic modulus, of the MHS model can
be obtained. This expression has been used for model parameter determination
in the frequency domain. For time domain use, analytical material function for
the Huet model exists, i.e. power functions. However, to the best of the author’s
knowledge, the analytical form of the time domain material functions for the
original HS, the 252P1D and the MHS models are complex to obtain. In
multilayer programs, such as VEROAD and ViscoRoute, application of such
models in time domain is based on the possibility of Fourier decomposition for
a moving constant load with constant speed [2, 7].

Application of the MHS model in time domain therefore requires a numerical
approach. In this work a different numerical approach is proposed. In the
following section, the time domain treatment of the MHS model is presented.

5.3.2.1 Numerical Approach

To allow implementation of the MHS model in numerical environments, the
differential form of the linear viscoelastic theory can be used. In order to do so
tirst the numerical approach for treating the parabolic dashpot element needs to
be obtained. For this reason the numerical formulation of the parabolic dashpot
element is first discussed. The section that follows generalizes the numerical
formulation of the MHS model.

A) The Parabolic Dashpot

It has been discussed in the literature review that the parabolic dashpot can
have a response in between the linear dashpot (m=1 and ¢ =n/2) and the linear
spring (m = 0 and ¢ =0). Instead of the common differentiation of integer order
a kind of differentiation of a non-integer order appears in the constitutive
relation for this response element [8, 16, 17]. The constitutive relation for the
parabolic dashpot element is given as:

o(t) =nt" Q" {a(t)} 5-8

where:

Q" = 0" /ot"is a special differential operator
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m = parabolic dashpot coefficients
M = parabolic dashpot parameter

From Equation 5-8 it can be seen that when m equals 1 the special differential
operator reduces to the first order differential operator d/dt for the linear
dashpot element. Furthermore for m equals 0 Equation 5-8 reduces to the
relationship between the stress and strain for the linear elastic spring with a
constantE =M/7. For intermediate cases (0 <m <1) the operator reduces to a
derivative of non integer order, called fractional derivative. Analytically, the
time domain treatment of this response element for arbitrarily applied strain
signals is extensively covered by Pronk [16]. The approach utilizes Fourier
transforms of load signals to obtain the time domain response.

In this research, a different approach for solving the fractional derivative is
utilized. For this purpose the Griinwald-Letnikov definition of fractional
derivatives is used [15]. At time step t+1, the m order fractional derivative of the
strain function (Equation 5-8 ) can be given as:

N B .
Q (sm):hm—ij(m).s(tHH) 5.9

A0 At™ pary

Here bj(m) denotes the Griinwald coefficients (multiplying factors for the strain
history), j is the time history index, N is the time history length. The formulation
requires that equal time steps are taken. The time step and time history index
notations are further illustrated in Figure 5-10. The Griinwald coefficients are
given as:

(m j—m-—1 i—
bj(m)Z(—l)I( .jz(J . J=& 5-10
] J F(m)I'(j+1)
0 1 t+1—j t+1-2  t+1-1  t+l
- I I I » Time index
< I I I History index
N N-1 i 2 1 0

Figure 5-10 Notations used to refer the time step and the time history

Due to the nature of the gamma function, numerical problems can arise when
calculating the Griinwald coefficients if m is close to an integer or if large values
of j occur. This problem can be avoided if the coefficients are obtained in a
recursive manner. Defining b,(m) as 1, the equivalent form for obtaining the
Griinwald coefficients recursively is given as:
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_ I'g-m) . l4+m
bj(m)‘r(—m)r(m){l j }b“(m) >

Using a short hand notation b; for b;(m) the Griinwald coefficients can be
obtained as:

5-12

Consequently, the fractional derivative of the strain function given in Equation
5-9 can be rewritten in the following form:

N
€t ij (m)e,.,,_;

Qm (SHI ) = j:lAtm

5-13

Equation 5-8 and 5-13 can now be combined to obtain a numerical form for
obtaining the stress and the strain for the parabolic dashpot as:

N
€t ij (m )8t+1—j
=

et 5-14
(0} = T
t+1 T] Atm
At™ N
€ = 1 Ot _ij(m )8t+l—j 5-15
nt =1

The numerical formulations given in Equation 5-14 and Equation 5-15 require
the entire past history of the parabolic dashpot to be stored. This is depicted in
the equation by the summation form for the strains. The Griinwald coefficients
multiplying the strain histories of the parabolic dashpot can be obtained using
the recursive relationship given in Equation 5-12.

The Griinwald coefficients follow a decreasing trend for an increasing time
history index, j. This implies that the strain histories which are far from the
current time step have less effect on the computed stress for the current time
step than those strain histories in the near past. This is in conformity with the
fading memory hypotheses for viscoelastic materials, which states that real
materials have a fading memory with time [4]. For the parabolic dashpot, the
rate at which the memory fades with time is a function of the dashpot
coefficient, m. When the value of the parabolic dashpot coefficient, m, is close to
1, the Griinwald coefficients for distant past histories are much smaller than the
corresponding values obtained for smaller parabolic dashpot coefficients. This
implies that small parabolic dashpot coefficients mean longer memory effects.
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Figure 5-11 shows the trend of the Griinwald coefficients as a function of time
history index j ,where j = 0 denotes current time step, j=1 previous step etc.

1
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—a— m=0.4
1
0 ,t,_‘\ ——m=0.6
i 01 4 “"-!, ——m=0.9
g 00 "”"w
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L
0.00001
0 20 40 60 80 100

History index, j [ - |
Figure 5-11 Griinwald coefficients for various parabolic dashpot coefficients

Numerical Example

Here an illustration for the time domain response of a parabolic dashpot is
given. To compare numerical results with analytic solutions, data from
literature have been used. Analytical formulation of the response of a single
parabolic dashpot for a block pulse load in time domain has been given
elsewhere [14]. For a single parabolic dashpot with model parameters
m,nand r the analytical time domain response for a block pulse stress o,
applied in a time window between to and t1 is given by:

c,t " LA (e m i
Szm{(t tO) (t t])} 5-16

o(t)

t, L

Figure 5-12 Block pulse stress

For dashpot parameters 7andz of 1 MPa.s and 1 second respectively, and an
applied block pulse stress op=1 MPa (Figure 5-12), the resulting strain in the
parabolic dashpot is computed numerically. The numerical result is then
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compared with the analytic solution that is obtained using Equation 5-16.
Comparisons of the analytic and numerical results for various dashpot
coefficients (m) are presented in Figure 5-13.

1.2

Strain []

Time [s |

Figure 5-13 Parabolic dashpot response (solid lines; analytical [16], dashed lines;
numerical)

Figure 5-13 shows that the numerical and analytical results are in good
agreement. From the plot it can also be seen that the parabolic dashpot
simulates a linear spring and a linear dashpot when the dashpot coefficients
assume extreme values of 0 and 1 respectively. In between these two values, a
delayed elastic response is observed.

B) The MHS Model

Since the numerical formulation for obtaining the stress and strain in the
parabolic dashpot is known, similar procedures can be followed to derive
expressions for the stress and strain in the MHS model. In reference to Figure
5-3, the strain in the original HS element (&[5 ) can be obtained by summing up
the individual strain contributions from the linear spring (&!,) and the two
parabolic dashpots (g!,, andg?,). Denoting the stress in these elements as o,

t+17
the strain in the original HS element can be formulated as:

HS 1 I Atml I Atmz I

= o, + (e) (e)
t+1 t+1 m, -1 t+1 m, -1 t+1
G, -G, % n,7T,

N N
1 2
- Z b,(m))e,, ;- Z b;(m,)e,,_;
1 =

€

5-17

Referring to Figure 5-3, the total stress in the original HS model is obtained as:
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cst+1 = Gt+1 +G 81+1 5-18
Substitution and rearranging yields:
HS _ X HS
8t+1 - 1+X-G0 Gt+1 1+XG [Zb (m )8t+1 j Zb (m2)81+1 Jj 5-19
The parameter y is given by:
1 At™ At™
Y= + —+ ~

_ m; -1 m,
G,-G, n7 n,7,

The numerical constitutive form given in Equation 5-19 can be used for
obtaining the strain in the original HS response element. To obtain the total
strain for the MHS model, the strain contribution from the linear dashpot (&7

needs to be taken into account. The numerical formulation for the stress and the
strain in the linear dashpot is given as:

n LD _ At | us  ip
ot = 2] fatn-a] H 520

It is important to note that the linear dashpot can be considered as the parabolic
dashpot with the dashpot coefficient of one, m = 1, which leads to a Griinwald
coefficients, bi= -1 and bj = 0 for j > 2. This implies that all the multiplying
coefficients for the strain histories are zero except bi. This in turn implies that
only the strain history at the previous time step is sufficient for numerical
computations, which is consistent with the numerical form obtained in
Equation 5-20.

The final formulation for the strain in the MHS model (&!®) can now be

obtained by adding the strain in the linear dashpot and the strain in the original
HS model as:

MHS HS X At LD 1 < 1 S 2
€1 T 0w R i E b;(m,)e,, ; + § :bj(m2)8t+1—j 5-21
1+Gyx | ‘3 =)

1+G,x M,

The numerical form given in Equation 5-21 can be used to compute the strain in
the MHS model for stress controlled situation. For strain controlled conditions
the relation needs to be rewritten to obtain a suitable expression for obtaining
the stress as:
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-1
c?j{ X +ﬂ} -{gggis_gfl) oL (Zb(m)smJ+Zb(mz)8t+uﬂ 5-22

1+Gyx M,

The above formulations require that for each incremental time step a strain
update need to be made for the linear dashpot element (¢ ). This can be
performed using Equation 5-20. In addition, the strain values for the two
parabolic dashpots (&|,,,i=1,2) need to be computed and stored. Since the stress
(c1) and the strain (&)°) are known, the following relations can be used to

t+1
compute the strains for storage:

I . I _  MHS __LD
GHI t+1 G 8t+1 ’ 8t+1 - 8t+1 8t+1 5-23
At™ o
1 _ I 1
€ = 1 Ot — Zb_j(ml)gpr]fj 5-24
14 =l
At" N
2 I 2
€ = o1 Ol _ij(nl)gw-l—j 5-25
n,7T, =1

5.3.2.2 Notes on Practical Implications

The time domain formulation of the MHS model involves memory effects. This
has a practical limitation when very large numbers of time step are involved in
the numerical computations. Depending on the available computational
memory, when such situations are encountered, the history length needs to be
truncated for practical purposes. Effects of truncation in the computed results
may vary depending on the material properties. It can generally be deduced
from Figure 5-11 that history truncation for a parabolic dashpot with dashpot
coefficient close to nil would have a bigger influence on the computed results
than those with a higher dashpot coefficient. For solving numerical problems
involving fractional derivatives, literature suggests various correction methods
to minimize the truncated history effect on the computed results [18]. However,
these correction methods which are developed for elastomeric materials are not
universal. Relevant correction methods need to be obtained for other material

types.

Investigation for obtaining relevant correction methods for the materials in this
research has not been made. Hence the MHS model is used in this research
without any history truncation. After the model is implemented into ABAQUS
(Chapter 6), limitations specific to meso mechanics applications will be assessed.
Depending on the required computational memory and the computational time,
the need for history truncation will be assessed.
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5.3.3 Frequency vs. Time Domain Response

5.3.3.1 General

Frequency domain experiments are conducted to obtain material response
information corresponding to short loading times. As discussed in the literature
review section, various inter conversion methods are then used to obtain the
time domain material functions. It is therefore expected that the material
response information obtained from the frequency domain test would be
sufficient to simulate the time domain response of the material for short loading
times.

In this research a limited number of time domain tests were carried out to
obtain the creep-recovery and relaxation behaviour of the binders. Using the
MHS model parameters that were obtained from the response data in frequency
domain, relaxation and creep-recovery tests were simulated. The simulation
results have been compared with the experimental data. To allow a reasonable
comparison, the following two points are deemed important.

e Ensure uniform test sampling and test setup procedures for both
frequency domain and time domain tests.

e Ensure stress/strain levels are low to guarantee measurements are
conducted in the linear viscoelastic range

Stress and strain levels within the linear viscoelastic range can be determined
based on the stress and strain sweep test results. To ensure uniform sampling
and setup procedures for both frequency and time domain tests, it has been
decided to carry out both tests on the same test specimen. Hence from one test
specimen, both the frequency and time domain responses of the material are
obtained. The details of the test procedures and simulation results are presented
below.

5.3.3.2 Relaxation Tests on Mortar

Displacement controlled time domain tests were carried out on five different
mortar specimens. A linearly increasing angular displacement (strain) was
applied on the mortar for time step, Ti, of 1 second, 2.5 seconds, 5 seconds and
10 seconds (Figure 5-14). The angular displacement obtained at the end of each
time step is kept constant for 60 seconds. During the entire period the torque
(stress) response of the material is measured. Table 5-4 summarizes the
conditions for the relaxation tests performed on the mortar.
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Figure 5-14 Shape of the strain signal used for relaxation tests

Table 5-4 Relaxation tests conducted on the mortar

Temperature = Max strain Time step Relaxation period, = Sample no
[°C] [-] Ti[s] T2[s]
10 2.08E-3 1,2.5,5and 10 60 1
20 2.08E-3 1,2.5,5and 10 60 2
20 2.05E-4 1,2.5,5and 10 60 3
20 6.12E-4 1,2.5,5and 10 60 4
20 7.6E-4 1,2.5,5and 10 60 5

In performing the relaxation tests, the following procedures were followed:

e A frequency sweep test on the mortar sample is first conducted. The same
test specimen is then conditioned at the desired test temperature for half an
hour before the relaxation tests are started.

e A linearly increasing angular displacement is applied for a time step of 1
second and the maximum displacement is kept constant for 60 seconds. The
stress response of the material is measured for the entire time period. In the
procedure a zero displacement is set at the end of the test to minimize
viscous deformation effects on the next test.

e Allow 15 minute conditioning time for the residual stress to relax.

e Repeat the second and the third procedures with time steps of 2.5 seconds, 5
seconds and 10 seconds each with a relaxation period of 60 seconds.

In order to check whether or not the material response information that was
obtained from the frequency domain test can simulate the time domain
response, numerical simulations were performed. The comparison between the
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numerically simulated and experimentally obtained data is presented in the
next section.

5.3.3.3 Relaxation Simulations

In this section the results of the numerical simulations that were made for the
relaxation tests at 10°C and 20°C are presented. The incremental formulation of
the MHS model discussed in the previous sections has been used. The relevant
MHS model parameters that were obtained from frequency domain
measurements for the reference temperature of 10°C are given in Table 5-1. To
obtain the MHS model parameters at 20°C, appropriate shift factors from Table
5-3 were used.

Before performing the simulations, the numerical formulation of the MHS
model requires that the simulation period need to be divided in to N equal time
intervals (Figure 5-10). Consequently, from the strain that was applied during
the relaxation testing, N strain readings were made at equal time intervals. The
N strain readings are then used as input in Matlab to simulate the stress
response of the material. Figure 5-15 to Figure 5-20 present the simulated and
measured relaxation curves for the mortar.

Simulated ||

Simulated |
Measured

Measured

Stress [MPa]

Figure 5-15 Measured and simulated relaxation curves for the mortar at 10°C,
sample no 1. (Time step: 1 s (a), 2.5s (b) , 55 (c) and 10 s (d))
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Figure 5-16 Measured and simulated relaxation curves for the mortar at 20°C,
sample no 2. (Time step: 1 s (a), 2.5 s (b), 5s (c) and 10 s (d))
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Figure 5-17 Measured and simulated relaxation curves for the mortar at 20°C,
sample no 3. (Time step: 1 s (a), 2.5s (b))
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Figure 5-18 Measured and simulated relaxation curves for the mortar at 20°C,
sample no 3. (Time step: 5 s (a) and 10 s (b))
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Figure 5-19 Measured and simulated relaxation curves for the mortar at 20°C,
sample no 4. (Time step: 1 s (a), 2.5s (b), 55 (c) and 10 s (d))
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Figure 5-20 Measured and simulated relaxation curves for the mortar at 20°C,
sample no 5. (Time step: 1 s (a), 2.5 s (b), 5s (a) and 10 s (b))

5.3.3.4 Creep-Recovery Tests on Mortar

Creep-recovery tests at 10°C were conducted on mortar samples. A constant
torque was applied for time steps varying from a minimum of 5 seconds to
maximum duration of 15 seconds. Similar to the procedures that were followed
for the relaxation tests, one test specimen has been used for both tests
conducted in the frequency and time domain. For the same loading condition,
the test has been conducted on two different mortar samples. The following
procedures were followed in performing the creep-recovery tests at a chosen
torque level:

o After the frequency sweep tests are performed in the linear viscoelastic
range, the same test sample is conditioned at 10°C for half an hour before
creep-recovery tests are started.
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A torque is applied for duration of 5 seconds and the creep-recovery
behaviour of the material is measured. A recovery phase of 60 seconds is
selected.

e A 15 minute conditioning phase is allowed for the residual stress to relax.

e Then the second creep-recovery test is performed with a time step of 10
seconds and a rest period of 60 seconds. This is also followed by a 15 minute
conditioning phase for the next test.

e The third creep-recovery test is performed with a time step of 15 seconds
and rest period of 60 seconds.

e Using the second torque level, the above procedures are repeated.

At the end of each creep-recovery tests, a zero displacement is set to minimize
possible effects of viscous deformation on the test results. Figure 5-21 shows the
shape of the measured response for an applied shear stress of 0.825 kPa and
time step, T1, of 5 seconds.

x10”

——————— Strain |

Stress

Time [ s] Time]s]

Figure 5-21 Loading for the creep-recovery test (left), typical creep-recovery
result (b)

For combinations of three different time steps (5 seconds, 10 seconds and 15
seconds) and two torque levels (35 HNm and 65 HNm ), a total of six creep-
recovery test data were obtained from one test sample. For the second sample
the same number of data was obtained. These test results were used for
comparing numerically simulated creep-recovery tests.

5.3.3.5 Creep-Recovery Simulations

Using the MHS model parameters that were obtained from the frequency
domain tests (Table 5-1), the creep-recovery response of the mortar were
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numerically simulated using Matlab. The incremental formulation of the MHS
model discussed in the previous sections has been used for this purpose.

Figure 5-22 present the comparison between the measured and simulated creep-
recovery test for an applied shear stress of 0.825 kPa.

6 ‘ ‘ ; — .
Simulated ||

Simulated 8

Strain [-]

Time[s]

@)

Simulated ||

Strain []

Figure 5-22 Measured and simulated creep-recovery data for an applied stress
of 0.825 kPa (Time step: 5s (a), 10s (b) and 15s (c))

The first plot represents the results obtained for time step, T1, of 5 seconds. The
second and third plots correspond to time steps of 10 seconds and 15 seconds
respectively. Similar plots for a shear stress level of 1.53 kPa are presented in
Figure 5-23. In each of the plots the two dashed lines (test#1 and test#2)
represent the experimentally obtained creep-recovery data for the two mortar
samples.
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Figure 5-23 Measured and simulated creep-recovery data for an applied stress
of 1.53 kPa (Time step: 5s (a), 10s (b) and 15s (c))

5.3.3.6 Discussions

As stated before, the frequency domain master curve data covering a wide
range of frequencies were used to obtain the MHS model parameters. The
model parameters were then used to simulate the time domain responses. The
good agreement observed between the simulated and measured response data
confirm that the frequency domain master curve data contained relevant
material response information for short to long loading times. Which implies
that one set of model parameters can be used to simulate both time and
frequency domain responses. In relation to the response model, the results also
show that the MHS model can be utilized for time domain simulations.

In terms of accuracy, the relaxation simulations appear relatively more accurate
than the creep/recovery simulation results. The creep/recovery test results, test
#1 and test #2, also did not show good repeatability. The main reason for this
was not clear due to the testing phase. Possible reason could be in relation to
the applied shear stress levels. In reference to the relaxation simulations at 10°C,
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where very good agreement between the simulated and measured data is
observed, maximum shear stress levels are in the range of 25 kPa to 120 kPa.
For the relaxation tests conducted at 20°C, the maximum shear stresses vary
from 0.8 kPa to 15 kPa; and relatively better agreement between simulated and
measured data were observed for cases where the maximum shear stress is in
the range of 4 kPa to 15 kPa. For very low shear stress levels (see Figure 5-19 (c,
d) and Figure 5-20 (c, d)), the simulated results appear less accurate. Hence, the
relatively less accurate simulation results obtained for the creep/recovery
response could be a result of the low shear stress applied on the specimen. The
may indicate that the machine requires relatively higher torque level for more
accurate measurements.

With regard to practical use, the above simulation results are very reasonable.
For fatigue based simulation in practice, the loading time for a wheel load on a
pavement is in a fraction of seconds. In the simulations above, loading times of
up to 15 seconds were considered with reasonably accurate simulated results.
This also shows that very accurate material information is obtained from the
frequency domain data. For creep performance criteria, supplementary time
domain tests with long loading times are necessary.

5.4 The Burgers’ model

The Burgers” model is widely used for modelling the response of bituminous
materials [5, 12, 20]. The model is obtained by placing a single Maxwell element
in series with a Kelvin-Voigt element (Figure 5-24). Its wide application for
modelling bituminous materials comes from a number of reasons. One of the
main reasons is that the model comprises response elements for describing the
elastic, viscoelastic, and viscous components of the material response. These
three response phenomena are observed in bituminous materials. Like most
spring-dashpot combination models, the model is suitable and computationally
efficient in numerical applications. The disadvantage of this model as compared
to the MHS model is that it describes the response of the material only for a
narrow frequency range. Hence different parameters needed for different
loading rates [11].
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Figure 5-24 Maxwell model (a), Kelvin-Voigt model (b), Burgers” model (c)

A more comprehensive form of the Burgers’ model is the generalized Burgers’
model. This model contains a series of Kelvin-Voigt elements in series (Figure
5-25). The different Kelvin-Voigt elements represent different retardation
spectra. It can therefore describe the response of a material over a wide
frequency range.

Gl Gi Gn

Figure 5-25 Generalized Burgers’ model

5.4.1 The Model in Frequency Domain

The model behaviour in the frequency domain is similar to that of the MHS
model. At higher frequencies and lower temperatures the model is asymptotic
to a limiting value of G-. At lower frequencies and higher temperatures the
model approaches a limiting value of nil. In the frequency domain the
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mathematical representation of the model for the creep compliance J in shear
mode is given by:

N J ! Jho1, 1
J* :Joo om0 | -
© +;[1+(mn)2] 1!2{14—(@%)2}_%@} 526

where:
J(w) = complex creep compliance, (1/G (o))
J_ = instantaneous shear compliance value, (1/Ge)
J. = model parameters for Kelvin-Voigt elements (1/Gn)
T, = time constants for the various Kelvin-Voigt elements (n; /Gj)
N, = coefficient for the series dashpot

It should be noted that for characterizing a viscoelastic solid, the series dashpot
element can be removed. Hence similar to the original HS model, the model
predicts a finite rubbery compliance value equal to the sum of all the J, values.
Each Kelvin-Voigt element in the generalized model describes the material
response over a narrow frequency window. To describe the material response
for a wide frequency range, a number of Kelvin-Voigt elements with different
retardation spectra are used. A minimum of 10 to 15 Kelvin-Voigt elements
(equivalent to 22 to 32 model parameters) is usually required to describe
bituminous response data over a wide frequency range [22].

5.4.1.1 Model Parameter Determination

A) General Approach

Various methods for determining the generalized Burgers” model parameters
are reported in literature [1, 6, 14, 21]. The common approach for obtaining the
model parameters involve optimizing the error between a given data set, which
comprises the loss and storage compliance at various frequencies ( ®;, J.
andw;,J;), i=1...M, and the corresponding model prediction values. The model
prediction values for the storage compliance ( ]J’) and loss ( J”) compliance can

be obtained from Equation 5-26 as:

M(w) = i{J—] & J'(0)= i[%} 527

n=l1 1+(COTn )2 n=1 1+(0)Tn)

For simplicity, in the loss and storage compliance equations the parameters of
the series spring and series dashpot are included indirectly. It should be noted
that the series spring can be obtained by setting the retardation constant (t,) for
one of the Kelvin-Voigt element to nil. Similarly the series dashpot can be
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represented by setting one of the elastic constants (G, =1/J,) for one of the
Kelvin-Voigt elements to nil, which corresponds to a very high retardation
constant (1, — ®).

For M data points, the loss and storage compliance relation can be written in a
matrix form as:

I'(o,)=S,,.J. & I"(o,)=L, .71 528

J'(w,)= measured storage compliance
I"(0,)= measured loss compliance

S = m by n matrix for storage compliance with matrix elements given by:
1

2
1+(0,T.)
L = m by n matrix for loss compliance with matrix elements given by:
= (l)an

1+ (o, )2

J = refers to elements of a column vector (corresponding to the model
parameter for the n Kelvin-Voigt element)

For better convergence during the optimization procedure, retardation times
are chosen first. For chosen retardation times t, (n=1,..,N) that are spaced
equally in logarithmic scale, Equation 5-28 is used to perform the regression
analysis to obtain the corresponding model parameters J, (n=1,...,.N). If chosen
retardation times are not used, a total of 2N unknowns (1,,J,; n=1,..., N) need
to be determined from the regression analysis, however, convergence problems
are often encountered. The previous approach with chosen N retardation times
is usually preferred.

Another common problem in the model parameter determination is the
sensitivity of the regression analysis to scatter in the experimental data.
Literature showed that better results are obtained when pre-smoothing of the
experimental data using a power-law is made before the regression analysis is
performed [14]. For bituminous material response data in literature, pre-
smoothing of master curve data using the 252P1D model has also been used to
determine the DBN model parameters [1]. In addition to the power law models
other analytical equations such as the CA model can also be used for pre-
smoothing. In this research the MHS model is chosen to perform pre-smoothing
of the experimental data. This choice has been made because of the excellent
ability of the model to describe the experimental data over a wide frequency
window.
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B) Pre-Smoothening the Experimental Data

For the purpose of obtaining a smooth curve representing the frequency
domain data, the MHS model is first fitted to the experimental data. The fitting
procedure for the MHS model in frequency domain has been discussed in
previous sections. After a good fit is obtained for the dynamic creep compliance
and phase angle data, discrete spectrum of frequencies is chosen matching the
frequency window of the response data. For the chosen spectrum of
frequencies, the MHS model parameters are used to generate a loss and storage
compliance data. The generated loss and storage compliance data are used in
the regression analysis for obtaining the generalized Burgers” model
parameters. The procedure used to obtain the model parameters is discussed
below.

C) Optimization Procedure

For obtaining the parameters of the generalized Burgers’ model, nonlinear
optimization techniques that are available in Matlab have been used. Given a
set of pre-smoothed data comprising the loss and storage compliances at
various frequencies, Equation 5-28 is used for obtaining the N set of Kelvin-
Voigt model parameters (J.,1.). For this purpose, the Matlab optimization
technique (fmincon) that finds a constrained minimum of a scalar function of
several variables starting at an initial estimate has been used. For the initial
estimate, values can be specified manually. In this work specifying the initial
estimate is made automatic by using trial solutions from least square analysis
with non negative solutions. Thus in the Matlab program a two step analysis is
performed.

1. In the first step, optimization is made based on a chosen set of
retardation times. In Matlab the optimization technique with least
square methods with non negative solutions, Isqnonneg, is used. This
optimization step provides reasonable starting values for a constraint
multi-variable nonlinear optimization to be performed in the second
step.

2. In the second step the model parameters obtained from step 1 (J.and t.)
are used as initial estimates and further optimization is performed using
the constrained nonlinear multi-variable optimization technique
(fmincon). This step provides the final values for J,and t. parameters.

In the constrained multi-variable optimization, the objective function given in
Equation 5-29 is minimized.
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N V\Z]Lv?) I:J'i_J'?:'z + Vz]/sn?) |:J"i_J“? :Iz

Objective function = z 5.29
i=1 W " %02 Wy 02
+ G, -G, | + ¢, — O
V(Gio)[ ] V(<|>?)[ |
where:
J’= predicted storage compliance at the i frequency
J” = predicted loss compliance at the it frequency
Jo_ measured storage compliance at the i frequency
Jr _  measured loss compliance at the it frequency
w, w, _ weighting factors for loss modulus, storage modulus,
Wg, W complex modulus and phase angle(default value is set to 1)
VA VA" variance for loss, storage, complex modulus and phase angle

V(G V() data

The parameter determination procedure is incorporated in a user friendly
graphical user interface program (GUI) in Matlab (see Figure 5-26). With this
tool, by changing the number of Kelvin-Voigt elements, optimization can be
performed until a satisfactory fit is obtained. With regard to the GUI program,
the procedure for the parameter determination can be summarized as follows:

e Import the master curve data (frequency, complex modulus, Phase angle) to
the Matlab GUI program; in a comma delimited file

e In the program interface, fill in the number of Kelvin-Voigt elements
e Run the optimization

e Change the number of Kelvin-Voigt terms and re-run the optimization till
satisfactory fit is obtained. The weighting factors for G*, phase angle, loss
and storage modulus can also be altered from the program interface helping
to obtain better fits (Figure 5-26)
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Figure 5-26 Matlab GUI for model parameter determination

5.4.1.2 Application to Describe Frequency Domain Data

Similar to the MHS model, the master curves of two asphalt mixtures and four
binders are used in the analysis. The reference temperature and the
corresponding shift factors for each material are presented in the previous
section (Table 5-3).

Analysis results have shown that the number of model parameters required to
properly describe the materials response over a wide frequency window is
much higher than that of the MHS model. For the materials considered in this
research, a minimum of 10 to 12 Kelvin-Voigt terms, which correspond to a
total number of model parameters ranging from 22 to 26, were needed. Figure
5-27 and Figure 5-28 illustrate the quality of fit obtained for the mortar and RAP
mixture respectively.
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Figure 5-27 Generalized Burgers’ model fit, mortar master curve (Tref= 10°C)
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Figure 5-28 Generalized Burgers’ model fit, RAP mixture (Tref = 4.4°C)

For brevity, the corresponding fits obtained for all the binders and asphalt
mixtures data are not presented. However, the quality of fit for these materials
is illustrated by plotting the experimental obtained values of the complex
modulus and phase angle data versus the model prediction values. Figure 5-29
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and Figure 5-30 summarize the results obtained for the binders and mixtures
respectively. In these figures the solid line represents the line of equality (L.Eq).
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Figure 5-29 Comparison of predicted and measured response for the binders
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Figure 5-30 Comparison of predicted and measured response for the mixtures

From Figure 5-29 and Figure 5-30, it can be seen that the generalized Burgers’
model description of the complex modulus is of similar quality in comparison
to the MHS model (see Figure 5-8 and Figure 5-9). For the phase angle
description however, the MHS model provides a better description of the
experimental data. This can be seen from the phase angle plots in Figure 5-8
and Figure 5-9).

The generalized Burgers” model parameters for the binders as well as asphalt
mixtures are given in Table 5-5 and Table 5-6. Table 5-7 presents the R? values
obtained for all materials. In obtaining these values the model’s fit on the phase
angle and complex modulus is analyzed.

162



Modelling Linear Viscoelastic Response of Binders

Table 5-5 Generalized Burgers’” parameters for binders, Tref = 20°C

B 70-100 Mastic Virgin mortar
n T, J, Tn Ja Tn Ja
1 9.15E-06 2.21E-03 2.96E-06 4.86E-04 9.68E-06 1.80E-04
2 4.92E-05 1.14E-03 1.52E-05 2.11E-04 4.50E-05 6.63E-05
3 2.65E-04 5.53E-03 7.81E-05 7.47E-04 2.10E-04 2.56E-04
4 1.43E-03 9.93E-03 4.01E-04 9.84E-04 9.76E-04 3.12E-04
5 7.67E-03 2.78E-02 2.06E-03 2.00E-03 4.54E-03 5.79E-04
6 4.12E-02 6.50E-02 1.06E-02 3.97E-03 2.11E-02 1.01E-03
7 2.22E-01 1.89E-01 5.44E-02 9.09E-03 9.84E-02 1.89E-03
8 1.19E+00 3.65E-01 2.80E-01 2.52E-02 4.58E-01 4.61E-03
9 6.42E+00 1.86E+00 1.44E+00 5.87E-02 2.13E+00 8.35E-03
10 1.86E+02 1.84E+01 7.38E+00 2.79E-01 9.92E+00 3.86E-02
11 1.95E+02 4.49E+00 4.62E+01 1.19E-02
12 2.15E+02 4.85E-01
Joo 3.10E-03 1.29E-03 4.90E-04
i 1.17E+00 1.94E+01 3.29E+02

Table 5-6 Generalized Burgers’ model parameters for various materials!

Aged mortar STAB Mixture RAP mixture

T,..=10°C T,=10°C T, =4.4°C
o T Ja T D, T D,
1 1.39E-04 2.99E-04 1.39E-05 5.45E-06 4.25E-04 3.18E-06
2 1.93E-03 3.87E-04 5.18E-05 7.88E-08 2.77E-03 2.12E-06
3 7.20E-03 2.52E-04 1.93E-04 5.11E-06 1.81E-02 4.88E-06
4 2.68E-02 6.44E-04 7.20E-04 3.62E-06 1.18E-01 7.77TE-06
5 1.00E-01 8.18E-04 2.68E-03 6.42E-06 7.69E-01 1.48E-05
6 3.73E-01 1.40E-03 1.00E-02 8.70E-06 5.01E+00 3.02E-05
7 1.39E+00 2.58E-03 3.73E-02 1.12E-05 3.27E+01 6.26E-05
8 5.18E+00 3.21E-03 1.39E-01 2.29E-05 2.13E+02 1.50E-04
9 1.93E+01 9.75E-03 5.18E-01 2.21E-05 1.39E+03 2.89E-04
10 7.20E+01 4.26E-03 1.93E+00 8.25E-05 9.06E+03 9.59E-04
11 2.68E+02 4.33E-02 7.20E+00 2.92E-05 5.91E+04 7.83E-04
12 2.68E+01 3.75B-04  3.85E+05 6.81E-03

D..,J. 5.91E-04 3.30E-05 2.56E-05

o 6.60E+03 1.97E+05 2.30E+09

1 Given binder properties reflect the shear behaviour while the mixture properties correspond to the bending behaviour
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Table 5-7 Quality of fit to experimental data (R? values)

B 70-100 Mastic Virgin Aged STAB RAP

mottar motrtar mix mix

G* E* 0.986 0.995 0.994 0.990 0.989 0.996
(I) 0.985 0.975 0.992 0.947 0.986 0.960

Based on the model fits obtained in frequency domain, the following remarks
can be made about the generalized Burgers” model.

A number of Kelvin-Voigt elements are required to describe the
response data over wide temperature and frequency range. A total of
10 to 12 terms were required for the materials considered in this study.

Model parameter determinations with chosen retardation times, which
are equally spaced in logarithmic scale, provide better fits during
optimization.

Phase angle descriptions of the generalized Burgers’” model are less
accurate as compared to the MHS model.

5.4.2 The Model in Time Domain

As discussed in the literature review section, inter conversion methods can be
applied to obtain time domain material functions from frequency domain data.
For the generalized Burgers’ model, the time domain creep compliance
expression is given by:

where:

=1, +31, {1 - exp(_—tﬂ Lt 5-30

n=1 Tn no

J(t) = creep compliance ( shear mode )
J, = instantaneous shear compliance (1/G,)
J, = model parameters for Kelvin-Voigt elements (1/Gn)

T, = retardation time for the various Kelvin-Voigt elements (n; /G)

N, = coefficient for the series dashpot

This analytical expression can be used to describe time domain creep
compliance data. Similar to the frequency domain analysis, time domain curve
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fitting can also be performed to determine the model parameters based on
experimental data. For general application in numerical environment, the
model needs to be formulated in an incremental approach.

5.4.2.1 Numerical Approach

To allow simulation of time domain responses for an arbitrarily shape of the
applied stress signal, an incremental formulation of the model needs to be
obtained. In reference to Figure 5-25, the total deformation in the generalized
Burgers” model is the sum of the elastic, viscoelastic and viscous deformations.
Hence the incremental strain in the system can be obtained as:

Ag(t) = Ag, (t) + Ag,. (t) + Ag, () 5-31

From the theory of viscoelasticity discussed in Chapter 2, the constitutive
relation for a viscoelastic material in one dimensional form is given as:

g(t) = j J(t- r)d((i—f)dr 5-32

where:
e(t) = strain
o(t) = applied stress
J(t—1) = creep compliance

T = integration variable

Applying the integral formulation for the elastic, viscoelastic and viscous
components, the incremental formulation for the various deformation
components can be obtained. For the elastic component, the incremental strain
Ag, that follows from an incremental stress Ac is given by:

Ag, =Jy.Ac 5-33

Denoting the creep compliance for the viscous element as J (t), and applying
the properties of the hereditary integrals, the constitutive relation for obtaining
the viscous strain in the linear dashpot is given by:
t t .
£,(t) = [J (t-vsdr = [, (t-1)]o(r)dr 5.34
0

0

where:
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I (- ="
Mo

jv(t—r): dJ (t—1) :L
dit-1) mn,

Substituting and dividing the integral limits into two parts one obtains:

t—At t

sv(t)=jjv(t—r)c(r)dr=ij o(t)dt+ j o(t)dt 5.35
0 Mo %

0 t-At

The first integral in the above expression corresponds to the viscous
deformation in the previous time step, ¢,(t—At). The second integral can be
evaluated using a trapezoidal rule. After some mathematical manipulation the
change in viscous strain can be computed as:

Ag (1) = ﬁ(G(t — At) +%) 5-36

Mo

In a similar manner, substituting the creep compliance expression for the
Kelvin-Voigt elements to the integral formulation in Equation 5-31, the
viscoelastic strain can be calculated as:

n

£ (t) = ji] {1 —exp [_(t—_r)ﬂddr 5-37
0 n=l Tn

Which can be rewritten as:

N
e, (D=¢" (- &"(1) 5-38
n=1
where:

al(t):iJn.G(t)

e'(t) = jJn {exp (ﬂﬂ 6dr
0 Tn

For a time stepAt, the integral for the variable €"(t)can be divided into two
terms as:
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e (t)= t]tJn {exp(_(tt_ T)H odt+ j J {exp(_(tt_ T)H 6dr 5-39

The first integral can be simplified as:

tft I {exp(_(t — T)H 6dt =exp [_—Atj.a“ (t—At)
0 Th Tn

Assuming that the stress rate is constant for an infinitesimal time step At,
evaluation of the second integral in Equation 5-39 results:

j J, {exlo[ﬂﬂ 6dt= J“'AA_C':Tn {1 - exp[_mﬂ
t—At Tn Tn

The variable €"(t) can then be written in a recursive manner as follows:

—At A —At
" (1) :exp( j.gn (t—At)+Jn.A—c§tn {l—exp[ ﬂ 5-40

n Tl’l

The change in the variable Ag"(t) can be calculated as:

A" (t)=¢"(t— At)(exp(_mj - 1] + JH.ETH {1 - eXp[_Atﬂ 5-41
Tn At Tn

Substituting Equation 5-41 into Equation 5-38 the change in viscoelastic strain

Ag . that follows from a change in applied stress Ac is expressed as:

Ag (1) = Ag' (1) - Ai " (t) 5-42

where:

N
Ag' () =) ], .Ac
n=1

Ag" () =¢€"(t —At)[exp[_m] —1] + J“'AA_(:TH {1 - exp[_mﬂ
Ta Tn

For the generalized Burgers’ model, Equation 5-33, Equation 5-36 and Equation
5-42 in combination allows computation of the incremental strain for an
incrementally applied stress. The incremental formulation requires an update of
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the variable €"(t) at each time step increment. The value of £"(t) at each time
step can be calculated in a recursive manner using Equation 5-40.

5.4.2.2 Notes on Practical Implications

Unlike the MHS model which requires storage of the entire strain history in
numerical applications, the incremental formulation for the generalized
Burgers’ model takes into account history effects in a recursive manner
(Equation 5-40). This allows efficient utilization of computer memory. This
attribute is common to most linear spring-dashpot combination models.

On the other hand it has previously been shown that the phase angle fits of the
model to the experimental data is less accurate. From a practical point of view,
the large number of model parameters to describe material response data over a
wide frequency range is also a disadvantage.

5.4.3 Frequency vs. Time Domain Response

Using the MHS model, it has been shown that one set of model parameters can
be used to simulate both the frequency and time domain response of the
mortar. In this section similar computations have been made to simulate the
creep-recovery and relaxation response of the mortar using the generalized
Burgers” model. The model parameters used in the simulations have been
obtained from the frequency domain measurements. The test conditions for the
creep-recovery and relaxation tests have already been discussed in Section
5.3.3.2 and Section 5.3.3.3. In the following sections the simulation results are
presented.

5.4.3.1 Relaxation Simulations

Using the generalized Burgers’ model, relaxation tests for the mortar were
simulated. The simulations correspond to the relaxation tests presented in Table
5-4. The simulation results were compared with the experimental data. Similar
to the MHS model, the time domain simulations show a very good agreement
with the experimental results. For brevity only the simulation at 10°C is
presented. The remaining simulations that were made at 20°C are given in the
Appendix D.
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Figure 5-31 Measured and simulated relaxation tests for mortar at 10°C, sample
no 1 (Time step: 1.25 s (a), 2.5s (b), 5 s (c) and 10 s (d))

5.4.3.2 Creep-Recovery Simulations

Using the block pulse stress signals from the creep-recovery experiment as
input, the creep-recovery phase of the mortar was simulated numerically using
the Matlab program. The generalized Burgers’ model parameters that were
determined from the master curve data in the frequency domain were used.
The parameters are given in Table 5-5. These properties were determined based
on response data obtained from 5 different mortar samples. Figure 5-32
presents the comparison between the measured and simulated creep-recovery
tests for an applied stress of 0.825 kPa. The first plot represents the results
obtained for a time step, T1, of 5 seconds. The second and third plots correspond
to time steps of 10 seconds and 15 seconds respectively. Similar plot for a stress
level of 1.53 kPa is presented in Figure 5-33. In each of the plots the dashed lines
represent the experimentally obtained creep-recovery curve for the two
different mortar samples. The solid line represents the simulated result with
material properties obtained from the frequency domain response data.
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Figure 5-32 Measured and simulated creep-recovery data for an applied stress
of 0.825 kPa (Time steps: 5 s (a), 10 s (b) and 15 s (c))
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Figure 5-33 Measured and simulated creep-recovery data for an applied stress
of 1.53 kPa (Time steps 5 s (a), 10 s (b) and 15 s (c))

5.4.3.3 Discussions

Similar to the MHS model, the generalized Burgers’ model was used to
simulate time domain results. Due to the computational efficiency of the model,
memory storage is not required. Because of this the load signals obtained from
the laboratory were directly used to simulate the relaxation and creep/recovery
tests. The numerical noises observed in the simulations (see Figure 5-31) are a
reflection of the noises observed in the actual measurement of the applied
deformation.

In terms of accuracy, it can be seen that the simulation results are as accurate as
the case for the MHS model. This indicates that regardless of the models, the
frequency and time domain responses are well related. In this particular case,
both the MHS and the generalized Burgers” models described the frequency
domain response data of the mortar very well. Hence, good description of the
response data in frequency domain leads to good prediction of the time domain
responses. Since similar experimental data was used here, other observations
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that were discussed in Section 5.3.3.6, for the MHS model, are not repeated for
clarity. The summary of the findings for both models is summarized below.

5.5

Summary of Findings

The main findings that can be drawn from the material presented in this
chapter are summarized below.

5.5.1 The MHS model

The original HS model was modified with addition of a linear dashpot in
series. This is to allow viscous deformation simulations.

The MHS model has been used to describe the frequency domain response
of bituminous binders as well as mixtures. The results have shown that the
model is capable in describing the response over a wide frequency window.
The model has very few model parameters which is very desirable for
practical use.

Model parameter determination from the frequency domain can be
performed using the analytical expression of the model in simple spread
sheet programs like excel. Model parameter determination from time
domain tests require a numerical approach. This is because the time domain
analytical expression for the relaxation and creep material functions of the
MHS model are complex to obtain.

For time domain applications, the numerical formulation of the MHS model
has been obtained. The Griinwald definition of fractional derivatives was
utilized in formulating the model for time domain applications. The
formulation requires that the entire strain history for the parabolic dashpots
to be stored. In terms of the required amount of computational memory, this
may result in a serious limitation when the model is applied for
computations that involve too many time steps. The numerical formulation
also requires equal time steps to be taken which is a disadvantage for long
computations that need to be performed with varying time steps.

5.5.2 The Generalized Burgers’ Model
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Similar to the MHS model, the generalized Burgers’ model has also
described the response of binders and mixtures over a wide frequency
window. However, in comparison to the MHS model the phase angle
description of the generalized Burgers’” model has been found to be less
accurate. This behaviour is intrinsic to spring-dashpot combination models,
and it is mainly related to the nature of the resulting analytical expression
(consisting of exponential functions) that is used to describe the material
functions.
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e Appropriate description of the material response over a wide frequency
window requires the use of many Kelvin-Voigt elements. This results in a
large number of model parameters. For the materials used in this research a
minimum of ten Kelvin-Voigt elements, which results in a total of 22 model
parameters, were required to describe the response over a wide frequency
window.

e In determining the model parameters from frequency domain response
data, it has been observed that the optimization analysis is very sensitive to
data scatter. Hence prior data smoothing is required for best results.
Analytical expressions used to describe the master curves of binders and
mixtures can be used for data smoothing. Due to the excellent description of
the complex modulus and phase angle data of the materials, the MHS model
has been used as a tool for performing data smoothing in this research.

e Unlike the MHS model, the numerical formulation of the generalized
Burgers” model does not require storage of the entire history. It is, therefore,
efficient in terms of computational memory. The formulation also does not
require equal time steps to be used, hence the incremental time step can be
varied during a computation, which is not possible for the case of the MHS
model.

5.5.3 Frequency and Time Domain Responses

Frequency domain response data that were obtained at various temperatures
were used to construct the master curve for the materials. For this purpose, the
time-temperature superposition principle was utilized. The master curve
represents the response of the material over a wide frequency window. Hence,
in time domain it is expected that the response data corresponds to a wider
window in the time of loading.

In order to establish the relation between the frequency domain response and
the time domain response, frequency domain response data have been used to
simulate time domain responses. First, for the selected reference temperatures,
the MHS and the generalized Burgers’ model parameters were determined
from the frequency domain master curve data using regression analysis. These
parameters have been used to simulate creep-recovery and relaxation tests in
time domain. The results of the simulations have been compared with
experimental data. Loading times of up to 15 seconds were considered with a
rest period of 60 seconds. The results of the simulation showed that one set of
parameters can be used to simulate both the frequency and time domain
response of the material. For loading times of 10 to 15 seconds a good
agreement between the simulated and measured response has been obtained.
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5.5.3.1 Practical Implication

The time of wheel loading for a pavement is essentially very short. For trucks
travelling at a speed of 80 km/ hr, the loading time on a pavement is in fractions
of seconds. Hence the good agreement that is observed between the frequency
and time domains responses (for long loading times of up to 10 seconds)
implies that very accurate material information is obtained from frequency
domain data that can provide appropriate representation of the material
behaviour for loading times corresponding to a wide range of truck loading
speeds. However, it is important to note that for other computations involving
very long loading times, the frequency domain data may lack the material
response information corresponding to long loading times. Depending on the
purpose, the relevant material response information in such cases may need to
be obtained from time domain tests (such as creep tests).

5.5.4 Choice of Models

It has been shown that the generalized Burgers’ model and the MHS model can
describe the response of the materials for wide frequency window. The
advantage of the MHS model over the generalized Burgers’ model is that the
MHS model requires only a few number of model parameters to describe the
material response over a wide frequency window. In addition the model
provides better quality of fit for the phase angle. In view of model selection for
practical use, the few number of model parameters required for the modified
HS is very attractive. One of the model disadvantages is the relatively high
computational memory required in numerical environments. Furthermore, the
equal time step requirement in the numerical formulation limits the model
application for cases where use of different time steps is mandatory for
computational efficiency (example for highly nonlinear analysis).

With regard to the generalized Burgers’ model, the number of model
parameters is dependent on the range of frequency considered. The model
description of the phase angle data has been found to be less accurate. The
model parameter determination is also less straight forward as compared to the
MHS model. However, its computational efficiency in numerical environments
is excellent. In contrary to the MHS model, the numerical formulation of the
generalized Burgers’ model allows the use of different time steps in a
computation, which is advantageous for computational efficiency.

The attractiveness of the models for practical use can therefore be evaluated
based on the ease of use, accuracy, computational efficiency etc. However, these
factors also depend on the scale of the problem that is to be dealt with. Hence
absolute model selection can not be made. However, based on the work
performed in this research the author believes that for linear viscoelastic
computations, the MHS model offers equivalent or more benefit than the
generalized Burgers” model. For nonlinear computations, the requirements to
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use equal time steps in the numerical formulation and to store the entire strain

histories for the parabolic dashpots are serious limitations. For meso
mechanistic applications, the performance of the models in terms of accuracy
and computational efficiency will be further discussed in Chapter 7.
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MODELLING NONLINEAR VISCOELASTIC RESPONSE OF BINDERS

Modelling Nonlinear Viscoelastic
Response of Binders

s shown in the experimental investigation work in Chapter 4,

bituminous binders exhibit nonlinear response at high shear stress

levels. To take into account the nonlinear behaviour of the binders in
mechanistic calculations, first relevant nonlinear theories need to be selected.
Based on the literature review on nonlinear viscoelastic theories, the Schapery
nonlinear theory has been selected. As discussed in the literature review
section, this theory has many advantages over other nonlinear theories. The
tirst advantage includes the practical number of laboratory tests required to
obtain the nonlinear parameters in the theory. Another important advantage of
the theory is its fundamentally strong theoretical background. Because of these
reasons the theory is widely used for nonlinear viscoelastic analyses. In this
chapter, the one dimensional representation of the theory and the model
parameter determination technique are discussed. For all the binders, the
nonlinear model parameters are given. For FE use, a suitable numerical
formulation technique is also selected.

6.1 Schapery’s Nonlinear Theory

The basic derivation of the Schapery nonlinear theory requires knowledge of
thermodynamics; this is not presented here. Rather the final form of the theory
for the uni-axial case is presented. For uni-axial deformation under isothermal
conditions, the Schapery nonlinear theory for viscoelastic materials takes the
following form [7]:

0 d
#(0) = £,D,0-+ g [ AD[w() - (0] “E gc 6-1
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where:
D,= instantaneous component of creep compliance at linear
viscoelasticity
AD(y)= D(y)-D, is the transient component of creep compliance at linear
viscoelasticity
y(t)= reduced time
g,= nonlinear factor explaining stress dependency of the glassy
compliance
g,= nonlinear factor explaining stress dependency of the transient part
of the compliance
g,= nonlinear factor explaining the effect the stress rate on the
transient part of the compliance
The reduced time y(t) is given by:
ds

ar.ag

y(t) = I 6-2

In the reduced time equation, the parameter a; is the time-temperature shift
factor that is used for thermorheological simple materials, the parametera,is a
stress shift factor, and s is integration variable. When all the nonlinear
parameters: g, g,,g,and a, are all set to 1, Equation 6-1 reduces to the classical
theory of linear viscoelasticity. The creep compliance term in the integral can be
represented by any relevant response model. In relation to suitability in
formulation and computational efficiency in numerical environments, the most
suitable method widely used in literature is to model the creep compliance with
series of Kelvin-Voigt elements. If the laboratory characterization of the
materials is conducted at different strain levels (strain controlled mode), the
equivalent suitable model for implementation is the generalized Maxwell
model. Further discussion on the suitability of response models for
implementation in the nonlinear theory will be given in Chapter 7. First the
method of model parameter determination is discussed below.

6.2 Methods of Parameter Determination

The nonlinear parameters in the Schapery’s theory, given in Equation 6-1, need
to be determined from creep tests. To elucidate the parameter determination
procedures, first Equation 6-1 is used to obtain the strain response of a material
for a step stress inputo(t) = o H(t). The function H(t) represents a unit step
function and o, is the magnitude of the applied stress. The resulting strain
response is given as:
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&(t,0,) = gy(c, )Dyo, +g,(5,)g, (g, )GOAD{ ! } 6-3
a,(c,)

Dividing both sides by o, the nonlinear creep compliance, denoted asD, (t,c, ),
can be obtained as:

e(t,o,)

Gy

D, (t,c,) =

=g,(5)D, +g,(5, )8, (g, )AD{ ! }

aG (GO) 6_4

=D, (c,)+AD, (t,5,)
where:
D, (t,c,) = nonlinear creep compliance
D,(c,) = instantaneous value of the nonlinear creep compliance

AD, (t,5,)= transient component of the nonlinear creep compliance

By considering the time independent and time dependent components of the
creep compliance separately, the following relation can be derived:

2o (Go )= %GO) and g ((50 )g2 (60 )= M
0 AD ( t J 6-5
a,(0,)

The first relation given in Equation 6-5 implies that for a given stressc,, the
nonlinear parameter g, is obtained by dividing the nonlinear instantaneous
creep compliance D,(c,) by the corresponding value D, in the linear range.
Similarly the second relation in Equation 6-5 implies that for a given stress o,
the product of the nonlinear parameters g (c,) and g,(c,) is obtained by
dividing the transient component of the nonlinear creep compliance AD, (t,c,)
by the transient component of the linear creep compliance AD (t,) with a stress
reduced time. The stress reduced time is obtained as:

t
tr = 6‘6
ac (GO)

The above discussion on the parameter determination can alternatively be
explained using the log-log plot of the creep compliance data versus time (see
Figure 6-1). If vertical and horizontal shifting is required for the transient
component of the nonlinear compliance curve to coincide with the transient
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component of the linear compliance curve, log g,g, and log a_ represent the
required amounts of the vertical and horizontal shifting respectively.

The parameter g,(c) can also be obtained by shifting the horizontal part of the
nonlinear creep compliance curve to the linear creep compliance curve. This
section of the curve is seen at very low loading times and denotes the
instantaneous creep response. Graphical illustration on the nonlinear model
parameters determination is shown in Figure 6-1.

! .

Linear
|- - - - Nonlinear

D(v)

-y

op - -

Time

Figure 6-1 Graphical illustration for obtaining Schapery nonlinear parameters
from the transient component of creep compliance curve

Figure 6-1 graphically illustrates the vertical and horizontal shifting of the creep
curve to obtain the nonlinear parametersa_(c) , g,(c)and g, (c)g,(c). In a nut
shell, with a series of single step creep tests at different stress levels, the
nonlinear parametersg,(c), a_(c) and the product of g, (o) and g,(c) can be
determined. To determine the nonlinear parameters g, and g, separately
additional two steps creep tests are required (Figure 6-2).

»
»

(a) 4 (b)

O.
$01 o ?

t

Stress
Stress

Figure 6-2 Tests required to obtain Schapery’s nonlinear model parameters; (a)
single step creep test, (b) two step creep test
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The stress signal in a two step creep test is given by:

o(t) = g H(t) + (0, — o JH(t—1,) 6-7

Substituting Equation 6-7 into Equation 6-1 the strain response for t > t, is given

by:

G )qAD{ b A }
a (o) a,(o,)
S(t) =8 (Gz )D()Gz +g (Gz ) 6-8

t—t,
+‘{g2(62 )Gz _gz(cl )GI}AD|:36(O'2):|

If o, is set to zero, which is equivalent to allowing the material to recover, the
nonlinear parameters corresponding to the zero stress would equal unity;
g,(o,) =g,(0,)=a,(c,)=1. Equation 6-8 then reduces to:

g(t) =g, (o, )o, {AD{ t(l )+t—tl}—AD[t—tl]} 6-9

(o 1

From Equation 6-9, with a known a_ from the single step creep test data, the
function g,(c, ) can be determined. The second function, g,(c,), can then be
determined with a known g, (c,) and the known product g, (o, )g,(c, ), which is
determined previously in Equation 6-5. Here it becomes evident that the
separation of the nonlinear parameters g, (o, )g, (o, ) necessitates response data
from the recovery phase of a creep test.

6.2.1 Parameters From Frequency Domain Response Data

From the discussion in the previous section it is understood that the nonlinear
parameter determination requires data from time domain creep experiments.
However, the major part of the experimental investigation in this research is
carried out in the frequency domain. To obtain the relevant nonlinear
parameters, the time domain creep compliance curves of the materials need to
be determined first. In order to obtain the time domain compliance curves the
approach adopted in this research utilizes the frequency-time domain inter
conversion methods. Similar approaches were also used in literature [3]. In
performing the inter conversion process, the generalized Burgers’” model was
utilized. After the creep compliance curves in time domain were obtained, the
nonlinear parameters were determined using the procedure outlined in the
previous sections. The following steps explain the procedure involved in
obtaining the nonlinear parameters at various temperatures:
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e From frequency domain data, loss and storage compliance information at
various shear stress levels is obtained.

e The loss and storage compliance data for each shear stress level are
described using the Generalized Burgers’” model. The model fitting
procedure explained in Section 5.4.1 can be used.

e Step two is repeated for all temperatures.

e For each shear stress level at the various temperatures, the
corresponding generalized Burgers’ parameters, which are determined
in step two, are used to generate the time domain creep compliance
curve. For this purpose the relation given in Section 5.4.2 is used.

e The creep compliance curves are then used to determine the nonlinear
model parameters following the method discussed in the previous
section.

It should be noted that the creep compliance curves that are determined from
the frequency domain data provide only information on the loading part of
compliance curve. As discussed in Section 6.2, this material information can be
used to determine the product of the nonlinear parametersg,(c,)g,(c,). To
separate the nonlinear parameters, data from the creep recovery phase is
required, which cannot be obtained from the frequency domain data.
Additional creep-recovery tests to separate the nonlinear parameters were not
performed in this work. This will in turn dictate the choice of the numerical
implementation technique that is to be adopted for this study. Details for the
selected numerical approach will be dealt with later in the numerical
formulation section. First the nonlinear parameter determination for the binders
is presented.

6.3 Model Parameters for the Binders

In this section the nonlinear parameters for the binders are presented. To
illustrate the parameter determination procedures, the mortar creep compliance
curves at various temperatures have been used. Figure 6-3 presents the mortar’s
creep compliance curves for various shear stress levels at 0°C.

Considering the transient component of the compliance curves, the nonlinear
parameters a_ and the product g,g, for various shear stress levels can be
determined based on Equation 6-5. Spread sheet programs such as Excel can be
used to perform the shifting procedure. In this program the values of g,g, and
a, can continuously be adjusted manually in the spread sheet program until the
creep curves from the higher shear stress level coincides with the linear
viscoelastic creep curve. After reasonable fit is obtained, the solver function can
be employed for further optimization. Figure 6-4 shows the coinciding creep
compliance curves after vertical and horizontal shifting is performed.
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Figure 6-3 Creep compliance curves for various shear stress levels for the
mortar at 0°C
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Figure 6-4 Coinciding creep compliance curves after vertical and horizontal
shifting, mortar at 0°C

For the mortar data Figure 6-5 to Figure 6-10 present the creep compliance
curves before and after shifting is performed at various temperatures. The
values of the nonlinear parameters at all temperatures are given in Table 6-1.
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Figure 6-5 Creep compliance curves at different shear stress levels for the
mortar at 10°C

2.0E-01
10 kPa
600 kPa
1.5E-01 | ———— 840 kPa
------- 960 kPa
s |——- 1190 kPa
o
S 1.0E-01 -
= .
5.0E-02 -
0.0E+00 | | | |
0 1 2 3 4 5

Time[ s ]

Figure 6-6 Coinciding creep compliance curves after vertical and horizontal
shifting, mortar at 10°C
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Figure 6-7 Creep compliance curves at different shear stress levels for the
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mortar at 20°C
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Figure 6-8 Coinciding creep compliance curves after vertical and horizontal
shifting, mortar at 20°C
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Figure 6-9 Creep compliance curves at different shear stress levels for the
mortar at 30°C
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Figure 6-10 Coinciding creep compliance curves after vertical and horizontal
shifting, mortar at 30°C

The above figures illustrate the parameter determination process for the
nonlinear parameters a, and g,g, . The nonlinear parameter g, , which
corresponds to the time independent (elastic) response component, need to be
determined using similar procedure as shown in Figure 6-1. However, this has
not been performed for two main reasons. First, accurate response data for the
time independent response is obtained from very low temperatures, where the
shear modulus approaches to the glassy modulus. As presented in Section 4.3.5

186



MODELLING NONLINEAR VISCOELASTIC RESPONSE OF BINDERS

and Appendix C, good quality response data for the mortar was obtained only
for -10°C and above. Hence, low temperatures response data is not available to
accurately determine the nonlinear parameter g,.The second reason is because
the nonlinear parameter g,is not of practical importance for mortar response
modelling. This can be explained based on Figure 4-55 in Chapter 4. From that
figure it can be seen that at low temperatures the shear stress level where
nonlinear behaviour is observed for the mortar is very high (larger than 1 MPa).
This implies that the value of the nonlinear parameter g, would remain unity at
least for all shear stress levels less than 1 MPa. Since the maximum stress level
at all higher temperatures is less than 1 MPa, the parameter g,can therefore be
considered unity in modelling the response for all temperatures above -10°C.

6.3.1 Results and Discussions

The mortar data presented in Figure 6-4 to Figure 6-10 illustrate the process of
nonlinear parameter determination. From the literature review in Chapter 2, it
is known that frequency domain measurements provide material response
information for short loading times. In Chapter 5, it has been shown using the
time-temperature superposition principle that measurements conducted over a
limited frequency window at various temperatures can be combined to form a
master curve. For the selected reference temperature, the resulting master curve
covers a wide range of frequencies. The time domain simulations that were
performed in Chapter 5 also showed that for loading times of up to 10 ~ 15
seconds the frequency domain master curves can be used to simulate the time
domain response. These discussions imply that in order to generate a time
domain creep compliance curve covering a wide range of loading times, the
frequency domain data need to cover a wide frequency window.

As explained in Chapter 4, for the measurements conducted at high shear stress
levels, it was not possible to cover same shear stress ranges at the various
temperatures. Because of this reason it was not possible to obtain a stress
dependent master curve covering a wide range of frequencies/temperatures.
Since a limited range of frequencies are covered at each temperature, the
generated time domain creep compliance data would lack accurate material
response information for long loading times. Hence, in the nonlinear model
parameter determination at various temperatures, more attention was given to
obtain best fits at short loading times. For the binders used in this research,
analysis of the creep curve to loading times up to 5 seconds was chosen for
temperatures above 10°C (see Figure 6-5 to Figure 6-10).

For the data at 0°C, as illustrated in Figure 6-3 and Figure 6-4, creep compliance
curves with 1-second-long loading times were analyzed. When long loading
times were considered, problems were encountered in obtaining coinciding
creep curves by performing horizontal and vertical shifting. Since frequency
domain data represents the short loading time response of a material, the creep
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compliance data would be more accurate for short loading times and less
accurate for high loading times. Based on this consideration the nonlinear
parameter determination at 0°C was based on creep compliance curves with
short loading times. The same procedure was followed for all other
temperatures. For temperatures above 10°C, inclusion of the creep compliance
data (with loading times of up to 5 seconds) in the nonlinear parameter
determination did not affect the results. The nonlinear parameters were
therefore determined based on the creep compliance data with loading times of
5 seconds.

To avoid repetition, the individual plots showing the parameter determination
process for other binders are not presented. However, the nonlinear parameters
at the various temperatures for all the binders are given in Table 6-1, Table 6-2
and Table 6-3. As discussed in the previous paragraph, the nonlinear parameter
g, takes a value of unity for all the binders. Hence, only the values of a_jand
g,2, are given in the tables.

Table 6-1 Schapery’s nonlinear parameters for mastic

0°C
Stress [kPa] 50 668 1068 1268
2,8, [ 1 1.06 11 1.15
a, [ 1 0.95 0.9 0.85
10°C
Stress [kPa] 10 268 535 802 1070
2.2, [ 1 106 11 13 135
a. [ 1 098 098 092 08
20°C
Stress [kPa] 2 200 334 400
g2, 1 1.18 1.3 1.36
a, [ 1 094 086 0.82
30°C
Stress [kPa] 1 20 24 40
g.g, [ 1 1.18 1.25 1.30
a, [ 1 096 095 0.92
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Table 6-2 Schapery’s nonlinear parameters for mortar

0°C
Stress [kPa] 10 965 1780 2140 2258
g M 1 1.05 1.1 112 1.2
a, [ 1 098 072 0.70 0.72
10°C
Stress [kPa] 10 600 840 960 1190
2.9, 1 105 122 1.27 15
a, [ 1 095 085 0.82 0.75
20°C
Stress [kPa] 1 120 245 490
g [ 1 103 122 1.47
a, [ 1 099 091 0.83
30°C
Stress [kPa] 1 24 47 145 240
g2 [ 1 112 121 1.52 1.6
a, [ 1 095 092 0.83 0.6

Table 6-3 Schapery’s nonlinear parameters for B70/100 binder

0°C
Stress [kPa] 10 200 400 450 500
2.2, [ 1 103 1.04 11 1.2
a, [ 1 099 098 0.95 0.9
10°C
Stress [kPa] 10 200 350 452 503
2.2, [ 1 1.04 1.2 1.26 1.28
a. [ 1 098 094 0.8 0.75
20°C
Stress [kPa] 10 135 185 203
gg [ 1 115 125 1.31
a, [] 1 096 088 0.84
40°C
Stress [kPa] 2 22 30
2,2, [] 1 1.06 1.2
a, [ 1 098 095
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6.4 Numerical Formulation

To apply the Schapery nonlinear theory in numerical environments, the uni-
axial form of the theory given in Equation 6-1 need to be incrementally
formulated. In literature different numerical approaches are used to solve the
nonlinear viscoelastic integral equations [1, 4-6]. The formulation given by Lai
and Baker [4] is based on the assumption that the nonlinear stress-based
parameters are constant over the time increment. A recent formulation [1, 3]
incorporates the possible variation of the nonlinear stress-based parameters
over the time increment. It has been reported that the latter approach allows
larger time steps to be taken in performing simulations. Hence, a better
convergence rate can be obtained.

Application of the recent numerical formulation requires the nonlinear
parameters g, (o) and g,(c) to be known. As illustrated in the previous section,
the experimental data in this research provide only the product of these two
nonlinear parameters. The formulation given by Lai and Baker [4], with the
assumption of constant nonlinear stress-based parameters over a time
increment, require only the product of nonlinear parameters g (o) and g,(c) to
be known. It is therefore suitable for the data available in this research. As
mentioned elsewhere [3], the difficulty with this approach is that convergence
problems might occur when large time steps are taken. However, with small
time steps the approach is expected to provide similar results.

For the reasons discussed above, the numerical formulation [4] with the
assumption of constant nonlinear parameters over a time increment has been
selected for this research. To provide better convergence in simulations, the
iterative procedure at the material gauss points suggested elsewhere [1] has
been incorporated. The details of the iterative procedure will be presented in
the implementation work in Chapter 7. Here the one dimensional incremental
formulation is presented.

6.4.1 One Dimensional Formulation

In the convolution integral given in Equation 6-1, the creep compliance
behaviour of the material needs to be represented with suitable mathematical
functions for numerical formulation. Application of MHS model in the integral
formulation is complex. Furthermore, in performing computations with small
time steps, which are essential in nonlinear runs, the use of MHS model would
lead to a huge computational memory requirement. On the contrary linear
spring-dashpot combination models are computationally efficient and they are
widely used in nonlinear formulations [2].
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Following the chosen numerical approach for this study, the transient
component of the creep compliance AD(y) in the Schapery theory can be given

by [4]:

n=1 n

AD(y) = YD, [1-exp {;—"’j 6-10

The parameters D, and 1, are obtained from experimental data. It is important
to note that these values correspond to the various Kelvin-Voigt parameters in
the generalized Burgers’ model. Consistent with this approach, the nonlinear
parameter determination work presented in Section 6.2.1 also utilized the
generalized Burgers” model.

Since measurements in this work are all conducted in shear mode, the
parameters obtained from the shear compliance curve correspond to the
material parameters in shear mode (J, and 1, ). Using the corresponding shear
compliance notations, the shear strain y(t) for an applied shear stress, ¢5,can
be obtained using Equation 6-1 as:

S 0 d 2 °
10 =23,0° + & [ A w0 v O] o
6-11

n=l

AJ(y) =3, [1-exp (‘T—"’}

n

Substituting the exponential form of the transient creep compliance into the
integral form in Equation 6-11, the shear strain can be given as:

N t _ _ d S
'Y(t) — gOJOGS + ngJJn [1 _exp( (W(t) \V(T))J] (gzc )dT 6-12
i T, dr
Which can be rewritten as:
N
Y(®) =7" () + D " (1) 6-13
n=1
where:
N
Y=o’ |:goJ0 + gngZJn}
" 6-14

y()=—g,| Jn[exp[—ﬁv(t)r— W))j] de0")

dt

n
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For an infinitesimal time step increment the integral in Equation 6-14 can be
written as:

t—At . _ d S
r (=g | Jn[exl{ 0 w))j] (gdﬂ i
0 T

o | Jn[exp(—wm—w(r»} d(g,0) ;.
T

n

6-15

dt

t—At n

Since,

T T

n n

exp(—wm—w(r))j _ exp(ﬂjexp[_(W(t)_AW_W(T))j
T

n

the first integral in 6-15 can be rewritten as:

g de

JJ Jn[exp[—wm— TAw—w(r))j] d(g;f ) e

n

n

. [exp(‘(“’“) () J] d(g:07)
T

0

-A
—g, exp( T"’ 6-16

= —exp (_A—WJ}/" (t—At)
T

n

If for an infinitesimal time increment At the nonlinear functions;g,,g,anda_
are assumed constant and c® is assumed to vary linearly [4], the second
integral in Equation 6-15 can be evaluated as:

g j I [exp(_(W(t)_W(T))Jl ) 4 1,818, fo's, {l—eXp[_AW)ﬂ 6-17
T dt Ay

t—At T,

n

where Ay = Ay(t) — Ay(t —At) . Substituting Equation 6-16 and Equation 6-17
into Equation 6-15 one obtains:

—A Ac® —A
v“(t)=exp( "’jv“(t—At)—Jnglgz “T“{l—exp( "’)H 6-13
T Ay T

n

n

From Equation 6-13 the incremental shear strain can be obtained as:

Ay(t) = {AYO(t) +3 Ay (t)} 6-19

Using the expressions given in Equation 6-18 and Equation 6-14 into Equation
6-19 the incremental formulation for the shear strain becomes:

Ay(t) = {J *Ac® + iany“ (t— At)} 6-20

n=l
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where J* and o, are given by:

N T —Ay)
J¥=g J + J 11+ —=exp| —=|-1
8oJo g1g2; n|: A\V{ p( T J H

6-21

T

n

The above numerical formulations, adopted from [4], allow computation of the
incremental strain (Equation 6-20) for an applied incremental stress. In
numerical computations, using Equation 6-18 the viscoelastic strain component
7" (t) needs to be updated at the end of each time increment.

In strain controlled FE environments, like ABAQUS, the incremental strain is
forwarded to the numerical routine and the corresponding stress is computed.
This implies that at the beginning of the time step, the current stress and the
current nonlinear parameters cannot be directly obtained because the nonlinear
parameters are functions of the current stress and vice versa. This demands a
procedure where trial stress values are first taken and the correct stress is
computed in an iterative procedure. Such algorithms have been incorporated in
other applications of the nonlinear theory in recent works [1, 3]. In this work, a
similar procedure has also been incorporated to obtain a correct stress state in
an iterative way. The details of the iterative procedure and the 3D
generalization of the numerical formulation will be presented in Chapter 7.

6.5 Summary of Findings

The main findings and remarks that can be drawn from the material presented
in this chapter are summarized below.

e Schapery’s nonlinear theory has successfully been used to describe the
observed nonlinear behaviour of the binders.

e The nonlinear theory requires time domain creep compliance data for
parameter determination.

e For parameter determination purposes, the creep compliance curves at
various shear stress levels have been determined from frequency domain
experimental data.

e Schapery’s nonlinear parameters were determined from the creep
compliance curves at various shear stress levels. The parameters were
obtained by performing vertical and horizontal shifting of the transient
component of the creep compliance curves using spread sheet program.

e From literature a suitable numerical formulation was adopted. In the
formulation assumption of constant nonlinear parameters over an
incremental time steps was made.
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IMPLEMENTATION INTO ABAQUS

Implementation into ABAQUS

n Chapter 5, the MHS and the generalized Burgers” models were used to
Idescribe the time and temperature dependent behaviour of bituminous

binders within the region of the linear viscoelastic response. For time
domain applications, the one dimensional numerical formulations for the
models were also given. In this chapter, the one dimensional formulations that
were obtained for the two response models will be generalized into 3D form
and implemented in the commercially available FE package, ABAQUS. Various
runs that were made for code validation purposes are presented. Application of
the response models for the meso-mechanistic PA design tool has also been
presented. The last sections of the chapter present the implementation of the
Schapery nonlinear viscoelastic model into ABAQUS. The one dimensional
numerical formulation of this theory was given in Chapter 6. Code verification
runs and application in the 2D idealized PA design tool are presented. Effects of
linear viscoelastic assumption on the PA design tool results are evaluated.

Discussions and summary of the results are given at the end of the chapter.

7.1 Constitutive Lawin 3D

7.1.1 General

The stress and strain at any point within a loaded body can be decomposed into
its deviatoric (shear) and hydrostatic (volumetric) components. The deviatoric
stress, o4, and the deviatoric strain tensor, €, are defined as:

d

1
G; = O _ESiijk

7-1
d 1

& =& _§8ij8kk

where:
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of =deviatoric stress
G; = stress
Gy =0, +0, +0,
d _ d . . .
g; = deviatoric strain
€. =strain

€4 = volumetric strain (g, +¢&,, +&5;)

d; =kronecker delta (1 for i=j and 0 for i#))

For an isotropic linear elastic material with shear modulus G and bulk modulus
K, the stress-strain relation can be expressed as:

d _ d
Cy = 2G..sij

7-2

(0}
v o kk _

In the above notation the term o} denotes the volumetric stress. Since the total
stress is the sum of the deviatoric stress and the volumetric stress, the stress for
an isotropic material can be generalized as:

_ . d v
Gij = Gij + Gij

1
o, = 2G.[a—:ij - gskk 0 } +Keg, .0

i
o =G.[Mg|e+K.[M]e
where the stress vector ¢ and the strain vector g are given by:
g= {811,822,833,2812,2823,2831}

G = {0117022=033701270237031}

The matrices [Mg ] and [My |in Equation 7-3 are six by six in size and are given

4/3 -2/3 -2/3 0 0 0 111000
-2/3 4/3 -2/3 0 0 0 111000
-2/3 =2/3 4/3 0 0 0 111000
M, ]= and [M, |=
0 0 0 100 000 0O0O
0 0 0 010 000 0O0°O
0 0 0 0 01 000 0O0°O
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7.1.2 Shear and Volumetric Deformation Characteristics of Asphaltic Materials

The three dimensional formulation given in Equation 7-3 for elastic materials is
also valid for viscoelastic materials. The formulation can therefore be used to
generalize the one dimensional formulations obtained in the previous chapter
to a three dimensional form. In relation to the material properties, two
approaches are generally used for modelling viscoelastic materials:

e The first approach is to model both the shear and the volumetric
deformation components as time dependent. In this approach a constant
Poisson’s ratio for the material is taken [1].

e The second approach is to model the shear deformation component of the
material as time dependent while the volumetric deformation component
is modelled time independent. In this case the Poisson’s ratio of the
material becomes time dependent [16].

For asphalt mixture materials literature has shown that for hydrostatic pressure in
the range applied by the usual tire contact stresses, the time dependent
deformation behaviour of the material is highly pronounced in shear than in
volumetric component [3, 17]. Because of this, the second approach, with elastic
bulk modulus and viscoelastic shear modulus, is usually used for modelling the
response of asphalt concrete materials [16, 18]. Since bituminous binders are
highly incompressible, the approach becomes more realistic for modelling the
mortar behaviour. Hence in the 3D formulation presented in Equation 7-3, the
time dependent behaviour will be applied only on the shear modulus, G; the Bulk
modulus, K, will be modelled as time independent (elastic).

7.2 MHS Model in 3D

The one dimensional form of the numerical formulation that was obtained in
Chapter 5 can be generalized into three dimensional form using Equation 7-3.
The commercially available FE package, ABAQUS, is developed for strain
controlled environment, which means that for a forwarded incremental strain in
the computation the resulting incremental stress is computed. The constitutive
forms for the MHS model given in Equation 5-22 to Equation 5-25 in Chapter 5 are
formulated to suit this purpose. The one dimensional formulations given in
Equation 5-22 to Equation 5-25 can now be generalized into three dimensional
forms as:
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9H1=[X—G+ Atj (Mg e —[Mg]e)

1+Goxg  Mso

_Xe At ) 1
+ + .£1+G0'XG ([MG]Zb (m,)g!,_; +[Mg Zb (m,)e, JJJ

1+Gode  Mso
, 74
X‘—K ﬁ M —|M 3
" 1+K0'XK+n3K ([ K]QH [ K]Et)
-1
Xk At
Ak 2 b. b
i 1+K0'XK+T]3K [1+K [ K]Z (m )_Hrl_] Z (m2)—t+1JJJ

For the notations used to represent the strains in the parabolic and linear
dashpots, reference can be made to Figure 5-3 in Chapter 5. In Equation 7-4 the
terms o, and g, refer to the stress and strain vector at the current time step.
The term g’ refers to the strain vector in the previous time step for the linear
dashpot element. The subscripts K and G are used for differentiating model
parameters for volumetric and shear components. It is important to note that
the formulation given in Equation 7-4 is for a general case where the shear and
volumetric components of the material are considered to be time dependent. As
discussed in the previous section, for modelling the response of bituminous
mortars, the volumetric component can be considered elastic. Hence the time
dependent components of the volumetric deformation from Equation 7-4 need
to be taken out. This will be done at a later stage.

The three dimensional formulation shown in Equation 7-4 requires an update of
the current strain in the linear dashpot. This can be performed using the current
stress, 6,,,, and the linear dashpot strain in the previous time step, &’ , as
follows:

At™
§t3+1 = _[CJ ]gt+l R

[CB]gtH +g 7-5

HEe 3K
In addition, the strains in the parabolic dashpots (g, and g’,) need to be
computed for storage. This would require the stress in the parabolic dashpots
(o,,,) to be known. The stress and the strain values in the parabolic dashpots at
the current time step can be computed using the following expressions:

QIH t+1 G [M ]_t+1 K [M ]_t+1
A m Atm
i I i
& = C _— C [ b m, )E .
=t+1 anTIGm 1 [ ] t+1 anTle_l [ B]_t+1 Z _]( 1)_t+1—J 7—6
At" At"
&= [C ]Gt+l - S, Zb (m,)g],_ i
Ma6TaG 2k Yok
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The matrices [C;] and [Cg] are the shear compliance matrix and the bulk
compliance matrix respectively and are given by:

1/3 -1/6 -1/6 0 0 0 1/9 1/9 1/9 0 0 0
-1/6 1/3 -1/6 0 0 0 1/9 1/9 1/9 0 0 0
c,]- -1/6 -1/6 1/3 oooand[c]: 1/9 1/9 1/9 0 0 0
! 0 0 0 1 00 B 0 0 0 000
0 0 0 01 0 0 0 0 000

0 0 0 00 1 0 0 0 000

In the above formulations a general approach with viscoelastic K and
viscoelastic G is presented. Since for the mortar the volumetric deformation is
modelled elastic, the time dependent volumetric deformation components in
Equation 7-5 and Equation 7-6 need to be taken out, and as a result it can all be
set to nil. This is equivalent to assigning a very high value to the model
parameters corresponding to the time dependent volumetric response
(Mk » Ny and M, ). For elastic K and viscoelastic G, the above formulations
given in Equation 7-4 to Equation 7-6 simplifies to:

RN IE ALY

g+ -
! [1+GO‘XG Nsg

1
Ao At 1 7-7
—_—t— . b. M b.
+[1+GO'XG +n3(}j [1+G0-XG [[ ]z e )_MJ—’_[ ]Z (mz)—leJJ
+K([M &)
At™
gy =—]C/]ou +& 7-8
T’|3G
C_y{Jrl t+1 G [M ]_t+1 K [M ]_t+1
1 At™
gy =—- b.(m
=+l anTle_ t+1 Z ( )_t+1 j 7.9
2 At"
g, =—" b.(m
=i+l T]ZG Tan71 t+1 Z ( 2)_t+1 -j

These relations define the constitutive relation for the MHS model in 3D.
Hereafter the process of FE implementation is discussed. Results from ABAQUS
runs are also presented.
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7.2.1 FE Implementation

In analyzing mechanical problems using continuum mechanics, three sets of
equations (governing physical laws) are generally used. These are:

e Equations of motion
e Kinematic equations
e Constitutive equations

The kinematic equations are essential to describe motion and deformation of a
body. The equation of motion determines the behaviour of the system; motions,
balance of forces, moments etc. These two equations are common to all
continuum materials, whether elastic or viscoelastic, linear or nonlinear. For
details on these laws reference is made to various literature in solid mechanics
[4, 19]. The third law, constitutive laws, which reflect the stress-strain relation
for materials, are required to distinguish between different materials. It
constitutes the mechanical properties, which are considered as the finger prints
of the material. Since the equations of motion and kinematic equations are
common to all materials, new constitutive laws can, therefore, be implemented
in existing FE programs.

In this regard the commercially available FE package ABAQUS allows
implementation of user defined material subroutines (UMAT). This subroutine
is used to define the mechanical constitutive behaviour of the material. The FE
implementation work in this thesis therefore involves scripting the UMAT code
for the mechanical models.

7.2.2 Requirement for the UMAT

The requirements in writing the UMAT code are specified in Abaqus User
Subroutines Reference Manual [2]. The UMAT subroutine is used to define the
constitutive behaviour of a material. During simulation this subroutine will be
called at all material calculation points (gauss points) of elements for which the
material definition includes a user-defined material behaviour. The subroutine
must provide the following;:

e It must provide the material Jacobian matrix, do;/0d¢, , for the

constitutive model.

e It must also update the stresses and user state variables to their values at
the end of the increment for which it is called.

For the MHS model, the relevant constitutive relations are given in Equation 7-4
to Equation 7-9. For these relations user subroutine code has been scripted
using FORTRAN language. The subroutine for the MHS model performs the
following functions;
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e Updates the stress at the end of each time step increment using Equation
7-7.

e Updates strains for the linear dashpot using Equation 7-8.

e Computes and stores strain values for parabolic dashpots as state
variables. Equation 7-9 is used for this purpose.

e Provides a material Jacobian matrix, called DDSDDE.

Following the constitutive relation given in Equation 7-7 the following Jacobian,
is specified in the UMAT:

-
Xo At
DDSDDE = + AM. |+ K.|M 7-10
|:1+GO‘XG ThG} [ G] [ K]

In Equation 7-10, the coefficient K represents the bulk modulus of the material.

Various simulations were performed to validate the UMAT code. One method
of validation was through analysis of problems with known analytical
solutions. The other method utilized consists of performing simulation using
the 2D PA design tool and comparing the UMAT simulation results with
simulations obtained using the built-in material model in ABAQUS. For the
later equivalent mechanical properties of the material for the built-in material
model need to be determined. Details on the verification runs performed are
presented in the next section.

7.2.3 UMAT Verification Runs

7.2.3.1 Parabolic Dashpot Response

In Chapter 5 the analytical solution to the parabolic dashpot response, with a
block pulse load were used to illustrate the applicability of the numerical
approach in one dimension. As part of the UMAT code validation in ABAQUS,
the same problem is reproduced here using 3D models. For this purpose a
simple 8 element cubical FE model was used (Figure 7-1). The boundary
conditions are prescribed in such a way that a uniform stress is obtained
throughout the element. For this purpose all the nodes in the bottom face of the
cube are restrained for vertical displacement. In addition node number 1(Figure
7-1) is restrained for movement in the two orthogonal direction in the
horizontal plane. Node number 2 is also restrained in the horizontal plane in
one direction. The applied load is a uni-axial block pulse load in the vertical
direction.
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a(?)

1(U1= U2=U3=0)

Figure 7-1 Block pulse load (left) and test FE model in ABAQUS (right)

In the UMAT the shear and the bulk modulus properties need to be specified. A
bulk modulus value of 1000 MPa is arbitrarily assumed. To obtain the response
of a single parabolic dashpot, the model parameters for the two springs, the
linear dashpot and the second parabolic dashpot in the MHS model need to be
assigned very high values. The equivalent MHS model parameters (in shear
mode) representing a single parabolic dashpot response (with uni-axial
properties 7=1 MPa.s and r =1s) are given in Table 7-1.

Table 7-1 MHS model parameters (equivalent to a single parabolic dashpot)

G, G, T, 7 m 7, n, n 1,
MPa] P [ MPa] T e F ey
0 1E10 1 1/3 Oto1 1 1E10 0 1E10

The simulation results for the strain response of each parabolic dashpot, for
various values of fractional coefficients m, were investigated. Similar to the one
dimensional simulations performed in Chapter 5, the UMAT results are in good
agreement with the analytical solutions. Figure 7-2 shows the analytical results
plotted against the UMAT computed results for various parabolic dashpot
coefficients.
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Figure 7-2 Parabolic dashpot responses (solid; analytical [14], dashed; UMAT)

To test further the accuracy of the UMAT code, with all response elements
being active, back calculation of a known asphalt mixture response data were
performed. Results are given in the next section.

7.2.3.2 AC Mixture Response

The back calculation procedure for AC mixture response involves simulating
the frequency domain response data. In order to obtain the MHS model
parameters, first the analytical form of the model was used to describe the
frequency domain response data of the AC mixture. The model parameters
were then used to back calculate the material stiffness and phase angle data by
simulating a uni-axial displacement controlled test at selected frequencies. The
simulations were performed using the cubical test block shown in Figure 7-1.
The procedures used in model parameter determination and numerical back
calculation are presented below.

A) Numerical Back Calculation

From frequency domain response data, the MHS model parameters for two AC
mixtures were determined in Chapter 5 (Table 5-1). For the numerical back
calculation performed in this chapter, the MHS model parameters
corresponding to the RAP mixture were used. Back calculation was performed
at various frequencies. Since the numerical code is developed in deviatoric and
volumetric terms, the equivalent material properties for shear had to be
determined from the mixture stiffness data. However, the Poisson’s ratio of the
material was not exactly known, and the bulk modulus K had to be assumed. In
order to perform the back calculation with realistic values; based on literature, a
reasonable assumption for the bulk modulus was made in such a way that the
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Poisson’s ratio receives a value between 0.3 and 0.4 in the frequency range of 1
to 10 Hz at a temperature of 10°C [16]. Consequently, a bulk modulus value of
15,000 MPa was used. For the other parameters, Equation 7-11 was used to
convert the model parameters obtained from the (E*) master curve to the shear
equivalents for use in the UMAT code.

3EK n
G= & Mg =t 7-11
9K—E an

In Equation 7-11 the first expression is used to convert E_ and E; to G_and G,
respectively. The second expression is used to convert themn, values for the
parabolic and linear dashpot to the respective shear equivalentsn, . Using the
cubical FE model in ABAQUS, a sinusoidal varying displacement signal was
applied. At each frequency a total of seven to eight load cycles were applied. In
each load cycle 40 time steps were taken. The resulting stress signal was
analyzed to back calculate the values of the modulus and the phase angle.
These values were then compared with the analytical results. Figure 7-3
illustrates the quality of fit between the numerically back calculated and
analytical values. Figure 7-4 also illustrates the variation of the dynamic
Poisson’s ratio corresponding to the estimated elastic bulk modulus value of
15,000 for the RAP mixture. Similar trends for the dynamic Poisson’s ratio are
also reported in literature [11].

Analytical ¢ [°]

0 10 20 30 40
40000 1 ‘ ‘ 40
30000 ~ T30
=) o
20‘ s
— =
— 20000 - 7 + 20 %
- =
S Equality Line Z
g 10000 - = |E*| 10
z L0
0 \ 1 1 0
0 10000 20000 30000 40000

Analytical |E*| [MPa]

Figure 7-3 Results from numerical back calculation (RAP mixture data)
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Figure 7-4 Indications on the variation of the Poisson’s ratio (RAP mixture)

Figure 7-3 shows very good agreement between the numerically back calculated
and the analytically obtained response data. In the next section the model
application to a meso mechanics PA design tool is presented.

7.2.4 Application in Meso Mechanistic PA Design Tool

The MHS model was applied in the FE based meso mechanics design tool for
PA. This tool, developed at Delft University of Technology [10, 12], provides
insight into stresses and strains developed in bituminous mortar and interface
layers within a PA mixture. The tool requires the geometry of the PA mixture,
the surface loading and the behaviour of the component materials in the PA
mixture to be specified. The structural model used in the design tool derives the
geometry from the mixture volumetric composition, the surface loading from
the contact stress distribution under a wheel and the material behaviour from
laboratory tests. Details about the design tool are discussed elsewhere [9, 10, 12,
13]. The main purpose here is to illustrate the application of the MHS response
model for modelling the mortar behaviour in the design tool. For this purpose
the 2D-idealized PA model, illustrated in Figure 7-5, is utilized.

7.2.4.1 Geometry

The geometry of the PA structure is influenced by the material composition. For
the size of the stone particles, the default equivalent size of 3.4 mm was taken.
The mortar composition was determined based on a default mortar content of
4.5% by weight. A 20% void content in the mixture was also assumed. These
values are within the practical range of the normal PA mixture composition
used on the Dutch motorways.
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Figure 7-5 The 2D idealised PA model

7.2.4.2 Component Material behaviour

The tool requires the behaviour of the different components of the mixture to be
specified. These include the stones, the thin interfacial zone (adhesive zone) and
the bituminous mortar. The stones are modelled as rigid bodies. The interfacial
zones are assigned a normal and a shear stiffness value. The mortar bridge
between stone-stone areas is modelled as behaving viscoelastic. For modelling
the mortar response, the only available material model in ABAQUS is the Prony
series. Now that the MHS model is implemented in ABAQUS, the mortar
response can be modelled with the MHS model. The MHS model parameters
for a mortar at a reference temperature of 10°C have been given in Chapter 5
(Table 5-1). For comparison purposes, computations using the built-in material
model have also been made. For this purpose the Prony series parameters were
determined from the mortar master curve. The Prony series model fit to the
mortar master curve data at 10°C is shown in Figure 7-6. Table 7-2 presents the
Prony series model parameters at 10°C.

Table 7-2 Prony series model parameters for a mortar at 10°C (12 terms)
Go [ MPa] 1749.2
412E-5 1.7E-4 7.0E-4 29E-3 12E-2 49E-2

3.66E-1 5.0E-2 213E-1 1.07E-1 1.1E-1 7.3E-2
2.0E-1 8.4E-1 3.5 14.3 58.8 242.4

4.9E-2 21E-2  63E-3 20E-3 4E-4 2.2E-4
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Figure 7-6 Prony series fit (12 terms) to a mortar master curve (Tref = 10°C)

For the simulation made using the Prony series, a Poisson’s ratio of 0.49 was
used. A Go value of 1749 (see Table 7-2) was taken; this corresponds to a bulk
modulus value of about 195,000 MPa. To allow time independent volumetric
response in ABAQUS, all the time dependent Prony series parameters of the
bulk modulus have been set to nil. For the adhesive zone default normal and
shear stiffness values of 10,000 MPa/mm and 3000 MPa/mm were taken.

7.2.4.3 Surface Loading

In the PA model, surface loadings on individual stones are applied. This surface
loading model is available to derive the loading in the vertical, longitudinal and
transversal directions [11]. This model was derived from the contact pressure
measurement data reported elsewhere [5]. Detailed information on the surface
loading model can be found in literature [9, 10, 12, 13]. For this simulation input
a contact pressure of 0.8 MPa was used.

7.2.4.4 Simulation Results

A 50 kN wheel load applied by a Good Year 425R65 super single tyre is used
[9]. The width of the wheel patch for this commercial tyre equals 330 mm. For
the assumed contact pressure of 0.8 MPa, the calculated length of the wheel
patch becomes 190 mm. With these parameters, the wheel loads travelling at a
speed of 80 km/h were simulated on the PA model. The built-in material model
in ABAQUS (Prony series) and the UMAT code for the MHS were used to
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perform the simulations. Results from the two material models were compared.
Figure 7-7 shows selected nodes for analysis and impressions of the von Mises
stress at the central area of the 2D idealised models.

| 5 Mises
(Ava: T5%)

H2

H#H1

Figure 7-7 Impressions of the simulation result (left; the central part of the 2D
idealised model, right; contact points used for analysis)

For the two mortar response models, i.e. the MHS and the Prony series models,
Figure 7-8 and Figure 7-9 give impressions of the hysteresis loop that develops
within the mortar in the PA mixture. The data corresponds to the stress-strain
values computed in the vertical and horizontal direction at location 1 (see
Figure 7-7). Similarly for location 2, the shear stresses and strains computed as a
function of time using the two response models are presented in Figure 7-10
and Figure 7-11.
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Figure 7-11 Comparison of shear strains (E12) for contact number 2

The above results show the applicability of the MHS model in numerical
environments. The figures show that the results obtained from the MHS and
Prony series model are very similar. In reference to Figure 7-6, it can be seen
that the Prony series description of the master curve data in the intermediate
frequency range is very good. However, poor fits are observed at the extreme
low and high frequencies. On the other hand, an excellent description of the
master curve over the complete frequency window has been obtained for the
MHS model (Chapter 5). Nevertheless, the effect of the poor phase angle fit that
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was observed for the Prony series model was not reflected in the numerical
results. This can be explained in relation to the loading speed. The frequency of
loading for a truck with a speed of 80 km/hr is in the range of 10 to 100 Hz. For
this frequency range, both models have shown an excellent description of the
master curve data (see Figure 7-6 above, and Figure 5-5 in Chapter 5). As a
result, both response models are expected to provide very similar results.

Discussion

In Chapter 5 the MHS model demonstrated an excellent performance in
describing the response of various materials over a wide frequency window.
The model has also been considered very attractive for practical use due to the
few number of model parameters. The expected serious limitation of the model
was its computational memory requirement when used in a numerical
environment.

Using the meso mechanistic PA design tool, the computational memory and
time requirement of the model was evaluated. The finite element mesh
consisted of 1261 nodes and 492 elements. In a single simulation 168 time steps
were considered, and it was performed using a 2 GB RAM computer. In terms
of computational time, it was observed that the MHS model requires 2.5 to 3
times as much computational time as the Prony series model. Memory
problems were not encountered in the simulation. Taking into consideration the
model accuracy in describing the material response over a wide range of
frequency with only few model parameters, the model can, therefore, be
considered very practical for modelling mortar response. Its performance in
comparison to the generalized Burgers” model will further be assessed in the
later sections.

7.3 Generalized Burgers’ model in 3D

Following a similar approach as was used for the MHS model, the 2D
constitutive form of the generalized Burgers” model given in Chapter 5 was
generalized into 3D form using Equation 7-3. The incremental stress for the
generalized Burgers’ model can be obtained using;:

1
*

Ao (t)= —{[MG ]Ag(t)—[Ml]%(Q(t —Ab)) +[M, ]i.g" (t- At)(exp(_Atj _1H

J 0 — n
+K[MK]A§(t) 7-12
At NoJ —At
F={Jo+—+ ) J .- > =1, |1-exp
R |

In Equation 7-12 the terms Ac and Ag refer to the incremental stress and
incremental strain vector for the current time step. The strain term g" is also a
vector and it refers to the component of the incremental viscoelastic strain. The
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parameters J, and n, are model parameters for the elastic spring and linear
dashpot respectively in the generalized Burgers’ model. The spring and
dashpot parameters for the various Kelvin-Voigt elements are referred with
J,and n, wheret, =nJ, .

Equation 7-12 requires that at each time increment the strain termg" for each
Kelvin-Voigt element need to be updated. The incremental value for this strain
term can be obtained using:

Ag" (t) = [Cl]gn (t —At)[exp(_&] —1] + [CJ]JH.%Tn {l—expL_mﬂ 7-13

Tn Tn

The matrices appearing in Equation 7-12 and Equation 7-13 are all six by six in
size. The matrices [Mg], [Mg]and [C,] have been defined in the previous
sections. The matrix [C,] is given as:

2/3 -1/3 -1/3 0
-1/3  2/3 -1/3 0
c,]= -1/3 -1/3 2/3 0
: 0 0 0 1
0 0 0 0

0

0 0 0

S = O O O O
—_ o O O O O

Knowing the incremental stress values at each time increment, the total stress is
updated with:

o(t)=ga(t—-At)+Ac(t) 7-14

Similarly the value of the viscoelastic strain component, €" (t), is updated as:

g"(t)=¢g"(t—At)+Ag" () 7-15

The constitutive relations given in Equation 7-12 to Equation 7-15 allow
computation of the stress for an incrementally applied strain. These relations
have been used to write the UMAT code for use in ABAQUS.

7.3.1 Requirement for the UMAT

In the case of the generalized Burgers’” model, the UMAT code performs the
following functions;

e The stress at the end of each time step increment is updated using
Equation 7-14
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e The strain terms for each Kelvin-Voigt element are updated using
Equation 7-15

e A material Jacobian is provided (Equation 7-16).

Following the constitutive relation given in Equation 7-12 the following
Jacobian, is specified in the UMAT. The Coefficient K represents the bulk
modulus of the materials. The coefficient matrices [M] and[M, | have been
given in Section 7.1.1.

1
DDSDDE :F.[MG]JrK.[MK] 7-16

7.3.2 UMAT Verification Runs

Analogous to the approach used for the MHS model, routine simulations were
performed to check the accuracy of the UMAT code. For brevity the routine
back calculations performed using the master curve data are not presented.
Results that are obtained from the application of the UMAT code to the meso
mechanics model for PA is illustrated in the next section.

7.3.3 Application in Meso Mechanistic PA Design Tool

Application of the generalized Burgers” model to a meso mechanics PA design
tool is illustrated. Similar to the simulations that were made using the MHS
model; truck loads travelling at 80 km/hr were simulated. The model
parameters for the generalized Burgers” model and MHS model at 10°C have
been given in Chapter 5 (Table 5-6 and Table 5-1). Considering the stone
particle located at the centre of the 2D idealized model, the resulting stress and
strain signals in the mortar were analyzed. These results were compared with
the stress/strain signals obtained in the previous section using the MHS model.

As discussed in Chapter 5, the two models can describe the master curve data
for wide frequency window. For loading rates corresponding to a speed of 80
km/hr, both response models describe the experimental data very well. One
can, therefore, reasonably expect close results from the finite element
simulation. Figure 7-12 to Figure 7-16 illustrate the excellent agreement between
the generalized Burgers’ and MHS model simulation results. The contact
locations 1 and 2 were illustrated in Figure 7-7.
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Figure 7-16 Comparison of shear strains (E12) for contact number 2

7.3.3.1 Remarks

The results presented in Figure 7-12 to Figure 7-16 show that the numerical
outputs from the generalized Burgers and the MHS UMAT codes are very
similar. As discussed in Chapter 5, comparably good fits to the mortar master
curve data were obtained for both models (Figure 5-4 and Figure 5-26). The
good quality of fit to the experimental data in the case of the generalized
Burgers” model was achieved by using a number of Kelvin-Voigt elements (12
terms in this particular case). This has resulted in a total of 26 model parameters
for the Burgers” model. A relatively poor fit was observed for the phase angle at
the extreme low frequency regions. For the MHS model, a better quality of fit
for the whole frequency range was obtained with only 7 model parameters.

In the case of the MHS model, the accuracy of the model and the few number of
model parameters makes the model very attractive for practical use. In terms of
computational time the generalized Burgers’ model requires less time than the
MHS model. Based on the simulations performed using the 2D idealized PA
design tool, the advantage of the generalized Burgers’” model in terms of
computational time is about 1.5 times faster. As the model size grows, the
computational memory and time required by the MHS model would further
increase which makes the use of the generalized Burgers” model more efficient.
For application in the PA design tool, even though the MHS model requires a
little more computational time, it can still be considered very practical model
for use due to its added advantage in accuracy and required number of model
parameters.
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7.4 Nonlinear Viscoelastic Model in 3D

In Chapter 6, the Schapery nonlinear theory was used for modelling the
nonlinear viscoelastic behaviour of the binders. Due to the suitability and
computational efficiency of the spring-dashpot combination models, the creep
behaviour of the material in Schapery’s nonlinear theory is usually represented
with the generalized Burgers’ model. Following this approach, the one
dimensional numerical formulation of the theory was given in Chapter 6. In the
formulation, if all the nonlinear parameters are set to unity, the formulation
reduces to the case of the generalized Burgers’ model in the linear viscoelastic
mode. For the case of the MHS model, implementation of the model in the
Schapery nonlinear theory is complex. Furthermore, due to its memory storage
requirement the model application in nonlinear viscoelastic problems would
require a very high computational memory. Therefore, the scope of the MHS
model application in this thesis is limited to problems in the linear viscoelastic
range. The 3D generalization of the Schapery nonlinear theory is presented in
the next section.

7.4.1 SchaperyTheoryin 3D

7.4.1.1 Stress Indicator

The nonlinear parameters obtained in the previous chapter are based on one
dimensional formulation. In this thesis, laboratory tests performed for
parameter determination are in shear mode; as a result the nonlinear
parameters were obtained as a function of shear stress. For three dimensional
generalizations a stress level indicator needs to be chosen. An effective stress
invariant called effective stress, 6, also called von Mises stress, is used to
account for the stress dependence behaviour of materials in 3D formulations [7,
14]. The effective stress 6 is defined as:

6= %Sijsij 7-17

where s; denotes the components of the deviatoric stress tensor:

1
Sij = Oy _Eckksij 7-18

y

The indices denote directions (i,j =1..3) and repeated indices denote summation.

It is important to note that the response data from the laboratory is obtained in
pure shear. For pure shear, 1, the effective stress &is equal to 3 1. This relation
is useful in incorporating the stress dependent behaviour of the material in the
3D formulation.

7.4.1.2 3D Formulation

Similar to the formulation used in the linear viscoelastic case, the total
deformation within an isotropic body is decomposed into deviatoric and
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volumetric components. The deviatoric and volumetric strains are denoted by
83 (t) and ¢, (t) respectively. From the one dimensional formulation given in
Chapter 6, the incremental shear strain, Ay(t):2.sg (t), corresponding to an
incremental shear stress, Ac®, is given by:

n=l

Ay(t) =2} (t) = |:J*AGS +§:any“ (t —At)} 7-19

where J* , o, and y"(t) are given by:

N —_—
J¥=gJ, + gngZJn [1 +;_:/|:6XP(A—WJ_II|

n=1 Tn
o, = exp[_AW)}—l 7-20
Tl‘l
n n -A n AGS’cn —A
v (1) = 2g(t) = g, exp (—WJY (t-At) -J, g8, [1 - exr{ \")ﬂ
T, Ay T,

For time independent (elastic) volumetric response, the change in volumetric
strain is given by:

Ac,,

Ag, (1) =g,B, 7-21

Using Equation 7-1, the deviatoric and volumetric deformation components can
be combined to obtain the following 3D formulation.

N
Ag () =1*[C,]Ac; + > o, [C &} (t— At) + B&o.[Cy | Ao, 7-22
n=l

The compliance matrices [C,],[C, ]and [C,] have been given in section 7-2 and
section 7-3. Using the 3D equivalent of the relation given in Equation 7-20, the
strain component, ¢;(t), needs to be updated at the end of each time increment
using the following equation:

n Ay n

N -A o T, -A

sg(t):exp[r—“’][q]aij(t—m)—Jnglgz {kexp[r—‘")ﬂ[cj]mﬁ 723
The above formulations allow computation of the incremental strain for a
known incremental stress. However, the current stress and the current
nonlinear parameters cannot be directly obtained because the nonlinear
parameters are functions of the current stress and vice versa. This implies an
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iterative procedure is required to obtain the correct stress and nonlinear
parameters. For this purpose an iterative procedure at the material level is
included. This procedure allows larger time steps to be taken and provided
better convergence in numerical simulations [6, 8].

Iterative Procedure

In ABAQUS, strains are UMAT inputs and stresses need to be computed. The
iterative procedure given below allows computation of the incremental strains
(using Equation 7-22) based on the nonlinear parameters that are obtained
using a trial stress value. Then, the error between the computed strain and the
input strain is calculated. The error is minimized in an iterative way by
adjusting the incremental stress until the computed strain and the input strain
are within a specified error margin. The iterative method used to obtain the
correct state of stress from a trial value is presented below.

To begin the iteration at a given time step, all the nonlinear parameters are
assumed to be equal to the corresponding values from the previous time step.

This implies at the beginning of each time increment; g; = g; ™ ,g/g} =g “gi™
anda; =a.™. Then using the stress equivalent relation of Equation 7-22, the

trial stress can be obtained as:

Ao, (trial) = %{[MG A () - ZN:an [M; |Ae] (t - At)} + é.[MK JAg (D) 7-24

The parameter B denotes the bulk compliance of the material. All the coefficient
matrices have been given in Section 7-2. Using the trial stress value for the
current time step (Equation 7-24), new nonlinear parameters are determined. By
using the newly computed nonlinear parameters and the trial incremental
stress, the incremental strain (Ag;(t) = Ag(t) ) is computed using Equation 7-22.
The difference between the computed strain and the input strain from ABAQUS
yields a residual strain vector. The residual strain vector, R, can then be
obtained as:

R =Ag(t) — A&(t) spagus 7-25

The strain residual is then minimized using the Newton-Raphson iterative
method. The residual strain at iteration cycle m+1 is calculated from:

dR
do™ (1)

R™ () =R™(t)+ ds™(t) 7-26

When convergence is achieved the residual reduces to a tolerable low value. By
setting R™"'(t) to zero, the stress correction for the next iteration can be
obtained as:
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dg™ (1) = ~R” (t){ d:}(t)} 7.27

The corrected stress increment at the next iteration cycle m+1 for the current
time step increment is then given by:

Ag™ (t) = Ag™ (1) +dg™ (t) 7-28

In a nut shell, the numerical process to obtain the correct stress state at the
material level is summarized as follows:

e At the beginning of the time increment, start with trial nonlinear
parameters taken from the previous converged state (from the previous
time step).

e Using the incremental strain value obtained from ABAQUS, calculate
the trial stress based on Equation 7-24.

e C(Calculate the updated nonlinear parameters using the new state of
stress.

e (alculate the incremental strain using Equation 7-22.

e Calculate the residual strain using Equation 7-25 and iterate through
Equation 7-25 to Equation 7-28 until the following tolerance is met, i.e.

ds™' |
W<lelt 7-29

where Limit is a specified tolerance level.

A user subroutine code was scripted using the formulations given in Equation
7-19 to Equation 7-29. The subroutine is required to update the final value of the
stress (obtained from Equation 7-28). The subroutine also needs to provide the
Jacobian (referred in ABAQUS as DDSDDE). For this purpose the relation given
in Equation 7-30 is used.

1 1
DDSDDE = F[MG | +?g0.[MK] 7-30

7.4.2 UMAT Runs

The UMAT code has been thoroughly checked by performing various routine
calculations. Some results using the mortar response data are presented in this
section. Figure 7-17 graphically illustrates the nonlinear parameters obtained
from the mortar data collected at 20°C. For other temperatures, the nonlinear
parameters have been given in a tabular form in Chapter 6.
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Figure 7-17 Schapery nonlinear parameters for the mortar at 20°C

The creep curves that were used to obtain the nonlinear parameters in Chapter
6 were numerically back calculated. This is performed to check the accuracy of
the numerical code. For the data shown in Figure 6-7 in Chapter 6, the
numerically back calculated results are illustrated in Figure 7-18.
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Figure 7-18 Back calculated creep curves for the mortar at 20°C

Other computations performed include back calculation of the frequency sweep
data for various stress levels. The back calculated frequency sweep data at three
different stress levels for the mortar at 20°C is presented in Figure 7-19 and
Figure 7-20. These figures compare FE simulations results with the
experimental data. In these simulations, the complex modulus and phase angle
results presented were based on an analysis of load signal series of 10 cycles
long.
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Figure 7-19 Back calculated and measured results for complex modulus, G*
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Figure 7-20 Back calculated and measured results for phase angle, 6

Figure 7-19 and Figure 7-20 show that the numerical back calculations are in a
reasonable agreement with the experimental data. The maximum discrepancy
observed for the G* amounts to 4%. For back calculations that were performed
at the lower stress levels the discrepancy is limited to about 2%. In addition to
the possible numerical inaccuracies, these discrepancies can also be attributed
to the approximate function that is used to describe the nonlinear parameters.
As shown in Figure 7-17 accurate description of the nonlinear parameters as a
function of shear stress level would require more data points. Polynomial
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function was used to describe the variation of the nonlinear parameters as a
function of stress. When more data points are obtained, better agreement
between the measured and back calculated values can be obtained.

7.4.3 Effect of Nonlinearity on Data Interpretation Techniques

In this section the data interpretation technique that was used for the mortar
testing in Chapter 4 is re-evaluated. It has been mentioned that unlike a uni-
axial test setup, where a relatively uniform stress is obtained across the
diameter of the test specimen, the shear stress distribution across the diameter
of a cylindrical mortar sample is not uniform. For the data interpretation, an
assumption was made such that the distribution of the shear stress across the
diameter of the mortar sample remains linear. Now that the nonlinear
behaviour of the mortar is known, evaluation of this assumption can be made.

Using the mortar response data at 20°C, a sinusoidal varying torque with
amplitude 10.3 N-mm has been applied on the mortar sample. On the
assumption of linearly-varying stress distribution across the diameter of the
mortar specimen, this is equivalent to a maximum shear stress of 244 kPa at the
outer periphery of the sample. This value can also be verified using a linear
viscoelastic simulation. The data interpretation technique that was used for
translating the measured torque in the sample to the shear stress was
performed based on this assumption.

Based on the nonlinear viscoelastic run, the actual shear stress distribution
across the diameter of the mortar columns was analyzed. Figure 7-21 shows the
von Mises stress distribution corresponding to the applied torque value of 10.3
N-mm. The figure on the right also shows the variation of the nonlinear
parameter g,g, across the diameter of the mortar. This parameter was stored
during the simulation as a solution dependent variable (SDV). As discussed in
previous section a value of 1 indicates linear viscoelastic behaviour. While
values greater than 1 imply that a nonlinear behaviour of the mortar is
observed. From this figure it can be seen that the material on the outer
periphery of the sample exhibited a nonlinear behaviour, whereas, the material
in the centre of the sample remained in the linear range.
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Figure 7-21 Mortar test setup(left), FE model showing von Mises stress
distribution (middle), and distribution of the nonlinear parameter glg?2 (right)

Considering the material at mid height of the specimen, the shear stress
distribution across the diameter of the specimen is plotted for both the linear
and nonlinear viscoelastic case. Figure 7-22 shows the stress distribution
obtained from the two cases.
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Figure 7-22 Shear stress distribution across the diameter of the mortar sample
for linear and nonlinear viscoelastic simulations

A maximum shear stress of 243.7 kPa and 237.0 kPa has been found at the outer
periphery of the mortar sample for the linear and nonlinear viscoelastic
simulations respectively. This implies that the assumed maximum shear stress
at the outer periphery is larger than the actual value (2.8% higher). In
comparison to the data scatter observed in the frequency sweep data, which is
about 5%, this difference can be considered to be marginal.
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For the deformation measurement maximum tangential displacement of
0.01226 mm and shear strain of 0.00193 were obtained from the nonlinear
simulation. For the linear simulation the tangential displacement 0.01122 mm
and a shear strain of 0.00176 were obtained. This corresponds to an effective
specimen height of 12.746 mm and 12.733 mm for the linear and nonlinear
simulations respectively. This has also shown a difference of less than 1% and
hence, the transfer function that was used to translate the rotational
deformation into shear stress in Chapter 4 remains valid. Therefore, it has been
concluded that the effects of the non uniform shear stress distribution on the
mortar test results are minimal. This conclusion is meant for the test geometry
used in this research. Different test geometries would require further
investigation.

7.4.4 Nonlinear Simulations with the PA Design Tool

7.4.4.1 Nonlinear Effects at Low Temperatures

To evaluate the effects of nonlinear behaviour on the PA mixture response at
low temperatures, simulations using the PA design tool were performed at
10°C. Both linear viscoelastic and nonlinear viscoelastic cases were considered.
The loading is kept the same as that used in the MHS and the generalized
Burgers” model simulations. The stress and strain signals obtained from the
linear and nonlinear viscoelastic analysis were analyzed. For comparison, two
locations in the mortar zone (node number 1 and node number 2), at the centre
of the stone-stone contact area, were selected (Figure 7-23).
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Figure 7-23 von Mises stress distribution (left) and nodal locations used for
analysis (right)
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Figure 7-24 to Figure 7-26 illustrate the stress and strain computed within the
mortar bridge at two different locations. The solid lines represent the results
obtained from the linear viscoelastic simulations using the generalized Burgers’
model. The nonlinear viscoelastic simulation results are represented with the

dashed lines.
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Figure 7-26 Comparison of Hysteresis loop at 10°C; location 2, shear

The above figures show that there is no visible difference between the linear
and nonlinear viscoelastic simulations. This implies, for the wheel loading
considered in this simulation (contact stress of 0.8 MPPa) the mortar behaviour
does not exhibit any nonlinear behaviour at 10°C. For temperatures lower than
10°C, the stress level where nonlinearity is observed is at a much higher level.
This can be seen from the experimental investigation results discussed in
Chapter 4. Consequently, for similar wheel loading conditions at low
temperatures, the linear and nonlinear viscoelastic computations will not show
difference in results. Based on this, it can be concluded that the effect of the
nonlinear response on the PA design tool results is insignificant at low
temperature ranges. This conclusion will also remain valid for mixtures with
similar binder content but lower void content, such as dense asphalt concrete
mixtures.

7.4.4.2 Nonlinear Effects at Intermediate Temperatures

To further evaluate the effects of nonlinear behaviour at intermediate
temperatures on the meso mechanistic performance computations, similar
simulations were made at 20°C. Unlike the results obtained at low temperature,
the mortar behaviour at 20°C was observed to exhibit highly nonlinear
behaviour. As a result much higher deformations were obtained from the
nonlinear viscoelastic computations. Figure 7-27 illustrates the difference in the
vertical strains computed at location 2 for the linear and nonlinear viscoelastic
simulations.
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Figure 7-27 Vertical strains at location 2; linear and nonlinear viscoelastic runs

The deformation in the horizontal direction (E11) and shear direction (E12) also
show considerable differences. For node locations 1 and 2, the hysteresis loop
presented in Figure 7-28 to Figure 7-30 illustrate the difference in results for the
linear and nonlinear viscoelastic runs. It can also be seen from these figures that
the value of the stress remains relatively the same for both linear and nonlinear

viscoelastic cases.
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7.4.4.3 Discussions

The simulations performed in this research showed that the nonlinear
viscoelastic behaviour of the mortar at lower temperatures is not of importance
for performance computations. This conclusion, however, is based on the
mortar type considered in this research, and for an assumed contact stress of 0.8
MPa for the wheel load.
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The simulations performed at 20°C show a highly nonlinear behaviour. In terms
of vertical deformation at location 1, maximum vertical strains of 8.12E-4 and
14.9E-4 were obtained for the linear and nonlinear viscoelastic runs respectively
(see Figure 7-27). The maximum vertical strain obtained using the nonlinear run
is 1.83 times higher than the value obtained for the linear case.

The meso mechanics PA design tool uses a dissipated energy based fatigue
relation and Figure 7-28 to Figure 7-30 show that a large amount of dissipated
energy is calculated for the nonlinear case. The dissipated energy computed e.g.
at location 1 at 20°C has been found to be 1.42E-3 MPa and 2.19E-3 MPa for the
linear and nonlinear viscoelastic runs respectively. To illustrate the difference in
the predicted life expectancy (N, ), the damage model given in Equation 7-31
can be used. This damage model is used for estimation of life expectancy in the
PA design tool [15].

-b
Nf — ( initial _ cycle J 731
W,

The parameter W, denotes the energy limit that will lead to failure within one
cycle and b is the model parameter. Relevant damage parameters for the mortar
at 20°C are not available. Damage parameters for 0°C and 10°C for a different
kind of mortar are available in literature [15]. Using approximate values of W=
0.5 MPa and b = 2.7 for the mortar at 20°C, the linear and nonlinear viscoelastic
runs leads to a fatigue life expectancy of 7.38 million and 2.33 million load
cycles respectively. This computation shows that due to the linear viscoelastic
assumption, the predicted fatigue life cycle is overestimated by a factor of 3.
Here, it is important to note that the life estimation is only indicative, and as
such the exact factor could be higher or lower. Accurate interpretation of the
dissipated energy to life cycle estimation requires determination of relevant
damage parameter for the mortar at 20°C. One should also be cautioned not to
extrapolate this finding to explain the ravelling performance of a PA mixture
without taking into account the high healing capacity of the mortar at
intermediate to higher temperatures.

However, the above results have a direct implication in evaluating the
permanent deformation characteristics of asphalt mixtures. The simulation
results have shown that the assumption of linear viscoelasticity at intermediate
to higher temperature significantly underestimates computed deformations.
This implies that proper mechanistic computations for evaluating the rutting
resistance of asphalt mixtures need to incorporate the nonlinear behaviour of
the mortar.
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7.5 Summary of Findings and Remarks

The main findings and remarks that can be drawn from the material presented

in this chapter are summarized below.

7.5.1 The MHS Model

The one dimensional numerical formulation of the model was generalized
into 3D form. Deformations were decoupled into volumetric and deviatoric
components. The volumetric and deviatoric deformations were modelled as
elastic and viscoelastic respectively.

The model was successfully implemented in ABAQUS. Application of the
MHS model to the 2D idealised PA design tool was illustrated.

It was shown that computational memory problems cannot be considered as
an impediment for the model application in the 2D PA design tool. The
model can also be used in FE simulations performed to interpret laboratory
results.

7.5.2 The Generalized Burgers’ Model

Similar to the MHS model, the volumetric and deviatoric properties were
modelled as elastic and viscoelastic respectively.

The model was successfully implemented in ABAQUS.
Application of the model to the 2D idealised PA design tool was illustrated.

For the generalized Burgers’ model and the MHS model, the outputs
obtained from the 2D PA tool showed excellent agreement.

In terms of computational efficiency on the simulation made on the 2D PA
design tool, the use of the generalized Burges” model resulted in two times
shorter computational time than the MHS model.

7.5.3 The Schapery Nonlinear Theory

The Schapery theory was successfully used for modelling the nonlinear
response of binders. The nonlinear model was implemented into ABAQUS.

Application on the 2D PA design tool has been illustrated.

Effects of nonlinear behaviour on PA design tool results were investigated.
For temperatures of 10°C and below, effects were found to be minimal.
However, for 20°C and above, it was concluded that linear viscoelastic
assumptions highly underestimate computed deformations.
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions and
Recommendations

he main goal of this research was to find appropriate mortar response

model. The model is meant for use in FE based meso mechanics design

tools. As discussed in Chapter 2, these tools intrinsically allow a more
realistic examination of stresses and strains in the mortar with in a mixture.
This information can be used as input in performance models to get insight on
the mixture long term performance characteristics such as ravelling and rutting.
To realise this objective two major tasks were set; i.e. laboratory investigation
on mortar response characteristics and constitutive modelling. Chapter 4 to
Chapter 7 discussed the details of the work involved in this research. Each of
these chapters concluded with a summary of the most important findings.

In this chapter, the most important findings and conclusions are presented.
Section 8.1 first presents the general conclusions and recommendations from a
broad perspective. In Section 8.2, the conclusions and recommendations specific
to the various topics that are covered in this study are summarized. For more
details the reader is invited to read the relevant chapters.

8.1 General Conclusions and Recommendations

8.1.1 General Conclusions

To fully explore the potential of meso mechanics for modelling asphalt mixture
response, it is important that the mixture geometry, the loading and the
component material behaviour are represented as accurately as possible. In
relation to the component material behaviour, the work presented in this
research show that good understanding of the response requires an elaborate
experimental program. Furthermore, accurate response models capable in
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describing the experimental data over a wide range of loading conditions
(temperatures, frequencies and stress levels) are required. In meso mechanical
computations these response models allow a realistic representation of the
material response for a given loading condition, hence providing a more
reliable input for performance models.

The response investigation work that was carried out on bitumen, mastic and
mortar showed that linear viscoelastic limits for the binders vary with
temperature. For the mortar and mastic, shear stresses as low as 10 kPa can
cause nonlinear behaviour at temperatures of 30°C and above, high shear
stresses in the range of 1 MPa are required to observe nonlinear behaviour at
0°C. Appropriate response models for the binders should therefore be capable
of describing the response characteristics as a function of temperature,
frequency and stress level.

In analyzing the response data within the linear viscoelastic range, it was found
necessary to include a number of Kelvin-Voigt elements to the Burger’s model,
so as to describe the response data over a wide frequency window. With the
Huet-Sayegh model, an excellent description of the response was obtained.
However, addition of a linear dashpot was found necessary to allow the model
to simulate viscous deformations. For time domain applications the numerical
formulations for the models were obtained. By simulating the creep/relaxation
response of the mortar, it was shown that both the time and frequency domain
response of the binder can be described accurately with one set of model
parameters.

Both the generalized Burgers’” model and the modified Huet-Sayegh model
were implemented in ABAQUS. In formulating the 3D generalization, an elastic
bulk modulus and a viscoelastic shear modulus was assumed. Application of
both models in the available meso mechanical PA design tool indicated that the
models lead to results that hardly differ. For practical use, however, the models
have different implications. The MHS requires the fewest parameters to
accurately describe mortar response but results in significant demands in terms
of computational power limiting it's applicability for large numerical models.
On the other hand the generalized Burgers’ model has much more parameters,
but its computational efficiency in numerical environments makes it more

broadly applicable.

For modelling the nonlinear response of binders, the Schapery nonlinear theory
has been selected. For this theory, the numerical formulations given by Lai and
Baker allow incorporation of the generalized Burgers” model for modelling the
creep compliance of the material at various stress levels. This formulation was
adopted in this research and implementation into ABAQUS was made.
Application into the 2D idealized PA design tool showed that assumption of
linear viscoelastic behaviour for the mortar at temperatures of 20°C and above
significantly underestimated the computed deformations. Computations made
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at 10°C showed that nonlinear effects for the selected wheel loading conditions
were negligible. These findings underline the importance of the binder’s
nonlinear behaviour in performance computations at high temperatures (such
as rutting). Since ravelling is detrimental at low temperatures, the results imply
that assumption of linear viscoelastic behaviour in ravelling performance
computation of PA is acceptable.

8.1.2 General Recommendations

For linear viscoelastic computations, depending on the size of the meso
mechanics model, it is possible that computational memory requirements may
hinder the use of the MHS model. In order to allow utilization of the model for
various scales of problems, it is important to develop appropriate history
truncation methods to optimize computational memory requirements. This also
paves a way for the model application in nonlinear computations.

The effects of environmental loading on the material behaviour have not been
investigated in this thesis. Even though nonlinear behaviour was observed to
show negligible effects for computations made at low temperatures, it is
important to further investigate the change in the material behaviour as a result
of aging and moisture effects. By incorporating the environmental loading
factors to the nonlinear model, a more comprehensive mixture performance
evaluation can be made.

8.2 Specific Conclusions and Recommendations
8.2.1 Related to Experimental Work

8.2.1.1 Conclusions

e Use of the cone and plate setup in a DSR shear test provides a uniform shear
stress distribution in the test sample. The setup delivers good results for
pure bitumen. For mastic, the setup with the lower cone angle results in
inconsistent measurement data. This is believed to be a result of particle
jamming in the vicinity of the tip of the cone.

e For mortar testing, the cylindrical specimen can be used to obtain good
quality response data. Ensuring good clamping results in better repeatability
in test results. The use of the specimen geometry for testing at higher
temperatures was problematic due to excessive creep.

8.2.1.2 Recommendations

e For the mastic testing, to avoid the observed inconsistency in test results, a
higher cone angle and larger gap is suggested. This can avoid the possible
jamming of particulate matters in the vicinity of the cone tip. In general, the
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uses of the CP setup for testing materials containing particulate matter need
careful consideration.

For mortar testing at high temperatures a different type of mortar column
specimen with a lower height needs to be developed.

For mortar specimen size used in this thesis, frequencies close to 300 rad/s to
400 rad/s need to be avoided due to the resonance frequency effect on test
results.

8.2.2 Related to Modelling Linear Viscoelastic Response of Binders

8.2.

8.2,

2.1 Conclusions

The MHS and the generalized Burgers’” models accurately described the
response of various binders and asphalt mixtures over a wide frequency
range. Generally the MHS provides a better description of the response data
as compared to the generalized Burgers” model.

The MHS model was successfully applied for time domain use in numerical
environments. The numerical formulation for the MHS model requires the
entire strain history of the parabolic dashpots to be stored.

Using both models, it was shown that the time and frequency domain
response of the binders can be simulated with one set of model parameters.

2.2 Recommendations

Both the MHS and the generalized Burgers’” model can be used for
modelling the response of binders. For cases where computational memory
is of importance, utilization of the generalized Burges” model is efficient.

8.2.3 Related to Modelling Nonlinear Viscoelastic Response of Binders

8.2.

236

3.1 Conclusions

The Schapery nonlinear theory has been selected for modelling the
nonlinear behaviour of the binders. Unlike other nonlinear theories,
Schapery’s theory requires a practical number of laboratory tests for
parameter determination.

The nonlinear model parameters can be determined from response data
obtained from time domain creep tests. The approach used in this thesis
utilized the frequency domain response data to obtain the time domain
creep response for various shear stress levels.
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Due to the difference in the linear viscoelastic range at various temperatures,
the Schapery nonlinear parameters were determined for each temperature of
interest.

8.2.3.2 Recommendations

In this work stress induced nonlinear effects were considered. Literature has
reported the suitability of the nonlinear theory to incorporate other
environmental factors such as aging and moisture effects. Incorporating
these factors into the nonlinear model will allow coupling of the mechanical
and environmental loading effects. This, together with meso mechanics
approach, will provide better insight into asphalt mixture performance
characteristics.

8.2.4 Related to FE Implementation

8.2.4.1 Conclusions

In the linear viscoelastic mode, the MHS and the generalized Burgers” model
were implemented into ABAQUS. For this purposes user material
subroutines codes were scripted.

Various numerical simulations were performed to check the code accuracy.
The material models were then used in the 2D idealized PA model. Results
obtained for the two material models were compared. In terms of accuracy,
comparable results have been obtained.The computational time requirement
for the MHS model was found to be higher.

The one dimensional numerical formulation for the Schapery nonlinear
theory was generalized into 3D form. For implementation into ABAQUS, a
UMAT code was scripted. Code accuracy was thoroughly checked by
performing various routine calculations.

The effect of nonlinear behaviour on PA mixture response was evaluated. It
was found that — for the considered load case, i.e. a commercial truck tyre
(50 kN wheel load) travelling at 80 km/h — significant effects were observed
at temperatures of 20°C and above. At temperatures of 10°C and below the
effects of nonlinear behaviour remain negligible.
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Frequency sweep results, B70/100

Appendix A

B70/100 Response at Various Shear Stress Levels
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Frequency sweep results, B70/100 Mastic

Appendix B

B70/100 Mastic Response at Various Shear Stress Levels
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Figure B-7 Frequency sweep results at 30°C; complex modulus for B70/100 Mastic
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Appendix C
Mortar Response at Various Shear Stress Levels
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Figure C-1 Frequency sweep results at -10°C; complex modulus for mortar
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Figure C-2 Frequency sweep results at -10°C; Phase angle for mortar

In this test, a temperature fluctuation was observed at the later stages of the
test procedure, i.e. at higher shear stress values. Hence data corresponding to
shear stress values between 1100 kPa to 2375 kPa are not included.
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Appendix D
Relaxation Test Simulations for Mortar at 20°C

The following plots illustrate the relaxation test simulations for the mortar at
20°C. The strain loading rates have been given in Chapter 5.
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Figure D-1 Generalized Burgers’ model, measured and simulated relaxation curves for
the mortar at 20°C , Sample no 2. (time step 1s (a), 2.5s (b),5s(c) and 10s (c))

257



APPENDIX D

——— Simulated || — Simulated

Stress [MPa]

Stress [MPa]

Stress [MPa]

Stress [MPa]

Figure D-2 Generalized Burgers’ model, measured and simulated relaxation curves for
the mortar at 20°C , Sample no 3. (time step 1s (a), 2.5s (b),5s(c) and 10s (c))
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Figure D-3 Generalized Burgers’ model, measured and simulated relaxation curves for
the mortar at 20°C , Sample no 4. (time step 1s (a), 2.5s (b))
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Figure D-5 Generalized Burgers’ model, measured and simulated relaxation curves for
the mortar at 20°C , Sample no 5. (time step 1s (a), 2.5s (b),5s(c) and 10s (c))
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Appendix E

Brief Overview of the PA Design Tool

Here a brief overview of the meso mechanical PA design tool (Life
Optimization Tool, LOT) is presented. The tool basically translates moving
wheel loads on the surface of a pavement into stress and strain signals in the
bituminous mortar and adhesive zones. These signals are used as an input to
a relevant damage model, which provides fatigue life performance prediction.
The design tool relies on the component materials behaviour, the geometry of
the mixture and the loading. Details on the three basic components are given
below. More details about the design tool can be found elsewhere [2-9]

I. Component Material Behaviour

The response of the PA structure is dependent on the response of the
individual component materials. The following assumptions are made in
defining component material behaviour.

Stone: Stone are modelled as rigid bodies or by application of
boundary conditions. Given the stiffness of a solid stone
(in the order of 50,000 MPa) compared to that of mortar
(in the order of 100 to 5,000 MPa) it becomes clear that the
largest part of in-mixture deformation will occur within
the mortar. This supports the assumption to model the
stones purely rigid. Furthermore insight into stress and
strain in individual stones is not required. Within LOT
ravelling is caused by cohesive or adhesive failure.
Failure through fracture of the aggregates is not

considered.

Voids: The voids are considered to have no resistance to any
deformation.

Adhesive zone: The adhesive zone is assigned a thickness of 0.01 mm.

This thickness is very limited when compared to the
diameter of the stones and the width of the mortar
bridges. This has led to the conclusion that the response
behaviour of the adhesive zone is of secondary
importance. Due to the limited thickness of the adhesive
zone, only limited deformations over the zone will occur
due to the lack of deformable volume. The adhesive zone
is therefore simply modelled linear elastically; the
assigned stiffness is high and based on the stiffness of
surrounding mortar.

Mortar: From the above it is clear that all efforts should go to
defining the response behaviour of the mortar. Currently
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the mortar is modelled as being linear viscoelastic. The
viscoelastic properties are to be determined via various
response measurements on actual PA mortar so that the
response of the modelled mixture structure be as close as
possible to that of the real PA mixture.

Il. Load

In the design tool, the load of a tyre to the pavement surface is applied via
forces acting on individual stones. First of all insight into the contact stresses
between tyre and pavement structure is obtained via interpretation of
measurement data reported in literature [1]. The interpretation of the
measurement data led to the definition of the following stress time signals.
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(6)]
I

Normalised stress [-]

Figure E-1  Defined basic signals for surface load.

Translation of the basic signals into the load signal that is applied to the FE-
model starts by multiplication of the normalised time with the time it requires
a tyre to pass over a certain point. The next step is to compose the 3D stress
signals by combining the defined functions. This is performed on the basis of
multipliers that allow the definition of all required signals on the basis of the
local contact pressure. The applied equations and multipliers are listed in
table E-1.

Function a Function b
Vertical bulk stress Ocontact
Transversal bulk stress 0.15 * Ocontact
Longitudinal bulk stress free wheel 0.025 * Ocontact 0.3 * Ocontact
Longitudinal bulk stress driven wheel -Fa/Fg * Ocontact 0.3 * Ocontact

Table E-1 Parameters for translation of basic functions into bulk stress signal.

Where Ocontact: Local vertical contact stress [MPa]; Fa: axle load [kN]; Fa: driving
force [kN] . The driving force is determined via the following equation.
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F, - P*tp*(l—loss% E-1)

Where P: engine power [kW]; tp: throttle position, e.g. 0.8 [-]; loss: losses in
drive shafts and gear boxes etc [-]; v: speed [m/s]. Then the foot print in which
each individual stone is sitting is determined. On the basis of this foot print
the bulk stresses are translated into stone forces, see Figure E-2.

e

Bulk material

Forces on particles

Meso material

A

Figure E-2 2D schematics of the principle of translating bulks stress into
particle forces on the basis of footprint area.

With the above described functions force signals for individual stones at the
pavement surface are determined. Figure E-3 gives an example of these
signals.

Load per particle in 3D model — vertical
40 longitudinal

30 /——‘ﬁ /———ﬁ transversal

= | \ | \
glo //\\ —
S o ¥V—/N AN ™\

C

'20 T T T T T T
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
Time [s]
Figure E-3  Example of applied load signals.
lll. Geometry

The design tool contains three geometric models for the PA mixture. These
are the 2D idealised, 3D idealised and the 2D photo/scan. By combination of
the three models insight into the stress-strain-time signals in real 3D PA
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structures is obtained. Short description of the three geometries is given
below.

A) ldealised models
The idealised models consider perfectly round and rigid spheres bond

together via mortar bridges. Figure E-4 gives an overview of the 2D idealised
model. The particles themselves are not visible and formed by

implementation of restraints. In this case the crosses that mark the centre of
the various particles have the freedom to rotate and translate. All nodes at
edge of the particle are rigidly connected to the master nodes indicated by the
crosses; this effectively creates rigid body stone particles.

Figure E-4  Overview of the 2D idealised model.

The model consists of three layers of stone particles. In each layer the outer
two particles are enclosed in a mortar film modelled by a single layer of
elements. The mortar films closer to the middle of the model are modelled by
two layers of elements. Figure E-5 is an enlargement of the transition area
where the mesh is refined.

1
AT e
"&:0'.."'.--- .

0:\

Figur

Particles closest to the centre of the model are fitted with a layer of thin
elements that represent the adhesive zone, see figure E-6 for an enlargement.
Figure E-6 also gives an impression of the fineness of the mesh in the central
area. The adhesive zone has a thickness of 0.01 mm.
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Layer of thin || |
elements -
representing the

adhesive zoge T = T

Figure E-6 Left: the central particles only are equipped with a layer of
elements representing the adhesive zone. Right: detail of contact area.

The size of 3D models tends to explode quite easily. To prevent this, the 3D
model needs to be physically smaller than the 2D model. Also the elements
need to be larger. Figure E-7 gives an overview of the 3D idealised model.

Figure E-7  Overview of the 3D idealised model.

As is shown by figure E-7 the 3D model contains 40 modelled stones. Three
layers of stones are present over the height. Also in the 3D model the stones
are modelled by rigid bodies.

The meshes of the idealised models are generated by the LOT input generator
on the basis of seven parameters, see Figure E-8.
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_lojx|

sh| Materials | Load | Make INP-ile |

Equivalent grain radius [mm]: |3 4000

Grai density [kadm3]: IZBED.D

Percentage [m/ml:  [an.n

Mineral in mortar density [ka/m3]: 26500000
Biturnen density [kasm3]: 10200

Bitumen percentage on [mAm]: 4.50

Percentage of voids in mixture [+/v]: {200

o

Figure E-8  Inputs that control the geometry of the idealised models.

The equivalent grain radius, R, governs the diameter of the modelled stone
particles. This diameter is derived on the basis of the mixture grading curve.

n
D= 240 1 . and R= b (E-2)
Zi:l fri

Where D: Equivalent grain diameter [mm]; R: Equivalent grain radius, i.e.
radius of modelled stone particles [mm]; n: number of fractions in the stone
particle grading, i.e. D >2 mm [-]; i: fraction counter [-]; Di; Diameter of stones
particles in the it fraction [mm]; fr;; size of the i* fraction [m/m].
The mortar film thickness which controls the modelled mortar film thickness
in the areas where there is no stone-stone contact is determined using;:

K
Ft = (Vm +VS] D D ih vm=Vb+vst (E-3)
Vs 2 2

Where D is the equivalent grain diameter, i.e. modelled grain diameter [mm];
Vm: relative volume of mortar [m3/kg]; Vs: relative volume of stone [m3/kg];
Vb: relative volume of bitumen [m3/kg]; Vsf: relative volume of sand and
filler [m3/kg]. the parameters Vb, st and Vs are determined as follows.

V B f/ Sf S V B 7/5 (E-4)

Where fb: bitumen content (m/m in 100%) [-]; v, : specific mass of binder

[kg/m3]; fs: sand and filler (< 2 mm) content (m/m in 100%) [-]; v, : specific
mass of sand/filler [kg/m3]; fs: stone (> 2mm) content (m/m in 100%) [-]; y,:

specific mass of stone [kg/m3]. The various mass contents, fv, fst, and fs follow
from a calculation on the basis of the input of the percentage of stone in
mineral and the input of the amount of bitumen on mineral.
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The final basic parameter that is required to generate the mesh is the distance
between stones, ds. This parameter follows from the void percentage in the
compacted mixture.
3
V, =1.63-d; -sin(gﬂj; vV, :§7z-(Ft +E] and V =[1—\ij (E-5)
3 3 2 V

Where Vc: volume of the considered cell [mm3]; ds: distance between stones
[mm]; Ft: film thickness [mm]; D: stone diameter [mm]; Vm: volume of
material in the considered cell [mm3]; V: void ratio [-]. The parameter ds is
then obtained as:

c

d, = Y

3 (1—V)'1.63-sin(§7zj (E-8)

The void content is direct input for the LOT input generator. The other
parameter that is required is the thickness of the interface. In the tool it is
arbitrarily set to a value of 0.01 mm. The interface is considered to be part of
the mortar film. When an interface is present the mortar film thickness is thus
reduced with 0.01 mm to allow for implementation of the interface.

B) Scan/Photo models

The geometry of the scan or photo models is obtained from real PA images.
These images are translated into a 2D element mesh. Figures E-9 gives an
illustration of the models. In this model adhesive zones are also present in the
meshes that are derived from photographs. These adhesive zones have a
thickness of 0.01 mm. The Adhesive zones are present in the central upper
part of the models.

Figure E -9 Indication of adhesive zones in photo-model.
For more information on the details of the design tool the reader is suggested
to read literature [1-9].
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