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Abstract

Magnetic resonance fingerprinting is an MRI-based technique that allows for fast, simultaneous quantita-
tive mapping of multiple tissue parameters. Multi-component MRF (MC-MRF) additionally allows for the
mapping of multiple tissue components per voxel. Currently, most MC-MRF implementations ignore any
nonlinear effects on signals resulting from multi-component systems, such as the effects introduced by mag-
netisation transfer (MT). Here, we investigate the effects of free pool to free pool magnetisation transfer on
the accuracy of MC-MRF, with a focus on the application of this technique for myelin water fraction (MWF)
imaging. Assessment of the different MC-MRF techniques is done through application of these algorithms to
two-component numerical phantoms, where the signals from two interacting components were simulated
using the EPG-X framework. Results show that MT has a negative effect on the accuracy of the acquired
parameter estimates for all estimated parameters, resulting in biases and incorrect parameter estimates. Sev-
eral adjusted methods for MC-MRF including magnetisation transfer were proposed and tested. Although
theoretically improvements were expected, the used sequences showed to be inadequate for accurate MT
estimates. More research into these techniques is still required to improve their performance and accuracy.
A technique left mainly unexplored here is sequence optimisation to minimise the effects of magnetisation
transfer on the resulting signals. A quick exploration, however, showed that this might be a viable approach
for future research as well.
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1
Introduction

Magnetic resonance imaging (MRI) is a widely used, non-invasive medical imaging technique, that sustains
high resolution images (up to 1 mm resolution) of the body with high contrast. Contrary to e.g. X-ray imaging
or PET scans, MRI does not expose the subject to ionising radiation. The specific imaging settings used dur-
ing the acquisition of an MRI image allow the operator to tailor the image contrast. This combination of high
resolution, low risk, and great flexibility makes MRI an invaluable tool in both clinical practice and medical
research [1].

MRI is used in many fields where good soft-tissue contrast is important. Examples of this are cardiac imag-
ing [2], abdominal imaging [3], and neuro imaging [4]. Especially in neuro imaging, the ability to choose the
contrast of the images in advance and acquire different images with varying contrasts, allows for a good dif-
ferentiation between tissue types such as white and grey matter. One branch of MRI neuro imaging is myelin
water imaging [5]. In the brain, the neural pathways (axons) are wrapped in layers of myelin, a fatty tissue that
insulates the axons from each other and increases the signal transmission speeds [5]. In between the myelin
layers, small amounts of water are trapped, called the myelin water. Although the MRI signal obtained from
lipids generally is very weak, the signal obtained from water is much stronger. This allows myelin water to be
measured as an indirect substitute for myelin [6].

An active area of research for MRI is in the field of multiple sclerosis (MS) [7]. For MS, one of the main symp-
toms is demyelination, a decrease in the myelin content of the brain [8]. The reduction in myelin decreases
or even stops signal transmission in the affected regions [7]. The myelin content of the brain is therefore an
important parameter in MS research and diagnosis. Myelin water fraction (MWF) imaging is a technique that
aims to determine the myelin water content of the brain as a fraction of the total tissue volume. In areas af-
fected by demyelination, the myelin content will decrease, and with it the MWF. Therefore, determining the
MWF can be used as a metric for research and early diagnosis of MS [9].

Different techniques to quantify the MWF through MRI already exist. Methods like multi-echo spin echo
multi-component T2 mapping aim to acquire quantitative T2-relaxation time maps for multiple components
in the brain. Determining the contribution of myelin water to the overall signal provides information about
the MWF [10]. Similarly, multi-compartment Look-Locker utilises a quantitative multi-component T1 map-
ping to estimate the myelin water fraction [11]. Furthermore, techniques like mcDESPOT aim to map both
T1 and T2 simultaneously, and extract the MWF from this information [12].

This research focuses on magnetic resonance fingerprinting (MRF) [13] for the estimation of the myelin wa-
ter fraction. MRF works by inducing a transient-state signal through application of a specialised pulse se-
quence. This transient-state signal is then compared to a dictionary of simulated signals, allowing for the
simultaneous extraction of multiple tissue parameters [13]. The simultaneous mapping of multiple parame-
ters prevents the need for multiple separate quantitative quantitative scans. This in turn decreases the total
scan time, lowering the probability of motion artefacts. These factors make MRF an attractive technique for
quantitative MRI.
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2 1. Introduction

Multi-component MRF (MC-MRF) aims to simultaneously extract tissue parameters for multiple compo-
nents in a voxel, potentially allowing for the estimation of the MWF. Here, we explore the effects of mag-
netisation transfer [14] on the accuracy of the MWF estimates acquired through multi-component MRF. More
specifically, we aim to answer two main questions: first, what is the extent of the effect of magnetisation
transfer on the performance of the multi-component models? And secondly, assuming that magnetisation
transfer introduces biases or inaccuracies, how can we include information about the exchange in the esti-
mation models to get more accurate and reliable results?

The next chapter presents the relevant theory to explain the workings and challenges of this method for MWF
mapping. Following that, the methods we used to answer the research questions are explained. In the re-
maining chapters, the results are shown, discussed, and a conclusion is drawn.



2
Theory

This chapter provides explanations of the basic theory used in this report.

2.1. Magnetic Resonance Imaging
In this report, we assume a general understanding of the mechanisms and techniques used in MRI. However,
for the sake of completeness, some of the core concepts are briefly introduced here. A more complete and
in-depth description of MRI can be found in [1].

In MRI, the subject is placed in a strong magnetic field called the B0 field. Modern clinical MRI scanners
typically use field strengths of 1.5 T or 3 T [1], while 7 T clinical scanners have been emerging more recently
[15]. Conventionally, the B0 field is taken to be in the z-direction. (B0 = B0 ẑ). This strong field causes pro-
tons, which have a nonzero microscopic magnetisation, to either align with or against the B0 field. A small
majority aligns with the external field, inducing a macroscopic magnetisation of the subject. Due to their
relative abundance in biological tissue and high sensitivity, this magnetisation is mainly the result of hydro-
gen protons. A second magnetic field perpendicular to the main field is used to change the direction of the
magnetisation. This secondary field, or B1-field, uses radio frequency (RF) pulses to flip the magnetisation
around a certain axis. The strength and duration of this pulse result in a certain flip angle with the z-direction.

After an RF pulse, the magnetisation can consist of components both along and perpendicular to the B0 field.
The perpendicular components experience a torque from the main field. This results in a rotating motion
around the z-axis, with a frequency given by γ×B0, in which γ is gyromagnetic ratio. The frequency with
which the magnetisation rotates around the z-axis is the same RF frequency as the RF pulse that induces the
flip. Generally, the magnetisation is described in the rotating frame of reference, a frame rotating with the
same frequency as the transverse magnetisation. This allows us to write the magnetisation as two compo-
nents:

M = Mz +Mx y , (2.1)

where Mz and Mx y are the longitudinal and transverse components respectively. Since the transverse mag-
netisation is rotating around the z-axis, this constitutes a time-varying magnetic field. This in turn induces
an RF field that can be picked up by coils positioned around the subject. The magnitude of Mx y determines
the strength of the induced field, with stronger fields for larger Mx y . Since the frequency and phase of the
measured signals depend on the strength of the external magnetic field, applying gradients to this field allows
us to encode spatial information in the frequency and relative phase of the signals. MRI readouts sample from
the so-called k-space, an analogue to the Fourier frequency domain. Sampling sufficient information from
k-space allows us to reconstruct images through a transformation similar to the inverse Fourier transform.
Undersampling the k-space will result in aliasing artefacts, and thus an inaccurate image reconstruction.

Relaxation effects
When in equilibrium, the magnetisation is aligned with the B0 field. After excitation, the magnetisation will
always return to its equilibrium state in the longitudinal direction. This process, called longitudinal relax-
ation, is characterised by an exponential with time constant T1, called the longitudinal relaxation time. The

3



4 2. Theory

Figure 2.1: Illustrations of the effect of transverse and longitudinal relaxation. Figure (a) shows the results of longitudinal relaxation on
the longitudinal component of the magnetisation. Mz (0+) is the longitudinal magnetisation directly after an RF pulse is applied, and M0
is the equilibrium magnetisation. In (b) the effects of transverse relaxation are shown, where Mx y (0+) is the transverse magnetisation
directly after an RF pulse. The blue line represent the evolution of Mx y , while the orange dotted line represents the the time-evolution
of one of the transverse components of the magnetisation.

relaxation time is a tissue parameter.

Simultaneously with longitudinal relaxation, the transverse magnetisation experiences transverse relaxation.
As a result of interactions between individual atoms and inhomogeneities in the magnetic field, the spinning
hydrogen protons dephase over time. This results in a decrease of the net transverse magnetisation over time.
Similar to longitudinal relaxation, this effect can be modelled using an exponential with time constant T2.
This transverse relaxation time is also a tissue parameter.

The two relaxation parameters, together with the proton density (which determines the magnitude of the
equilibrium magnetisation), mostly determine the contrast between tissues in MRI images.

Quantitative imaging
The contrast of conventional clinical MRI images is based on differences in the measured signal strength.
Different areas will produce different signal strengths based on their relaxation parameters and proton den-
sity. A radiologist is then able to distinguish between different tissues based on the contrast in the images.
Conventional MRI is a qualitative imaging technique: the images show differences in signal strength, but
this provides no information on the values of the underlying tissue parameters. Particularly, scans made on
machines of different vendors, even using very similar imaging protocols, can result in different intensities
for the same tissues [16]. The lack of a clear reference makes relating different scan results to each other only
more difficult. For clinical practice, this is not a problem. The main focus there is on anatomical imaging, for
which generally only a clear contrast between relevant tissues is needed. However, in medical research, quan-
titative results are invaluable for objectively comparing different scans to each other, and observing changes
in values over time [16].

Currently, there already exist different MRI-based techniques for quantitative measurement. For example,
the multi-echo spin-echo method , or a Look-Locker scheme for quantitative T1 and T2 measurement respec-
tively [9]. Another technique is DESPOT, which is able to measure both relaxation parameters simultaneously
[17]. An important measure in assessing the usability of these quantitative technique is scan time. Generally,
quantitative measurements need long scan times. This increases the probability of movement artefacts in
the final parameter maps, and drastically decreases patient comfort. It is therefore desirable to keep the scan
time as low as possible without sacrificing accuracy.

2.2. Magnetic Resonance Fingerprinting
The main focus of this report will be on magnetic resonance fingerprinting (MRF) [13]. MRF is a quantitative
MRI technique that aims to create multiple parameter maps simultaneously, while also being both fast and
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accurate [18]. MRF hinges on two main imaging principles: efficient parameter encoding and undersampling.

2.2.1. Parameter encoding
Conventional MRI generally produces only one, or a few images. These images are acquired, aiming to have
high contrast and resolution, allowing the physician to interpret them accurately. MRF, on the other hand,
produces a series of images from a transient state signal. This transient state is obtained by continuously
changing the imaging settings between readouts of a series. This assures that the signal never reaches a
steady state. Generally for MRF, the acquisition parameter that is varied is the flip angle, resulting in a flip an-
gle series. Advanced signal models allow the simulation of signals. As such, the tissue parameters are encoded
in the simulated MRF signals. An example of a flip angle series, together with three example signals resulting
from this series, is shown in Figure 2.2. [19].

Not shown in this figure is the use of an inversion pulse. This is an RF pulse with a flip angle of 180◦, often at
the start of a flip angle train. The inclusion of an inversion pulse allows for a good simultaneous encoding of
the T1 and T2 times in the resulting signals [13].

Figure 2.2: (a) The flip angle pattern of the gradient spoiled SSFP pulse sequence. The inversion pulse of 180◦ at the start of the pulse
series is not shown. Along with the flip angle series, the simulated signals for (b) grey matter, (c) white matter, and (d) myelin water are
shown. The relaxation parameters for these tissue types are given in Table 3.1.

2.2.2. Parameter matching
One way to retrieve the encoded parameters is through the use of a signal dictionary. This is a large collection
of precomputed signals for a wide range of tissue parameter combinations. Comparing the measured signal
to all dictionary signals allows for the retrieval of the tissue parameters.

First, we define the measured signal s as a series of M measurements s j , with M the length of the pulse series:

s = [s1 s2 · · · sM ] , (2.2)

and the signal dictionary D as
D = [d1 d2 · · · dN ] . (2.3)

Here, each dictionary atom di is a vector of length M . The conventional measure of similarity between the
signal and a dictionary atom is the inner product. Finding the best match in the dictionary for the measured
signal now becomes:

argmax
i

|di · s| . (2.4)

The relaxation parameters are retrieved from the best matching dictionary entry (or atom). This process al-
lows MRF to make maps for multiple parameters simultaneously. This prevents errors from confounding
factors between separate parameter measurements, as can be the case with separate T1 and T2 measure-
ments.
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2.2.3. Signal simulation
In order to create a signal dictionary, the expected signals for the different parameter combinations have to
be simulated in advance. There are two main methods for simulating MRF signals. The first is through direct
simulation of a large ensemble of spins [20][21]. The behaviour of the magnetisation during an MRI scan is
described by the Bloch equations. Bloch simulations directly model these equations, simulating the system
behaviour this way. The other simulation method is called extended phase graphs (EPG) [22]. It is a Fourier-
based technique that allows for relatively simple and fast signal simulation.

In the EPG framework, magnetisation is described through so-called configuration states. For each small
volume V , there is a set of configurations states that fully describe the magnetisation in that volume. The
dephasing of the magnetisation as a result of the application of gradients is modelled implicitly through a
dephasing coordinate. In addition to gradients, the configuration states are manipulated through RF pulses
and relaxation effects.

For a given volume V , the set of configuration states comprises three separate states: F+(k), F−(k), and Fz (k).
F+(k) and F−(k) describe the behaviour of dephasing and re-phasing transverse magnetisation respectively,
while Fz (k) describes the longitudinal magnetisation. The parameter k is called the dephasing coordinate,
and is defined as

k(t ) =
∫ t

0
G(t ′)d t ′, (2.5)

where G(t ) is the gradient in the magnetic field applied to the volume V at time t . As gradients in the magnetic
field can be in any direction, the dephasing coordinate in (2.5) is described as a vector. However, generally
the phase- and frequency-encoding gradients in the x- and y-directions are negligible in strength for a small
volume V when compared to the gradient in the z-direction. This means that the gradient can be treated as
if in a single direction, reducing k to a scalar. Equation (2.5) shows that the application of a gradient results
in a shift of the configuration states. For higher values of k, the magnetisation becomes more dephased. For
k = 0, the magnetisation is in phase, resulting in a measurable RF signal.

When a pulse sequence is used with constant repetition times and gradients, such as a CPMG [23] or gradi-
ent spoiled SSFP [24] sequence, the configuration states and dephasing coordinate can be discretised. Since
every shift as the result of a gradient has the same magnitude, the exact magnitude of the shift is no longer
important. Only the number of shifts and their direction is sufficient to describe the system states. The dis-
cretised configurations states become Fk and Zk , where k can have both positive and negative values. Still,
only the states with k = 0 result in a non-zero signal contribution.

Discretising the configuration states allows us to define a shift operator S with properties

S : Fk → Fk+∆k and Zk → Zk . (2.6)

As (2.6) shows, the longitudinal magnetisation is left unaffected by gradients in this direction.

RF pulses are implemented in the EPG framework through a transition operator. For the following section, the
flip of the magnetisation is assumed to be around the x-axis. Similar operators can be created for rotations
around the other axes. The transition operator is created by first transforming from the configuration states
back to the individual components of the magnetisation, applying a rotation matrix around the x-axis, and
then transforming back to the configuration state description. Without further derivation presented here, the
transition operator is defined as Fk

F−k

Zk

+

=
 cos2 α

2 e2iφ sin2 α
2 −i e iφ sinα

e−2iφ sin2 α
2 cos2 α

2 i e−iφ sinα
− i

2 e−iφ sinα i
2 e iφ sinα cosα

 Fk

F−k

Zk

−

. (2.7)

Here, the matrix on the right hand side of (2.7) is the transition matrix T (α,φ). Here, α is the flip angle of the
pulse, andφ is its phase. The full derivation of this matrix, and a complete description of the EPG framework,
can be found in [22]. A very important consequence of equation (2.7) is that an RF pulse can split one con-
figuration state into multiple, and that configuration states can be mixed by the application of a pulse. This
partitioning effect allows dephasing magnetisation to be converted into re-phasing magnetisation and vice
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versa. This allows for the description of spin echos in the EPG framework.

When working with the discrete description of EPG, three configuration states exist for every value of k. When
an RF pulse is applied, the transition matrix is applied to each set of three states separately. No mixing takes
place between states of different k-values.

Finally, the effects of relaxation can also be described using a matrix operator. Representing the exponen-
tial decay effects of longitudinal and transverse relaxation as E1 = e−τ/T1 and E2 = e−τ/T2 respectively, the
relaxation matrix is given by

R(τ,T1,T2) =
E2 0 0

0 E2 0
0 0 E1

 . (2.8)

Applying this matrix to a set of configuration states models the effects of relaxation. As with the transition
matrix, when dealing with the discretised representation of EPG, the relaxation operator is applied to each
set of three states separately.

Now, the effects of a pulse sequence can be modelled simply by successively applying these operators. As an
example, assume the following operations:

1. An RF pulse with flip angle α and phase φ

2. A spoiling gradient (in the z-direction)

3. A relaxation period with duration τ

For any set of three discrete configuration states with dephasing coordinate k, this can be represented as Fk

F−k

Zk

t=τ

= R(τ,T1,T2) S T (α,φ)

 Fk

F−k

Zk

t=0

. (2.9)

This shows: in EPG, the operations done by the pulse sequence are implemented as operators applied suc-
cessively to the configuration states.

2.2.4. Undersampling
As mentioned above, MRF relies on many readouts to acquire the signals. To keep the total scan time to a
minimum, MRF utilises efficient k-space trajectories, where during each readout only a small section of k-
space is sampled. For a single readout, this would result in highly undersampled images with severe artefacts.
However, as each individual readout samples a different section of k-space, a full sampling is acquired over
the course of the scan. This allows for very fast individual readouts, while still acquiring accurate parameter
maps over the full volume of interest [13].

2.3. Multi-component MRF
Conventional MRF, using inner-product matching, neglects partial volume effects, where multiple tissue types
coexist in a single voxel and all contribute to the final signal. Multi-component MRF (MC-MRF) aims to re-
trieve all tissue components in a voxel, as opposed to only the single best matching one [25].

The general assumption in MC-MRF is that the signal measured from a multi-component system is a linear
combination of the signals coming from the individual components. Nonlinear influences on the total signal
are not taken into account. To resolve the individual components from the dictionary, the linear combination
of atoms that best resembles the measured signal needs to be determined. Defining this linear combination
as

s̃ =
N∑
i

ci di = Dc , (2.10)

where the coefficients in c determine the approximation of the signal. Since the best approximation of the
measured signal minimises the difference between this signal and the approximation, c is the solution of

min
c∈RN

≥0

∥s −Dc∥2, (2.11)
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where an additional constraint is added that the coefficients should be non-negative [26]. This type of min-
imisation problem is known as a non-negative least squares problem. Generally, a problem like this is highly
under-determined. Often, a regularisation term is used to promote a solution with a small number of nonzero
coefficients [26]. Additional constraints can also be added, such as with SPIJN [25], which iteratively applies a
joint sparsity constraint over all voxels. Here, "joint" refers to the fact that this method aims to create a sparse
solution for both the individual voxels and the volume of interest as a whole.

2.4. Magnetisation transfer
Contrary to the assumption made in most implementations of MC-MRF, nonlinear effects are known to in-
fluence the total signal resulting from a multi-component system [27]. The magnetisations of the individual
tissue components can interact with each other, transferring magnetisation from one component to another.
This process, called magnetisation transfer (MT), modifies the overall shape of the compound signal when
compared to the linear combination. In the context of MWF imaging, this particular type of magnetisation
transfer is free pool-free pool magnetisation transfer. This is MT between two "pools" of water molecules (such
as the water in white matter, and myelin water), as opposed to MT between a free and a bound pool. This lat-
ter case is explored in e.g. [28]. The inclusion of magnetisation in the description of a multi-component
system gives rise the goals as formulated in the previous chapter: to what extent does the exchange influence
MC-MRF results, and how can we include information about this exchange in the estimation methods for
more accurate results?



3
Methods

This chapter explains the methods used during this project. Relevant parameters, values and techniques are
mentioned here.

3.1. Simulation and estimation techniques
As explained in the previous chapter, magnetic resonance fingerprinting relies on a signal dictionary with
a large collection of precomputed signals for many combinations of the relevant tissue parameters. During
this project, signals were generated using the EPG framework, motivated by the pulse sequence type. More
specifically, an extension of EPG, called EPG-X [29], allowed us to simulate not only the expected signals for
a single component at a time, but also for multiple components simultaneously, including magnetisation
transfer effects.

EPG-X extends the EPG framework, allowing multiple components at the same time to be simulated. Here,
we only deal with two-component systems. The components will be referred to as component A and B re-
spectively. Each component has its own set of configuration states:

[
F+,A , F−,A , Fz,A , F+,B , F−,B , Fz,B

]
. To

apply RF pulses to both components, a transition matrix T is defined by tiling the single-component transi-
tion matrix as defined in (2.7) twice diagonally. The remaining values in the resulting 6×6 matrix are set to
zero:

T =
[

T (α,φ) 0
0 T (α,φ)

]
. (3.1)

The relaxation matrix is modified to include two new parameters: kab and kba , called the exchange rates or
transfer rates. These parameters define the amount of magnetisation transferred from A to B , and the amount
of magnetisation transferred from B to A respectively. They are included in the new relaxation operator as

R =



E2,A −kab 0 0 kba 0 0
0 E2,A −kab 0 0 kba 0
0 0 E1,A −kab 0 0 kba

kab 0 0 E2,B −kba 0 0
0 kab 0 0 E2,B −kba 0
0 0 kab 0 0 E1,B −kba

 , (3.2)

with E1,A , E2,A , E1,B , and E2,B as defined in equation (2.8) for component A and B respectively. The influence
of a gradient on the configuration states is unchanged, simply shifting the transverse magnetisation to the
"next" configuration state.

A final additional parameter introduced in EPG-X is the fraction f . This parameter defines the fraction of
component B in a two-component system. The fraction is defined on the interval [0 - 0.5], so that by defini-
tion component B is the smaller of the two components. With M0 representing the total equilibrium mag-
netisation of the system, f is used to define the the equilibrium magnetisations of the two tissue components
as M A

0 = (1− f )M0 and M B
0 = f M0. To maintain thermal equilibrium, the exchange rates are related to each

9



10 3. Methods

other through the fraction:

kba = 1− f

f
kab . (3.3)

Through this equation only one of the exchange rates has to be specified, along with f , to fully define the
exchange in a two-component system.

The MRF pulse sequence used in this project is the sequence as described in [19]. This is a sequence consist-
ing of 500 RF pulses with flip angles varying between 0◦ and 60◦. The time between each pulse is constant
at 15 ms. The phase of the RF pulses is zero for every pulse. Additionally, the sequence includes an initial
inversion pulse to better encode both T1 and T2 effects in the signals [13]. This pulse also has a phase angle of
zero, and an inversion time of 19 ms [19].

The used values for the relaxation parameters for white matter, grey matter, and myelin water are given in
Table 3.1. The values are adapted from [29] and [30]. Additionally, the exchange rate between brain tissues is
taken to be kab =2 s−1 [29]. The flip angle sequence, together with the simulated single-component signals
for the three aforementioned tissues, is shown in Figure 2.2.

All EPG-X simulations were implemented in the Python programming language [31]. The implementation is
an adaptation of the MATLAB [32] implementation as given in [29]. The code, as well as relevant simulation
data, can be found at https://gitlab.tudelft.nl/managtegaal/mep_sven.

Table 3.1: The values of the relaxation parameters for the three main tissue types used in this report.

Tissue type T1 (ms) T2 (ms)

White matter 800 79
Grey matter 1459 93

Myelin water 400 20

3.2. Numerical phantoms
The performance of several different MC-MRF techniques was tested by applying these to two-component
numerical phantoms. Signals for each voxel were computed using EPG-X, based on their parameters and a
given pulse sequence. While EPG-X parameters are defined per voxel, the pulse sequence is applied phantom-
wide.

Different phantoms were made for different purposes. The first phantom has a resolution of 10 by 10 voxels,
with six parameters for each voxel: f , kab , T1,A , T2,A , T1,B , and T2,B . An increasing gradient from left to right is
applied to the fraction f , with values in the range [0, 0.5]. An increasing gradient from the top to the bottom
of the phantom is applied to the exchange rate kab , with values ranging from 0 to 2. The relaxation parame-
ters of component A are chosen to represent white matter, while component B represents myelin water.

The second phantom just has a higher number of voxels: 40 by 40. Like the previous phantom, the frac-
tion and exchange rate maps contain horizontal and vertical increasing gradients respectively, with identical
ranges for the values. As such, this phantom is identical to the previously described phantom with respect to
all the tissue parameters.

The last phantom has the same resolution as the second (40 by 40 voxels), but a different structure. An in-
creasing gradient is still present in the fraction, ranging from 0 to 0.5. However, the exchange rate is now set
at a constant value of 2 s−1 for the entire phantom. Component A now has the relaxation parameters of either
white matter or grey matter, and component B has the parameters of either white matter or myelin water.
This is done in such a way that all three combinations of these tissues are present in the phantom.

All relevant numerical phantoms used during this project are shown in Figure 3.1. The descriptions of the
phantoms above correspond to phantom (a), (b) and (c) in the image respectively.

https://gitlab.tudelft.nl/managtegaal/mep_sven
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Figure 3.1: Overview of the phantom parameters for the three phantoms used in this project. Each row contains one phantom. The
leftmost column gives an identifier for each phantom for reference in the text. The rightmost column gives an overview of the tissues
represented in the phantom, for different sections if necessary.

Table 3.2: The parameters used for generating the single-component MRF dictionary. Both T1 and T2 follow an exponential scaling
between their lowest and highest values.

Parameter Min Max N Units

T1 100 3000 50 ms
T2 10 1000 50 ms

3.3. Parameter mapping techniques
Several different parameter mapping techniques were applied to the numerical phantoms. This includes
conventional MC-MRF techniques, and novel methods including more information about the magnetisation
transfer. An overview of these techniques is given here.

Voxel-wise Non-Negative Least Squares
Non-negative least squares, as already described in equation (2.11), is the conventional method for MC-MRF.
This method is applied voxel-wise, meaning that no information about neighbouring voxels is used during
the fitting process.

NNLS was implemented using the scipy.optimise.nnls function [33]. The dictionary used was a single-
component dictionary generated for a range of T1 and T2 combinations. The exact ranges of these values are
given in Table 3.2. Important here is that by definition the transverse decay is faster than the longitudinal
decay. Therefore, the final dictionary only retains atoms for which T1 > T2 holds. This resulted in a dictionary
containing 2064 atoms in total.

We applied NNLS with this dictionary on phantom (a) (Figure 3.1), which resulted in a coefficient vector c for
each voxel in the phantom. The sum of coefficients for each voxel was normalised to 1. Parameter maps for
two components were obtained by thresholding the values for T1 and T2 into a slow (component A) and a fast
(component B) water pool. The fast water pool consisted of all atoms with T1 < 550 ms and T2 < 40 ms. The
slow pool contained all atoms with T1 > 550 ms and T2 > 40 ms. The fraction is then defined as the sum of
coefficients for component B . Relaxation parameters for both components were computed as the weighted
sum of the dictionary parameters, where the component-specific coefficients were normalised to a sum of 1.

SPIJN
As opposed to NNLS, the SPIJN algorithm takes the entire phantom into account. It solves the NNLS problem
with ℓ1-regularisation for a sparser solution for each voxel separately, and subsequently uses all acquired
coefficients to iteratively reweigh the signal dictionary to promote sparsity over the entire region. The imple-
mentation of SPIJN as given in [25] was used during this research. Like voxel-wise NNLS, SPIJN was applied
using the dictionary given in Table 3.2.

SPIJN was applied to the same phantom as NNLS was. The regularisation parameter λ was chosen in such
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a way that applying SPIJN to this phantom resulted in two final tissue components, the same number as is
present in the phantom. SPIJN results in a coefficient vector for each voxel. Parameters were retrieved from
these coefficient maps using the same methods as with NNLS.

Two-component Dictionary
To improve mapping accuracy by taking into account the full effects of magnetisation transfer on a two-
component system, two-component dictionaries were generated. Contrary to a conventional MRF dictionary,
these dictionaries contain signals simulated for different combinations of two tissue components. This in-
creases the number of included tissue parameters from two (T1 and T2) to six ( f , kab , T1,A , T2,A , T1,B , and
T2,B ). Given a range for each of these parameters, dictionary signals were generated using EPG-X for every
combination of the parameter values. Exceptions to this are invalid and duplicate parameter combinations,
which are discarded from the dictionary. The three conditions under which an atom is discarded are:

1. T1,A < T2,A or T1,B < T2,B (invalid relaxation time combinations)

2. T1,A = T1,B , T2,A = T2,B , and f ̸= 0 (duplicate with the atom where f = 0)

3. T1,A ̸= T1,B or T2,A ̸= T2,B , and f = 0 (fraction of zero does not need two different components)

Following the above selection criteria, a full two-component dictionary could be generated without any du-
plicate signals.

Using this definition, we created two two-component dictionaries. The parameter ranges used to generate
the atoms are given in Table 3.3. The first dictionary has variation in all six parameters. The second dictionary
was made with the exchange rate at a fixed value of 2 s−1. This allowed for a slightly higher sampling density
of the remaining parameters. As a result of the increased number of parameters, both these dictionaries are
significantly larger than the single-component dictionary, with respectively 259120 and 414305 atoms.

Table 3.3: The parameters used to generate the two two-component dictionaries. N is the number of different values the parameter
has in the dictionary. Here, f and kab scale linearly between their lowest and highest values. The different relaxation times all scale
exponentially between their lowest and highest values.

(a) The parameters and their minimum and maximum values used to
generate the two-component dictionary with varying exchange rate.
The dictionary contains a total of 259120 atoms.

Parameter Min Max N Units

f 0 0.44 5 -
kab 0 3 10 s−1

T1,A 100 3000 10 ms
T2,A 10 1000 10 ms
T1,B 100 3000 10 ms
T2,B 10 1000 10 ms

(b) The parameters and their minimum and maximum values used to
generate the two-component dictionary with fixed exchange rate. The
dictionary contains a total of 414305 atoms.

Parameter Min Max N Units

f 0 0.47 10 -
kab - 2 1 s−1

T1,A 100 2273 15 ms
T2,A 10 227 15 ms
T1,B 100 2273 15 ms
T2,B 10 227 15 ms

The two-component phantoms were matched to the dictionaries using inner-product matching (equation
(2.4)), here also called dictionary matching. Since every atom corresponds to two components, this results
in a two-component parameter map without the need for NNLS. The inner-product matching was applied
on phantom (b) using the first of the two dictionaries. The second dictionary was used for matching of the
signals from phantom (c). The tissue parameters for both components, as well as the fraction and exchange
rate, were directly extracted from the dictionary.

Additionally, the same dictionary and phantom combinations were used for dictionary fitting. To cope with
an exponential increase of atoms due to the large number of pairs, the parameter sampling of the two-
component dictionary is done relatively coarsely. Dictionary fitting, as opposed to dictionary matching, first
interpolates between the dictionary atoms using B-spline interpolation [34]. It does this by treating the dic-
tionary atoms as if distributed in a 6-dimensional parameter space. We used the implementation as given in
[34] in MATLAB [32] to interpolate between the dictionary signals using a second-order B-spline interpola-
tion. An initial match is found from the dictionary using inner-product matching, which serves as a starting
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point for a more detailed matching on the interpolated dictionary. Additionally, a fitting with a manual ini-
tialisation close to the reference values was done. The initial relaxation parameters were chosen to be as close
to the reference values as possible. The fraction was set at a constant f = 0.21 for the manual initialisation.
Since the parameter space also includes all invalid parameter combinations, which would normally be dis-
carded, an additional mask is added to the dictionary to mask out the invalid combinations for the initial
matching step. The result of the dictionary fitting is a set of non-integer indices into the 6-dimensional pa-
rameter space. As the dictionary parameters were determined by sampling a parameter distribution (here
linear or exponential) at integer intervals, the non-integer indices can be converted back to parameter values
by sampling these distributions at the non-integer positions.

Clustering-based Regularisation
A parameter mapping method with a sparsity-like constraint was also implemented for the two-component
dictionaries. It uses a clustering step to greatly reduce the amount of available dictionary atoms for match-
ing. More specifically, we used k-means clustering [35]. The idea behind this is similar to SPIJN: in a biological
sample, there exists generally a limited number of tissues. This also implies that there is a limited number of
tissue combinations. Since every dictionary atom is a tissue combination, this translates to a limited number
of dictionary atoms. The clustering step aims to reduce the number of combinations of kab , T1,A , T2,A , T1,B ,
and T2,B . The number of values for the fraction f is not limited by the clustering. This parameter determines
how the tissues are combined, but does not influence the number of combinations. Note that in the above
definition of a tissue combination, it is assumed that the exchange rate kab is particular to the tissue combi-
nation, and does not vary for the same combination of tissues.

The spatial regularisation is applied as follows: initially, an inner-product match is made following equation
2.4. Each of these matches represents a full set of estimated parameters. These top matches are then dis-
tributed as points in a 5-dimensional parameter space (one dimension for each parameter, with the excep-
tion of f ). The k-means clustering algorithm groups these points in a predetermined number Nc of groups
or clusters. In k-means clustering, the algorithm minimises the total mean distance of all the points in a
cluster to the cluster centre. It iteratively changes the centre positions until a minimum is reached. After the
clustering, the Nc cluster centres represent Nc tissue combinations, given by the atoms closest to the cluster
centres. The reduced dictionary that is used for the final matching step consists of all dictionary atoms with
these parameter combinations. Additionally, the atoms with the same parameters as component A and f = 0
are retained to allow the fraction to be zero for these combinations.

Parameter mapping with the spatial regularisation was done using both dictionaries given in Table 3.3. As
with the dictionary matching, the first dictionary was applied to phantom (b), the second dictionary to phan-
tom (c). The k-means clustering algorithm was implemented using the sklearn.cluster.KMeans function
[36]. The parameter values were extracted from the two-component dictionary directly.

Correction Terms
The two-component dictionaries were made to fully include all information about magnetisation transfer
effects in the dictionary. A downside of this is that this results in very large dictionaries even for a relatively
coarse parameter sampling. Another approach to including information about the magnetisation transfer in
the dictionary is as follows. The isolated effects of magnetisation transfer on the signals of a multi-component
system can be written as

m = s − s̃, (3.4)

where s and s̃ are the signal of a multi-component system with and without magnetisation transfer respec-
tively. Using equation (3.4), we can rewrite the solution of the NNLS problem (2.10) with magnetisation trans-
fer as

s =
N∑
i

ci di +m. (3.5)

Now, we assume that the total magnetisation transfer effect m can be approximated by a weighted sum of
atom-specific MT correction terms mi . Additionally, we assume that the influence of these correction terms
is directly related to the coefficient of their corresponding atom. Filling in these assumptions in the previous
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Table 3.4: The parameters used for the generation of the single-component dictionary with correction terms. Both T1 and T2 follow an
exponential scaling between their lowest and highest values.

Parameter Min Max N

T1 100 3000 100
T2 10 1000 100

equation gives:

s =
N∑
i

(
ci di + f (ci )mi

)
, (3.6)

where f (ci ) is a function mapping the coefficient of an atom to the coefficient of the correction term. As-
suming an ℓ1-normalised coefficient vector, this function was chosen to be f (ci ) = −2

(
ci − 1

2

)+ 1
2 . This is a

parabola with zeros at 0 and 1, and its peak at 0.5 with value 0.5. This function is chosen to ensure that at
very small or very large coefficients, the influence of the correction factor is minimal. When it is very low, the
component is present in such a small quantity that the influence of its transfer on the total signal should be
very small. Likewise, if the coefficient is very high, there are only very small amounts of other tissue present
to transfer with, also resulting in minimal MT influence. The closer the coefficient gets to 0.5, the higher the
influence of the correction factor should be. The peak is placed at 1

2 so that at a two-component system with
both coefficients at 0.5, both components have equal contribution to the correction term, with a total of 1.

A dictionary with included correction terms was generated following Table 3.4. The dictionary signals were
simulated in the same way as with the conventional dictionary (Table 3.2). To create the correction terms, for
any atom with relaxation parameters T1,i and T2,i , the two-component signals si ,n and s̃i ,n were simulated
with a random second component with parameters T1,n , T2,n , and a fraction of 50 %, after which the MT
effect for this particular combination was determined. The final correction term was then defined as the
mean value of these MT effects:

mi = 1

N

N∑
n=1

(
si ,n − s̃i ,n

)
, (3.7)

with N the number of random tissue combinations. An example of three of these correction terms, including
their standard deviations, is shown in Figure 3.2.

Parameter mapping was done using an iterative method. The initial mapping was done using NNLS, without
any contribution of the correction terms. The coefficients from this initial mapping were then used to deter-
mine the coefficients of the correction terms. The correction terms were subtracted from the signal, resulting
in a new signal for the next iteration:

sn+1 = s0 −
N∑
i

f (ci ,n)mi . (3.8)

Here, sn+1 is the signal for iteration n +1, s0 is the original signal vector, and ci ,n are the NNLS coefficients
from iteration n.

The method was tested by applying it to phantom (a) in Figure 3.1, which was modified to have a fixed ex-
change rate of kab = 2 s−1. This was done for a single iteration of equation (3.8), as well as for three iterations.

3.4. Error definitions
Throughout this research, all results were acquired numerically. Therefore, they are free of measurement and
noise errors. By estimating parameters, however, we can still define estimation errors. For any parameter θ
and its estimated value θ̃, the estimation error is defined as

Eest = θ̃−θ. (3.9)

This definition is consistent with the notion that an overestimation of a parameter results in a positive error,
and an underestimation results in a negative value.
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Figure 3.2: The mean correction terms of (a) white matter, (b) grey matter, and (c) myelin water. The shaded area represents the standard
deviations. All results here are for 15 tissue combinations.

The interpolation error is the error made by the B-spline interpolation on a dictionary. This error is defined
for each dictionary parameter separately. Assuming a dictionary containing n separate parameters, the "po-
sition" in parameter space can be written as v = [θ1 θ2 · · ·θn], with θi any parameter. The interpolation error
at a parameter position v is then defined as

Ei nt (v ) = ∥s(v )− s̃(v )∥2 , (3.10)

where s(v ) and s̃(v ) are the simulated and interpolated signal at position v in parameter space respectively.
The interpolation error is assumed to be largest at either the extreme values of the different parameters (i.e.
their smallest and largest values), or in the centre of the dictionary. The total interpolation error for a param-
eter is then acquired by evaluating (3.10) for all points in between the dictionary samples at these extreme
edges. Additionally, the error is evaluated at the centermost point of the dictionary in between the samples of
the parameter of interest. For an n-parameter dictionary, this means evaluations along 2n−1 edges, plus a sin-
gle evaluation in the middle. The interpolation error for a given parameter is then defined as the maximum
value of the interpolation errors at the evaluated positions.





4
Results

This chapter presents the results of the experiments previously described. To improve the readability of this
chapter, tables containing estimation errors of the parameter maps are presented in Appendix A. Also in-
cluded there are additional mapping results using a different pulse sequence, including errors.

4.1. NNLS and SPIJN maps
Figure 4.1 shows the result of an NNLS fit on a single signal. This fit was made with the dictionary as gener-
ated following Table 3.2. This figure shows that NNLS is able to very closely represent the reference signal as
a linear combination of dictionary atoms.

The results of the parameter mapping with both NNLS and SPIJN on phantom (a) are shown in Figure 4.2.
The mean estimation errors, along with the standard deviations for the parameter estimations are given in
Table A.1. Since both NNLS and SPIJN do not permit the mapping of the exchange rate, no maps for this are
presented in Figure 4.2. The exchange rate map of the reference phantom is shown to more clearly illustrate
the effects of the varying exchange rate on the resulting parameter estimations. The figure shows a clear bias
in the retrieved fraction maps for both NNLS and SPIJN when compared to the fraction map of the phantom.
For NNLS, this bias increases as the value for the exchange rate increases. SPIJN shows a more constant bias
over the entire phantom. The relaxation parameters show a bias toward lower values as well. For NNLS, this
underestimation increases with both exchange rate and fraction. As a result of the sparsity constraint, SPIJN
shows no such trend. The mean estimation error of the fraction for each row of the phantom for both NNLS
and SPIJN is given in Table 4.1.

Figure 4.3 shows three fraction maps made for three different values of the exchange rate. The maps are made
using two-component signals consisting of white matter and myelin water components. As can be seen, the
fraction maps show no bias when no exchange is present (kab =0 s−1), as is expected. For larger values of

Table 4.1: The mean estimation errors for the fraction estimation made NNLS and SPIJN and shown in Figure 4.2. The values are given
for each row in the phantom, with the corresponding exchange rate.

kab (s−1) NNLS (%) SPIJN (%)

0.00 1.30 -13.7
0.22 -6.38 -13.0
0.44 -9.47 -12.4
0.67 -11.7 -11.9
0.89 -13.4 -11.4
1.11 -14.6 -11.0
1.33 -15.6 -10.7
1.56 -16.3 -10.4
1.78 -17.0 -10.1
2.00 -17.7 -9.81
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Figure 4.1: The result of an NNLS fit on a two-component signal (blue). The reference signal is shown as an orange dotted line. The
original signal is simulated for 72 % white matter and 28 % myelin water, with an exchange rate of kab = 1.11. The fitted signal consists
of the weighted sum of six dictionary atoms. All other atoms were given a coefficient of zero by the NNLS algorithm.

the exchange rate, NNLS shows an increasing bias towards lower fraction values. The bias of SPIJN remains
relatively constant, but this method still shows a clear tendency to underestimate the fraction values as a
result of magnetisation transfer.

4.2. Two-component dictionary
In Figure 4.4, the results for the dictionary described in Table 3.3a, applied to phantom (b), are shown. This
figure shows the maps acquired using both the inner-product matching and the clustering-based method.
Figure 4.5 shows the results of the same techniques for the second dictionary, with parameters given in Table
3.3b.

When comparing the middle row to the top row of Figure 4.4, it becomes clear that the parameter maps cre-
ated by the inner-product matching do not accurately resemble the reference maps. The gradients present
in the reference maps, for both the fraction and the exchange rate, cannot be recognised from the parameter
estimation maps. Additionally, the relaxation parameter maps do not show the uniformity of the phantom,
with the largest variation in the retrieved values in the relaxation parameters of component B . The bottom
row of Figure 4.4 shows the results of the clustering-based method. As a result of the clustering, the relaxation
parameter estimations are now uniform. The fraction map now does show a gradient. However, this gradient
is in the wrong direction, now increasing from right to left instead of left-to-right. Additionally, the found
relaxation values for component B seem to fit better to the reference values of component A, and vice versa.

Observing the middle row of Figure 4.5, the fraction estimate map does not resemble the reference map.
There seems to be no clear bias; the fraction is both under- and overestimated equally. Additionally, the ref-
erence shows that in each column, all voxels have the same fraction, independent of the tissue combination.
The fraction estimation, however, shows different fractions for different tissue combinations. The relaxation
parameter maps show rapid spatial variation in the retrieved values, which is not present in the reference.
Similar to the results of Figure 4.4, the variation seems to be the largest for the parameters of component B .
The results of the clustering-based method again show more smooth results. However, the retrieved fraction
still changes with different tissue combinations, and shows clear errors. Additionally, large errors still exist in
the relaxation parameter maps.

The estimation errors and the standard deviations for the maps in figures 4.4 and 4.5 are given in tables A.2
and A.3 respectively.

To gain further insight in the behaviour of the clustering-based method, four component plots were made.
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Figure 4.2: The results of the parameter mapping using both NNLS and SPIJN. The T1- and T2-boundary values used to separate the
two components were 550 ms and 40 ms respectively. The first row of maps in this image contains the reference values as present in the
numerical phantom. The middle row shows the maps as acquired using single-voxel NNLS. The bottom row shows the maps as acquired
using SPIJN. Important to note are the light grey areas in the maps for the relaxation times of the second component. These are the result
of the mapping returning a fraction of 0 %. When this is the case, there is no second component, and therefore no parameter mapping
possible for component B of those voxels.

Figure 4.3: Fraction maps for different values of the exchange rate kab . Mapped values are acquired using both NNLS and SPIJN. All
signals are simulated for a combination of white matter (component A) and myelin water (component B). The red dotted line shows the
expected trend in the fraction map.

These plots show the positions of the top match per voxel after inner-product matching with the dictionary
with fixed exchange rate. The matches are shown in parameter space for several combinations of relaxation
parameters. The results of the clustering step are shown by colour coding the matches based on their cluster.
Additionally, the cluster centres are shown as stars, and the positions of the reference values are shown as
plus signs. The component plots are shown in Figure 4.7. These plots show that the top matches are not dis-
tributed in three obviously separate clusters. Instead, the formation more closely resembles a single "cloud"
of points. As can be most clearly seen in the bottom left and bottom right plots in this figure, the cluster cen-
tres do not always properly coincide with the reference values.

Finally, the results of the parameter mapping made using dictionary fitting are shown in Figure 4.6. The esti-
mation errors are given in Table A.4. The middle row in this figure shows the results of fitting using the results
of inner-product matching as initialisation. The bottom row shows the results of dictionary fitting with the
manual initialisation. The interpolation errors for the different dictionary parameters are given in Table 4.2.

Comparing the middle rows of Figure 4.5 and 4.6, similar trends in the retrieved relaxation parameter maps
can be observed. Over- and underestimations occur in roughly the same locations in both figures for all relax-
ation parameters. The fraction map in Figure 4.6 does not show the gradient that is present in the reference
map. Additionally, some fractions returned by the dictionary fitting method are negative (shown in grey). Fol-
lowing the definition of the fraction, negative values do not make physical sense.
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Figure 4.4: The parameters of the numerical phantom (top row) and the parameter maps made using inner-product matching (middle
row) and clustering-based mapping (bottom row) on this phantom. All maps were made using a two-component dictionary with pa-
rameters as described in Table 3.3a.

Figure 4.5: The parameters of the numerical phantom (top row) and the parameter maps made using the inner-product matching (mid-
dle row) and clustering-based mapping (bottom row) on this phantom. All maps were made using a two-component dictionary with
fixed exchange rate. The parameter ranges are described in Table 3.3b.

Table 4.2: The interpolation errors for the B-spline interpolation of the two-component dictionary as given in Table 3.3b.

Parameter N Ni nt Ei nt

f 10 144 0.0655
T1,A 15 224 0.0097
T2,A 15 224 0.0044
T1,B 15 224 0.0035
T2,B 15 224 0.0017

To provide further insight in the quality of the parameter encoding for the two-component dictionary, plots
were created that show the correlation between different atoms. Figure 4.8 shows the correlation for a single
dictionary atom with its surrounding atoms, for (a) an atom in the dictionary given by Table 3.3a and (b)
an atom in the dictionary given by Table 3.3b. Particularly the top right and bottom left plots of each tissue
combination in this figure show very high correlations between different atoms. For example, from the top
right plot of (a) in Figure 4.7, any value of the fraction f would match almost equally well as any other for a
given value of T2,B . The correlation plots here are only shown for a small number of parameter combinations.
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Figure 4.6: The parameters of the numerical phantoms (top row) and the parameter maps made using the dictionary fitting method. The
middle row uses the result of inner-product matching as initialisation before the fitting. The bottom row uses a custom initialisation,
with relaxation parameters as close to the reference values as possible, and a fraction of 0.21. The dictionary used is the two-component
dictionary with fixed exchange rate. The values coloured grey are values outside of the expected range.

Full correlation maps for these atoms can be found in Appendix C.

4.3. Correction factor
Lastly, the results of parameter estimation using the dictionary with correction terms are presented here. Fig-
ure 4.9 shows the numerical phantom, together with the maps created using the correction-based method
for 1 and 3 iterations. The estimation errors and standard deviations of the parameter maps are given in Ta-
ble A.5. For both the middle and bottom row, the fraction map shows no visible gradient. Additionally, the
relaxation parameter maps for T1,A show that this method either correctly estimates the relaxation time, or
severely overestimates it. The map for T2,B shows a clear overestimation compared to the reference. T1,B

shows a general underestimation of this parameter. Finally, T2,B shows both over- and underestimation of
this parameter. Additionally, none of the relaxation parameter maps exhibit the uniformity expected when
compared to the reference maps.

Figure 4.10 shows the result of a single iteration of the correction-based method on the signal from the voxel
with position (4, 0) of the phantom. This signal was generated for a fraction of f = 0, where the only com-
ponent is white matter. The figure shows the original signal, the modified signal after one iteration following
equation (3.8), and the NNLS fit on this modified signal. The signal after one iteration shows clear modifica-
tions when compared to the original signal. Following the description of this technique however, for f = 0,
there should not be any modification of the signal. The NNLS fit made to the modified signal is shown to
closely approximate the signal.
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Figure 4.7: The components resulting from the initial inner-product matching on the numerical phantom as shown in Figure 4.5. All
dots of the same colour have been assigned to the same cluster by the k-means clustering algorithm. The cluster centres are shown as
stars, and the reference values are shown as plus signs.

Figure 4.8: The correlation of one dictionary atom with its surrounding atoms for the atoms resembling the combination of white matter
and myelin water for (a) the dictionary with all varying parameters. The fraction of this atom is chosen at 33 %, with an exchange rate
of 2 s−1. The axes show the dictionary indices for the corresponding parameters. The range for f is [1, 5], the index range for all other
parameters is [1, 10]. In (b), the correlation is given for the same tissue combination, but for the two-component dictionary with fixed
exchange rate. The fraction here is chosen at 25 %. The axes show the dictionary indices for the corresponding parameters. The range for
f is [1, 10], the index range for all other parameters is [1, 15]. The parameter values can be reconstructed from the indices using tables
3.3a and 3.3b respectively.
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Figure 4.9: The parameters of the numerical phantom (top row) and the parameter maps made using the dictionary with correction
terms for one iteration (middle row) and three iterations (bottom row). Grey areas in the B-component maps represent voxels where the
mapped fraction is zero, so that there is no second component. The T1- and T2-boundary values used to separate the two components
were 550 ms and 40 ms respectively.

Figure 4.10: The result of one iteration of the correction term-based method. The original signal is the signal from the voxel with position
(4, 0) in phantom (c), with a fraction of f = 0. The modified signal is shown with label "Corrected", the original signal before any
correction is labelled "Original". The NNLS fit on the corrected signal is labelled "Fit".





5
Discussion

5.1. Magnetisation transfer in a linear multi-component model
Figure 4.1 shows that the fits made to the signals using NNLS are able to closely approximate the reference
signal, even in the presence of magnetisation transfer. Figure 4.2 was made with the intention of studying the
effects of varying strengths of magnetisation transfer on accuracy of the parameter mapping using NNLS and
SPIJN. Focusing on the middle row of this image, it becomes clear that the magnetisation transfer has a mea-
surable effect on the results. The fraction map of the voxel-wise NNLS shows a consistent underestimation of
the fraction, with a larger bias for larger values of the exchange rate. At the same time, a biasing effect can be
seen in the maps of the relaxation parameters of both component A and B . The bottom row, showing the pa-
rameter estimates of SPIJN, show a similar bias in the fraction map. This shows that the small changes to the
signal as a result of MT result in NNLS estimating slightly different atoms and coefficients to still accurately
approximate the target signal. This consequently leads to errors in fraction and relaxation parameters.

The more constant bias in the SPIJN fraction map (Figure 4.2), as opposed the NNLS map, suggests that most
of the fraction bias is the result of an incorrect estimation of the relaxation parameters. When there is no
variation in the selected components over the phantom, as is the case with SPIJN, the change in signal due
to magnetisation transfer only leads to a small variation in retrieved fractions. When the components are
allowed to vary between voxels, more variation becomes visible. The same trend can be seen in Figure 4.3,
both for NNLS and SPIJN.

The result that magnetisation transfer in a linear multi-component model can influence the obtained results
is in line with previous literature findings for similar techniques and problems. In [17], the effect of free pool-
free pool magnetisation transfer on mcDESPOT is investigated. The research shows that in the presence of
this two-pool exchange, it is not possible to obtain accurate parameter estimates using mcDESPOT.

The research in [37] shows increased estimation errors in both T1 and T2 using both an inversion recovery
and saturation recovery MRF sequence. The focus of this research is on semisolid magnetisation transfer,
instead of the free pool-free pool transfer here.

In [28], a sequence optimisation is used to optimise the precision in the estimates of the free pool parameters
for an MRF acquisition. After that, a neural network was trained to do the parameter estimation step. How-
ever, this network is primarily trained to retrieve the free pool parameters, as opposed to the parameters of
both pools. Additionally, like [37], this paper deals with semisolid magnetisation transfer, with only a single
free pool. Here, we deal with two free pools.

5.2. Two-component dictionary
A two-component dictionary could have solved the two problems of the NNLS and SPIJN estimates. The first
problem consists of the inaccuracies in the parameter mapping as a result of the magnetisation transfer. The
second is the inability to map the exchange rate as a tissue parameter. The two-component dictionary that
was created for this contained information about the effects of magnetisation transfer by explicitly modelling
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the MT in the dictionary atoms. Assuming a sufficient parameter encoding, this would allow the dictionary
to uniquely determine all six parameters simultaneously, while also taking the MT effects into account.

Figure 4.8 shows the correlation of a single dictionary atom with the surrounding atoms for several param-
eter combinations, with part (a) for the dictionary described above. Ideally, a correlation plot such as this
would show a single high-correlation value for the atom of interest with itself, and low correlations for all
other combinations. These plots, however, show high inter-atom correlation over the entire parameter range
of the dictionary. This suggests that this dictionary does not allow distinguishing between different atoms,
even when the parameter values of these atoms are far apart.

The results shown in Figure 4.4 further support this hypothesis. The large jumps in value between adjacent
voxels show that a relatively small change in the signal can lead to a large change in the retrieved parameter
values from the dictionary. This is a direct result of the high similarity between the atoms. In this figure, and
the following parameter maps as well, the estimation error for the relaxation parameters of component B
always seems to be larger than those of component A. This is not surprising, however, as component B has a
smaller contribution to the final signal than A.

The clustering-based method, as applied in the bottom row of Figure 4.4, was an attempt at spatial regu-
larisation. The underlying assumption here was that if a small number of tissue combinations is present in
the phantom, the top matches of the individual voxels would "cluster" around the parameters of these tissue
combinations. Even with large inter-atom correlation, which would introduce additional variation in the re-
trieved parameters, finding these groups and their corresponding "central parameters" might allow to find
the correct tissue combinations. Assuming that the limited number of tissue combinations is the result of a
limited number of tissue components present, this sets restrictions on all parameters but f .

The bottom row of Figure 4.4 shows that the clustering-based algorithm was also not able to create accurate
maps.

The results presented thus far show that the inter-atom correlation of the two-component dictionary does not
allow for an accurate parameter mapping. Figure 4.8 shows a particularly high correlation for f and kab . The
second two-component dictionary, with a fixed value for the exchange rate, was created to eliminate errors
as the result of this correlation, hopefully improving the parameter estimates for the remaining parameters
( f in particular). The correlation maps in (b) in Figure 4.8, however, still show large inter-atom correlation
for the remaining parameters. Combining this with the results in Figure 4.5, this shows that the remaining
parameters are still not sufficiently and uniquely encoded in the dictionary signals.

The inaccurate parameter maps for the clustering-based method (Figure 4.5) can be explained using Figure
4.7. It becomes clear from this figure that the assumption that the top matching results would group around
the reference values is incorrect. Where the reference values contain three distinct tissue combinations, the
component plots show one wide "cloud" of points. This makes it difficult for the clustering algorithm to accu-
rately retrieve the tissue combinations through the cluster centres. Especially in the top-left and bottom-right
plot of Figure 4.7, the cluster centres and the reference points do not line up.

However, we do expect that with a better parameter encoding, the clustering-based method would be able to
create accurate parameter maps. Even with the relatively continuous cloud of initial matches, the clustering
is still regularly able to place the cluster centres close to the reference values. With better parameter encod-
ing, we expect the groups to be more defined, which could then result in better clustering results. It might
be worth looking into different clustering algorithms as well. K-means clustering requires a pre-set number
of clusters. For general applications, it is better not to predefine the number of tissue components in advance.

The results of the dictionary fitting in Figure 4.6 show that the dictionary fitting does not provide a distinct
advantage over inner-product matching. The same errors that are made by the inner-product matching are
still present after the fitting on the interpolated dictionary. The second set of parameter maps, made using
a manual initialisation before fitting, shows that even when starting at approximately the correct parameter
values, the high inter-atom correlation dominates the results.
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An additional problem shows when using dictionary fitting: the retrieved parameter values are no longer
confined by the bounds of the parameters in the dictionary. This is most clearly visible in the retrieved frac-
tion maps, where the grey values represent negative fractions returned by the fitting. Following the definition
of the fraction, a negative value does not make physical sense. These negative values are the result of the
interpolation extending beyond the given parameter ranges. This can be resolved by restricting the fitting
algorithm to only fit on values within the initially given ranges.

The interpolation errors given in Table 4.2 are relatively high for the different parameters when compared to
the target error value in [34]. This would suggest that, in order to accurately use dictionary fitting for a two
component dictionary, either the parameter ranges have to be decreased, or the parameter sampling density
has to be increased for the same ranges. Both options would lead to an increase in the size of the dictionary.
For a two-component dictionary, a relatively small increase in the parameter sampling density will lead to
a large increase in the number of dictionary atoms. When compared to the size of a conventional single-
component dictionary (here 2064 atoms), even the smallest of the two two-component dictionaries is more
than a hundred times as large, while having a coarser parameter sampling. A larger number of atoms leads to
greatly increased simulation times for the dictionary. This is increased further by the fact that EPG-X is com-
putationally more demanding than EPG. In order to create larger, more densely sampled two-component
dictionaries, the implementation of the simulation has to be highly optimised. Additionally, larger dictionar-
ies require more memory to store and process. This increases both the computational cost and processing
time of matching with such a dictionary. Even with a highly optimised matching algorithm, the feasible size
of the dictionary will be limited by the computational capabilities of the available computing system. One
way to decrease dictionary size, which was not implemented during this project, is compression based on
singular value decomposition (SVD) [38]. This would lower dictionary size and matching time.

5.3. Correction terms
The correction term-based method would allow us to reuse the MC-MRF algorithms for single-component
dictionaries. However, implementation of the method with correction terms based on NNLS shows that such
a general approach did not enable accurate parameter mapping, as shown in figure 4.9.

A first explanation of this is found in Figure 3.2. This figure suggests that the shape of the mean single-
component correction term is relatively well-defined. However, the magnitude can exhibit a large variation,
as can be seen from the standard deviation in the figure. Depending on the specific tissue combination, this
might result in a significant overcompensation for the MT effects by the correction term. This effect increases
with more iterations.

Another problem with this approach becomes clear in Figure 4.10. It shows that single-component signals,
for which no MT is present at all, still have some correction applied to them. The explanation for this lies in
the NNLS estimation. Often when a single-component signal does not perfectly coincide with a dictionary
atom, NNLS will approximate the signal using multiple dictionary atoms. For each of these atoms, a correc-
tion term is now incorrectly applied to the signal. An approach to solving this problem would be to include a
sparsity constraint before applying a correction on the signal. This would decrease the probability of multiple
nonzero coefficients for single-component signals.

Finally, this method suffers from the same disadvantage as the other single-component dictionary-based
methods in this report: it does not facilitate the retrieval of a parameter map for the exchange rate. More
specifically, this method assumes a constant exchange rate throughout the sample, which is used to simulate
the correction terms.

5.4. Further research
As shown in this report, magnetisation transfer can have negative effects on the quality of parameter esti-
mates made with MC-MRF techniques. The methods tested in this report all show biases and errors in the
estimated values in the presence of magnetisation transfer. Explorations of new or modified techniques, eval-
uated using numerical phantoms, have shown that the current implementations of these techniques are not
able to create accurate parameter maps. More research is necessary to turn these techniques into useful so-
lutions for more accurate MWF mapping.
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An important technique left mainly unexplored in this report is sequence optimisation. It might be possible to
specifically tailor the pulse sequence to minimise the effects of magnetisation transfer. Important to keep in
mind here is that any changes to the pulse sequence should keep compromises to the parameter encoding to
a minimum. Another option is to use sequence optimisation to improve the parameter encoding of the two-
component signals to make the two-component dictionary a more viable technique. This would still require
the aforementioned optimisations in software performance as well.

Appendix A includes parameter maps made with a two-component dictionary using a different pulse se-
quence, made to maximise T1 and T2 accuracy in MRF mapping with a specific undersampling pattern [39].
This was done to make sure that the inaccurate maps as shown in the results are not only the consequence
of the used pulse sequence. The maps in the Appendix show similar errors to those made with the sequence
shown in 2.2. This similar poor performance of two different pulse sequences indicates that a specialised
pulse sequence is necessary to properly use a two-component dictionary.



6
Conclusion

Magnetic resonance imaging (MRI) is a versatile, non-invasive medical imaging technique capable of pro-
ducing high-resolution, high-contrast in vivo images of biological tissue. MRI has been widely applied in
neuroimaging, such as in the field of MS (multiple sclerosis) research. An important symptom of MS is de-
myelination, which is the breakdown of myelin sheaths in the brain. Myelin water fraction (MWF) imaging
focuses on mapping the myelin water content of the brain. This myelin water fraction can be used as a proxy
measure for myelin content, which generally has a very weak NMR signal.

This research focused on the use of multi-component magnetic resonance fingerprinting (MC-MRF) for esti-
mating the MWF. This is conventionally done by constructing a linear combination of MRF dictionary atoms
to approximate the measured signal. However, a nonlinear interaction, called magnetisation transfer, influ-
ences the total signal shape of the measured signal. This is not taken into account in current, state-of-the-art
methods. Here, we focused on studying the effects of magnetisation transfer in the context of MC-MRF, with
a focus on MWF imaging.

First, numerical phantoms were created, with each voxel containing two components, representing either
white matter, grey matter, or myelin water. Two MC-MRF algorithms, voxel-wise non-negative least squares
(NNLS) and SPIJN, were applied to this phantom. A single-component signal dictionary was used, which was
simulated for a gradient-spoiled SSFP MRF pulse-sequence.

The parameter maps made using NNLS and SPIJN show that the magnetisation transfer has a clear biasing
effect on the estimates. Both the retrieved fraction maps and the relaxation parameter maps for all compo-
nents show a bias towards the lower values, with increased bias for higher values of the exchange rate. The
more constant bias for SPIJN, as opposed to the increasing bias in NNLS, suggests that the larger estimation
errors in the fraction are primarily the result of errors in the estimation of the relaxation parameters. When
using the correct components, MT has a smaller influence on the fraction estimation.

Both the dictionary matching and dictionary fitting maps made using a two-component dictionary resulted
in similar errors. The inaccurate results for both methods are caused by a large inter-atom correlation in the
two-component dictionaries: a small change in measured signal will lead to a large change in retrieved pa-
rameter values. This means that the pulse sequence used is not able to properly encode every parameter in-
dividually. We suggest further research into the optimisation of the parameter encoding for a two-component
dictionary. Additionally, more work has to be done to optimise the implementation of the software to make
this a feasible technique.

For the correction term-based method, the results of an NNLS step are used to compute the correction on a
signal. However, this does allow correction on single-component signals when no correction is expected. For
compensation of potential magnetisation transfer effects, we suggest more research in the implementation
of a sparsity constraint before applying the signal correction. Additionally, a more structured approach to the
simulation of the correction terms might result in less overcompensation.

29



30 6. Conclusion

A final suggestion for further research is to optimise the pulse sequence to minimise the effects of magneti-
sation on the signals, without sacrificing parameter encoding. An important challenge here is to do this
optimisation for all atoms simultaneously, which is a computationally heavy task.
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A
Supplementary results

In this appendix, additional results are presented. This information is presented separately from the main
Results chapter to improve readability of this report.

A.1. NNLS and SPIJN
Here, the estimation errors for NNLS and SPIJN are presented. They are given in Table A.1

Table A.1: The mean estimation error and standard deviation of the parameter maps made using NNLS and SPIJN as shown in Figure
4.2. The units of each parameter are given in the rightmost column.

(a) The mean errors and standard deviations (σ) for the parameter
maps made using voxel-wise NNLS.

Parameter Mean σ Units

f -12 8 %
T1,A -86 59 ms
T2,A -14 9 ms
T1,B -51 58 ms
T2,B -8 3 ms

(b) The mean errors and standard deviations (σ) for the parameter
maps made using SPIJN.

Parameter Mean σ Units

f -11 4 %
T1,A -83 0 ms
T2,A -13 0 ms
T1,B -51 0 ms
T2,B -11 0 ms

A.2. Two-component dictionary
Below, the estimation errors for the various maps made using the two-component dictionaries are presented.
The first table (Table A.2) shows the errors for the maps made with the dictionary with varying exchange rate.
Table A.3 shows the errors for the maps made with the dictionary with fixed exchange rate. Table 4.2 shows
the errors for the maps made using the dictionary fitting technique.

Table A.2: The mean error and its standard deviation for the parameter maps made using inner-product matching and the clustering-
based method using the two-component dictionary with varying exchange rate. The units of each parameter are given in the rightmost
column.

(a) The mean estimation errors and standard deviations (σ) for the pa-
rameter maps made using inner-product matching.

Parameter Mean σ Units

f 2 15 %
T1,A -78 440 ms
T2,A -26 25 ms
T1,B 781 746 ms
T2,B 213 283 ms

(b) The mean estimation errors and standard deviations (σ) for the
parameter maps made using the clustering-based technique.

Parameter Mean σ Units

f -19 27 %
T1,A -138 0 ms
T2,A -32 0 ms
T1,B 565 0 ms
T2,B 109 0 ms
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Table A.3: The mean error and its standard deviation for the parameter maps made using inner-product matching and the clustering-
based method with the two-component dictionary with fixed exchange rate. The units of each parameter are given in the rightmost
column.

(a) The mean estimation errors and standard deviations (σ) for the pa-
rameter maps made using inner-product matching.

Parameter Mean σ Units

f -8 15 %
T1,A 1 344 ms
T2,A -8 20 ms
T1,B 143 739 ms
T2,B 25 64 ms

(b) The mean estimation errors and standard deviations (σ) for the
parameter maps made using the clustering-based technique.

Parameter Mean σ Units

f -0.3 19 %
T1,A -86 365 ms
T2,A -11 25 ms
T1,B 98 808 ms
T2,B 27 71 ms

Table A.4: The mean estimation error and standard deviation (σ) for the parameter maps made using dictionary fitting on the interpo-
lated dictionary. The units of each parameter are given in the rightmost column.

(a) The mean estimation errors and standard deviations (σ) for the pa-
rameter maps made by fitting on the interpolated dictionary. The ini-
tialisation used here are the results of the dictionary matching.

Parameter Mean σ Units

f -7 15 %
T1,A -92 322 ms
T2,A -10 21 ms
T1,B 217 690 ms
T2,B 30 59 ms

(b) The mean estimation errors and standard deviations (σ) for the
parameter maps made by fitting on the interpolated dictionary. The
initialisation used here is a custom initialisation close the the target
values.

Parameter Mean σ Units

f -11 16 %
T1,A -90 368 ms
T2,A -13 20 ms
T1,B 215 929 ms
T2,B 46 49 ms

A.3. Correction term
The estimation errors for the maps made using the dictionary with correction term are presented in Table
A.5.

Table A.5: The errors and standard deviations of the parameter maps acquired using the dictionary with correction terms. The units of
each parameter are given in the rightmost column.

(a) The mean estimation errors and standard deviations (σ) for the pa-
rameter maps acquired after one iteration.

Parameter Mean σ Units

f -15 20 %
T1,A 675 958 ms
T2,A 307 401 ms
T1,B -234 127 ms
T2,B -3 9 ms

(b) The mean estimation errors and standard deviations (σ) for the
parameter maps acquired after three iterations.

Parameter Mean σ Units

f -15 21 %
T1,A 729 932 ms
T2,A 331 386 ms
T1,B -248 135 ms
T2,B -3 9 ms

A.4. Different pulse sequence
Figure A.2 shows the results of inner-product matching and the clustering-based method using a two-component
dictionary with phantom (c) (Figure 3.1). The pulse sequence used is shown in Figure A.1. This is a gradient
spoiled SSFP sequence that is optimised to minimise MRF mapping errors for T1 and T2, with a pulse train
of 400 pulses [39]. The sequence is preceded by a 180◦ inversion pulse with 15 ms inversion time. The two-
component dictionary was made with a fixed value for the exchange rate at kab = 2 s−1, with parameter ranges
as given in Table 3.3b. The estimation errors and standard deviations are given in Table A.6.
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Figure A.1: The flip angle pattern of the SSFP pulse sequence optimised for minimal MRF T1 and T2 estimation errors. The 180◦ inversion
pulse at the beginning of the sequence is not shown.

Figure A.2: The parameter maps of the numerical phantom (top row) and the parameter maps made using inner-product matching
(middle row) and the clustering-based method (bottom row) on this phantom.
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Table A.6: The mean error and the standard deviation of the parameter maps shown in Figure A.2. The units of the parameters are given
in the rightmost column.

(a) The mean estimation errors and standard deviations for the pa-
rameter maps made using inner-product matching.

Parameter Mean σ Units

f 1 25 %
T1,A 13 345 ms
T2,A 10 21 ms
T1,B -165 764 ms
T2,B -30 62 ms

(b) The mean estimation errors and standard deviations for the pa-
rameter maps made using the clustering-based method.

Parameter Mean σ Units

f 1 20 %
T1,A 30 455 ms
T2,A 6 26 ms
T1,B 0 751 ms
T2,B -11 56 ms



B
Sequence optimisation

A quick exploration of the possibility to use sequence optimisation to decrease the influence of magnetisation
transfer was done near the end of this project. Here, the approach and findings are shown to illustrate the
claims in the discussion.

Sequence parameterisation
The problem of sequence optimisation was approached as a minimisation problem. Specifically, the flip an-
gle series was to be optimised such that the effects of the magnetisation transfer were minimal. Starting point
was the flip angle series used in this the rest of this report. Since this pulse series has a length of 500 pulses,
optimising the flip angle of every pulse would be computationally very expensive. Instead, the flip angle train
was parameterised using 25 knots, between which a cubic interpolation was applied.

The initial positions of the knots were determined by applying an optimisation that minimised the squared
distance between the original flip angle sequence and the interpolated sequence. An additional constraint
was added to prevent the interpolated sequence from adopting negative values. The result of this approxi-
mation is shown in Figure B.1.

Figure B.1: The flip angle series, approximated using a cubic interpolation on 25 knots (shows as dots here). The original flip angle train
is shown for reference.

39
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Cost function and constraints
Since the goal of this optimisation problem was to minimise the effects of MT, the cost function was defined
as the maximum absolute MT effect:

cost = max |s − s̃| , (B.1)

where s and s̃ are the signals simulated with and without magnetisation transfer respectively.

Additionally, constraints were used to ensure the correct behaviour of the optimisation. First, similar to the
creation of the pulse sequence optimisation, the interpolated flip angle sequence was not allowed to be neg-
ative. Secondly, the mean deviation of the knots from their original position was not allowed to be more than
15◦. This prevents the solver from finding the "trivial solution". This is a flip angle sequence of only 0◦ RF
pulses. Since there would be no signal then, the MT effect would be zero as well. This is obviously not the
desired solution.

Results
Optimisation was implemented using the scipy.optimise.minimise method [33]. Since this was done
mainly as a proof of concept, the cost function was evaluated only for signals resulting from the combination
of white matter and myelin water.

Starting from the cubic approximation of the original pulse sequence, the minimisation was applied for 25
iterations, with a total of 628 cost function evaluations. The resulting optimised pulse series is shown in
Figure B.2.

Figure B.2: The results of 25 iterations of minimisation on the parameterised flip angle series. The original (approximated) flip angle
series is shown for reference. The dots represent the knots used for the cubic interpolation.

The optimised flip angle train reduced the value of the cost function from 0.00822 to 0.00804. This shows
that it is possible to reduce the effects of magnetisation transfer through sequence optimisation. However,
since this is only an example of optimisation with respect to a single tissue combination, the extent to which
the optimisation could work for a larger number of tissue combinations simultaneously is still uncertain.
Additionally, this small reduction in cost for only two tissues took several hours of computation time. An
improvement in computational efficiency is also needed to further test this approach.



C
Full correlation maps

In this appendix, the full correlation maps for the two two-component dictionaries are given. They show the
correlation of a single dictionary atom with all surrounding atoms. The atom of interest for the two figures
presented here is the atom representing the combination of white matter and myelin water. Figure C.1 shows
the correlation maps for the two-component dictionary given in Table 3.3a. Figure C.2 shows the correlation
maps for the two-component dictionary given in Table 3.3b.

Figure C.1: Correlation plots showing the correlation of one dictionary atom with its surrounding atoms. The crosshair shows the posi-
tion of the atom of interest. This atom represents the combination of white matter and myelin water, with an exchange rate of 2 s−1 and
a fraction of 33 %. The axes represent the indices of the corresponding parameter in the dictionary. For the fraction, the range is [1 - 5].
For all other parameters, the range is [1 - 10]. The values of the parameters can be retrieved from the indices using Table 3.3a.
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Figure C.2: Correlation plots showing the correlation of one dictionary atom with its surrounding atoms. The cross shows the position
of the atom of interest. This atom represents the combination of white matter and myelin water, with an exchange rate of 2 s−1 and a
fraction of 25 %. The axes represent the indices of the corresponding parameter in the dictionary. For the fraction, the range is [1 - 10].
For all other parameters, the range is [1 - 15]. The values of the parameters can be retrieved from the indices using Table 3.3b.
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