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A simple finite-difference scheme for handling topography
with the second-order wave equation

W. A. Mulder1

ABSTRACT

The presence of topography poses a challenge for seismic
modeling with finite-difference codes. The representation of
topography by means of an air layer or vacuum often leads
to a substantial loss of numerical accuracy. A suitable modi-
fication of the finite-difference weights near the free surface
can decrease that error. An existing approach requires ex-
trapolation of interior solution values to the exterior while
using the boundary condition at the free surface. However,
schemes of this type occasionally become unstable and may
be impossible to implement with highly irregular topogra-
phy. One-dimensional extrapolation along coordinate lines
results in a simple and efficient scheme. The stability of the
1D scheme is improved by ignoring the interior point nearest
to the boundary during extrapolation in case its distance to the
boundary is less than half a grid spacing. The generalization
of the 1D scheme to more than one dimension requires a
modification if the boundary intersects the finite-difference
stencil on both sides of the central evaluation point and if
there are not enough interior points to build the finite-differ-
ence stencil. Examples for the 2D constant-density acoustic
case with a fourth-order finite-difference scheme demonstrate
the method’s capability. Because the 1D assumption is not
valid in two dimensions if the boundary does not follow grid
lines, the formal numerical accuracy is not always obtained,
but the method can handle highly irregular topography.

INTRODUCTION

The incorporation of topography, the ultimate contrast, in seismic
modeling codes poses a challenge for finite-difference codes. There
are several ways to deal with the problem. The simplest is the in-

clusion of a density contrast to mimic an air layer, at the expense of
numerical accuracy. For elastic wave propagation, Bartel et al.
(2000) find that some smoothing of the extreme density contrast is
required for numerical stability. Boore (1972), Robertsson (1996),
Mittet (2002), Bohlen and Saenger (2006), and Zeng et al. (2012)
consider variants of the vacuum approach. Unfortunately, the loss of
accuracy can become significant: Numerical experiments with a
higher order finite-difference scheme for the acoustic wave equation
indicate that the numerical error increases to only the first order in
space (Zhebel et al., 2014) in case of a smoothed density contrast.
The cause is the same as for large subsurface contrasts: The solution
is not differentiable across sharp interfaces, leading to a second-or-
der spatial error, and if the subsurface model is just sampled, the
position of the interface is uncertain within a grid spacing, leading
to a first-order error. Averaging instead of sampling can reduce the
latter but still leaves the second-order error.
If the topography is gradual and smooth, locally orthogonal boun-

dary-fitted coordinates will work (e.g., Tessmer and Kosloff, 1994;
Hestholm and Ruud, 1998, 2002; De la Puente et al., 2014). The
more general case requires a finite-element approach (e.g., Koma-
titsch and Vilotte, 1998; Etienne et al., 2010; Zhebel et al., 2011)
or a mimetic finite-difference method (for a review, see Lipnikov
et al., 2014). Both tend to increase the computing cost. An alternative
is the modification of the finite-difference operator near the boundary.
Local modification of the finite-difference stencil near the free

surface may improve accuracy without a substantial cost increase.
Shortley and Weller (1938) present one of the earliest schemes of a
modified numerical scheme for a boundary not coinciding with the
grid, solving Laplace’s equation. Several authors follow that ap-
proach for the wave equation, for instance, Strand (1994), Carpenter
et al. (1999), Piraux and Lombard (2001), Mattsson and Nordström
(2006), Lombard et al. (2008), Mattsson et al. (2009), Fornberg
(2010), Seo and Mittal (2011), AlMuhaidib et al. (2011), Zhang
et al. (2013), Gao et al. (2015), and Hu (2016).
Zhang et al. (2013) consider simple 1D extrapolation and zero

pressure on the free surface for the acoustic wave equation. They
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ignore the additional boundary condition that its second and higher
order even time derivatives should also remain at zero on the boun-
dary. Lombard et al. (2008) exploit the fact that the latter can be
translated into spatial derivatives by means of the partial differential
equation. They propose a scheme that extrapolates interior values to
fictitious exterior values, using these boundary conditions together
with a polynomial fit through a number of interior points to obtain
the desired numerical accuracy. To avoid stability problems, they
choose more interior points than are strictly needed, resulting in an
overdetermined system of equations. The least-squares solution of
this system provides the extrapolating polynomial. They report that
their scheme can still be unstable in some cases.
Here, I consider a simpler 1D scheme for the second-order for-

mulation of the constant-density acoustic wave equation, based on
this extrapolation idea. Admittedly, the simplification of the elastic
system of wave equations to constant-density acoustics is of limited
value for modeling, migration, and inversion of land seismic data,
but it can still be useful for some applications.
To avoid a reduction in performance, the proposed method should

have the same time-stepping stability limit (Courant et al., 1928) as
the interior finite-difference scheme. Also, the extrapolation scheme
only acts in the construction of a modified 1D finite-difference oper-
ator, independently for each coordinate direction. This avoids ambi-
guities and the associated instabilities in special circumstances that
arise in two dimensions and three dimensions. Although the scheme
does not preserve the formal accuracy of the interior finite-difference
discretization, it remains stable in extreme cases. After a description
of the method, a set of 2D numerical experiments will demonstrate
the capabilities of the method.

METHOD

1D case

Before examining the 2D case, we can learn a few things in one
dimension. Consider the 1D second-order constant-density acoustic
wave equation:

1

c2
∂2u
∂t2

−
∂2u
∂x2

¼ f; (1)

with pressure uðt; xÞ, sound speed cðxÞ, and optional source term
fðt; xÞ. The solution is represented on a grid with points xi ¼ x0þ
iΔx, where i ¼ 0; 1; : : : ; Nx − 1. The standard spatial discretization
of even order M is

∂2u
∂x2

����
xi

≃
ðDxxuÞi
ðΔxÞ2 ;

− ðDxxuÞi ¼ w0ui þ
XM∕2

k¼1

wkðuiþk þ ui−kÞ; (2)

where

w0 ¼
XM∕2

j¼1

2

j2
; wk ¼ ð−1Þk

XM∕2

j¼k

2

j2
ðj!Þ2

ðj − kÞ!ðjþ kÞ! ; (3)

for k ¼ 1; : : : ;M∕2 (Fornberg, 1987, a.o.). A second-order time
stepping scheme is

unþ1
i − 2uni þ un−1i ¼

�
ciΔt
Δx

�
2

ðDxxunÞi þ Δt2fni ; (4)

with the time sampled at tn ¼ t0 þ nΔt. The Cauchy-Kowalewski or
Lax-Wendroff procedure (Lax and Wendroff, 1960) provides higher
order time stepping by substituting higher time derivatives with spa-
tial derivatives using the partial differential equation. Other names for
this method are Dablain’s (1986) scheme or the modified-equation
approach (Shubin and Bell, 1987)
Let the boundary at the right side of the domain be located at the

point xb ¼ xNx−1 þ ξΔx, with ξ ∈ ð0; 1�. Following Piraux and
Lombard (2001) and Lombard et al. (2008), we should have
∂2ku∕∂t2kðt; xbÞ ¼ 0 on the boundary for k ¼ 0; 1; : : : . If cðxÞ is
constant near the boundary, this translates into zero even spatial
derivatives ∂2ku∕∂x2kðt; xbÞ ¼ 0. We can construct an extrapolating
polynomial of even degree M of the form uðxÞ¼P

M
k¼0bkðx−xbÞk.

The 1þM∕2 boundary conditions imply bk ¼ 0 for k ¼
0; 2; : : : ;M and the remaining coefficients for k ¼ 1; 3; : : : ;
M − 1 follow from fitting solution values at an additional M∕2
interior grid points. Figure 1 sketches an example for an eighth-
order discretization (M ¼ 8). Note that antisymmetric mirroring
of the solution with respect to the boundary point followed by
Lagrange interpolation provides the same results.
In the fourth-order case with M ¼ 4, the extrapolation formula

becomes �
uNx

uNxþ1

�
¼ EI

�
uNx−2

uNx−1

�
;

EI ¼
0
@− ð1−ξÞð1−2ξÞ

ð1þξÞð1þ2ξÞ − 4ð1−ξÞ
1þ2ξ

− 4ð2−ξÞð1−ξÞ
ð1þξÞð1þ2ξÞ

3ð2−ξÞð1−2ξÞ
ξð1þ2ξÞ

1
A: (5)

Unfortunately, this scheme, labeled I, becomes unstable when the
boundary sits close to the last interior grid point, when ξ ↓ 0. In the
fourth-order case, the element EI

2;2 that has ξ in the denominator
will then grow without bounds as ξ approaches zero. The instability
can be suppressed by decreasing the time step, as shown in Ap-
pendix A.
Choosing interior points that lie further away can improve the

stability, as illustrated in Figure 1b. Scheme II switches from the
stencil in Figure 1a to that in Figure 1b when ξ becomes too small,
for instance, for ξ0 ¼ 1∕2, meaning less than half a grid spacing.
The mirroring and interpolation procedure ignores the grid point
close to the boundary. The extrapolation scheme for a fourth-order
scheme with M ¼ 4 becomes�

uNx

uNxþ1

�
¼ EII

�
uNx−3

uNx−2

�
;

EII ¼
0
@ 4ξð1−ξÞ

ð2þξÞð3þ2ξÞ − 3ð1−ξÞð1þ2ξÞ
ð1þξÞð3þ2ξÞ

− 3ð2−ξÞð1−2ξÞ
ð2þξÞð3þ2ξÞ − 8ξð2−ξÞ

ð1þξÞð3þ2ξÞ

1
A: (6)

Appendix A demonstrates that the time step does not have to be
decreased when using scheme II.
Extrapolation gets messy in two dimensions with, for instance,

the model of Figure 7a. A more manageable approach is the modi-
fication of the interior stencil. We can reformulate the earlier
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extrapolation scheme as a modified interior finite-difference scheme
for points near the boundary by application of the standard finite-
difference weights in equation 3 to the combined set of interior and
extrapolated values.
As an example, there are four cases for order M ¼ 4, apart from

the interior finite-difference stencil for the second derivative given
by

w ¼
�
1

12
;−

4

3
;
5

2
;−

4

3
;
1

12

�
: (7)

If the finite-difference stencil needs one exterior value to the right
and ð1∕2Þ ≤ ξ ≤ 1, the modified finite-difference stencil becomes

w̄ ¼
�
1

12
;−

4

3
;
29þ ξð93þ 58ξÞ
12ð1þ ξÞð1þ 2ξÞ ;−

5þ 7ξ

3ð1þ 2ξÞ ; 0
�
; (8)

whereas for 0 < ξ < ð1∕2Þ

w̄ ¼
�
1

12
;−

8þ 3ξð3þ ξÞ
ð2þ ξÞð3þ 2ξÞ ;

29þ ξð49þ 22ξÞ
4ð1þ ξÞð3þ 2ξÞ ;−

4

3
; 0

�
:

(9)

If the stencil needs two exterior points and ð1∕2Þ ≤ ξ ≤ 1, the sten-
cil’s coefficients are

w̄ ¼
�
1

12
;−

2þ ξð21þ ξÞ
3ð1þ ξÞð1þ 2ξÞ ;

6þ ξð79þ 2ξÞ
12ξð1þ 2ξÞ ; 0; 0

�
;

(10)

and for 0 < ξ < ð1∕2Þ

w̄ ¼
�

ξð10ξ − 7Þ
2ð2þ ξÞð3þ 2ξÞ ;−

2ξð2þ 5ξÞ
ð1þ ξÞð3þ 2ξÞ ;

5

2
; 0; 0

�
:

(11)

Note that with ξ < ð1∕2Þ, the standard coefficient appears for the
point closest to the boundary because the extrapolation operator
ignores it and instead takes the two points further inward.
Similar expressions follow for higher orders. A computer algebra

package will provide expressions for all cases as a function of ξ.
Alternatively, it can be more convenient to determine the extrapo-
lation operator E numerically where needed, mix it with the identity
operator for the interior part into a symmetric operator of size
ðM þ 1Þ × ðM þ 1Þ, and then left multiply with the interior finite-
difference stencil, w, to obtain modified stencil weights, w̄ ¼ wE.
The latter are stored for repeated use during time stepping.
A 1D numerical example is a traveling pulse of the form

uðx; tÞ ¼ ½maxð0; 4ζð1 − ζÞÞ�12, with ζ ¼ 4ðx − ctÞ − 1 and c ¼ 1

on the interval ½0; 1þ ξΔx� and with zero Dirichlet boundary con-
ditions. It runs for a maximum time of T ¼ 2ð1þ ξΔxÞ when the
pulse has returned to its original position after two reflections. Fig-
ure 2 shows the maximum error obtained on a grid with 201 points
and a grid spacing of Δx ¼ 1∕200 as a function of ξ ∈ ð0; 1�.
Scheme I becomes unstable if the boundary sits too close to a grid
point, whereas scheme II remains stable. Schemes of order M ¼ 4

and 6 lead to similar results, also with larger values of ξ0 up to or
even beyond 1, i.e., one grid spacing.

2D case

The numerical examples presented later on only involve the
fourth-order spatial discretization. Therefore, the description of the
method will focus on this scheme with M ¼ 4. The topography is
assumed to be given as a cubic spline curve or piecewise cubic Her-
mite interpolating polynomial. Coding becomes simpler if the boun-
dary representation is a function zbðxÞ, singly valued by definition,
which excludes overhangs and caves.
The representation of the 2D Laplace operator by the sum of two

1D discrete second derivatives along grid lines makes the applica-
tion of the 1D scheme presented above straightforward, but there
some pitfalls. Figure 3 sketches an example of a finite-difference
grid and a free-surface boundary. The scheme only uses the values
at the interior points, marked by crosses. The evaluation of the fi-
nite-difference stencil in a given point requires M∕2 points in each
direction, left, right, above, and below that central point, with
M∕2 ¼ 2 in the present discussion. Note that “above” refers to de-
creasing z, in the direction of the zenith.

x →

u(x)
↑ Exterior

a)

b)

x →

u(x)
↑ Exterior

Figure 1. Extrapolation for a scheme of order M ¼ 8 if the boun-
dary point (open circle) does not lie too close to the last grid point.
The solution at four interior grid points is marked by black dots.
Together with four boundary conditions, the even spatial derivatives
from zero to six being zero, this defines a unique polynomial of de-
gree 7 that provides the four points denoted by black squares. These
can be used for evaluation of the discrete spatial operator in the
interior, which requires nine points, four on each side of the point
where the discrete second derivative is evaluated. The extrapolation
does not involve the point marked by a diamond. Scheme II, shown in
panel (b), ignores the interior point nearest to the boundary if its dis-
tance to the boundary is smaller than half a grid spacing. Otherwise,
Scheme I in panel (a) is adopted.

Topography with finite-difference scheme T113
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In the vertical direction, the stencil can intersect the boundary at
most once because of the assumption that the boundary be a func-
tion of x. Then, the above 1D scheme applies, but with the finite-
difference weights in reversed order because we have now assumed
that the free-surface boundary occurs toward the left end of the grid
line instead of the right.
If the boundary intersects a horizontal grid line once, again the

1D scheme applies. If the intersection occurs toward the right of the
central point where the second spatial derivative is evaluated, one of
the sets of the finite-difference weights in equations 8–11 applies.
If the intersection occurs toward the left, one of those needs to be
reversed.
The scheme becomes more complicated if the boundary inter-

sects a horizontal grid line on both sides of the central point, where
the second spatial derivative has to be evaluated. This happens for
the two horizontal grid lines at the top of Figure 3. To distinguish
between several cases, assume that the horizontal second derivative

has to be evaluated at xc and define η ¼ ðx − xcÞ∕Δx. The nearest
intersection points with the boundary are ηL < 0 on the left and
ηR > 0 on the right.
The standard interior difference weights in equation 7, approxi-

mating −Dxx, are valid if ηL ≤ −2 and ηR ≥ 2. If −ηL ¼ 2, the first
weight may be set to zero and if ηR ¼ 2, the last, although this
should be superfluous because those cases correspond to a grid
point precisely on the boundary where the pressure is zero. If ηL <
−2 and ηR < 2, the 1D scheme applies, with one of the expression in
equations 8–11. More precisely, if ηR < ½, equation 11 with ξ ¼ ηR
applies, otherwise if ηR < 1, equation 10 with ξ ¼ ηR, otherwise if
ηR < ð3∕2Þ, equation 9 with ξ ¼ ηR − 1, and otherwise, equation 8
with ξ ¼ ηR − 1. In the case of ηL > −2 and ηR > 2, the same ap-
proach applies with the pair ðηL; ηRÞ changed to ð−ηR;−ηLÞ and the
resulting weights are taken in reverse order.
That leaves the case in which the boundary intersects the stencil

on both sides of the central point, with −2 < ηL and ηR < 2. One
way to implement the scheme is to start with the extrapolation oper-
atorE, initialized as the identity matrix, I5×5. After modification ofE,
the modified finite-difference weights become w̄ ¼ wE, where w re-
fers to the standard weights of equation 7 represented as a row vector.
First, we set Ej;j ¼ 0 for those j ¼ 1; 2; : : : ; 5 that obey j − 3 ≤

ηL or j − 3 ≥ ηR. Alternatively, E can be initialized with zeros fol-
lowed by Ej;j ¼ 1 for ηL < j − 3 < ηR. Next, consider the right side
of the stencil, intersected at ηR < 2. If ηR ¼ 0, we are on the boun-
dary and can set all entries of E to zero. If not, let kR ¼ floorðηRÞ,
which is either 0 or 1, and ξ ¼ ηR − kR ∈ ½0; 1Þ. Select ER ¼ EII,
given in equation 6, if 0 < ξ < ð1∕2Þ and ER ¼ EI in equation 5
otherwise. Next, we should copy elements of the small matrix
ER to a subset of the 5 × 5 matrix E. The two target columns of
E have indices jR and jR þ 1, with jR ¼ kR þ 1 if ξ < ð1∕2Þ and
jR ¼ kR þ 2 for ð1∕2Þ ≤ ξ < 1. There are either one or two rows for
E, starting at iR ¼ 4þ kR up till row five. The assignment from the
smaller to the larger matrix is

x

z

Figure 3. Example of a finite-difference grid. The crosses mark the
interior grid points. The grid lines intersect the boundary at the top at
the circles, in the vertical direction, or squares in the horizontal di-
rection. The 1D extrapolation along grid lines produces different val-
ues in the exterior for horizontal and for vertical extrapolation.

0 0.2 0.4 0.6 0.8 1
0

0.1
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b)
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II
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or

I
II

Figure 2. Maximum error for a test problem as a function of ξ with
scheme I or II for order eight in space. The time step is taken at 100%
of the stability limit for panel (a) and at 50% for (b). Extrapolation
with scheme I (dashed line) causes an instability for ξ≲0.48 in panel
(a) and ξ≲0.0135 in (b). Scheme II (drawn line) remains stable, with
a maximum error that is almost independent of ξ.
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Ei;j ¼ ER
i−iRþ1;j−jRþ1; i ¼ iR; : : : ; 5; j ¼ jR; jR þ 1:

(12)

Note that this approach fails if jR − 3 ≤ ηL, which happens if there
are insufficient interior points for one of the extrapolation formulas.
If jR − 3 ≤ ηL but jR − 2 ≥ ηL þ ð1∕2Þ, meaning the first point
needed for interpolation has ended up in the exterior but the second
point lies in the interior at a distance of at least half a grid spacing
away from the left boundary position. The extrapolation then fol-
lows from the single interior point at index jR þ 1 and the zero
boundary value at ηL:

ER
i−iRþ1;1 ¼ 0; ER

i−iRþ1;2 ¼
ψði−3;ηL;ηRÞ
ψðjR−2;ηL;ηRÞ

; i¼ iR; : : : ;5;

(13)

where

ψðη;ηL;ηRÞ¼ðη−ηLÞðη−ηRÞ½ðηR−ηLÞ−ðη−ηRÞ�: (14)

Note that jR − 2 refers to the relative position of the single interior
point and is either −1 or 0.
For the left side of the stencil, if intersected at −2 < ηL, the same

approach follows on the basis of symmetry. We just have to replace
the pair ðηL; ηRÞ with ð−ηR;−ηLÞ and change the assignment in
equation 12 to E6−i;6−j ¼ ER

i−iRþ1;j−jRþ1.
This leaves the case where the right-most point, indexed by

jR þ 1, of the two points included in the extrapolation, lies to
the left of ηL þ ð1∕2Þ, that is, if jR − 2 < ηL þ ð1∕2Þ. Then, a para-
bolic fit to the central point and the two nearby zero-boundary
values results in finite-difference weights ð0; 0; w̄; 0; 0Þ with w̄ ¼
2∕ð−ηLηRÞ. To avoid instabilities due to too small ηL or ηR, they
are set to at least a 1/2: w̄ ¼ 2∕½maxð½1∕2�;−ηLÞmaxð½1∕2�; ηRÞ�.
Note that this situation occurs when −ð3∕2Þ < ηL < ηR < ð1∕2Þ
or when −ð1∕2Þ < ηL < ηR < ð3∕2Þ. As a result, and also because
the 2D boundary conditions are only approximately honored, we
will lose the formal fourth-order accuracy.
As an aside, with the definition of ψ in equation 14, the operators

in equations 5 and 6 become

EI¼
0
@ψð 1;0;ξÞ

ψð−1;0;ξÞ
ψð1;−1;ξÞ
ψð0;−1;ξÞ

ψð 2;0;ξÞ
ψð−1;0;ξÞ

ψð2;−1;ξÞ
ψð0;−1;ξÞ

1
A; EII¼

0
@ψð 1;−1;ξÞ

ψð−2;−1;ξÞ
ψð 1;−2;ξÞ
ψð−1;−2;ξÞ

ψð 2;−1;ξÞ
ψð−2;−1;ξÞ

ψð 2;−2;ξÞ
ψð−1;−2;ξÞ

1
A:

(15)

Note, however, that this form does not reveal the occasional can-
cellation of common factors in the numerator and denominator.
For a fourth-order scheme, the solution should satisfy ∂muðt;xðsÞ;

zðsÞÞ∕∂sm¼0 form ¼ 0; : : : ; 3 on the boundary parameterized by s,
and also 0 ¼ ∂2u∕∂t2 ¼ c2Δu. The 1D scheme implies the assump-
tion that the stencil intersects the boundary perpendicularly, which is
not correct and will result in a numerical error. Lombard et al. (2008)
avoid this simplification and, therefore, their scheme maintains the
formal accuracy, but I could not get it to work with the very rough
topography shown in Figure 7a.

RESULTS

Of the six test problems, the first three have an exact solution and
offer insight in the error behavior of the method. The first has a
point source in a constant-velocity model with a dipped surface at
various angles. For the second and third problems, conformal map-
ping provided closed-form expressions for the velocity models and
solutions. One has mild topography, the other a sharp corner and
steep dips. The fourth problem, designed to test the method to
its limits, has a highly irregular surface. The fifth and sixth problems
mimic real-life problems. Points extracted from digital elevation
maps served as input for the 2D topography, on top of a synthetic
subsurface model.
The first example has a constant velocity of 2 km∕s. The surface

crosses the origin and has dip angles ϕ between 0° and 45° at a 5°
increment. A source is placed at xs ¼ 0 m and zs ¼ 60∕ cos ϕ m,
and it is numerically represented by a tapered sinc function (Hicks,
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Figure 4. Pressure wavefield (a) after 0.4 s for a dip angle of 25°
and (b) the maximum error at 0.4 s, relative to the maximum am-
plitude of in the solution, as a function of the grid spacing Δx for dip
angles between 0° and 45°. The error behavior follows the fourth-
order trend indicated by the slope of the large triangle.
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2002). The wavelet has compact support and is a polynomial of the
form

wðtÞ ¼ −
�
Tw

8

�
2 d2

dt2
ð1 − τÞ8 ¼ ð1 − 15τÞð1 − τÞ6;

for τ ¼ ð2t∕TwÞ2 < 1; (16)

and is zero otherwise. Here, the duration of the wavelet Tw is
chosen such that its peak frequency fpeak is 15 Hz. Note that
ð1∕2ÞTwfpeak ¼ 0.934129. Figure 4a displays the exact solution
at a time of 0.4 s for a 25° dip. Figure 4b plots the maximum error
at 0.4 s for a range of dip angles and grid spacings, Δx. The spacing
in z obeys Δz ¼ Δx in this example. The observed numerical errors
follow the fourth-order trend, despite the fact that the boundary con-
dition is only an approximation for nonzero dip. The exact solution
is antisymmetric in the direction normal to the free surface, whereas
the discrete scheme assumes antisymmetry along the grid lines. The
approximation apparently has little effect on the overall error in this
first test problem, except for a small variation with dip angle.

The second 2D test problem has a smoothly varying velocity
model

cðx;zÞ¼c0f½1−A cosðxÞcoshðzÞ�2þ½A sinðxÞsinhðzÞ�2g−1∕2:
(17)

An exact solution on a grid that is periodic in x ∈ ½0; 2πÞ has a zero
Neumann boundary condition at z ¼ 0 and a zero Dirichlet boun-
dary at the surface is

uðt;x;zÞ¼cosðmx1−αtÞcos
�
1

2
πz1

�
; α¼c0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ

�
1

2
π

�
2

s
;

x1¼x−A sinðxÞcoshðzÞ; z1¼z−A cosðxÞsinhðzÞ∈ ½−1;0�:
(18)

The surface is implicitly defined by z1 ¼ −1. The time step was
chosen at 10% of the stability limit, to reduce the size of the time-
stepping error relative to the spatial discretization error. Figure 5a
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Figure 5. (a) Velocity model, (b) initial solution, and (c) errors on a log-log scale as a function of the grid spacing Δx as a drawn line. The
dashed lines indicate the error behavior of a first- and a fourth-order scheme. The observed maximum errors for a trivial boundary scheme are
included for reference (d).
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shows the velocity model, and Figure 4b shows the solution at
time 0 for c0 ¼ 1,m ¼ 8, and A ¼ 1∕4. The maximum error at time
2π∕c0 is shown in Figure 5c as a function of grid spacing Δx. The
decrease of the observed error with grid spacing starts out like a
fourth-order scheme for large spacings, but it deteriorates for smaller
values of Δx, when the maximum error has dropped to 10−4. For
reference, Figure 5d displays the first-order error behavior for a trivial
boundary scheme, in which solution values are set to zero above the
free surface. Figure 5c shows that the simplified 1D scheme does not
fully attain the fourth-order behavior of the interior finite-difference
scheme, but the results are still a clear improvement over the trivial
scheme of Figure 5d. The observed mean convergence rate of the
maximum error for the latter is actually approximately 1.4, slightly
better than the expected first-order trend.
The third test problem has a velocity model

cðx; zÞ ¼ c0
ffiffiffi
2

p

L0

½cosð2xL0Þ þ coshð2zL0Þ�−1∕2: (19)

With a zero Dirichlet boundary conditions and zero source term, an
exact standing-wave solution is

uðt; x; zÞ ¼ sinðπm1x1∕L1Þ sinðπm2z1∕L1Þ cosðωtÞ;
ω ¼ πðc0∕L1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2

q
; (20)

where

L1 ¼ sinL0; x1 ¼ sinðL0xÞ coshðL0zÞ;
z1 ¼ cosðL0xÞ sinhðL0zÞ; x1; z1 ∈ ½0; L1�: (21)

Figure 6 shows the velocity model when c0 ¼ 1, L1 ¼ 0.8,m1 ¼ 7,
m2 ¼ 5, together with the initial solution and the resulting maxi-
mum error at time T ¼ 2π∕ω as a function of the grid spacing Δx
on a log-log scale. It is evident from Figure 6c that the maximum
error does not attain the fourth-order behavior of the interior scheme.
It has a has a convergence rate closer to second order, worse than
observed in the first experiment with the dipped flat surface. This
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Figure 6. (a) Velocity model, (b) initial solution, and (c) errors on a log-log scale as a function of the grid spacing Δx as a drawn line, following
a second-order trend. The dashed lines indicate error behavior that would have been observed with a first- or fourth-order schemes, respec-
tively. The first-order error behavior observed for a trivial boundary scheme is included for reference (d).
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is apparently the net effect of neglecting the boundary curvature and
the spatial variability of the velocity model together with the appli-
cation of the 1D boundary scheme along grid lines. For comparison,
Figure 6d exhibits first-order convergence for the trivial scheme.
In practice, we can accept some loss of accuracy in a finite-differ-

ence code because a sharp internal contrast will have a similar effect.
Across a discontinuity in the velocity model, the pressure will be con-
tinuous but not differentiable, leading to a local second-order spatial
error. On top of that, if the velocity model is sampled point-wise, the
position of the interface is only known with a first-order error.
The next problem is designed to test the method to its limits with

a very rough topography created by a random number generator and
some smoothing. The same holds for the geology underneath. Fig-
ure 7 displays the velocity model and a snapshot. The time step for
this and the subsequent problems was set at half the maximum value
dictated by the Courant–Friedrichs–Lewy (CFL) condition (Courant
et al., 1928), to keep the time-stepping error sufficiently small. The
grid spacing was 5 m. The source was placed at x ¼ 0 m and a depth

of −265 m, on a grid point well below the surface at −276.9 m, and
the source signature was a 12 Hz Ricker wavelet. All boundaries are
reflecting for testing purposes, with zero Dirichlet conditions at the
free surface and zero Neumann conditions elsewhere.
The last two examples incorporate the actual topography of places

on earth unlikely to see seismic data acquisition. Figure 8 depicts the
topography of a line across the Vaalserberg, the highest point in The
Netherlands, with the same velocity model as before, together with
the computed seismogram. Again, the grid spacing is 5 m and the
peak frequency of the Ricker wavelet 12 Hz. The shot was located
at xs ¼ 0 m and a depth of −240 m, 12.9 m below the surface.
Receivers at 5 m below the surface had lateral positions between xr ¼
−987.5 and þ987.5 m, with a horizontal interval of 25 m.
Figure 9 displays the topography of a line across Half Dome with

fantasized velocities underneath and a resulting seismogram. The
source at xs ¼ 0 m and zs ¼ −1230 m was located 12.3 m below
the surface. The wavelet and relative receiver positions were as
before.
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Figure 7. (a) Velocity model and (b) snapshot of the wavefield after
1 s for a source at the center, at a depth of 12 m below the surface.
All boundaries are reflecting for testing purposes.
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Figure 8. (a) Velocity model and (b) seismic data for a source at the
center at a depth of 13 m below the surface.
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CONCLUSION

Modified finite-differenceweights near the free surface enabled the
incorporation of topography in a standard finite-difference scheme
for the second-order constant-density acoustic wave equation. The
method is a modification of an existing extrapolation scheme, sim-
plified to a 1D operation with the additional constraint that the
extrapolation excludes a point too close to the boundary, within half
a grid spacing. This enables the method to run at the same stability
limit as the interior scheme. For use in two dimensions, the approach
was reformulated as a modified interior scheme by applying the stan-
dard finite-difference weights to the set of interior and extrapolated
values per Cartesian coordinate direction. This avoids the ambiguities
encountered in highly irregular topographies, where conflicting
extrapolation results can be obtained from multiple directions.
Although the implementation as a 1D operation per coordinate direc-
tion results in a simpler, stable, and more robust scheme, the price
paid is some loss of accuracy. Because accuracy will also decrease
near large contrasts in the interior model, this is likely to be accept-
able in practice. The extension to three dimensions should be straight-
forward, although not entirely trivial, to implement.

APPENDIX A

STABILITY

The classic von Neumann stability analysis (Charney et al., 1950)
leads to a time-step limit Δt ≤ C0Δx∕maxðcÞ, with a CFL number

C0 ¼ 2

0
BBB@
XM∕2

k¼1

4k

k2
�
2k − 1

k − 1

�
1
CCCA

−1∕2

; (A-1)

for the centered second-derivative finite-difference operator of order
M. This result holds for a constant sound speed c on an equidistant
grid with periodic boundaries.
With the modified boundary and the resulting discrete second-

derivative operator Dxx, the 1D stability limit becomes

Δt ≤
2Δx

maxðcÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik − Dxxk
p : (A-2)

The symmetry of the spatial operator Dxx is lost with the boundary
conditions considered here. However, numerical evaluation of the
eigenvalues of −Dxx shows that they are real and nonnegative. The
computation of the maximum eigenvalue for the example of Figure 2
over the range of ξ ∈ ð0; 1�, which defines the position of the boun-
dary in terms of the grid spacing Δx, provides Figure A-1, showing
the ratio C∕C0 of the CFL number to its reference value in the peri-
odic case. Here, C follows from the square root of the largest eigen-
value. Clearly, if one wants to run with the same CFL number as for
the periodic case, scheme II is to be preferred.
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Figure 9. (a) Velocity model and (b) seismic data for a source at the
center, at a depth of 12 m below the surface.
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Figure A-1. Relative stability measured by C∕C0 for a spatial dis-
cretization of orderM ¼ 8 as a function of the position of the boun-
dary, at 1þ ξΔx, for scheme I with ξ0 ¼ 0 or scheme II with ξ0 ¼
½, meaning that the extrapolation operator at the boundary excludes
the interior point if its distance to the boundary is less than half a
grid spacing.
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