TUDelft

Extended Geometry based Watermarking of 3D Meshes

Improving robustness of geometrical 3D mesh watermarking by introducing

mesh regularization

Jaden Nierop!

Supervisor(s): Zekeriya Erkin', Devris Isler!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
January 29, 2023

Name of the student: Jaden Nierop
Final project course: CSE3000 Research Project
Thesis committee: Zekeriya Erkin, Devris Isler, Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Digital watermarking has been used extensively in media in recent years. Yet, there are
still relatively few techniques for watermarking 3D meshes. In this paper we implement
a watermarking algorithm proposed by O. Benedens that encodes a bit string in the dis-
tribution of the normals of the faces of the mesh and investigate a method to improve
the robustness of 3D mesh watermarking algorithms against connectivity attacks by in-
troducing a mesh regularization step at the watermark insertion and extraction phases.
Furthermore, O. Benedens’ watermarking technique is augmented to embed bit strings of
any length and we suggest a method to measure the similarity of two bit strings in terms

of probabilities.

1 Introduction

As gathering data becomes an increasingly pop-
ular investment, naturally, so does the interest
in protecting this data against piracy and un-
lawful distribution. Protecting against these
threats to intellectual property requires the
ability to prove ownership of the data. Dataset
watermarking techniques enable proving own-
ership by embedding a secret into the data in
such a way that this secret is hard to remove
and hard to obtain from the data. The owner
can then prove ownership by showing that only
they know the secret that was embedded into
the dataset during the watermarking process
which implies that only they could have water-
marked it. This embedded secret is called a
watermark.

During the watermarking process small er-
rors are inserted into the data. These errors
must remain small enough not to lower the util-
ity of the dataset and be made such that an ex-
ternal party cannot remove them without sac-
rificing the utility of the data.

There are already many existing digital wa-
termarking techniques out there each with their
own strengths, weaknesses and practical appli-
cations.[1] Many of these techniques are already
being used in media to watermark data such
as audio, video and images. However, there
are still relatively few watermarking techniques
available to watermark 3D objects such as 3D
meshes used in computer graphics and com-
puter aided design (CAD). This is a result of
the challenges that arise when handling the ar-
bitrary geometry of 3D meshes and the com-
plexity of the possible attacks on the water-
marks [2].

In this paper we investigate a method pro-
posed in [2] to improve the robustness of ex-
isting 3D mesh watermarking techniques to
remeshing attacks by introducing a mesh regu-
larization step both before embedding and ex-
tracting the watermark. This method is applied
to the existing non-blind 3D mesh watermark-
ing technique proposed by O. Benedens in [3] to
test it’s effectiveness when used in conjunction
with this technique.

Furthermore, we extend the capabilities of
the watermarking technique proposed by O.
Benedens to be able to embed bit strings of any
length.

We also give a method to calculate the proba-
bility that a given bit string was used to embed
the watermark.

Next the rest of the structure of the paper is
given. In section 2 we lay out the algorithms
used in this paper and the experimental setup.
In section 3 we present the results of these ex-
periments and explain how these should be in-
terpreted. In section 4 we discuss the implica-
tion of the experimental results and some topics
of further research. Finally, in section 5 we dis-
cuss how the values of responsible research were
expressed in this research.

2 Methodology

In this section we cover the implementation of
the watermarking algorithm and experimental
setup. The watermarking algorithm described
in [3] had to be re-implemented for this research
because an existing implementation could not
be found. The new implementation was written
in python and adapted to be able to embed a
bit string of any length. However, this does
not mean that the capacity of the algorithm is
infinite but simply that the algorithm can take
an arbitrary bit string as input. Attempting to
embed a bit string with more bits than the mesh
has faces is guaranteed to generate some empty
bins that are not able to be used to encode bits.

2.1 3D mesh watermarking
algorithm

The watermarking technique proposed by O.
Benedens in [3] embeds a secret bit string by
first creating an orientation histogram of all the
normals of the faces of the mesh with one bin
per bit in the bit string. Each bin is defined by
its center, a vector in 3D space, and a radius. If
the angle between a normal and the bin’s cen-
ter is less than the radius then the normal is
placed in that bin. A "0" bit is encoded into a
bin by moving the center of mass of the normals
in that bin in a particular direction and a "1"

bit is encoded by moving the center of mass in
the opposite direction. The original center of
mass of each bin needs is used to retrieve the
secret bit string. This is the reason that this
algorithm is not blind.

The retrieval algorithm is very similar. First
the orientation histogram of the watermarked
mesh with the same number of bins is created.
By comparing the center of mass of a bin of the
watermarked mesh with the original center of
mass it is possible to determine if a "0" or a
"1" bit is encoded in the bin.

This algorithm relies on the fact that the
distribution of the normals of a mesh should
be robust against remeshing, randomization of
points and simplification attacks. A detailed
explanation of the algorithm follows in the next
two subsections.

Embedding algorithm

To create the orientation histogram of the mesh
we first calculate the normals of each face in
the mesh so that we can assign them to their
appropriate bins. 3D meshes are often defined
by a set of faces each of which is defined by 3
vertices. The normal of a face can be calculated
by the cross product of two of the edges:

face; = (p1,p2,p3) (1)
U =ps—p1 (2)
U =p3—p1 (3)
. cross(u, v

i G ()

 |eross(i, v)|
Here face; is the i-th face of the mesh and pq, po
and p3 are the vertices that define it. n; denotes
the normal of face; and is a unit vector.

Next we generate the set of bins of the orien-
tation histogram. Each bin is defined by its cen-
ter, unit vector in 3D space, and its radius. We
want the set of bins to cover as much of the unit
circle as possible so that the histogram captures
as many normals as possible. This task of gen-
erating good bin centers then translates to the
problem of generating evenly spaced points on a
unit sphere which is a notoriously hard problem
in mathematics and computer science. Fortu-
nately, we do not need the points to be perfectly
evenly spaced. For this implementation we gen-
erate a fibonacci sphere which is a very simple
way to produce an arbitrary amount of points
that are approximately evenly distributed on
the unit sphere [4]. Each point defines the cen-
ter of one of the bins. Consequently, this al-
lows the algorithm to embed a bit string of an
arbitrary length. To guarantee that a normal
cannot fall into two different bins we must en-
sure that no bins overlap. This is achieved by
calculating the smallest angle between all the
bin centers and cutting it in half. The result
is the radius of all the bins. Lets denote this
radius with 7.

Lets use bin; to denote the bin that will en-
code the bit in position j and let center; denote
the center of bin;. Inserting the normals into
the correct bin is achieved by assigning normal
1; to bin; if and only if the angle between n;
and center; is less than r. Because the bins
are circular and do not overlap that there are
points on the surface of the unit sphere that do
not belong to any bin. This means that that
some normals may not fall in to any bins.

When the normals have been assigned to
their corresponding bins, the orientation his-
togram is created. To determine how to move
the center of mass of each bin we map the nor-
mals of each bin from a section of the unit
sphere in R3 to a umit circle in R? where the
center of the bin becomes the origin of the unit
circle. Working in R? makes the following cal-
culations simpler because it both normalizes
bins to a unit circle and eliminates a degree
of freedom being the distance to the origin in
R3 which is irrelevant since all the normals are
unit vectors. To calculate the 2D coordinates
(@i, v:5) of n; which is in bin; we use trans-
formation T}. T} represents an initial rotation
around the x-axis followed by a second rotation
around the y-axis such that center; under this
transformation maps to the z-axis. In other

words:
0
Tj * center; = (0 (5)
1

If n; is assigned to bin; then its 2D coordi-
nates (z;5, ;) are calculated as follows:

xp
T *nj = <yp> (6)
h

Iy = arccos(h) (7)
lo = [(zp, yp)| (8)
11 :
L Jrpxg if [5 > 0.01
g { 0 otherwise)
15 :
L Jupxg if [5 > 0.01 1
Yig {0 otherwise (10)

It is important to calculate the center of mass
in 2D of each bin here because this information
will be needed to detect the watermark. The
center of mass of bin; is the sum of 2D coordi-
nates of all the normals in bin; divided by the
number of normals in bin;.

To encode a "0" in bin; we move the center of
mass of the bin in 2D in the positive x direction,
to encode a "1" bit we move it in the negative
x direction.

However, we cannot move the normals di-
rectly because they are a product of the posi-
tions of the vertices that make up the face but

it is possible to indirectly move the normals by
repositioning the vertices that define it’s face.
This presents yet another challenge: vertices
usually have multiple adjacent faces that are
all simultaneously affected by a vertex displace-
ment. This means that when optimizing the
position of a vertex we need to take it’s effect
on all the adjacent faces into account.

The embedding process loops over every ver-
tex in the mesh and attempts to find it a new
position that minimizes the cost of that vertex.
The optimization method used in this paper
and by O. Benedens in [3] is the Nelder-Mead
method [5]. The inner workings of the Nelder-
Mead method is not discussed in this paper.

After every vertex has been optimized the
mesh can be considered watermarked. It is pos-
sible verify that the mesh has indeed been wa-
termarked by attempting to retrieve the secret
from the mesh. The retrieval algorithm is de-
scribed in the next section.

Retrieval algorithm

The retrieval algorithm consists largely of the
same first few steps of the embedding pro-
cess. First calculate the normal of each face
in the watermarked mesh. Then generate the
fibonacci sphere with the same number of bins
as as there are bits in the secret bit string. The
orientation histogram is then created and the
center of mass of each bin is calculated using
the 2D coordinates of each of the normals with
respect to their bins. With the knowledge of the
original centers of mass prior to watermarking
it is possible to derive the embedded secret by
using the following simple rule: If the x coordi-
nate of the original center of mass is less than
the x coordinate of the new center of mass then
a "0" bit is encoded, if not then a "1" bit is
encoded.

Scoring the extracted bit string

The watermarking scheme defined previously
have a caveat however. The retrieved bit string
is not guaranteed to match the original bit
string in every bit position. This is a conse-
quence of the cost function. The cost func-
tion guarantees that normals inside a bin are
not allowed to leave their bin. However, nor-
mals that originally do not belong to any bin
could have drifted in such way that they now
fall within the radius of a bin. This drifting nor-
mal is contributing to the center of mass of this
new bin during the watermark retrieval process
while not being accounted for during the em-
bedding process which can occasionally cause
the encoded bit in these bins to flip.

It is also possible to attempt to retrieve a
watermark from a mesh that has not been wa-
termarked. In this case a bit string with equal
length to the provided centers of mass list will

be retrieved. Since this mesh was not water-
marked, bit strings retrieved this way behave
as if sampled from a uniform distribution. This
means that when failing to successfully embed
a watermark there is a small but non-zero prob-
ability that the retrieved bit string completely
matches the bit string that was not successfully
embedded.

For this reason and to capture the fact that
this algorithm allows the embedding of bit
strings of any length while tolerating a small
number of bit flips we propose a method to
score the similarity between the retrieved bit
string and another that may or may not have
been used to embed it. This method is de-
scribed next.

To decide whether to accept that the re-
trieved bit string is likely the result to another
bit string that may or may not have been used
in it’s embedding process we use a strategy in-
spired from the hypothesis testing. Let the null
hypothesis be that the two bit string are in-
dependent. Let there also be a p-value which
will indicate whether to reject or accept the
null hypothesis. Assuming the null hypothesis
it can be argued that the retrieved bit string
is sampled from a uniform distribution. De-
note the number of matching bit positions be-
tween the retrieved bit string and the embed-
ding one with k& and denote the length of the
secrets with n. If the probability of having k
or more matching bit positions is smaller than
the p-value the null hypothesis can safely be
rejected meaning that we believe that the re-
trieved bit string was likely produced by the
embedding bit string. The probability of hav-
ing at k or more matching bit positions between
two bit strings of length n is calculated with the
following equation:

(5)

LI

Pk<X<n)=)_ o (11)
i=k

Here X is the number of matching bit posi-
tions between two bit strings of length n.

We use this probability to measure the re-
sults of the experiments in this paper because
it enables comparing results when the bit string
length varies between runs and it indicates a
level of confidence even in the presence of bit
flips. Note that the smaller this probability the
more confident we are that the retrieved bit
string is a result of embedding the other bit
string.

Randomization of points attack

A randomization of points attack is a very sim-
ple attack that can be performed on a 3D mesh
to attempt to destroy an embedded watermark.
This attack consists of displacing every vertex
in a mesh a distance d in a direction chosen

at randomly per vertex. We use this method
because it is possible to carefully control the
intensity of the noise this attack introduces by
controlling the displacement distance d. A dis-
placement of 0.1 units corresponds to moving
every vertex a 0.1 units from its original it’s
original position and a displacement of O corre-
sponds to not attacking the mesh at all.

2.2 Experimental setup

This section describes the experiments that we
conducted. The implementation of the algo-
rithm proposed in [3] used in this paper is writ-
ten in python along with the implementation
of the randomization of points attack. The reg-
ularization algorithm is provided by the open-
source 3D modeling software Blender.

Furthermore, all watermarking experiments
will use a 3D mesh of a bishop (chess piece) to
the mesh that will be watermarked. See figure
1. This was chosen because it had both small
and large geometric features allowing it to serve
as a good benchmark for how these watermark-
ing algorithms could affect the quality of the
mesh.

Figure 1: 3D rendering of the bishop mesh used
for watermarking experiments. This mesh con-
sists of 612 vertices and 1220 faces.

Regularization Experiment

[2] suggests a method to make 3D mesh wa-
termarking techniques more robust against
remeshing attacks. It is suggested that remesh-
ing the 3D mesh such that it is more regular
before embedding the watermark and perform-
ing a similar remeshing step again before ex-
tracting the watermark could make the strat-
egy more robust against connectivity attacks
such as randomization of points. Here a 'regu-
lar’ mesh is defined to consist largely of faces of
equal size. The reasoning behind this sugges-
tion is that the regularization step before ex-
tracting the watermark is likely to reduce the

(irregular) noise introduced by connectivity at-
tacks. This can potentially undo some of the
effects of the attack increasing the likelihood of
the watermark being preserved.

We measure the effectiveness of this sugges-
tion by first measuring the robustness of the
watermarking scheme without the regulariza-
tion step against randomization of points at-
tacks of varying intensity. We then run this ex-
periment again but this time we introduce the
mesh regularization step before the watermark
is embedded and again before the extraction.

The regularization scheme used in the ex-
periment is provided by Blender. Blender is
a very powerful open-source software for 3D
design and animation. The feature we use is
called the 'remesh modifier’ with a voxel size of
0.1 meters which generates a new mesh with the
same volume as the input mesh but with highly
regular faces with lengths of roughly 0.1 units.
It was not possible to find an implementation of
this remeshing algorithm in python. As a result
the regularization steps are executed manually
by first importing the 3D mesh into Blender
for regularization and saving the output to a
file which can be read by our python imple-
mentation of the watermarking algorithm. The
watermarked mesh is then attacked by our ran-
domization of points implementation and the
result is saved to a file. To extract the water-
mark the mesh in this file is made regular again
by importing it into Blender and applying the
remeshing modifier to the mesh with the same
settings and exported to a new file so that the
watermark can be extracted using the python
implementation of the extraction algorithm.

By running this experiment with varying ver-
tex displacement distances in the randomiza-
tion of points attack and plotting the score
against these distances we can visualize the ro-
bustness of this regularization step different de-
grees of noise.

By repeating this experiment while omitting
the regularization steps it becomes possible to
measure the effectiveness of the regularization.
If the introduction of these regularization steps
indeed improves the robustness against ran-
domization attacks we expect the runs that in-
clude these steps to score better than the runs
that do not.

Additionally we repeat this experiment using
O. Benedens algorithm, however, now regular-
izing the mesh only before embedding. Simply
having a mesh with more regular faces may al-
ready improve robustness.

3 Analysis

In this section we present the results of the ex-
periments that were conducted and interpret
these results.

3.1 Regularization Experiment

In this experiment we evaluate the score aver-
aged over 20 runs for 3 variations of the wa-
termarking algorithm. We plot these scores
against the vertex displacement distance used
in the randomization attack. See figure 2

The effect of the mesh through the regular-
ization experiment can be visualized in figure
3. The figure shows the bishop mesh at several
stages of the watermarking process. The first
bishop in this figure has already been regular-
ized.

When compared to the original mesh in fig-
ure 1 the new mesh appears more smooth. This
is a consequence of the regularized mesh hav-
ing many more faces (circa 10000) of roughly
equal sizes. This mesh is subsequently water-
marked. The distortion introduced into this
regular mesh is much less noticeable to the hu-
man eye when compared to the watermarked
mesh that has not been regularized, see figure
4.

0.3

0.1

—— regularization before embedding
—— with regularization
—— no regularization

0.0

0:0 Ujl 0:2 013 O.‘l‘l 0:5

vertex displacement distance
Figure 2: Scores of randomization attacks on
O. Benedens algorithm. The lower the score
the more bits of the watermark survived the at-
tack. The green line shows the scores of the al-
gorithm without any mesh regularization. The
orange line shows the scores of the algorithm
with regularization before both the embedding
and retrieval phases while the blue line shows
the score when only regularizing before the em-
bedding phase.

4 Conclusion

In this section we discuss the results of the ex-
periments and discuss their compatibility with
the hypothesis that regularization may increase
robustness against randomization of points at-
tacks.

The results of the experiments appear to con-
tradict the idea that mesh regularization im-
proves the robustness against randomization
attacks. The results show a significant decrease
in robustness with the introduction of mesh reg-
ularization steps with the worst performance

" Wi s).

Figure 3: The regularized bishop mesh (left).
The regularized bishop mesh with an embed-
ded watermark (left-middle). The regularized
bishop mesh with an embedded watermark that
has been randomly attacked with a vertex dis-
placement distance of 0.05 (right-middle). The
watermarked and attacked mesh after it has
been regularized again (right).

Figure 4: The original bishop before (left) and
after (right) being watermarked using O. Bene-
dens technique.

when applying both regularization when em-
bedding and extracting the secret bit string.
The run with the best robustness against these
randomization attacks does not include any reg-
ularization steps at all.

Upon considering possible causes for this
discrepancy one particular explanation stands
above the rest. The watermarking algorithm in-
troduces noise into the mesh which encodes the
watermark. However, the regularization step
before retrieving the watermark tends to de-
stroy small irregularities in the mesh, this in-
cludes the noise encoding the watermark, con-
sequently destroying much of the watermark in
the process.

Nevertheless, this does not explain why only
regularizing the mesh before the embedding
phase is also less robust than not regularizing
at all. We believe there is another explanation

for this. Namely, the regularization step
produces a mesh with more regular faces that
tend to be significantly smaller. In this case
the regularization algorithm generates faces
roughly 0.1 units long/wide. These faces are
smaller than those present in the original
irregular mesh and because they are smaller
the orientation of the normals defined by these
small faces are much more sensitive to vertex
displacements. This theory is supported by the
fact the experiment where we only regularize
before embedding only performs significantly
worse than not regularizing at all when the
vertex displacements are small.

Although the suggestion to incorporate
mesh regularization into the algorithm does
not increase the robustness of the algorithm,
it does seem to increase the capacity of the
algorithm. When regularizing the mesh before
watermarking it a new mesh is generated with
roughly 10000 vertices and faces. The results
show that this mesh is less robust against
randomization of points attack, however, it is
able to more reliably embed the watermark.
Meaning that bit flips were less likely to occur
during the embedding process. The noise in-
troduced into the mesh by the watermark was
in this case also more subtle and less visible to
the human eye. As a result this technique may
serve as good fragile watermarking technique
but further research is needed.

We show that the regularization strat-
egy does not increase the robustness of O.
Benedens’ watermarking technique. However,
whether this strategy is more effective on other
3D mesh watermarking techniques such the fre-
quency analyses based approaches presented in
[6], [7] remains to be investigated.

We build upon the algorithm by using a fi-
bonacci sphere to generate the bins of the ori-
entation histogram which allows this algorithm
to accept bit strings of any length. This fea-
ture may be used to more precisely further in-
vestigate the effects the geometric properties of
meshes such as the number of faces and vertices
have and the mesh’s watermarking capacity.

Additionally, we propose a strategy to deter-
mine whether two bit strings should be con-
sidered matching by considering the probabil-
ity that the two bit strings match in a certain
amount of bit positions. This strategy also dou-
bles as a measure for robustness for watermark-
ing techniques that tolerate a small number of
incorrect bits.

5 Responsible Research

In research it is very important to ensure that
experiments are reproducible so that it can be
tested and verified independently. For this rea-
son we make sure to publish the code, imple-

mentations and meshes used in this research
publicly. This also enables others to use these
implementations and build upon this work in
future research.

The ethical implication of this research are
also important to consider. This research con-
tributes our understanding of watermarking
techniques which enables better protection of
intellectual property rights. Therefore, we con-
clude that this study does not pose any ethical
risks.

References

[1] S. Kumar, B. K. Singh, and M. Yadav, “A
recent survey on multimedia and database
watermarking,” Multimedia Tools and Ap-
plications, vol. 79, no. 27, pp. 20149-
20197, 2020.

[2] K. Wang, G. Lavoué, F. Denis, and
A. Baskurt, “A comprehensive survey
on three-dimensional mesh watermarking,”
IEEFE Transactions on Multimedia, vol. 10,
no. 8, pp. 1513-1527, 2008.

[3] O. Benedens, “Geometry-based water-
marking of 3d models,” IEEE Computer
Graphics and Applications, vol. 19, no. 1,
pp. 46-55, 1999.

[4] B. Keinert, M. Innmann, M. Sénger, and
M. Stamminger, “Spherical fibonacci map-
ping,” ACM Transactions on Graphics
(TOG), vol. 34, no. 6, pp. 1-7, 2015.

[5] J. A. Nelder and R. Mead, “A simplex
method for function minimization,” The
computer journal, vol. 7, no. 4, pp. 308—
313, 1965.

[6] 1.R. Ohbuchi, 1. A. Mukaiyama, and 2. S.
Takahashi, “A frequency-domain approach
to watermarking 3d shapes,” Computer
Graphics Forum, vol. 21, no. 3, pp. 373—
382, 2002.

[7] F.Cayre, P. Rondao-Alface, F. Schmitt, B.
Macq, and H. Matre, “ Application of spec-
tral decomposition to compression and wa-
termarking of 3d triangle mesh geometry,”

Signal Processing: Image Communication,
vol. 18, no. 4, pp. 309-319, 2003.

	Introduction
	Methodology
	3D mesh watermarking algorithm
	Embedding algorithm
	Retrieval algorithm
	Scoring the extracted bit string
	Randomization of points attack

	Experimental setup
	Regularization Experiment

	Analysis
	Regularization Experiment

	Conclusion
	Responsible Research

