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Abstract

Google uses the PageRank algorithm to determine the relative importance of a website.
Link spamming is the name for putting links between websites with no other purpose than
to increase the PageRank value of a website. To give a fair result to a search query it is
important to detect whether a website is link spammed so that it can be filtered out of the
search result.

While the dominant eigenvector of the Google matrix determines the PageRank value,
the second eigenvector can be used to detect a certain type of link spamming. We will
describe an efficient algorithm for computing a complete set of independent eigenvectors for
the second eigenvalue, and explain how this algorithm can be used to detect link spamming.
We will illustrate the performance of the algorithm on web crawls of millions of pages.

Keywords: Google PageRank, link spamming, second eigenvector, Markov chains, irreducible
closed subsets.

1 Introduction

Google’s PageRank algorithm aims to return the best ranking of websites when searching on
the web. The PageRank model assumes that a web surfer randomly follows one of the outgoing
hyperlinks at a given website with a chance p or jump to a random website with chance 1 — p.
Mathematically this can be modeled by a Markov chain. The PageRank of a website is the
probability to be on this website in the stationary distribution of the Markov chain. This
stationary distribution is given by the first eigenvector of the transition matrix of the Markov
chain.

According to Haveliwala and Kamvar [6] the eigenvectors for the second eigenvalue are also
of importance: they can be used to detect link spam. Link spam is the name for putting links be-
tween web pages with no other purpose than to increase the PageRank of a website. Specifically,
in the conclusions of [6] Haveliwala and Kamvar state that “The eigenvectors corresponding to
the second eigenvalue A9 = p are an artifact of certain structures in the web graph. In particular,
each pair of leaf nodes in the SCdH graph for the chain P corresponds to an eigenvector of A
with eigenvalue p. These leave nodes in the SCC are those subgraphs in the web link graph
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which have incoming edges, but have no edges to other components. Link spammers often gen-
erate such structures in attempts to hoard rank. Analysis of the nonprincipal eigenvectors of A
may lead to strategies for combating link spam.”

In this paper we will explain this remark. We will review the theory about the second eigen-
value of the Google Matrix that is described in [5] and in [6] and extend it with results for the
corresponding eigenvectors. We will use our findings to propose an efficient algorithm to detect
these structures in the web that may indicate link spamming. We will illustrate the performance
of the algorithm on web crawls containing several millions of pages.

This structure of this paper is as follows. Section [2] explains the structure of the Google Ma-
trix and gives different methods for computing the PageRank. Section [3| discusses the relation
between irreducible closed subsets in a graph and link spamming. Section [4] gives the relevant
theory for the second eigenvalue and the corresponding eigenvectors of the Google Matrix. It
also explains how the second eigenvectors are related to the irreducible closed subsets. Section
describes two algorithms for computing the second eigenvectors. Section [6] compares the per-
formance of the algorithms on web crawls of several millions of pages. Section [7] summarizes our
findings and makes some concluding remarks.

Remarks on notation and terminology: The terms ‘web sites’, ‘web pages’ and ‘nodes’
as well as the terms ‘hyperlinks’ and ‘web links’ are used interchangeably.
The i-th eigenvector is written as x(!) and the j-th element of vector x is written as xzj. A
submatrix of matrix A will be denoted by Aj; and an element of A by a;;.

2 The Google Matrix

We introduce W, a set of the web pages, that are connected to each other by hyperlinks, i.e.,
incoming and outgoing links between web pages. The mathematical representation of W is a
directed graph, in which a directed link between nodes of the graph represents an incoming or
outgoing link between web pages.

Let n be the number of websites. Further, let G be the n-by-n connectivity matrix with
gij = 1 if there is an outgoing hyperlink from page j to i and g;; = 0 otherwise. G is the matrix
representation of W. The number of websites n is extremely large, hundreds of millions, while
every website only contains a few outgoing links. The matrix G is therefore large and sparse.

We denote by c¢; the column sums of G, that is ¢; = >, g;;. Note that ¢; is the number of
outgoing hyperlinks of website j. We will also call this the out-degree of page j.

Surfing the web can be modeled as a Markov process, where one state transitions into another
state by following hyperlinks. In order to model this process we introduce the row-stochastic
matrix P. The entries p;; of P are given by

o .gz'j/cj iij#O,
Pt = { 1/n ifc; =0. 21)

Note that PT is the column-stochastic transition probability matrix of the Markov process.
Nodes without outgoing hyperlink are called dangling nodes. From (2.1) follows that from a

dangling node all pages can be reached with equal probability. Following [9], we assume that
self-referencing nodes, i.e., g; = 1 for node ¢, are not allowed.



The above Markov process does not capture the possibility that a web surfer jumps to another
page without following an outlink. To include this behavior, called teleportation, Google’s
PageRank model assumes that an outlink is followed with chance p and a jump to a random
page is made with chance 1 — p. Typically, p is chosen between 0.85 and 0.99.

Let A be the n-by-n column-stochastic transition matrix of this Markov process that includes
teleportation. The elements a;; of this matrix are given by

w. = 4 pgiglei+(L=p)/n ifc;#0.
" 1/n  if ¢; = 0.
In matrix notation this can be written as

1
A= pPT + 7( ) eeT,
n

with e is the n-vector of all ones. Also, recognize that if page j is a dangling node then each
page has a chance 1/n to be chosen. Thus, if column a; = e/n then page j is a dangling node.

By introducing the diagonal matrix D, of which the main diagonal elements d;; are defined

by
di: = 1/ej ifej #0
95 = 0 ifej=0,

and by defining the vector z with coefficients z; given by

_J A=p)/n ifc#0
K 1/n ife¢; =0,

the matrix A can also be written as

A =pGD +ezT .

The matrix ezT accounts for teleportation. Note that as a consequence of this teleportation

matrix, A is positive, meaning that every entry is positive, and is irreducible.

The PageRank is determined as the eigenvector of the dominant eigenvalue of the following
system:

AxV = Alx(l).

Intuitively, when recalling the random web surfer from Section [l the eigenvector x(1) is the
distribution of the visiting frequency for each node. The more often the surfer passes node j,
the higher its PageRank will be.

The matrix A has a simple dominant eigenvalue, with corresponding positive eigenvector
x(M). This follows from the well-known Perron-Frobenius theorem (see e.g. [8]) for irreducible,
square, nonnegative matrices. A nonnegative matrix is a matrix of which all entries are nonneg-
ative.

Theorem 2.1. (Perron-Frobenius) Let A be a square irreducible nonnegative matriz. Then A
has a unique positive real eigenvalue A1 equal to its spectral radius. The eigenvector corresponding
to A1 is positive. If A is positive, then A1 is dominant.

It can be shown [8] that the dominant eigenvalue \; satisfies the following inequalities:
min a;; < A1 < max Qgj.
pEwsn s
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All column sums of A are equal to one, so it immediately follows that A\; = 1. Since A is a

simple eigenvalue
x) = Ax() (2.2)

has a unique solution up to a scaling factor. If this scaling factor is chosen such that ), xgl) =1
(or, by positivity: ||[x||; = 1), then x() is the stationary stochastic vector of the Markov chain
and also, x() is the Google PageRank vector.

2.1 Computing the PageRank vector

The most common way to solve a large system in Equation is the power method. The
power method starts with a guess ug and then we iteratively compute uxyq1 = Aug. After each
iteration we scale uy with |Juk||1 = 1 to make sure uy sums up to 1 and thus is stochastic.

To perform a power iteration, only a matrix-vector multiplication with A needs to be per-
formed. This operation can be performed cheaply as follows: uyxy; = pGDuy + e(zTuy). We
refer to 9] for more information.

An alternative way to compute the PageRank is by rewriting Equation (2.2) as a linear

system
(I—-pGD)xV) = ge (2.3)

with 8 = zTx(). Note that we do not know the value of scalar 8, but we take 3 = 1 so the

equation can be solved explicitly. Then x() can be rescaled so that > :cz(-l) =1.

3 Irreducible closed subsets and link spamming

A typical technique to increase the PageRank of a group of websites is to create many inlinks
to the group, and to remove all outlinks. In this way, it is easy for the random surfer to enter
the group, but difficult to leave since he can only escape from this group through teleportation.

To illustrate this we consider the example given by Figure |1, The PageRank vector for this

Figure 1: Simple directed graph
example is given by
x®7T = ( 0.318 0.332 0.087 0.078 0.061 0.054 0.070 ) .

The nodes with the highest PageRanks are number 1 and 2. Note that nodes 6 and 7 are
dangling nodes. By definition, dangling nodes are connected to all other nodes.



Now we illustrate how to increase the PageRank of node 4. First we remove dangling node 7
by making a link back to node 4. Next we remove the outlink form node 4 to node 3. We refer
to Figure 2] for the resulting graph. The PageRank vector after these modifications becomes

Figure 2: Changes to improve the PageRank for node 4.

xM" = (10203 0209 0.036 0246 0.036 0036 0.235 ).

Clearly, node 4 now has the highest PageRank.
To analyse this we will recall some well known definitions.

Definition 3.1. A set of states S is a closed subset of the Markov chain corresponding to PT
if and only if i € S and j ¢ S implies that pj; = 0.

Definition tells us that a Markov chain is closed if it is not possible to get out of subset
S as soon as you are in it. This means that any subset containing a dangling node cannot be
closed, and in particular, any dangling node cannot be a a closed subset.

Definition 3.2. A set of states S is an irreducible closed subset of the Markov chain corre-
sponding to PT if and only if S is a closed subset, and no proper subset of S is a closed subset.

Let [ be the number of irreducible closed subsets of P. Then we can rewrite P in canonical
form ( [8]) by renumbering the nodes:

Pll P12 e Plr Pl,r+1 Pl,r+2 e le
0 P22 -+ Por| Parig Pari2 -+ Pom
P~ Tll T12 — 0 0 Tt Prr Pr,r—l—l Pr,r+2 e Prm (3 1)
0 Ta 0 0 -~ 0 |Prirm 0 o0 |
0 0 0 0 Priori2 - 0
where [ = m — r and each P11, ..., Py is either irreducible or [0]1x1, and Pri1v41,.. ., Pmm

are irreducible and closed. First, note that each Pj; is a submatrix of the n-by-n matrix P.
Let us call the dimension of the block Ty; 7-by-7 and thus, the dimension of the block Tas is
(n —7)-by-(n — 7).



3.1 Example

We illustrate the theory by the graph displayed in Figure |2l Firstly, we will renumber the nodes
to get the canonical form as in (3.1)). For a graphical representation of the renumbering, we refer
to Figure [3

O= © =0 O
—>
0—0 0—0

Figure 3: Renumbering the nodes of Figure [2| to canonical form.

Thus, rewriting P to Pcanon:

0100000
1000000
0203 300
P=|00000 0 1
1 1 1
A I
O G Y Y G A
0001000
I .
goggooo
0 2 0/3 00 %
~]1 00 0[/0 1[0 0 | =Pcanon-
00 0[1 0/00
00 0[0 0[0 1
00 0[0 0|1 0

Let us take a closer look at Pcanon i . Firstly, we recognize the block on the lower left
side of all zeros. Also, it is clear that we have two irreducible closed subsets (P22 and Pgz3),
which can be reached by Ti2. However, T2 includes all other nodes that are not in Ta2 and
thus, P17 is the only block in the upper left side of Peanon (i-€., there are no nodes that do not
refer to one of the irreducible closed subsets). Note that P17 is irreducible, but not closed. Pag
and P33 are irreducible and closed.

4 The second eigenvector and its relation to link spamming

To explain the relation of the second eigenvector to link spamming we review some results
from [5] and [6]. The following lemma can be found in [6]:

Lemma 4.1. Every eigenvector x\2) corresponding to the second eigenvalue of A is orthogonal
to e: eTx(?) = 0.



Below we give a sketch of the proof. For the complete proof we refer to [6].

Proof. Since A is column stochastic, e is a left eigenvector of A corresponding to the dominant
eigenvalue A\; = 1. The lemma follows from the fact that the left and right eigenvectors are
bi-orthogonal. O

Lemma [4.1] gives rise to the following theorem.

Theorem 4.2. Every eigenvector x?) corresponding to the second eigenvalue A is an eigenvec-
tor of PT.

Proof. The second eigenvector x(2) of A satisfies
<p(PT N 1—PeeT> () @25
n

Using Lemma [£.1] yields

which proves the theorem. ]

The first left eigenvector(s) of P have a special structure, which becomes clear from the
canonical form of P. We assume that Ta2 is non-empty. The eigenvector(s) corresponding to
eigenvalue v; = 1 for P in canonical form satisfy

yTP =yt
T T
T T 1 T2\ _ 1 _7
(Y1a YZ)< 0 T22>_(Y1a Y2) (41)
:>{ yi T11 =yi
yiTi2+y3 T2z =ys3

We know that (T11 —I) is non-singular, since |v;| < 1 for Tq1 (refer to 8], page 698). Therefore,
Equation 1) implies y'lr = 0. It follows that yg‘ Tog = y2T.

We get y3 (Taz — I) = 0, where (T22 — I) is singular and thus, y2 is a left eigenvector of
T2z corresponding to v; = 1. Each submatrix Pyyjr1j (1 < j <) in T2z is row-stochastic and
therefore has eigenvalue 1. This leads to the following lemma ( [7], page 126):

Lemma 4.3. The multiplicity of the eigenvalue 1 for P is equal to the number of irreducible
closed subsets of P.

Let yr4; be the dominant left eigenvector of Py 4j. Since Py yj is irreducible and has
only nonnegative entries, this eigenvector can be scaled to be positive and stochastic by Theorem
Let ¥r4+; be the vector that results from padding the stochastic vector y,,j with zeros to
get the appropriate size n. Every dominant left eigenvector of P can be written as a linear
combination of the vectors y,yj, 7 =1,...,m —1:

m—-r
Y= ¥rij - (4.2)
j=1



Using Lemma |4.1| and Theorem [4.2| we can now construct m — r — 1 independent second eigen-
vectors x() L e for A:

x® =gr -y 0 j=1,m-r—1. (4.3)

Here we have assumed that there are at least two irreducible closed subsets and we used that
the eigenvectors y,,; are stochastic.

The following theorem that can be found in [5] and [6] is a direct consequence of the discussion
above.

Theorem 4.4. If PT has at least two irreducible closed subsets, then the second eigenvalue of
A is Ay = p, with 1 — p the teleportation chance as introduced in Section [3

These second eigenvectors of A have the following special nonzero structure that is charac-
terized by Theorem

Theorem 4.5. Let x(2) = (w1, ,2,)T be an eigenvector of A corresponding to the eigenvalue
p. Then x; =0 if j ¢ irreducible closed subset.
Proof. The proof follows from Equations (4.2]) and (4.3). O

5 Computation of all the eigenvectors that correspond to the
second eigenvalue of A

In this section we assume that we have a set W of websites with at least two irreducible closed
subsets, so we know that p is the second eigenvalue of A. We will present two algorithms for
computing all the eigenvectors that correspond to this eigenvalue.

5.1 Computation of the eigenvectors for eigenvalue p of A by computing all
the irreducible closed subsets of W

The first algorithm computes the eigenvectors for eigenvalue p of A by computing all the irre-
ducible closed subsets of W. As we mentioned before, a directed graph is irreducible if, given
any two nodes, there exists a directed path from the first node to the second. This is equivalent
to the directed graph being strongly connected. Determining all the strongly connected compo-
nents in the graph for W therefore allows us to determine the submatrices Py; in Equation .
Whether Py; corresponds to a closed subset can be determined by inspecting whether there
are outlinks to the subset corresponding to Pj;. There are no outlinks to this set if Pj; = O,
j=1,...,n,5 # i. Several efficient algorithms exist for determining these strongly connected
components. One of the most efficient ones is Tarjan’s algorithm [11]. An efficient Matlab
routine that implements Tarjan’s algorithm is graphconncomp [1].

Once the the m — r submatrices Py4j,4; have been determined, we can compute their
dominant left eigenvectors y,4j. This can be done by solving the homogeneous equation

(Pl?-i-j,r—l—j —Dyrj=0 . (5.1)

A technique to compute a solution is to apply an unpreconditioned Krylov subspace method
to this system with a nonzero initial guess xo. In our experiment we use IDR(s) [12] to solve
Equation . The vector y,,j must be normalized to make it stochastic and padded with
zeros to give ¥r4j. The m —r — 1 eigenvectors x(2) of A then follow from Equation 1D

We will denote the resulting algorithm by Tarjan-based algorithm. It is summarized as
follows:



1. Apply Tarjan’s algorithm to the graph W. The strongly connected components without
outlinks are irreducible closed subsets;

2. Form the matrices P, r; that correspond to the irreducible closed subsets;

3. Compute the dominant eigenvectors yy;jr+j of the matrices Py 4 by solving Equation
(5.1)), scale them to make them stochastic, and pad them with zeros to the appropriate
size. This results in the vectors ¥y r+j;

4. Combine the vectors ¥, r+j pairwise using Equation (4.3) to compute second eigenvectors
of A.

Remarks: To detect link spamming, only the irreducible closed subsets need to be computed
in step 1. The eigenvectors for the second eigenvalue as computed in step 4 are sparse, the total
amount of nonzeroes in these vectors cannot exceed 2n.

5.2 Computation of all the eigenvectors for eigenvalue p of A by computing
one second eigenvector of A

The second algorithm that we present uses the nonzero structure of the second eigenvectors of
A that is given in Theorem Nonzero components of the second eigenvector correspond to
nodes in an irreducible closed subset. The idea is to compute one second eigenvector and deter-
mine all the nonzero elements. An arbitrary second eigenvector of A has with high probability
nonzero values in all the entries that correspond to nodes in irreducible closed subsets. The
second eigenvectors of A are eigenvectors of PT corresponding to the eigenvalue 1. One second
eigenvector of A can therefore be computed by solving the homogeneous system

PT-I)y=0 . (5.2)

To detect which nodes are in the same irreducible closed subset, we form a directed graph that
only consists of the nodes that correspond to nonzero values in y. We apply Tarjan’s algorithm
to this graph, that is of much smaller size than the original graph W. The strongly connected
components in this graph correspond to irreducible closed subsets. Once we have found all
the nodes that constitute an irreducible closed subset we can form the corresponding matrix
P,jr+j. Of each of these matrices we compute the dominant left eigenvector y,j, and these
vectors are then combined to second eigenvectors of A using Equation (4.3)).

We will denote the resulting algorithm by eigenvector-based algorithm. It is summarized as
follows:

1. Compute one dominant eigenvector of PT by solving Equation ((5.2). This can be done by
using applying a Krylov method to the homogeneous system with a nonzero initial guess;

2. Determine the nonzero coefficients;

3. Apply Tarjan’s algorithm to the graph formed by the nonzero nodes. The strongly con-
nected components in this graph are irreducible closed subsets;

4. Form the matrices Pr4jr4j that correspond to the irreducible closed subsets;

5. Compute the dominant eigenvectors yy;jr+j of the matrices Py 4 by solving Equation
(5.1), scale them to make them stochastic, and pad them with zeros to the appropriate
size. This results in the vectors ¥, ryj;



Test problem Size IDR(1) iterations | CPU time
wh-cs-stanford 9914 57 0.2

flickr 820878 45 18.6
wikipedia-20051105 | 1634989 63 40.7
wikipedia-20060925 | 2983494 68 73.6
wikipedia-20061104 | 3148440 63 66.5
wikipedia-20070206 | 3566907 66 78.0
wb-edu 9845725 103 152.4

Table 1: Iterations and CPU-time to compute the first eigenvector.

6. Combine the vectors ¥, r+j pairwise using Equation (4.3)) to compute second eigenvectors
of A.

Remarks: To detect link spamming, only the irreducible closed subsets need to be computed
in step 1-3. The eigenvectors for the second eigenvalue as computed in step 6 are sparse, the
total amount of nonzeroes in these vectors cannot exceed 2n.

6 Numerical experiments

As test problems we consider 7 matrices from the University of Florida Sparse Matrix Collection
[4]. These matrices correspond to web crawls and have been contributed by David Gleich. The
problem sizes correspond to approximately 103 pages for the smallest test problem to 107 pages
for the largest problem. The connectivity matrices G as included in the Florida Sparse Matrix
Collection are defined as g; ; = 1 if page 4 links to page j, which corresponds to the reversed
direction with respect to the definition we use for the matrix G. Moreover, the main diagonal
elements of the matrices G are not all zero. Since we do not allow self-referencing, we set the
main diagonal elements to zero. The matrices are therefore pre-prossed as follows

G = G — diag(G) .

All computations have been performed using Matlab 7.13 on a workstation with 32 GB of
memory and equipped with an 8 core Xeon processor.
We first determine the PageRank by solving system using IDR(1). As termination
criterion we use
[zl
ol

in which r; is the residual after ¢ iterations. These systems are very well conditioned, which
means that the convergence of IDR(s) is not influenced a lot by the choice of s. For this reason
we have selected s = 1, the choice with lowest vector overhead. Table [1| gives in the first column
the name of the test problem, in the second column the size of the matrix, (number of pages),
in the third column the number of IDR(1) iterations, and in the fourth column the CPU-times.
Note that the number of IDR(1) iterations only depends very mildly on the problem size.

We have applied the two algorithms of the previous section to detect the irreducible closed
subsets and the second eigenvectors of A. Table |2] gives the results for Tarjan’s algorithm and
Table [2] for the eigenvector-based algorithm.

System can be quite ill-conditioned. For this reason, we use IDR(4) to solve Equation
(5.2), which gives a considerable reduction of the number of iterations compared to IDR(1). The

<1078,
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Test problem Size Number of irreducible | CPU-time
closed subsets
wb-cs-stanford 9914 113 0.3
flickr 820878 5394 399.3
wikipedia-20051105 | 1634989 68 1515.3
wikipedia-20060925 | 2983494 63 5077.1
wikipedia-20061104 | 3148440 59 5696.9
wikipedia-20070206 | 3566907 58 7462.7
wb-edu 9845725 49573 75703.2

Table 2: Results for Tarjan’s algorithm to compute irreducible closed subsets.

Test problem Size Number of irreducible | IDR(4) iterations | CPU-time
closed subsets
whb-cs-stanford 9914 350 113 14

flickr 820878 5394 312 160.8
wikipedia-20051105 | 1634989 68 169 140.2
wikipedia-20060925 | 2983494 63 126 166.6
wikipedia-20061104 | 3148440 59 112 155.1
wikipedia-20070206 | 3566907 58 176 313.6
wb-edu 9845725 85470 1000 2825.6

Table 3: Results for the eigenvector-based algorithm to compute irreducible closed subsets.

termination criterion we use is H H
r;

[[xoll

which is more strict than for the computation of the PageRank, but needed in practice to
determine if a coefficient of the solution vector equals zero. The iterative method was stopped if
the number of iterations exceeded 1000, which was the case for test problem wb-edu. As a result
an incorrect number of 85470 irreducible closed subesets was found, yielding 85469 computed
eigenvectors for eigenvalue p = 0.85. After checking the Rayleigh quotients for these computed
eigenvectors it turned out that of these 85469 vectors, 41605 corresponded to actual eigenvectors
for p. After this correction, the number of detected irreducible closed subsets becomes 41606.

As is clear from the results in the above tables, the eigenvector-based algorithm gives a big
computational advantage: the computing time is 10 to 20 times less for the larger test problem.
For the eigenvector-based algorithm, the solution of the linear system takes almost all of
the computing time. This is similar to the computation of the PageRank, where the solution
of Equation takes all the computing time. However, since system is much better
conditioned than , the solution of Equation is considerably more time consuming than
of Equation , and hence the computation of the PageRank is much faster than the detection
of possible link spamming.

< 10712,

7 Conclusion

In this paper we have examined the second eigenvector of the Google matrix and its relation
to link spamming. Creating an irreducible closed subset is an effective way of link spamming.
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Irreducible closed subsets can be found with the second eigenvector of the Google matrix. The
second eigenvectors of A are first eigenvectors of PT. The elements of such eigenvectors have
with high probability nonzero value in the nodes that correspond to irreducible closed subset
and zero value in other nodes.

The second eigenvectors of A can all be found by an algorithm aiming to find the strongly
connected components in matrix PT, such as Tarjan’s algorithm. Another method is to first find
a second eigenvector of A. The entries with nonzero values in that eigenvector must correspond
to a node in an irreducible closed subset of the graph. To detect the different irreducible closed
subsets one can apply Tarjan’s algorithm, but only to the nodes that correspond to nonzero
values in the second eigenvector.

There are several ways to reduce the effectiveness of the type of link spamming that we
considered in this paper. One way is to reduce the chance of teleporting to a node in an
irreducible closed subset. This can be done by using a non-homogeneous teleportation vector
v, called personalization vector. Using a personalization vector, the transition matrix becomes
A = pPT + (1 — p)veT. Although the original idea of the personalization vector [10] was to
more accurately describes the surfing behavior of certain types of web surfers, this vector can
also be used to combat link spamming, by giving small values to entries of v that corresponds
to nodes that are suspected of being link spammed. Note that Theorem which tells us that
eTx( = 0, still holds after introducing a personalization vector. Therefore, our findings carry
over to this case.

We used the second eigenvector for detecting link spamming that is based on irreducible
closed subsets. However, this is not the only link spamming technique, and other techniques
will require different approaches to combat them. See for a discussion for example [2,/3].
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