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ABSTRACT 
Single-molecule techniques continue to gain in popularity in research disciplines such as the study of intermolecular 
interactions. These techniques provide information that otherwise would be lost by using bulk measurements that deal 
with a large number of molecules. We describe in this report the motion of tethered DNA molecules that have been 
tagged with gold nanobeads and observed under dark field microscopy to study single molecular interactions (SMI). We 
further report on the derivation and use of several physical parameters and how these parameters change under differing 
experimental conditions. 
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1. INTRODUCTION 
In recent years, single molecule techniques have increased in popularity especially in fundamental biochemical and 
biophysical research. These techniques allow the characterization of events that are otherwise hidden if ensemble-
averaged methods are applied. The static and dynamic heterogeneity of a population/system can be examined. Single 
molecule studies deliver distributions rather than average values. They give information on transition states, time 
trajectories, conformational changes, etc. These techniques require small sample sizes compared to conventional 
biochemical assays1. 

DNA-protein interactions are of great interest due to their importance in cellular processes. They control events such as 
DNA replication, DNA repair and transcription regulation. Research using single molecule interactions not only has 
fundamental importance but also relevance in applied research, for example, the development of effective therapies for 
various types of cancer. 

The study of DNA-protein interactions includes the screening for DNA-binding protein, the analysis of reaction kinetics, 
and the determination of the influence of changing environmental conditions on the DNA binding event2-4.  

There are a number of bulk biochemical and classical biophysical methods that allow the study of these interactions, 
such as electrophoretic mobility shift assays (EMSA), DNA footprinting and UV-VIS Spectroscopy. In the past twenty 
years, new techniques have been developed that allow the study of single molecules or single molecular events resulting 
in information on molecular mechanisms5, 6. Optical and magnetic tweezers, for example, cannot only be used for the 
detection of single molecules but also for manipulating them and for the determination of associated forces. Both 
methods have been extensively used in the characterization of motor proteins, like kinesin and myosin6. There are single 
molecule methods that are based on fluorescence such as fluorescence resonance energy transfer (FRET) and 
fluorescence correlation spectroscopy (FCS). Other single molecule methods are based on physical phenomena such as 
surface plasmon resonance (SPR).  

All of those techniques have their benefits and drawbacks. It is up to the researcher to choose the most suitable method 
for the detection and characterization of single molecule interactions. 

2. METHOD 
We have developed an optical method to study the dynamic behaviors associated with DNA-protein interactions. Our 
technique is based on tethered particle motion (TPM). One end of the DNA fragment is immobilized onto a gold slide 
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though disulfide chemistry. The other end is attached to a gold bead through biotin/anti-biotin interactions7, 8. These 
sub-micron gold beads scatter polychromatic light when illuminated with white light. 

In solution, the position of the bead is limited to a volume that depends on the length of the DNA molecule. The exact 
determination of this “action” volume results in information on the effective length of the DNA fragment and its 
possible variations due to the interaction with proteins or due to changes in environmental conditions such as the pH 
and salt concentration. Figure 1 illustrates how the volume might be effected by two different proteins, lacR and recA. 

 
Figure 1. The Lactose repressor protein binds to the operator sequence on a 
dsDNA. It induces a loop, which decreases the length of the fragment, thus 
decreasing the action volume. The recA protein forms a filament around the 
dsDNA, resulting in an extended and stiffer DNA molecule. 

The kinetics of E. coli RNA polymerase were first studied using TPM by Schafer et al. (1991). Finzi et al. (1995) 
measured DNA looping by the lactose repressor protein of E.coli in single fragments of double-stranded DNA. Many 
other research articles have been published on the use of TPM and the study of DNA-protein interactions. Most of these 
publications are based on video-microscopy in order to study biomolecular interactions. Others have focused mainly on 
the analysis of the data that have been acquired with the TPM method9-15. 

In TPM, large polystyrene beads are usually used. The diameter of these beads are typically between a few hundred 
nanometers and 1 µm. Our method makes use of gold nanobeads (∅ ≈ 80 nm). The metallic beads that we use (RLS 
beads, Invitrogen, The Netherlands) differentially scatter polychromatic light depending on the bead size. Metallic 
beads are well-suited for long term experiments as they neither bleach nor blink. They are commonly tagged with anti-
biotin antibodies.  

The DNA fragments (≈5 kb) were amplified from a lambda DNA template using the Expand Long Template PCR 
System (Roche) and were modified with a disulfide group and a biotin molecule. 

We use a darkfield microscope (Olympus BX51) with a 50x/0.8 air objective in order to detect the scattered light of the 
gold bead. The motion of the beads is detected with a 12 bit CCD camera (Hamamatsu, Orca-ER C4742-95). The CCD 
array consists of 1344 x 1024 pixels. Each pixel has a size of 6.45 µm x 6.45 µm. The CCD camera is controlled by 
SimplePCI from Compix Inc. Imaging Systems. The sampling density in x- and y- directions are: ∆x = 0.13 µm (7.7 
samples per µm) and ∆y = 0.13 µm (7.7 samples per µm). The collected images are analyzed by MATLAB using our in-
house software package DIP Image16. 

3. EXPERIMENTS AND RESULTS 
Our results are based upon the detection of the constrained Brownian motion in solution of a tethered dsDNA fragment 
labeled with a gold nanobead. From the measured x- and y-coordinates of the light scattered from a bead (Figure 2), 
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various parameters can be derived such as the excursion of the DNA/bead system, the speed, and the diffusion 
characteristics. The ability to make accurate and precise measurements of these types of data has been extensively 
studied. In a recent publication, Ram et al. have shown, for example, that ten nanometer scale resolution is achievable17. 
Our experimental results agree with this prediction. 

 

 
All experiments were performed at ambient temperature. The dsDNA fragments used were 4861 base pairs long. A 
Tris/EDTA (10 mM/1 mM) buffer with pH 8.0 at 20 °C was used. For salt experiments, MgCl2 was dissolved in Tris-
HCl buffer (10 mM), pH 8.0 at 20 °C. Most experiments were carried out at a camera frame rate of ≈16 frames per 
second depending on the size of the region of interest. (Larger regions-of-interest require a slightly lower frame rate.) 
The motion of the beads was monitored for 1500 to 2000 frames which was sufficient to achieve an accurate estimate of 
the dynamics of the movement of the tethered molecule.  

TPM measurements rely on a bead that is usually rather large (up to 1 µm). This bead functions as a beacon for the 
molecular motion of the tethered biopolymer (DNA, RNA)18. The statistical properties of the macromolecule can, in 
principle, be altered by the reporter beacon depending upon its size. This is due to a volume-exclusion effect that arises 
from close proximity of the bead to the anchoring surface of the biopolymer. It is therefore of great importance to know 
if the size of the beacon influences a particular TPM measurement. Segall et al. have studied this problem and reported 
on the impact of the bead’s size on the molecular movement and the derived parameters. They concluded that the 
excursion of the bead depends on a dimensionless quantity called  the “excursion number”18: 
 

 NR ≡ R Lξ / 3  (1) 

where R is the bead radius, L is the contour length of the macromolecule and ξ is the persistence length. The excursion 
number describes the bead’s scaling behavior, giving information on whether molecule-dominated motion (NR < 1) or 
bead-dominated motion (NR > 1) predominates.  

If we apply this concept to our system—with a contour length of 1653 nm (4861 bp), a persistence length of 50 nm, and 
a bead radius of 40 nm—an excursion number of NR = 0.24 results. This implies that in all of our experiments the 
motion is molecule-dominated. Further, under the circumstances of our system, the fragment length could be shortened 
to 97 nm (285 bp) and we would still retain a molecule-dominated motion.  

The root mean square radius, rrms = < r 2 > , for a dsDNA tethered bead and for a stationary bead are shown in Table 
1. The values are derived from the determination of the center-of-mass of the bead images in one data set.  

 
Figure 2. Image of light scattered from a gold 
bead whose diameter is 80 nm. The width of the 
bead image is about 4 pixels = 0.52 µm. 

0.52 µm
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Table 1. rms radius values for a tethered bead and a stationary bead. 

 Tethered bead [nm] Stationary bead [nm] 

  rrms
= < r 2 >  317 14 

 

The rrms of a stationary bead is about 22 times smaller than a moving one. The values for an immobile bead can be seen 
as control values. They represent the error of the method/system due to stochastic sources such as the dark noise, 
electronic camera noise, quantization noise, and mechanical vibrations. 

In Figure 3a,b the radial positions and the distribution of a moving and stationary bead are shown. In both cases, the 
excursion of the bead over 2000 frames shows no favored direction. The average radial distance, <r>, of a moving, 
tethered bead is 286 nm. An immobile bead, on the other hand, has a characteristic average radial distance of 13 nm. 
This value can again be taken as a control value for noise. 

 

  
Figure 3a. x, y-scatter plot and histogram of a moving, tethered bead. 

  

Figure 3b. x, y-scatter plot and histogram of a stationary bead. 
 

The velocity of a freely moving particle can be described by a Maxwell-Boltzmann distribution if the movement is due 
to Brownian motion. TPM measurements are performed in three, spatial dimensions (plus time) but our image analysis 
is based upon two-dimensional projected data. If motion in each of the spatial dimensions is independent of the other 
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two, then the Maxwell-Boltzmann distribution can be integrated over the z (axial) dimension to produce the statistical 
description of the two-dimensional (x, y) lateral case that we observe through the microscope. The resulting distribution 
is the Rayleigh distribution. Thus, for fitting the speed of a moving, tethered bead we use the Rayleigh expression: 

 
2

( ) vf v A v e α−= i i  (2) 

where A and α are fitting parameters and v and v2 correspond to the length and length-squared, respectively, of the 
velocity vector. The  data and the associated fit are depicted in Figure 4. The fit is excellent. The fitting parameter α can 
be used to estimate the “effective” mass of the DNA-bead system according to meff = α•(2•kB•T) where kB is the 
Boltzmann constant and T is the ambient temperature in Kelvin. The mass estimate, for the system shown in Figure 4 
and taking the value of α found in Figure 4, is meff  = 9.2 x 10-10 kg. The effective mass can also be estimated by 
applying kinetic theory according to 

 
  
m =

2kBT
< v2 >

x , y

 (3) 

where <v2> is the mean-square velocity in two dimensions. The calculated mass according to equation 3 amounts to 9.0 
x 10-10 kg. It should not be surprising that these two values are similar. 
 

 

Figure 4. A Rayleigh distribution fit of a moving bead. 

The mass of the 80 nm gold bead plus the mass of the 4861 bp dsDNA amounts, however, to 5.17 x 10-18 kg. This value 
is much smaller than the effective mass calculated according to kinetic theory or by using the fitting parameter α from 
the Rayleigh distribution. 

There are a number of factors that can influence the calculation of the dsDNA-bead effective mass. The experiment was 
performed in an aqueous environment and the surrounding hydration shell was not taken into account. Further, the 
dsDNA-bead combination is not freely moving but constrained by the tethering, resulting in a lower speed then one 
would expect in freely-moving Brownian motion. The reduced speed is reflected in a larger “mass”. At this moment, it 
is not clear whether these two effects are sufficient to account for the larger, experimentally-calculated, effective mass.  

The tethered DNA-nanobead system can be considered as behaving like a “spring/mass” harmonic oscillator according 
to: 

 F k x= − i  (4) 

where F is the restoring force exerted by the system, k is the spring constant and x is the displacement of the system. 
The potential energy U of the spring/mass system is given by: 
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The value of the spring constant of the tethered DNA-bead system can be derived from the Boltzmann energy 
distribution:  

 
2

21( ) B
k x

k TP x e
Z

−
= i

i
ii  (6) 

where P(x) is the probability of the system being in a certain energy state, Z is a normalization constant; kB and T are as 
before. Taking the logarithm of equation 6 gives the following formula: 

 
2

ln ( ) ln 2 B

k xP x Z k T− = + i i i  (7) 

The implications are clear. If we compute the natural logarithm of a histogram of the x (or y) displacements, we should 
see a quadratic curve in x (or y) around a “zero-point” energy. The spring constant, expressed in pN/µm, can then be 
extracted from a quadratic fit to the resulting energy profile. Figure 5 shows a typical energy profile of a 4861 bp long 
dsDNA fragment tagged with a 80 nm large gold nanobead. The derived spring constant for the measured data shown in 
Figure 5 is k = 7.7 x 10-2 pN/µm. This value is in agreement with literature19. 

 

Mono- and multivalent cations are known to compact DNA and RNA structure20-22. Various techniques have been used 
to study the effect of cations on the conformation of DNA and RNA. Tethered particle motion can be used to follow the 
change in the structure by looking at various parameters such as the rms radius and the spring constant. We have 
performed such experiments with the salt MgCl2 and the results are presented in Table 2. 

 

Figure 5. Energy profile of a 4861 bp dsDNA fragment labeled 
with a 80 nm gold particle in TRIS/EDTA buffer, pH 8.0. The 
spring constant can be extracted from a quadratic fit to the 
experimental data. 
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Table 2. Influence of 10 mM MgCl2 on various parameters on a 4861 dsDNA fragment. 

 TRIS-HCl buffer, pH 8.0 10 mM MgCl2 

  < r 2 >  270 nm 164 nm 

  < v2 >
2 D

 3920 nm/s 2240 nm/s 

Spring constant 0.11 pN/µm 0.40 pN/µm 

 

With the addition of 10 mM MgCl2, the rms radius decreases by approximately 40% compared to the rms radius 
measured in a TRIS buffer solution. The rms velocity in two dimensions decreases by 43%; and the spring constant 
increases by a factor of 3.6, which is not surprising considering the fact that the (x, y)-displacement of the nanobead 
decreases. The variation in these parameters can be interpreted as an indication of the compaction of the dsDNA with 
the addition of the salt MgCl2.  

4. CONCLUSIONS 
Using tethered-particle motion as indicated by gold nanobeads and darkfield microscopy, we have been able to observe 
the motion and the change in motion of bio-macromolecules when their environment is changed. We have been able to 
calculate various physical parameters such as the effective spring constant by applying Boltzmann statistics and the 
Rayleigh distribution. According to the calculated excursion number, our DNA/bead system shows a molecule-
dominated motion. 

For a 4861 bp long dsDNA fragment tethered onto a gold support and labeled with a 80 nm large gold nanobead, the 
addition of 10 mM MgCl2 leads to a decrease in the rms radius and the 2D-rms velocity, consequently to an increase in 
the spring constant. In future experiments we will be looking at interactions between specific bio-macromolecules such 
as dsDNA and recA. 
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