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Summary

Genomics is a �eld devoted to understanding the di�erences in genetics between popula-
tions, individuals, and even within individuals. By constantly comparing and contrasting
data from diverse sources, genomics can re�ne our understanding of life and identify new
ways to improve our lives. However, this often presents technical and biological challenges
that require careful consideration of what is compared, in what context, and what might be
present. In this thesis I contribute to resolving these challenges in three di�erent domains:

1. In genomic data analysis, analysts often compare and contrast new genomic data to
an established reference to reduce costs. However, this approach biases comparisons
in favor of population-speci�c genetics since such references encode only a frac-
tion of the genetics of a given population. To address this bias, I propose a method
that accounts for population variability in a way that integrates it directly into the
comparison process. This integration ensures that the contrast between sample and
reference becomes smaller and closer to personalized, so they are treated the same
way regardless of the underlying population. The method improves genome charac-
terization and simpli�es downstream analyses that rely on these comparisons. As a
result, a more accurate portrayal of the genetics of a given population as a whole is
obtained.

2. In non-invasive sequencing-based prenatal testing, we rely on circulating cell-free
DNA from maternal plasma to detect pathogenic variants that may a�ect the fetus.
A healthy baseline, which describes the normative state, is generally required to
determine the presence of such variants. However, because this DNA is a mixture of
maternal and much lower fetal proportions, it remains di�cult to disentangle the two,
primarily because of biological and technical biases. While this bias can partially be
mitigated by changing the baseline and thus contrasting within the individual DNA
mixture rather than to a divergent population of mixtures, further improvements are
still needed. I present a generalized framework in which the signal-to-noise ratio can
be further improved by fully exploiting the information in sequencing data, allowing
for more robust predictions at even earlier stages of pregnancy.

3. The composition of the gut ecosystem can have short- and long-term e�ects on our
health. It is therefore important to understand how it is formed and how a healthy
balance can be maintained for as long as possible to preserve our health. To do
this, ecosystems must be strati�ed and compared based on health indices. I show in
extremely contrasting Dutch subpopulations that we can obtain valuable character-
istics of divergent health states by comparing the gut ecosystems of centenarians
with those of Alzheimer’s patients. However, signi�cant e�orts are required to en-
able these comparisons due to the many organisms present and the technological
limitations in measuring them, introducing bias at all levels.
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Samenvatting

Genomica is het vakgebied dat zich richt op het begrijpen van genetische verschillen tussen
populaties, individuen en zelfs binnen individuen. Door voortdurend gegevens uit verschil-
lende bronnen te vergelijken en te contrasteren, kan genomica ons begrip van het leven
ver�jnen en nieuwe manieren identi�ceren om ons leven te verbeteren. Dit brengt ech-
ter vaak technische en biologische uitdagingen met zich mee die zorgvuldige overweging
vereisen van wat wordt vergeleken, in welke context, en wat er mogelijk aanwezig is. In
dit proefschrift draag ik bij aan het oplossen van deze uitdagingen in drie verschillende
domeinen:

1. Bij de analyse van genomische gegevens vergelijken analisten vaak nieuwe gegevens
met een gevestigde referentie om kosten te besparen. Deze aanpak vertekent ech-
ter de vergelijkingen in het voordeel van populatie-speci�eke genetica, aangezien
dergelijke referenties slechts een fractie van de genetica van een bepaalde populatie
coderen. Om deze vertekening aan te pakken, stel ik een methode voor die rekening
houdt met populatievariatie op een manier die deze direct in het vergelijkingsproces
integreert. Deze integratie zorgt ervoor dat het contrast tussen monster en referentie
kleiner en persoonlijker wordt, zodat ze op dezelfde manier worden behandeld, on-
geacht de onderliggende populatie. De methode verbetert de genoomkarakterisatie
en vereenvoudigt downstream analyses die afhankelijk zijn van deze vergelijkingen.

2. Bij niet-invasieve sequencing-gebaseerde prenatale tests vertrouwen we op circu-
lerend celvrij DNA uit maternaal plasma om pathogene varianten op te sporen die
de foetus kunnen beïnvloeden. Een gezonde basislijn, die de ‘normale’ toestand be-
schrijft, is over het algemeen nodig om de aanwezigheid van dergelijke varianten te
bepalen. Omdat dit DNA echter een mengsel is van maternaal en veel lagere foetale
proporties, blijft het moeilijk om de twee te ontrafelen, voornamelijk vanwege biolo-
gische en technische vertekeningen. Hoewel deze vertekeningen deels verminderd
kunnen worden door binnen het individuele DNA-mengsel te vergelijken in plaats
van met een diverse populatie van DNA-mengsels, zijn verdere verbeteringen nodig.
Ik introduceer een algemeen kader welke alle informatie uit sequencing data benut,
wat leidt tot betrouwbaardere voorspellingen in eerdere stadia van de zwangerschap.

3. De samenstelling van het ecosysteem van de darm kan op korte en lange termijn
e�ecten hebben op onze gezondheid. Het is daarom belangrijk om te begrijpen hoe
het wordt gevormd en hoe een gezond balans zo lang mogelijk kan worden gehand-
haafd. Om dit te doen, moeten ecosystemen gestrati�ceerd en vergeleken worden op
basis van gezondheidsindices. Ik toon in extreem contrasterende Nederlandse subpo-
pulaties aan dat we kenmerken van uiteenlopende gezondheidstoestanden kunnen
verkrijgen door de darmecosystemen van honderdjarigen te vergelijken met die van
patiënten met de ziekte van Alzheimer.
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Prologue

In this thesis, I explored the di�erent roles of DNA sequencing and data analysis in the
identi�cation and study of genomic variation. I have demonstrated how the chosen frame
of reference can signi�cantly in�uence the results of sample comparisons in di�erent
application areas. Given the breadth and diversity of the topics covered, I have chosen to
address them separately. Therefore, rather than presenting a uni�ed narrative, my work
is divided into self-contained parts that have their own introductions and conclusions.
This allows for a more accurate description of how my contributions helped to overcome
speci�c challenges. I hope this approach will improve readability and guide the reader to
the details most relevant to each particular topic.

Thesis outline

Part I: Population Graphs, describes the CHOP method, which creates a haplotype spe-
ci�c index of a genome reference representation encoding population-wide variation,
i.e., a graph structure known as a pangenome or variation graph. I show how an index
that implicitly considers such population variation can improve genome alignment
and downstream analyses.

Part II: Non-Invasive Prenatal Testing, shows an overview and benchmarks of commonly
used methods in the context of sequencing-based non-invasive prenatal testing aimed
at detecting congenital disabilities before delivery. In addition, I present the Wisec-
ondorFF method, which improves the detection of fetal copy number variation by
extending the prevalent within-sample detection technique to include fragment size
estimates from paired-end sequencing data.

Part III: The Human Gut Microbiome, presents a cross-sectional analysis using 16S rRNA
sequencing data. I derive the gut microbial signatures from cohorts of centenarians
and Alzheimer’s disease patients in the Dutch population and demonstrate each
cohort’s overlapping and distinguishing features, focusing on trends in taxonomic
composition in relation to health indices such as longevity and healthy aging.
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1
Introduction

L ife has �ourished and spread to almost every corner of our planet, yet we all share
a common ancestry encoded in our DNA. Adaptations driven by natural selection,

genetic drift, and isolation have led to di�erentiation and the creation of the complete
collection of taxonomic diversity that we know today, which fans out from domain to class,
to species, and ultimately to di�erences between and within individuals.

To understand life’s mechanisms, one must have an in-depth understanding of its con-
stituent parts and interactions. Life can be understood as an, at times, bi-directional �ow of
information between di�erent media, with the transcription of DNA to RNA and translation
to proteins at its heart [1]. The importance of DNA in this context means that enormous
e�orts have been made to develop technologies to measure DNA, in order to deepen our
understanding not only of DNA but of life itself [2, 3]. Whereas it would once have taken
years of experimentation to obtain a short sequence from a single organism [4], many
millions of sequences can now be determined with great accuracy in a few hours, thanks
to advances in sequencing technology [5]. Various platforms are now available for myriad
of specialized purposes, ranging from RNA-Seq and Hi-C to ChIP-Seq [6]. These techno-
logical advances have directly directed research e�orts toward the analysis of sequencing
data [2].

Although taxonomic diversity among organisms is generally recognized and under-
stood, it is usually necessary to introduce simpli�cations in this model to make any mean-
ingful analysis possible. For instance, the canonical method of genomics analysis relies on
comparing DNA sequences; nearly always, this occurs by �rst selecting a single represen-
tative haploid genome from a population of related genomes and then using it as a frame of
reference, which means that any sequence comparisons made, use the chosen reference se-
quence as the point of comparison, regardless of variation within the population. Through
an algorithmic process called alignment [7, 8], sub-sequences of a genome under study
can consequently be mapped onto this reference genome, yielding a positional mapping
of matching and di�erentiating segments between the two genomes. Such mappings form
the basis for further downstream analyses, such as variant calling or haplotype phasing.
These analyses enable the detection of similarities and di�erentiating sub-sequences that



1

4 1 Introduction

can then be attributed to speci�c genotypes or haplotypes, facilitating the answering of
biological questions.

For several reasons, the use of a speci�c linear genome has become the status quo
for alignment. While sequencing technologies have greatly improved since the days of
the �rst human genome assemblies generated by Celera Genomics [9] and the Human
Genome Project [10] (the latter now being the accepted reference). Over the years that
followed, numerous revisions were made to this reference �lling in gaps and making cor-
rections [11]. However, shortcomings remained. Ultimately, obtaining a high-resolution
genome remains prohibitively expensive, requiring considerable computational resources,
integration of di�erent sequencing technologies, and a signi�cant workforce to achieve
a truly complete reconstruction. For instance, �nally completing the human genome by
the Telomere-to-Telomere consortium took the combined e�ort of nearly 100 scientists
over three years, utilizing the latest technological advances [12]. At the same time, high-
throughput sequencing platforms have become increasingly ubiquitous and a�ordable [13],
with a mature set of computational tools available to facilitate analysis. These factors com-
bined have resulted in the most comprehensive reference genomes becoming embedded in
the �eld, best exempli�ed by the human reference genome [14], which due to its enduring
nature, is now the backbone of nearly all human DNA studies. Ultimately, this has resulted
in alignment to these references using high-throughput sequencing data, becoming the
most accessible form of sequence analysis.

Reference genomes impose a notion of consistency across studies, so that any knowl-
edge gained from a speci�c reference can be generalized, such as annotations. However,
this simultaneously reinforces its use in the �eld. Reference-speci�c annotations often
describe regions of interest within the genome and may include, among many others: gene
locations, conservation scores, or sequence uniqueness [15]. Such annotations lead to dif-
�culties when a reference is updated — by introducing a new sequence or modifying an
existing one — since results based on a speci�c genomic coordinate system may not be
easily translatable from one reference version to another. This is one of the notable chal-
lenges of moving between human references, such as GRCh37 → GRCh38, and beyond
[16]. While many annotations can be lifted from GRCh37 to work on GRCh38, in some
cases, they cannot be lifted, and new annotations must be generated entirely [17]. Other
changes to the genome assembly may also cause di�culties in speci�c applications, and
tests must be performed to ensure that the new reference does not deviate from previ-
ously published results. For example, the new content of GRCh38 added to chromosome
21 contained sequences that replicated the sequence at locus U2AF1, resulting in a failure
to detect variations in this region that were previously detectable in GRCh37 [18] and
requiring intervention in the assembly to correct this failure [19]. In some applications,
stable solutions rely on assembly-speci�c features, and in some cases, the changes to the
reference are so substantial that the costs do not outweigh the bene�ts of switching to the
new reference [20].

The utility of a reference genome is based on the assumption that any sequence must
be of su�cient similarity for the reference to match it. This means that su�cient context
must be available for a sequence to be matched, which becomes increasingly di�cult as
sequences become shorter [21], as is the case with high throughput sequencing. Therefore,
the reference genome chosen directly constrains the space over which sequences can be
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aligned; when a sequence is too dissimilar or absent from the reference, it will either be
misaligned or completely unaligned. Even if another more closely related reference is used,
it will inevitably return a di�erent set of misaligned and unaligned sequences. This e�ect
is known as reference allele bias [22–24] and follows from the evident observation that
sequences more similar to the reference are more likely to match. Dissimilar sequences are
likely to have more alleles not present in the reference, which further complicates sequence
alignment because it increases uncertainty about the origin of a sequence. Although this
e�ect can be addressed by deeper sequencing, so that su�cient coverage is obtained for
speci�c alleles, this is not su�cient if the dissimilar sections exceed the length of the
sequenced fragments.

Reference bias also introduces a false sense of similarity, as a dissimilar organism may
appear more similar to the reference than it actually is due to unaligned sequences. The
amount of unaligned and partially aligned sequences can approximate this dissimilarity;
however, sampling di�erences, such as sequencing yield, complicate this measure. The ef-
fects on downstream analysis are apparent, where variant calling will detect more variants
for increasingly dissimilar samples. The 1000 Genomes Project shows an example of this
reference bias [25, 26], given the human reference genome (GRCh37), whose base is pre-
dominantly European individuals [27, 28], fewer variants were detected from Europeans
and more were found in Asians and Africans. More (complex) variations could be captured
in Europeans because they are more similar to the reference. In Asians and Africans, on
the other hand, more variation was found because of their dissimilarity, especially in the
case of simple variations such as single nucleotide polymorphisms (SNPs). The problem
with this dissimilarity is that it could prevent us from �nding all the large variations within
these latter groups. Reference bias increases proportionally to the size of the variant—and
is even observed for small variations such as SNPs [29]. Technological advances in sequenc-
ing have enabled the generation of increasingly longer reads with lower error rates that
span larger regions of the genome, providing more context for reliable alignment and ef-
fectively reducing reference bias. At the same time, the cost of high-throughput short-read
sequencing has plummeted, and this trend is likely to continue, so this technology will
be used for many years to come. Waiting until long-read sequencing becomes the norm
would be impractical. Even if error-free long reads were generated that could cover every
repetitive segment in a genome, any analysis would still be biased by the reference repre-
sentation chosen. A single reference cannot account for all variation in the population, and
any method that relies in some way on such a reference will be a�ected by reference bias,
resulting in variation not being accounted for. Organisms with a high degree of ploidy are
often represented only by a haploid reference, resulting in an often oversimpli�ed reference
system, and features such as natural variation and copy number variation will be missed.
The human reference genome is an example of this. It is not representative of the entire hu-
man population and, as a result, the current reference genome includes alternative loci that
diverge within the human population [11, 30]. However, there is no universally accepted
form of unifying these alternative sequences in the context of a linear reference genome.
Although some methods use the alternative loci as additional targets during alignment
[31–33], mapping to the original coordinate system then becomes a challenge, especially
in downstream analyses such as variant calling [34].

One method of combating reference bias is through reference-free de novo genome
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assembly, which incorporates only the sampled sequence into the assembled sequence.
However, genome assembly itself presents many more challenges and is, in almost all cases,
too expensive or impractical to adopt. Although genome assembly may be unrealistic for
general purposes, some aspects are translatable to the alignment domain [35, 36]. During
the assembly process, intermediate data structures capture the variation between sequences
across the genome, capturing the ambiguity inherent in the sampled sequences before
emitting an often haploid sequence. These data structures are typically graphical in nature,
such as overlap graphs [37], de Bruijn graphs (DBGs) [35], and string graphs [36]. In
most cases, such assembly graphs represent reads as nodes linked by (bi)-directional edges
that derive from a weighting factor, for instance, the number of observations associating
these nodes, established through pairwise read alignment [38], k-mer hashing [39], or min-
hashing [40]. Ultimately, the task of assemblers is to reduce the complexity of a graph into a
consensus sequence by collapsing connected nodes according to a set of rules. The principle
of representing the initial variation between all reads in a graphical representation for
genome assembly can readily be translated to the reference genome representation, which
is now known as a population graph or pangenome [41, 42]. Instead of representing the
variation between reads as nodes, each node in the graph relates to the variation observed in
the population, and the edges describe how that variation is linked within the population by
imposing speci�c orderings of node traversals i.e., paths that spell di�erent combinations of
sequences through the graph. The graph structure substantially a�ects the implementation
details within the alignment pipeline, especially regarding computational optimization.
The choice particularly relates to how the graph represents certain types of variations.
For instance, if a graph allows for cyclicity, repetitious sequences may be addressed non-
redundantly by allowing edges to loop around. In contrast, such repeats would have to
reappear in duplicated nodes within a directed acyclic graph. In (compressed) DBGs, this
concept of non-redundancy is taken a step further by encoding shorter sub-sequences
within the genome [43]. While reference compression enables more e�cient memory usage,
this also creates challenges in how to query the reference during alignment. Indexing is a
process that builds a subsequence-to-location mapping on the reference, which is essential
for e�ciently querying sequences. Given an index, subsequences may be sampled from the
to-be-aligned reads and matched to the index to thin out the number of potential alignment
targets on the reference. Popular indexing methods based on sorting, such as the Burrows-
Wheeler Transform [44], rely on making sequences uniquely addressable, which becomes
challenging in such compressed graphs.

The increasing a�ordability of sequencing has expanded the depth of known variation
in the population to the point where uni�cation of this knowledge into a single substruc-
ture is warranted. The �rst step toward such a goal is to build a population-aware structure,
which enables the aggregation of existing information while also providing a logical struc-
ture to support the integration of new information. If a genome is already assembled, it can
be used as a reference genome and framed to simplify the problem of comparing existing
and new genomic sequences. The signi�cant costs associated with the need to sequence
and assemble can then also be o�oaded by using the assembly as a reference. This re-
quires much lower sequencing coverage and shorter reads. However, doing so also exposes
you to reference bias, which causes the sampled genome to be distorted from the chosen
reference. By extending the reference genome to form a population graph, a population-
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aware alignment becomes possible, avoiding the reference bias inherent to linear reference
genomes.

Part I of this thesis presents how a linear reference model can be augmented and trans-
formed into a graphical representation, which can then account for population variation.
The CHOP algorithm is described, which overcomes the challenge of exponential growth
when indexing paths in graphs by restricting them to haplotypes, thus reducing the graphi-
cal representation to a quasi-linear representation retaining only observed haplotypes. The
existing library of linear alignment tools can then use this reference representation as a tar-
get. Alignments to this representation reduce the e�ect of reference bias and allow access
to larger portions of the genome, outperforming alignments to linear reference genomes. In
benchmarks, our method is more scalable than others and is una�ected by problems such
as exponential growth due to the determination of haplotype-constrained paths through
the graph. Variants called from these graph alignments can also be reintegrated into the
original graph, expanding it to access an even larger portion of the genome.
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2
CHOP: Haplotype-aware

path indexing in

population graphs

This chapter is based on q T. Mokveld, J. Linthorst, Z. Al-Ars, H. Holstege, and M. Reinders. CHOP: haplotype-aware
path indexing in population graphs, Genome Biology’20 [45].
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Abstract

The practical use of graph-based reference genomes depends on the ability to align reads to
them. Performing substring queries on paths through these graphs is at the heart of this task.
The combination of increasing pattern length and encoded variations inevitably leads to a
combinatorial explosion of the search space. Instead of heuristic �ltering or pruning steps
to reduce the complexity, we propose CHOP, a method that constrains the search space by
exploiting haplotype information, bounding the search space to the number of haplotypes
encoded in order to avoid a combinatorial explosion. We show that CHOP can scale to large
and complex datasets by applying it to a graph-based representation of the human genome,
which contains the 80 million variants reported by the 1000 Genomes project.
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2.1 Introduction

Pangenomes and their graphical representations have become widespread in the domain
of sequencing analysis [42]. This adoption is partly driven by the increased characteri-
zation of genomic diversity within species. For instance, recent versions of the human
reference genome (GRCh37 and up) include sequences of alternative loci representing
highly polymorphic regions in the human population [14].

A pangenome can be constructed by integrating known variants into the linear ref-
erence genome. In this way, a pangenome can more accurately integrate the sequence
diversity of the population than a typical linear reference genome. For example, aligning
reads to a linear reference genome can result in an overrepresentation of the reference
allele. This e�ect, known as reference allele bias, primarily in�uences highly polymorphic
regions and regions that are absent from the reference [22, 23]. Incorporating variants
into the alignment process can reduce this reference bias [46–48]. As a result, downstream
analysis, such as variant calling, can be improved, with fewer misaligned variants induced
by misalignments around indels and fewer missed variants [49].

Pangenomes can be represented intuitively in graphical data structures, often called
population graphs [41, 42]. Population graphs can be understood as compressed represen-
tations of multiple genomes, with sequences (in some cases, both complements) typically
represented on the nodes. These nodes are, in turn, connected by (bi)-directional edges so
that the original sequence of any genome used to construct the graph can be determined by
a speci�c path traversal in the graph. Alternatively, an arbitrary path traversal will result
in a mixture of genomes.

A key application of reference genomes is read alignment. Most linear reference read
aligners follow a seed-and-extent paradigm, wherein exact matching substrings (seeds)
between the read and a reference are used to constrain a local alignment. Indexing data
structures facilitate the e�cient searching for exact matching substrings (seeding). The
construction of these indexes is usually based on one of two methods: hashing-based index-
ing, which can be k-mer-based, where all substrings of length k of the reference are stored
in a hash-map along with their positions [50, 51]; �ngerprinting-based hashing that al-
lows for �nding candidate alignment positions as a nearest neighbor search approximating
the Jaccard set similarity using MinHash [52, 53]; and sorting-based methods such as the
Burrows-Wheeler Transform (BWT) [44, 54], where the reference sequence is transformed
into a self-index that supports the lookup of exact-matching substrings of arbitrary length.

These existing indexing methods can be extended to population graphs, though this is
a challenge. Graphs can encode a variable number of genomes, which is accompanied by
an exponential growth in the number of paths in the graph as more variation is incorpo-
rated. Therefore, indexing sequences of arbitrary length is challenging, and indexing must
generally be restricted to shorter substrings to minimize the combinatorial growth of the
index. In addition, sorting-based indexing methods that rely on su�x determination and
sorting are often infeasible in graphs since there will be multiple valid node orderings.

Several approaches have been developed that perform read alignment onto population
graphs using indexes that report all k-length paths in the graph. Early examples of this
include: GenomeMapper [55], which builds a joint k-mer hash-map that combines a col-
lection of genomes in order to lookup seeds and subsequently align reads using banded
dynamic programming; BWBBLE [56], which linearizes the population graph using IUPAC
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encoding for SNPs and describes indels with �anking sequences as alternate contigs, after
which it applies the BWT for indexing; In Vijaya Satya et al. [57] an enhanced reference
genome is generated from HapMap SNP-chip calls, wherein variants are encoded in read
length segments used as alternative alignment targets alongside the reference genome. Yet,
these methods are orders of magnitude slower than linear reference genome aligners or
restricted to only small genomes. For instance, BWBBLE computes four times more su�x
array intervals due to the expanded IUPAC alphabet. Moreover, these methods su�er from
exponential growth in index space when variation density increases.

The increased scalability of population graph alignment has recently been demon-
strated with Graphtyper [58], GraphAligner (designed for long reads) [59], the vg variation
graph toolkit [60], and HiSat2 [61]. Graphtyper does this by �rst aligning reads to a linear
reference sequence using BWA (as such, there remains an implicit reference bias), after
which a graph-based alignment is performed on a much smaller set of unaligned or par-
tially aligned reads. This graph-based alignment uses a k-mer hash-map of the population
graph, in which exponential growth in variation-dense regions is reduced by removing k-
mers that overlap too many alternative sequences. GraphAligner uses minimizers, maximal
unique matches, or maximal exact matches to seed the read-to-graph alignments. Seeds are
extended and aligned using a bit vector banded dynamic programming algorithm for arbi-
trary graphs. The vg toolkit provides general solutions for working with population graphs.
To e�ciently query substrings, it uses GCSA2 indexing [62], an extension of the BWT for
population graphs, which supports exact query lengths up to 256 bp. Reads are aligned
to graphs using a seed-and-extend strategy, returning subgraphs of the population graph
(stored in a sparse graph index, xg), to which reads are then aligned using partial order
alignment, a generalization of pairwise sequence alignment for directed acyclic graphs [63].
HiSat2 generates a global graph FM index plus an extensive collection of region-speci�c
graph FM indexes, such that both local and global searching is possible. The indexing is
based on the GCSA [64], the precursor to the GCSA2 index used by vg.

Graphtyper and vg index all possible paths in a population graph, in which they also
cover complex regions where variation is dense. To avoid exponential growth, heuristics
are used. These heuristics eliminate k-mers that cross more than a prede�ned number
of edges or mask out subgraphs shorter than a de�ned number of bases. Although these
techniques prevent exponential growth, they can altogether remove complex regions from
the graph, resulting in a loss of sensitivity in alignment. Furthermore, they contradict one of
the main aims of population graphs, namely, to address sequence variation in regions that
are inaccessible through the application of a linear reference sequence. Similarly, HiSat2
�lters out rare variants from the graph, thus e�ectively reducing the complexity of the
graph, at the cost of addressing less sequence variation. An alternative solution that does
not exclude complex regions would be to constrain indexing by haplotype, so only k-mers
observed in the input genomes are encoded in the index. Although the above heuristics
are also used in vg, the authors of vg have recently also proposed the use of haplotyping.
In vg, such haplotyping is facilitated by the use of the GBWT [65, 66]. The GBWT is a
graphical extension of the positional Burrows-Wheeler transform [67] that can store sample
haplotypes as paths in the graph, thus allowing haplotype-constrained read alignment.
However, the GBWT index must be constructed in parallel with the GCSA2 index, which
will still require an enumeration of all k-paths in the graph (which will ultimately be pruned



2.2 Results

2

13

using the GBWT index). Therefore, although vg with the GBWT incorporates haplotype
constraints in read alignment, during indexing the complexity is always dictated by the
GCSA2 index, which explores all k-paths and thus grows exponentially with the amount
of variation.

We present CHOP, an alternative path indexer for population graphs that uses haplo-
type level information to constrain the path indexing process without requiring heuristic
�ltering or pruning steps. This constraint eliminates the need to evaluate all k-paths and
avoids the exponential growth of k-paths that other methods face. CHOP decomposes the
graph into a set of linear sequences, similarly as in Vijaya Satya et al. [57] and Gunady
et al. [68], so that reads can be aligned by long-established linear aligners, such as BWA
or Bowtie2 [31, 69], which can then be followed up by typical downstream analysis. We
show that the alignment performance of BWA when using CHOP is comparable to that
of vg but that with CHOP, the alignment is faster and can scale more e�ciently to very
complex graphs such as those constructed from human genomes with variation data from
the 1000 Genomes Project [26].

In summary, the contributions of our work are as follows: 1) CHOP decomposes a
population graph into mappable sequences representing all observed haplotypes with
which the population graph was constructed, 2) the haplotype constraint is implemented
in a way that avoids exponential exploration of the graph, eliminating the need to �lter
or prune the graph in any way, so that complexity is limited by the number of coded
haplotypes, instead of the number of variants or paths k in the graph, 3) the decomposition
of the graph is time and memory e�cient, and 4) by decomposing the graph into mappable
sequences, it is possible to use linear aligners to map reads, with which one can bene�t from
fast alignment as well as build-up experience with parameter settings of these aligners.

2.2 Results

Throughout, we consider population graphs constructed from variations called per sample
(haplotype) with respect to a linear reference genome or constructed from multiple se-
quence alignments. The graph encodes these variations so that nodes represent sequences
and edges represent consecutive observed sequences. CHOP facilitates read-graph align-
ment, which is presented in detail in Section 2.4).

Brie�y, CHOP transforms a population graph into a null graph (an edgeless graph) by
a series of operations consisting of three steps: collapse, extend, and duplicate, such that
nodes in the null graph contain every substring of length k originating from the encoded
original haplotypes in the population graph. Established aligners (here, we used BWA) can
then be used to align reads to these node sequences in the null graph. Subsequently, these
alignments can be projected back onto the population graph, since the mapping of the
node sequences in the null graph is known in the population graph (Figure 2.1).

2.2.1 Graph alignment evaluation

To evaluate CHOP and its applicability in population graph alignment, we �rst performed
tests on Mycobacterium Tuberculosis (MTB) using the BWA-0.7.15-MEM read aligner [31].
MTB represents a good model for population graphs, given the high accuracy of available
assemblies, the tractable genome size (4.4 Mb), and the limited degree of variation. 401
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Figure. 2.1. Schematic overview of how CHOP facilitates reads alignment on a population graph. a) As input,
CHOP accepts a graph representation of three distinct haplotypes (I, II, III). The colored paths through the graph
identify the underlying haplotypes. b) CHOP decomposes the graph into a null graph (an edgeless graph) for
substrings of length 4 (Supplemental Figure S2.1 gives all the details about the decomposition). The resulting
null graph contains three nodes, and the sequence de�ned on these nodes covers all the substrings of length 4
that appear in the haplotypes encoded in the graph. The annotations above each node refer to intervals within
nodes of the input graph. c) The reads (of length 4) from a new haplotype (IV) can be aligned to the null graph.
Consequently, a mismatch can be called from the read pileup. d) With the interval de�nitions assigned to the
null graph, the novel variant can be positioned on node 8 of the original graph and incorporated to generate a
new graph.

variant call sets (VCF �les) from di�erent MTB strains (samples) were obtained from the
KRITH1, and KRITH2 datasets [70, 71]. Variants were called with respect to the reference
genome H37Rv, using Pilon-1.22 [72], and were �ltered to exclude low-quality variants.
For graph construction, we employed a leave-one-out strategy, wherein one sample was
removed from the VCF �le containing all 401 samples. The read set of the removed sample
was then used for graph alignment. This was repeated with 10 randomly selected samples.
The corresponding single-end read sets were obtained from EBI-ENA (Supplemental Sec-
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tion 2.5.2). To investigate the in�uence of introducing more variation on graph alignment,
we progressively incorporated more samples from the full set into the constructed graphs,
with up to 17,500 variants in the 400-sample graph (the rate of variation growth is shown
in Supplemental Figure S2.2).

Because the ground truth of genomic positions in the read set data is unknown, we
evaluated alignments based on the following criteria: the number of mismatches, inser-
tions, deletions, clipped bases, unaligned reads, and perfectly aligned reads (de�nitions in
Supplemental Section 2.5.4). These criteria allowed us to inspect the behavior of di�erent
read aligners. In order to avoid bias induced by multiple possible alignments of a single
read, we considered only primary alignments.

To evaluate our haplotype-based approach, we compared CHOP to vg-1.12.1 without
and with haplotyping (denoted vg+GBWT). The vg toolkit provides general solutions for
population graphs, including graph construction, indexing, and read alignment. CHOP
was set to index 101-length haplotyped paths (equivalent to read length) and used default
parameters with BWA-MEM. To closely re�ect the CHOP parameters, vg was set to index
all 104-length paths (k = 13, 3 doubling steps).

Since CHOP uses BWA as an aligner while vg has its internal aligner, di�erences may
occur based on the aligner and not the indexing algorithm. To understand the di�erences
induced by the aligner and parameters, we �rst summarized the results of the 10 hold-
out samples on the linear reference genome, presented in Table 2.1 for BWA and vg. Both
aligners resulted in nearly the same number of perfectly aligned reads. However, alignments
with vg resulted in fewer unaligned reads (−22.30%) and more mismatches (+4.01%) than
BWA. We attribute this di�erence to the increased sensitivity with which vg aligns reads.
This is re�ected by the increase in clipped bases (+22.79%), inserted bases (+29.36%), and
deleted bases (+34.53%), allowing vg to align shorter read fragments.

Using these alignment measurements as a baseline, the read-to-graph alignments were
compared between CHOP/BWA and vg. The di�erent graph construction methods of CHOP
and vg were found to have minimal e�ect on the alignments as shown in Supplemental
Figures S2.5 and S2.6. Figure 2.2 shows the increase in perfectly aligned reads using both
CHOP/BWA and vg as more samples are incorporated into the graph (similar plots for the
number of unaligned reads and mismatches can be found in Supplemental Figures S2.7
and S2.8). Table 2.1 shows the alignment results for the MTB graph with 400 samples.

Table. 2.1. Mean of alignment results across all 10 hold-out sample alignments to 1) the reference genome H37Rv
(H37Rv columns) and 2) the 400 MTB genomes graph (Graph columns) for CHOP/BWA, vg with and without
haplotyping, and HiSat2 to align the reads (note that when aligning only to H37Rv, CHOP is not used).

All TB hold-out samples — Read length = 101

Alignment criteria BWA CHOP/BWA vg vg vg+GBWT HiSat2 HiSat2
H37Rv Graph (n=400) H37Rv Graph (n=400) Graph (n=400) H37Rv Graph (n=400)

Reads aligned 6,160,920 6,162,033 (+0.018%) 6,241,270 6,245,907 (+0.074%) 6,244,004 (+0.044%) 5,536,194 5,489,149 (-0.850%)
Reads unaligned 360,236 359,123 (-0.309%) 279,886 275,249 (-1.657%) 277,152 (-0.977%) 984,962 1,032,007 (+4.776%)
Reads perfectly
aligned 4,048,774 4,142,052 (+2.304%) 4,048,774 4,153,217 (+2.580%) 4,153,124 (+2.577%) 4,056,850 4,113,818 (+1.404%)

Bases aligned 596,380,132 596,611,260 (+0.039%) 599,244,753 599,601,399 (+0.060%) 599,528,267 (+0.047%) 553,338,901 548,757,802 (-0.828%)
Bases unaligned 62,191,423 61,960,355 (-0.372%) 59,307,655 58,949,429 (-0.604%) 59,023,102 (-0.480%) 105,271,191 109,852,201 (+4.352%)
Bases unaligned
from clipped reads 22,349,569 22,380,472 (+0.138%) 27,442,533 27,690,552 (+0.904%) 27,575,464 (+0.484%) 3,625,336 3,589,573 (-0.986%)

Bases mismatched 3,458,029 3,308,480 (-4.325%) 3,596,667 3,458,707 (-3.836%) 3,455,296 (-3.931%) 2,164,703 2,029,911 (-6.227%)
Bases inserted 65,210 65,151 (-0.090%) 84,358 85,938 (+1.874%) 85,397 (+1.232%) 26,674 26,763 (+0.334%)
Bases deleted 52,272 51,165 (-2.118%) 70,324 72,082 (+2.500%) 70,347 (+0.033%) 11,793 11,756 (-0.317%)
Non-primary
alignments 246,092 246,540 (+0.182%) 539,309 724,904 (+34.414%) 724,613 (+34.360%) 969,452 755,436 (-22.076%)

Time (s) 533 721 10,711 4,457 4,540 312 517
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Figure. 2.2. Perfectly aligned read count for SRR833154 alignments to di�erent sized population graphs, contain-
ing between 0 (only H37Rv, the linear reference) and 400 samples for both, when using CHOP/BWA and vg with
and without haplotyping to align reads to the graph.

Figure 2.2 shows that incorporating more variation from samples into the population
graphs increases the number of aligned bases, which is further demonstrated in Supple-
mental Figures S2.7 and S2.8. Spread is a consequence of sampling when constructing
the population graphs, where samples closely related to the hold-out sample will give a
more signi�cant improvement than distantly related samples, which is demonstrated by
the reduction in spread as the sample size increases.

We can observe the e�ects of haplotyping by comparing the number of aligned reads
for vg and vg+GBWT. Since the indexing space was constrained to haplotypes only, a
decrease in the number of aligned reads is expected.

The baseline alignments to H37Rv already highlighted that the aligners perform dif-
ferently. However, throughout the course of the experiments, almost all alignment criteria
show the same trend for both CHOP/BWA and vg. The exception is the number of unaligned
reads, steadily decreasing with vg; this is not as pronounced when using CHOP/BWA. To
better disentangle the aligner-speci�c di�erences of CHOP/BWA and vg, we directly com-
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pared CHOP and vg+GBWT by aligning to the CHOP null graphs using vg (denoted as
CHOP/vg), as described in Supplemental Section 2.5.7. Although we observe di�erences
in alignments between CHOP/BWA and vg+GBWT, these are merely due to di�erences
in aligners. This was con�rmed when comparing vg+GBWT with CHOP/vg which has
shown nearly identical alignments (Supplemental Table S2.2). Alternatively, the alignment
di�erences between CHOP/BWA and vg+GBWT could be minimized by optimizing the
aligner parameters, as we only used the default settings for both.

In a similar setting we compared to HiSat2 (Supplemental Section 2.5.8), results pre-
sented in Table 2.1. Although HiSat2 aligns much faster than CHOP/BWA and vg(+GBWT),
this can be attributed to its lower sensitivity, having many more unaligned reads in both
baseline and graph alignments. Surprisingly the number of unaligned reads increases in
the alignments involving the linear genome, while the number of non-primary alignments
decreases. This may indicate that not all sequence in the graph is indexed.

Together these experiments show that as more and more genomes are populating a
variation graph, 1) more reads can be aligned (with fewer mismatches), 2) constraining
the alignment by haplotype does not negatively a�ect alignment, and 3) that as expected,
the two haplotype constrained aligners (CHOP/BWA and vg+GBWT) have similar perfor-
mance.

2.2.2 CHOP scales to Homo sapiens
To further evaluate the scalability and sensitivity of CHOP, we used chromosome 6 (170
Mb) of the GRC37 assembly in combination with the 1000 Genomes Phase 3 variation data
[26]. The constructed graph has 14,744,119 nodes and 19,770,411 edges and encodes a total
of 5,023,970 variants (4,800,102 SNPs, 97,923 insertions, and 125,945 deletions). Note that
the variation set included diploid phasing of 2,504 individuals, which was incorporated
into the graph as 5,008 paths (2 paths per sample) and one path representing the reference
genome. Within the population, most variation (58.42%) is shared between at least two or
more individuals (Supplemental Figure S2.9). For the graph alignments, we used 15 single-
end read sets from 1000 Genomes Phase 3 (Supplemental Table S2.3) that were �ltered to
include only reads aligned to chromosome 6 or that could not be aligned anywhere on the
genome (average read set size of 3,026,069).

CHOP was con�gured to index 100-length paths through the graph, matching the read
length, which yielded 11,359,686 nodes in GE . Memory utilization and indexing time were
dominated by CHOP, with BWA indexing accounting for only 6.95% of the indexing time,
requiring a fraction of the memory. We attempted indexing with vg and vg+GBWT for
paths of up to 104 bp (k = 13, 3 doubling steps), but this was unsuccessful due to memory
constraints (500 GB). Instead, doubling was lowered to 2, and paths up to 52 bp were
indexed. By incorporating haplotyping in vg, the indexing requires signi�cantly more
time (6x longer) than indexing without haplotyping, while memory utilization remains
constant. The read sets were aligned to both the linear reference of chromosome 6 and the
graph representation, using either CHOP/BWA, vg, or vg+GBWT, which is summarized in
Table 2.2.

We observed the same improvement when switching to a graph representation as in
MTB, although more extensive, as more variants, including indels, are incorporated into
the graph. Given the di�erent path lengths, the time cannot be directly compared between



2

18 2 CHOP: Haplotype-aware path indexing in population graphs

Table. 2.2. Mean of alignment results from 15 samples from the 1000 Genomes data when aligning to 1) the
reference genome sequence of chromosome 6 (column GRC37) and 2) the population graph created from the
5,008 haplotypes, for both CHOP/BWA, vg with and without haplotyping, and GraphAligner.

1000 Genomes samples — Read length = 100

Alignment criteria BWA CHOP/BWA vg vg vg+GBWT GraphAligner GraphAligner
GRC37 Graph (n=2504) GRC37 Graph (n=2504) Graph (n=2504) GRC37 Graph (n=2504)

Reads aligned 2,542,399 2,543,522 (+0.044%) 2,684,925 2,726,051 (+1.532%) 2,717,972 (+1.231%) 2,664,609 2,630,670 (-1.274%)
Reads unaligned 483,670 482,548 (-0.232%) 341,144 300,018 (-12.056%) 308,098 (-9.687%) 361,460 395,399 (+9.389%)
Reads perfectly aligned 1,794,564 1,977,952 (+10.219%) 1,807,158 1,993,967 (+10.337%) 1,993,469 (+10.310%) 1,789,327 1,950,435 (+9.004%)
Bases aligned 251,122,992 251,516,725 (+0.157%) 254,518,323 255,911,471 (+0.547%) 255,578,370 (+0.416%) 258,684,466 256,773,126 (-0.739%)
Bases unaligned 51,439,949 51,070,534 (-0.718%) 48,029,518 46,654,663 (-2.863%) 46,995,159 (-2.154%) 41,030,266 43,649,514 (+6.383%)
Bases unaligned from clipped reads 1,801,947 1,846,687 (+2.483%) 12,716,162 15,699,089 (+23.458%) 15,245,035 (+19.887%) 203,221 177,659 (-12.578%)
Bases mismatched 1,270,981 969,087 (-23.753%) 1,198,917 953,800 (-20.445%) 940,371 (-21.565%) 4,681,045 3,931,955 (-16.003%)
Bases inserted 43,979 19,661 (-55.296%) 59,078 40,786 (-30.962%) 33,391 (-43.480%) 2,541,719 1,925,093 (-24.260%)
Bases deleted 61,659 32,355 (-47.526%) 73,131 44,555 (-39.075%) 41,040 (-43.882%) 464,085 415,508 (-10.467%)
Time alignment (s) 544 1,807 19,996 10,436 10,871 916 2,102
Memory alignment (MB) 412 5,534 837 3,296 4,389 3,047 14,446
Time indexing (s) 186 CHOP: 43,625; BWA: 3,256 37 5,751 33,619 NA NA
Memory indexing (MB) 245 CHOP: 56,969; BWA: 3,813 269 45,670 45,868 NA NA

CHOP/BWA and vg. Nevertheless, it is unclear why vg took substantially more time to
align than CHOP/BWA, especially when aligning to the linear reference. The di�erences
(relative to MTB) between vg and vg+GBWT became more prominent as more samples are
incorporated into the graph. Note that vg+GBWT is slower than vg in both indexing and
alignment. This is because the GBWT index, used in vg+GBWT, is built and used alongside
the GCSA2 and xg indexes already present in vg. Therefore, the gain of the GBWT index
is mainly to correct the alignment process by adding haplotype constraints.

We observed substantial di�erences between CHOP/BWA, vg, and vg+GBWT regarding
the decrease in unaligned reads −0.23% versus −12.06% and −9.69%, and the increase in read
clipping +2.46% versus 23.46% and 19.89%, respectively. To evaluate this aligner-induced
di�erence, we extracted all reads aligned exclusively onto the graph, which represents
21,661 reads in CHOP/BWA and 616,900 in vg. Supplemental Figure S2.10 displays the
distribution of the number of aligned bases for each of those reads. Almost all (97.61%) of
the newly vg-aligned reads had a length of 15–30 bp induced by clipping or extensive base
insertion/deletion. However, at 30 bp and above, the aligners display very similar pro�les,
with a comparable number of newly aligned reads. At 69 bp, both aligners show a peak,
and the newly aligned reads corresponding to this peak all align to the same region of
the graph. This region closely resembles human mitochondrial DNA, which was excluded
from the initial reference alignments. This has led to an increased number of unaligned
mitochondrial sequencing reads in the graph-aligned dataset (Supplemental Section 2.5.11).

By simulating chromosome 6 read data, we measured the accuracy of alignments on
graphs and linear references. We observed that by constructing graphs from subsets of avail-
able variants (selected based on allele frequency in the population), alignment performance
could be improved (Supplemental Section 2.5.12). We observed similar improvements when
aligning reads to a graph built from the multiple sequence alignment of alternate alleles
from the MHC region of chromosome 6 (Supplemental Section 2.5.13).

In addition, we compared CHOP/BWA to Graphtyper (Supplemental Section 2.5.14).
Since Graphtyper’s primary purpose is genotyping and variant calling (and thus does not
output alignments), we also called variants from the CHOP/BWA alignments. Although
Graphtyper did not detect any new variants when aligning reads from sample HG00308
to the chromosome 6 1000G graph, it did genotype variants (144,800 out of 5M, after �lter-
ing). Contrarily, CHOP/BWA detected 1,212 variants, of which 57 remained after quality
�ltering. Note that calling variant from the CHOP/BWA output was more than two orders
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of magnitude faster than Graphtyper while using an order of magnitude less memory.
We failed to index the graph with HiSat2 due to extreme memory utility (>200GB within

709 seconds) and concluded that it does not scale to population graphs of this complexity
(Supplemental Section 2.5.8). We also compared to the long read aligner GraphAligner (Sup-
plemental Section 2.5.15) and the results are presented in Table 2.2. Note that GraphAligner
is optimized for long reads and could generate suboptimal results when short reads are
used. GraphAligner was able to index and align on the 1000G chromosome 6 graph, with
alignment times close to those of CHOP/BWA. However, the alignment statistics, similar
to the HiSat2 case for MTB, show a counter-intuitive decrease in the number of aligned
reads when aligning to the 1000G graph instead of the linear genome.

To better grasp the practical limitations of CHOP, we indexed the previously introduced
graphs for varying k values (Supplemental Section 2.5.16), where we note an approximately
linear growth in indexing time and memory usage. We also compared CHOP and vg+GBWT
using simulated variation graphs with di�erent degrees of variation, number of encoded
genomes, and shared variation between genomes under de�ned memory and time con-
straints (Supplemental Section 2.5.17). Figure 2.3 highlights the di�erences in indexing
times of CHOP and vg+GBWT for simulated graphs with samples that encode 1,000 vari-
ants each. We show that CHOP indexes faster and more e�ciently than vg+GBWT and
can handle more complex graphs (CHOP could index 92.75% of all simulated graphs, while
vg+GBWT was able to index 79.28%).

Finally, we performed alignments on the complete human genome. We constructed
graphs of each chromosome encoded with the variants reported by the 1000 Genomes
project Phase 3. Cumulatively, these graphs have 248,677,280 nodes, 33,3561,973 edges and
encode a total of 84,745,123 variants (81,382,582 SNPs and 3,362,541 indels). We indexed
the graphs with both CHOP for 100-length paths and vg+GBWT for 52-length paths; the
peak memory utilization and time required for indexing are shown in Figure 2.4. Note that
chromosomes 1, 2, 11, and X could not be indexed with vg+GBWT due to the complexity
of the graphs (sometimes more than 50 variants in a 50 bp window), resulting to excessive
memory (>500 GB) or disk (>6 TB) utilization, more details in Supplemental Section 2.5.18.
For vg to be able to handle these chromosomes, the graphs would have to be simpli�ed
prior to indexing. Indexing with CHOP yielded 103,509,254 nodes in GE , which increased
the total sequence space by 14x. We again used BWA and aligned the sample ERR052836 to
both the linear reference genome and the graph, where we noted a 2–3x (13,704 to 37,826
seconds) increase in read alignment time to the graph relative to the linear genome.

2.2.3 Variation integration

As graphs cover a larger search space, we investigated how this a�ects read alignment
and variant calling. Theoretically, encoding more distinct sequences in a graph should
enable the alignment of more reads and potentially allow the calling of new variants.
To evaluate this, variants were integrated using a feedback loop. First, SRR833154 reads
were aligned to H37Rv using BWA, and then variants were called using Pilon. Variants
were quality �ltered down to 838 SNPs and then used to construct a graph with H37Rv
(now including two genomes). The same set of reads was then aligned onto the graph,
and variants were called. We expected that the additional context o�ered by the graph
would yield previously undiscovered variants. An example of this is schematically shown
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Figure. 2.3.CHOP and vg+GBWT indexing time (seconds) of graphs with increasing numbers of encoded samples,
where each sample contributes 1,000 variants to the graphs. The coloring indicates di�erent probabilities of
sharing variants within the simulated population. For instance, with a probability of 5%, 95% of all sample variation
will be unique to that particular sample, while the remainder is shared with one or more other samples. Missing
dots in the plots indicate that the indexing failed by either exceeding 4 hours of computation time or the maximum
memory of 80 GB. More details can be found in Supplemental Section 2.5.17.

Figure. 2.4. Peak memory footprint and time required for indexing the human chromosomes using CHOP
and vg+GBWT. Chromosomes are ordered according to the relative di�erences between CHOP and vg+GBWT.
Chromosomes 1, 2, 11, and X are crossed out for vg, given that these exceeded the memory (>500 GB) or disk
space (>6 TB) constraints.

in Figure 2.5a, in Supplemental Figure S2.19 we show an example of such newly aligned
reads.

Integrating variants in a graph (Figure 2.5b) and realigning reads to the graph allowed
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Figure. 2.5. a) Schematic alignment of SRR833154 reads to the reference R, H37Rv, with subsequent variant
calling detecting 5 high-quality SNPs in this particular region. b) These and all other SNPs across the genome are
integrated with the reference into graph G, followed by alignment of the same reads. c) Reads that previously
did not align to R now align onto a haplotype of the graph G. The formation of a pileup allows for the detection
of 4 new variants in this region.

reads to follow a path within the graph that best matches. This, in turn, allowed for reads
that previously were not able to align now to be aligned. (Figure 2.5c). As a result, 19
(+2,26%) new high-quality variants could be called from these newly aligned reads.

2.3 Discussion

Population reference graphs that take into account within-species genetic diversity can
potentially improve sequencing analyses by providing a more accurate alignment of se-
quencing reads. This, in turn, can improve various downstream analyses, like variant call-
ing.

A challenge for e�cient read-to-graph alignment is to �nd exact matching seeds of a
�xed length k that can span the edges of the graph. Searching through an enumeration of
all possible k-length paths in the graph is computationally challenging, as the exponential
growth of paths negatively a�ects the memory footprint and indexing time, which limits
the amount of variation that can be encoded in the population graph. We suggest the use of
haplotype information to prevent this exponential growth. In doing so, the genetic linkage
between neighboring variants can be exploited to counteract computational problems and
the number of false positive matches that occur due to unobserved combinations of variants
(variants encoded on di�erent alleles). Recently Gha�aari and Marschall [73] has proposed
an alternative approach to circumvent the computational challenge of exponential path
growth in graphs by combining a graph index with read chunk indexes, exploiting the
limited k-mer space of reads relative to that of the graph. It will undoubtedly be interesting
to see how a haplotyping approach can be combined with this method.

Here we introduced CHOP, a method that converts a haplotype-annotated population
graph into a set of sequences that spans all haplotyped k-paths. It does this by transforming
the population graph into a null graph (a graph with no edges) such that each observed
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k-path is represented by one of the resulting unconnected nodes. Since the resulting set
of sequences (the null graph) is a compressed representation of all haplotyped k-paths
through the graph, it becomes feasible to use values for k that are equal to the length of a
typical NGS read (e.g., 100 to 150). For this reason, an additional advantage of CHOP is that
any NGS read aligner (e.g., BWA or Bowtie) can be used to align reads onto the created
null graph. Since each position in the null graph can be translated back to a position in the
original population graph, we can e�ectively perform a scalable read-to-graph alignment.
The advantage of CHOP over existing graph-based alignment approaches is that we propose
a solution to incorporate the haplotype constraint throughout the whole procedure and
thus truly do not su�er from a combinatorial explosion of possible paths since complexity is
bounded by the number of haplotypes encoded in the graph. Through this solution, CHOP
does not have to rely on �ltering or pruning the graph to scale to complex population
graphs.

With CHOP, we followed an approach more closely related to string/overlap graphs
instead of a de Bruijn graph (DBG) approach, as they can better handle cycles induced
by repetitive sequences. There is a crucial di�erence with a (compressed) DBG approach
because a DBG is always constructed for a �xed value of k. For the index to remain man-
ageable, this k value must be relatively small. However, for a small value of k (commonly
~15 is being used), the resulting DBG will contain cycles introduced by repeated k-mers.
These cycles prevent parts of the genome/graph from being uniquely addressed. This, while
the input data structure (the variation graph), is unambiguous. Representing the variation
graph as a DBG, therefore, inevitably results in a loss of information. To further clarify this
di�erence, we can state that with CHOP, each position in the variation graph corresponds
to at least one unique position in the index (null graph), whereas with a DBG approach,
multiple positions in the variation graph can correspond to the same position in the DBG,
also exempli�ed in Supplemental Figure S2.20. The size argument for DBGs follows from
the fact that these repeated k-mers are stored only once, which is exactly what introduces
the ambiguity in the �rst place. Therefore, the higher the compression rate, e.g., using
bloom �lters, the more ambiguity is introduced in the representation. Bloom �lters are
probabilistic data structures that balance the need to store these vast hash tables against
the integrity of the resulting representation (as they allow for colliding hash functions, e.g.,
edges in the DBG). Although these representations are a computational answer to the need
to store and query vast hash tables (e.g., DBGs with ‘large’ k values), they further impair
the representation of the underlying variation graph by allowing for non-existent edges.

We have shown that read alignment using CHOP in combination with the aligner BWA
(CHOP/BWA) easily scales to the entire human genome, encompassing the 84,745,123
variations reported by the 1000 Genomes project (2,504 individuals). The CHOP memory
footprint per human chromosome when indexing is less than 80 GB and takes less than
50,000 seconds.

In addition, we have shown that graph indexing and alignment with CHOP/BWA re-
sulted in more aligned bases than alignment to the linear reference genome. We also found
that the number of aligned bases increased proportionally to the number of incorporated
variants (samples). Interestingly, the amount of sequence required to store the resulting
compressed k-paths grew faster than the time needed to perform the alignments. We at-
tribute this to the increase in exact matching reads, which decreases the need to expand
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the initial seeds during alignment, a computationally demanding task.
We extensively compared CHOP/BWA to vg, the current state-of-the-art toolkit for

working with population graphs. The GCSA2 indexing extension of the BWT supports
exact query lengths of up to 256 bp, which enables vg to index and query population graphs.
Recently, vg has been expanded to facilitate haplotype constrained alignment using the
GBWT index, a graph extension of the positional Burrows-Wheeler transform. However,
vg still requires the construction of the GCSA2 index with the GBWT to perform haplotype
constrained alignment, which still risks the exponential path growth during indexing, an
issue that does not occur with CHOP.

When comparing read alignments of CHOP/BWA with vg and vg with haplotyping
(vg+GBWT) on population graphs of both Mycobacterium tuberculosis (MTB) and humans,
we found very similar alignment results, as expected. However, compared to CHOP/BWA,
alignment took 5–6 times longer with vg(+GBWT). Furthermore, CHOP scaled better with
complex graphs, which we demonstrated by indexing and aligning to a graph of the com-
plete human genome. Although vg and vg+GBWT were able to index most of the chro-
mosomes, this was only possible when we adapted path lengths of k = 52, which was
approximately half the length of CHOP k-paths. Then, still, for some complex chromo-
somes, indexing failed using vg. Moreover, we showed the scalability of CHOP for this
particular graph with k-paths up to k = 300 (Supplemental Figure S2.13).

Our comparisons with HiSat2 and GraphAligner showed that HiSat2 does not scale to
the human variation graph encoding all 1000G variants, whereas GraphAligner does. We
should point out that HiSat2 has been shown [74] to scale to human by �rst pre-selecting
which variants are included in the graph, which also reduces the number of false positive
alignments. CHOP eliminates the need to pre-�lter variants, leaving more freedom for
users to make this decision or, alternatively, drastically increasing the number of genomes
with high �delity variants in the variation graph. Moreover, for HiSat2 and GraphAligner
(perhaps attributable to its optimization for long reads), the alignment results do not agree
with those of vg(+GBWT) and CHOP/BWA.

Interestingly, the read alignment results did not di�er much between a haplotype-
constrained aligner and a non-haplotype-constrained aligner. This can be best observed
when comparing vg with vg+GBWT as they utilize the same aligner and parameters. Al-
though, the number of aligned reads increases by 1.5% when considering all k-paths (vg)
in the human graph relative to the linear reference genome, as opposed to an increase
of 1.2% when considering haplotype-constrained k-paths (vg+GBWT). Inspection of the
additionally aligned reads indicates that most of these alignments result from spurious
matches induced by unsupported sequence combinations. Overall, this seems to suggest
that indexing all possible k-paths does not add much value while increasing the risk of
false positive alignments. Note that non-haplotype constrained alignment could still be
helpful when the genome to be aligned is expected to be more distant from the encoded
genomes in the variation graphs, and therefore recombined haplotypes could guide the
alignment.

The advantage of limiting k-paths to observed haplotypes is further supported by our
observation that population graph alignment improves with respect to a linear reference
genome when not all observed variation is incorporated into the graph (Supplemental
Section 2.5.12). Our simulations on a 1000G sample showed that improved read alignments
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(identi�ed by a reduced number of false positive/negative alignments) can be obtained
when the allele frequency of a variant is taken into account when building the population
graph. Put simply, if the frequency of a variant increases, it is more bene�cial for read
alignment to incorporate such variants in the population graph at a minimal cost of intro-
ducing false positives. Note that rare variants within a sample can still be called after the
read-to-graph alignment; they are just not used in constructing the population graph.

The graphs that serve as input to CHOP should encode phased variant calls. Although
this information is typically not encoded in variant call formats, it is required at only short
ranges (related to the value for k) and should be readily available from typical sequencing
experiments. In most of our experiments, the complexity of incorporated variation was
limited to SNPs and small indels. Therefore, the bene�t of a population graph on increasing
the number of aligned reads was limited since SNPs and small indels are well identi�able
using a linear reference genome. However, CHOP is not restricted to graphs constructed
from variant calls but can handle any acyclic sequence graph, e.g., as generated from multi
whole-genome alignments or haplotype-aware de-novo assembly algorithms [75, 76] (Sup-
plemental Section 2.5.13). Therefore, short-range (SNPs/indels) and long-range (structural
variants) haplotypes can be incorporated into the graph and the resulting index. The in-
corporation of larger structural variations will result in more substantial improvements.
However, it should be realized that incorporating structural variation increases the amount
of repeated sequence in the graph, e.g., incorporating mobile element insertions and repeat
expansions, which will increase ambiguously aligned reads.

CHOP does not directly support long reads or paired-end reads. For long reads, with
k typically exceeding >10 Kb, this will still lead to an intractable number of haplotype-
constrained k-paths. However, the alignment of long reads generally depends on detecting
short seeds in the �rst place, which can easily be extracted from the compressed repre-
sentation of k-paths generated by CHOP. Therefore, long-read alignments can be seeded,
where a subgraph can be extracted (based on the seeds) and aligned with partial order
alignment. Alternatively, the heaviest weighted sub-path can be extracted from the graph
[77], followed by a typical sparse alignment on that linear sequence. For paired-end reads,
reads are aligned to discrete k-paths, where an aligner such as BWA cannot directly mea-
sure the distance between any distinct k-path. Note that read pairing should be possible
based on the haplotyped paths in the graph. Namely, the distance between any two nodes
in the graph will follow a distribution of distances (from each reachable haplotype), which
allows the evaluation of read pairs during alignment (in a stand-alone aligner) or as a
post-processing step.

Compared to Graphtyper, we showed that by using CHOP/BWA; we could detect new
variants when aligning reads to the 1000G variation graph, whereas Graphtyper can geno-
type variants in a large population. Finally, we showed that iterative integration of aligned
sequencing reads derived from one genome to the linear reference genome using the graph
representation improves variant calling. Aligning additional reads led to the additional call-
ing of variants, which could then be merged with the original population graph, reiterating
the whole process multiple times. This application of population graphs is similar to itera-
tive realignment methods, such as ReviSeq [78], but is more generally solved when using
population graphs as a starting point.
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2.4 Methods

2.4.1 Population graph definition

Population graphs were constructed from existing reference genomes and variation sets,
called from linear reference alignments (Supplemental Section 2.5.5) or by multiple se-
quence alignment (Supplemental Section 2.5.13). The nodes of the graphs are labeled, en-
coding genomic sequences that may be shared within multiple haplotypes, which are, in
turn, connected by directed edges. Traversing a sequence of edges, i.e., a path, will describe
an observed haplotype within the graph.

2.4.2 Population graph specification

A population graph G = (V , E) is de�ned as a set of nodes V = {v0, … ,vN }, where N = |V |,
and a set of edges E. Each of these edges is an ordered pair of nodes (u,v) ∈ E, where node
u ∈ V is connected to node v ∈ V . As G is a directed graph, it holds that for any edge
(u, v) ∈ E, (u, v) ≠ (v, u).

For each node v ∈ V , the in-degree, in (v), is de�ned as the number of incoming edges
to that node; i.e., the number of distinct edges (u, v) ∈ E for any u ∈ V . Conversely the
out-degree of node, v, out (v), is de�ned as the number of outgoing edges from that node.

Every node, v, is assigned a sequence of characters, S, consisting of the alphabet Σ =
{A, T , C, G}, such that vS = S [0, n−1], wherein S [i] ∈ Σ for all i, and the length of the
sequence, n, is de�ned as n = |vS |. The range of any such sequence for any node, v ∈ V , lies
between 1 ≤ |vS | ≤ L, where L is the length of the largest recorded sequence. Any substring
of a sequence, S, is denoted as S [i, j]. Two types of substrings in particular are pre�xes
S[0, j] and su�xes S[i, n−1], which describe the left and right �anks of any sequence S,
respectively.

A path, P , where P = u0⋯uq−1, is any consecutive series of nodes, (ui , ui+1) ∈ E for all
i < q, where q = |P | is the total number of nodes on the path. If a path exists between any
pair of nodes in a graph, it is a connected graph, i.e., there are no unreachable nodes. The
sequence, S, of a path, PS , is the concatenation of sequences contained in the nodes, such
that PS = u0S⋯u

(q−1)S
.

Given haplotyping information, the graph G is augmented with a set of haplotypes, H ,
where H = {H0,… ,Hℎ−1}, where ℎ = |H | is the number of observed haplotypes. Every edge
(u, v) is assigned a subset of H denoted as (u, v)

H
, which describes the haplotypes that

pass through the edge. Each encoded haplotype is represented by a path traversal through
G, and may overlap other haplotypes.

Let GE denote the null graph of G such that GE = (V
′
,∅), where V ′ originates from

merging nodes in V (details of which are to follow in the subsequent section).

2.4.3 Constructing the null graph

The goal of indexing a population graph is to allow e�cient substring querying on the
paths that span the nodes and edges of the graph (Figure 2.6). For any non-trivial sized
graph, enumerating all possible paths is often unfeasible, given the exponential nature of
traversing all combinations of nodes and edges.

CHOP constrains queries through a graph to be part of a haplotype with which the
population graph was built. To do this, CHOP transforms the graph G into a null graph
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G
E such that each node in G

E represents a sequence of length k or longer, and that each
substring of length k originating from the encoded haplotypes in G is also a substring in a
node of GE . If sequencing reads are true error-free samplings of an underlying haplotype
and are the same length (or shorter) than the chosen value of k, they should correspond to a
substring in a node of GE . This, in turn, enables the application of any existing read aligner
to place reads onto GE . Through this transformation of G to GE , all haplotyped paths of
at least length k in the graph are considered. Three operators drive the transformation:
collapse, extend, and duplicate (the pseudocode is given in Supplemental Algorithm 1),
explained throughout the remainder of this section. Although the output of CHOP can
depend on the order of these three operations, we did not observe any signi�cant di�erence
in runtime or indexing outcome for di�erent orderings.

Figure. 2.6. Reporting the haplotyped k-paths in the population graph G transforms it into the null graph G
E ,

here k = 4. a) A population graph with sequence encodings on the nodes. b) Indexing of k-paths based on three
operations; Collapsing, merging adjacent nodes. Extension, assigning k-length substrings as pre�xes or su�xes
between adjacent nodes. Duplication, copying of nodes, and redistribution of edges among copies. c) The null
graph encodes all 4-length paths in the original graph, coloring of lines and text denote the origin of assigned
pre�xes (green) and su�xes (red) (note that colored lines are not edges in the graph).

Collapse

The �rst operation to transform G to GE is collapse, which merges redundant traversals
of nodes in the graph. If an edge (u, v) ∈ E conforms to out (u) = 1 and in (v) = 1, then any
path that traverses u, will be immediately followed by v. Therefore, it can be considered
a redundant traversal such that the sequence on u and v can be merged without a�ect-
ing the number of sequences the graph can spell out. To do this, the sequence and the
corresponding intervals of u and v are merged, after which the outgoing edges of v are
transferred to u, followed by the removal of v and the edge (u, v). We denote this operation
as collapsing, de�ned as u||v for any edge (u, v) (as shown in Figure 2.6b, the pseudocode
is given in Supplemental Algorithm 2). The direction of collapsing is guided by minimizing
the number of edge reassignments, such that when in (u) > out (v), v is collapsed into u,
joining the sequence uS = uS⋯vS . Alternatively u collapses into v, joining the sequence
vS = uS⋯vS .
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Extend

After collapsing redundant edges in the graph, a number of the remaining edges can be
addressed with the extend operation. Extend is based on the observation that all k-length
substrings that span a single edge (u, v), i.e., substrings that are de�ned by substrings of
both the sequences of nodes u andv, can be accounted for by joining a k−1-length substring
from one node and assigning it to the other. This extension of substrings may happen bi-
directionally, namely the k − 1-length right-hand �ank of u is extended as a pre�x of v,
denoted as u� v, provided that in (v) = 1 and |uS | ≥ k −1. Or vice versa, extending the k −1
length left-hand �ank of v as a su�x of u, denoted as u� v, provided that out (u) = 1 and
|vS | ≥ k −1 (pseudocode is given in Supplemental Algorithm 3). To illustrate this operation
consider the subgraph in Figure 2.7. Within this graph, both nodes u and v encode su�cient
sequence to allow for extension between the two and report a k-length overlap, resolving
the edge (u, v). In Figure 2.8, a subgraph is shown in which extension is only possible
for a subset of edges: (u, w) and (w, v). This does not apply for (u, v), as out (u) > 1 and
in (v) > 1. This shows a particular situation where only after resolving nearby edges, the
subgraph can be su�ciently simpli�ed to resolve all edges. Namely, (u, w) and (w, v)must
�rst be resolved before (u, v) can be solved by a collapse operation. Although the order in
which substrings are extended may result in di�erent null graphs, any of these will cover
the same k-length substrings.

Since extension always concerns a k −1 length pre�x or su�x, any substring of length
k sampled from the underlying haplotypes will exclusively correspond to either the se-
quence in u or the pre�xed sequence in v (or vice versa). In other words, by extending
and subsequently removing edges in G, we introduce overlapping sequence as if we were
converting G to the repeat-resolved string graph representation of a joint assembly of all
genomes in G from all possible reads of length k [36].

Figure. 2.7. A pair of nodes u and v where |uS | ≥ k −1 and |vS | ≥ k −1. Note that extension is only possible by
pre�xing v with the right-hand �anking substring of u, given that out (u) > 1. The extension operation denoted
as u� v is de�ned as vS = uS [|uS |−k −1, |uS |]⋯vS .

Duplicate

Sometimes neither collapse nor extend can be applied to any of the remaining edges in the
graph without introducing path ambiguity, a situation in which there are several possible
candidates to collapse or extend to/from, and choosing any candidate will block o� paths
to the remaining candidates. The graph topology must be simpli�ed in these situations
through the third operation, duplicate. The duplicate operation duplicates a node such that
the set of incoming and outgoing edges are split between the duplicated nodes. (pseudocode
is given in Supplemental Algorithm 4). Duplication allows consequent collapsing, enabling
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Figure. 2.8. Subgraph in which substring extension for k = 4 between (u,v) is not allowed unless either (u,w)
or (w,v) are resolved �rst. Three distinct solutions can resolve this subgraph, and each solution is equivalent in
k-path space.

substring extension, such that after a su�cient number of iterations, all edges in G can be
resolved, either by extension or by collapsing.

Unlike methods that aim to track all possible paths through the graph, we propose using
haplotype information modeled on the edges to constrain the number of node duplications
needed from in (u) ∗ out (u) to � . Where � is the number of paired incoming and outgoing
edges for u with at least one intersecting haplotype, note that � is bounded by the number
of haplotypes encoded in G and that there will never be more duplications than haplotypes
in any region of the graph.

To illustrate this idea, Figure 2.9 shows a subgraph with haplotypes encoded on the
edges. From the haplotyping, we can infer that not all paths through this graph are sup-
ported by the underlying haplotypes. For example, the path u→ d→ f combines sequence
segments that are unsupported (the haplotypes between (u,d) and (d, f ) do not overlap).
By excluding these unsupported paths through the graph, the number of duplications for
node d can be constrained from 6 to 3. In this way, the search space for subsequent k-length
substrings is greatly reduced compared to reporting all possible paths. Supplemental Fig-
ure S2.1 gives the full details about the transformation from Figure 2.1a to Figure 2.1b.

2.4.4 Aligning reads to CHOP’s null graph

Established alignment tools can now directly align reads to the null graph representation,
as long as reads are shorter or equal to k+1. Because the sequence modeled on the nodes in
G
E is now a composition of sequences originating from adjacent nodes in G, the intervals

that gave rise to these compositions need to be traced in order to convert the alignment
of a read to a node in G

E to a path in G. For this reason, during the transformation from
G to GE , the originating node in G and corresponding o�set for each pre�xed, su�xed, or
concatenated sequence is stored alongside the actual sequence. Note that, in theory, the
de�ned operations can also be expressed purely in terms of interval operations, excluding
any sequence. Given the intervals, a mapping between G

E and G is maintained, so any
node in G

E can be traced back to the corresponding path of nodes in G. As a result, any
alignment to a node in GE can also be traced to a sub-path of this path, e�ectively enabling
read alignment to graph G by using GE as a proxy (Figure 2.1c).
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Figure. 2.9. Subgraph with haplotypes: {1,2,3}. Node d must be duplicated, as no more edges can be removed
through extension or collapsing without introducing ambiguity. By grouping incoming and outgoing haplotypes
on d , the number of duplications can be reduced. In the resulting graph, edges (u, d), (v, d′), and (w, d

′′

) can be
collapsed. Finally, an extension can be applied to edges (ud, e) and (vd

′
, e) which would lead to the null graph.

Note that the introduction of grayed-out edges is prevented using haplotyping; hence the edge count is reduced
from 6 to 3.

2.5 Supplementary materials

2.5.1 Transformation to a null graph

Through consecutive steps of extension, collapsing, and duplication (as described in the
methods), CHOP can transform population graphs into null graphs. In this edgeless graph
representation, each node now describes a haplotyped k-length path through the original
graph. In Figure S2.1, we describe how the graph in Figure 2.1a is transformed into the
null graph of Figure 2.1b.

2.5.2 Mycobacterium tuberculosis read sets

We obtained the 10 holdout samples from EBI-ENA, as shown in Table S2.1. All reads have
a length of 101 bp and are single-end.

Table. S2.1. Samples used in MTB experiments, associated read sets are included, with KRITH1/2 accession
numbers

Sample Read set KRITH1/2 ID Read count
TKK-01-0053 SRR833154 G28639 5,263,942
TKK-04-0029 SRR1019154 G47382 5,481,779
TKK-02-0022 SRR1011463 G47310 4,301,550
TKK-01-0093 SRR958234 G38246 9,249,605
TKK-02-0066 SRR924236 G32253 5,168,899
TKK-01-0016 SRR832997 G27617 8,615,425
TKK-02-0051 SRR847783 G32041 7,571,230
TKK-01-0039 SRR833147 G27616 6,443,482
TKK-01-0047 SRR832984 G27644 5,532,779
TKK-01-0033 SRR833024 G27582 7,582,870
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Figure. S2.1. The same graph as in Figure 2.1a is now shown with haplotypes on the edges encoded as bit vectors.
Using CHOP, the input graph can be transformed into a null graph. Each of the steps performed by CHOP are
shown in sequential order; Extension: x � y (y is pre�xed by x), and x � y (x is su�xed by y). Collapsing: x ||y
(x and y are collapsed into a single node). Duplication: Dup(x), (node x is duplicated).

2.5.3 Variation growth in MTB population graphs

When constructing graphs for the hold-out experiment, progressively more samples (from
1 to 400) are included in the constructed graphs. By including more samples, more variants
are incorporated into the graphs, as can be seen in Figure S2.2.

2.5.4 Alignment criteria used for evaluation

To evaluate the behavior of the di�erent aligners, we measure the following criteria: the
number of mismatches, insertions, deletions, clipped bases, aligned reads/bases, unaligned
reads/bases, perfectly aligned reads, and non-primary alignments. Base mismatches, in-
sertions, deletions, and clipping may all be introduced to allow alignment of reads to the
reference. To handle substitutions between reference and query, mismatches are introduced.
Multiple base pair divergences are treated as insertions to the reference or as deletions
from the reference. Base clipping masks portions of reads (from either end) that do not
align end-to-end to the reference, meaning that shorter but contiguous read fragments
are aligned. The extent of these operations in alignment can particularly characterize dif-
ferences in alignments to linear references and population graphs, with the expectation
that the incidence of these operations decreases in graph alignments (in proportion to the
number bases aligned).

The number of aligned and unaligned reads indicates the proportion that aligns in a
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Figure. S2.2. Variable size variant sampling for VCF-based graph construction.

read set. For instance, reads may not be aligned due to insu�cient sequence context on
the reference or due to low-quality reads, random noise, or contamination. The number of
aligned bases provides more detail, as not all reads are perfectly aligned. Perfectly aligned
reads describe full-length alignments of reads for which no mismatches/insertions/dele-
tions/clipping is introduced. The number of unaligned bases includes bases from unaligned
reads, mismatches, insertions, and clipped bases. Reads for which multiple valid alignments
score the same result in non-primary alignments, meaning that for each read, there will
always be one primary alignment (or it is unaligned) and one or more non-primary align-
ments. The incidence of these non-primary alignments indicates the extent of alignment
ambiguity, which is usually induced by the repetitiveness of the reference.

2.5.5 Graph construction from known variants

One way of constructing population graphs is to project sets of variants (from VCF �les)
called against a reference genome back onto this reference (similar to the construction in
other methods such as vg and Graphtyper) (Figure S2.3a). Initially, a singleton graph is
created, which encodes the reference sequence (Figure S2.3b). According to the order of
their reference coordinates, the variants are iteratively inserted into the graph. For each
variant, a minimum of three nodes are inserted into the graph. The reference node is �rst
divided into two nodes, describing the sequence before and after the variation. Between
these reference nodes, the reference and alternate alleles are introduced (Figure S2.3c). In
the case of consecutive variants (variations no more than one base pair apart), the reference
and variant alleles are connected to the preceding nodes and only then converge into a
reference node (Figure S2.3d). The same procedure applies to indels and SNPs (Figure S2.3e).
Haplotyping information is embedded on the edges, which includes the sample(s) and the
reference.

The described graph construction strategy of CHOP di�ers from that of vg. The most
notable change is the full combination of (consecutive) alleles and the treatment of SNPs and
indels, as is shown in Figure S2.4 for CHOP and vg. Since the graph construction methods
of CHOP and vg are similar but not entirely the same, this may also a�ect indexing (see
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Figure S2.5), resulting in a di�erent number of indexed paths in CHOP and vg, respectively.

Figure. S2.3. a) The reference sequence and variant set used in graph construction. b) A graph is initialized with
a single node encoding the reference sequence. c) In the order of the reference coordinate space, the variant T
→ C is introduced into the graph. d) A consecutive variant (A → G) is added to the graph. e) An insertion (G →

GCTT) is added to the graph. The �nal population graph encodes three paths, one of which is the reference path.

Figure. S2.4. Graph construction with the same input genome and variants as in Figure S2.3. a) Graph construc-
tion using CHOP. b) Graph construction with vg construct.

We evaluated whether read alignment is a�ected by the two di�erently constructed
graphs. To do this, we aligned reads from sample SRR833154 with vg to graphs constructed
by both vg and CHOP during the MTB hold-out experiment. We took the ratio from the
number of perfectly aligned reads, unaligned reads, and mismatches for each of these align-
ments. The ratio is calculated by dividing (for example) the number of mismatches in the
vg constructed graph alignment by those in the CHOP constructed graph alignment. There-
fore, if there is no di�erence between the methods, the ratio should be equivalent to 1.0.
The results in Figure S2.6 show that there is a minimal di�erence.

2.5.6 MTB read alignment to H37Rv and graph

In the hold-out experiment, 10 di�erent single-end read sets are aligned to the reference
genome, H37Rv, and population graphs that progressively include more samples (up to
400 excluding the hold-out). Alignments were evaluated on both a read and base-count
basis. Shown for SRR833154 this includes the number of perfectly aligned reads (Figure 2.2),
unaligned reads (Figure S2.7), and mismatched bases (Figure S2.8).
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Figure. S2.5. The graph construction strategy of CHOP and vg (details in Figure S2.4) can a�ect the resultant
paths that are indexed. a) CHOP extracts three paths from the CHOP constructed graph. b) If the same graph is
indexed by vg, there will be four paths. c) The vg constructed graph indexed by vg has eight paths.

Figure. S2.6. SRR833154 graph alignments with vg using graphs constructed by either CHOP or vg. The y-axis
represents a ratio (vg over CHOP) for the number of mismatches, unaligned reads, and perfectly aligned reads in
the alignments.

2.5.7 Aligning to CHOP null graphs with vg

One strategy to directly compare CHOP to vg+GBWT and exclude any aligner-speci�c
di�erences (BWA and vg) is to use the null graphs of CHOP with vg. When considering
the null graph, each node within it can be understood as a path in the corresponding pop-
ulation graph; however, these paths can also be considered disjoint subgraphs. Therefore,
interoperability of CHOP and vg should be possible if we consider the null graph as a col-
lection of disjoint subgraphs. Since vg has subroutines for constructing graphs, we could
directly construct vg graphs from the null graphs we generated.

We �rst evaluated this setup (CHOP/vg) using the same 10 MTB graphs (n=400, with
one sample as a hold-out to align with). Here, CHOP was run for k = 101 on each of these
graphs, with 16,909 paths being encoded on average in the null graphs. When converting
the null graphs into the vg format, the graphs were ~9% larger on disk than when we
constructed these graphs from a provided FASTA and VCF �le (with approximately the
same construction time). However, indexing the graphs with vg (GCSA2 and xg) took much
longer (2,558 seconds on average), which is ~16x slower than indexing the graphs built
with VCF �les (164 seconds on average). For completeness, we also attempted to index the
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Figure. S2.7. Unaligned read count for SRR833154 alignments to di�erent sized population graphs, containing
between 0 (only H37Rv the linear reference) and 400 samples.

1000G chromosome 6 null graph with vg. However, we were unable to index the graph
because the indexing time exceeded 7 days (for reference, this indexing took 5,751 and
33,619 seconds for vg and vg+GBWT, respectively).

In Table S2.2, we summarize the same alignments results as in Table 2.1, which now
includes CHOP/vg alignment results. Overall, the results between CHOP/vg and vg+GBWT
are similar. However, there is a 5x increase in non-primary alignments, which seems to
result from increased redundancy in the index generated by CHOP. This may explain
the slower index construction time and increased alignment times. These results further
con�rm that the alignment results of CHOP and vg are similar when the same aligner is
used. Therefore, the di�erences between the two haplotype-aware aligners are mainly in
the way haplotype constraints are implemented (fundamentally as in CHOP, or by the
combined e�ort of GCSA2 and GBWT indexing in vg) as well as in the e�ciency of the
aligner (BWA or vg).

2.5.8 Comparing CHOP/BWA to HiSat2

We used the latest stable release of HiSat2 v2.1.0. Our attempts to index the 1000G graph
of chromosome 6 with HiSat2 failed, with memory utilization exceeding 200 GB in 709
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Figure. S2.8. Mismatch base count for SRR833154 alignments to di�erent sized population graphs, containing
between 0 (only H37Rv the linear reference) and 400 samples.

Table. S2.2. Mean of alignment results across all 10 hold-out sample alignments to 1) the reference genome
H37Rv (H37Rv columns) and 2) the 400 MTB genomes graph (Graph columns) for CHOP/BWA, vg with and
without haplotyping, and CHOP/vg to align the reads (note that when aligning only to H37Rv, CHOP is not used).

All TB hold-out samples — Read length = 101

Alignment criteria BWA CHOP/BWA vg vg vg+GBWT CHOP/vg
H37Rv Graph (n=400) H37Rv Graph (n=400) Graph (n=400) Graph (n=400)

Reads aligned 6,160,920 6,162,033 (+0.018%) 6,241,270 6,245,907 (+0.074%) 6,244,004 (+0.044%) 6,243,852 (+0.041%)
Reads unaligned 360,236 359,123 (-0.309%) 279,886 275,249 (-1.657%) 277,152 (-0.977%) 277,304 (-0.922%)
Reads perfectly aligned 4,048,774 4,142,052 (+2.304%) 4,048,774 4,153,217 (+2.580%) 4,153,124 (+2.577%) 4,152,800 (+2.569%)
Bases aligned 596,380,132 596,611,260 (+0.039%) 599,244,753 599,601,399 (+0.060%) 599,528,267 (+0.047%) 599,536,504 (+0.049%)
Bases unaligned 62,191,423 61,960,355 (-0.372%) 59,307,655 58,949,429 (-0.604%) 59,023,102 (-0.480%) 59,014,752 (-0.494%)
Bases unaligned from clipped reads 22,349,569 22,380,472 (+0.138%) 27,442,533 27,690,552 (+0.904%) 27,575,464 (+0.484%) 27,548,619 (+0.387%)
Bases mismatched 3,458,029 3,308,480 (-4.325%) 3,596,667 3,458,707 (-3.836%) 3,455,296 (-3.931%) 3,458,399 (-3.844%)
Bases inserted 65,210 65,151 (-0.090%) 84,358 85,938 (+1.874%) 85,397 (+1.232%) 85,510 (+1.366%)
Bases deleted 52,272 51,165 (-2.118%) 70,324 72,082 (+2.500%) 70,347 (+0.033%) 70,659 (+0.476%)
Non-primary alignments 246,092 246,540 (+0.182%) 539,309 724,904 (+34.414%) 724,613 (+34.360%) 3,585,924 (+564.911%)

Time (s) 533 721 10,711 4,457 4,540 5,534

seconds. We believe this is due to an exponential growth in the number of k-paths in the
graph. Unfortunately, there is no parameter (as in vg) to tune path lengths, so we could
not evaluate this graph’s alignment performance.

1 $ hisat2-build
↪ /.../hs37d5_chromosome_GRCh37_6_1_171115067_1.fa
↪ --large-index --snp /.../ALL.chr6...snp
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↪ hs37d5_chromosome_GRCh37_6_1_171115067_1

Therefore, we focused our attention on the MTB graphs (n = 400 samples, plus the
reference genome). Indexing these graphs took approximately 131 seconds and 12 GB of
memory for each graph. HiSat2’s memory footprint on these graphs is considerably higher
than any of the tested methods.

In Table 2.1, we summarize the alignments results. Although indexing is more costly,
HiSat2 aligns faster than BWA, CHOP/BWA, and vg. However, there are large di�erences in
the alignment statistics. The HiSat2 aligner has many more unaligned reads in the baseline
and graph alignments. This can be understood as an aligner-speci�c di�erence, i.e., the
aligner is less sensitive than BWA or vg. However, what is surprising is that the number
of unaligned reads increases when considering the alignment of the graph with respect
to the linear genome. If there is an increase in the number of non-primary alignments,
this could be attributed to the multi-mapping reads. However, the number of non-primary
alignments decreases (we did not observe this in CHOP or vg), suggesting a di�erent cause.
We speculate that gaps in the complete representation of all haplotypes may lead to missing
sequences, which would explain both the increase in the number of unaligned reads and
the decrease in non-primary alignments. From these experiments, we conclude that HiSat2
does not scale well and that the alignment results do not agree with those of CHOP/BWA
and vg.

2.5.9 1000G variation linkage in chromosome 6

The 1000 Genomes Phase 3 variant set of chromosome 6 encodes 5,023,970 variants. To
determine how much variation is shared between samples, we evaluated the genotyping
of each variant, as is shown in Figure S2.9. This revealed that 41.58% of all variants are
unique to its sample.

Figure. S2.9. Two histograms display the extent of shared variations among samples in the 1000 Genomes Phase
3 data of chromosome 6.

2.5.10 Filtered 1000G read sets

Since we only align to a chromosome 6 graph, the single-end read sets from 1000 Genomes
Project Phase 3 (Table S2.3) were �rst �ltered to exclude any reads aligning to other chromo-
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somes. This was accomplished by aligning all 15 read sets to the human genome (excluding
mitochondrial DNA) using BWA and then generating new read sets by extracting reads
that were aligned to chromosome 6 or those that were unaligned. We chose random popu-
lations, and for each population chose two random samples (except for YRI, for which we
chose one random sample).

Table. S2.3. The read sets from the 1000 Genomes Phase 3 used in alignments to chromosome 6.

Filtered reads
Population Sample Read set Count Mapped to chr6 Unmapped
ESN HG02938 ERR257960 6,238,375 5,572,661 (89.33%) 665,714 (10.67%)
ESN HG03521 ERR257962 6,012,874 5,252,933 (87.36%) 759,941 (12.64%)
FIN HG00308 ERR050084 3,882,577 2,814,118 (72.48%) 1,068,459 (27.52%)
FIN HG00380 ERR050085 4,234,048 3,280,314 (77.47%) 953,734 (22.53%)
GBR HG01791 ERR052834 3,066,482 2,358,096 (76.90%) 708,386 (23.10%)
GBR HG01789 ERR052836 3,454,819 2,664,211 (77.12%) 790,608 (22.88%)
GIH NA20881 ERR068420 2,278,409 2,015,089 (88.44%) 263,320 (11.56%)
GIH NA20884 ERR068423 1,765,696 1,545,396 (87.52%) 220,300 (12.48%)
IBS HG01670 ERR050090 1,115,839 859,298 (77.01%) 256,541 (22.99%)
IBS HG02223 ERR056986 1,808,334 1,467,485 (81.15%) 340,849 (18.85%)
KHV HG01595 ERR059932 1,217,726 1,059,586 (87.01%) 158,140 (12.99%)
KHV HG02017 ERR059937 1,375,752 1,205,911 (87.65%) 169,841 (12.35%)
MSL HG03054 ERR251326 4,720,003 4,293,293 (90.96%) 426,710 (9.04%)
MSL HG03378 ERR251401 3,650,563 3,263,964 (89.41%) 386,599 (10.59%)
YRI NA18517 ERR239432 569,541 478,520 (84.02%) 91,021 (15.98%)

2.5.11 Reads aligning to mitochondrial DNA

Figure S2.10 displays the distribution of the number of aligned bases for reads aligned
exclusively on the graph. Of the reads corresponding to the peak at 69 bp, as shown in
Figure S2.10, 97.54% of them aligned to the same fragment of a path in the graph. We
used BLAST [79] to determine the origin of the path and found hits on chromosome 6
and mitochondrial DNA (corresponding to the path fragment). Realignment of the same
mitochondrial DNA reads revealed that most of the reads aligned along the full length
(CIGAR string is 100M), as partially shown in the pileup of Figure S2.11.

2.5.12 Alignment accuracy in chromosome 6

To measure the accuracy of CHOP/BWA-generated alignments, we compared the align-
ments of simulated reads to multiple linear and graph-based references. Reads were simu-
lated using Mason 0.1.2 [81], which includes sequencing errors and base calling quality, as
well as annotations indicating the ground truth location of each simulated read. Alignments
were scored as correct if the aligned read was within 1 bp of the ground truth position.
Only primary alignments were considered. We simulated 10,000,000 sequencing reads from
a sequence on chromosome 6 that encoded variants of one sample with ID NA12878. Con-
sequently, we generated a variation set encoding only SNPs and excluded variations and
genotyping speci�c to NA12878 and family members.

Simulated reads were aligned to the linear chromosome 6 to provide a baseline mea-
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Figure. S2.10. The number of reads that have a particular number of bases aligned after their alignment onto the
chromosome 6 population graph with CHOP/BWA (a) and vg (b), respectively. In c) and d), the same is shown in
the range of 30 to 100 bases.

surement of the accuracy and to a personalized chromosome 6 (linear reference including
all NA12878 SNPs) to obtain an idealized situation. Three graphs were constructed from the
NA12878 �ltered variation set: Full; graph encoding all 1000G variation in chromosome
6 (excluding NA12878), Min2; graph encoding only variations that were observed in at
least two individuals; PopCov10+; graph encoding the top 10% scoring variations accord-
ing to the FORGe [74] method, which weighs variants by the population allele frequency
and minimizes the graph complexity. Figure S2.12a shows the fractions of reads that are
correctly and incorrectly aligned to the di�erent reference genomes. In Figure S2.12b, the
sensitivity metrics of perfectly aligned reads and the number of mismatches are shown for
the same alignments.

Although alignment sensitivity increases when more variants are introduced into pop-
ulation graphs, it also increases sequence repetitivity in the graph, which negatively in�u-
ences alignment accuracy. This can be observed for both the Min2 and Full graphs, which
are less accurate than the baseline, while they have comparable sensitivity with respect to
the idealized reference genome. The trade-o� between sensitivity and speci�city is clearly
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Figure. S2.11. Pileup visualization of mitochondrial DNA using Tablet [80] of reads that were previously un-
aligned on the linear reference genome (excluding mitochondrial DNA) but aligned on the graph corresponding
to mitochondrial DNA.

visible when variant selection is performed, as with the PopCov10+ graph, which improves
accuracy at the expense of sensitivity.

2.5.13 Aligning to a MHC graph

So far, we have aligned to a variation graph (14,744,119 nodes and 19,770,411 edges) of
chromosome 6 with all 1000G Phase 3 variants (5,023,970 variants). We made no exceptions
to the variants included in this graph, regardless of their quality. Although we observed
a clear improvement in alignment measures, we know that since MHC regions are more
di�cult to align, we can expect variants called in this region using the linear reference to
be of lower quality than those found elsewhere.

To assess improvements in read alignment in the MHC region, we construct a graph
from the GRC38 reference and alternate MHC alleles via multiple sequence alignment
(MSA) using REVEAL [75]. This MHC graph is naturally much smaller than the previously
constructed 1000G graph, with only 28,753 nodes and 40,032 edges. Since this graph was
constructed using MSA, it also incorporates larger structural variations, which has not yet
been explored using the variation graph.

Similarly, as described in Section 2.2.1, we ran CHOP on this graph for k = 100 and
aligned the 15 read-sets onto the linear sequence of chromosome 6 (GRC38) and the null
graph of the MHC graph using BWA. Since the graph only includes alternate sequences
originating from the MHC region, any alignment improvements can be attributed to their
inclusion. Our results are summarized in Table S2.4 along with our previous results when
aligning to the GRC37 chromosome 6 linear sequence and the 1000G graph. There are clear
advantages to switching from GRC37 to GRC38 in terms of improved alignability. We see
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Figure. S2.12. Alignment statistics of the NA12878 simulation. a) The fraction of correctly aligned reads and
incorrectly aligned reads. b) Sensitivity metrics of perfectly aligned reads and the number of mismatches.

an improvement in aligned reads on this MHC graph compared to the linear reference
genome (more aligned reads, fewer unaligned reads), showing the bene�t of aligning reads
on a population graph containing well-established haplotypes. The improvement on the
MHC graph is less than for the 1000G variation graph, although we should note that
the performance scores on the 1000G variation graph are averaged over the entirity of
chromosome 6 and will be less bene�cial for the MHC region.

Table. S2.4. Mean of alignment results from 15 samples from the 1000 Genomes data when aligning to 1) the
reference genome sequence of chromosome 6 (column GRC37), 2) the 1000G graph created from the 5,008 haplo-
types, 3) the reference genome sequence of chromosome 6 (column GRC38), 4) the MHC graph generated from a
multiple sequence alignment with the reference sequence and the MHC alternate alleles.

1000 Genomes samples — Read length = 100

Alignment criteria BWA CHOP/BWA BWA CHOP/BWA
GRC37 Graph (n=2504) GRC38 MHC Graph)

Reads aligned 2,542,399 2,543,522 (+0.044%) 2,551,410 2,551,774 (+0.014%)
Reads unaligned 483,670 482,548 (-0.232%) 474,659 474,296 (-0.077%)
Reads perfectly aligned 1,794,564 1,977,952 (+10.219%) 1,826,614 1,835,375 (+0.480%)
Bases aligned 251,122,992 251,516,725 (+0.157%) 252,080,501 252,142,201 (+0.024%)
Bases unaligned 51,439,949 51,070,534 (-0.718%) 50,483,271 50,423,549 (-0.118%)
Bases unaligned from clipped reads 1,801,947 1,846,687 (+2.483%) 1,812,049 1,814,726 (+0.148%)
Bases mismatched 1,270,981 969,087 (-23.753%) 1,205,282 1,179,256 (-2.159%)
Bases inserted 43,979 19,661 (-55.296%) 43,148 41,170 (-4.584%)
Bases deleted 61,659 32,355 (-47.526%) 60,870 58,445 (-3.983%)
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2.5.14 Variant detection, CHOP and Graphtyper

Graphtyper’s primary purpose is genotyping variants using a population graph and re-
aligning reads in existing alignments. Unfortunately, Graphtyper does not output a graph
realignment of the input linear alignment, which means we cannot evaluate its seeding
and alignment capabilities. However, we can still compare its variant calling capability
relative to CHOP/BWA. Since Graphtyper relies on a linear alignment (a BAM �le from an
aligner such as BWA), an implicit reference allele bias is introduced in the process. This
bias should be reduced to some extent by realigning the reads to a given graph.

Note that Graphtyper has hard-coded limitations on the genomes that can be used with
it. Because of this limitation, only human genomes (GRC37 and GRC38) can be used with the
tool. We evaluated GraphTyper on human data with the variants from the 1000 Genomes
Project Phase 3, using the latest stable release of Graphtyper v1.4. Our evaluations began
with the 1000G chromosome 6 graph and the linear reference sequence of chromosome
6. Graph construction took 4,753 seconds (in the case of the graph) and 8 seconds (for
the linear reference). Indexing required 16 GB memory, 8,248 seconds (graph), and 10 GB
memory, 2,285 seconds (linear reference).

With this setup, we aligned, with BWA, the reads from ERR050084 (sample HG00308)
— pre-�ltered to only include reads that align to chromosome 6 or that were unaligned
elsewhere on the genome (3,882,577 reads) — onto the linear sequence of chromosome 6.
While variant calling a population graph already decreases the number of newly called
variants, this is even lower in this particular graph since the variants (as called on a linear
reference) of HG00308 are encoded in the graph. We called variants and genotypes using
graphtyper call. This took 126,456 seconds (1.4 days) and 33 GB of peak memory with the
linear graph. Next, we called variants on the 1000G graph (same command), ended after
382,329 seconds (4.4 days), with a peak memory of 93 GB.

1 $ graphtyper call /.../graphtyper.gt --sam=/.../in.bam
↪ --index=/.../.gt_gti 6

We followed the same steps for CHOP/BWA (note that in the linear case, this reduces
to running BWA only), and variant calling was done using bcftools. The variant calling
for the linear genome took 700 seconds and 200 MB of peak memory. The 1000G graph
completed after 1,620 seconds, with peak memory of 9.5 GB.

1 $ bcftools mpileup --redo-BAQ --min-BQ 30
↪ --per-sample-mF --annotate DP,AD -f /.../ref.fa -O
↪ b /.../in.bam | bcftools call --multiallelic-caller
↪ --variants-only -Ob > /.../out.bcf

We focused on variant calling, as this would allow us to compare CHOP/BWA to
GraphTyper, especially since GraphTyper can also call new variants at realigned positions.
Variant calling the linear graph with GraphTyper resulted in no new variants (which was
unexpected) or genotyped calls (as expected). It is not clearly de�ned how GraphTyper
handles linear graphs. As such, we do not know what to expect in this scenario when
calling new variants. The 1000G graph alignment yielded 0 new variant calls and 4,683,374
genotyped variant sites. The number of genotyped sites is exceptionally high relative to
the number of variants (~5M) encoded in the graph. Clearly, GraphTyper is highly sensitive
and reports many false positive variants; hence, �ltering would be necessary to reduce
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this. The recommended procedure (as seen in the GraphTyper repository) was to utilize
the vc�lter tool (part of vc�ib: https://github.com/vcflib/vcflib). This
reduced the number of genotyped variant sites to 144,800.

1 $ vcffilter -f "ABHet < 0.0 | ABHet > 0.30" -f "MQ > 
↪ 30" -f "QD > 6.0" /.../.vcf

Variant calling of the CHOP/BWA alignment yielded 142,979 variant sites for the linear
genome and 1,212 in the graph. As the utilized variant calling is highly sensitive, quality
�ltering reduced this number to 57 variants from previously unaligned reads on the lin-
ear genome. These results are more in line with expectations: 1) the number of variants
detected on the graph is considerably lower than on a single linear reference genome, and
2) the variants detected on the graph are on top of the speci�c haplotypes, containing
already variants with respect to the reference genome, so that reads from these regions
have a smaller chance to align to the reference genome (due to large variation). Overall,
we conclude from this experiment that CHOP/BWA is more time and memory e�cient
(the central claims we make); moreover, GraphTyper seems to generate unexpected results
when calling variant.

2.5.15 Comparing CHOP/BWA to GraphAligner

GraphAligner is a long read aligner for graphs and supports similar input and output
procedures as vg, meaning we could directly input our graph built by vg into GraphAligner.
We aligned reads with GraphAligner (commit: 8e37ecbc832cca5538e8d142780
3e313089b17fb) from the 15 samples on the 1000G chromosome 6 graph and linear
chromosome 6 sequence.

1 $ GraphAligner -g /.../.vg -f /.../.fq.gz -a
↪ /.../.json -t 1 -b 35 --try-all-seeds
↪ --seeds-mxm-cache-prefix ...

2

In Table 2.2 we summarize the results of the alignments. GraphAligner measurements
are closer to CHOP/BWA and vg than to HiSat2. In addition, the alignment times are similar
to those of CHOP/BWA. However, we note the same behavior as with HiSat2, where we
see a decrease in aligned reads (and an increase in unaligned reads) when aligning to the
graph instead of the linear reference genome, which may be attributed to the optimizations
for seeding in long reads rather than the short reads used here.

2.5.16 Effects of varying k size in CHOP

First, we want to address that exponential path evaluations are eliminated in CHOP because
it uses haplotype information. At any position in a graph, there can only be as many parallel
paths as encoded haplotypes, and this worst-case scenario can only occur if none of the
genomes in the graph share any linkage at that position. This was explored by changing
the value of k in CHOP, i.e., the minimal k-mer for which an exact match is required. The
larger k is, the more variation is covered, which means that more paths need to be explored
in the graph, which should match, at most, the number of haplotypes encoded in the graph.

We ran CHOP on a MTB graph (n = 400 samples, plus the reference genome), with
values of k ranging from [1,10,000], and evaluated di�erent metrics (Figure S2.13). We

https://github.com/vcflib/vcflib
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observe an approximately linear growth in processing time, peak memory, and the total
number of bases in the resultant null graph as the value of k increases. The number of
nodes in the null graph decreases as k increases and converges to the number of encoded
genomes within the graph. From this, we see that for this variation graph choosing a k
larger than the largest recorded genome (k > 4.4MB) results in a null graph with 401 nodes
(400 VCF genomes and a single reference genome). For completeness generating such a
null graph takes 559 seconds with a peak memory of 6.5 GB and encodes ~1.76 gigabases
of sequence, equivalent to the concatenation of all genomes in the graph.

Figure. S2.13. Measurements of CHOP being run on an MTB graph (n=401) for increasingly larger values of k:
a) indexing time; b) peak memory in KB; c) nucleotides encoded in the null graph; d) the number of nodes in the
null graph.

In Section 2.5.18 we show a much higher variation density in the 1000G graph of
chromosome 6. Because of this higher density, larger values for k will inevitably lead to an
explosion of paths. We observed such growth when indexing with vg(+GBWT) because of
GCSA2 (note that we had to reduce k from 104 to 52 to run vg(+GBWT)). This is prevented
by CHOP. However, larger values for k will likely still lead to an intractable number of
haplotype-constrained k-paths. To con�rm this, we explored di�erent settings of k for
this graph, the results are presented in Figure S2.14. Indexing time grows — as expected
— linearly. Peak memory, however, shows a decrease and then an increase, after which it
evolves linearly. This erratic behavior could be caused by di�erences in local densities of
variation within the graph.
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Figure. S2.14. CHOP is being measured on a population graph of human chromosome 6, for increasingly larger
values of k: a) indexing time; b) peak memory in GB.

2.5.17 Simulated graph indexing

To better understand the behavior of CHOP under varying variation density, the number
of samples, and between sample variation linkage, we set up the following experiment
using the H37Rv reference genome (4.4 MB) as a starting point. Given this reference, we
simulated sample VCFs with SNP variants uniformly distributed across the genome. In our
simulation, we used di�erent variation groupings, simulating samples with exactly: 100,
500, 1000, 5.000, or 10.000 variants. We also include variation linkage within the subsequent
simulated sample for each of these groupings, given all previously observed samples. For
example, starting from a single simulated sample a, the subsequent simulated sample b
will share some variation of the previous sample a, and the next simulated sample c will
share it with both a and b. The amount of variation linkage represents another grouping;
these include 5%, 10%, 20%, 30%, 40%, and 50% shared variation between samples. For each
grouping combination, we then generated merged VCF �les with a varying number of
samples; this included 1 to 10 (step = 1), 10 to 100 (step = 10), and 100 to 500 (step = 100),
i.e., 23 VCF �les with di�erent numbers of samples. Because these VCFs were generated
for each combination of grouping, we created 690 VCF �les in total; Figure S2.15 shows the
variation distribution for each of these settings. We built graphs from each VCF �le using
the described VCF graph construction method. Next, we ran both CHOP and vg+GBWT
with k = 104 on each of the graphs and measured runtime and peak memory as shown in
Figures S2.16 and S2.17. Note that we allowed a maximum runtime of 4 hours and peak
memory of 80 GB for each indexing method.

The complexity of the graphs varied considerably, and the majority could be indexed
by both indexing methods within the set constraints (640 CHOP, 547 vg+GWBT). The
remaining graphs were very complex and encoded at least 5,000 (500 for vg+GBWT) vari-
ants per sample, which considering the reference genome, results in regions very densely
populated with variants. CHOP indexing is signi�cantly faster, memory e�cient, and can
handle more complex graphs than vg+GBWT. Increasing the between-sample variation
linkage simpli�es the graph, with fewer unique variants being encoded, simplifying index-
ing for all approaches. Typically, variation can be expected to be shared at higher levels
than shown here, especially when �ltering out low allele frequency variants.
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Figure. S2.15. The number of variants encoded in merged VCF �les for all combinations of groupings: number
of variants per sample (di�erent plots) and probability of sharing variants with the population (di�erent colors).

2.5.18 Variant density in human chromosomes

The computational costs required to index human chromosomes are highly dependent on
the number of variants encoded in the graph, the density of those variants, and the size of
the chromosome. For some human chromosomes, this this density of variants (possibly in
combination with the size of the chromosome) can lead to explosive growth in memory or
disk space required, which occurred with vg+GBWT for chromosomes 1, 2, 11, and X. To
illustrate this, we quanti�ed the number of variants across each chromosome in windows
of 50 bp (note that we set vg to index k = 52 length paths) as is shown in Figure S2.18. Chro-
mosomes 1, 2, 11, and X encode variants at higher densities than others, and chromosome
1 even exceeds 50 variants in a 50 bp window. Note that these measurements should also
be put in the context of chromosome size.
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Figure. S2.16. CHOP and vg+GBWT indexing time (seconds) of the graphs for all combinations of groupings:
number of variants per sample and probability of sharing variants with the population (di�erent colors). Missing
points in the plots indicate that indexing failed by exceeding one of the constraints.
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Figure. S2.17. CHOP and vg+GBWT peak memory (KB) during graph indexing for all combinations of groupings:
number of variants per sample and probability of sharing variants with the population (di�erent colors). Missing
points in the plots indicate that indexing failed by exceeding one of the constraints.
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Figure. S2.18. Variant distributions for each human chromosome in 50 bp windows.
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2.5.19 Variant integration

Realignment of SRR833154 reads on a graph representation of H37Rv with variants detected
from the alignment of SRR833154 reads onto H37Rv using CHOP/BWA, allowing for the
calling of novel variations using existing linear genome variant callers. Using Pilon, we
called variants in the graph alignment, of which 19 remained after quality �ltering. Since
BWA, by default, outputs a SAM �le, we can preprocess and prepare a BAM �le that can
be inspected using an alignment visualization tool such as Tablet [80]. In Figure S2.19 we
show newly aligned reads from which variants can be called.

Figure. S2.19. Pileup visualization of SRR833154 reads aligned to a H37Rv graph using Tablet, with variant call
annotations on top denoted as blue blocks.
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2.5.20 CHOP, String graphs, and de Bruijn graphs

Figure. S2.20. Multiple positions in the variation graph can map to the same position in a de Bruijn graph index,
while CHOP ensures a unique mapping for each.
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2.5.21 Pseudocode CHOP procedures

Listing 1

1: procedure ChopGraph(G)
2: SimplifyGraph(G) ⊳ Extend and Collapse until exhaustion
3: if GE ≠ ∅ then

4: for (u,v) ∈ GE do

5: if deg (u) > deg (v) then

6: Duplicate(G,u) ⊳ Duplicate u
7: else

8: Duplicate(G,v) ⊳ Duplicate v
9: end if

10: end for

11: ChopGraph(G)
12: end if

13: end procedure

1: procedure SimplifyGraph(G)
2: modi�ed ← True

3: while modi�ed do

4: modi�ed ← False

5: for each edge (u,v) ∈ GE do

6: if out(u) = 1 and in(v) = 1 then

7: Collapse(G,u,v) ⊳ Collapse u||v
8: modi�ed ← True

9: else if in(v) = 1 and |uS | ≥ k −1 then

10: Extend(G,u,v,1) ⊳ Pre�x u� v

11: modi�ed ← True

12: else if out(u) = 1 and |vS | ≥ k −1 then

13: Extend(G,u,v,0) ⊳ Su�x v� u

14: modi�ed ← True

15: end if

16: end for

17: end while

18: end procedure
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Listing 2

1: procedure Collapse(G, u, v)
2: if in(u) > out(v) then ⊳ u← v

3: uS = uS⋯vS ⊳ Concatenate sequence
4: for (v,x) ∈ GE do ⊳ Outgoing edges u
5: add edge (u,x)

6: end for

7: delete node v

8: else ⊳ u→ v

9: vS = uS⋯vS ⊳ Concatenate sequence
10: for (x,u) ∈ GE do ⊳ Incoming edges v
11: add edge (x,v)

12: end for

13: delete node u

14: end if

15: end procedure

Listing 3

1: procedure Extend(G,u,v, isPref ix)
2: if isPref ix then ⊳ u� v

3: vS = uS [|uS |−k −1, |uS |]⋯vS

4: else ⊳ v� u

5: uS = uS⋯vS [0, k −1]

6: end if

7: delete edge (u, v)

8: end procedure

Listing 4

1: procedure Duplicate(G,u)
2: for (p,u) ∈ predecessors (G,u) do

3: for (u, s) ∈ successors (G,u) do

4: group ← (x,u)
H
∩ (u,x)

H

5: if group ≠ ∅ then

6: create node i ⊳ i← u

7: create edges ([(p, i) , (i, s)])

8: end if

9: end for

10: end for

11: delete node u

12: end procedure
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3
Conclusion

The �eld of genomics plays a vital role in improving our understanding of life and its pro-
cesses. Within genomics, sequence comparison plays a fundamental role, with alignment
algorithms placing DNA sequencing data in the context of a chosen reference genome.
Downstream analysis subsequently relies on �nding (dis)similarity within this context.
Such genome alignments are generally onto references wherein only a single copy is
present of each allele. Current advances in computation have made it possible to abandon
some of the trade-o�s necessary in the early days of genomics. In addition, a host of popu-
lation variations can be incorporated into the reference model to combat problems such
as reference bias. The population graph is a natural representation to represent multiple
di�erent copies of each locus. Here, population graphs are presented as labeled directed
acyclic graphs, which can encode any number of genomes (and their inherent variation) in
a manner close to non-redundancy. I have shown how path indexing with CHOP decom-
poses labeled population graphs into haplotype-constrained sets of segments that allow
existing linear genome aligners to index these segments, facilitating e�cient proxy se-
quence alignment on the original graphs. Alignments onto haplotype-indexed population
graphs reduce the issue of reference-based allele bias, improving characterization and ac-
cess to complex regions of the genome. Graphical encoding of population variation can
greatly simplify downstream analyses, such as genotyping and variant calling. For example,
genotyping can be based on the identi�cation of variants already embedded in the graph,
and variant calling may not even be necessary unless the goal is to identify new variants.

The population graph should replace the linear reference genome. By placing the popu-
lation in the reference context, solving any representation problems inherent in the linear
representation becomes signi�cantly easier. Furthermore, this adoption should be done in
conjunction with an implicitly implemented haplotype-constrained path indexing, which
not only limits the number of paths at any given position by the number of haplotypes
encoded in the graph, but also exploits the compressibility of the variation linkage inherent
in populations. Not only does this prevent the exponential growth of path space that might
otherwise exhaust computational resources in complex graphs, but more importantly, hap-
lotype path indexing prevents spurious alignments that would otherwise be introduced by
arbitrary indexing.
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There is still no clear rule about how to construct the perfect population graph or what
variation to include. I have shown that including all observed variation in the population
is counterproductive, as the graphs will become too complex and introduce alignment am-
biguities even if haplotype constraints are applied. While several loose guidelines may be
enforced, such as a minimum threshold of allelic frequency within the population, empha-
sizing larger variants that are more likely to be a�ected by reference bias, or considering
variation proximity. Finding an objective measure to select variants for graph integration
is essential. This would require measuring reference allele bias and understanding how
variants may a�ect graph topology and alignment ambiguity. Then a trade-o� can be made
between balancing population variation and graph complexity. There is also contention
in how a graph is built. In my work, graphs were both constructed based on detected
variation against a reference genome and constructed from multiple sequence alignments.
While the former approach is substantially more straightforward, it relies on the linearized
representation to obtain the variants, which implicitly biases the graph reference. The
least biased source for a population graph lies in multiple whole genome sequence align-
ment; this would likely also need to be non-progressive to avoid guide-tree bias. However,
whole-genome alignment in extensive collections or large genomes remains a challenging
prospect.

CHOP is compatible with existing linear aligners, which avoids the immediate need
for the development of a stand-alone aligner using CHOP as its indexing basis. However,
o�oading the alignment task to a third party leads to its own challenges and drawbacks.
Incorporating the nature of a graph structure using such aligners is nontrivial, and will
require the indexing of excessively long paths through graphs. Aligners that utilize the
Burrows-Wheeler transform or extensions thereof are typically more popular because they
create a compact index. This was especially important in the early days of genomics when
memory was at a premium. However, such indexes do result in slower querying speed.
Nowadays, memory availability is becoming less of an issue, and in recent years there has
been a resurgence of linear genome aligners utilizing hashing-based indexing, optimizing
speed at the cost of space, such as SNAP, FSVA, Minimap2, and URMAP [82–85]. The hope
was to build a speed-optimized graph aligner using a hash-based indexing scheme built
from the haplotyped short paths obtained by CHOP. Such an aligner would follow the graph
alignment paradigm. In this case, a path index and a sparse graph index are used to seed
and extend candidate sites from the sequencing reads and perform an optimal local graph
alignment on the seeded subgraphs extracted from the sparse graph index. This would
solve many problems when relying on third-party linear aligners, such as supporting the
alignment of long or paired-end reads, and simplifying downstream analysis.

While this work facilitates the indexing and alignment of complex population graphs,
substantial e�ort is still required to create a complete solution for general purposes. Al-
though existing linear methods can perform the alignment and downstream variant calling,
no streamlined tools are available to relate �ndings made using the graph back to a lin-
earized representation. While working on CHOP, this was ultimately left out of scope.
However, it is important to highlight the challenge of moving from one reference model
(linear) to another (population graph), which is challenging both in terms of algorithmic
complexity and end-user adoption. Furthermore, while a population graph can represent
all types of variation, there will be caveats depending on the graphical representation
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chosen. These may arise at di�erent levels of the genomic pipeline and introduce their re-
spective computational complexities and ambiguities. Ideally, interoperability of di�erent
graph types would enable the implicit or explicit conversion between them in population
graph tools so that implementation idiosyncrasies do not a�ect the end users of the tools,
thus allowing for a more seamless experience of using various graphs. Unfortunately, we
have not yet reached this point. For now, the linear reference model remains entrenched
in genomics research and will remain so for some time, even as graph-based approaches
become more prominent in the �eld. However, it is unlikely that this transition will happen
quickly. The community has not yet reached a consensus on the standard graph reference
model and related data formats. Indeed, the scienti�c community has been using the linear
reference model for decades, and the e�ort to reach a consensus on the linear model and all
of its related data formats has taken a long time, and this is likely to be even more true for
graph models. The scienti�c community will likely adopt a graph-based approach in the
long run. However, in the meantime, the community must continue to move forward and
make progress on creating a standardized reference model for graphs so that this transition
to graphs can happen more quickly.
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4
Introduction

O ur motivations are clear when it comes to understanding illnesses and determining
why someone becomes a�icted while another person remains una�ected — it is one

of the critical drivers for medical research, with many aspects of bioinformatics being used
in the pursuit of both fundamental research to understand the reasons why people get
sick, and diagnostic research to apply this knowledge gained to diagnose and treat patients
e�ectively [86, 87]. The burden of treatment is often much higher when disease runs to
its symptomatic course [88, 89]. Therefore, in many cases, it is preferable to ascertain the
likelihood of being a�ected in advance, such that where possible, preventive measures may
be taken to minimize or even avert disease [90, 91]. The circumstances or markers that give
rise to or betray disease can be challenging to identify. However, recognizing these factors
and associating them with speci�c diseases is essential to advance our understanding [92,
93]. Accordingly, this is often the �rst step in detecting a�ictions promptly.

One way of framing the concept of disease is by treating it as an abnormality from
the norm. Since only a small fraction of people will be a�ected by any given disease, this
perspective can help understand how a particular condition can meet the criteria for clas-
si�cation as a disease. However, it can be challenging to de�ne the “norm” [94], and it
may be easier to reason about disease as something outside of what would be likely to
occur from a statistical standpoint. Keep in mind that even if something falls within the
realm of normality, it does not necessarily mean it is healthy [95]. For example, there can
be healthy conditions considered atypical (blood-type AB), just as there can be unhealthy
conditions that adhere to general standards (being overweight in the United States) [95,
96]. The complexity of diseases can make studying the transition between healthy and
unhealthy states challenging. Namely, some diseases may be chronic but manageable, such
as diabetes. Additionally, even if a disease can be categorized as healthy or unhealthy, the
distinction may not always be clear-cut. For example, someone with early-stage cancer
may still be considered healthy because they are asymptomatic. Nevertheless, breaking
disease down into these categories makes it easier to set up studies that determine what
causes this transition. The feedback loop for such studies �rst involves stratifying indi-
viduals into groups that are una�ected, thus healthy, and those that are a�ected due to
physical or mental indicators speci�c to the disease under study. Depending on the ob-
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jective, measurements are taken at di�erent levels, which may include: morphology [97,
98], mental assessments [99], biomarkers [100], or genomics [101] all of which may be
integrated across domains for additional power. Such studies expand our understanding
of disease and yield new markers that can di�erentiate healthy from disease states. The
loop may then be repeated with follow-up studies that attempt to dig even deeper to better
understand these diseases. In doing so, we not only improve our understanding of these
diseases but also potentially �nd new ways to diagnose and treat them more e�ectively.

The markers discovered through research enable the creation of diagnostic tools for
the early detection of diseases, which can then be rapidly responded to at any stage of
life. In the aging population, common screens are for cancer [102] and other age-related
illnesses such as diabetes type II [103] or dementia [104]. It is routine for women between
20 and 30 to have a Pap test and HPV screening to look for pre- or early cervical cancer
and the HPV virus, respectively [105]. Newborns undergo neonatal screenings such as
heel pricks to detect rare genetic, hormone-related, and metabolic conditions [106]. Finally,
prenatal testing may detect potential congenital disabilities in the fetus [107]. The knowl-
edge of these markers can have a profound e�ect, given that some may be genetic and
heritable, potentially a�ecting future generations, especially in the case of prenatal testing.
Prenatal testing can help parents prepare for developmental di�culties in their child or
make an informed decision to possibly terminate the pregnancy, which has led to a drastic
reduction in the incidence of children born with congenital disabilities to older mothers
[108]. Knowing that their child may be born with a genetic disorder can greatly in�uence
parents’ choices about conception. In some cases, couples may choose to conceive through
in vitro fertilization to select healthy cells and avoid transmitting the disease [109]. In
other cases, mitochondrial replacement therapy may directly interfere with a�ected cell
lines and prevent the disease from being passed on [110, 111]. These options give parents
more control over their fertility and enable them to make informed decisions about their
family planning.

Depending on the stage of fetal development, di�erent methods are used to detect
symptoms associated with speci�c disorders caused by genetic abnormalities, such as chro-
mosomal aneuploidy. For example, echography, or ultrasound imaging, is a non-invasive
method to screen for fetal morphological inconsistencies [98, 112] that may indicate abnor-
malities like excess nuchal translucency [113] or the absence of the nasal bone [114]. These
abnormalities are often associated with genetic disorders, such as Downs syndrome. In
maternal serum screening, biochemical analysis measures protein levels, where signi�cant
shifts in the abundance of speci�c proteins may indicate chromosomal disorders [100, 115,
116]. Because the speci�city of such screens is low, they are often combined to increase
statistical power [112, 117]. If the screen is positive, the fetus’s cells are often collected
using invasive methods such as chorionic villus sampling [118] or amniocentesis [119] to
obtain a de�nitive diagnosis through cell culturing and karyotyping [119].

As sequencing technologies develop, it becomes easier to study the genetic factors un-
derlying diseases [120]. DNA changes can occur at di�erent scales and may have numerous
e�ects, ranging from harmful or neutral to bene�cial. Alignment to the human reference
genome and subsequent variant calling can help identify such genetic factors, which has
led to the development of various methods specialized in detecting di�erent types of vari-
ation. Many types of genetic variants can be linked to speci�c diseases, including single
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nucleotide polymorphisms [121], insertions, and deletions [122]. Large variants such as
copy number variants (CNVs) [123] can range from thousands of kilobases to whole chro-
mosomal duplications [124], deletions [125], inversions [126], and translocations [127].
Repetitious variants such as short tandem [128], long terminal [129], and interspersed
repeats [130] are also common.

Prenatal testing through karyotyping can detect some disorders caused by chromoso-
mal abnormalities [119, 131], but it has several limitations. For example, it can only detect
abnormalities involving sizable chunks of DNA (i.e., CNVs from 5 megabases and up), and
the required cell culturing takes substantial time [131]. In addition, obtaining the fetal cells
for this testing usually requires invasive methods that carry risks to both mother and child
[117]. DNA sequencing technologies can detect these same disorders more accurately and
with greater resolution. CNV detection using WGS relies on sequence alignment against a
reference genome, followed by identi�cation of variant sequences that di�er between the
query genome and reference. However, DNA sequencing is imperfect because biological
and technical biases introduce artifacts in the sequence [132]. This bias may be minimized
by sequencing more copies of the genome. By taking the consensus of these copies, actual
variations may be more easily distinguished from the artifacts [133]. Though high-yield se-
quencing allows for more accurate genome characterization, it may not always be feasible
for diagnostic applications because of the associated costs. Yet, CNVs may still be detected
without high yield sequencing since the amount of sequencing yield largely dictates de-
tection resolution; as yield decreases, so does the desired level of resolution, con�ning
CNVs to larger and larger sizes. CNV detection methods that use low-yield WGS based
on coverage typically rely on an initial step of discretization to overcome the sparseness
in the count data. In this process, genome-wide per nucleotide coverage counts are aggre-
gated into larger prede�ned regions. In simple terms, CNV detection methods compare a
queried sample to a reference set of healthy controls (the norm) to discern (ab)normalities.
The mean coverage and standard deviation of discretized regions are compared between
the two sets to obtain a corresponding Z-score for each region in the surveyed sample.
Ultimately, these scores are used to determine the presence of chromosomal abnormalities
in the query sample.

The described methodology, while e�ective, is not ideal as it requires invasive proce-
dures to obtain fetal cells. Instead, an alternative approach may be developed that relies on
cell-free DNA (cfDNA) fragments [134]. These cfDNA are the remnants of DNA molecules
that circulate in the peripheral blood and originate primarily from cell death through apop-
tosis or necrosis [135]. Circulating cfDNA is constantly produced throughout the body
and has a relatively short half-life (4–120 minutes) [136, 137]. By isolating cfDNA from
blood, it is possible to develop applications for cancer diagnostics [138], COVID-19 diag-
nostics [139], or organ transplant monitoring [140]. Sources of circulating cfDNA are not
only limited to the host organism but also extend into the realm of microorganisms such
as bacteria. Microbial cfDNA may be detected during fulminant infections such as sepsis
[141] and is a possible source of antibiotic resistance gene interchange [142]. In pregnant
mothers, a fraction of the cfDNA corresponds to the placenta [143], which in almost all
cases barring rare events such as fetoplacental mosaicism [144], shares the same DNA as
the fetus [143]. This cell-free “fetal” DNA (c�DNA) can already be detected in the early
stages of pregnancy and the proportion of c�DNA within cfDNA increases as gestation
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progresses (2% → 20%) [145]. However, factors such as maternal body mass [146] and
gestation type (singleton vs. multiple) [147] can a�ect this proportion.

CNV detection from low-yield cfDNA sequencing data for non-invasive prenatal test-
ing (NIPT) is more challenging, given that the c�DNA proportion relative to the cfDNA
is small, which can cause previously unproblematic biological and technical bias to over-
shadow the fetal signal and introduce distortions. Hence, the conventional CNV detection
methods must be adapted to this setting to account for these biases. Adaptations may in-
clude: re-sequencing the reference set samples alongside the query samples to eliminate
technical bias [148]; applying LOWESS [149, 150] or principal component correction [151,
152] to minimize bias induced by GC content and other systemic noise. Although joint
re-sequencing can reduce technical bias, it cannot solve the issue of di�erent c�DNA pro-
portions in cases and controls. Additionally, re-sequencing is not cost-e�ective and limits
the size of the reference set, which would ideally be large to minimize variance. An alterna-
tive solution, Wisecondor [150], proposes a within-sample testing methodology. With this
method, the query sample is compared to itself, eliminating technical bias and di�erences
in c�DNA proportions between samples. Wisecondor uses the observation that regions on
one chromosome can be judged relative to the behavior of similarly behaving regions on
other chromosomes within the same sample. This is assuming that any potential aberration
is limited to a subset of chromosomes, so su�cient “normal” regions remain to compare.
Therefore, the reference set of healthy samples is only used to establish an initial mapping
of each region to similarly behaving regions on other chromosomes.

The proportion of available c�DNA, i.e., the fetal fraction, is an essential factor in de-
termining the reliability of CNV detection. If fewer c�DNA fragments are available in
the maternal serum, i.e., the fetal signal, it becomes increasingly di�cult to obtain robust
CNV calls. Various methods are available to estimate the fetal fraction based on: di�eren-
tial methylation [153], quanti�cation of unique fetal SNPs [154], read count distribution
di�erentials on the Y-chromosome [155] and other chromosomes [156], or di�erences in
fragment length [157]. Methods in the latter category rely on the observation that c�DNA
fragments are relatively shorter than maternal cfDNA [157]. If the fragment size (or a proxy
thereof [158]) can be determined, enrichment in shorter fragments concerning the baseline
can be used to estimate the fetal fraction. This estimation may be based on genome-wide
fragment size distributions [156], or the relative positioning and count of aligned reads to
nucleosome sites [158].

Part II of this thesis substantially derives from the developments of Wisecondor and its
derivatives. Here, I �rst evaluate the performance of various NIPT methods in benchmarks
using experimental and simulated data. The �ndings show that Wisecondor outperforms
other NIPT methods. Additionally, I show that the di�erences in fragment size between
cfDNA and c�DNA can be used to detect the presence or absence of chromosomal abnor-
malities, as previous work has also shown [159]. This is done by detecting shifts in the
fragment size distributions across chromosome regions. Namely, for a fetus a�ected by tri-
somy, an overall lower fragment size is expected on the a�ected chromosome compared to
the una�ected chromosomes. Finally, I show how the within-sample testing methodology
can be generalized such that multiple datatypes may be included. The integration of read
count and fragment size data results in better performance than if either datatype is used
in isolation.
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This chapter is based on q T. Mokveld, Z. Al-Ars, E. A. Sistermans, and M. Reinders. A comprehensive performance
analysis of sequence-based within-sample testing NIPT methods, PloS One.
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Abstract

Background: Non-Invasive Prenatal Testing is often performed by utilizing read coverage-
based pro�les obtained from shallow whole genome sequencing to detect fetal copy number
variations. Such screening typically operates on a discretized region representation of the
genome, where (ab)normality of regions of a set size is judged relative to a reference panel of
healthy samples. In practice such approaches are too costly given that for each tested sample
they require the re-sequencing of the reference panel to avoid technical bias. Within-sample
testing methods utilize the observation that regions on one chromosome can be judged relative
to the behavior of similarly behaving regions on other chromosomes, allowing the regions of
a sample to be compared among themselves, avoiding technical bias.

Results: We present a comprehensive performance analysis of the within-sample testing
method Wisecondor and its variants, using both experimental and simulated data. We intro-
duced alterations to Wisecondor to explicitly address and exploit paired-end sequencing data.
Wisecondor was found to yield the most stable results across di�erent region size scales while
producing more robust calls by assigning higher Z-scores at all fetal fraction ranges.

Conclusions: Our �ndings show that the most recent available version of Wisecondor per-
forms best.
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5.1 Introduction

Non-Invasive Prenatal Testing (NIPT) is designed to detect signi�cant genetic abnormalities
of the fetus, such as chromosome aneuploidies, sub-chromosomal copy number variations
(CNVs), and unbalanced translocations. The discovery of cell-free fetal DNA (c�DNA)
in maternal peripheral blood [160], has enabled the development of NIPT methods for
detecting genetic anomalies [161–163]. NIPT demonstrates high sensitivity and speci�city
for prevalent chromosomal aneuploidies, including trisomy 21, 18, and 13 [164, 165], and
can also be employed for other autosomes [166, 167], and sub-chromosomal events [168–
170]. However, detecting smaller CNVs requires increased depth of coverage, which can
be prohibitively expensive in practice [171].

Moreover, limitations exist, such as support for only the most common trisomies and
test failures due to complications like placental mosaicism or maternal copy number varia-
tion [163, 172]. In practice, NIPT methods utilizing whole genome sequencing (WGS) often
depend on extremely low sequencing yield (~0.25x coverage) for cost-e�ective clinical ap-
plications [173, 174]. Alongside low coverage, the assumption that su�cient c�DNA is
present in maternal plasma is another factor. The c�DNA typically contributes a small
fraction (2–20%) to the total cfDNA sequenced, complicating accurate identi�cation of
CNVs [175, 176]. The available c�DNA in the sample, or fetal fraction, directly in�uences
the reliability of detected CNVs, with a higher fetal fraction corresponding to increased
con�dence in CNV detection [177].

Coverage-based NIPT methods typically follow similar steps to detect CNVs [148, 178–
181]. Initially, DNA is isolated from maternal plasma and subjected to low-coverage se-
quencing. Subsequently, the chromosomal origin of each read is identi�ed through align-
ment with the human reference genome. These read alignments are counted and discretized
into a coarse representation, discretizing the genome into equally sized regions. Lastly, the
read coverage per region is statistically compared to a reference panel consisting of healthy
samples, enabling the determination of signi�cant deviations from the expected signal in
each region. However, this described methodology has a major limitation: the need to
re-sequence control samples for each test sample to mitigate technical biases.

An alternative that improves upon these methods is Wisecondor [150], which circum-
vents read frequency variation across di�erent samples. In Wisecondor, each tested region
is compared to a set of reference regions on other chromosomes within the same sample,
exhibiting similar behavior. Such within-sample comparisons eliminate between-sample
bias and di�erences within the fetal fraction, as regions with similar characteristics will
behave similarly within the test sample, and all regions undergo the same experimental pro-
cedures. Wisecondor is freely available and can be modi�ed and enhanced by the scienti�c
community, as demonstrated with WisecondorX [152], designed as a general solution for
WGS applications beyond NIPT. One limiting factor of Wisecondor is the use of Stou�er’s
Z-score sliding window method to segment and score events, which exhibits exponential
computational complexity relative to decreasing region size. Generally, this is not an issue
in shallow NIPT, given that only a fraction of the available DNA pertains to the fetus,
necessitating the use of a larger region size.

Wisecondor was developed during a period when NIPT sequencing predominantly
employed single-end technologies. Although Wisecondor can process paired-end data, it
does not fully utilize the supplementary information that this technology provides. In this
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study, we introduce modi�cations to Wisecondor to incorporate pairing information and
include this in a benchmark. We compare the modi�ed Wisecondor versions to the original
Wisecondor, WisecondorX, and CNVkit, an alternative approach for detecting CNVs, using
both experimental and synthetic data.

5.2 Results

Initially, the detection of larger and common aneuploidies was investigated. A total of
526 samples were used (Section 5.4.1), of which 401 were con�rmed negatives and served
as controls, while the remaining 125 were con�rmed trisomy 21 positive. The average
estimated fetal fraction of all samples was approximately 7.5% (Section 5.4.1). All samples
were aligned using BWA-mem to the hg19 human reference genome with an average depth
of coverage of 0.257x across all samples. Wisecondor was modi�ed to utilize full alignment
read counting and read pairing (Section 5.4.2).

The di�erent versions of Wisecondor are referred to as follows:

1. WCR: the baseline implementation of Wisecondor in which no read pairing is avail-
able and alignments are counted based on start positions.

2. WCR+SE: a modi�ed implementation of Wisecondor utilizing the full but unpaired
read alignments to determine region counts.

3. WCR+PE and WCR+PEI : both use the read pairing information when aligning reads
before determining region counts, with WCR+PEI also contributing to region counts
for the insert size of every paired read.

4. WCRX : WisecondorX.
5. CNVkit: a general-purpose CNV detector that showed the best competitive perfor-

mance across di�erent non-Wisecondor NIPT methods [152].

These versions were compared using the given dataset to assess their performance in
detecting aneuploidies

5.2.1 T21 detection performance

The most direct measure of performance is the detection rate of expected aberrations in
validated samples. A comparison of how the methods operate at di�erent region sizes
reveals that the majority of all expected T21s are detected by each method (Table 5.1) At
the 250 kb scale, WCR+PEI performs the worst, while WCR and WCR+SE outperform the
others, with overlapping calls. It is important to note that the originally published version
of WCR performs signi�cantly more poorly than the most recent version, for example, 118
calls at 250 kb; hence, remaining results of this version are omitted. In almost all cases,
WCR outperforms the other methods, except for WCR+PEI at a 50 kb resolution. The non-
Wisecondor method, CNVkit, is competitive with the Wisecondor methods; however, this
performance is expected given the relative ease of detecting whole chromosome events.

Considering the scale of events in this context, it is unsurprising that the detection
rate remains relatively stable as the region size increases. Performance only declines sig-
ni�cantly at the 50 kb scale, indicating a failure to segment the events due to increasing
variability within the normalized regions as they become smaller.
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Table. 5.1. The number of ≥ 10 Mb events with Z-scores ≥ 5 on chromosome 21 detected by the methods in all
T21 positive samples for varying region sizes. Note that CNVkit does not depend on region-sizes so only one
performance measure is reported.

50 kb 100 kb 250 kb 500 kb 750 kb 1 Mb 5 Mb 10 Mb

WCR 113 122 123 124 123 123 122 121

WCR+SE 114 121 122 122 123 121 121 121

WCR+PE 117 120 121 121 120 120 120 118
WCR+PEI 118 119 119 119 120 119 118 118
WCRX 78 118 122 122 120 121 120 103
CNVkit 120

5.2.2 Region size relates to false positives

While the majority of all expected trisomies were detected by the methods, it is crucial to
keep the number of false positives low. Since discretizing the genome into regions results
in a signal/noise trade-o�, we summarize the sensitivity across region sizes for all methods
(Figure 5.1). As expected, a smaller region size increases the number of false positives
detected by each method, except for WCRX. This stable performance might be explained
by the segmentation algorithm that derives setting breakpoints from the variance across a
segment, also resulting in a lower detection rate for small region sizes. The number of false
positives for CNVkit is relatively large, giving an advantage to the Wisecondor methods
with a larger region size that have better control of false positives.

Interestingly, WCR+PE and WCR+PEI become more sensitive compared to WCR at
lower region sizes, whereas this relation reverses when the region size increases. This may
be explained by the use of read pairing and insert size padding, which exaggerates large
�uctuations in the signal while smoothing smaller �uctuations. If the region size becomes
smaller, it is expected that the signal itself becomes noisier and therefore �uctuates more,
causing the exaggerating e�ect to detect more events on the lower end. Conversely, the
signal becomes increasingly smooth as the region size increases, which can lead to overly
aggressive smoothing, potentially masking true �uctuations.

5.2.3 Per-region Z-score differentiation

To understand method-speci�c di�erences, the per region Z-scores were aggregated across
all negative and T21 positive samples, as shown in Figure 5.2. WCR and WCR+SE perform
identically at the 250 kb scale, a similar observation as in the previous comparison in
Table 5.1. Furthermore, it is clear that WCR+PE and especially WCR+PEI yield overall lower
Z-scores, which can eventually push a potential CNV call below the Z-score threshold. At
this scale, the inclusion of read pairing (WCR+PE) smooths the read count signal, even
more so when also including the insert size padding (WCR+PEI ).

So far, evidence has shown that this smoothing adversely impacts the detection rate
because of overall lower Z-scores at most resolution scales. However, an improvement can
be noted with WCR+PE and WCR+PEI, at the cost of many additional false positives, when
the region size becomes smaller, being the best performing at a 50 kb scale (Table 5.1). In
fact, the average per region Z-scores at a 50 kb scale show that the scores of these two
methods are overall higher than those of the others (Supplemental Figure S5.1).
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Figure. 5.1. Stacked counts of detected CNVs relative to region size and method, ordered from left to right as: WCR,
WCR+SE, WCR+PE, WCR+PEI, WCRX (CNVkit results are displayed separately). Bar coloring denotes mutually
exclusive �ltering constraints. Red: �ltering for ≥ 10 Mb CNVs with Z-score ≥ 5 (only including duplications) and
only on chromosome 21. Orange: �ltering for ≥ 10 Mb CNVs with an absolute Z-score ≥ 5 (thus also including
deletions) and on all chromosomes. Gray: identical to the previous but for all CNVs ≥ 1 Mb.

Figure. 5.2. Heatmaps of the summed per region Z-scores across all negative (top) and all T21 positive (bottom)
samples at a 250 kb region scale for chromosome 21 and all di�erent Wisecondor-based methods. The line above
each method’s heatmap corresponds to the average number of selected reference regions for each region of that
method (black denoting that no similar reference regions are found and consequently these regions are excluded).

5.2.4 Detection power relative to fetal fraction

To further understand the di�erences in Z-scores between the methods, the Z-scores of
individual events were examined in relation to the estimated fetal fraction of each sample.
It is expected that samples with higher fetal fractions can be more reliably tested for CNVs,
implying that the Z-scores of events are likely higher for calls made in samples with higher
fetal fractions.

The analysis reveals a positive correlation between the fetal fraction and the Z-score
of the detected events for all methods (Figure 5.3 and Supplemental Figure S5.3 for other
region sizes). At a region size of 250 kb, WCR assigns higher Z-scores to detected events
than any other method (with the exception of WCR+SE, which performs nearly identically).
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This demonstrates that WCR has better power to detect expected T21s and thus detects
events with greater con�dence.

Figure. 5.3. All ≥ 10 Mb events with Z-scores ≥ 5 on chromosome 21, detected by the di�erent methods for a
250 kb region size in the T21 positive samples, relative to the estimated fetal fractions of each sample. Each plot
compares one of the methods WCR+SE, WCR+PE, WCR+PEI, and WCRX (all in red) with WCR (in blue), and each
point corresponds to an event within a sample. The legend annotation relates each method with the respective R
value and adjusted R squared value of the linear �t.

5.2.5 Performance in simulated data

Since there is no true ground truth available in the experimental data, performance could
not be measured in concrete terms, such as on the breakpoints of events. To address this,
synthetic read data was created (Section 5.4.3). A total of 400 positive samples were gen-
erated, equally split for duplications, deletions (both at varying scales), and sex (WCRX
generates sex-speci�c reference sets), with a constant fetal fraction set at 7.5%. Additionally,
100 negative samples were generated, which were used to build reference sets. With the
ground truth known, the true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) rates can be determined directly from the intervals of the simulated events,
the detected events, and the chromosomes (Section 5.4.4).

Figure 5.4 shows an overview of the F1 performance of the methods for di�erent simu-
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lated events and event sizes. Table 5.2 shows the average F1 of duplications and deletions
across all event scales and false positives calls. The overall performance of all methods is
similar, with WCR performing best. Peculiar to WCRX is that the performance is poor in
samples with 1 Mb events while stabilizing from 5 Mb and up until regressing again as
the event size increases from 30 Mb and beyond. It is unclear what causes this behavior.
However, in terms of false positive calls on other chromosomes (Table 5.2), WCRX does
best with the fewest additional calls across all samples. CNVkit, increasingly struggles as
the event size becomes smaller, calling many false positives.

Figure. 5.4. F1 score (vertical axes) for simulated duplication (+, top panel) and deletion (-, bottom panel) events
of varying sizes (1 to 78 Mb) at a �xed fetal fraction of 7.5% for the di�erent methods using a 250 kb region size.

Table. 5.2. F1 score as averaged across all event sizes (1 to 78 Mb) for simulated duplications (+), deletions (-),
and the number of false positive calls (FP) of the di�erent methods using a 250 kb region size.

F1(+) F1(-) FP

WCR 0.996 0.995 33
WCR+SE 0.995 0.995 32
WCR+PE 0.995 0.995 30
WCR+PEI 0.994 0.986 40
WCRX 0.577 0.605 2
CNVkit 0.929 0.845 556

5.2.6 Performance in challenging simulated data

The previous results highlight that, generally, events larger than 5 Mb can be detected by
all methods, which signals that the real challenge lies within events that are smaller than
this. These smaller events are also on the edge of what remains detectable with respect to
the samples’ read coverage and fetal fraction. To further investigate this, 480 additional
samples were simulated, now with aberrations ranging from 250 kb to 5 Mb and fetal
fractions ranging between 1–6%. Methods were again evaluated for a 250 kb region size,
and the results are shown in Figure 5.5 for a fetal fraction of 6%, and the accumulated
results for all fetal fraction ranges in Table 5.3.
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As events become smaller than 1 Mb, the likelihood of detecting an event becomes
extremely small under the given conditions. As expected, an increasing fetal fraction im-
proves performance of every method. As the fetal fraction increases (>4%) WCRX performs
closely to the other Wisecondor methods, but does worse otherwise. Note that WCRX does
not exhibit the dramatic drop in performance at lower event scales as was observed when
events became larger than 20 Mb (Figure 5.4). The performance of CNVkit is again signif-
icantly worse than the Wisecondor methods when events become increasingly smaller,
even more so for deletions, which is not the case for the other methods which are balanced
for both types of events.

When utilizing the insert size padding of WCR+PEI, the performance for these smaller
events is always worse than with the other Wisecondor methods. This result is consistent
with the previous �ndings when varying the region size. In terms of false positive calls on
other chromosomes across all samples, WCRX again does best with the fewest additional
calls (Table 5.3).

Figure. 5.5. F1 score for simulated duplication (+, top panel) and deletion (-, bottom panel) events of varying
sizes (0.25 to 5 Mb) at a �xed fetal fraction of 6% for the di�erent methods using a 250 kb region size.
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Table. 5.3. F1 score as averaged across all event sizes (0.25 to 5 Mb) for simulated duplication (+) and deletion (-)
events across varying fetal fractions (FF), and the number of false positive (FP) calls of the di�erent methods at a
250 kb region size.

FF WCR WCR+SE WCR+PE WCR+PEI WCRX CNVkit

+

1% 0 0 0 0 0 0
2% 0.108 0.108 0.108 0 0 0
3% 0.598 0.572 0.609 0.379 0.327 0.114
4% 0.759 0.763 0.760 0.511 0.536 0.237
5% 0.839 0.838 0.840 0.775 0.770 0.408
6% 0.837 0.836 0.837 0.794 0.769 0.474

-

1% 0 0 0 0 0 0
2% 0.227 0.297 0.247 0.090 0.156 0.125
3% 0.522 0.525 0.524 0.295 0.380 0.155
4% 0.665 0.715 0.710 0.658 0.696 0.157
5% 0.845 0.842 0.842 0.781 0.808 0.190
6% 0.863 0.862 0.862 0.799 0.835 0.210
FP 125 117 126 134 1 515

5.3 Discussion

Detecting CNVs in highly imbalanced mixed samples continues to present signi�cant
challenges. These di�culties are intensi�ed within the context of low-yield NIPT, where
distinctions between fetal, maternal, and noise signals become increasingly indistinct. The
signal-to-noise ratio must be enhanced to a level that permits con�dent calls, even at the
cost of reduced resolution. This issue is particularly pronounced at lower fetal fractions. To
address this trade-o�, read count signals are commonly aggregated across larger genomic
ranges, which e�ectively discretize the genome into regions. Consequently, the selected
region size re�ects a balance between resolution, noise, read coverage, and fetal fraction
considerations.

Within-sample correction methods, such as Wisecondor, provide a solution to the chal-
lenge of re-sequencing control samples for each new set of samples requiring testing. Our
work demonstrates that, in the context of non-invasive prenatal testing (NIPT) applications,
Wisecondor (WCR) consistently outperforms other tested methods across both experimen-
tal and synthetic data. This superior performance is evidenced by more accurate detection
and higher Z-scores assigned to identi�ed CNVs Overall, all Wisecondor methods surpass
the non-Wisecondor method, CNVkit, particularly when examining lower fetal fractions
and smaller CNVs. This underscores the value of tailoring methods to speci�c domains,
even when addressing a similar underlying issue, such as CNV detection. A notable advan-
tage of WisecondorX lies in its ability to identify fewer false positives, resulting in a higher
likelihood that called CNVs are genuine events, albeit with a lower detection rate. In an
NIPT setting, reducing false positives is bene�cial, as all �ndings are typically scrutinized,
thereby enhancing work�ow e�ciency with WisecondorX

Several modi�cations were introduced to Wisecondor. Firstly, instead of counting the
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starting position of each read, the complete alignments were processed (WCR+SE). Despite
expectations, this modi�cation did not yield signi�cant bene�ts in this particular setting
due to the sparseness of read data, resulting in outcomes nearly identical to the original
Wisecondor (WCR). However, such processing might prove advantageous with increased
coverage and smaller region sizes, as the impact of this change would be ampli�ed. Since
Wisecondor does not utilize read pairings, we incorporated a modi�cation that leverages
paired-end reads (WCR+PE), and an adaptation that employs additional padding based
on the insert size derived from these reads (WCR+PEI ). Our experiments demonstrated
that these modi�ed versions allow for heightened sensitivity at smaller region sizes by
accentuating �uctuations within the coverage signal. However, this improvement comes
at the expense of excessive signal smoothing at larger region sizes, resulting in diminished
sensitivity. Although signal smoothing proved bene�cial, it was only advantageous when
region sizes were signi�cantly reduced, and this came with the trade-o� of increased false
positive calls.

The impact of incorporating read pairing in this study yielded only modest improve-
ments in the performance of the methods. In some cases, using paired-end reads as single-
end reads demonstrated superior results. Nevertheless, additional information within paired-
end reads remains untapped. Potential enhancements for methods that utilize paired-end
reads could exploit the fact that fetal DNA fragments exhibit shorter fragment sizes com-
pared to maternal fragments [157]. This characteristic is attributed to the underlying mech-
anisms involved in DNA fragmentation, such as DNA methylation and its relationship to
chromatin accessibility [182, 183]. The fragment size di�erences can be inferred from the
insert size of aligned paired-end reads. Several methods have been proposed to leverage
this size di�erence for detecting large chromosomal CNVs [159] or fetal de novo point
mutations [184]. Moreover, combining fragment size di�erences with read count signals
has enabled improved detection of fetal aneuploidies, as demonstrated by the COFFEE algo-
rithm [185], a reference-free method that requires no control samples. Our group developed
WisecondorFF [186] to extend the WISECONDOR within-sample testing framework and
facilitate the combination of read count and fragment sizes for enhanced (sub)chromosomal
CNV detection. We also note that method performance is signi�cantly in�uenced by re-
gion size selection. Therefore, employing multiple region scales may prove advantageous,
allowing a CNV to gain support across various scales rather than only one.

5.4 Methods

5.4.1 Sample specification and pre-processing

All samples in this study were obtained from the Dutch TRIDENT study [187]. DNA iso-
lation, library preparation, and paired-end sequencing (36 bp) were conducted using the
Illumina VeriSeq1 sequencing protocol, in compliance with the supplier’s recommenda-
tions (Illumina, San Diego, USA). Both the Veriseq algorithm (which detects only trisomies
21, 13, and 18) and Wisecondor (which identi�es other trisomies and smaller events) were
used for analysis. A total of 526 samples were selected for this study, with 401 having no
detected chromosomal aberrations, thus serving as negative controls. The remaining 125
samples tested positive for T21. All samples underwent similar pre-processing and were
aligned to the hg19 human reference genome, excluding any decoy sequences, using BWA-
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0.7.17 mem [31]. To measure both single-end and paired-end performance, read sets were
aligned in both settings. In the single-end setting, each read pair was individually aligned
before merging the output alignments, as opposed to the paired-end setting, in which all
alignments were output simultaneously. The average coverage for the 401 negative sam-
ples was 0.258, while the 125 T21 positive samples had an average coverage of 0.256. SeqFF
was employed to estimate the fetal fractions of all samples, with an average fetal fraction of
7.5% [156]. The �nal alignments were compressed and remained un�ltered, as all methods
internally managed the quality of the alignments.

For each of the samples, initial genome wide region counts were generated at a 5 kb
resolution, and subsequently scaled up to 50 kb, 100 kb, 250 kb, 500 kb, 750 kb, 1 Mb, 5 Mb,
and 10 Mb for the construction of reference panels and/or sample testing against these
references. All 401 control samples were used to build reference panels at every region
scale for each of the �ve methods: WCR, WCR+SE, WCR+PE, WCR+PEI, and WCRX. Rather
than employing a prede�ned blacklist to exclude genomic regions from the analysis, the
methods determined such regions based on normalized region counts.

5.4.2 Wisecondor modification

We implemented three distinct modi�cations to Wisecondor (version commit: 9e95c75; note
that this is not the published version of the algorithm but an updated variant). One modi-
�cation leverages the complete read alignment instead of the starting position (WCR+SE),
and the other two exploit the read pairings, one necessitating proper read pairing (WCR+PE)
and the other utilizing the fragment size associated with paired reads (WCR+PEI ).

1. WCR+SE: The method of counting aligned reads in the discretized regions was mod-
i�ed and is based on the full alignments, rather than the starting positions of the
aligned reads. Doing so the full information content of an alignment can be uti-
lized, as well as allow reads to partially contribute to multiple regions. All modi�ed
variants of Wisecondor, denoted as WCR+, employ this alternate read counting.

2. WCR+PE: Wisecondor does not utilize paired-end read information, but treats any
aligned read as single-end. By requiring any read to be in a properly paired pair, an
additional constraint is imposed for a read to be considered.

3. WCR+PEI : Additionally, the insert size distance between two properly paired frag-
ments can be utilized to further pad the read coverage such that the fragment between
the aligned read pairs also contributes to the total contribution of the reads. By us-
ing read pairing, the read count signal is smoothed and large �uctuations within
the signal are exaggerated. Such signal smoothing and exaggeration is especially
prominent in WCR+PEI (Supplemental Figure S5.2).
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5.4.3 Data simulation

Chromosome 18 was selected to simulate duplications and deletions of size: 1, 5, 10, 20, 30,
40, 50, 60, 70, and 78 Mb. For each CNV size, 10 samples were simulated for both sexes and
variation types, resulting in a total of 400 samples. Additionally, 100 negative samples were
simulated, with 50 of each sex. To generate an aberrated sample, a random starting position
was chosen for the event on chromosome 18, excluding highly repetitious regions, using a
uniform distribution. From the starting position to the end position, the sequence is either
deleted, leaving �anking segments of N’s (larger than the fragment size of the simulated
reads) at the site, or duplicated, leaving �anking segments of N’s between the two sequences.
For each aberrated sample, complete fetal reference sequences were generated by replacing
the original chromosome 18 sequence with the modi�ed one. The sex determined the
inclusion or exclusion of the Y chromosome or one X chromosome.

For each sample, a total of 21,000,000 36 bp paired-end reads were simulated using
Mason 2.0.9 [81]. The read sets were generated to yield a 7.5% fetal fraction when combined.
Considering the shorter fetal fragment length compared to maternal fragments, the mean
fragment length parameter of fetal samples was slightly reduced. A maternal read set
(reads pre�xed with M and totaling 19,425,000 reads) was then simulated, using the hg19
reference sequence without chromosome Y and decoy sequences, and a fetal read set (reads
pre�xed with F and totaling 1,575,000 reads) was created from the previously generated
fetal reference sequences. The two disjoint paired-end read sets were ultimately merged
and pre�x sorted to eliminate any aligner bias.

5.4.4 Performance metrics

Within the simulated data the ground truth of a CNV, T , can be represented as an interval,
denoted as [Ts ,Te], which may be contained within a chromosome, G, i.e., a larger interval,
as [Gs ,Ge]. For a CNV predicted by one of the methods, P, the same can be done, as the
interval [Ps , Pe], or the lack thereof as [Ps = 0, Pe = 0]. The true positives, can then be derived
to be TP = max(0,min(Te , Pe)); the false negatives, as FN = Te −Ts −TP ; the false positives,
as FN = Pe −Pe −TP ; the true negatives, as TN = Ge −TP − FN − FP . The F1 performance
score, i.e., the harmonic mean of the precision and recall, may then be calculated as: F1 =

TP

TP+
1

2
(FP+FN )

.
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5.5 Supplementary materials

Figure. S5.1. Heatmap of the summed per region Z-scores across all negative (top) and all T21 positive (bottom)
samples at a 50 kb region scale for chromosome 21 and all di�erent Wisecondor-based methods. The line above
each method’s heatmap corresponds to the average number of selected reference regions for each region of that
method (black denoting that no similar reference regions are found and consequently these regions are excluded).

Figure. S5.2. Simulated read alignment counts across a small genome of single-end, paired-end, and paired-end
with insert padding methods. On top this is shown for an una�ected sample, and on the bottom for a sample
with a 400 bp deletion.
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Figure. S5.3. All ≥ 10 Mb events with Z-scores ≥ 5 on chromosome 21 detected by the di�erent methods in
the 125 T21 positive samples relative to the estimated fetal fractions of each sample. Each plot displays one of
the methods WCR+SE, WCR+PE, WCR+PEI, and WCRX (all in red) overlaid with WCR (shown in blue), for a set
region-size resolution. Each point corresponds to a CNV within a sample.
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Abstract

In prenatal diagnostics, NIPT screening using read coverage-based pro�les obtained from
shallow WGS data is commonly used to detect fetal CNVs. From these same data, fragment
size distributions of fetal and maternal DNA fragments can be derived, which are known to
di�er and are often used to infer fetal fractions. We argue that fragment size has the potential
to aid in the detection of CNVs. By integrating, in parallel, fragment size and read coverage in a
within-sample normalization approach, it is possible to construct a reference set encompassing
both types of data. This reference then allows for the detection of CNVs in queried samples using
both data sources. We present a new methodology, WisecondorFF, that improves sensitivity
while maintaining speci�city over existing approaches. WisecondorFF increases the robustness
of detected CNVs, and can reliably detect even at lower fetal fractions (<2%).
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6.1 Introduction

Prenatal screening is routinely used to measure and verify the fetus’s health, including the
detection of chromosomal CNVs (copy number variations), in a timely manner [107]. Most
prenatal screening methods are now non-invasive. Invasive methods generally provide
more conclusive results but confer a low risk of harming the mother, or fetus [118, 119,
189]. For example, verifying chromosomal aneuploidies through invasive genetic analysis
carries a small but signi�cant risk of causing fetal miscarriage [117]. Non-invasive methods
assess fetal health indirectly, such as through morphological properties using ultrasound
scans [98, 112], or biochemical markers by maternal serum sampling [100, 116]. In general,
these screening methods must be performed at speci�c stages of pregnancy [190] and are
usually deployed in parallel [112, 117], thus expanding the range of detectable conditions
[190–192].

Since the discovery of cell-free fetal DNA (c�DNA) in maternal peripheral blood [160],
it has become possible to measure fetal DNA without invasive procedures [161]. This
discovery has opened up new possibilities for safely assessing fetal health using genetic
markers [163] and can be used to detect a wide variety of pathologies caused by events
such as chromosomal aneuploidy [161, 163], sub-chromosomal CNVs [193], and single-gene
mutations [194]. One of the deciding factors for detecting smaller and smaller events is
related mainly to sequencing yield, i.e., the DNA coverage, which requires more sequencing
to detect smaller events reliably. The other important factor is the proportion of c�DNA
mixed with maternal blood, i.e., the fetal fraction, which typically contributes 2–20% of
the overall available DNA pool [177, 195] and increases as the pregnancy progresses. The
combination of available coverage, fetal fraction, and CNV size determines the reliability
of detection of a given aneuploidy.

In clinical practice, NGS-based non-invasive prenatal screening (NIPT) with c�DNA
typically uses shallow whole-genome sequencing (WGS) to remain economical and acces-
sible for mass screening [101]. Such low sequencing yield leads to practical limits when
detecting events and often means that only high sensitivity and speci�city are possible
for larger events such as chromosomal aneuploidies. Therefore, NIPT typically tests for
common trisomies, such as 21, 18, and 13 [164], since accuracy degrades too much for sub-
chromosomal CNVs smaller than 5–10 megabases (Mb) [169, 170, 196]. Nevertheless, even
for larger events, one must be careful of discordant results caused by biological phenom-
ena such as placental mosaicism or maternal copy number variation [197, 198]. While the
NIPT �eld is dominated by methods utilizing WGS, some use RNA-seq [199], methylation
pro�les [200], SNPs [201], or haplotyping [202]. Each of these can e�ectively detect speci�c
events, especially when such data sources are integrated [199].

Most low sequencing yield NIPT methods use similar steps to detect events [148, 178,
203], starting with sequencing the DNA, aligning sequencing reads to a reference genome
and �nally detecting whether the observed read coverage exceeds expectations based on a
reference baseline. Because coverage is extremely low, detection is not done at the level
of individual nucleotides, but rather the genome is discretized into larger, equally sized
regions or bins (often 250 kb to 1 Mb) in which read counts are aggregated to obtain a
signal that can be compared to a baseline. Such a baseline signal, also known as a reference
set, can be derived from a collection of healthy samples [174]. Although this method can
be e�ective, there are some drawbacks. For example, the experimental conditions of the
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sample and healthy samples used to establish the baseline must be identical to eliminate
any confounding technical bias in detection. Otherwise, false positives or negatives are
easily obtained [150]. Re-sequencing the baseline with a new sample would protect against
these biases but is extremely expensive.

An alternative approach to de�ning the baseline would be to compare the observed
number of reads with expectations derived from the sample itself. In such a framework,
a region should be compared to regions on other chromosomes that have been found to
behave similarly in a healthy panel. By generating a map of similarly behaving regions
from the healthy sample set, any NIPT sample can be tested by exploiting this map without
(re)using the healthy sample set. This setup is e�ective when the number of events is
typically limited to a subset of chromosomes at a time and is successfully adopted in
clinical practice using methods such as Wisecondor and WisecondorX [150, 152].

It is known that fetal DNA fragments are shorter in size than maternal fragments [202].
Previous work has exploited this observation to predict the fetal fraction in cfDNA samples,
i.e., the relative proportion of maternal and fetal DNA present in a sample [154, 156]. The
fragment size of cfDNA can be inferred from paired-end reads but also by other approaches,
such as with methylation pro�les [204] or based on read abundance approaches inside and
outside nucleosomes [158]. Since fetal cfDNA fragments are shorter in size than maternal
fragments, this can potentially be used to infer fetal read abundance in a given genomic
region. Namely, if a fetus is a�ected by trisomy, an overall smaller fragment size is expected
on the a�ected chromosome compared to una�ected chromosomes. We sought to enrich
the current NIPT with-sample testing procedure with these available data, as it is currently
standard to generate paired-end reads.

We present WisecondorFF, a methodology that detects fetal chromosomal aberrations
from cfDNA by combining read coverage-based estimates and fragment size statistics.
To control for variation, fragment size statistics are derived using a similar within-sample
normalization approach operated by current read counting procedures such as Wisecondor.
We show that chromosomal CNVs can indeed be detected from the inferred fragment sizes
across the genome and that, combined with read coverage, this leads to improved accuracy
and robustness of the NIPT procedure. As such, WisecondorFF is attractive to clinical
practice because the data are readily available at most clinical diagnostic facilities since it
relies only on paired-end sequencing of maternal serum DNA.

6.2 Methods

6.2.1 Sample specification and processing

Samples were generated as part of the Dutch TRIDENT study [187]. DNA isolation, li-
brary preparation, and paired-end sequencing (36 bp) were performed using the Illumina
VeriSeq1 sequencing protocol, according to the vendor’s recommendations (Illumina, San
Diego, USA). Analysis was performed by the Veriseq algorithm (which detects only tri-
somies 21, 13, and 18) and Wisecondor, which also detects other trisomies and smaller
events. For this study, we selected 526 samples, 401 of which had no chromosomal CNVs
detected, and were used as negative controls. The remaining 125 samples all tested posi-
tive for T21. The average depth of coverage was 0.258 and 0.256, respectively, for negative
and positive samples. All read data were similarly processed and aligned to the human
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reference genome hg19 (excluding decoy sequences) using BWA-0.7.17 mem [31]. Paired
reads were �ltered according to the following criteria: 1) reads must be in the correct po-
sition/orientation for pairing; 2) only primary alignments are considered; 3) alignments
must exceed a minimum mapping quality of at least 1; 4) each read must have a unique
starting location (Supplemental Figure S6.1). The alignments were compressed and left
un�ltered, as all methods perform internal quality control on the alignments.

6.2.2 Fragment size estimation

When quantifying read coverage, reads are assigned to their respective regions based on
their starting position, whereas for read-pairs, we adopt their midpoint, i.e., the average
of the starting positions. Fragment sizes were determined by the di�erence between the
starting points of the paired reads. They were distributed with a mean of 173 bp and a
standard deviation of 56 bp. Fragment sizes greater than 300 bp were ignored as they were
found to be uninformative in distinguishing negative from positive samples. On a per-
sample basis, regions of interest were �ltered to allow for a more reliable estimation of
the fragment size distribution by a lower bound on the minimum number of reads and an
upper bound depending on the normalized read coverage (Supplemental Figure S6.2).

6.2.3 Reference set construction

Read coverage is normalized for all samples. The genome is divided into 5 kb regions and
scaled to 250 kb, 500 kb, 750 kb, 1 Mb, 5 Mb, and 10 Mb to test for resolution-dependent
di�erences. Region sizes below 250 kb were excluded, as the read count and fragment size
signals become too noisy at the speci�ed sequencing yield. We did not prede�ne a list of
genomic regions to be excluded from the analysis. Instead, the within-sample methods
de�ne those based on normalized read counts during the construction of the reference set,
with negligible di�erences between methods. These uninformative regions are masked
and typically appear at centromeres or highly repetitive locations where an insu�cient
number of reads may be aligned. Subsequently, technical biases (e.g., GC bias) are removed
by training PCAs on the negative controls (Supplemental Figure S6.3). Note that this occurs
in parallel. Therefore, two PCA mappings (one for each data type) are saved and applied
to any sample with which the reference is queried.

6.2.4 WisecondorFF

WisecondorFF relies on the same within-sample testing method as Wisecondor and Wisec-
ondorX [150, 152]: construct a reference set of similarly behaving regions derived from
control samples, and then process each region in a new sample against this reference set.
The creation of the reference set is thus at the heart of the methodology, which is based
on the observation that the (ab)normality of a region on one chromosome can be judged
against the behavior of regions with similar behavior (the references) in control samples
on other chromosomes. The similarity metric can depend on the type of data. For read
count data, we follow Wisecondor, which uses the Euclidean distance between the two
read count vectors in the two regions under consideration across the control samples. For
each region, all regions in the other chromosomes are ranked according to the similarity
metric, and the top K (here K = 300) regions are selected as the set of reference regions
for the considered region. The regions are further weighted according to their reliability,
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based on the calculated distances. By doing this for all regions, the complete reference set
is obtained.

For fragment size data, the similarity metric between two regions is the Euclidean
distance between the two vectors of average fragment sizes in a region for each control
sample. We experimented with di�erent summaries of the fragment distributions in a
region, such as the median (being less predictive, Supplemental Figure S6.4), or metrics
that directly capture the di�erence between two distributions, such as the Jensen-Shannon
divergence distance (symmetric Kullback-Leibler divergence). However, the latter was not
feasible due to the amount of noise present in the distributions (full details in Supplemental
Section 6.5.7). When searching for CNVs in a sample, a Z-score for each (query) region
and data type is calculated separately. This Z-score can be calculated from the observed
measure (either the number of reads or the fragment size) in the query region versus the
mean and standard deviation of that measure calculated over the reference regions for the
query region in that same sample. The data type-speci�c score (from each region) can be
combined into a single score by Fisher’s averaging. Then, the scores per region are used to
�nd stretches of a�ected regions through segmentation. Here, we follow the methodology
of WisecondorX [152] and use Circular Binary Segmentation (CBS) [205] to segment and
�nally obtain Z-scores of the detected events.

6.2.5 Fetal fraction estimation

The fetal fraction of the samples was estimated using SeqFF [156]; this method uses a pre-
trained multivariate model that was trained on the number of autosomal reads strati�ed
by region from WGS pairwise sequencing of maternal plasma cDNA. The average fetal
fraction is 7.5% and ranged from 1.48% to 19.15% (Supplemental Figure S6.4).

6.3 Results

6.3.1 Fragment size distribution shifts

To determine whether the fragment size may indeed be indicative of samples with trisomy,
we �rst examined the fragment size distribution within our cohort of 526 samples, across
chromosome 21, for 125 samples with trisomy of chromosome 21 as well as for 401 samples
with no trisomy (negative samples). Figure 6.1a shows that, indeed, on average, a distri-
bution shift of ~1.52 bp towards shorter fragments can be observed for T21 samples. Note
that the fragment size distributions for individual samples vary considerably, likely due
to di�erences in fetal fraction and technical noise. While Figure 6.1a shows a shift in the
fragment size distribution at the chromosome level, we can observe a similar shift in the
distribution when we consider smaller regions across chromosome 21, as shown in Fig-
ure 6.1b. However, these di�erences become less noticeable as the region size decreases, as
fewer reads fall within a region, resulting in noisier estimates of these distributions. With
an average sequence coverage of 0.25×, we found that a minimum region size of 250 kb was
required to estimate fragment size distributions with su�cient robustness (Supplemental
Figure S6.6).
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Figure. 6.1. (a) The fragment size distributions of chromosome 21 across samples: individual T21 positive samples
(red), the mean of all 125 T21 positive samples (green), and the mean of all 401 negative samples (blue). (b)
Discretized representation of chromosome 21 into 3 Mb sized regions, per region fragment size distributions are
shown (as in (a)) of two samples with similar fetal fraction, one negative (blue) and one T21 positive (green).

6.3.2 T21 detection performance

Within our cohort of 526 samples, we investigated the detection of common whole chro-
mosome aneuploidies using six di�erent approaches. The �rst three make use of Wisec-
ondorFF (Section 6.2.4), denoted as WcrFF, and detect the presence of a CNV event from
read count frequencies (WcrFFRC), fragment size statistics (WcrFFFS), or both (WcrFFRC&FS).
Two other approaches are the latest versions of Wisecondor (Wcr) [150] and WisecondorX
(WcrX) [152]. Finally, we included a method that does not use an in-sample testing ap-
proach to detect CNVs, CNVkit [206], a general-purpose CNV detector, which we use here
as a baseline.

Almost all 125 T21s are detected by all methods, where we only consider events when
segments are larger than 10 Mb with Z-scores ≥ 5, Table 6.1:I. The performance of all
methods is relatively stable over the entire range of selected region sizes, except for WcrFFFS,
which improves continuously as the region size increases, and to a lesser extent WcrFFRC

and WcrX at 10 Mb, with a sharp drop in performance. The former can be attributed to
the increase in noise in the fragment size signal, which we also encountered when we
attempted to call events based on the fragment size distributions of each region rather than
their averages (Supplemental Figure S6.7). The latter is probably due to the CBS algorithm
used by both methods. Only WcrFFRC&FS (at 750 kb) can detect all expected trisomies and
shows near-optimal and stable performance in other region sizes. The baseline, CNVkit,
is competitive with other methods, which is expected given the relative ease of detecting
T21 events.



6

86 6 WisecondorFF: improved fetal aneuploidy detection

Although each method detected the majority of all expected trisomies, this result must
be put in context with the additional results, i.e., false positives. In Table 6.1, we also
summarize the detection of events on chromosomes other than 21 in parentheses. Generally,
sensitivity increases when a smaller region size is chosen, especially for Wcr. WcrFFRC&FS

makes far fewer false positive calls than Wcr at any resolution while detecting slightly
more than WcrX. When we change the event acceptance constraints to segments larger
than 1 Mb with |Z-score| ≥ 5, allowing smaller events to be called (Table 6.1:II). Wcr calls
many more false positives (+247.17%) while still not detecting all expected T21 events,
whereas WcrFFRC&FS is now able to detect all expected events at nearly every resolution,
with only a modest increase in false positives (+8.95%).

Table. 6.1. The number of detected events in the 125 T21 positive samples for the six di�erent tested methods
(rows). An event is detected when I: a segment is ≥ 10 Mb with a Z-score ≥ 5 or II: a segment ≥ 1 Mb with
|Z-score| ≥ 5. The number of samples for which an event is detected on chromosome 21 is given for di�erent
reference region sizes (columns). We note the number of events detected on one of the other chromosomes
between parentheses.

250 kb 500 kb 750 kb 1 Mb 5 Mb 10 Mb

WcrFF
FS I 71 (0) 77 (0) 83 (0) 86 (6) 92 (14) 106 (5)

II 71 (0) 77 (0) 83 (0) 87 (11) 92 (14) 106 (5)

WcrFF
RC I 122 (0) 122 (1) 122 (1) 120 (2) 121 (0) 103 (0)

II 122 (3) 122 (2) 122 (1) 120 (2) 121 (0) 103 (0)

WcrFF
RC&FS I 124 (17) 124 (14) 125 (13) 124 (14) 124 (6) 122 (3)

II 125 (18) 125 (15) 125 (17) 125 (14) 124 (6) 124 (3)

Wcr
I 123 (162) 124 (78) 123 (34) 123 (27) 122 (9) 121 (8)
II 124 (471) 124 (285) 123 (119) 123 (215) 122 (16) 121 (8)

WcrX
I 122 (1) 122 (0) 120 (1) 121 (1) 120 (1) 103 (0)
II 122 (4) 122 (0) 120 (1) 121 (1) 120 (1) 103 (0)

CNVkit
I 120 (375)
II 124 (896)

6.3.3 Per-region Z-score differentiation

Next, we examined the Z-scores generated by the di�erent within-sample methods, as
higher Z-scores indicate greater power to detect an event. Per region on chromosome 21,
we calculated the average Z-scores across all T21 positive samples. From Figure 6.2a, we can
observe that the highest Z-scores are found by the WcrFFRC&FS method when considering
region sizes of 750 kb. Note that the Z-scores for WcrFFRC drop, behaving very similarly
to WcrX, and drop even more dramatically with WcrFFFS, which also performs worse than
Wcr. Similar results are obtained across other region scales. The distribution of average
Z-scores per region, as shown in Figure 6.2b, also shows the shift toward larger Z-scores
for WcrFFRC&FS.

Next, we quanti�ed the di�erences in Z-scores derived from fragment size or read
coverage and the combined approach. Figure 6.3 shows the average Z-scores across chro-
mosome 21 for each of the 526 samples in 1 Mb sized regions for the methods. As expected,
the negative samples have mean Z-scores closely centered around zero. Overall, we can see
that the Z-score magnitude of events detected by WcrFFRC are larger than those detected
by WcrFFFS. Hence, the fragment size is less reliable and powerful than the read count.
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Figure. 6.2. (a) Heatmap of the Z-scores averaged across all T21 positive samples, shown per 750 kb sized region
(columns) on chromosome 21 for the di�erent methods (rows). (b) Z-score distributions of all T21 positive samples
on chromosome 21, with zero value Z-scores �ltered out.

However, combining the two measures, as in WcrFFRC&FS, makes it possible to separate
all T21 negative and positive samples without detecting false positives. In addition, the
magnitude of the Z-score for T21 samples is generally greater when combining the two
inputs than when using read coverage alone.

Figure. 6.3. The average Z-score of all 1 Mb sized regions on chromosome 21 for all 526 samples for: (a) WcrFFRC

compared to WcrFFFS, and (b) WcrFFRC compared to WcrFFRC&FS. The colored lines denote the Z-score cuto�
boundaries that would capture all T21 positive samples for either method (purple for read count and orange for
fragment size and fragment size with read count); annotations denote the number of false positives (FP) given
these cuto�s.

6.3.4 Detection power relative to fetal fraction

Because a NIPT test can be performed at di�erent stages of pregnancy, we were interested
in the performance of methods at di�erent cfDNA fractions available in maternal blood
plasma. For this purpose, we estimated the fetal fractions of the 125 samples (Section 6.2.5)
and compared those to the Z-scores of detected events on chromosome 21 (Figure 6.4).
We show that WcrFFRC&FS assigns greater Z-scores in almost all cases and ranges of fetal
fractions. Of interest is the detection of a duplication event in a sample with a fetal fraction
below 2%, which was undetectable by Wcr or WcrX.
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Figure. 6.4. Z-scores of duplication events on chromosome 21 (an event is detected when a segment is larger
than 10 Mb with a Z-score ≥ 5) as detected by the di�erent methods in the 125 T21 samples with respect to
the estimated fetal fractions of each sample. In each panel one of the methods is compared with WCR (in blue):
(a) WcrX, (b) WcrFFFS, (c) WcrFFRC, and (d) WcrFFRC&FS (all in green). The region size was 750 kb. Each point
corresponds to an event within a sample.

6.4 Discussion

Detection of CNVs in heterogeneously mixed WGS data remains a challenge and is the
subject of ongoing research in the �eld of NIPT and adjacent �elds such as cancer diagnosis
from cell-free tumor DNA [138]. With NIPT, one has to deal with a mixture of maternal
and fetal DNA in which the fetal DNA, and thus the potentially a�ected part, is present at a
much lower concentration. Moreover, di�erent levels of the fetal fraction are encountered
when collecting samples at di�erent stages of pregnancy. In addition, sample preparation
and sequencing di�erences can introduce enough noise to mask actual variations within the
sample. It is challenging to deal with such noise when using reference-based methods that
directly compare a sample’s signature to a reference signal. A within-sample normalization
method circumvents these problems of experimental noise.

In general, NIPT methods using WGS data exploit the relative frequencies of reads
aligned to a reference genome. This is not without reason, as read coverage strongly predicts
CNV presence. However, other data types are known to be informative for CNV detection.
One source of information that can be easily derived from paired-end reads is the size of the
cfDNA fragment. Although it is generally known that this size di�ers between maternal
and fetal cfDNA, in NIPT applications of CNV detection, this information is often not used,
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even though most sequencing for NIPT is now performed using paired-end sequencing.
We have shown that at both the whole chromosome and subchromosomal levels, frag-

ment size distributions are indeed detectably shifted when it comes to chromosomal CNVs
in fetal DNA. To detect these events, we introduced WisecondorFF, a within-sample nor-
malization method that uses both the relative frequencies of aligned reads and fragment
size to detect chromosomal CNVs reliably.

We noted that the method we presented, WisecondorFF (WcrFFRC&FS), which uses both
read count and fragment size statistics, provides several improvements over the other meth-
ods. Namely, WisecondorFF is more sensitive than Wisecondor and WisecondorX while
being more selective and detecting fewer false positives. WisecondorFF is more robust than
the others in assigning greater certainty to any event detected at any fetal fraction. This
results in an advantage for WisecondorFF, where calls previously indistinguishable from
the background signal are now more likely to be detected. By relating the Z-scores of de-
tected events to (estimated) fetal fractions, we found that WisecondorFF can detect events
at lower fetal fractions. Although WisecondorFF performed best with a region size of 750
kb, we showed that fragment size performs better at larger region scales. Fragment size and
read coverage are currently integrated at the same scales. However, it would be possible to
use asymmetric region sizes for di�erent data types to achieve better performance. At this
time, WisecondorFF does not build sex-speci�c reference sets as WisecondorX does and,
therefore, cannot detect CNVs on sex chromosomes. We have limited the use of additional
information exclusively to the fragment size. However, we believe that any data that can be
discretized across genomic regions could be integrated within a parallel within-sample nor-
malization framework, as we have shown. By fully exploiting the information available in
current sequencing technology, we have shown that better performance in a low-coverage
NIPT setting can be achieved by exploiting fragment size information. This opens the door
to other applications related to fragment size di�erences, such as cancer diagnosis or other
types of data integration within the NIPT process.

6.5 Supplementary materials

6.5.1 Processing and filtering paired-end reads

During pre-processing, WisecondorFF discretizes the genome and accumulates each sam-
ple’s read coverage and fragment size statistics. During this accumulation process, paired-
end reads are subjected to �ltering based on the following criteria: 1) reads must be in
the correct position/orientation for pairing; 2) only primary alignments are considered; 3)
alignments must exceed a minimum mapping quality of at least 1; 4) every read should
have a unique starting location. With 1), we consider that only proper pairing should be
considered for further analysis, i.e., when pairing fails, we exclude such reads. With 2) and
3), we consider and �lter out reads that correspond to repetitive regions of the genome.
As a result, there are multiple valid mappings of a read, which then receive a mapping
quality score of 0. Finally, with 4), we exclude all reads that were found to map to previously
aligned locations. In the context of low yield WGS (~0.25x coverage), while expecting an ap-
proximately uniform genome mapping distribution, it is unexpected for many reads to map
to the same location. In Figure S6.1a, we show the coverage distribution of chromosome
1 within a single sample in which 4) �ltering was not performed. Just at the centromere
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boundary, a large pileup is concentrated caused by (technical) duplication, which would
adversely a�ect reference set construction. It is trivial to account for this duplication e�ect
by using the 4) �ltering, as can be seen in Figure S6.1b.

Figure. S6.1. 100 bp region strati�ed read coverage (~0.25x) of chromosome 1 in a single sample. (a) Prior to
�ltering out reads beginning at the same genomic location. (b) Post-�ltering removes such duplicated reads.

6.5.2 Filtering regions by depth of coverage

Every sample processed by WisecondorFF is subjected to initial �ltering. This �ltering
excludes regions (de�ned after discretization) that contain insu�cient information, i.e., too
few reads are aligned in these genomic regions. In such cases, these regions cannot be used
con�dently as reference regions, meaning CNV calling is also infeasible at these locations.
Although the fragment size is used, we base region �ltering on the read coverage (fragment
size is also derived from aligned reads). Our experiments have shown that any region must
contain at least 500 reads to be su�ciently informative. This threshold depends directly on
the average depth of coverage and the size of the chosen region, where a smaller chosen
region size reduces the probability that a region will contain enough reads. In Figure S6.2a
and Figure S6.2b we consider the genome-wide per-region coverage of two samples with
di�erent depths of coverage, with a di�erent threshold for each distribution. Note that
most regions contain enough reads, but a small proportion where (almost) no reads are
aligned; these are the regions that need to be �ltered. Constant size �ltering is inadequate
since each sample has a di�erent depth of coverage, Figure S6.2c. A threshold may be too
aggressive for a particular sample, e.g., a threshold of 1,500 is appropriate for SAMPLE2 but
too aggressive for SAMPLE1. To account for this, we use secondary �ltering based on the
normalized coverage, Figure S6.2d providing a uniform cuto� for all samples, regardless
of coverage.

6.5.3 Fragment size, GC content, and read counts

Sample preprocessing includes correcting bias caused by e�ects such as GC content. The
e�ects on the number of reads aligned due to GC content are well known (Figure S6.3) and
can be corrected with LOWESS or PCA, we used the latter. Although the fragment/insert
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Figure. S6.2. Per-region coverage distribution plots: (a) Sample with an optimal cuto� at 500 reads. (b) Sample
with an optimal cuto� at 1500 reads. (c) Both samples overlaid showing both cuto�s. (d) Both samples are overlaid
with normalized frequencies showing a cuto� of 0.0001.

size is independent of GC content, we found that the PCA correction still accounted for
other types of bias in the fragment size data.

Figure. S6.3. Genome-wide GC content with respect to the read count and the fragment/insert size respectively.

6.5.4 Fragment size median is less predictive

Fragment size statistics by region can be used in several ways, e.g., by comparing them
directly by treating them as probability distributions as in Supplemental Section 6.5.7 or
by further summarizing them using measures such as the mean or median. In practice, we
have found that the mean of fragment size per region is the most predictive compared to the
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other summaries, with the median being the less e�ective secondary choice. Singular value
metrics such as mean or median can be used interchangeably, assuming that a distance
metric can be calculated between any two values. It was, therefore, trivial to experiment
with di�erent summarization metrics and evaluate their performance. Figure S6.4 shows
the average Z-scores on chromosome 21 for each of the 526 samples for regions of 1 Mb size
comparing WcrFFRC, the mode of WisecondorFF that uses only the number of reads, and
WcrFFRC&FSmedian, which combines the number of reads and the median of the fragment
size. Compared to our results in Figure 6.4, the median fragment size, while predictive, is
not competitive with the mean.

Figure. S6.4. The average Z-score of all regions (1 Mb size) on chromosome 21 for all 526 (positive and negative)
samples comparing WcrFFRC and WcrFFRC&FSmedian.

6.5.5 Fetal fraction estimation with SeqFF

The fetal fraction plays an essential role in NIPT screening. If the maternal serum contains
too little fetal DNA, no reliable DNA-based test is possible. It is expected that the reliability
of the test will improve with increasing fetal DNA concentration as the fetal signal becomes
stronger. It is useful to relate the fetal fraction to the method’s performance, e.g., based on
sensitivity or robustness, because any method must perform well for a given fetal fraction.
It is, therefore, an approach for distinguishing and ranking the performance of methods.
To determine the fetal fraction, we used SeqFF, which uses the number of aligned reads
in speci�c autosomal regions by applying a weighting scheme derived from a pre-trained
multivariate model. This model was trained on regionally strati�ed autosomal read counts
from pairwise WGS sequencing of cfDNA in maternal plasma. In Figure S6.5 we summarize
the strati�ed fetal fraction distributions of the 526 samples.

6.5.6 Fragment size distribution estimation

The fragment size statistics per sample can be discretized and processed at di�erent scales.
The choice of scale is a direct trade-o� between resolution and noise, depending on the
sample depth of coverage. With smaller region sizes, there may be too much noise or
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Figure. S6.5. Fetal fraction values for all 526 samples as estimated by SeqFF. Samples are grouped accordingly
to 401 healthy controls and 125 T21 positives.

too few reads to reconstruct the fragment size distribution accurately. For within-sample
testing, it is crucial that (almost) all regions have su�cient measurements to be reliably
used as reference regions. Therefore, it is vital to determine the lower limit at which the
fragment size distribution estimate becomes robust, meaning that there is no instability in
any genomic region within a sample. In Figure S6.6, we summarize the fragment size distri-
bution by region of chromosome 1 in terms of mean and standard deviation. Region sizes
smaller than 250 kb show increased variability or missing values in the region fragment
size distribution. This means that a minimum region size of 250 kb is required to reliably
estimate fragment size distributions, which we further veri�ed by testing the normality of
the distribution and the distance from the expected mean and standard deviation of each
region against a reference distribution and di�erent samples.

6.5.7 Reference set from distributions

The methodology behind constructing a reference set for within-sample testing can be
readily generalized for di�erent data types. However, this assumes that it is possible to
discretize these data in a manner analogous to read coverage. We noted that fragment
size statistics could distinguish between positive and negative samples, even at a sub-
chromosomal scale. The richest representation of the fragment size statistics is to consider
it as a probability distribution of fragment sizes within a region, denoting a probability
of observing a speci�c fragment size. Thus, when discretizing the genome into regions
of a given size, each region maps to a corresponding probability vector. As described in
Section 6.2.2, we have capped these distributions at 300 bp; only the range [0, 300] is
considered.

Incorporating this data representation requires several changes within the within-
sample testing methodology. When constructing the reference set, it is no longer possible to
calculate the Euclidean distance between regions. Instead, an appropriate distance measure
is needed to compare probability distributions; for this purpose, we chose the Jensen-
Shannon divergence distance (JSD). The JSD is a symmetric generalization of the Kullback-
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Figure. S6.6. Per region fragment size distribution of chromosome 1 as summarized by the mean and standard
deviation across di�erent region scales. The orange-colored line denotes a single sample, whereas the blue line
is an aggregate of a collection of samples used here to compare as a baseline.

Leibler divergence (KLD) and can be used as a distance measure.
The KLD was not appropriate for this purpose, as all regions are compared in both

directions (each region is compared to all other regions on the other chromosomes); as it
is not symmetric, it would fail to generate a correct reference set. One caveat to consider
when using JSD is that no null probability is present in the compared distributions. We
have addressed this problem by uniformly padding the distributions so that the previous
null values become tiny probabilities. From a computational perspective, this probability
vector-based approach is much more expensive than using a single summary statistic per
region.

Once the reference set is constructed, a sample can be processed like that described for
the summary values. For example, to compute the Z-score of a query sample region, we
�rst combine the reference region distributions into a single combined distribution and
then compute the query region JSD for that combined distribution. Then, we obtain the
mean and standard deviation by computing the JSD of each reference region distribution
concerning the combined distribution. The region’s Z-score can then be derived from these
three values (JSD distance of the query region from the combined distribution, mean and
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standard deviation).
We found that this approach, WcrFFFS-JSD, which directly compares fragment size dis-

tributions, was ine�ective in predicting CNVs. In Figure S6.7 we show the average Z-scores
across chromosome 21 for each of the 526 samples for regions of 1 Mb size, comparing
WcrFFRC to WcrFFFS-JSD. The divergence-based method is not able to distinguish positive
from negative samples. We believe that the large amount of noise present in the distri-
butions may explain this poor performance and that JSD is too sensitive to cope with it.
We tried to reduce the in�uence of noise by capping the distributions to smaller ranges
(e.g., [125, 200]) or by smoothing the distributions, but this did not improve performance.
Considering only the performance of the fragment size average, we observed that it im-
proved as the region size increased (peaking at 10 Mb). The divergence-based approach
could perform better with higher coverage (for more accurate distribution reconstruction)
and larger region sizes. In addition, it might be interesting to investigate other distribu-
tion distance metrics, such as the Wasserstein distance (Earth’s displacement distance),
although initial experiments have not been promising.

Figure. S6.7. The average Z-score of all regions (1 Mb region size) on chromosome 21 for all 526 samples for
WcrFFRC compared to WcrFFFS-JSD
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7
Conclusion

Since the discovery of cell-free fetal DNA in 1997, non-invasive prenatal testing (NIPT) has
catapulted from a laboratory curiosity to the global standard for fetal aneuploidy screening.
It is now routinely o�ered in private and public sectors across America, Europe, and Asia,
with complete coverage of publicly funded NIPT programs rapidly expanding geographi-
cally. As NIPT advances, health policy regulators and clinicians must consider how such
testing might be delivered to populations ethically and a�ordably without compromising
clinical e�ectiveness. The promise of ever-increasing detection resolution will inevitably
also lead to the resolving of increasingly smaller copy number variations that may not
always be known to be pathogenic—or even interpreted in a clinical context—yet may have
substantial implications for the well-being of future families. This raises ethical questions
about what clinicians should disclose to prospective parents since any �nding may cause
uncertainty and anxiety even if they are considered “benign” variants under current knowl-
edge. Coupled with increasing misinformation presented on the internet, easily accessible
by patients searching for self-diagnosis, this could unnecessarily in�uence parents’ future
pregnancy planning and result in abortions of fetuses with variants of uncertain signi�-
cance that could be otherwise healthy. While addressing this ethical dilemma goes beyond
this thesis’s scope, I have some thoughts about this. One way to address this problem is to
ensure that clinicians provide accurate and up-to-date information to prospective parents
about the implications of NIPT results. Clinicians should be transparent about the limita-
tions of current knowledge and make it clear that any interpretation of �ndings should
be in the context of the individual patient’s clinical situation. They should emphasize that
any �ndings of uncertain signi�cance may not indicate a health problem and that further
testing may be needed to con�rm a diagnosis. Parents should also be encouraged to seek
out reliable sources; ideally, up-to-date information about prenatal testing is easily accessi-
ble to everyone, such as from their local health department, to help them make informed
decisions about their pregnancies. However, it may also be argued that this would only
add to the confusion and anxiety patients may already feel. Health policy regulators could
provide more guidance on how NIPT should be delivered to the public by establishing
standards for how NIPT should be o�ered and advertised; providing information on the
risks of self-diagnosis and the importance of getting accurate information from a medical
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professional; creating educational materials for patients and clinicians on the use of NIPT.
The scope of NIPT methodologies is extensive and tailored to speci�c applications such

as single gene disorders or aneuploidy detection. In addition, a range of options is available
to address the same challenge in NIPT. For instance, aneuploidy detection using NGS may
range from high-yield sequencing using heterozygous (tandem) single nucleotide poly-
morphisms to low-yield sequencing using coverage di�erentials across genomic regions.
Alternatively, other technologies such as microarrays, methylation pro�les, or �uorescence-
based techniques may be used. The choice of a particular method depends on the question
asked and the application required. However, an advantage of NGS is its �exibility to vary
capturing kit or sequencing yield depending on the application requirements. For instance,
establishing the copy number of a sizable genomic region (larger than any repeat) can be
achieved with short reads and low coverage since 1) the actual sequence content is not rel-
evant beyond establishing a genome alignment, and 2) the copy-number signal depends on
global coverage distributions of reads rather than any local di�erences. If smaller genomic
regions have to be surveyed genome-wide, coverage must increase to obtain su�cient
signal to detect di�erences in the coverage distributions of smaller regions. If repetitious
segments are analyzed, read length must increase, or in the case of paired-end reads, the
insert size must increase such that these repeats may be spanned.

Here, I showed how the coverage-based within-sample testing method remains relevant
as part of a NIPT application. It has the advantage of side-stepping issues inherent to
methods that directly compare to reference panels. Furthermore, I demonstrate how the
within-sample method can go beyond the coverage signal into a framework that integrates
additional genomic signals, such as the fragment size estimated from paired-end reads. The
proposed approach highlights the power of combining multiple signals and how such an
approach can overcome some of the challenges in NIPT concerning fetal CNV detection.
This highlights the importance of exploiting characteristics speci�c to a domain, which is, in
this case, the di�erence in fragment size of maternal and fetal DNA fragments. Although the
fragment size is not as predictive as the genome coverage, these signals, obtained from the
same data, when combined, lead to a more robust prediction at lower fetal fractions, with no
additional cost incurred. Currently, commonly used pairwise sequencing technologies can
easily establish genome-wide fragment size distributions, a powerful signal to use alongside
coverage. This could also be used in other applications, such as cancer diagnosis, using the
NIPT methods discussed. However, this is much more di�cult given the heterogeneous
nature of cancer, where many more chromosomes may be a�ected than would be expected
from NIPT. One of the assumptions used with within-sample testing is that only a subset
of chromosomes is a�ected so chromosomal regions can be compared with each other.
In cancer, the chromosomes may all have di�erent (segments of) ploidy, so this scheme
becomes di�cult and may require adaptations to the reference set to account for these
circumstances.

Although machine learning models such as deep learning can outperform traditional
statistical methods in tasks such as image classi�cation, object recognition, and segmen-
tation, they are not as well suited for clinical applications such as NIPT. In this context,
decision-making is not as straightforward as in computer vision tasks, and the risk of mis-
classifying results may be unacceptably high. The limitations of deep learning models in
the clinic are due in part to their complex and opaque nature, which limits their ability
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to provide a transparent explanation of how the model made a prediction. NIPT methods
require a high degree of interpretability, meaning that predictions must be explainable to
clinicians and patients to make informed treatment decisions. Even if their performance
improves, the models will be of limited use in the clinic if they cannot be interpreted.
Therefore, additional work is needed to understand the complex decision-making process
of deep learning models before clinical adoption can begin. Note that an interim solution
could use them with statistical methods side by side for clinical decision-making, as they
are not necessarily mutually exclusive.

With the continued development of sequencing technologies, the associated costs are
simultaneously decreasing, and high-throughput sequencing is becoming more accessible.
In the context of a within-sample testing method, which relies on the discretization of the
genome into larger regions, an increase in available sequencing coverage translates into an
easier transition to discretization into smaller regions so that more re�ned predictions can
be made. Ultimately, this comes down to a trade-o� between cost, availability, and required
resolution, which depends on the weighting of the prevalence and severity of genomic
disorders in our society. With the increasing prevalence of NIPT, the number of samples
available to construct reference sets will increase. Because within-sample testing still relies
on a reference set to map regions of similar behavior across the genome, an advantage of
a larger reference is to reduce the e�ects of sample-speci�c biases. It may also open up
opportunities to extend the test frame to be more speci�c, for example, to the fetal fraction
of a query sample. NIPT using low-throughput sequencing is sensitive to di�erent types
of bias. While some types of bias are unavoidable, such as those from di�erent sequencing
runs or instruments used, innovative technological advances are addressing others, such
as systemic sequencing errors, GC content, and PCR ampli�cation bias. Although current
methods attempt to correct these biases, it should be noted that they are imperfect and
introduce their respective noise. Ultimately, it is in our best interest to reduce the amount
of computational processing and rely on the raw sequencing data, as this also improves
the interpretability of the NIPT.

NIPT techniques are e�ective, but there are still several rare conditions and factors
to consider that can confound predictions. Examples of this include a vanishing or unre-
ported twin (because the extra DNA from the vanished twin gives the impression of fetal
aneuploidy) or maternal chromosomal aberrations (not found in the fetus), which can lead
to false positive predictions. Somatic mutations are another problem because they can
also be localized in subsets of cells, i.e., mosaics. Since NIPT is based on the sequencing of
circulating cfDNA, these subsets will only be represented by a small number of reads. Thus,
if the subsets are small enough, variation may remain undetected. Dealing with these rare
conditions is challenging in the context of the described NIPT method and may require
condition-speci�c supervised models trained on expert knowledge and clinical data. Future
studies will have to address these issues to improve the performance of NIPT in clinical
practice, which could be imagined as an array of models used side-by-side.
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8
Introduction

D NA, RNA, and protein measurements in tissue can elucidate a lot about someone’s
health and well-being. However, other important aspects may be overlooked if we

also neglect to consider a person’s interactions with their micro-environment. For hun-
dreds of millions of years, animals have had a close relationship with microbes, during
which time they have co-evolved [207]. Extensive research on the phylogenies of animal
hosts and their microbiota suggests that there is speci�c selection based on co-adaptation
[208]. Cooperative interactions between microbes and their hosts can bene�t both partners,
with the microbes participating in host functions such as defense and metabolism [209].
For example, when germ-free mice are compared to normal mice, it is evident that most
of the metabolites detected in plasma originate from microbiota [210], which highlights
the importance not only of a symbiotic relationship between animals and their microbial
communities but also how vital these relationships are for our health. Humans share their
livelihoods with many microbes, including bacteria, viruses, and archaea that potentially
outnumber the number of human cells and coding genes [211]. Most of these microbes
reside in the gut, with up to 2,000 bacterial species present at any given time [212].

The gut microbiota has a profound and far-reaching impact on our health; everything
from lifespan [213], pathogen protectivity [214], and immune system regulation [215], to
the development of in�ammatory bowel disease [216] and neurodegenerative disorders,
such as Alzheimer’s disease [217, 218], may be in�uenced by it. Given the sheer diversity
of conditions that may be impacted by the gut microbiota, measuring changes in its compo-
sition under varying conditions is crucial to better understanding diseases and developing
more targeted treatments. However, a challenge here is a high degree of variation between
populations and individuals in microbiota composition. This complicates the association
of speci�c taxa with particular conditions and is further confounded by the fact that there
is not a single universal con�guration of a healthy microbiota [219, 220]. A great diversity
of microorganisms are required to metabolize nutrients in adult diets, and low microbiota
diversity has been associated with conditions such as autism [221], autoimmune disease
[222], and obesity [223]. Hence, maintaining high bacterial richness and diversity is impor-
tant because it provides functional redundancy, adaptability, and overall stability against
environmental challenges [213].
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Everyone experiences aging di�erently [224], with some individuals experiencing de-
layed aging or ‘healthy’ aging, where they remain vital and healthy despite advancing
years [225]. Numerous factors may contribute to healthy aging, including genetics [226],
environment [227], lifestyle choices such as diet [228], exercise habits [229], or, social in-
teraction [230], and changes to the gut microbiota [213], all in turn a�ecting the rate of
age-related decline. The microbiota is constantly changing during di�erent stages of life
[231] but is especially unstable during infancy [232, 233]. When infants switch to a more
varied diet, their microbiota composition changes dramatically and becomes increasingly
complex and stable, gradually resembling an adult’s microbiota composition [233]. Once
established, the microbiota remains largely stable outside of intervention [234, 235]. The
gut microbiota changes substantially during the transition from a relatively stable health
state to deterioration of mental and physical health before death, even before any visible
symptoms appear [236].

The composition of the gut microbiota a�ects an individual’s metabolism by alter-
ing concentrations of critical metabolites, such as short-chain fatty acids, vitamins, and
lipids [237]. These compositional changes—which may occur through the addition, loss,
or changes in the abundance of microbial species—may a�ect a person’s aging trajectory
[213]. Previous studies have demonstrated that patients with in�ammatory bowel diseases
have a lower abundance of species that possess anti-in�ammatory qualities [238]. Addi-
tionally, the uptake of microbial metabolites into the circulation has also been shown to
a�ect behavior [239] and the development of neurodegenerative disorders [240].

Given the gut microbiota’s ability to in�uence various conditions, it would be advan-
tageous to create customized probiotics as a form of intervention [241]. Utilizing gut
microbiota-related signals associated with unhealthy aging may be feasible to achieve per-
sonalized microbial restoration through dietary intervention or fecal transplantation. Such
that previously lost bene�cial taxa may be replenished. In the context of the microbiota,
healthy aging thus involves the maintenance of diversity and abundance of protective
taxa as its deterioration can lead to age-related and disease-related problems. While these
two types of issues are overlapping and interactive, it is essential to note that they are
distinct from one another [213]. Identifying the taxa associated with (un)healthy aging
can be achieved by longitudinal studies tracking individuals over an extensive period and
relating the gut microbiota composition measured at intermediate time points to the �nal
physiological or clinical status. However, this is challenging. A widely used alternative is
to adopt a cross-sectional study design that strati�es older populations based on unhealthy
and healthy aging indices and then identi�es the corresponding taxonomic markers.

High-throughput sequencing is routinely used for microbiota analysis; popular meth-
ods include: shotgun sequencing and amplicon sequencing of taxonomic markers [242].
Shotgun sequencing provides broad coverage of genomic DNA, which may include bacteria,
viruses, archaea, and fungi [243]. While it has a high resolution (allowing for species-level
and even strains-level classi�cation) [244], it requires more complex data analysis and
higher sequencing yield for reliable classi�cations [243]. Amplicon sequencing is a type of
taxonomic survey that only targets speci�c taxonomic markers pervasive in the domain
under study. This limits both the resolution (to genus-level or species-level identi�cation)
[243], since only a tiny portion of the genome is surveyed, and the scope (for example,
targeting the 16S ribosomal RNA (rRNA) gene covers only bacteria) of taxonomic surveys.
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It may also be prone to ampli�cation bias, resulting in an uneven representation of taxa
[245]. While (deep) shotgun sequencing is considered the gold standard for microbiota
studies, amplicon sequencing remains popular [246]. This is because it is substantially
more a�ordable, and downstream amplicon data analysis is comparatively much more
straightforward.

Bacterial diversity can be assessed by amplicon sequencing of the 16S rRNA gene. This
gene is approximately 1500 bp long and contains nine hyper-variable regions interspersed
throughout the otherwise conserved sequence [247]. Despite the increasing availability of
long-read sequencers, most studies only partially sequence the 16S gene. This is because
the Illumina sequencing platforms have a lower cost and higher throughput. However, this
does limit the read length to shorter sequences (<300 bp). When targeting a speci�c region
of the 16S, certain taxa are more likely to be identi�ed than others, which introduces bias
towards those particular taxa [247]. While long-read amplicon sequencing would enable
more accurate identi�cation of taxa by reducing sensitivity to copy number variation [248]
and eliminating region-speci�c bias [247], other genomic regions may also vary between
bacteria, so not all variation may be assessed [249].

The primary methods to estimate microbial diversity from 16S amplicon sequencing
data are either by constructing operational taxonomic units (OTUs) by clustering sequences
together using an arbitrary distance-based identity threshold [250], or by constructing
exact biological sequences (ESVs) [251, 252]. In either case, a representation is obtained
that relates an absolute abundance to each OTU/ESV, i.e., the number of times a given
OTU/ASV, or taxon, appears in a sample. While ESVs-based methods are thought to be
superior to OTU-based methods because they are more speci�c and robust to sequencing
errors, resulting in fewer spurious sequences than OTUs [253]. OTU-based approaches may
be less likely to overestimate species richness [247] and deal better with (polymorphic) 16S
copy number variants [254], especially with long reads [247], which can skew estimates
of bacterial diversity if they are not accounted for. However, ESVs simplify comparative
analysis between studies as they have an intrinsic biological meaning that does not depend
on the reference database or study context – unlike OTUs [253].

A typical 16S ESV pipeline involves the following steps. Sequencing reads are �rst
pro�led for quality metrics, and accordingly, trimmed [255], de-duplicated [256], or error
corrected [257]. Such (corrected) reads are then processed and merged into ESVs [251, 252,
258–261]; potentially performing chimera [262] or length-based �ltering [263]. Taxonomic
labels may be assigned to the ESVs in a classi�cation process in which exact sequences are
matched with labeled sequences obtained from taxonomic databases [264]. For nearly all
ESVs, a classi�cation may be obtained down to the genus level [247].

Before conducting diversity- and di�erential abundance-analysis, it is essential to nor-
malize data [265, 266]. Di�erent experimental conditions can introduce biases that compli-
cate the comparison of absolute abundances across samples. Normalization helps to remove
these biases by accounting for sampling variability. Without normalization, systematic bias
may increase the false discovery rate and cause a loss in statistical power [267]. Sampling
variability can arise from di�erences in library size (the total absolute abundance that was
sequenced) between samples [268], which may be caused by for instance: di�erences in
sequencing kit [269], samples preparation and handling [270], PCR ampli�cation bias [271,
272], or sequencing center performance [273].
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Several measures are used to quantify di�erences between samples or groups. Often
such measures are applied top-down, each having a di�erent level of granularity. For ex-
ample, alpha diversity measures may measure diversity within a sample. Examples of such
measures include the richness [274], evenness [275], Shannon diversity index [276], or
Faith’s phylogenetic diversity [277]. Richness is a measure of the number of taxa present in
a sample, while evenness is a measure of how relatively abundant di�erent taxa make up
a sample’s richness. The relative abundance, or proportion, is the absolute abundance of
one taxon divided by the total absolute abundance for all taxa, which means that evenness
measures the (in)balance between all taxa in terms of abundance. Measures that quantify
both richness and evenness include the Shannon diversity index and Faith’s phylogenetic
diversity, with the latter being able to also account for the relatedness among species via
their phylogeny.

Beta diversity measures may be used to compare samples in terms of distance or dissim-
ilarity. This requires the construction of a distance/dissimilarity matrix by comparing pairs
of samples. A non-phylogeny-based metric such as the Bray-Curtis dissimilarity measures
the di�erence of absolute abundances between samples [278]. Phylogeny-based metrics
such as the (un)weighted Unifrac distance use the distances between sequences and the
proportion of shared and unique branches in samples within the reconstructed phyloge-
netic tree to quantify dissimilarity [279, 280]. The metric can be extended to include branch
length weighting, using relative abundances [281]. Beta diversity is often ordinated using
dimensionality reduction methods to inspect group di�erences. A frequently used method
for testing whether microbiota composition is di�erent given a meta-parameter (such as
a grouping), based on beta diversity measures, is a permutational multivariate analysis of
variance (PERMANOVA), which tests if the centroids of sample groupings di�er [282].

Di�erential abundance tests are key in understanding which speci�c taxa di�er between
two or more groups and determining the biological processes and functions associated with
such taxa. A di�erentially abundant taxon is one whose mean absolute abundance in the
ecosystem is signi�cantly di�erent concerning a covariate of interest. As mentioned, nor-
malizing the absolute abundances is crucial before performing any di�erential abundance
test. A popular but controversial normalization method that receives a disproportionate
amount of attention is rarefaction [283], which randomly subsamples samples to equalize
library size across all samples using a set threshold—the chosen threshold results in a trade-
o� between sample and diversity inclusion. It is excluded if the sample has a count lower
than the threshold. If the sample has a count higher than the threshold, it is down-sampled,
resulting in lost diversity. Although rarefaction has been critiqued because it can result in a
loss of statistical power [284]. It remains a useful normalization method when used before
explorative analysis and di�erential abundance testing [285–287]. This is because its loss
in statistical power is outweighed by its high control of false positives [285]. Given equal-
ized data using normalization methods such as rarefaction, proportion transforms [288], or
scaling with ranked subsampling [289]. Non-parametric tests, such as the Mann-Whitney
or Kruskal-Wallis test, may be used to determine di�erential abundances of taxa. However,
a problem with this method is that it does not consider the compositional structure of
microbiota data [290] and assumes that all samples have been equally sampled; potentially
leading to an in�ated number of false positives [284]. Nevertheless, they are still widely
used. A common problem with some (parametric) methods is the use of normalization/-
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transformation, which may over-correct variance across and between samples, ultimately
increasing the false discovery rate [291–293].

Many methods available have been successful in other domains, and these may also
be e�ective for microbiota analysis. For instance, methods that determine di�erential ex-
pression of genes in RNA-Seq data, such as edgeR [291] or DESeq2 [293] can readily be
translated to the microbiota domain to determine the di�erential abundance of taxa. Since
both domains deal with similarly sparse data [294]. However, while such methods work
well with gene expression data, they underperform with microbiota data, having inappro-
priately high false discovery rates [295, 296]. Microbiota data presents unique challenges
that make RNAseq methods for di�erential expression analysis unsuitable [297]. This is be-
cause these methods assume that only a tiny fraction of genes are di�erentially expressed,
which is often not the case for microbiota data [297], and a large proportion of taxa may be
di�erentially abundant between two conditions. Additionally, the sparseness of microbiota
data can exceed that of RNAseq data, such that speci�c methods cannot deal with the much
higher sparsity without additional �ltering steps. Given these drawbacks, there is a need
for methods speci�cally tailored for microbiota analysis that also respect the compositional
nature of this type of data, such as metagenomeSeq [298], ALDEx2 [299], and ANCOM2
[295, 300]. Of these methods, ANCOM2 was found to be most consistent across studies in
controlling the false discovery rate and having the most substantial concordance with other
di�erential abundance methods [296, 301]. ANCOM2 is an Aitchinson’s log-ratio-based
method that classi�es and accounts for di�erent sources of zeros in microbiota data [302].

Part III of this thesis places the human gut microbiota in the context of a cohort of
extremely aged Dutch individuals, i.e., centenarians, who remain cognitively healthy de-
spite their advanced age and related them to a cohort of younger controls and individuals
with Alzheimer’s disease. The di�erence between the cohorts provides an opportunity to
observe underlying di�erences in the composition of the gut microbiota, and we wanted
to determine if and how it contributed to cognitive health, longevity, and healthy aging.
Using 16S rRNA amplicon-based techniques, as discussed above, we determined the mi-
crobiota composition and analyzed which bacteria are present in these cohorts and what
di�erences exist between these groups through di�erential abundance tests. In the process,
we noted shared taxonomic patterns between the cohorts and di�erences that distinguish
them, consistent with known patterns in other studies of centenarians and healthy aging,
while also encountering microbiota characteristics that may be unique to the microbiota
of Dutch centenarians.
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This chapter is based on q T. Mokveld, B. J. H. Verhaar, A. Salazar, L. M. C. Lorenz, H. M. A. Hendriksen, F. de
Leeuw, Y. Pijnenburg, K. van Vliet, M. Graat, R. Kraaij, C. E. Teunissen, Z. Al-Ars, W. M. van der Flier, H. Holstege,
and M. Reinders. A Cross-Sectional Study of Compositional Pro�les of Gut Microbiota in Dutch Centenarians and
patients with Alzheimer’s disease, Under review.
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Abstract

The composition of human gut microbiota changes during aging and can be altered in disease
states, such as Alzheimer’s. To explore the role that gut microbiota may play in healthy aging
and longevity, we used metagenomic sequencing to determine the compositional di�erences
in gut microbiota associated with subpopulations in the Netherlands including cognitively
healthy centenarians (Age: 100.77±1.0, MMSE: 25.38±3.45) and a memory clinic population
of patients with AD dementia (Age: 66.0±8.0, MMSE: 20.27±5.84) and control subjects with
subjective cognitive decline (SCD, Age: 62.04±7.5, MMSE: 28.72±2.35). The fecal samples from
199 subjects were analyzed by sequencing amplicons derived from the V3-V4 region of the 16S
rRNA gene. Using a parallel taxonomic analysis, we found that while the gut microbiota of
AD dementia patients and SCD subjects shared similar taxonomic pro�les, a di�erent pattern
was found in centenarians. Centenarians had a higher diversity of core microbiota species
than those in the AD and SCD groups. We found that compared to those of AD dementia
patients or SCD subjects, centenarians displayed rearranged taxonomic patterns featuring
signi�cantly di�erent relative abundances of phyla Firmicutes and Proteobacteria, as well as
enrichment for certain bacterial species Ruthenibacterium lactatiformans, Bacteroides fragilis,
and, Christensenellaceae. In addition, some microbiota species that are typically abundant
in the guts of AD dementia patients or SCD subjects were depleted among centenarians, in-
cluding Faecalibacterium prausnitzii, Agathobacter rectalis, Subdoligranulum variabile, and
Roseburia.
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9.1 Introduction

The gut microbiota serves as an essential contributor to human health and disease [303],
playing a crucial role in modulating host physiology [304]. The mutual reliance between
hosts and their microbiota has been widely acknowledged [305]. Although the genome
remains relatively stable throughout an individual’s life [306], the gut microbiota exhibits
a dynamic nature, adapting in response to various factors such as diet [228], stress [307],
social interactions [308], and aging [213]. Such microbiota adaptations are a�ected by an
array of individual-, population-, and environmental-speci�c determinants encountered
in distinct geographical locations [309, 310]. The microbiota’s impact is evident in myriad
of conditions, such as neurodegenerative disorders [217, 218], irritable bowel syndrome
(IBS) [216], or healthy aging [213]. Consequently, the prospect for therapeutic intervention
targeting the intestinal microbiota is particularly promising [311], as this community of
microorganisms is highly diverse [312], adaptable [220], and receptive to external stimuli
[313, 314].

Improved living conditions and healthcare have resulted in an increasing number of
individuals reaching old age, which has led to a rise in age-related diseases and frailty
[315]. Consequently, there is a pressing need to investigate the mechanisms of longevity
to enhance the health and quality of life of the elderly. Recent research has highlighted the
signi�cance of the gut microbiota in promoting longevity [213, 224], with numerous studies
demonstrating the age-related di�erentiation of gut microbiota composition in humans
across di�erent populations and age groups [236, 316–320]. Although there is high inter-
individual variance, a sequential trajectory has been found between age transitions [316].
In mice, healthy aging has been linked to the prolonged retention of microbiota speci�c
to a younger age, with fecal microbiota transplantation from young mice reversing aging-
linked deterioration in aged mice [240]. Additionally, the loss of critical taxa during aging
that are essential for certain types of metabolism can be compensated for by the gain of
alternative taxa that perform the same type of metabolism [316, 319].

Centenarians, who are at the extremes of human aging, provide valuable information
about the mechanisms of longevity because they age most successfully and are well-adapted
to the challenges of aging. Centenarians have a unique set of (non)-genetic factors that
confer advantages [321], such as a lower incidence of chronic disease, lower mortality rates,
and longer life spans [321–323]. People who age well are characterized with a more diverse
gut microbiota is, whereas frail individuals have relatively less richness and diversity [213,
324]. These �ndings are recapitulated in the extreme cases of aging, where the microbiota
of centenarians is comparatively more diverse than that of younger individuals from vari-
ous populations [236, 316–320], more adaptable to opportunistic bacteria [325], and more
e�cient in lipid and amino acid metabolism [318].

Many factors in�uence the formation of the microbiota, resulting in high variability
of the microbiota between di�erent individuals and populations, especially when inte-
grated over a lifetime. Yet, despite this heterogeneity, there is signi�cant overlap in the
gut microbiota composition that emerges in centenarians. Centenarians have an increased
capacity for central metabolism production, including glycolysis and fermentation of cru-
cial metabolites, such as short-chain fatty acids (SCFAs) [237, 326]. Depletion of SCFA-
producing taxa has been associated with IBS [327] and neurodegenerative disorders such
as Alzheimer’s disease [328, 329]. Similarly, cross-sectional studies have shown that pa-
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tients with Alzheimer’s disease have a di�erent gut microbiota than healthy individuals,
suggesting that it may also play a role in the development or progression of the disease
[328–330].

In this cross-sectional study, we examined, Dutch subpopulations of cognitively healthy
centenarians [331] and a memory clinic cohort comprising individuals with Alzheimer’s
disease dementia or subjective cognitive decline, strati�ed based on indices of healthy and
unhealthy aging [332]. Prior research on this speci�c memory clinic cohort, as reported in
[329], has identi�ed gut microbiota characteristics speci�c to Alzheimer’s patients. Our ob-
jective was to juxtapose this group with cognitively healthy centenarians and middle-aged
controls to discern distinct microbiota signatures indicative of healthy or unhealthy aging
that extend beyond the scope of previous �ndings. We posited contrasting pro�les associ-
ated to healthy and unhealthy aging: characterized by a more diverse or robust microbiota
in successfully aging centenarians as opposed to a diminished diversity or resilience in the
gut microbiota of Alzheimer’s disease patients, as evidenced by the microbial alterations
observed in these subjects.

9.2 Methods

9.2.1 Sample specification

We included participants with available fecal samples from several populations in the
Netherlands. These were centenarians (CT) from the 100-plus Study cohort [331] and a
memory clinic population from the Amsterdam Dementia Cohort (ADC) [332] of Alzheimer’s
disease (AD) dementia patients and subjects without cognitive impairment (SCD). We
included 50 centenarians from the 100-plus study cohort, which selects participants for
preserved cognitive function. The 100-plus Study cohort includes Dutch-speaking indi-
viduals who can provide o�cial proof that they are 100 years of age or older, who report
being cognitively healthy (which is con�rmed by a proxy), who consent to give a blood
sample, while optionally giving a stool sample, who consent to (at least) 2 home visits
by a researcher, and who consent to an interview and a battery of neuropsychological
tests. We included 149 ADC subjects. Note that the microbiota pro�les of this particular
population have previously been studied [329]. All ADC subjects underwent neuropsycho-
logical assessment and neurological examination as part of a standard dementia screening
[333]. AD diagnoses were made by consensus at a multidisciplinary meeting according
to the National Institute on Aging-Alzheimer’s Association criteria [334]. Subjects with
SCD presented with memory complaints but did not show objective cognitive impairment
on neuropsychological testing nor meet criteria for dementia, psychiatric diagnoses, or
other neurological diagnoses, and were used as a control group compared with the two
other populations. Global cognitive functioning was assessed using the Mini-Mental State
Examination (MMSE) [335]. The characteristics of the subjects enrolled in this study, which
include only the common features found among all populations, are summarized in Ta-
ble 9.1. Although measurements of Alzheimer’s disease (AD) biomarkers were available,
they were not used in the study due to di�erences in data availability. The centenarian
cohort had biomarker data only from plasma, while the ADC has data from cerebrospinal
�uid (CSF) measurements.

Subjects were asked to store their feces sample in a freezer, samples were transported to
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the hospital in a cooling bag. Samples were shipped to Erasmus Medical Center, Rotterdam,
the Netherlands, for sequencing. Aliquots of ~300 mg feces were homogenized. DNA was
isolated using bead-beating and the InviMag Stool DNA kit (Invitek Molecular GmbH,
Berlin, Germany) on a KingFisher Flex robot (Thermo Fisher Scienti�c, Breda, Netherlands).

Table. 9.1. Characteristics of study subjects

SCD AD CT
Subjects (n) 116 33 50
Sex (male/female) 65/51 (56/44%) 18/15 (54.5/45.5%) 20/30 (40/60%)
Age (yr) 62.0±7.5 [44,80] 66.0±8.0 [48,85] 100.8±1.0 [100,106]

MMSE (0, 30) 28.7±2.4 [9,30] 20.3±5.8 [0,29] 25.4±3.5 [15,30]

a The total number of subjects is 199, excluding individuals with unquali�ed stool samples or insu�cient
sequencing data. MMSE: mini-mental state examination. Value for parameters are shown as mean ±
SD [range], for each group.

9.2.2 Gut microbiota determination

Fecal microbiota composition was determined by sequencing the V3-V4 hypervariable
regions of the 16S rRNA gene on an Illumina MiSeq platform (Illumina Inc., San Diego,
CA, USA) using 319F (ACTCCTACGGGAGGCAGCAG) -806R (GGACTACHVGGG TWTC-
TAAT) primers and dual-indexing. Pre-processing and data analysis were matched with the
procedures in [329]. The obtained sequence data consisted of high-quality �ltered reads.
Before further processing, samples were excluded with insu�cient read count by setting
a cut-o� based on the read count distributions (Supplemental Figure S9.1). 5 ADC and 2
CT samples had insu�cient counts and were excluded from the study. 16S rRNA primers
were removed from the paired sequencing reads using TagCleaner v0.16 [336].

The reads were then processed into exact sequence variants (ESVs) using DADA2
v1.22.0 [260] as follows: after reviewing the read quality pro�les, 50 bases were trimmed
from the 5’ end of the forward reads, and 60 bases from the 5’ of the reverse reads. Reads
were truncated at the �rst base with a Q score less than 4, quality �ltered using 2 maxi-
mum expected error for forward reads, and 4 maximum expected errors for reverse reads
— allowing no ambiguous bases. Reads were also de-duplicated and the remaining �ltered
reads were used to learn error rates and to infer ESVs separately for forward and reverse
reads. The ESVs for the forward and reverse strands were merged by allowing no mis-
matched bases and requiring a minimum overlap of 20 bases. ESVs were deleted if they
were chimeric or if their length was outside the [350,500] range.

Taxonomy down to the species level was assigned using RDP to the remaining ESVs
using DADA2, and the SILVA databases v.138 [337], allowing up to 3 multiple species-level
assignments. It is possible for distinct ESVs to correspond to the same taxa, either due to
ambiguous taxonomic assignment or genetic variation within strains. In such cases, the
ESVs are considered separate biological features and are not merged. If a species for an
ESV was not classi�ed using the methodology described, BLAST was utilized to assign it,
provided that an unambiguous match was identi�ed. If no match was found, the taxa or
ESVs were left unlabeled and explicitly tagged. To generate multiple sequence alignments
of the ESVs, we used MAFFT v7.475 [338], and the phylogeny was reconstructed using
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FastTreeDBL v2.1.11 [339]. The ESVs, taxonomy, phylogenetic tree, and metadata were
integrated using the R package, phyloseq v1.38.0 [340].

9.2.3 Data normalization

Data were normalized to correct for variability between samples and between cohorts due
to sampling di�erences (Supplemental Figure S9.1). Doing so enables modeling the actual
abundance in the original samples from the read counts and ensures that the abundance
distributions conform to the needs of statistical analysis. The high variability of results
generated by di�erential analysis methods can be attributed to various factors, including:
1) violation of test assumptions due to data compositionality; 2) excessively high false
discovery rates (FDR); 3) inadequate addressing of the high sparsity of microbiota data;
and 4) di�erences in the number of ESVs that are identi�ed as signi�cantly di�erentially
abundant [296].

Therefore, to ensure more robust biological interpretations in the di�erential analysis,
two independent normalization methods were used in parallel. This approach aimed to
mitigate the issues mentioned earlier and provide a more reliable result. The �rst choice
was rarefaction, a method that randomly subsamples sequences and removes them from
the sample library up to a de�ned library threshold, thus equalizing all samples [283]. Al-
though rarefaction results in a loss of statistical power, this was found to be o�set by its
high control of false positives [285]. The library threshold for rarefaction was determined
by generating rarefaction curves [341] (Supplemental Figure S9.2), and ultimately set con-
servatively so that no sample was excluded from either cohort, with 20,000 counts per
sample (Supplemental Figure S9.3). The second normalization technique, ANCOM2 [295,
300], a compositional method, was chosen because it is conservative and has a high degree
of concordance in benchmarks between di�erential analysis methods [296]. ANCOM2
uses the additive log-ratio transformation where the reference is the count abundance of
a single taxon, which should be present with low variance in read counts across samples.
In this case, the ratio between the reference taxon chosen and each taxon in that sample
are compared across di�erent sample groupings [295, 300].

9.2.4 Statistical analysis

The rare�ed data were used to compare the composition of the microbiota between groups,
and measures of α-diversity, including richness [274], evenness [275], and Shannon’s di-
versity index [276] were determined. Groups were statistically tested using Wilcoxon
rank-sum tests with Benjamini-Hochberg (BH) correction. The β-diversity of the groups
was compared on the basis of the unweighted Unifrac distance [279, 280], visualized using
non-metric multidimensional scaling (NMDS), and tested with permutational multivariate
ANOVA (PERMANOVA) after conformation of heteroscedasticity between groups [282].
To determine the determinants contributing signi�cantly to the NMDS loadings of spe-
ci�c groups, vector �tting permutation tests were used [342]. Kruskal-Wallis tests were
performed to determine if there were signi�cant di�erences in phyla between groups, fol-
lowed by Dunn’s post hoc multiple comparison test. Di�erential analysis of rare�ed data
was performed by determining the relative abundance of taxa and then pooling taxa at the
genus level based on the median relative abundance across all samples. The threshold for
pooling was set at ≥ 0.25%. Signi�cance of taxa between groups was tested using Kruskal-
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Wallis tests. Pairwise tests between signi�cant taxon groups were then performed using
Wilcoxon rank-sum tests; both tests were BH-corrected. ANCOM2 requires pre-processing
prior to di�erential analysis by examining ESV abundances to identify di�erent subtypes
of zero so that they can be accounted for [300]. Taxa were �ltered out if their proportions of
zeros were greater than 90% in all samples. A pseudo-count of 1 was applied to the dataset
to allow for log transformation. The signi�cance of all additive log ratios for each taxon
was tested using Wilcoxon rank-sum tests, and p-values were again corrected by BH. In
ANCOM2, a detection threshold is applied as described in the original publication [295,
300], whereby a taxon is said to be di�erentially abundant if the corrected p-values reach-
ing nominal signi�cance for that taxon were greater than 70% of the maximum possible
number of signi�cant comparisons.

9.3 Results

9.3.1 α/β-diversity measurements

Per subject in the CT and ADC cohorts, respectively, we had ~214,236 (±89,463) and ~140,175
(±28,370) reads. From the 199 samples, we constructed 9,216 exact sequence variants (ESVs),
of which 8,855 remained after rarefaction. When classi�ed to the genus level, this yielded
284 groups (283 genera and one unidenti�ed group). The CT group had the most distinct
genus classi�cations (127), and the AD group had the fewest (34). The data set included
393 ESVs found in at least 20% of the samples in all cohorts. Based on the calculated α-
diversity measures, as shown in Figure 9.1, there were signi�cant di�erences in the CT
group’s richness and evenness measures with respect to the AD and SCD groups (and no
di�erence between AD and SCD), but none given the Shannon diversity index.

The β-diversity of the microbial community was determined by calculating the un-
weighted UniFrac distances. The (dis)similarity, distribution, and clustering of subjects
in the di�erent groups were visualized by applying NMDS on the unweighted UniFrac
distances of the ~8,855 ESVs (Figure 9.2). A slight shift was present between the clusters
corresponding to the AD and SCD groups. The CT group, on the other hand, showed a pro-
nounced shift regarding the AD and SCD. Pairwise PERMANOVA tests on the unweighted
Unifrac showed that the CT group di�ered signi�cantly from the AD and SCD groups
(p < 0.001). At the same time, we observed no signi�cant di�erences between the AD and
SCD groups (p > 0.05). A few dominant genera largely drove the distribution of individuals
in the NMDS. Genera contributing signi�cantly to the ordination of CT samples, using vec-
tor �t permutation tests, p < 0.01 and R2 > 0.25, included Faecalibacterium, Flavonifractor,
Eggerthella, Eisenbergiella, Anaerotruncus, and Family XIII AD3011 group. Vector permu-
tation tests on metadata variables showed that age was a signi�cant factor in explaining
variation between groups. In contrast, no sex- or MMSE-speci�c di�erences were observed.

9.3.2 Microbiota composition

At the phyla level, analysis of the taxonomy and composition of the three groups showed
the presence of four predominant phyla that accounted for ~98.80% of all sequences detected
in the samples: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria (Figure 9.3a),
which is consistent with previous results from human gut studies. Firmicutes was the most
abundant phylum detected in the SCD, AD, and CT subjects, accounting for averages of
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Figure. 9.1. Alpha measures: richness, evenness, and the Shannon diversity index, calculated on the rare�ed data
per group.

Figure. 9.2. NMDS plot of unweighted Unifrac distances per group. The pairwise PERMANOVA p-values are
shown for the groups with signi�cant di�erences.

~78.0%, ~77.1, and ~71.3% of total sequences, respectively. Between the AD and SCD control
groups, no signi�cant change was observed. However, the CT group had an increase in the
proportion of Proteobacteria (6.26%), p = 0.00002, compared to the SCD (~1.73%) and AD
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(~1.44%) groups. In addition, the CT group had a signi�cant reduction in the proportion of
Firmicutes, p = 0.004, compared to the SCD group. The other phyla Actinobacteria (~2.78%,
~3.89%, ~2.52%) and Bacteroidetes (~16.8%, ~16.5%, ~18.0%) were also present in the SCD,
AD, and CT groups, respectively, but no signi�cant di�erences between groups were found.
As the two most abundant phyla in the gut, the Firmicutes/Bacteroidetes ratio is often used
as an index of the structure of the gut microbiota [343]. However, no signi�cant di�erence
in the ratio, 5.58 : 5.26 : 4.51 (median of SCD : AD : CT), was found between the groups.

(a) (b)

Figure. 9.3. The microbiota composition of the SCD, AD and CT groups in terms of relative abundance was
obtained from the rare�ed data. a) Phylum-level composition. b) Genus-level composition of the top 20 genera.

9.3.3 Differential abundance analysis

The relative abundance of the 20 most abundant genera in the gut microbiota of the groups
was determined to further explore the composition of the gut microbiota (Figure 9.3b). We
observed lower abundance of genera belonging to Blautia, Faecalibacterium, Agathobacter,
Subdoligranulum, andBi�dobacterium in centenarians compared to the AD and SCD groups,
with genera UCG-002, Bacteroides, and Escherichia-Shigella enriched. To determine and test
the di�erential abundance of genera/species in the rare�ed data, ESVs were selected from
the groups based on their median relative abundance (≥ 0.25%) and otherwise pooled, as
shown in Figure 9.4, with signi�cant di�erences annotated.

Pairwise tests were performed between the SCD, AD, and CT groups to determine
di�erential abundance from the absolute count data using ANCOM2, as shown in Table 9.2.
ANCOM2 �ltered out ESVs for which count data were too sparse (≥ 90% zeros in all sam-
ples), resulting in ~800 tested ESVs. We considered ESVs to be di�erentially abundant
if 1) the number of rejections of the null hypothesis (the average abundance of a given
taxon in one group is equal to that of the other group) for a given ESV was ≥ 70% of
the total ESVs tested. 2) the absolute mean di�erence in the additive log ratio between
groups was ≥ 0.5. The di�erential abundance methods produced consistent results in four
ESVs. These ESVs are Escherichia-Shigella spp., Ruminococcus torques, Faecalibacterium
prausnitzii, and Lachnospiraceae ND3007 group. In the case of Escherichia-Shigella spp. and
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Figure. 9.4. Di�erential analysis of relative abundance of rare�ed and median pooled (≥ 0.25%) data tested in SCD,
AD, and CT groups using Kruskal-Wallis tests and pairwise testing between groups of signi�cant ESVs (shown
in black) using Wilcoxon rank-sum tests. Colored lines connect ESVs corresponding to the same taxa. ESVs in
bold were also found to be signi�cant in the ANCOM2 analysis (Table 9.2). For example, an ESV corresponding
to Blautia wexlerae was found to be signi�cantly less abundant within the CT group relative to both the AD
and SCD groups, whereas no signi�cant di�erence was found for the ESV corresponding to Coprococcus comes
between any of the groups.
*ESVs in which species remained unclassi�ed, assigned using BLAST without allowing for any ambiguity.
**ESVs where no unambiguous hits were found using BLAST.

Ruminococcus torques, their abundance increased, while for Faecalibacterium prausnitzii
and Lachnospiraceae ND3007 group, their abundance decreased in CT compared to SCD or
AD. One ESV: Bacteroides uniformis, was found to be more abundant in CT concerning SCD
and AD only using ANCOM2. The other ESVs found to be di�erentially abundant with AN-
COM2 all had a median relative abundance of < 0.25% in the rare�ed data, where they were
also di�erentially abundant. Several distinct ESVs, all corresponding to (potentially di�er-
ent strains of) the taxa Christensenellaceae R-7 spp., were found to be both less abundant
(rarefaction analysis) and more abundant (ANCOM2 analysis) in the CT group compared
to the AD and SCD groups. ANCOM2 found no signi�cant di�erence between the AD
and SCD groups, and only a single ESV corresponding to Faecalibacterium prausnitzii was
di�erentially abundant between the AD and SCD groups in the rare�ed data.
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Table. 9.2.Di�erential abundance analysis using pairwise ANCOM2 testing between the groups ranked according
to the additive log ratio (ALR) mean di�erence in abundance given a grouping. For example, in CT - SCD, a positive
ALR indicates that a taxon is more abundant in CT; conversely, a negative ALR indicates that a taxon is more
abundant in SCD. Only di�erentially abundant ESVs exceeding the 70% threshold and those with a mean absolute
ALR di�erence ≥ 0.5 are shown. ESVs marked in black or gray are also signi�cant with the rarefaction approach
with median relative abundance ≥ 0.25% (Figure 9.4) and < 0.25%, respectively. ESVs marked in bold are signi�cant
according to ANCOM2 but not with the rarefaction approach.

CT - SCD CT - AD
ESV ALR ESV ALR
Escherichia-Shigella spp.** 1.93 Ruminococcus torques* 1.57
Ruthenibacterium lactatiformans* 1.80 Escherichia-Shigella spp.** 1.53
Ruminococcus torques* 1.78 Eubacterium coprostanoligenes* 1.32
Ruminococcus gnavus* 1.08 Bacteroides uniformis 1.29
Christensenellaceae R-7 spp.** 1.07 Ruthenibacterium lactatiformans* 1.22
Faecalibacterium prausnitzii -0.97 Ruminococcus gnavus* 1.01
Eubacterium siraeum* 0.93 Faecalibacterium prausnitzii -0.71
Bacteroides thetaiotaomicron* 0.90 Christensenellaceae R-7 spp.** 0.58
Bacteroides uniformis 0.81
Roseburia intestinalis -0.70
Christensenellaceae R-7 spp.** 0.66
Lachnospiraceae ND3007 group** -0.59
Bacteroides fragilis 0.59
Ruminococcus faecis* -0.54
Alistipes �negoldii 0.53
Lachnoclostridium spp.** 0.52
* ESVs in which species remained unclassi�ed, assigned using BLAST without allowing for any ambiguity.
** ESVs where no unambiguous hits were found using BLAST.

9.3.4 Core gut microbiota

We identi�ed the core gut microbiota by classifying the top 15 bacterial taxa at the species
level, or at the genus level if species identi�cation was not possible. We determined the
prevalence of these taxa among all subjects in the SCD, AD, and CT groups and ranked
them accordingly, as shown in Table 9.3. Eight taxa belonging to the major phyla of Fir-
micutes were common to all groups. Five taxa were commonly found in the SCD and AD
groups and may di�erentiate these from the CT group because these particular taxa are
present at a much lower prevalence than in the other groups. One additional taxon Lach-
nospiraceae ND3007 group, one taxon Collinsella aerofaciens, and six taxa Ruthenibacterium
lactatiformans, Ruminococcus torques, Escherichia-Shigella spp., Family XIII AD3011 group,
Bacteroides uniformis, and Alistipes onderdonkii, showed high prevalence only in the SCD,
AD, and CT groups, respectively, and may allow for group di�erentiation.



9

120 9 Gut microbiota composition in centenarians and AD patients

Table. 9.3. The core gut microbiota of SCD, AD, and CT in terms of prevalence (the percentage of subjects in
each group with a particular ESV). ESVs marked in bold have a higher prevalence in one group than in the other
groups. ESVs marked in gray share a high prevalence across all groups.

SCD AD CT
Taxa Prev. (%) Taxa Prev. (%) Taxa Prev. (%)
Blautia wexlerae 100.0 Blautia wexlerae 100.0 Blautia faecis 100.0
Anaerostipes hadrus 100.0 Subdoligranulum variabile* 100.0 Blautia wexlerae 98.0
Blautia faecis 99.14 Blautia obeum 100.0 Ruthenibacterium lactatiformans* 98.0
Fusicatenibacter saccharivorans 99.14 Blautia faecis 100.0 Blautia obeum 98.0
Blautia massiliensis 99.14 Blautia massiliensis 100.0 Blautia massiliensis 98.0
Subdoligranulum variabile* 97.41 Dorea longicatena 96.97 Escherichia-Shigella spp.** 94.0
Blautia obeum 97.41 Faecalibacterium prausnitzii 96.97 Fusicatenibacter saccharivorans 94.0
Agathobacter rectalis* 97.41 Anaerostipes hadrus 93.94 Ruminococcus torques* 92.0
Dorea formicigenerans 97.41 Fusicatenibacter saccharivorans 93.94 Monoglobus pectinilyticus* 92.0
Faecalibacterium prausnitzii 95.69 Dorea formicigenerans 93.94 Anaerostipes hadrus 90.0
Monoglobus pectinilyticus* 95.69 Anaerobutyricum hallii 93.94 Dorea longicatena 88.0
Lachnospiraceae ND3007 spp.** 94.83 Monoglobus pectinilyticus* 93.94 Family XIII AD3011 group** 88.0
Dorea longicatena 93.97 Coprococcus comes 90.91 Bacteroides uniformis 88.0
Anaerobutyricum hallii 93.97 Agathobacter rectalis* 90.91 Alistipes onderdonkii 88.0
Coprococcus catus 93.97 Collinsella aerofaciens 90.91 Coprococcus catus 88.0
* ESVs in which unclassi�ed species were assigned using BLAST without allowing for any ambiguity.
** ESVs where no unambiguous hits were found using BLAST.

9.4 Discussion

In this work, the gut microbiota of centenarians was compared to that of memory clinic
subjects to identify potential community structures associated with either Alzheimer’s
disease or healthy aging. By understanding the gut microbiota of these groups, it may be
possible to contribute to a better understanding of both conditions. We found signi�cant
di�erences in the composition of the gut microbiota of centenarians. In agreement with
previous �ndings in other cohorts of centenarians [236, 316–320], richness and diversity
were higher compared to the comparatively younger AD and SCD groups.

Only slight di�erentiation was found within the memory clinic population, with the
AD patients and SCD subjects clustering together and showing insigni�cant variance in the
PERMANOVA analysis, as has also been shown previously using the same methodology
[329]. Across the groups most of the identi�ed microorganisms belonged to Firmicutes and
Bacteroidetes at the phylum level, while Proteobacteria, Actinobacteria, and other phyla
contributed less than 10% of the total. Therefore, the overall composition of the Dutch
gut microbiota at the phyla level was similar to that observed in other populations [236,
316–320]. The association between changes at the ESV level and taxonomic rank becomes
less obvious with higher taxonomic rank; however, large-scale trends can still be observed.
ESVs classi�ed at the phyla-level Bacteroidetes, and Actinobacteria were similar in all
groups. In contrast, the abundance of Firmicutes and Proteobacteria revealed large-scale
di�erences in centenarians regarding the memory clinic cohort, decreasing and increasing,
respectively. Although the ratio of Firmicutes/Bacteroidetes in centenarians was lower
than in younger groups, this was not a signi�cant di�erence, as has been observed in other
cohorts. The class Clostridia, belonging to the phylum Firmicutes as well as the phyla
Bacteroidetes and Proteobacteria, dominated the gut microbiota of the Dutch subjects;
approximately 90% of all subjects shared them. It should be noted that several genera were
relatively consistent between groups, with members of the genus Blautia genus being the
most consistent. In contrast, members of the genera Monoglobus, Anaerostipes, Dorea, and
Fusicatenibacter were more variable. These genera may be part of a core microbiota for
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these cohorts and perhaps for residents of the Netherlands in general.
Among the inhabitants of the gut microbiota, SCFA-producing bacteria are some of

the most important; major SCFA producers include the genera Faecalibacterium, Rose-
buria, Eubacterium, Dorea, Coprococcus, and Blautia, with their metabolites being vital to
human health, particularly in the case of butyrate. The many properties of butyrate have
been shown to prevent or delay age-related decline, including improving gut barrier func-
tion and insulin resistance, as well as delaying in�ammation, cancer development, and
cognitive decline [213]. In Dutch centenarians, several butyrate-producing bacteria are
more abundant, including Ruthenibacterium lactatiformans and Bacteroides fragilis, indi-
cating that centenarians may possess taxa associated with longevity. However, several
other butyrate-producing bacteria usually associated with health in younger age groups
are present in centenarians in lower abundance, including Faecalibacterium prausnitzii,
Agathobacter rectalis, Roseburia, and Subdoligranulum variabile. In addition, the health-
associated Bi�dobacterium decreases in aging individuals, although, as with the reduced
genera Faecalibacterium and Fusicatenibacter, this phenomenon is expected [344]. Note that
the loss of these taxa is not as severe in healthy older individuals and that the gain of other
health-related taxa may also o�set the loss of these taxa [344, 345]. For example, we observe
an inconsistent increase in the genus Christensenellaceae, a potential ecosystem signature
in individuals with extreme longevity or a healthy aging trajectory [325], which is often
lost when transitioning to a state of physiological decline, such as frailty [346] or cognitive
decline [347]. In addition, age-related impairment of Roseburia shows variation between
studies, where, as in the present study, a reduction is observed in other centenarian popu-
lations [318, 320]. Centenarians had a greater abundance of UCG-002, which is positively
correlated with more active individuals and physical activity [348]. Furthermore, we noted
an increase in potential bacterial pathogens such as Ruminococcus and Escherichia-Shigella
spp., both of which were associated with unhealthy aging [213]. Although other taxa may
have suppressed the deleterious e�ects of these pathobionts, previous work has shown
a spike in these taxa before death [236]. Finally, in another cohort of aging individuals
studying physical frailty and cognitive health, unhealthy aging was characterized by an
increase in the genera Ruminococcus and Blautia, with a decrease in Christensenellaceae
among the other genera and an overall decrease in diversity [347].

Previous cross-sectional studies of di�erences in gut microbiota between AD patients
and controls found that several microbes were less abundant, including Faecalibacterium
prausnitzii, Eubacterium, Anaerostipes, Ruminococcus, and Roseburia. In contrast, other mi-
crobes were more abundant, such as Bacteroides and Alistipes [328, 330] and [329]. Of these
taxa, we observed only a decrease in Faecalibacterium prausnitzii in AD patients relative to
SCD subjects; note that this particular taxon is even less abundant in healthy centenarians.
Furthermore, the taxa Eubacterium, Ruminococcus, Bacteroides, and Alistipes were more
abundant in the centenarians, with Roseburia being less abundant. Overall, the observed
decrease of Faecalibacterium prausnitzii in AD patients and distinct gut microbiota pro�le
in healthy centenarians emphasize the intricate connection between gut microbiota, aging,
and neurodegenerative conditions.

Because of the variability in results introduced by di�erent normalization or di�er-
ential abundance methods, we opted for a consensus of two independent approaches to
analyze our data: rarefaction and ANCOM2. The reasoning behind this approach is that a
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robust result should appear across multiple independent methods. We found that the meth-
ods identi�ed a similar set of di�erentially abundant taxa, with almost no disagreement.
However, ANCOM2 is substantially more conservative than the rarefaction approach. This
suggests that a consensus approach based on multiple di�erential abundance methods may
help to achieve a more reliable result. Since discrepancies between di�erent methods can
be resolved by considering the results in a broader context, while concordant results can
highlight robustness. Using multiple methods for normalization and di�erential abundance
analysis introduces additional complexity into the process, as they may require di�erent
pre-processing or �ltering steps. Interpretation of results can also become more di�cult, es-
pecially if there are discrepancies between methods. Furthermore, there are no well-de�ned
methods to unify the results of several independent methods. It is therefore essential to
consider the limitations of each method and the impact they may have on the results. In
addition to the cost of analysis, it is also di�cult to determine which methods are most
appropriate for a given data set. The optimal approach to this issue is currently unknown,
and we recommend that the use of multiple methods be evaluated on a case-by-case basis
or informed by benchmark studies.

Rarefaction, being a random process, o�ers only a snapshot of the microbial community
at the smallest normalized library size, omitting a random subset of observed sequences
and introducing arti�cial variation. Repeating rarefaction and downstream analysis with
di�erent seeds can help account for this data loss.

Although we found signi�cant di�erences in the richness and evenness measures, the
Shannon diversity index (a function of richness and evenness) was nearly identical between
groups. The index’s inherent weakness is that it can yield identical results for di�erent
combinations of richness and evenness. This emphasizes the importance of utilizing mul-
tiple measures when assessing diversity, in order to provide a more comprehensive and
contextual understanding of the microbial community structure

In conclusion, the gut microbiota of centenarians exhibits several characteristics that
appear to be universal across di�erent geographic populations. These characteristics may
be a consequence of adaptations to aging and allow the gut microbiota to better resist the
e�ects of aging. Di�erentiation appears to be primarily age-related, and we did not observe
sex-speci�c di�erences, which is consistent with previous �ndings that sex-speci�c char-
acteristics decrease with age [349]. However, the characteristics of the shared microbiota
and the impact on the health of centenarians remain unclear at this stage.

9.5 Supplementary materials
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Figure. S9.1. Read distributions of the centenarian (CT) and memory clinic (ADC) populations.

Figure. S9.2. Rarefaction curves.

(a) (b)

Figure. S9.3. Per sample read counts and per ESV counts. a) Un-normalized data. b) Rare�ed data.
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10
Conclusion

The gut microbiota has increasingly been shown to be involved in a wide range of human
health conditions that have been studied to date. However, the microbiota is a complex
ecosystem of many bacterial species of which the functional e�ects of the individual are
often unknown or poorly understood, especially in the context of the broader community
of bacteria that interact with one another. The microbiota’s relationship with the host is
further complicated since it interacts with multiple facets of host physiology. Nevertheless,
it is vital to put the microbiota into the context of many di�erent conditions to better under-
stand its involvement in human health and disease. Yet, unlike the genome, the microbiota
is in constant �ux, with massive inter-individual and population-speci�c di�erentiation
that can be a�ected by nearly any factor imaginable. Moreover, microbiota composition
varies within a given individual’s life span, making it di�cult to study it holistically to link
composition to function. While it is possible to determine the di�erentiating taxa between
conditions, it remains challenging to link taxa to function, mainly because of the robust
adaptability of the microbiota to compensate for any imbalance or missing taxa. Ultimately,
there is no ideal or optimal microbiota con�guration but rather a personalized bacterial
signature that enters into a dynamic balance, given that its functional redundancy may
lead to the same functional outcome regardless of the taxa present. Hence, investigating
the microbiota composition should be regarded as a �rst step toward understanding the
microbiota’s e�ects on the host.

The metagenomics analysis in this work relies on partially sequencing the 16 rRNA
gene 16S, a taxonomic marker that encodes approximately 1,500 bp of information. This
approach makes a trade-o� by sacri�cing the accuracy of taxonomic assignment and phylo-
genetic resolution in exchange for more a�ordable deep sequencing than would otherwise
be possible with WGS. It is essential to keep in mind the bias introduced by partial se-
quencing since di�erent sub-regions of 16S result in classi�cation variation across phyla
and is inadequate for complete species level assignment. Such bias must be considered
when comparing results from metagenomic analyses relying on 16S sequence classi�ca-
tion, especially across studies that use di�erent gene regions. The current availability of
third-generation technologies means that high-throughput sequencing of the complete 16S
gene is becoming more a�ordable and reliable due to fewer systemic sequencing errors and
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PCR bias. Long reads facilitate more sensitive discrimination of di�erent taxonomic levels,
such as closely related strains, and identify multiple copies of 16S in species. Nevertheless,
sequencing 16S alone will not provide a representative view of bacterial diversity in an
ecosystem as it excludes all other discriminatory variations encoded within the genome,
such that a shift to shotgun metagenomics will be essential to resolve species- and strain-
speci�c variations.

Di�erential abundance analysis, which aims to detect taxa that di�erentiate ecosys-
tems, is a complex problem in metagenomic studies because of the inaccessibility of the
data needed to draw conclusions about microbial taxa that di�er between two or more
ecosystems. This problem stems partly from the di�culty of 1) obtaining samples from dif-
ferent ecosystems; 2) identifying and quantifying all the di�erent taxa present in a sample;
3) accurately comparing samples from di�erent ecosystems. An important unobservable
parameter that impacts the di�erential abundance analysis is the random sampling of a
sample from an ecosystem, which is a�ected by the size of the sequencing library, the total
number of bacteria present in a sample, and the fraction of the sample obtained from the
ecosystem. It is di�cult to correct for this sampling because the number of taxa present
in a sample is usually unknown or a�ected by sampling a subsystem in an ecosystem. Yet,
as discussed, some methods attempt to correct these uncertainties when comparing sam-
ples. Another challenge is that the observed microbiota data are absolute abundances with
a high proportion of zeros, making it di�cult to determine which taxa are di�erentially
abundant. It is di�cult to assess whether and how this rarity should be addressed before
di�erential analysis, although excluding taxa found in only some samples seems reasonable.
The fundamental reason is that otherwise, the burden of correcting multiple tests becomes
so great as to preclude the identi�cation of any di�erentially abundant taxa. It should be
recognized that more work is needed to establish an optimal threshold rather than arbi-
trarily selecting one. The microbiome �eld lacks consensus regarding standardization and
di�erential analysis; this can make it di�cult to transfer and generalize results from one
study to another, as speci�c methods produce very di�erent results. Therefore, using only
one method in a study may be inadvisable, as this will likely introduce bias. Furthermore,
it is necessary to use the same methodologies to eliminate this method-speci�c bias when
comparing studies. A consensus approach based on multiple di�erential abundance meth-
ods might yield more robust result. In other words, if di�erent methods produce similar
results, we can have greater con�dence in those results. However, discrepancies between
methodologies can also highlight the robustness of speci�c results across independent
studies.

This work investigated the gut microbiota composition of di�erent subpopulations
in the Netherlands. These subpopulations included those who were healthy, those with
Alzheimer’s disease, and those who were cognitively healthy centenarians. There is ex-
cellent potential to identify microbiome markers linked with longevity or healthy aging.
Possible by studying the factors that di�erentiate centenarians from other, less long-lived
individuals. However, only a limited and inconsistent alteration of microbiome composi-
tion was observed in the group with Alzheimer’s disease. The microbiota composition of
centenarians shows distinct qualities, with unexpectedly high diversity relative to younger
individuals. Moreover, it shares striking similarities with other studies of extreme aging,
despite the wide variation inherent to study populations’ demographics and physiological
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status and methodological di�erences in sample collection, sample storage, DNA extraction
protocol, sequencing platform, or sequencing center performance.

Despite a large body of research, many aspects of the gut microbiota and its relation
to healthy aging are still unknown. Although, there are di�erentiating factors unique
to extremely aged or Alzheimer disease-a�ected individuals. It is di�cult to determine
how these di�erences arise and assess their direct impact, especially in single-time-point
cross-sectional studies. The microbiota composition and function are not static but the
result of the interactions between the various taxa in the ecosystem. Thus, further study
is needed to disentangle such interactions, which may be possible through longitudinal
studies or by sampling a more �ne-grained age range at single-time points. Furthermore,
integrating metagenomics data with genomic variation, metabolomics, or biomarkers may
obtain a clearer picture. Such studies will ful�ll the goal of �nding therapeutic interventions
or optimized dietary patterns that can reestablish and maintain the diversity of the gut
microbiota so that we can fully exploit its potential to impact healthy aging positively.
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Epilogue

In this thesis, I have discussed the roles that DNA sequencing and data analysis play in
identifying and studying variation in di�erent domains. I have elucidated that a frame of
reference is a common but crucial theme when making comparisons within and across
di�erent samples, across a number of di�erent application �elds.

For sequence alignment, I have shown that a more unbiased alignment can be obtained
by incorporating population variation directly into the reference genome. In this case
the reference represents a collection of genomes instead of what is now the custom: one
genome as a �xed reference. In the context of NIPT, I have shown the importance of a
reference when detecting chromosomal aberrations from low coverage sequencing data.
Moreover, I have shown that the ability to di�erentiate chromosomal (ab)normality can
be improved by incorporating additional data sources, such as for example the fragment
length. For the microbiome analyses, I have stressed that cohorts should exhibit notably
di�erent characteristic microbial communities, which then can be detected by treating each
cohort as a reference against all other cohorts, leading to a useful characterization of the
diversity in each cohort.

I aimed to show how the concept and scope of a reference can have a deep impact on the
outcome of a molecular analysis. Note that this is a recurrent phenomenon, even beyond
the areas covered in this thesis. Consequently, we advocate a conscious consideration and
selection of an appropriate frame of reference for an application at hand.
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