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In evolutionary biology, networks are becoming increasingly used to represent evolutionary histories for species 
that have undergone non-treelike or reticulate evolution. Such networks are essentially directed acyclic graphs 
with a leaf set that corresponds to a collection of species, and in which non-leaf vertices with indegree 1 
correspond to speciation events and vertices with indegree greater than 1 correspond to reticulate events such 
as gene transfer. Recently forest-based networks have been introduced, which are essentially (multi-rooted) 
networks that can be formed by adding some arcs to a collection of phylogenetic trees (or phylogenetic forest), 
where each arc is added in such a way that its ends always lie in two different trees in the forest. In this paper, 
we consider the complexity of deciding whether a given network is proper forest-based, that is, whether it can 
be formed by adding arcs to some underlying phylogenetic forest which contains the same number of trees as 
there are roots in the network. More specifically, we show that it is NP-complete to decide whether a tree-child 
network with 𝑚 roots is proper forest-based, for each 𝑚 ≥ 2. Moreover, for binary networks the problem remains 
NP-complete when 𝑚 ≥ 3 but becomes polynomial-time solvable for 𝑚 = 2. We also give a fixed parameter 
tractable (FPT) algorithm, with parameters the maximum outdegree of a vertex, the number of roots, and the 
number of indegree 2 vertices, for deciding if a semi-binary network is proper forest-based. A key element in 
proving our results is a new characterization for when a network with 𝑚 roots is proper forest-based in terms of 
certain 𝑚-colorings.
1. Introduction

Recently, the concept of forest-based networks has been introduced 
within the area of phylogenetics [8]. Informally, a forest-based network 
is defined as follows (full definitions of the terms used in the introduc-

tion are given in the next section). A phylogenetic tree is a rooted tree 
whose leaf-set is a collection of taxa or species; a phylogenetic forest is 
a collection of leaf-disjoint phylogenetic trees. A forest-based network is 
a directed acyclic graph 𝑁 that can be formed by adding a set of arcs 
to a phylogenetic forest 𝐹 so that for each added arc, the end vertices 
of that arc lie in two different trees of 𝐹 ; 𝑁 is proper if the number 
of roots of 𝑁 is equal to the number of trees in 𝐹 . For example, the 
network in Fig. 1 is proper forest-based. Forest-based networks can be 
regarded as a certain type of phylogenetic network, and are related to the 
intensively studied tree-based networks [6] (see e.g. [11,14] for recent 
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reviews of phylogenetic networks, including more details concerning 
tree-based networks).

Forest-based networks arise in the study of reticulate evolutionary 
processes in which species exchange genetic information through pro-

cesses such as introgression [13] and lateral gene transfer [8]. In the 
case of introgression, the phylogenetic trees underlying a forest-based 
network correspond to the evolutionary histories of different subgroups 
or lineages within a certain species. The arcs in between different trees 
then represent the past interchange of genetic material between these 
lineages. A well-studied example of this phenomenon is butterfly evo-

lution, where the genetic material that is swapped between lineages 
influences wing patterns [1,16]. Fig. 1 shows a hypothetical exam-

ple to illustrate this phenomenom. An application of a special type of 
forest-based network called an overlaid species forest for analyzing intro-

gression in butterflies can be found in [13].
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Fig. 1. A proper forest-based network 𝑁 on ten leaves. Each of the three phylo-

genetic trees in the underlying forest represents a hypothetical butterfly lineage 
with main wing pattern indicated next to the root of the tree. The network 𝑁
is the result of adding dashed arcs in between pairs of trees in the forest. Each 
added arc corresponds to some genetic material being introduced into a lin-

eage from one of the others, which results in a wing pattern change for the 
descendants.

In this paper we consider the problem:

(P) Is a given network 𝑁 proper forest-based?

Our main results are as follows. A network is binary if all vertices 
have indegree and outdegree at most 2 and all non-root vertices have 
overall degree 1 or 3. A network is tree-child if each non-leaf vertex has 
at least one child with indegree 1. For networks with 𝑣 vertices, 𝑚 roots, 
𝑛 leaves, 𝑟 vertices with indegree at least 2, and maximum outdegree Δ, 
we shall prove that problem (P):

(R1) can be decided in 𝑂(𝑛𝑟) time when 𝑁 is restricted to be binary 
and tree-child and 𝑚 = 2 (Theorem 6.2);

(R2) is NP-complete even when 𝑁 is restricted to be binary and tree-

child, for each fixed 𝑚 ≥ 3 (Theorem 6.1);

(R3) is NP-complete even when 𝑁 is restricted to be tree-child, with 
maximum outdegree 2 and maximum indegree at most 3, for each 
fixed 𝑚 ≥ 2 (Theorems 4.1 and 6.1);

(R4) can be decided using an FPT algorithm with parameters 𝑟, 𝑚
and Δ, which is linear in 𝑣, assuming the maximum indegree is 2
(Theorem 7.2).

Before proceeding, it is worth pointing out that recognition prob-

lems such as (P) frequently arise in the theory of phylogenetic networks. 
For example, the recognition of tree-based networks has been inten-

sively studied and there are polynomial-time algorithms for deciding 
whether a phylogenetic network is tree-based (see e.g. [6,10]). Results 
are also known for tree-based unrooted phylogenetic networks (undi-

rected analogues of phylogenetic networks) where, in contrast to the 
directed case, it is NP-complete to decide whether such a network is 
tree-based [4]. More recently, there has also been some interest in the 
recognition problem for other classes of networks, such as planar [12], 
orchard [15], and labellable phylogenetic networks [5], as well as the 
related problem of deciding how far away a given phylogenetic network 
is from being within a certain class [3]. Generally speaking, developing 
techniques for recognizing whether a network belongs to a specific class 
can be useful as it provides insights into the structure of the networks 
within that class.

We now briefly summarise the rest of the paper. In the next sec-

tion, we present some formal definitions concerning networks. In Sec-

tion 3, we derive a key characterization of proper forest-based networks 
(Lemma 3.1). In Section 4, we establish Statement (R3) by reducing 
from the SET-SPLITTING problem. Using colorings, in Section 5 we 
present an alternative proof for Statement (R3) in the special case that 
𝑚 ≥ 3 by reducing from the GRAPH 𝑚-COLORABILTY problem. The con-

struction that we use in this proof is then used again in Section 6 to 
prove that Statement (R2) holds. Using the concept of so-called omni-

extensions [8] we also prove Statement (R1). Finally, in Section 7, we 
prove Statement (R4), before concluding in Section 8 with a brief dis-
2

cussion of potential directions for future research.
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2. Definitions

From now on, 𝑋 is a finite set with |𝑋| ≥ 2. Suppose that 𝑁 is a 
connected, directed acyclic graph (DAG) and 𝑣 ∈ 𝑉 (𝑁). Then 𝑣 is a leaf

if it has outdegree 0, a root if it has indegree 0, and a reticulation if it 
has indegree at least 2. If 𝑣 is not a leaf, then 𝑣 is an internal vertex of 
𝑁 . In particular, roots are internal vertices. We call an arc 𝑎 = (𝑢, 𝑣) of 
𝑁 internal if 𝑢 and 𝑣 are both internal vertices of 𝑁 . If 𝑣 is an internal 
vertex that has indegree at most 1, then 𝑣 is a tree-vertex.

For vertices 𝑢, 𝑣 ∈ 𝑉 (𝑁), we say that 𝑢 is an ancestor of 𝑣 if there 
exists a directed path from 𝑢 to 𝑣 in 𝑁 . In this case, we say that 𝑣 is a 
descendant of 𝑢. Note that each vertex is an ancestor and a descendant 
of itself.

We call 𝑁 a network (on 𝑋) if it has leaf-set 𝑋 (which we also 
denote by 𝐿(𝑁)), each leaf has indegree 1, every root has outdegree 
at least 2, every reticulation has outdegree 1, and there is no vertex 
with indegree and outdegree 1. If 𝑁 has 𝑚 roots, we also call it an 𝑚-

network.2 For example, the network depicted in Fig. 1 is a 3-network. 
We say that two 𝑚-networks 𝑁 and 𝑁 ′ on 𝑋 are isomorphic if there is 
a DAG isomorphism between 𝑁 and 𝑁 ′ which is the identity on 𝑋.

A network is semi-binary if all reticulations have indegree 2. It is 
quasi-binary if all tree-vertices have outdegree 2 and all reticulations 
have indegree 2 or 3. Note that a network is binary if it is quasi-binary 
and semi-binary. A network is tree-child if every internal vertex has a 
child that is a tree-vertex or a leaf.

A phylogenetic network (on 𝑋) is a network on 𝑋 with exactly one 
root and a phylogenetic tree (on 𝑋) is a phylogenetic network on 𝑋 with 
no reticulations. For technical reasons, we shall also call an isolated 
vertex 𝑣 a phylogenetic tree (on {𝑣}). Two distinct leaves 𝑥, 𝑦 of a phy-

logenetic tree form a cherry if they share a parent. We denote such a 
cherry by {𝑥, 𝑦}. A phylogenetic tree 𝑇 on 𝑋 a caterpillar tree (on 𝑋) if 
𝑇 has a unique cherry and every internal arc of 𝑇 lies on the directed 
path from the root of 𝑇 to the parent of the cherry.

A phylogenetic forest (on 𝑋) is a directed graph 𝐹 whose connected 
components are phylogenetic trees and such that 𝑋 =

⋃
𝑇∈𝐹 𝐿(𝑇 ). For 

convenience, we will sometimes also call a non-empty set of pairwise 
leaf-set disjoint phylogenetic trees a phylogenetic forest.

Suppose 𝑁 = (𝑉 , 𝐴) is an 𝑚-network on 𝑋, some 𝑚 ≥ 2. Then 𝑁
is forest-based if there exists a subset 𝐴′ ⊆ 𝐴 such that 𝐹 ′ = (𝑉 , 𝐴′) is 
a forest with leaf set 𝑋 and each arc in 𝐴 − 𝐴′ has end vertices that 
are in different trees of 𝐹 ′. We call 𝐹 ′ a subdivision forest of 𝑁 . The 
phylogenetic forest 𝐹 obtained from 𝐹 ′ by repeatedly suppressing any 
vertices of indegree and outdegree 1 and any outdegree 1 roots until this 
is no longer possible is a base forest of 𝑁 . Note that, in particular, we 
can think of 𝐹 as being embedded within 𝑁 . A forest-based 𝑚-network 
is proper forest-based if it has a base forest that contains 𝑚 trees – see 
[8,9] for more on this.

To illustrate, consider the network 𝑁 depicted in Fig. 1. Clearly, 𝑁
is forest-based since the forest 𝐹 ′ obtained from 𝑁 by removing the 
dashed arcs is a forest with 𝐿(𝐹 ′) =𝐿(𝑁), and each dashed arc has end 
vertices in distinct trees of 𝐹 ′. Hence, 𝐹 ′ is a subdivision forest of 𝑁 . 
A base forest 𝐹 of 𝑁 is obtained from 𝐹 ′ by suppressing the vertices 𝑢, 
𝑣, 𝑤, ℎ1, ℎ2 and ℎ3, as all have indegree and outdegree 1 in 𝐹 ′. Since 
𝐹 contains 3 trees and 𝑁 is a 3-network, 𝑁 is proper forest-based.

3. Colorings and proper forest-based networks

Suppose 𝐺 is a (simple) graph and 𝐶 ≠ ∅ is a finite set of colors. 
A surjective map 𝜎 ∶ 𝑉 (𝐺) → 𝐶 is a |𝐶|-coloring of 𝐺. For 𝑣 ∈ 𝑉 (𝐺), the 
color of 𝑣 under 𝜎, or simply the color of 𝑣 if 𝜎 is clear from the context, 
is 𝜎(𝑣). A coloring 𝜎 of 𝐺 is proper if 𝜎(𝑥) ≠ 𝜎(𝑦), for any two adjacent 
vertices 𝑥, 𝑦 ∈ 𝑉 (𝐺).
2 Note that this is more general than the definition given in [8].
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We now characterize proper forest-based networks in terms of col-

orings of their vertex sets.

Lemma 3.1. Let 𝑁 be an 𝑚-network on 𝑋, 𝑚 ≥ 2. Then 𝑁 is proper forest-

based if and only if there exists an 𝑚-coloring of 𝑁 such that:

(C1) Each non-root vertex of 𝑁 has the same color as exactly one of its 
parents.

(C2) Each internal vertex of 𝑁 has the same color as at least one of its 
children.

Proof. Suppose first that 𝑁 is proper forest-based. Let 𝐹 ′ be a corre-

sponding subdivision forest of 𝑁 . We claim that the map 𝜎 ∶ 𝑉 (𝑁) →
𝐹 ′ that assigns to each 𝑣 ∈ 𝑉 (𝑁) the tree in 𝐹 ′ that contains 𝑣 in its 
vertex set is an 𝑚-coloring of 𝑁 that satisfies (C1) and (C2).

To see (C1), let 𝑣 be a non-root vertex of 𝑁 . Since the root of each 
tree of 𝐹 ′ is a root of 𝑁 , 𝑣 is not the root of 𝜎(𝑣). So at least one of the 
parents of 𝑣 has the same color as 𝑣. If 𝑣 has two or more parents satisfy-

ing this property, then 𝑣 has indegree 2 or more in 𝜎(𝑣), a contradiction 
as 𝜎(𝑣) is a tree. Hence, (C1) holds.

To see (C2), let 𝑣 be an internal vertex of 𝑁 . Since 𝐿(𝑁) =𝐿(𝐹 ′), 𝑣
is not a leaf of 𝜎(𝑣). Hence, there exists at least one child 𝑢 of 𝑣 in 𝑁
such that 𝜎(𝑢) = 𝜎(𝑣).

Conversely, suppose that there exists an 𝑚-coloring 𝜎 of 𝑁 = (𝑉 , 𝐴)
satisfying (C1) and (C2). Let 𝐹 ′ be the graph with vertex set 𝑉 and 
arc set 𝐴′ = {(𝑢, 𝑣) ∈ 𝐴 ∶ 𝜎(𝑢) = 𝜎(𝑣)}. By (C1), no vertex in 𝐹 ′ has 
indegree greater than 1, and by (C2), 𝐿(𝑁) = 𝐿(𝐹 ′). So 𝐹 ′ is a sub-

division forest of 𝑁 . Since the end vertices of each arc in 𝐴 −𝐴′ have 
different colors, they appear in different trees of 𝐹 ′. Hence, 𝑁 is proper 
forest-based. □

Note that if 𝜎 is an 𝑚-coloring of an 𝑚-network 𝑁 satisfying (C1) and 
(C2), then these two properties together with the fact that the image of 
𝜎 has size 𝑚 imply that no two roots of 𝑁 have the same color under 𝜎.

4. Tree-child networks

The main result in this section implies Statement (R3) for the 
case 𝑚 = 2. To prove it, we shall reduce from the NP-complete SET-

SPLITTING decision problem [7, page 221] which is defined as follows.

∙ Given some finite set 𝑋, |𝑋| ≥ 3, and a set  of size-3 subsets of 𝑌 , 
is there a bipartition {𝐴, 𝐵} of 𝑋 such that, for all 𝑆 ∈ , 𝑆 ∩𝐴 ≠ ∅
and 𝑆 ∩𝐵 ≠ ∅?

Theorem 4.1. For 𝑚 = 2, the problem of deciding whether a quasi-binary 
tree-child 𝑚-network is proper forest-based is NP-complete.

Proof. The problem is in the NP since, for each proper forest-based, 
quasi-binary, tree-child 𝑚-network, an 𝑚-coloring satisfying (C1) and 
(C2) serves as a certificate and (C1) and (C2) can be verified in polyno-

mial time.

We shall prove NP-completeness by giving a reduction from SET-

SPLITTING. Suppose that we are given a collection  of size-3 subsets of 
𝑋. We create a 2-network as follows (see Fig. 2 where we illustrate the 
various constructions that we perform as part of this proof in terms of 
an example). Let 𝑋′ =𝑋 ∪ {𝓁} for some element 𝓁 ∉𝑋, and let 𝑇1 and 
𝑇2 denote two isomorphic caterpillars trees on 𝑋′ such that 𝓁 is a leaf 
in the unique cherry of 𝑇1 (and therefore also of 𝑇2). For all 𝑥 ∈𝑋, we 
identify leaf 𝑥 of 𝑇1 with leaf 𝑥 of 𝑇2. The resulting network has |𝑋|
reticulations. We call all vertices in the resulting DAG Gen1 vertices.

For all 𝑥 ∈𝑋, we attach to 𝑥 a path 𝑃𝑥 of length 𝑐(𝑥) + 1 via an arc 
(𝑥, 𝑎𝑥), where 𝑎𝑥 is the first vertex on 𝑃𝑥 and 𝑐(𝑥) is the number of sets 
in  containing 𝑥. We then bijectively label for each 𝑥 ∈𝑋 the internal 
3

vertices of 𝑃𝑥 with the elements in  that contain 𝑥. We call all vertices 
Information Processing Letters 187 (2025) 106500

added during this step Gen2 vertices. Finally, for all 𝑆 ∈  and all 𝑥 ∈ 𝑆 , 
we create a reticulation ℎ𝑆 with parents the vertices on 𝑃𝑥 labeled by 
𝑆 and add a leaf 𝓁𝑆 to ℎ𝑆 by adding the arc (ℎ𝑆, 𝓁𝑆 ). We call vertices 
added during this step Gen3 vertices.

Let 𝑁 denote the resulting DAG. By construction, 𝑁 is an 𝑚-network 
on 𝐿(𝑁) that is quasi-binary and tree-child. We now show that there 
exists a solution to the SET-SPLITTING problem for 𝑋 and  if and only 
if 𝑁 is proper forest-based, which will complete the proof.

Suppose first that {𝐴, 𝐵} is a solution to the SET-SPLITTING problem 
for 𝑋 and . We define an 𝑚-coloring 𝜎 ∶ 𝑉 (𝑁) → {1, … , 𝑚} for 𝑁
as follows. Let 𝑣 ∈ 𝑉 (𝑁). If 𝑣 is a Gen1 tree-vertex, we set 𝜎(𝑣) = 1
if 𝑣 ∈ 𝑉 (𝑇1), and 𝜎(𝑣) = 2 if 𝑣 ∈ 𝑉 (𝑇2), if 𝑣 ∈ {𝑟2, 𝓁2, ℎ2}, and if 𝑣 ∈
{𝑟𝑚, 𝓁𝑚} we put 𝜎(𝑣) = 𝑚. If 𝑣 ∈ 𝑉 (𝑃𝑥) ∪ {𝑥} for some 𝑥 ∈𝑋, then we 
put 𝜎(𝑣) = 1 if 𝑥 ∈ 𝐴 and 𝜎(𝑥) = 2 if 𝑥 ∈ 𝐵. Finally, if 𝑣 ∈ {ℎ𝑆, 𝓁𝑆}
for some 𝑆 ∈ , then we put 𝜎(𝑣) = 1 if |𝑆 ∩ 𝐴| = 1 and 𝜎(𝑣) = 2 if 
|𝑆 ∩ 𝐵| = 1. Note that since {𝐴, 𝐵} is a solution to the SET-SPLITTING

problem, precisely one of these equalities always holds. We claim that 
𝜎 satisfies (C1) and (C2), which implies that 𝑁 is proper forest-based.

To see that (C1) holds, note first that, by construction, all non-root 
vertices 𝑣 have at least one parent 𝑢 satisfying 𝜎(𝑢) = 𝜎(𝑣). Suppose 
now that 𝑣 is a reticulation. If 𝑣 is a Gen1 vertex, then 𝜎(𝑣) ∈ {1, 2}
and 𝑣 has exactly two parents. Calling them 𝑣1 and 𝑣2 we have 
𝜎(𝑣1), 𝜎(𝑣2) ∈ {1, 2} and 𝜎(𝑣1) ≠ 𝜎(𝑣2). Thus, exactly one of 𝜎(𝑣1) = 𝜎(𝑣)
or 𝜎(𝑣2) = 𝜎(𝑣) holds. If 𝑣 is a Gen3 vertex, then 𝑣 has three parents 
𝑣1, 𝑣2, 𝑣3 and two of them must have the same color under 𝜎. Without 
loss of generality assume that 𝜎(𝑣2) = 𝜎(𝑣3). By definition, 𝜎(𝑣) = 𝜎(𝑣1)
follows. Hence, (C1) holds.

To see that (C2) holds, let 𝑣 ∈ 𝑉 (𝑁) − 𝐿(𝑁). If 𝑣 is a Gen1 vertex 
that is not a reticulation, then 𝑣 is an internal vertex of either 𝑇1 or 𝑇2. 
Since, for all 𝑖 ∈ {1, 2}, 𝑇𝑖 is a caterpillar tree and, by definition of 𝜎, 
all vertices on the directed path from the root of 𝑇𝑖 to 𝓁 have the same 
color under 𝜎, (C2) follows. If 𝑣 is a Gen2 vertex or a Gen1 reticulation 
then 𝑣 ∈ {𝑥} ∪ 𝑉 (𝑃𝑥), some 𝑥 ∈ 𝑋. Since 𝑃𝑥 is a directed path whose 
first vertex is adjacent with 𝑥, the definition of 𝜎 implies (C2) again. 
Finally, if 𝑣 is a Gen3 vertex, then 𝑣 = ℎ𝑆 , some 𝑆 ∈ . By definition, 
𝜎(ℎ𝑆 ) = 𝜎(𝓁𝑆 ). Hence, (C2) also holds.

Conversely, suppose that 𝑁 is proper forest-based. By Lemma 3.1, 
there exists an 𝑚-coloring 𝜎 of 𝑁 satisfying (C1) and (C2). Note that, 
by construction, the set of all Gen1 reticulations of 𝑁 is 𝑋 and also that 
every element in 𝑋 is a descendant of both 𝑟2 and the root 𝜌1 of 𝑇1. By 
(C1), it follows that either 𝜎(𝑥) = 𝜎(𝑟2) or 𝜎(𝑥) = 𝜎(𝜌1) holds for all 𝑥 ∈
𝑋. Let 𝐴 = {𝑥 ∈ 𝑋 ∶ 𝜎(𝑥) = 𝜎(𝜌1)} and 𝐵 = {𝑥 ∈ 𝑋 ∶ 𝜎(𝑥) = 𝜎(𝑟2)}. 
Clearly, {𝐴, 𝐵} is a bipartition of 𝑋 as 𝜎(𝑟2) ≠ 𝜎(𝜌1).

We claim that {𝐴, 𝐵} is a solution to the SET-SPLITTING problem. To 
see this, consider a set 𝑆 = {𝑥, 𝑦, 𝑧} ∈ . By construction, ℎ𝑆 has three 
ancestors, all of which are Gen2 vertices that are a descendant of 𝑥, 
𝑦 and 𝑧, respectively. Since a Gen2 vertex is a vertex on 𝑃𝑤 for some 
𝑤 ∈𝑋, (C1) implies that 𝜎(𝑤) = 𝜎(𝑢), for all 𝑢 ∈ 𝑉 (𝑃𝑤). Moreover, by 
(C2), exactly one parent 𝑢 of ℎ𝑆 satisfies 𝜎(𝑢) = 𝜎(ℎ𝑆 ). Without loss of 
generality, we may assume that 𝑢 is a descendant of 𝑥. Hence, 𝜎(𝑥) ≠
𝜎(𝑦) = 𝜎(𝑧). By definition of 𝐴 and 𝐵, it follows that 𝑆 ∩ 𝐴 ≠ ∅ and 
𝑆 ∩𝐵 ≠ ∅. Since this holds for all 𝑆 ∈ , the claim follows. □

5. Tree-child networks revisited

In this section, we prove a result using network colorings from which 
a weaker form of Statement (R3) also follows. We do this in part be-

cause the construction that we shall use in the proof will be used in the 
next section for establishing our results concerning binary, tree-child 
𝑚-networks. We shall reduce from the GRAPH 𝑚-COLORABILTY decision 
problem for 𝑚 ≥ 3 ([7, page 190]) which is as follows.

∙ Given a (simple) graph 𝐺, does there exist a proper 𝑚-coloring 

of 𝐺?
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Fig. 2. The 2-network 𝑁 for 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and  =
{{𝑎, 𝑏, 𝑐}, {𝑎, 𝑐, 𝑒}, {𝑏, 𝑐, 𝑑}}, as described in the proof of Theorem 4.1. 
Gen1, Gen2, and Gen3 vertices are indicated as vertices in a band labeled

Gen1, Gen2, and Gen3, respectively. For clarity purposes, we have indicated 
the reticulation with the set in  its three parents correspond to and not the 
parents themselves. A 2-coloring 𝜎 ∶ 𝑉 (𝑁) → {∙, ◦} associated to the solution 
𝐴 = {𝑎, 𝑏}, 𝐵 = {𝑐, 𝑑, 𝑒} of the SET-SPLITTING problem for (𝑋, ).

Note that this problem can be solved in polynomial time for 𝑚 = 2
but is NP-complete for each 𝑚 ≥ 3. Hence, the reduction below can only 
be used for 𝑚 ≥ 3.

Proposition 5.1. For each fixed 𝑚 ≥ 3, the problem of determining whether 
a tree-child 𝑚-network is proper forest-based is NP-complete.

Proof. Membership of NP can be argued in the same way as in the 
proof of Theorem 4.1. We prove NP-completeness by giving a reduction 
from GRAPH 𝑚-COLORABILTY.

Suppose that we are given a graph 𝐺 with vertex set 𝑋. Then we 
construct an 𝑚-network 𝑁 as follows (see Fig. 3 where we illustrate the 
various constructions performed in this proof in terms of an example). 
Let 𝑇1, … , 𝑇𝑚 denote 𝑚 isomorphic caterpillars trees on a set 𝑌 with 
|𝑋| + 1 leaves. Without loss of generality we may assume that 𝑌 =𝑋 ∪
{𝓁} and that 𝓁 ∉𝑋 is a leaf in the unique cherry of 𝑇1 (and therefore 
also of all 𝑇𝑖, 2 ≤ 𝑖 ≤𝑚). For all 𝑥 ∈𝑋 and all 1 ≤ 𝑖 ≤𝑚, we identify the 
leaves 𝑥 to obtain a vertex 𝑥 of indegree 𝑚. We call all vertices in the 
resulting graph Gen1 vertices.

Denoting for all 𝑥 ∈𝑋 the degree of 𝑥 in 𝐺 by deg𝐺(𝑥), we attach 
a directed path 𝑃𝑥 of length deg𝐺(𝑥) + 1 via an arc (𝑥, 𝑎𝑥) to the first 
vertex 𝑎𝑥 of 𝑃𝑥. We label each internal vertex of 𝑃𝑥 with an edge in 𝐺
that is incident with 𝑥 and call all vertices added during this step Gen2 
vertices. Finally, for all edges 𝑒 of 𝐺, we create a new reticulation ℎ𝑒

with parents the two vertices in the DAG constructed thus far labeled

𝑒 and add a leaf 𝓁𝑒 as a child to ℎ𝑒. We call vertices added during this 
step Gen3 vertices.

Let 𝑁 denote the resulting DAG. One can easily verify that 𝑁 is an 
𝑚-network that is tree-child. We now show that there exists a solution 
to GRAPH 𝑚-COLORABILTY for 𝐺 if and only if 𝑁 is proper forest-based, 
which will complete the proof.

Suppose first that there exists a proper 𝑚-coloring 𝜅 ∶ 𝑋 →
{1, … , 𝑚} of 𝐺. From 𝜅, we derive an 𝑚-coloring 𝜎 ∶ 𝑉 (𝑁) → {1, … , 𝑚}
of 𝑁 as follows. Let 𝑣 ∈ 𝑉 (𝑁). If 𝑣 is a Gen1 tree-vertex then there ex-

ists some 1 ≤ 𝑖 ≤ 𝑚 such that 𝑣 ∈ 𝑉 (𝑇𝑖). In this case, we put 𝜎(𝑣) = 𝑖. 
If 𝑣 is a Gen2 vertex or a Gen1 reticulation, then 𝑣 ∈ {𝑥} ∪ 𝑉 (𝑃𝑥) for 
some 𝑥 ∈ 𝑋, and we put 𝜎(𝑣) = 𝜅(𝑥). Finally, if 𝑣 is a Gen3 vertex, 
then 𝑣 ∈ {ℎ𝑒, 𝓁𝑒} for some edge 𝑒 = {𝑥, 𝑦} of 𝐺. In this case, we choose 
𝜎(𝑣) ∈ {𝜅(𝑥), 𝜅(𝑦)} if 𝑣 = ℎ𝑒 and we put 𝜎(𝑣) = 𝜎(ℎ𝑒) if 𝑣 = 𝓁𝑒.

To see that 𝑁 is proper forest-based it suffices to show by Lemma 3.1
4

that 𝜎 satisfies Properties (C1) and (C2).
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Fig. 3. The 3-network 𝑁 constructed from the graph 𝐺 with vertex set 𝑋 =
{𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and edge set 𝐸(𝐺) = {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑏, 𝑑}, {𝑐, 𝑑}, {𝑑, 𝑒}}, as 
described in the proof of Proposition 5.1. Gen1, Gen2 and Gen3 vertices are 
indicated as described in Fig. 2. A 3-coloring 𝜎 ∶ 𝑉 (𝑁) → {∙, ◦, ×} associated 
to the proper 3-coloring 𝜅 of 𝐺 given by 𝜅(𝑎) = 𝜅(𝑑) = ∙, 𝜅(𝑏) = 𝜅(𝑒) = ◦ and 
𝜅(𝑐) = ×.

To see that (C1) holds, note first that, by construction, all non-root 
vertices 𝑣 of 𝑁 have at least one parent 𝑢 satisfying 𝜎(𝑢) = 𝜎(𝑣). Suppose 
now that 𝑣 is a reticulation. Then 𝑣 is either a Gen1 reticulation or 
𝑣 = ℎ𝑒 for some edge 𝑒 of 𝐺. If 𝑣 is a Gen1 reticulation then 𝑣 ∈ 𝑋. 
Hence, 𝑣 has 𝑚 parents 𝑣1, … , 𝑣𝑚. Since, for each 1 ≤ 𝑖 ≤𝑚, there exists 
a unique tree 𝑇𝑖 that contains 𝑣𝑖 it follows that there exists a unique 
1 ≤ 𝑗 ≤𝑚 such that 𝜎(𝑣) = 𝜎(𝑣𝑗 ) = 𝑗. If 𝑣 = ℎ𝑒 then let 𝑥, 𝑦 ∈𝑋 such that 
𝑒 = {𝑥, 𝑦}. Without loss of generality, assume that 𝑣1 is a vertex on 𝑃𝑥

and that 𝑣2 is a vertex on 𝑃𝑦. Assume that we have chosen 𝜎(ℎ𝑒) = 𝜅(𝑥)
in the definition of 𝜎. Then 𝜎(ℎ𝑒) = 𝜅(𝑥) = 𝜎(𝑣1). Since 𝜅 is a proper 
𝑚-coloring of 𝐺, we also have 𝜎(𝑣2) = 𝜅(𝑦) ≠ 𝜅(𝑥). Thus, (C1) holds.

To see that (C2) holds, let 𝑣 ∈ 𝑉 (𝑁) − 𝐿(𝑁). If 𝑣 is a Gen1 vertex 
that is not a reticulation, then 𝑣 has at least one child 𝑢 that is a Gen1 
vertex that is not a reticulation. In particular, 𝑣 and 𝑢 belong to the 
same tree 𝑇𝑖, 1 ≤ 𝑖 ≤ 𝑚. Hence, 𝜎(𝑣) = 𝜎(𝑢), by the definition of 𝜎. If 𝑣
is a Gen2 vertex or a Gen1 reticulation, then 𝑣 has exactly one child 𝑢
that is a Gen2 vertex. By definition, 𝜎(𝑢) = 𝜎(𝑣) also holds in this case. 
Finally, if 𝑣 is a Gen3 vertex, then 𝑣 = ℎ𝑒 for some edge 𝑒 of 𝐺. Hence, 
𝜎(𝓁𝑒) = 𝜎(𝑣) holds by definition. Thus, (C2) holds.

Conversely, suppose that 𝑁 is proper forest-based. By Lemma 3.1, 
there exists an 𝑚-coloring 𝜎 ∶ 𝑉 (𝑁) → {1 … , 𝑚} of 𝑁 satisfying (C1) 
and (C2). Since the set of Gen1 reticulations of 𝑁 is 𝑋, the restriction 
of 𝜎 to 𝑋 induces an 𝑚-coloring 𝜅 ∶𝑋 → {1, … , 𝑚} of 𝐺.

We claim that 𝜅 is a proper 𝑚-coloring of 𝐺. To see the claim, con-

sider an edge 𝑒 = {𝑥, 𝑦} of 𝐺. By construction, there exists a (unique) 
Gen3 reticulation 𝑣 such that 𝑣 = ℎ𝑒. Let 𝑣1 denote the parent of ℎ𝑒 on 
𝑃𝑥. Similarly, let 𝑣2 denote the parent of ℎ𝑒 on 𝑃𝑦. By (C1), 𝜎(𝑣1) = 𝜅(𝑥)
and 𝜎(𝑣2) = 𝜅(𝑦) hold. Since, by (C2), 𝜎(ℎ𝑒) = 𝜎(𝑣𝑖) for a unique 
𝑖 ∈ {1, 2}, say 𝑖 = 1, it follows that 𝜅(𝑦) = 𝜎(𝑣2) ≠ 𝜎(ℎ𝑒) = 𝜎(𝑣1) = 𝜅(𝑥). 
Thus, 𝜅 is a proper 𝑚-coloring of 𝐺. □

6. Binary tree-child networks

In this section, we prove Statements (R1) and (R2). We begin with 
some definitions. Suppose 𝑁 is an 𝑚-network and 𝑣 ∈ 𝑉 (𝑁). We denote 
by 𝑁 (𝑣) the set of parents of 𝑣 and by 𝑁 (𝑣) the set of children of 𝑣.

Statement (R2) follows from the following result.

Theorem 6.1. For each fixed 𝑚 ≥ 3, the problem of determining whether a 
binary tree-child 𝑚-network is proper forest-based is NP-complete.

Proof. Membership of NP follows from Proposition 5.1. We again re-

duce from the GRAPH 𝑚-COLORABILTY problem. Suppose 𝐺 is a graph 
with vertex set 𝑋. We use the construction described in the proof of 

Proposition 5.1 to obtain a tree-child 𝑚-network 𝑁𝑠. We then create a 
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binary tree-child network 𝑁𝑏 from 𝑁𝑠 by applying the following opera-

tion to each reticulation 𝑥 with indegree 𝑑 ≥ 3 (by construction, 𝑑 =𝑚).

(i) Introduce vertices 𝑢2, 𝑣2, 𝑤2, … , 𝑢𝑑−1, 𝑣𝑑−1, 𝑤𝑑−1.

(ii) Remove arcs (𝑝1, 𝑥), … , (𝑝𝑑−1, 𝑥), with 𝑝1, … , 𝑝𝑑 the parents of 𝑥
in 𝑁𝑠 (in arbitrary order).

(iii) Add arcs (𝑝1, 𝑢2), (𝑝𝑖, 𝑢𝑖), (𝑢𝑖, 𝑣𝑖), (𝑣𝑖, 𝑤𝑖), (𝑣𝑖, 𝑢𝑖+1) for 𝑖 = 2, … , 𝑑 − 1
with 𝑢𝑑 = 𝑥.

We illustrate the above construction for a reticulation with indegree 
𝑑 = 4 in Fig. 4. We comment that, for a general tree-child network 𝑁𝑠, 
it does not necessarily hold that 𝑁𝑠 is proper forest-based if and only 
if 𝑁𝑏 is proper forest-based. Therefore, we will use the specific structure 
of the network 𝑁𝑠 constructed here.

We next show that 𝑁𝑏 is proper forest-based if and only if 𝐺 admits 
a proper 𝑚-coloring. Suppose first that 𝐺 admits a proper 𝑚-coloring. 
Then, by the proof of Proposition 5.1, 𝑁𝑠 is proper forest-based. Hence, 
there exists an 𝑚-coloring 𝜎 ∶ 𝑉 (𝑁𝑠) → 𝐶 of 𝑁𝑠 in terms of a set 𝐶 of 
colors such that (C1) and (C2) hold.

We define an 𝑚-coloring 𝜎′ ∶ 𝑉 (𝑁𝑏) → 𝐶 of 𝑁𝑏 as follows. For 𝑤 ∈
𝑉 (𝑁𝑠), we put 𝜎′(𝑤) = 𝜎(𝑤). For each vertex introduced in Step (i) 
for some reticulation 𝑥, we do the following. Let 𝑝𝑗 be the parent of 𝑥
satisfying 𝜎(𝑝𝑗 ) = 𝜎(𝑥) (which must exist in view of (C1)). For 1 < 𝑖 < 𝑗, 
we put 𝜎′(𝑢𝑖) = 𝜎′(𝑣𝑖) = 𝜎′(𝑤𝑖) = 𝜎(𝑝1). For 𝑗 ≤ 𝑖 ≤ 𝑑 −1 we put 𝜎′(𝑢𝑖) =
𝜎′(𝑣𝑖) = 𝜎′(𝑤𝑖) = 𝜎(𝑥) = 𝜎(𝑝𝑗 ). To see that 𝑁𝑏 is proper forest-based, we 
show that 𝜎′ satisfies (C1) and (C2).

To see that 𝜎′ satisfies (C1), let 𝑤 be a non-root vertex of 𝑁𝑏 . If 𝑤 ∈
𝑉 (𝑁𝑠) and 𝑤 has indegree at most 2 in 𝑁𝑠, then 𝑁𝑠 (𝑤) = 𝑁𝑏 (𝑤), 
𝜎′(𝑤) = 𝜎(𝑤), and 𝜎′(𝑞) = 𝜎(𝑞), for all parents 𝑞 ∈ 𝑁𝑠 (𝑤). By (C1), 
there exists exactly one parent 𝑞 in 𝑁𝑠 (𝑤) that satisfies 𝜎(𝑞) = 𝜎(𝑤). It 
follows that 𝑞 is the unique parent in 𝑁𝑏 (𝑤) satisfying 𝜎′(𝑞) = 𝜎′(𝑤). 
So, (C1) holds.

Now assume 𝑤 is introduced in Step (i) for some reticulation 𝑥. Let 
𝑝𝑗 again be the parent of 𝑥 satisfying 𝜎(𝑝𝑗 ) = 𝜎(𝑥).

If 𝑤 ∈ {𝑣𝑖, 𝑤𝑖}, for some 2 ≤ 𝑖 ≤ 𝑑 − 1, then 𝑤 has exactly one par-

ent 𝑞 and 𝜎′(𝑤) = 𝜎′(𝑞). So (C1) holds.

Before continuing to the next case, observe that, since every root 
of 𝑁 has a different color, the parents of 𝑥 in 𝑁𝑠 also have different 
colors, by (C1).

Now consider the case 𝑤 = 𝑢𝑖 for 𝑖 ∈ {2, … , 𝑗 − 1}. Then 𝑤 has two 
parents 𝑣𝑖−1, 𝑝𝑖, with 𝑣1 = 𝑝1, and 𝜎′(𝑤) = 𝜎′(𝑣𝑖−1) = 𝜎′(𝑝1) ≠ 𝜎′(𝑝𝑖). So 
(C1) holds.

If 𝑤 = 𝑢𝑗 , then 𝑤 has two parents 𝑣𝑗−1, 𝑝𝑗 and 𝜎′(𝑤) = 𝜎′(𝑝𝑗 ) ≠
𝜎′(𝑣𝑗−1) = 𝜎′(𝑝1). So (C1) holds.

Finally assume 𝑤 = 𝑢𝑖 for 𝑖 ∈ {𝑗 + 1, … , 𝑑} with 𝑢𝑑 = 𝑥. Then 𝑤 has 
two parents 𝑣𝑖−1, 𝑝𝑖 and 𝜎′(𝑤) = 𝜎′(𝑣𝑖−1) = 𝜎′(𝑝𝑗 ) ≠ 𝜎′(𝑝𝑖). So (C1) holds 
again.

To show that 𝜎′ also satisfies (C2), consider an internal vertex 𝑤

of 𝑁𝑏. First suppose 𝑤 ∈ 𝑉 (𝑁𝑠) and 𝑤 is not a parent of a reticulation 
with indegree greater than 2 in 𝑁𝑠. Then 𝑁𝑠 (𝑤) = 𝑁𝑏 (𝑤). In par-

ticular, 𝜎′(𝑤) = 𝜎(𝑤) and 𝜎′(𝑧) = 𝜎(𝑧), for all children 𝑧 ∈ 𝑁𝑠 (𝑤). By 
(C2), there exists at least one child 𝑧 ∈ 𝑁𝑠 (𝑤) with 𝜎(𝑧) = 𝜎(𝑤). So 
𝜎′(𝑧) = 𝜎′(𝑤) holds.

Now assume 𝑤 is introduced in Step (i) for some reticulation 𝑥. 
Then, by the construction of 𝜎′, 𝑤 has the same color as at least one of 
its children.

Now assume 𝑤 is a parent of a reticulation with indegree greater 
than 2 in 𝑁𝑠. Then 𝑤 has a child 𝑐 with indegree 1 in 𝑁𝑠 and with 
𝜎(𝑐) = 𝜎′(𝑐). Hence, 𝜎(𝑐) = 𝜎(𝑤) and 𝜎′(𝑐) = 𝜎′(𝑝). So, 𝜎′ satisfies (C2).

Conversely suppose 𝑁𝑏 is proper forest-based. Then there exists an 
𝑚-coloring 𝜎 of 𝑁𝑏 in terms of a set 𝐶 of colors that satisfies Prop-

erties (C1) and (C2). Restricting this coloring to 𝑋 to obtain a color-

ing 𝜅 ∶ 𝑋 → 𝐶 and then applying the same arguments as in the last 
paragraph of the proof of Proposition 5.1 implies that 𝜅 is a proper 𝑚-

coloring of 𝐺. Note that these arguments only use the vertices in 𝑋 and 
5

their descendants and hence they are the same for 𝑁𝑏 as for 𝑁𝑠. □
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Fig. 4. (i) A reticulation 𝑥 with 4 parents 𝑝1, … , 𝑝4. (ii) The construction de-

scribed in the proof of Theorem 6.1, which reduces the indegree of 𝑥 to 2.

Fig. 5. (i) A forest-based 3-network on 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗}. (ii) The 
graph with vertices 𝑟1, 𝑟2, 𝑟3, ℎ1, ℎ2 and ℎ3 and solid edges {𝑟1, 𝑟2} and {𝑟2, 𝑟3}
is the graph Γ(𝑁). Adding the dashed edge {𝑟1, ℎ3} results in a minimal omni-

extension of Γ(𝑁).

To prove the next result, we require further concepts from [9]. Let 
𝑁 be a semi-binary 𝑚-network, 𝑚 ≥ 2, and let 𝑣 be a vertex of 𝑁 . 
We denote by 𝛾𝑁 (𝑣) the (necessarily unique) lowest ancestor of 𝑣 in 𝑁
whose indegree is not 1. Note that 𝛾𝑁 (𝑣) is either a root or a reticulation 
of 𝑁 . Building on this definition, we define an undirected graph Γ(𝑁)
as follows. The vertex set of Γ(𝑁) is the set of all vertices of 𝑁 whose 
indegree is not 1. Two such vertices 𝑣1, 𝑣2 are joined by an edge in 
Γ(𝑁) if there exists two distinct vertices 𝑢1, 𝑢2 in 𝑁 such that 𝛾𝑁 (𝑢1) =
𝑣1, 𝛾𝑁 (𝑢2) = 𝑣2, and 𝑢1 and 𝑢2 share a child in 𝑁 . The intuitive idea 
behind these edges is that they indicate that the vertices 𝑣1, 𝑣2 need to 
be contained in different trees in a potential subdivision forest of 𝑁 and 
so need to be assigned different colors. Indeed, for an 𝑚-coloring 𝜎 of 
𝑁 satisfying (C1) and (C2), 𝜎(𝑢1) = 𝜎(𝑣1) and 𝜎(𝑢2) = 𝜎(𝑣2) must hold 
by (C1) and by definition of 𝛾𝑁 (𝑣), 𝑣 ∈ 𝑉 (𝑁). Property (C1) together 
with the fact that the common child of 𝑢1 and 𝑢2 has indegree 2 implies 
𝜎(𝑢1) ≠ 𝜎(𝑢2).

As it turns out, the edges of the graph Γ(𝑁) are not sufficient to 
determine whether 𝑁 is proper forest-based. This is caused by internal 
vertices of 𝑁 for which all children have indegree 2 or more. We call 
such a vertex an omnian (vertex) [10]. In order for (C2) to hold, for all 
omnian vertices 𝑣 of 𝑁 , at least one child of 𝑣 needs to be assigned 
the same color as 𝑣. To ensure that this property is satisfied, we will 
use certain supergraphs of Γ(𝑁) called “omni-extensions”. For a semi-

binary network 𝑁 , we define an omni-extension of Γ(𝑁) as a supergraph 
Γ′(𝑁) of Γ(𝑁) such that 𝑉 (Γ′(𝑁)) = 𝑉 (Γ(𝑁)) and for all omnians 𝑣 of 
𝑁 there exists a child ℎ of 𝑣 such that {ℎ, 𝛾𝑁 (𝑢)} is an edge of Γ′(𝑁), 
with 𝑢 being the parent of ℎ in 𝑁 other than 𝑣 [8]. Note that Γ(𝑁) may 
be an omni-extension of itself. This is the case, in particular, if 𝑁 has no 
omnian vertex. If Γ′(𝑁) is an omni-extension of Γ(𝑁), and no proper 
subgraph of Γ′(𝑁) is an omni-extension of Γ(𝑁), we say that Γ′(𝑁) is 
a minimal omni-extension of Γ(𝑁).

We illustrate these concepts in Fig. 5. Observe that the common 
parent 𝑣 of ℎ1 and ℎ3 in Fig. 5(i) is an omnian. At least one of the 
children of 𝑣 needs to be assigned the same color as 𝑣 (in a coloring

satisfying (C2) in Lemma 3.1). In this example, we choose child ℎ3 as ℎ. 
This means that the other parent 𝑢 of ℎ3 needs to be assigned a different 

color than ℎ3 (by (C1)) and hence that 𝛾𝑁 (𝑢) = 𝑟3 needs to be assigned 
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a different color than ℎ3 (again using (C1)). This is the intuitive idea 
behind adding the dashed edge {ℎ3, 𝑟3} in Fig. 5(ii).

Statement (R1) is a consequence of the next result.

Theorem 6.2. Given a binary tree-child 2-network 𝑁 , it can be determined 
in 𝑂(𝑛𝑟) time whether 𝑁 is proper forest-based, where 𝑟 is the number of 
reticulations of 𝑁 and 𝑛 = |𝐿(𝑁)|.

Proof. [8, Theorem 8] states that a 2-network, in which all retic-

ulations have indegree 2, is proper forest-based if and only if the 
graph Γ(𝑁) has a bipartite omni-extension. This theorem is applica-

ble to 𝑁 since it is binary. Since 𝑁 is tree-child, it has no omnians. 
Hence, Γ(𝑁) is an omni-extension of Γ(𝑁).

We claim that 𝑁 is proper forest-based if and only if Γ(𝑁) is bi-

partite. First suppose that 𝑁 is proper forest-based. Then, by [8, Theo-

rem 8] recalled above, Γ(𝑁) has a bipartite omni-extension. Since Γ(𝑁)
is a subgraph of every omni-extension of Γ(𝑁), it follows that Γ(𝑁) is 
bipartite. Conversely, if Γ(𝑁) is bipartite, then, since Γ(𝑁) is an omni-

extension of Γ(𝑁), it follows again by [8, Theorem 8] recalled above 
that 𝑁 is proper forest-based. The claim therefore holds.

To construct Γ(𝑁), we need to find, for each parent 𝑣 of a reticula-

tion of 𝑁 , the vertex 𝛾𝑁 (𝑣). This takes 𝑂(|𝑉 (𝑁)|) time per reticulation 
of 𝑁 . Hence, the construction of Γ(𝑁) takes 𝑂(|𝑉 (𝑁)| ⋅ 𝑟) time. Check-

ing whether Γ(𝑁) is bipartite takes 𝑂(𝑟) time, since Γ(𝑁) has at most 𝑟

edges. Hence, the total running time is 𝑂(|𝑉 (𝑁)| ⋅ 𝑟).
Finally, to obtain the running time stated in the theorem, note that 

by [14, Proposition 10.7] a tree-child 1-network with 𝑛 leaves has fewer 
than 4𝑛 vertices. Adding a vertex 𝜌 and an arc from 𝜌 to each of the two 
roots in 𝑁 results in a tree-child 1-network, and increases the number 
of vertices by only 1. It follows that 𝑁 has 𝑂(𝑛) vertices. This concludes 
the proof. □

7. An FPT algorithm

In this section, we shall present a fixed-parameter tractable (FPT) 
algorithm called CHECK for deciding whether a semi-binary 𝑚-network 
𝑁 , 𝑚 ≥ 2, is forest-based, with respect to the parameter combination of 
𝑚, the number 𝑟 of reticulations of 𝑁 , and the maximum outdegree Δ
of 𝑁 . This will enable us to prove that Statement (R4) holds. Note that 
we do not require the network to be tree-child.

For 𝑁 an 𝑚-network, 𝑚 ≥ 2, we denote the set of roots and reticu-

lations of 𝑁 by 𝑅𝐻(𝑁). Note that 𝑅𝐻(𝑁) is precisely the vertex set 
of Γ(𝑁). For 𝐺 a graph with vertex set 𝑅𝐻(𝑁) and 𝜎 a coloring of 𝐺, 
we say that a directed path 𝑃 in 𝑁 is a 𝜎-uniform path if for all vertices 
𝑣, 𝑣′ ∈𝑅𝐻(𝑁) on 𝑃 , we have 𝜎(𝑣) = 𝜎(𝑣′). Note that a directed path in 
𝑁 containing at most one vertex of 𝑅𝐻(𝑁) is trivially 𝜎-uniform.

Algorithm 1 The algorithm CHECK.

Input: A semi-binary 𝑚-network 𝑁 , 𝑚 ≥ 2.

Output: The statement “𝑁 is proper forest-based” or the statement “𝑁 is not 
proper forest-based”.

1: Construct Γ(𝑁) and find all minimal omni-extensions of Γ(𝑁).
2: for all minimal omni-extension of Γ(𝑁) do

3: Add an edge between any two distinct roots

of 𝑁 to obtain a graph Γ∗(𝑁).
4: Find all proper 𝑚-colorings of Γ∗(𝑁).
5: for all proper 𝑚-coloring 𝜎 of Γ∗(𝑁) do

6: for all reticulations ℎ of 𝑁 and all roots 𝜌 of

𝑁 with 𝜎(𝜌) = 𝜎(ℎ) do

7: Check that there exists a 𝜎-uniform path from 𝜌 to ℎ in 𝑁 .

8: if the latter holds for all reticulations ℎ of 𝑁
and all roots 𝜌 of 𝑁 with 𝜎(𝜌) = 𝜎(ℎ) then

9: return “𝑁 is proper forest-based”.
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10: return “𝑁 is not proper forest-based”.
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Correctness of the algorithm CHECK follows from Theorem 7.1 which 
is a slight strengthening of [8, Theorem 7] to minimal omni-extensions.

Theorem 7.1. Let 𝑁 be a semi-binary 𝑚-network, 𝑚 ≥ 2. Then 𝑁 is proper 
forest-based if and only if there exists a minimal omni-extension Γ′(𝑁) of 
Γ(𝑁) and a proper 𝑚-coloring 𝜎 of Γ′(𝑁) satisfying:

(F1) The restriction of 𝜎 to the set 𝑅(𝑁) of roots of 𝑁 is a bijection.

(F2) For all 𝑢 ∈ 𝑅(𝑁) and all reticulations 𝑣 of 𝑁 such that 𝜎(𝑢) = 𝜎(𝑣)
there exists a 𝜎-uniform path from 𝑢 to 𝑣 in 𝑁 .

Proof. Suppose first that there exists a minimal omni-extension Γ′(𝑁)
of Γ(𝑁) and a proper 𝑚-coloring of Γ′(𝑁) satisfying (F1) and (F2). Then 
by [8, Theorem 7], 𝑁 is proper forest-based.

Conversely, suppose that 𝑁 is proper forest-based. Then by [8, 
Theorem 7], there exists an omni-extension 𝐺 of Γ(𝑁) and a proper 
𝑚-coloring 𝜎 of 𝐺 satisfying (F1) and (F2). Since (F1) and (F2) are in-

dependent of the structure of 𝐺, it follows for all subgraphs 𝐺− of 𝐺
with 𝑉 (𝐺) = 𝑉 (𝐺−) that 𝜎 is a proper 𝑚-coloring of 𝐺− satisfying (F1) 
and (F2). In particular, if there exists an omni-extension of Γ(𝑁) and 
a proper 𝑚-coloring of 𝐺 satisfying (F1) and (F2), then there exists a 
minimal omni-extension of Γ(𝑁) and a proper 𝑚-coloring of 𝐺 satisfy-

ing (F1) and (F2). □

We now analyze the run time of algorithm CHECK. The graph Γ(𝑁)
can be constructed in 𝑂(𝑟|𝑉 (𝑁)|) time and can have at most Δ𝜔 mini-

mal omni-extensions where 𝜔 is the number of omnians of 𝑁 . Since 𝑁

is semi-binary, 𝜔 is at most 2𝑟 (each omnian is the parent of at least 
one reticulation and each reticulation has two parents). All proper 𝑚-

colorings of Γ∗(𝑁) can be found in 𝑂(𝑚𝑟+𝑚(𝑟 + 𝑚)2) time since Γ∗(𝑁)
has 𝑟 +𝑚 vertices (Line 4). Since, by construction, the set of roots of 𝑁
forms a clique in Γ∗(𝑁) and we are interested in proper 𝑚-colorings of 
Γ∗(𝑁) it follows that for every reticulation ℎ of 𝑁 there exist a unique 
root 𝜌ℎ of 𝑁 that has the same color under the 𝑚-coloring 𝜎 under con-

sideration as ℎ. In the worst case, checking the existence of a 𝜎-uniform 
path from 𝜌ℎ to ℎ in 𝑁 takes 𝑂(|𝑉 (𝑁)|) time per pair (𝜌ℎ, ℎ) (by delet-

ing all reticulations that do not have the same color as 𝜌ℎ and then 
doing a depth-first search) (Line 7). The total run time of algorithm

CHECK therefore is 𝑂(Δ2𝑟𝑚𝑟+𝑚(𝑟 +𝑚)2|𝑉 (𝑁)|).
In conclusion, we have the following result from which State-

ment (R4) immediately follows.

Theorem 7.2. There exists an algorithm with running time 𝑂(Δ2𝑟𝑚𝑟+𝑚(𝑟 +
𝑚)2|𝑉 (𝑁)|) to decide whether a semi-binary 𝑚-network with 𝑟 reticulations 
and maximum outdegree Δ is proper forest-based, with 𝑚 ≥ 2.

8. Discussion

In this paper, we have shown that it can be decided in polynomial 
time whether a binary, tree-child, 2-network is proper forest-based. It 
would be interesting to know if the same problem can be solved in 
polynomial time for more general binary 2-networks, e.g. for binary 
tree-sibling 2-networks (i.e. 2-networks in which for every reticulation 
𝑣, there exists a tree-vertex or leaf 𝑢 such that 𝑢 and 𝑣 share a par-

ent) or even for general binary 2-networks. In addition, although we 
have shown that there is an FPT algorithm for deciding whether a semi-

binary 𝑚-network, 𝑚 ≥ 2 is proper forest-based, it would be interesting 
to see if FPT-algorithms with improved run-times can be developed, or 
if an FTP algorithm can be found for general 𝑚-networks.

Also, we have not considered the problem of deciding whether an 
𝑚-network is forest-based, 𝑚 ≥ 1, i.e. the problem where we do not in-

sist that the underlying forest must have 𝑚 trees. It would be interesting 
to know whether this is an NP-complete problem. Note that since an 𝑚-
network 𝑁 is forest-based if and only if it contains a subdivision forest 
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in which every tree is an induced, directed path in 𝑁 (cf. [8, Theo-

rem 1]), this question is closely related to the induced path partition 
problem which is known to be NP-complete [2].

Finally, as more methods become available for computing networks 
from biological data (see e.g. [17]), our results should be useful for 
understanding whether a computed network is proper forest-based. It 
could also be interesting to develop approaches to decide how close a 
network is to being forest-based in case it is not forest based (see e.g. 
[3] for related work on edge-based 1-networks).
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