

Delft University of Technology

Enhancing the Security of Software Supply Chains: Methods and Practices

Keshani, M.

DOI
10.4233/uuid:e0c6d9a9-9249-4890-8f48-374bd5f49b5d
Publication date
2024
Document Version
Final published version
Citation (APA)
Keshani, M. (2024). Enhancing the Security of Software Supply Chains: Methods and Practices.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:e0c6d9a9-9249-4890-
8f48-374bd5f49b5d

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:e0c6d9a9-9249-4890-8f48-374bd5f49b5d
https://doi.org/10.4233/uuid:e0c6d9a9-9249-4890-8f48-374bd5f49b5d
https://doi.org/10.4233/uuid:e0c6d9a9-9249-4890-8f48-374bd5f49b5d

Enhancing the Security of Software
Supply Chains: Methods and Practices

Enhancing the Security of Software
Supply Chains: Methods and Practices

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Monday 14 October 2024 at 17:00 o’clock

by

Mehdi KESHANI

Master of Science in Computer Engineering,
Sharif University of Technology, Iran,

This dissertation has been approved by the promotor.

Composition of the doctoral committee:

Rector Magnificus Chairperson
Prof. dr. A. van Deursen Delft University of Technology, Promotor
Dr.-Ing. S. Proksch Delft University of Technology, Copromotor

Independent members:
Prof. dr. G. Smaragdakis Delft University of Technology
Prof. dr. C. De Roover Vrije Universiteit Brussel, Belgium
Dr. K. Ali New York University Abu Dhabi,

United Arab Emirates
Prof. dr. D. Spinellis Athens University of Economics and Business,

Greece
Prof. dr. E. Shihab Concordia University, Canada

The work in the thesis has been carried out under the support of the European H2020
project, FASTEN (825328).

Keywords: Maven Ecosystem, Software Supply Chain

Printed by:

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

To those whose support carried me through the highs and lows of this PhD,
you know who you are, and I am deeply grateful.

Mehdi.

vii

Contents

Summary xi

Samenvatting xiii

1 Introduction 1
1.1 Software Supply Chains . 2
1.2 Research Objectives and Questions . 2
1.3 Research Context. 3

1.3.1 Supply Chains for Java . 4
1.3.2 The FASTEN Project . 5

1.4 Research Method . 6
1.5 Thesis Outline . 8
1.6 Origin of Chapters . 11

2 AROMA: Automatic Reproduction of Maven Artifacts 13
2.1 Experimental Setup . 15

2.1.1 Dataset Creation . 16
2.1.2 Reproducibility. 17

2.2 RQ1: Can we recreate the link to a source code repository and commit of
an artifact? . 18
2.2.1 Where do Maven projects host their source code? 19
2.2.2 How reliable are the source code repository links on MAVEN? . . . 20
2.2.3 Can we find the corresponding version tags in source code reposi-

tories? . 21
2.3 RQ2: Can the original build environment be reconstructed after the fact? . 23

2.3.1 Which JDKs were used to build Maven libraries? 26
2.3.2 What line endings do Maven libraries use? 27

2.4 RQ3: To which extent is it possible to automatically reproduce Maven
artifacts? . 28
2.4.1 Can AROMA reproduce reproducible packages? 29
2.4.2 Can AROMA identify new reproducible packages that are not listed

on RC? . 30
2.4.3 Find Candidates: Is there any near miss among packages not tried

reproducibility? . 31
2.5 Discussion . 32

2.5.1 Threats to Validity . 34
2.6 Related Work. 34
2.7 Summary. 36

viii Contents

3 Frankenstein: fast and lightweight call graph generation for software
builds 37
3.1 Background . 41

3.1.1 Terminology . 41
3.1.2 Related Work. 42

3.2 Approach . 45
3.2.1 Resolving Dependencies . 45
3.2.2 Requesting or Creating PCGs. 47
3.2.3 Inferring Global Type Hierarchy 49
3.2.4 Stitching the Final CG . 50

3.3 Evaluation . 53
3.3.1 Creating a Representative Dataset 53
3.3.2 RQ1: How accurate are Frankenstein’s CGs? 54
3.3.3 RQ2: How Fast is Frankenstein? 58
3.3.4 RQ3: Is Frankenstein generalizable? 60
3.3.5 RQ4: How much memory does Frankenstein require? 61

3.4 Discussion . 64
3.5 Threats to Validity . 64
3.6 Future Work . 65
3.7 Summary. 66

4 On the relation of method popularity to breaking changes in the Maven
ecosystem 67
4.1 Related Work. 70
4.2 Experimental Setup . 72

4.2.1 Overview . 72
4.2.2 Dependent resolver . 74
4.2.3 Sampler . 74
4.2.4 Dependency resolver . 76
4.2.5 Static analyzer . 77
4.2.6 SemVer analyzer . 79
4.2.7 CG joiner . 81
4.2.8 Popularity analyzer . 82

4.3 RQ1: How often do semantic versioning violations occur? 83
4.4 RQ2: How is popularity distributed among library methods? 87
4.5 RQ3: Is there a relation between popularity and breaking changes? 90
4.6 Discussion . 92

4.6.1 Threats to Validity . 94
4.7 Summary. 94

5 Maven Unzipped: Exploring the Impact of Library Packaging on the
Ecosystem 95
5.1 Dataset Creation . 97
5.2 What type of files are being released? 99

5.2.1 Packaging types . 99
5.2.2 Checksum files . 101

Contents ix

5.2.3 Additional files . 102
5.2.4 Inside executables . 104

5.3 How much storage do packages need? 105
5.4 What factors contribute to larger libraries?. 106
5.5 How has the size of dependency sets evolved? 108
5.6 Discussion . 110

5.6.1 Erratic Data . 110
5.6.2 Archive Misuse. 111
5.6.3 Transitive Growth . 112
5.6.4 Threats to validity . 113

5.7 Related Work. 114
5.8 Concluding Remarks . 115

6 Conclusion 117
6.1 Research Questions Revisited . 117

6.1.1 RQ1: To what extent can published libraries be automatically re-
produced from code? . 117

6.1.2 RQ2: How can we improve the scalability of call graph generation
for library analysis? . 118

6.1.3 RQ3: How do libraries impact their users at the method level? . . . 119
6.1.4 RQ4: How do the packaging practices of libraries impact the pack-

age repositories? . 119
6.2 Discussion . 121
6.3 Concluding remarks . 124

Bibliography 125

Curriculum Vitæ 143

xi

Summary

Software supply chains include the development, management, and delivery of software
products. Software ecosystems are essential components of these supply chains and
facilitate software reuse and enhance the efficiency of software development. However,
they also introduce unique challenges, such as dependency maintenance and security
vulnerabilities. The Maven ecosystem is a popular software ecosystem within the Java
realm and is used by millions of developers worldwide. This ecosystem faces issues that
threaten its security and effectiveness. In this thesis, we aim to tackle these challenges by
proposing novel methods and in-depth analyses of the ecosystem.

First, we propose an automated approach for library reproducibility to enhance library
security during the deployment phase. We then develop a scalable call graph generation
technique to support various use cases, such as method-level vulnerability analysis and
change impact analysis, which help mitigate security challenges within the ecosystem.
Utilizing the generated call graphs, we explore the impact of libraries on their users. Finally,
through empirical research and mining techniques, we investigate the current state of the
Maven ecosystem, identify harmful practices, and propose recommendations to address
them.

In this thesis, we investigate the reproducibility of Maven artifacts from their source
code and demonstrate that a significant portion of theMaven ecosystem could be made
reproducible with automation. We then explore the scalability of method-level analysis
in examining library interactions using call graphs, achieving significant performance
improvements through a summarization-based call graph generation technique. These
enhancements make static analyses more practical. This technique allows us to assess the
impact of libraries withinMaven. We show a significant concentration of method usage
among a small portion of public methods. We also discover that these popular methods
experience breaking changes as frequently as methods not utilized by any users, indicating
a lack of awareness among library maintainers about their library usage. Lastly, we identify
challenges in packaging practices that pose risks to ecosystem users. These challenges
highlight the need for improved governance for the ecosystem and developer awareness
regarding the security and impact of libraries on users.

xiii

Samenvatting

Software supply chains omvatten de ontwikkeling, het beheer en de levering van software-
producten. Software-ecosystemen zijn essentiële componenten van deze supply chains en
faciliteren het hergebruik van software en verbeteren de efficiëntie van softwareontwikke-
ling. Ze brengen echter ook unieke uitdagingen met zich mee, zoals het in stand houden
van afhankelijkheid en beveiligingsproblemen. Het Maven-ecosysteem is een populair
software-ecosysteem binnen het Java-domein en wordt door miljoenen ontwikkelaars we-
reldwijd gebruikt. Dit ecosysteem wordt geconfronteerd met problemen die de veiligheid
en effectiviteit ervan bedreigen. In dit proefschrift willen we deze uitdagingen aanpakken
door nieuwe technieken en diepgaande analyses van het ecosysteem voor te stellen.

Ten eerste stellen we een geautomatiseerde aanpak voor bibliotheekreproduceerbaar-
heid voor om de bibliotheekbeveiliging tijdens de implementatiefase te verbeteren. Ver-
volgens ontwikkelen we een schaalbare call graph-generatietechniek ter ondersteuning
van verschillende gebruiksscenario’s, zoals kwetsbaarheidsanalyse op methodeniveau en
analyse van de impact van veranderingen, die de beveiligingsuitdagingen binnen het ecosys-
teem helpen verminderen. Met behulp van de gegenereerde oproepgrafieken onderzoeken
we de impact van bibliotheken op hun gebruikers. Ten slotte onderzoeken we door middel
van empirisch onderzoek en mijnbouwtechnieken de huidige toestand van het ecosysteem,
identificeren we schadelijke praktijken en stellen we aanbevelingen voor om deze aan te
pakken.

In dit proefschrift onderzoeken we de reproduceerbaarheid van Maven-artefacten
vanuit hun broncode en laten we zien dat een aanzienlijk deel van het Maven-ecosysteem
reproduceerbaar kan worden gemaakt met automatisering. Vervolgens onderzoeken we de
schaalbaarheid van analyse op methodeniveau bij het onderzoeken van bibliotheekinterac-
ties met behulp van call graphs, waarbij we aanzienlijke prestatieverbeteringen bereiken
via een op samenvattingen gebaseerde techniek voor het genereren van call graphs. Deze
verbeteringen maken statische analyses praktischer. Met deze techniek kunnen we de
impact van bibliotheken binnenMaven beoordelen. We laten een significante concentratie
van methodegebruik zien bij een klein deel van de publieke methoden. We ontdekken
ook dat deze populaire methoden net zo vaak ingrijpende veranderingen ondergaan als
methoden die niet door gebruikers worden gebruikt, wat wijst op een gebrek aan bewust-
zijn onder bibliotheekbeheerders over hun bibliotheekgebruik. Ten slotte identificeren we
uitdagingen in verpakkingspraktijken die risico’s opleveren voor ecosysteemgebruikers.
Deze uitdagingen benadrukken de noodzaak van een beter beheer van het ecosysteem
en het bewustzijn van ontwikkelaars met betrekking tot de beveiliging en de impact van
bibliotheken op gebruikers.

1

1

1
Introduction

1

2 1 Introduction

1.1 Software Supply Chains
Software supply chains involve the creation, management, and delivery of software prod-
ucts. They include a wide range of activities, from the development of software code to the
management of dependencies, and the distribution of the final product to the end users.
Such chains are necessary for the functioning of modern software and ensure that software
products are developed efficiently [1].

Software supply chains are the backbone of software development and delivery pro-
cesses. Developers can check if software products are built using reliable components,
adhere to quality standards, and are delivered securely and efficiently. A well-managed
software supply chain minimizes risks associated with security vulnerabilities, code quality
issues, and compliance requirements. It also enables faster development cycles and a more
robust response to market demands [2].

Security has been a classic challenge in software supply chains. Since the early 2000s,
researchers have discussed how software distribution invites attacks [3]. By the 2010s,
they were proposing models to help evaluate and mitigate the security risks of software
supply chains [4]. With the rise of software ecosystems in the last decade, such challenges
are still relevant and even more widespread [5]. In 2021, a vulnerability in the popular
library Log4j [6] affected nearly every software organization [7]. Researchers, practitioners,
and governments investigated such issues and proposed methods to mitigate them. Ohom
et al. [8] collected a set of 174 malicious packages from known package repositories. It
was later discussed in the community that organizations with a software bill of materials
(SBOM) were able to mitigate vulnerability issues such as the Log4j problem faster than
organizations without it [9, 10]. SBOMs [11] are formal records that contain information
regarding software components used in programs. In 2022, an executive order mandated
federal agencies to include SBOMs [12]. Zahan et al. [7] elaborate on the benefits and
challenges of adopting SBOMs. Ladisa et al. [13] propose a taxonomy for attacks on
open-source supply chains. Enck et al.[5] report on the top five challenges in software
supply chain security. Zahan et al.[14] propose six signals of security weaknesses in a
software supply chain. To this day, security challenges are still present and pressing, and
the community is actively working on solutions to identify the risks and mitigate them.

1.2 Research Objectives andQuestions
The goal of this thesis is to enhance the security of software supply chains. To achieve this
objective, we aim to answer four research questions.

The first area of improvement addressed in this thesis is related to a security challenge:
the reproducibility of libraries. We define the reproducibility of a library as the ability to
produce, from the library’s sources, a set of (binary) files that are byte-for-byte equivalents.
Reproducible libraries are important as they ensure that nomalicious content is injected into
the released files during the deployment process. While seemingly simple, reproducibility
in practice is hard to achieve because the sources of unreproducibility are very diverse,
making it difficult to address them automatically. Therefore, our first research question is
posed as follows:

• RQ1) To what extent can published libraries be automatically reproduced from code?

1.3 Research Context

1

3

Next, we aim to address the existing security issues in the development phase of libraries.
Our goal is to enable accurate analysis of libraries to enhance security. Conducting such
precise analyses requires a technique for examining the fine-grained interactions among
software packages. Call graphs reveal method-level interactions within software systems.
For example, by using call graphs, one can investigate whether a software application is
utilizing a vulnerable part of a library. This type of analysis requires the generation of
call graphs for libraries. However, the existing techniques for generating call graphs are
heavyweight and impractical for important use cases like analyzing the entire ecosystem.
Therefore, we pose our second research question as follows:

• RQ2) How canwe improve the scalability of call graph generation for library analysis?

A lightweight call graph generation technique can be used in various scenarios for
analyzing libraries, which can be categorized based on the direction of call graph analysis.
The first category, which we explore in this thesis, involves analysis from the library to
the clients. This enables library maintainers to examine how their methods are being
utilized by clients, thereby understanding the impact of their libraries. The second category,
which we do not explore in this thesis, is directed from client applications towards the
libraries, enabling client applications to identify which library methods they use directly
and transitively [15].

The first scenario forms the next step of this thesis and is referred to as impact analysis.
By leveraging the generated call graphs, we aim to investigate the impact of libraries on
their clients at the method level. Improving the awareness of library maintainers regarding
the impact they have on their users can assist in the development of more secure software.
Informing library maintainers that their library is utilized by numerous clients, or that a
specific component of their library affects a larger number of people, encourages them to
dedicate more time and attention to the quality of that particular library or component.
This helps in introducing less vulnerable or low-quality code in the most critical areas. The
research question addressed in this study is:

• RQ3) How do libraries impact their users at the method level?

Finally, we focus on studying the packaging practices within software ecosystems.
This is crucial for identifying existing packaging practices that pose challenges to secure
ecosystems. Additionally, it encourages the development or adoption of more effective
practices and techniques within the ecosystem. Therefore, our last question is:

• RQ4) How do the packaging practices of libraries impact the package repositories?

1.3 Research Context
We address our research questions in the context of the Java language and its primary soft-
ware ecosystem, Maven. Software ecosystems contribute to the efficiency of the software
supply chain by simplifying and automating many aspects of project building and man-
agement. They standardize project structures, manage dependencies, and streamline the
build process. Their comprehensive repository and dependency management capabilities
are essential parts of modern software development and help developers efficiently add,

1

4 1 Introduction

update, and maintain an extensive set of libraries and frameworks. Package managers such
as Maven, npm, and PyPi facilitate the processes of releasing, discovering, and distributing
software by using centralized repositories. The investigation of dependencies has been
a prominent theme in existing research, which includes investigation of the evolution of
dependency networks [16, 17], issues related to bloated dependencies [18, 19], and security
vulnerabilities within dependencies [20].

1.3.1 Supply Chains for Java
The research questions discussed in Section 1.2 are broad; thus, we specifically focus on
the Java context to address them. Java remains one of the most popular programming
languages, particularly for developing enterprise systems. Maven stands out as the primary
software ecosystem not only for Java but also for other JVM languages. It serves as the core
for managing, storing, and disseminating reusable Java open-source libraries. In recent
years, Maven has seen substantial growth, hosting more than 38 million indexed artifacts
at the time of writing (March 2024) [21]. While existing research has explored package
repositories such as NPM [22–26] and PyPi [27], a significant body of literature dedicated to
Maven [15–17, 19, 28–37] underscores its importance. However, despite extensive research,
critical challenges, especially from a security perspective, remain unaddressed within the
Maven ecosystem.

The challenges that we focus on in this thesis are security-related. These challenges
arise from a variety of sources such as outdated dependencies, inconsistent maintenance of
libraries, complex dependency trees, security vulnerabilities, lack of standardized practices
across different projects, and compatibility issues in the development process.

For modern software systems, vulnerabilities found in third-party libraries are a com-
mon source of security problems. Research has shown that a considerable number of
applications use libraries with security vulnerabilities [38]. Moreover, 37% of the most
popular websites incorporate at least one library that is known to be vulnerable [39]. Vul-
nerabilities, if not properly managed and updated, can propagate across different libraries
through transitivity, leading to potential security breaches in the final software products.
Identifying and addressing these vulnerabilities is important to maintain the security of
the software as well as the entire ecosystem.

Maven users, similar to users of other ecosystems, suffer from security vulnerabilities.
Due to the interconnected nature of dependencies a single vulnerable component can
compromise the security of an entire program or even a big part of the ecosystem. This
highlights the need for effective tools and practices to detect andmitigate vulnerabilities in a
timelymanner. Several recent studies focused on exploring the effects and spread of security
vulnerabilities within software ecosystems [40–43]. Moreover, attackers can manipulate
the binaries of libraries while being built or deployed [44]. This poses a significant risk to
the security of the software supply chain. This manipulation can lead to the injection of
malicious code that compromises the security of the software and the data it processes.
Therefore it is important to make sure that the binaries are not manipulated during the
build and deployment processes.

User or client awareness is another crucial aspect that can aid library maintainers in
developing more secure libraries. The actions of library maintainers have direct conse-
quences for their users. For instance, if a maintainer includes a large file in the library,

1.3 Research Context

1

5

users are required to download it; similarly, if the maintainer introduces vulnerable code,
it endangers the security of the users. Precisely understanding how libraries impact their
users on a large scale is necessary to prevent harmful behavior that affects users and to
plan beneficial actions. Numerous studies have investigated various aspects of the Ap-
plication Programming Interfaces (APIs) that libraries provide for their users, including
usage [45, 46], evolution [47–50], and stability [37, 51]. However, these studies have not
detailed the extent of the method-level impact of libraries on the ecosystem.

1.3.2 The FASTEN Project
By using centralized repositories like Maven, developers can simply list the external
libraries they need, after which automated tools integrate these libraries into their project’s
working environment. However, reliance on external library networks has its drawbacks,
as highlighted by several incidents: the XZ attack [52], which allowed unauthorized access
to systems where the compromised library was installed; the SolarWinds compromise [53],
which injected malicious code into the SolarWinds Orion software used by many clients,
including the U.S. government; the log4shell vulnerability [54], a remote code execution
vulnerability in a commonly used Apache logging library; the left-pad incident [55], which
caused numerous websites to fail; and the Equifax security breach [56], that exposed vast
numbers of credit card details. These events emphasize the risks that external dependencies
can pose to projects. Addressing these issues could significantly improve the productivity
and output quality of software development organizations.

Motivated by these challenges, the FASTEN project [57] proposed a novel approach
by offering detailed, method-level dependency tracking across existing dependency man-
agement systems. Specifically, FASTEN introduced a service of method-level analysis of
security vulnerabilities, adherence to licensing requirements, and assessment of dependency
risks at the method level.

Existing approaches have used package-level analysis to investigate the relationships
between applications and libraries. As shown in Figure 1.1, a package-level analysis only
considers the high-level dependency relationships between packages and does not take into
account the fine-grained, method-level interactions between them. For example, tools like
Dependabot [58] notify users about the vulnerability of dep3 and inform the developers of
app that they are using a vulnerable dependency. However, a closer examination of these
interactions reveals that the method a() from dep1 is called via the main() method of
app. Method a() then calls method vul() from dep3, which is vulnerable. Nevertheless,
if method a() were to call d() instead, app would technically be safe because it would
not be calling the vulnerable part of dep3. The FASTEN project attempted to leverage this
insight by using call graphs to improve the accuracy of dependency analysis.

This thesis was funded by the European H2020 project FASTEN (Grant No. 825328),
which formed a team of over 40 experts from both the industrial and academic sectors
throughout Europe. FASTEN aimed to design an innovative software package management
system to enhance the quality and security of software ecosystems. FASTEN started in
January 2019, prior to the start of this PhD. TU Delft led the project, which provided
this PhD program with extensive managerial, teamwork, and hands-on experiences. In
September 2022, FASTEN successfully ended after presenting its results to a committee
of reviewers from the European Union. Our research and development efforts within

1

6 1 Introduction

Figure 1.1: Package-level analysis versus method-level analysis.

the project resulted in the creation of novel analysis techniques for C, Java, and Python
applications. These techniques tackled issues related to security, risk evaluation, license
compliance, and assessing the impact of changes. Furthermore, we developed a backend
service and a knowledge base to store the outcomes of these analyses and integrated them
into developers’ workflows and CI toolchains.

The research conducted for this thesis formed the foundation of FASTEN and was
incorporated into FASTEN’s open-source tools and deliverables. Techniques similar to
those discussed in this thesis were also applied to Python and C components within FASTEN.
The FASTEN tooling contains a wide range of functionalities, including, but not limited to
the contributions of this thesis. Additionally, our work has been adopted by two industrial
companies, Endorlabs [59] and SIG [60], and is presently being utilized and extended to
other languages.

Within the scope of the FASTEN project, we generated tens of terabytes of data re-
garding software ecosystems and open-source libraries. This extensive information was
accessible through FASTEN’s public services during the project’s active period. Upon the
project’s completion, we stopped maintaining a public service for data access. The data,
however, remains stored on TU Delft servers. To support ongoing research, we curated
and separately released the critical data necessary for the studies discussed in this thesis.
These datasets are available in smaller, more manageable dumps within the replication
packages of our studies on GitHub and Zenodo. This approach helps future researchers to
replicate our studies, expand upon them, and derive new insights.

1.4 Research Method
In this thesis, we employ design science, empirical, and mining methods to draw insights
from theMaven repository and evaluate our proposed approaches with real-world data.
We create a scalable data pipeline that enables us to process the large amount of data that
exists on Maven efficiently.

Empirical software engineering methods [61], including case studies, surveys, and for-
mal experiments, are used to understand, assess, and enhance the processes and outcomes
of software development. These approaches provide a foundation for software engineer-
ing practices based on scientific evidence derived from real-world software development
activity data. Software engineering scientists have created standards for conducting and
reviewing such studies [62] and have specified different categories of empirical methodolo-
gies [63]. In this thesis, we utilize benchmarking, engineering research (design science),

1.4 Research Method

1

7

Dataset

Analyzers

Local
repository

Figure 1.2: Simplified architecture of the data pipeline used in our studies.

and repository mining methodologies.
According to these standards, benchmarking involves assessing a software system using

a standard tool (i.e., a benchmark) based on specific characteristics such as performance. We
assess our proposed tools using benchmarks and compare them with existing approaches.

Design science methodologies [64] involve developing artifacts to benefit stakeholders
and rigorously evaluating their performance within specific contexts using empirical
methods. This PhD was conducted within the context of the FASTEN project, as explained
in Section 1.3.2. Throughout the PhD, we created various artifacts such as software,
documentation, and scientific papers. The primary stakeholders who benefited from these
products were the FASTEN partners who utilized these artifacts within the FASTEN project.
The software artifacts are still used by one of the industrial partners, SIG [60], as part
of their commercial product. On a secondary level, developers can use the open-source
software created during this PhD to conduct useful analyses and improve the quality
of their products. Scientists can also use these artifacts to conduct follow-up research.
The performance of these artifacts was assessed using various techniques, depending on
the type of artifact. Software artifacts were reviewed and used in practice by FASTEN
collaborators. The scientific publications underwent peer review, documentation was
reviewed by peers, and novel technologies were compared against existing baselines.

Moreover, software engineering scientists often identify patterns, trends, and rela-
tionships within software projects to derive generalizable knowledge. Mining Software
Repositories (MSR) [65] is a research domain focused on extracting and analyzing the
abundant data found in software repositories, including version control systems, artifact
repositories, and issue tracking systems. MSR applies techniques from data mining, ma-
chine learning, and statistics to uncover insights about software development practices and
trends. By mining software repositories, researchers and practitioners can gain insights into
software evolution, developer behaviors, and software quality. In this thesis, we applied
MSR techniques to gain insights aboutMaven, identify existing challenges, explore the
current state, and pinpoint existing shortcomings.

Ecosystem scale data pipelines Figure 1.2 illustrates the simplified architecture of the
data pipeline we employed for extracting Maven data in our research. It facilitates our
empirical research and shapes the resulting data. Given the substantial amount of data on
Maven, scalability is a crucial requirement for us. Considering the independence of Maven
releases from one another, this infrastructure supports asynchronous data extraction from
packages, which enhances scalability. Maven uses a local repository to store libraries on the
local machines of Maven users. For instance, whenMaven encounters a new library in an
application, it downloads all its files and directory structures to this local repository, known

1

8 1 Introduction

as the .m2 folder. We integrate this local repository into our data pipelines to process
Maven libraries. This integration allows us to reuse originalMaven implementations in
our research and avoid downloading millions of duplicated files. The infrastructure we
have developed is modular, facilitating the integration of custom analyzers that can append
additional data to the dataset. We establish a reusable execution environment to support
both the initial creation and periodic updates of the dataset. We utilized docker-compose
to minimize environmental dependencies and simplify the execution process, allowing
all experiments to be run with a single command. All analyzers and services, including
the database, are dockerized and operate within this framework. Our dataset, stored in a
Postgres database, enables data analysis and provides insights into the ecosystem.

Open Science The code and data corresponding to each chapter of this thesis are publicly
accessible. We have four replication packages: AROMA on Zenodo1 (Chapter 2), Franken-
stein on GitHub2 (Chapter 3), SemVerVSPopularity on GitHub3 (Chapter 4), and Maven
Packaging on Zenodo4 (Chapter 5). The papers are available for open access through the
TU Delft research repository [66].

1.5 Thesis Outline
The main goal of this thesis is to improve the security of software supply chains. In this
section, we outline our research design and approach for addressing the research questions
introduced in Section 1.2. This thesis contains four publications, each detailed in one
chapter. The second chapter of this thesis focuses on enhancing library security through
reproducibility, which prevents the injection of malicious code during the deployment
of libraries. The third chapter introduces a novel call graph generation technique that
facilitates various types of library analyses, including security analysis. The fourth chapter
explores a specific use case of these call graphs. It presents a call graph-based analysis
to assess the impact of libraries on their clients. This analysis helps library maintainers
prioritize the quality and security of the most critical parts of their libraries. The fifth
chapter investigates the packaging practices of libraries and the security challenges these
practices present to the ecosystem.

Chapter 2. AROMA: Automatic Reproduction of Maven Artifacts To address
RQ1, Chapter 2 focuses on the reproducibility of Maven libraries [67]. The SolarWinds
attack [68] in 2020 impacted thousands of organizations, including the US government, by
manipulating library binaries before shipping them to users and injecting malicious code.
Attacks like this highlight the growing concerns over security. Ensuring the reproducibility
of software components is a solution to this challenge [69]. By reproducing a library from
its source, we can verify that no malicious content has been injected during the deployment
process. This chapter introduces an automated tool, AROMA, a technique that automatically
reproduces Maven libraries.

1https://doi.org/10.5281/zenodo.8380775
2https://github.com/ashkboos/LightWeightCGs/tree/main
3https://github.com/ashkboos/semver-vs-popularity
4https://zenodo.org/doi/10.5281/zenodo.10143429

https://doi.org/10.5281/zenodo.8380775
https://github.com/ashkboos/LightWeightCGs/tree/main
https://github.com/ashkboos/semver-vs-popularity
https://zenodo.org/doi/10.5281/zenodo.10143429

1.5 Thesis Outline

1

9

The only existing initiative for reproducing Maven libraries is a manual approach,
Reproducible Central [70], which curates a list of reproducible packages. Unlike this
method, which begins with source code repositories, AROMA targets Maven releases
directly, taking into account that many projects, especially legacy ones, might not have
been developed with reproducibility in mind. AROMA provides broader coverage and helps
reproduce projects that would otherwise be excluded from reproducibility efforts.

Reproducible Central creates a file for each library containing information about its
build environment. Each file includes various fields, such as the Java version used by the
library maintainers to release the library. Our results show that AROMA could automatically
recover up to 99.5% of these build environment fields, which previously required manual
effort in Reproducible Central. This shows the effectiveness of AROMA and highlights
its potential in repairing inaccuracies within existing manually maintained lists. We also
show that AROMA can rebuild 23.4% of the entire ecosystem and reproduce 8% of those
packages, which is a substantial improvement over Reproducible Central (less than 1%). We
even succeeded in achieving near-perfect reproductions for some binaries, which were not
originally intended to be reproducible. This means that the maintainers of these libraries
have not configured their pom file [71] for reproducibility. This shows AROMA’s capability
and is a significant step towards enhancing the security of the ecosystem.

In summary, this thesis chapter presents the AROMA technique and offers practical
insights into software reproducibility within theMaven ecosystem. This research enhances
the security of Java supply chains by focusing on the security of deployment processes. It
represents the first area of improvement proposed in this thesis.

Subsequently, we explore a novel call graph generation technique that facilitates various
types of library analyses, including security analysis.

Chapter 3. Frankenstein: fast and lightweight call graph generation for software
builds To address our second research question, Chapter 3 introduces a novel and
scalable call graph-based analysis technique [72] that can be utilized in a variety of use
cases regarding dependency management. Call graphs can for example substantially
improve the accuracy of vulnerability propagation analysis. Despite their importance, tools
like Dependabot [58] operate at the package level and do not utilize call graphs. This is
due to practical and scalability challenges associated with call graph generation, which
is typically considered a full program analysis (application and all of its dependencies).
Such an approach results in extensive and computationally expensive call graphs, which is
impractical for ecosystem-scale applications where the number of combinations in a full
program analysis explodes.

To address these challenges, we propose a summarization-based version of the Class
Hierarchy Analysis (CHA) [73] call graph generation algorithm. This summarization-based
algorithm generates call graphs on demand by assembling partial call graphs previously
extracted from individual libraries. This approach is particularly suitable for large ecosys-
tems like Maven, which hosts millions of software artifacts. It allows for fine-grained
analysis to enhance reliability and accuracy in applications like vulnerability propagation.
The traditional method of constructing a call graph for a complete application and its
dependencies from scratch is inefficient for ecosystems, leading to redundant computa-
tions for popular libraries. Our approach improves scalability by eliminating redundant

1

10 1 Introduction

computations from the call graph generation process; that is, for each library, we extract
the call graph summarization only once and reuse it multiple times. Our evaluations show
that this method scales very well.

The modern practice of Continuous Integration (CI) [74] and delivery in software
engineering often faces a trade-off between faster build times and the utility of additional
analyses [75]. This is particularly relevant in open-source software development, where
resource-limited build services like GitHub Actions [76] or Travis CI [77] are common.
For example, Dependabot [58] performs basic analyses at the package level to identify
vulnerable dependencies and is accepted by developers for its speed despite less accuracy.
This highlights the need for scalable, efficient tools for analyses. Our summarization-based
CHA algorithm for call graph generation takes advantage of the fact that dependency sets
often remain unchanged between builds. By pre-generating call graph summaries for these
dependencies and caching them for subsequent builds, we can merge them using a stitching
algorithm and reduce resource consumption and processing time. Our evaluation shows
that this lightweight method outperforms existing frameworks. It is compatible with the
GitHub build environment’s memory constraints and achieves speed improvements of up
to 38%.

Overall, this chapter introduces a new library summarization technique for call graph
generation using a stitching algorithm and provides a practical solution for fast, resource-
efficient program analysis. We reassess existing methodologies focusing on correctness,
scalability, and memory consumption. Our evaluation on a real-world Maven sample
shows the feasibility of this approach for CI tools. However, this technique is only the
stepping stone for advanced dependency analyses such as vulnerability propagation and
impact analysis. In the next chapter of this thesis, we address the change impact analysis
use case which helps developers focus on the quality and security of their most critical
components.

Chapter 4. On the relation of method popularity to breaking changes in the Maven
ecosystem To address our third research question, Chapter 4 delves into change impact
analysis, with a particular focus on investigating semantic versioning violations within
the Maven ecosystem [78, 79]. Semantic Versioning is a versioning system that uses a
naming convention for releases to convey meaning about the underlying changes in a
release, indicating backward compatibility and the nature of changes made. Our study
goes beyond the boundaries of individual libraries and provides an ecosystem perspective.
Using a large dataset that includes 13,876 versions of 384 Maven artifacts, we analyze the
consequences of semantic versioning violations on 7,190 dependent libraries at the method
level, utilizing call graphs.

Our findings reveal that 67% of the artifacts have violated semantic versioning at some
point in their history, through either breaking changes or non-compliant API extensions.
Our results also show a noticeable centralization regarding the method level usage of
libraries: a vast majority (87%) of publicly accessible methods are never used by dependents,
and within the subset of used methods, a mere 35% attract half of all unique dependent
calls. This usage pattern highlights the criticality of certain methods within the ecosystem.

Our study reveals that there is no correlation between the popularity of a method and
its stability. That is, even highly popular methods are not immune to frequent breaking

1.6 Origin of Chapters

1

11

changes. This observation challenges the assumption that more widely-used components
may be more stable. Our research highlights the issues with semantic versioning com-
pliance in practice. The high frequency of breaking changes in popular methods shows
a lack of awareness about the impact of changes within the ecosystem. We believe that
developers would benefit from accessing method popularity data obtained through our
approach, enhancing their update strategies, mitigating the effects of breaking changes,
and prioritizing the quality and security of the most critical components.

Overall, this chapter presents a detailed analysis of API method changes that violate
semantic versioning, along with insights into the popularity distribution of methods in
Maven. It contributes to the existing body of knowledge in software reuse and provides
practical insights for developers.

In the subsequent chapter, we explore the impact of packaging practices on the ecosys-
tem and its security.

Chapter 5. Maven Unzipped: Packaging Impacts the Ecosystem To address the
fourth and final research question of this thesis, we explore the overall state of the ecosystem
and the impact of packaging practices on it [80]. Despite its popularity among developers
worldwide, the Maven ecosystem is not without its share of challenges and vulnerabilities.
In this thesis we conduct a comprehensive investigation of theMaven ecosystem, aiming to
gain insights into its practices and trends. By inspecting the content of libraries, examining
their dependency relationships, and investigating their evolution over time, we find areas
that require attention. Maven ecosystem’s massive scale and influence make it a central
point not just for library developers but also for ecosystem governors and stakeholders
who are involved with software security and development.

In Chapter 5, we elaborate on the research methodology of this chapter and the issues
identified within theMaven ecosystem. In short, we have created an infrastructure that
monitors statistics aboutMaven packages. Our goal is to analyze these statistics to shed
light on the current state of the ecosystem, help make informed decisions about it, and
promote best practices. The issues we identify include data inconsistencies, improper
archive utilization, and the exponential growth of transitive dependency sets. These
issues not only hinder the ecosystem’s efficiency but also introduce significant risks and
exacerbate security problems for its users. Building upon these findings, we propose
practical recommendations to enhance the overall health and security of Maven.

1.6 Origin of Chapters
Throughout this PhD, we conducted eight studies, as detailed below. Four of these studies,
marked with the symbol, are included as chapters in this thesis. Additionally, four
studies were conducted that fall outside the scope of this thesis.

 Mehdi Keshani, Tudor-Gabriel Velican, Gideon Bot, and Sebastian Proksch: Aroma: Automatic
Reproduction of Maven Artifacts, Proceedings of the 32st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (FSE),
2024.

1

12 1 Introduction

 Mehdi Keshani, Georgios Gousios, and Sebastian Proksch: Frankenstein: Fast and Lightweight
call graph Generation for Software Builds. Empirical Software Engineering (EMSE), 29: pages
1–31, 2024.

 Mehdi Keshani, Simcha Vos, and Sebastian Proksch: On the Relation of Method Popularity to
Breaking Changes in the Maven Ecosystem. Journal of Systems and Software (JSS), 203: pages
111738, 2023.

 Mehdi Keshani, Gideon Bot, Priyam Rungta, Maliheh Izadi, Arie Van Deursen, and Sebastian
Proksch: Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem. IEEE
International Conference on Software Maintenance and Evolution (ICSME), 2024.

Mehdi Keshani: Scalable call graph Constructor for Maven. IEEE/ACM 43rd International
Conference on Software Engineering: ICSE Doctoral Symposium, pages 99–101. IEEE, 2021.

Amir M. Mir, Mehdi Keshani, and Sebastian Proksch: On the Effect of Transitivity and Granu-
larity on Vulnerability Propagation in the Maven Ecosystem. IEEE International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 201–211. IEEE, 2023.

Amir M. Mir, Mehdi Keshani, and Sebastian Proksch: On the Effectiveness of Machine Learning
based call graph pruning: An Empirical Study. IEEE/ACM 21st International Conference on
Mining Software Repositories (MSR), 2024.

Amir M. Mir, Mehdi Keshani, and Sebastian Proksch: OriginPruner: Leveraging Method Origins
for Guided Call Graph Pruning. Paper under review, 2024.

2

13

2
AROMA: Automatic

Reproduction of Maven
Artifacts

Modern software engineering establishes software supply chains and relies on tools and
libraries to improve productivity. However, reusing external software in a project presents
a security risk when the source of the component is unknown or the consistency of a
component cannot be verified. The SolarWinds attack serves as a popular example in
which the injection of malicious code into a library affected thousands of customers and
caused a loss of billions of dollars. Reproducible builds present a mitigation strategy, as
they can confirm the origin and consistency of reused components. A large reproducibility
community has formed for Debian, but the reproducibility of theMaven ecosystem, the
backbone of the Java supply chain, remains understudied in comparison. Reproducible
Central is an initiative that curates a list of reproducible Maven libraries, but the list is
limited and challenging to maintain due to manual efforts. Our research aims to support
these efforts in the Maven ecosystem through automation. We investigate the feasibility of
automatically finding the source code of a library from its Maven release and recovering
information about the original release environment. Our tool, AROMA, can obtain this
critical information from the artifact and the source repository through several heuristics
and we use the results for reproduction attempts of Maven packages. Overall, our approach
achieves an accuracy of up to 99.5% when compared field-by-field to the existing manual
approach. In some instances, we even detected flaws in the manually maintained list, such
as broken repository links. We reveal that automatic reproducibility is feasible for 23.4%
of the Maven packages using AROMA, and 8% of these packages are fully reproducible.
We demonstrate our ability to successfully reproduce new packages and have contributed
some of them to the Reproducible Central repository. Additionally, we highlight actionable
insights, outline future work in this area, and make our dataset and tools available to the
public.1
1This chapter is based on the following paper: Mehdi Keshani, Tudor-Gabriel Velican, Gideon Bot, and Sebastian
Proksch. Aroma: Automatic reproduction of maven artifacts. FSE, 2024 [67].

2

14 2 AROMA: Automatic Reproduction of Maven Artifacts

S oftware ecosystems, such as Maven, host libraries and build plugins in repositories,
which form the backbone of many software supply chains. Maven Central is the largest

public repository for JVM-based languages, allowing developers to reuse software and
release their own packages there.

Relying on a supply chain has the risk of importing vulnerabilities into a project, and it
either requires trust in the source or the ability to check the consistency of the packages.
Unfortunately, research highlights an increasing number of attacks in recent years [81].
Some of them became popular, like the infamous SolarWinds hack in 2020, which resulted in
the shipping of tainted binaries to thousands of customers, including the U.S. government,
which was subsequently hacked [68]. The Backstabber’s Knife Collection by Ohm et al.
documents 174 similar attacks [8].

It is obvious that trust alone is insufficient, and checks are necessary. Wheeler et al. [69]
were the first to propose a conceptual solution that involves comparing the compilation
results of two different environments to detect modified binaries, such as those introduced
in a malicious attack. A match is achieved when two software builds produce bit-for-bit
identical binaries from the same source code, resulting in the same hash for the binary. If
this can be accomplished, the binary is considered to be reproducible. This idea inspired the
Reproducible Builds initiative [82], which recommends practices for improving software
reproducibility. Many efforts, such as localizing unreproducibility [83, 84] or automatically
addressing them [85], have been recently made.

So far, the community focus was Debian and Linux, which are currently ~90% repro-
ducible [86], and reproducibility efforts forMaven packages are more limited. Reproducible
Central (RC) represents a notable exception and provides tools for reproducing projects [70].
The project also maintains a list of reproducibleMaven projects, however, the reproducibil-
ity of the Maven ecosystem is still in its infancy. No official statistics exist, but the RC
repository reports rebuild attempts for 2,547 releases of 531 projects. Compared to the 10+M
releases of 479K unique artifactIds and 64K unique groupIds that exist on Maven
Central in May 2023, it becomes clear that this invaluable effort only covers a fraction of
packages. Furthermore, RC starts their reproducibility attempts at GitHub repositories,
which do not necessarily equate toMaven releases. One such repository can have multiple
sub-modules and releases. Our analyses also found links to 64K uniqueGitHub repositories
on Maven Central, which indicates that many repositories are currently missed.

Efforts to increase the reproducibility coverage are currently limited by several factors:
1) Reproduction is a manual, high-effort task, making it slow, unscalable, and prone to
errors. 2) Starting from source code repositories assumes that developers aim to create
reproducible software, which is not the case for many unmaintained legacy projects. 3)
Current tooling often assumes the availability of the correct version of the source code for
a given release. However, users who wish to reproduce aMaven package must first recover
its source code. 4) Reproducibility is a binary metric and requires an exact, bit-to-bit match.
Many factors influence this comparison, but not all differences are as critical as differences
in the generated .class files. Even trivialities like file modification times or line endings
can prevent a match. We believe that categorizing these cases as simply unreproducible is
too coarse-grained, and that we need to distinguish reproducibility on a spectrum.

In this paper, we explore the possibility of automating the reproduction of large portions
of the Maven ecosystem. We take the perspective of the community and try to achieve

2.1 Experimental Setup

2

15

this goal without relying on the project maintainers. To achieve this goal, we investigate
three key research questions:
RQ1 Can we recreate the link to a source code repository and commit of an artifact?

RQ2 Can the original build environment be reconstructed after the fact?

RQ3 To which extent is it possible to automatically reproduce Maven artifacts?
To answer these questions, we created a dataset of metadata for 480k packages. These

packages represent one random version from everyMaven project (groupId:artifact-
Id). This dataset lets us explore the factors that influence release practices and repro-
ducibility on Maven Central and we report on our empirical insights.

Our results are promising and show that an automated approach (AROMA) can recover
up to ~99.5% of the information manually maintained by RC. We even identified inconsis-
tencies in the manually maintained list, such as broken repository links. We successfully
applied our approach in three practical use cases: reproducing packages that already ex-
isted on RC, identifying numerous reproducible libraries not previously listed by RC, and
achieving near-perfect reproductions for binaries of some packages that did not aim to
be reproducible. So far, we contributed three new packages to RC’s repository via pull
requests, all of which were accepted by their developers.
This paper presents the following main contributions:

1. A comprehensive study of the aspects that impact reproducibility in Maven Central.

2. Heuristic approaches for recovering the repository link, release tag, JDK version, and
line endings for a given Maven package.

3. A tool for the Automated Reproduction of Maven Artifacts (AROMA) and its evalua-
tion to automatically reproduce Maven packages in three practical use cases.

The remainder of this paper is structured as follows: We present our Experimental
Setup in Section 2.1. In Sections 2.2, 2.3, and 2.4, we elaborate on our research questions,
the methodologies that we used to answer them, and the results of our investigation. We
then discuss the implications, future directions, and threats to the validity of our work in
Section 2.5. Section 2.6 presents the related work of this study. Finally, we summarize our
work in Section 2.7. All source code and data for this paper are available in a replication
package [87].

2.1 Experimental Setup
The primary focus of this study is the automated reproduction of Maven libraries to verify
the consistency between source code and binaries. We investigate the feasibility of using
only the source code and available metadata for a Maven package, without involving the
project maintainers. Throughout this study, we present empirical findings at each step for
various reasons. Firstly, these findings justify our data-driven decisions in the methodology.
Secondly, the data assists in setting defaults in projects like RC. For instance, by identifying
the most popular JDK versions and using them as the default for reproducing packages, we
can improve the likelihood of correct identification. Lastly, this approach enhances the
transparency and verifiability of our results.

2

16 2 AROMA: Automatic Reproduction of Maven Artifacts

Figure 2.1: Overview of dataset creation

ra
tio

 o
f p

ac
ka

ge
s

0.000

0.045

0.090

0.135

0.180

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

packages

sampled

Figure 2.2: Maven libraries and selected versions by release year.

2.1.1 Dataset Creation
Our research requires data collection from bothMaven and GitHub. Figure 2.1 provides an
overview of the methodology we employ for our data processing pipeline. Maven Central
publishes an index file weekly, listing all the released packages [88]. We utilized the index
files available up to May 17, 2023. As of this date, Maven Central contained 10.3M released
versions of 479,915 unique projects (groupId:artifactId). To ensure our dataset is
representative of Maven Central and to avoid bias towards projects with frequent releases,
we sample one random release (version) for each unique project. We do not opt for selecting
only the latest versions since our ultimate goal is to reproduce all of Maven, not just the
new releases. This includes packages not designed for reproducibility, especially those
predating this feature in Maven, thus requiring older versions. Furthermore, as not all
projects use the latest versions and some neglect dependency updates, including the older
versions becomes important.

We developed a scalable infrastructure for parallel data aggregation of selected releases.
The scalability of this process is constrained only by available computational resources
and network bandwidth. Leveraging a powerful server with 256 cores, we completed
the dataset population in 3.5 hours. Building the projects required an additional 8 hours.
The infrastructure is extendable with custom analyzers, which can add supplementary
information to the dataset. The system is deployed via docker-compose, simplifying both
the recreation of the dataset and periodic updates. The dataset creation uses the local .m2
repository as a cache, downloading all Maven files to it, including the pom.xml files and
archives. This creation process also populates a Postgres database, which can be queried
for insights about the ecosystem.

Statistics Figure 2.2 displays the total number of releases onMaven Central as well as the
number of selected releases, grouped by their release year. This figure clearly demonstrates
a significant growth in the number of libraries released over time. The plot indicates that
our random sampling strategy yields a time-based distribution of releases that mirrors the
overall distribution of Maven releases. For our experiments, we successfully downloaded

2.1 Experimental Setup

2

17

Table 2.1: Studied dataset stats

Set #Packages %

Indexed packages 10,333,041 100.0
Unique group:artifact combinations 479,915 4.6
Sample size of study 479,915 100.0
Successfully downloaded 473,352 98.6
Have archives 410,102 86.6

the majority of the selected packages, with only 1.37% failing to download. A manual
inspection revealed that most download issues were related to parent POMs not being
hosted on Maven Central. Our sample is detailed in Table 2.1. As this table shows, we
successfully downloaded 473,352 packages, out of which 410,102 had archives and were
included in our study.

2.1.2 Reproducibility
The scope of this study is limited toMaven builds. Reproducing aMaven package presents
numerous challenges. The most significant challenge is that build results depend on the
build time. For instance, the current time may appear as the change time of the .class
files or be included in embedded documentation. While adjusting the system time on the
build machine can make smaller builds reproducible, this method is fragile. Even minor
performance differences in the second build system can lead to varying checksums.

To address this issue, theMaven build plugins support theproject.build.output-
Timestamp property for all time-related output and operations. This property can be
specified in the POM file to fix a particular timestamp, facilitating reproducibility. Using
this property addresses most sources of variability in the default Maven plugins. How-
ever, even though the property can be set automatically during a build (e.g., through the
maven-version-plugin [89]), the vast majority of projects do not define it. In our
dataset of ~480K projects, we could only find 9,603 uses. Unfortunately, this property is not
a silver bullet; other sources of variability also exist that can hinder successful reproduction.

Variability Sources The RC project stands at the forefront of reproducibility efforts in
theMaven ecosystem [70]. The project has identified all sources of variability that typically
exist in the build environment of Maven packages and has introduced a .buildspec
format to formalize these build parameters for reproduction. A .buildspec requires the
following information for reproduction:

• A valid link to the repository and the exact tag used to mark the released commit.

• The JDK version used for the compilation and build execution.

• The type of newline characters used on the build platform (e.g., \n or \r\n).

• The building tool and the specific build command for the release.

The RC project offers advanced tools that utilize the .buildspec files to validate the
reproducibility of a Maven build. Moreover, the project maintains a manually curated list
of reproducibleMaven packages and provides their corresponding .buildspec files.

2

18 2 AROMA: Automatic Reproduction of Maven Artifacts

Reproduction Our study investigates the feasibility of automatically generating.build-
spec files from the metadata that is available forMaven packages. The following sections
introduce our heuristics that we devised to recover the required build environment of a
release. After collecting all the information, we generate .buildspec files and compare
our results with the manually curated ones provided by RC. We also use the RC tooling
to attempt an actual reproduction of the release. RC employs Docker containers to build
projects, consistently resulting in the same output. We reuse their build scripts and do
not modify their logic. This means that when comparing the local binary using RC scripts
with the original binary onMaven, the comparison is effectively between the outputs of
two different build environments: one from our build and one from the release on Maven,
which the maintainers of the library previously built.

2.2 RQ1: Can we recreate the link to a source code
repository and commit of an artifact?

Maven releases are often distributed with a source archive, however, these archives do
not contain the required build files. As such, it is crucial to recover the source code from
the original project repository, which can be linked in their POM. However, this linking
presents several challenges.

Non-Existing and Ambiguous Information Despite being mandatory information
for Maven releases [90], not all projects link the source code repository in their POM. The
links that do exist suffer from ambiguity, as there are multiple fields in which developers
can declare the URL:

project.url Projects should link to their homepage, but many include the repository
URL here.

package.scm.url A public URL of the source code repository.

package.scm.connection A link to a read-only version of the source code repository.

package.scm.developerConnection Similar topackage.scm.connection, but
with write access.

Despite the clear recommendation to specify the repository URL in the package.-
scm.url field, in practice, all fields are used interchangeably. The Maven manual de-
fines the format for each field [71], e.g., the package.scm.connection should be
scm:<provider>:<provider-specific>. However, this format is not enforced and
is not strictly adhered to by many.

Validating links We need a valid repository link to rebuild releases from their sources.
Therefore, we verify the provided repository links, similar to previous work that studied
the prevalence of broken links on Stack Overflow [91]. This step is not only crucial as
a starting point for our work but it also provides first insights into linking practices and
popular hosting platforms.

2.2 RQ1: Can we recreate the link to a source code repository and commit of an artifact?

2

19

Our approach is limited to Git, currently the most prevalent version control system [92].
We leverage its ls-remote command, which requests references to branches and tags
from a remote repository without the need to clone or fetch from it first. Successful
execution conclusively demonstrates the validity and accessibility of the queried repository.
We validate all four fields separately, storing the results. Links failing this validation are
either invalid or associated with different version control systems.

Release tags After identifying the repositories, we need to pinpoint the exact commit
that has been released for successful reproduction. Using release tags [93] is a common
strategy to mark releases in a repository. In Git, tags are unique markers for distinct
repository states. They can be used to label pivotal milestones, like major versions or
feature releases. As such, we inspect the tags in the source code repository and try to find
tags that correspond with the version of theMaven release. Unfortunately, the format is
not unified, and a wide range of tagging schemes exists in practice. For instance, a release
of version 1.0.0 could be tagged with v1.0.0.

2.2.1 Where do Maven projects host their source code?
The established repository links allow us to investigate which hosting providers are com-
monly used for the source code repositories. Combined with the timestamp of each release,
we can also analyze an evolution throughout the history of the ecosystem. Such insights
highlight the interdependency betweenMaven, which serves as a binary ecosystem, and
the code repositories that function as source code ecosystems.

Methodology To examine the market share evolution of each repository host, we parse
each URL field, extract the hostname, and group the hostnames by year. For each year, we
count the number of repositories for each service and determine the percentage market
share of each hosting service by calculating the ratio of its count with the total number of
repositories found in that year.

Results Overall, 83% of packages with scm.url utilize GitHub. Figure 2.3 depicts the
market share of all source code repositories over time for this field. Moreover, since other
URL fields exhibit similar patterns, our focus here is exclusively on the results pertaining
to the scm.url field. Given the abundance of repository hosting services, we included
only the five most popular ones and grouped the remaining ones into the others category.
As illustrated in Figure 2.3, GitHub experienced rapid growth from 2011 to 2014. During
this period, other repositories, especially SVN, maintained some degree of popularity.
However, they were mostly replaced by GitHub in recent years. By 2015, GitHub had
secured a market share consistently exceeding 85%. In addition to GitHub’s dominance, an
emerging trend indicates a rising preference for alternative repository hosts. Among them,
gitee, git-wip-us.apache, and gitbox.apache are particularly noteworthy. However, these
repositories are mostly exclusive to Apache projects and are often mirrored on GitHub.
The figure also captures Apache’s shift from the git-wip-us.apache.org domain
to gitbox.apache.org in late 2018 [94].

2

20 2 AROMA: Automatic Reproduction of Maven Artifacts

0%

25%

50%

75%

100%

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
others svn gitee gitbox.apache git-wip-us.apache github

Figure 2.3: Market share of repository hosts per year for package.scm.url field.

2.2.2 How reliable are the source code repository links on
MAVEN?

It is not enough to extract a seemingly valid URL, it is important for our evaluation that we
ensure that these links point to the correct repository. First, if we build a different repository
than RC does, the results of our builds will naturally differ, making them incomparable.
Second, discovering new Maven reproducible packages is of little value if we are building
the incorrect repository.

Methodology After obtaining a valid repository link for each package, we compare them
to the repository links of RC .buildspecs to assess the accuracy of our approach. Since
RC is mainly created manually, it serves as a good benchmark for evaluating our method.
The manually curated .buildspec files are only one possible way to reproduce a release;
other .buildspecs could lead to the same result. Using these files in our evaluation
gives us a lower bound, and even a negative match might lead to a reproducible build in
practice.

We recognize that several URLs in a .buildspec point to mirror repositories and a
direct link comparison would result in many mismatches. As such, we decided to rely on
the command git ls-remote url HEAD for comparison, which returns the commit
hash of the default branch. If the hashes of both URLs match for a particular package, we
consider the repositories to be identical.

Results Out of the 473,352 packages that we downloaded, 442,360 (representing 97.34%
of packages with at least one url) provided a repository URL in the scm.url field. This
high percentage is attributable to the mandatory requirements of Maven libraries [95]
specified by the ecosystem. Nevertheless, not all developers utilize the scm.url field as
intended. Some include a URL pointing to the project’s homepage rather than the source
code repository, which should be specified in the url field instead. Conversely, there are
instances where developers either place the source code repository URL in both fields
or solely in the url field. Some even provide the SSH URL for the repository, which
might require authentication. However, converting such a link to an HTTPS URL makes it
accessible. We automated this conversion process.

Table 2.2 shows the results of our URL validation. The left part lists the percentage
of packages that contain each field, while the right part breaks this number down into
the percentage of packages for which the identified link is valid. Notably, a significant

2.2 RQ1: Can we recreate the link to a source code repository and commit of an artifact?

2

21

Table 2.2: Percentages of URL field usage and valid URLs for each

Found Valid

Metric #Packages % (of Total) #Packages % (of Found)
Has ≥ 1 URL field 448,273 98.6 354,948 79.2
Has url 442,379 97.3 166,742 37.7
Has scm.url 442,360 97.3 327,744 74.1
Has scm.connection 425,999 93.7 224,769 52.8
Has scm.developerConnection 356,982 78.6 117,912 33.0

percentage (74.09%) of links in the scm.url field were validated, while a considerably
lower percentage (37.7%) in the url field met the same criterion. Since the url field is
intended for the project’s homepage, this difference is expected; after all, a webpage cannot
be verified as a repository. However, the presence of 37.7% valid repository links in the
url field also indicates that many projects use their repository as their homepage.

Overall, 79.2% of the packages have at least one verifiable repository link. Of the
packages with invalid links, 6.87% contain URLs that are unparseable and could not be
validated. These cases include malformed links, empty strings, and strings that are not
URLs.

In total, our dataset contains 1,517 packages for which RC offers a buildspec. 97.5% of
the URLs we identified align with the repositories that RC also references. Through manual
inspection of the 2.5% non-matching cases, we determined two categories of mismatch:

• Instances where RC provided a URL requiring authentication for access, while the
URL we identified is public and matches the package.

• Cases in which RC offers a link that results in a 404 error, but our URL points to a
relevant public repository corresponding to the package.

Most importantly, we did not encounter any instances where our method provided a
link that contradicted the information in RC.

2.2.3 Can we find the corresponding version tags in source
code repositories?

Developers of a project can leverage release tags to roll back to a specific version for tasks
such as debugging and bug fixing. Yet, fromMaven’s perspective, tags remain hidden. If
the conventions developers use for Maven releases differ from the tags in their codebase,
then only a developer’s historical knowledge can bridge this gap. In this research question,
our objective is to automate the mapping between Maven releases and Git tags.

Methodology To discover more version mappings, we do not limit our tag search to exact
matches and inspect all tags used in the validated repositories to find recurring tagging
practices. From this list, one author has identified patterns, calculated their frequency, and
removed their matches until no other repeating patterns existed. We verified each pattern
by ensuring that a second author cannot find mismatches in 10 randomly selected matches

2

22 2 AROMA: Automatic Reproduction of Maven Artifacts

Table 2.3: Top 10 tagging patterns

Pattern Example coordinate Tags %Packages

v«version» com.ethlo.dachs:dachs-audit:1.0.0 v1.0.0 48.2
«version» com.eriwen:groovyrtm:2.1.1 2.1.1 34.9
artifactId-«version» com.expedia.tesla:tesla:4.0 tesla-4.0 6.4
p1-«version» org.activiti:activiti-form-api:6.0.0 activiti-6.0.0 5.3
release-«version» com.senseidb.clue:clue:0.0.2 release-0.0.2 1.5
p1-p2-«version» com.aoapps:ao-dbc-book:3.1.1 ao-dbc-3.1.1 1.2
release/«version» com.github.dalet-oss:vfs-gcs:2.2.0 release/2.2.0 0.4
p1-p2-p3-«version» com.adobe:aio-lib-java-ims:0.0.4 aio-lib-java-0.0.4 0.3
«version»-release com.github.machaval:cli_2.12:0.2.0 0.2.0-release 0.3
v.«version» dev.struchkov.haiti:haiti-core:1.0.3 v.1.0.3 0.2

for each pattern. Overall, we identified 45 common tagging patterns, and our replication
package contains the full catalog.

Results From a total of 354,948 packages that have at least one valid URL, we suc-
cessfully identified 234,674 (66.1%) tags using the tagging patterns. Packages that did
not align with our patterns either lacked version tags or adhered to a specific conven-
tion unique to their project, which differed from those we identified. Table 2.3 presents
the prevalence of our top 10 tagging patterns and also showcases examples of tags used
in Maven libraries. The most common pattern shown in the table is v«version», which
indicates that the package version that can be derived from theMaven coordinate is pre-
fixed with the character v, leading to tags such as v1.0.0. Notably, this pattern is present
in 113,243 packages within our dataset. Additionally, some packages incorporate their
artifactId or parts of it into their tag names. An artifactIdmight consist of several
parts, each separated by a dash (-). We label these parts as p«number». For illustration,
the package com.adobe:aio-lib-java-ims:0.0.4 contains four parts (p1: aio, p2:
lib, p3: java, and p4: ims). Within our dataset, 639 (0.3%) packages follow the pattern
p1-p2-p3-«version». The first two patterns listed in the table account for 83% of the cases
we identified. Our results suggest that the vast majority of Maven libraries either use the
version number as a tag or prepend the character v.

Overall, in 93.4% of the cases, the tags that we identified are identical to the ones RC
suggests. We manually inspected the remaining 6.6% of tags and found two categories of
mismatching tags:

Commit Hashes RC references a commit hash instead of a tag label. In some cases, it is
the same commit that our identified tag points to. Occasionally, when a branch was
merged during the release, RC includes the parent or child commit of our identified
tag. In these cases, merge commits were used solely for adjusting the versions, so
the difference between RC and our approach is negligible. We found two instances
where RC specified a seemingly unrelated commit. In the first instance, a comment
in the .buildspec notes that the binaries on Maven Central were not built from
the tag, which suggests an oversight or poor practice by the library maintainers. In
the other instance, the Maven plugin version has changed in the commit of RC. We

2.3 RQ2: Can the original build environment be reconstructed after the fact?

2

23

speculate that the package developers attempted to update a plugin, which made
this commit unreproducible. RC might have realized this and instead decided to
point to the correct commit instead of the tagged one. However, without better
documentation or practices for such cases, it is challenging for others to interpret or
automate them.

Tag Names RC pointed to a different tag name than what our method identified. In some
cases, repositories featured identical releases but with different tag names; one was
detected by our method, and the other was found by RC. When comparing the
content of both releases, they were identical. Thus, our approach is essentially the
same for such cases as RC. In one instance, RC pointed to a tag that did not exist
in the repository. However, a branch with the same name was present, enabling a
checkout and build. Nevertheless, the tag we identified was also accurate since it
pointed to the last commit of the same branch. In another instance, we pinpointed
a tag as 1.0.0, while RC referred to org.apache.felix.feature-1.0.0.
We noted in the repository of this package that developers versioned each sub-
module individually. Thus, 1.0.0 represents the version 1.0.0 of the entire project,
whereas org.apache.felix.feature-1.0.0 pertains to the release of the
particular sub-module we were looking for. In this particular example, our approach
may not be able to find the accurate release; however, this pattern of versioning is
not advised. Consistent versioning across the entire project is the recommended
practice. We observed that such cases are exceptions and do not occur frequently.

In conclusion, our observations did not reveal any intrinsic flaws in our approach to
identifying tags. However, during the manual inspection, we found that there is a lack of
standard practices and procedures when it comes to the reproducibility of packages and
releases in general, which makes it even more challenging to automate.

RQ1: Can we recreate the link to a source code repository and commit of an artifact? Yes,
for a total of 354,948 packages, we identified at least one valid repository URL. Among
these, we successfully pinpointed commit tags for 234,674 using our identified tagging
patterns. In summary, for 57.2% of the packages, we can recreate both their link and the
commit associated with the artifact.

2.3 RQ2: Can the original build environment be
reconstructed after the fact?

After obtaining the source code, a reproduction attempt requires building the package. Addi-
tional details about the original build environment need to be defined in the .buildspec
to use the RC tooling for the reproduction. We have devised several heuristics to recover
these details from the source code or the released artifacts.

JDK Java is the primary language for JVM-based programs that are released onMaven and
the development of Java programs requires a Java Development Kit (JDK). The chosen Java
version notably affects the development and release process of libraries. New Java versions
introduce new features, refine existing ones, fix bugs, and address vulnerabilities. As the

2

24 2 AROMA: Automatic Reproduction of Maven Artifacts

compiler changes with each version, it also has an important effect on a reproduction
attempt for a library from its source code, as the usage of different Java versions for
compilation can result in different bytecode.

To collect data about the JDK version used to originally build the libraries, we employ
two heuristics. The first heuristic focuses on the archive’s metadata file META-INF/-
MANIFEST.MF. If present, this file usually provides information about the JDK version in
the Build-Jdk-Spec field; older versions of the Maven archiver [96, 97] have used the
Build-Jdk field instead. The Build-Jdk field typically contains detailed version data,
including the minor version. For the purpose of rebuilding the packages, we only need the
major versions. As such, we extract only that major part. For instance, from the version
11.0.10, we only retrieve 11. It is worth noting, however, that a significant number of
archives lack these entries. In such cases, we fall back to the configured compiler version,
which can help reduce the search space of JDK candidates that could have been used for the
release.

Compiler Configuration The source code compilation of Maven projects is configured
within the POM through the Apache Maven Compiler Plugin [98]. While third-party plugins
might also support compilation, we focus solely on the Apache Maven Compiler Plugin as
the main and default compilation tool. It allows specifying the expected version of the
Java source and the target version of the generated bytecode. Knowing about these
versions eliminates JDK versions that precede these releases as viable candidates, as only
newer JDKs can compile to old versions, but not vice versa. We use the extracted versions
as the lower bound for the JDK version and build the project using this specific version and
all newer releases with Long Term Support (e.g., Java 11, 13, 17) that were available at the
release date of the library. With the assistance of the file-level comparison (See Section 2.4),
we can then identify the best version that maximizes reproducibility. In cases where we
cannot find any version for the package, we try all LTS versions.

To streamline the information extraction process from the POM, we utilize the built-in
model of Maven [99]. This model offers a standard structure for accessing and extracting
the required data from the POM. It is important to understand that POM supports numerous
features for managing and inheriting properties among different modules. For instance,
projects without actual Java code can still possess compiler configurations. These projects
are typically shipped as pom packages. They act as containers, and sub-modules can inherit
configurations and dependencies from them. In this study, we consider such inheritance
from the project’s parent, configurations of plugins, and pluginManagement [100]. We also
account for properties and Maven default values.

Line ending Line endings or newline characters denote the end of a line in a text file
and the beginning of a new one. These characters play an important role in formatting
and displaying text across various platforms and editors. The two common line-ending
conventions are lf (Line Feed) and crlf (Carriage Return plus Line Feed). lf is pri-
marily used in Unix-based systems, including macOS and Linux, and is represented as \n.
Moreover, crlf, which is common in Windows environments, is represented as \r\n.
Inconsistencies in line endings can result in incorrectly displayed text or errors in certain

2.3 RQ2: Can the original build environment be reconstructed after the fact?

2

25

contexts. Line endings can also impact reproducibility, especially in build-generated files
like MANIFEST.MF and pom.properties.

Providing the correct line endings used during the package release in the .buildspec
is essential, allowing the RC tooling to eliminate variations caused by varying line endings.
If the newline is crlf, the argument -Dline.separator=$’\r\n’ is applied when
building the project. Additionally, during the git repository fetch, all newlines are converted
to crlf using the unix2dos tool.

To identify the correct line ending, we cannot examine source files from the repository,
as committed files were created by a developer on a separate computer. Additionally, files
can also get altered by Git on checkout. Instead, we rely on the pom.properties file,
which is auto-generated during the build and then added as metadata to the artifacts. This
file presents a reliable source as its line endings reflect the environment in whichMaven
built the original release. In cases where we cannot extract line endings from the file, we
follow a trial and error approach and use both lf and crlf to build the package. If one
fails, we can repeat the reproduction with the alternative.

Build Tool During our project selection, we search for the pom.properties file in the
archive, which is automatically added during the build process. Build tools that generate
the file, usually include the tool name in a comment. Since the scope of this study is limited
toMaven builds, we parse the comment and ensure that we only select packages that were
generated by Maven. If we cannot locate this file, the project is likely built using another
build tool, such as Gradle or sbt.

We follow the default of RC and select Maven version 3.6.3 [101]. The sources of
variation in a build that prevent reproducibility are mainly caused by the chosenMaven
plugins, so the exact version used is negligible, as long as it is new enough to run all the
plugins of a build.

Build Command The configuration-based design of Maven makes it possible for
the actual build command used to create a release to be reduced to basic instructions.
While the details can differ for each project, such as relying on release profiles or cer-
tain environment variables, RC has found a meaningful default command that works
across a wide range of projects. Their recommendation is to activate the -DskipTests,
-Dmaven.javadoc.skip, and -Dgpg.skip flags to skip test execution, the generation
of javadoc, and the GPG signing process. None of these three steps affect the generated
binaries; therefore, they can be safely skipped. Notably, the signatures are stored in separate
files, and without knowing the private keys, reproduction would be impossible.

For our reproduction attempts, we adjust this default command of RC with further
options. Since our recovered repositories potentially contain multi-module projects, we
want to avoid building the whole repository every time, which would slow the build and
increase the risk of a build failure. Therefore, we add the -pl :«artId» parameter, which
limits the build to only the specific artifact that we are trying to reproduce. We also
include the -am/–also-make flag to ensure that dependencies to other modules in the
multi-module projects get built as well; otherwise, the build would fail. Ultimately, we use
the command mvn clean package -pl :«artId» -am -DskipTests -Dmaven.-
javadoc.skip -Dgpg.skip to build the packages for reproduction.

2

26 2 AROMA: Automatic Reproduction of Maven Artifacts

JDK version
ra

tio
 o

f p
ac

ka
ge

s

0.0

0.3

0.6

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.4: JDK versions used by Maven libraries.

2.3.1 Which JDKs were used to build Maven libraries?
Finding the correct JDK is not only one of the most fundamental steps in our reproduction
efforts, but it also allows us to study the distribution in the ecosystem. This can, for example,
help library maintainers choose versions that result in more compatibility, as well as help
RC maintainers try the most prevalent versions as their default JDK.

Methodology To find the build JDK versions, we analyze the MANIFEST.MF files of the
packages in our dataset. Out of 410,102 packages with archives, 204,394 (50%) defined the
Build-Jdk field, and 41,809 (10%) defined the Build-Jdk-Spec field in their manifest
files. In this section, we report the statistics of analyzing the Build-Jdk field as more
packages define this field.

Results The predominant Java version utilized is Java 8, accounting for a significant 57%
(116,607) of the packages. When considering the Long-Term Support (LTS) versions, namely
Java 8, 11, 17, and 21, they collectively make up about 68.5% of the archives. As the newest
JDK version (Java 20) was released only two months before this study was conducted,
it is not surprising that we could only find 52 packages that use it. It is noteworthy to
mention that older non-LTS versions, specifically Java 5, 6, and 7, have a considerably
higher presence compared to more recent non-LTS versions. A comprehensive breakdown
by major version can be observed in Figure 2.4. Only one artifact, specifically [102], appears
to be compiled in Java 21. Given that Java 21 has not been released at the time of writing
this article, it is likely that this artifact is built using an early-access version.

Figure 2.5 illustrates the distribution of JDK versions per year. This figure includes only
the top six versions, comprising three LTS versions (8, 11, 17) and three non-LTS versions (5,
6, 7). It is important to note that other versions are excluded from this figure, which is why
some bars have values less than one. The figure highlights the relatively rapid adoption of
LTS versions (Java 8, 11, and 17). These versions become among the most popular choices
within two years of their respective releases. For instance, Java 8 was released in 2014
and became the most popular version by 2016 with a share of 26.6%. Interestingly, Java 8
maintains its dominance in the ecosystem even after newer LTS versions are introduced.
The figure also highlights a pattern of quick growth followed by a prolonged decline for
non-LTS versions. However, this pattern changes after the introduction of the first LTS
version, Java 8. Its dominance in the ecosystem persists much longer than the popularity
of preceding versions.

Our analyses have revealed that the artifact compiled in early-access Java 21 is not a
unique case; we found several other instances of compilation in previous early-access Java

2.3 RQ2: Can the original build environment be reconstructed after the fact?

2

27

ra
tio

 o
f p

ac
ka

ge
s

0.00

0.25

0.50

0.75

1.00

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

Java 17

Java 11

java 8

Java 7

Java 6

Java 5

Figure 2.5: JDK versions used by Maven libraries over the years.

versions as well. We can also still find new releases in Java versions that are no longer
officially supported. This trend appears in approximately 21K packages. It is important
to note that this is only an estimation due to the limited information available regarding
end-of-support dates for older versions. Furthermore, if these dates are available, they can
vary by multiple years depending on the Java vendor.

The next method to recover the JDK version involves examining the compiler configu-
ration, as discussed in Section 2.3. In many instances, theMaven compiler plugin is not
configured, accounting for 45.02% (213,106) of the packages. However, it is configured in
260,246 packages. When the Maven compiler plugin is utilized, both the source and
target versions are specified in 95.89% (249,542) of the cases. On the other hand, neither
one is specified in 3.92% (10,202) of the packages. Interestingly, even though it is designed
to allow different source and target versions, in almost all cases where both are present,
they match. Only a tiny fraction (0.15%/385) specify different versions. Although this
feature serves its intended purpose, it is rarely used. Exclusively specifying just one of
the two versions is also rare: a mere 376 (0.14%) packages specify only the source version,
while 126 (0.05%) packages utilize only the target version. 64% of packages that specified
both JDK and source versions use the same version for both. However, 35% use a newer
JDK for building than the one specified for the source. In rare cases (0.0012%), there are
even source fields that are greater than the compiling JDK. These cases might be mistakes
in the manifest files since older versions cannot compile more modern source code.

When compared to RC, our identified JDK version matched in 99.5% of the cases, and
we manually inspected the very few differences. Determining the exact version that
library maintainers used to build the released library is challenging since none of these
projects have a manifest file. RC also does not provide details on how they arrived at the
versions used in these packages. However, we discovered GitHub workflow files in the
corresponding GitHub releases of these packages, and the Java version used in their CI
matched one of the LTS versions that we had identified. In contrast, RC assigned non-LTS
versions to these packages, which we could not verify within these projects.

2.3.2 What line endings do Maven libraries use?
For the reuse of a package, it is irrelevant on which platform it has been built. However,
understanding the distribution of build platforms can guide future research on reproducibil-
ity.

Methodology As explained in the introduction to this section, we extract the information
about line-endings from the pom.properties file. We calculate basic statistics about

2

28 2 AROMA: Automatic Reproduction of Maven Artifacts

the file endings and group the results by year.

Results Overall, 63% (258,809) of theMaven libraries with archives possess the pom.-
properties file. Libraries without this file are likely built using tools other than Maven,
such as Gradle. Interestingly, 212,340 (82%) of the packages employ lf line endings, while
only 46,469 (18%) use crlf. A historical analysis of the distribution throughout the history
of Maven has revealed a consistent ratio of roughly 80/20 in favor of lf over the years.

Our identified line ending aligns with RC’s results in 98% of the cases. In the few
instances in which the results differed, RC employs crlf-nogit and no-auto.crlf
as line endings, while we utilize crlf. We were unable to determine the reason RC adopts
these line endings, as our search through their documentation and code yielded no answers,
but we assume that this hints at the way Git is (not) supposed to take care of the line
endings [103]. Upon checking the pom.properties of those packages, we found that
the releases used crlf. Thus, we are confident about our results.

RQ2: Can the original build environment be reconstructed after the fact? We auto-
matically extracted the JDK version and line endings of releases after the fact. When
compared to RC, in 99.5% of the cases, our identified version matched, and regarding
line endings, our results matched RC’s in 98% of the cases.

2.4 RQ3: To which extent is it possible to automati-
cally reproduce Maven artifacts?

The final research question investigates the overarching research question of this work
and analyzes whether an automated approach for reproduction can be successful. For this
effort, we select the subset of packages from our dataset that contains all the required
metadata. Out of the 479K packages, 235K (49.0%) have verified links and recovered tags,
118K (50.2%) of these contain a pom.properties file in their archives, and 112K (95%)
of these packages are built using Maven. To address this research question, we focus
exclusively on building these particular packages.

After building the libraries, we record the build’s success status and store the compiler
output. We then compare this output to the corresponding release on Maven Central. This
comparison is facilitated by the RC script. Specifically, it compares the built files with a
reference, in this case, the files released on Maven Central. While it outputs various data
points, we focus primarily on two pieces of information: the ok_files, which represents
files that match the reference, and the ko_files, indicating files that diverge from the
reference. Given that RC builds contain entire repositories, a direct comparison of all
generated files would not yield meaningful insights. This is because the package under
examination might be just a sub-module of the larger repository. A sub-module build
generates fewer files compared to the building of the full project. However, as highlighted
in Section 2.3, while building the sub-module we also build its associated dependencies.
This results in a more extensive file set than what was released for this specific package on
Maven Central, as the set also contains dependency files. To fix this, we curate a set of
files directly related to the Maven package in question and limit our comparison to these
files. To collect this set, we send a manual request to Maven Central and parse the html

2.4 RQ3: To which extent is it possible to automatically reproduce Maven artifacts?

2

29

list of all files linked to the specific package. This list includes files such as JARs, sources,
docs, and POM files.

Reproducibility is a binary concept. An executable is either reproducible, resulting in an
identical checksum, or it is not, generating a different checksum. Sometimes, reproducibility
is compromised by trivial factors like a timestamp in one file. At other times, it can be
due to differing content in multiple class files. Perfect reproducibility facilitates automatic
checking but builds often are not reproducible. Thus, determining why a certain executable
is not reproducible becomes valuable. Tools like diffoscope [104] exist that can compare
archives line-by-line, but this is too fine-grained for an ecosystem-scale analysis. As such,
we focus on analyzing archive contents file-by-file to provide a broader perspective on
causes of non-reproducibility. Given our automatic rebuild, having an automated way to
understand how close we are to achieving a perfectly reproducible build is helpful. To
achieve this, we compute the MD5 checksum for each generated file and compare these
with the corresponding checksums in the reference archive to pinpoint the differences.

2.4.1 Can AROMA reproduce reproducible packages?
AROMA is a tool that automatically extracts build information for a given package. It starts
inMaven Central, follows repository links to re-establish a source connection, and extracts
the necessary information to generate a .buildspec file.

The previous research questions have shown that we can replicate the .buildspec
files of RC with a high success rate. In this experiment, we will now investigate how
our approach compares to RC on an end-to-end basis. This is important to investigate
because the main purpose of all previous steps is to automate the rebuild process that RC
is conducting manually.

Methodology We rebuild packages using bothAROMA and RC’s .buildspec files, then
compare the results. We select 100 random packages for which RC provides a .buildspec.
First, we run the RC script to reproduce these packages using RC’s provided .buildspec
file. Subsequently, we execute the RC script using the .buildspec generated by our
approach. Finally, we compare the number of packages that each method successfully
reproduces.

Results Out of the 100 packages we examined in this experiment, our approach suc-
cessfully built all of them. However, using RC’s buildspecs, we only managed to build
96 packages. A manual inspection revealed that one of these buildspecs contained a
broken repository URL, resulting in a 404 error. We noticed that in the RC repository
for the newer versions of this package, the link had been updated to match the one we
found, but all older versions were still using the broken link. We speculate that the library
maintainers changed their repository at some point, and the RC maintainers overlooked
updating the links for earlier versions. Nevertheless, when our build was compared to
the Maven Central release of this specific package, all files matched. Since we could not
build this package using RC’s approach, we compared theMaven files with the ok_files
present in the RC repository for this package. We found one POM file to be missing. In
the other three instances where the RC build failed, we noted that the command section
of the buildspec initiated with a SHELL instruction. This command enforces manual

2

30 2 AROMA: Automatic Reproduction of Maven Artifacts

intervention, as it prompts an interactive build process for the packages. Consequently, we
excluded these from our experiment since we could not automatically build them. However,
the build information we extracted was identical to what was present in RC’s buildspecs
for these packages.

Out of the remaining 96 packages, our approach achieved full reproducibility for 10
of them. Similarly, RC reproduced these packages in their entirety. For 37 packages, we
managed to reproduce all released files except for the sources.jar files. In contrast, RC
was able to reproduce these sources.jar files. Upon manual inspection, it became clear
that the only difference between our build and the RC build was the release profiles specified
in the command. These 37 packages would generate the sources.jar only when built
using a specific release profile. It is worth noting that, from a security standpoint, the
reproducibility of binaries is paramount, which both approaches achieve. Regarding the
remaining 49 packages:

• In 11 instances, both our approach and RC reproduced all but the sources.jar
files.

• For six packages, neither our method nor RC was able to reproduce the released files.
In two of these cases, the build failed for both methods: one due to a java.lang.-
ClassNotFoundException and the other due to a dependency issue.

• In our build, two of the packages could not be reproduced, though RC managed to
succeed. The primary difference between our method and RC’s for these packages
was the release profile. These two packages specifically required a certain release
profile for their build.

• For the remaining 30 packages, both methods achieved only partial reproduction.
They reproduced some of the released files on Maven, but not all, and this time,
the unreproduced files extended beyond just the sources.jar. We acknowledge
that anything less than perfect reproducibility in binaries could potentially open the
door to attacks. Our intention in discussing partial reproducibility is not to settle
for less than perfect. Rather, it is to measure how far non-reproducible packages
are from achieving perfect reproducibility. This approach helps us understand the
underlying reasons for non-reproducibility and can inform future research about the
most crucial missing parts.

Overall, our approach achieved very close performance compared to RC when repro-
ducing the packages, despite our method being fully automated. In this experiment, we did
not observe any cases where our approach had an inherent limitation.

2.4.2 Can AROMA identify new reproducible packages that
are not listed on RC?

Manually creating and maintaining a list of reproducible packages can be challenging and
prone to errors. One potential application of our approach is to assist RC in expanding
and updating this list. In this experiment, we devise a scenario to identify reproducible
packages not yet documented by RC.

2.4 RQ3: To which extent is it possible to automatically reproduce Maven artifacts?

2

31

Methodology As noted by RC’s records, packages that aim for reproducibility do not
always fully succeed, often, they are only partially reproducible. We explore these cases by
randomly selecting 100 packages that have the project.build.outputTimestamp
property in their POM file, indicating their attempt to be reproducible. We ensure that
these packages do not exist in the current RC list. We then try to recover a .buildspec
file and reuse the RC tooling to attempt reproduction.

Results We achieved 100% reproducibility for five packages. However, 44 of the packages
failed to build. This highlights the challenges of rebuilding projects in the wild and
highlights the value of automation in deploying reproducible packages and rebuilding
them. For 23 packages, we managed to reproduce all files except the source.jars. For
three packages, even though they were successfully built, we could not reproduce the
files. Upon manual inspection, we discovered that the underlying reason was that these
packages utilized release profiles for their releases on Maven Central. For the remaining 25
packages, no other files apart from the POM matched the reference.

Overall, the objective of this experiment was to determine whether our approach could
be used to expand the RC’s list of reproducibleMaven packages. We pinpointed several
packages suitable for inclusion: some with full reproducibility and others with partial
reproducibility. As a result, we contributed a few of these packages to the RC repository
through pull requests, and these were quickly accepted by the main developers of the RC.

2.4.3 Find Candidates: Is there any near miss among packages
not tried reproducibility?

As discussed in Section 2, the efforts made so far cover only a limited part of the entire
Maven ecosystem. Given this context, automated methods that assist in making existing
packages reproducible are important. One application of our approach is to detect opportu-
nities for straightforward reproducibility fixes. Addressing such cases, which can be made
reproducible with minimal effort, contributes positively to the overall health and security
of the ecosystem.

Methodology We select 100 random packages lacking the project.build.output-
Timestamp property in their POM file, indicating they have not pursued reproducibility.
After building these packages, we conduct a file-level comparison, as elaborated in Section 2.4,
to identify the reasons for non-reproducibility and to search for near-miss that might be
fixed with a small manual effort.

Results While the build of 39 failed, we were surprised that we managed to partially
reproduce some of the other packages, even though they were not designed for reproducibil-
ity. For eight of these packages, we successfully reproduced the POM files and almost the
binary files. The only difference between the binaries and the references was file metadata,
like the file dates in the archive itself, suggesting that the content of these packages was
otherwise identical. For another 26 packages, the only culprits for unreproducibility were
the Manifest and/or pom.properties files. This indicates that the majority of the
content in these packages aligned with what is available on Maven Central, and it is

2

32 2 AROMA: Automatic Reproduction of Maven Artifacts

the files generated by build tools and plugins during the build process that render them
unreproducible. For the remaining 27 packages, the unreproducible files also encompassed
other types, primarily .class files. However, the prevalence of this was relatively limited.
The package with the most unreproducible class files had 43 unreproducible class files out
of a total of 86. The subsequent cases had ratios of 19 to 53 and 13 to 121, respectively.
Apart from these exceptions, all other packages contained fewer than five unreproducible
class files. We also observed an occasional presence of other types of unreproducible files,
like XML, but these were largely specific to individual projects and did not form a recurring
pattern.

We ignored the reproduction of source files and focused primarily on binaries, which
are the most critical aspect of reproducibility. Sources are available through the recovered
repository links. As we noted, numerous near-miss cases emerged during the experiment.
Even though these cases with slight differences might currently not produce the same
checksums across different builds, addressing this issue is straightforward. As a result,
providing automated recommendations for reproducible releases is feasible in such scenar-
ios. For instance, stripping the timestamp [105] or assigning it a certain value can make a
package reproducible. To demonstrate this, we built a package where the timestamp was
the only factor causing unreproducibility. Since Maven is immutable (a release cannot be
changed after deployment), by manually synchronizing the system’s time with that of the
released package, we built the package with an identical checksum. Though this technique
might appear cumbersome, it highlights the feasibility of automatically repairing the unre-
producibility in many packages. This experiment reveals that although the situation on
Mavenmay seem bad at first compared to, for example, Debian, it can be quickly mitigated.
Many packages were almost reproducible, but achieving high reproducibility requires the
attention of the community.

RQ3: To which extent is it possible to automatically reproduce maven artifacts? Overall,
automation was possible for 23.4% of the packages, and only 8% of those were fully
reproducible. When considering the magnitude of Maven, these percentages represent
a significant improvement over a manual approach.

2.5 Discussion
The experiments in this paper have touched upon a wide range of areas and resulted
in various insights. We use the discussion section to reflect on actionable insights or
recommendations for future work.

Awareness Setting the project.build.outputTimestamp property in aMaven
project increases the chance of automated reproducibility substantially. The only expla-
nation for why this property is not widely used is a lack of awareness among developers.
We postulate that Maven tools should start to print a warning about a missing definition
during a build (similar to a missing definition of the encoding). As it does not hurt to define
the property, Maven could even go one step further and set it automatically, when the
property has not been set by developers.

Reproducibility should become a quality attribute of a package. Maven could begin
warning about non-reproducible dependencies. Once library users start considering repro-

2.5 Discussion

2

33

ducibility as a factor in their library selection, library maintainers will have an incentive to
put more effort into reproducibility. In the best case, providing .buildspec files could
become a standard in the community.

On a related note, we found many different release tagging styles in our analysis. De-
velopers need to realize that standardization facilitates automated processing and enhances
the transparency of the ecosystem. Instead of reinventing the wheel, we recommend that
developers adhere to the most popular community conventions for tagging their releases.

Better Research We currently observe that the absence of Maven source archives often
leads to the exclusion of packages from studies that require source code analysis. For
instance, in the study by Karakoidas et al. [106]. Recovering repositories and release tags
forMaven packages not only enhances the likelihood of better reproducibility but can also
have a positive impact on these research efforts.

Sorry State of Maven Central We find it worrisome to observe how many projects
cannot be reproduced simply because the necessary resources are not available or are no
longer accessible. Future work should focus on investigating the feasibility of removing
broken artifacts from the repository to restore Maven Central to a fully self-contained and
reproducible state. Broken packages no longer serve a purpose and impede maintenance
efforts.

We believe that the strong separation between hosting binaries and source code, as
designed in Maven Central, is the most likely explanation for this state. Perhaps the
concept of a central repository is outdated and requires re-evaluation. Current practices
on major hosting platforms like GitHub or GitLab highlight the distributed nature of
Maven and bring sources and releases closer together in their integrated package registries.
However, it is important to note that a fully decentralized system may emphasize the
problems with data consistency that we have identified on Maven Central, where, at least
in theory, regulations exist to maintain a basic level of repository hygiene.

Relevance Our experiments showed that automated reproduction could only be at-
tempted for 112K out of 479K packages (23.4%), and out of the packages we attempted, only
24 out of 300 (8%) were fully reproducible, with 60 out of 300 (20.0%) being at least partially
reproducible. While these numbers may seem small, they represent automated results
that allow us to focus manual efforts on more challenging packages. If the same fractions
were to apply to the 10M existing Maven packages, we would be able to automatically
reproduce approximately 23%×(8%+20%)×10𝑀 = 644𝐾 packages, significantly expanding
the RC dataset beyond the existing 42K packages. We believe that AROMA has significant
potential, and there are ample opportunities for further improvement in future research.

One direction could be a study on release profiles that we found in many projects.
They are used, for example, to include or exclude certain files in a release, which obviously
changes the outcome. As profiles are often defined in parent POMs, research methodologies
must make sure to extract this information properly. Furthermore, profile names can be
freely chosen; future work should investigate how to detect the profiles that need activation
for a release.

2

34 2 AROMA: Automatic Reproduction of Maven Artifacts

A second direction could be to formulate reproduction as a search problem. The goal
is to prune impossible environmental variables and perform a grid search to find a valid
.buildspec. Even cases that are not or only partially reproducible right now can inform
such an automated approach and support the manual creation of a .buildspec. Future
work should extend AROMA and explore the localization and repair of unreproducible
builds, especially cases in which large parts of the release could be matched. This would be
invaluable for the ecosystem and could enhance its security.

2.5.1 Threats to Validity
The following limitations should be taken into account when interpreting the results.

Internal Validity We conducted manual inspections and implemented heuristics in this
research, which might introduce human errors or overlook corner cases. To minimize
potential issues, we carefully documented all of our steps. Furthermore, for the manual
inspections, two authors were involved to mitigate the chances of mistakes. We also
compared our results to a manually curated baseline to estimate precision at each step. We
reused existing open-source tools for rebuilding packages, which are widely accepted and
integrated withMaven. However, there is a possibility of inheriting any flaws that they
might have. To mitigate this, we built a flexible infrastructure for others to integrate their
tools and compare their results with ours. We also acknowledge that hidden bugs in our
implementation could exist. To address this, we conducted multiple manual tests, created
an extensive test suite, and made our data and code public for community review.

Construct Validity When extracting the JDK version for cases where it was not present
in the manifest file, we utilized the Java version specified in the POM. While this version
is not necessarily guaranteed to align precisely with the JDK used to build the project, it
typically serves as a lower-bound approximation. This approach might not provide the
maximum precision but it enables us to build the packages using various versions and then
compare the results. This allows for selecting the most probable version that was used in
the library release.

External Validity In our study, while implementing the heuristics, we focused on
common patterns. For example, we concentrated solely on using Maven for building
the packages. Similarly, our study was limited to git-based packages, excluding other
version control systems like Subversion and Mercurial. We believe that this is only a small
limitation that mainly affects releases that are older than a decade, as documented in our
analysis of the popularity of hosting platforms. We encourage future work to replicate our
study in other ecosystems like NPM or PyPI.

2.6 Related Work
Software Ecosystems Multiple studies explored various aspects of software ecosystems.
Kula et al. [36, 107] investigated software updates and library life cycles in Maven. Bavota
et al. [47] examined changes within the Apache ecosystem, exploring elements such as
dependency graphs, project size, releases, and client behavior during dependency version

2.6 Related Work

2

35

upgrades. Düsing et al. [108] researched library updates for patching vulnerabilities and
found that a considerable number of Maven vulnerabilities were patched before disclosure.
Mir et al. [15] studied the propagation of vulnerabilities in theMaven ecosystem. Raemaek-
ers et al. [28] developed theMaven Dependency Dataset, which promoted research into
the software evolution of theMaven Repository. Keshani et al. [72] proposed a scalable
call graph generation approach forMaven and used these call graphs to investigate the
correlation between method popularity and breaking changes [79]. Karakoidas et al. [106]
collected comprehensive code metrics associated with object-oriented design, package
design, and program size in Maven libraries. Soto-Valero et al. [29] studied the occurrence
of bloated dependencies in theMaven ecosystem. Soto-Valero et al. [17] researched library
version usage and distribution in the Maven ecosystem. Mitropoulos et al. [30] investi-
gated the Maven Central Repository using the FindBugs tool to establish a link between
artifact size and bug count. Abdalkareem et al. [109] studied trivial packages in the npm
ecosystem, while Cogo et al. [110] analyzed same-day releases in the npm ecosystem. Kula
et al. [111] introduced the Software Universe Graph (SUG) for software ecosystems analysis
and compared dependency update behavior between Maven and CRAN. Benelallam et
al. [16] constructed an artifact-level model of the Maven Central Repository to identify
duplicated artifacts, while Kanda et al. [112] explored the occurrence and duplication of
inner JAR files within the Maven Central Repository’s JAR files.

Software Builds Several studies delved into the software builds. Ma et al.[31] analyzed
Maven archetypes, identifying prevalent schema patterns in POM files. Zhang et al.[113]
presented BuildSonic, a tool that pinpoints and repairs configuration issues in bothMaven
and Gradle builds, subsequently enhancing build speeds. Tamaraw et al. [114] attempted
to aid in the maintenance of build script files through static analysis. Keshani et al. [115]
proposed a lightweight call graph generation approach for software builds. Tufano et
al.[116] examined cases of uncompileable snapshots in Java projects that use Maven,
discovering that most projects experienced such snapshots due to dependency resolution
issues. Gazzillo et al.[117] identified all build configurations using their proposed Kmax.
Sotiropoulos et al. [118] introduced BuildFS, which models build executions and identifies
faults in build systems. Hassan et al.[119] proposed HireBuild, a history-driven approach
for repairing build scripts. HoBuff [120] further refined HireBuild by taking into account
both the current project and external resources. Lastly, Lou et al. [121] analyzed 1,000
build-related issues on Stack Overflow and summarized the fix patterns for three build
systems: Maven, Ant, and Gradle.

Reproducibility In 1984, Ken Thompson reflected on the Trusting Trust Attacks. These
attacks involve compilers being compromised to embed malicious Trojan horses into
the compiled code [44]. Since these alterations are not evident in the source code itself,
detecting them is especially challenging. In response to this, Wheeler et al. [69] introduced
the concept of diverse double compiling. This method compares the compilation results of
the same source code using different compilers to prevent malicious attacks. This research
paved the way for the initiative known as reproducible builds [82]. This initiative offers a set
of practices to enhance the reproducibility of software packages. Several studies sought to
expand on these ideas. Holler et al. [122] explored diverse double compilations in embedded

2

36 2 AROMA: Automatic Reproduction of Maven Artifacts

systems. Shi et al. [123] developed a unified build process along with a toolset for verifiable
builds. RepLoc [83] and RepTrace [84], aimed to pinpoint the origins of reproducibility issues.
RepFix [85] and ConstBin [124] work towards automatically fixing unreproducible builds.
Another solution, DetTrace [125], introduces a container abstraction for Linux, ensuring
reproducibility. Several studies delved into the state of reproducibility and associated
challenges within the open-source ecosystem. Fourne et al.[126] explored the motivations,
challenges, and solutions related to reproducibility by interviewing developers. Butler
et al.[127] interviewed business managers to understand the adoption of reproducible
builds in businesses, shedding light on the technical reasons for embracing these practices.
Lamb et al. [81] discussed what it means to build software reproducibly. Carnavalet and
Mannan [128] carried out an empirical study on reproducible builds within security-critical
software, summarizing the practical challenges of reproducibility.

Despite the significant contributions of these studies, to the best of our knowledge, no
current research addresses the issue of automatically reproducingMaven libraries. Our
study aims to fill this gap and offer an in-depth understanding of library reproducibility in
Maven Central.

2.7 Summary
While the software development community has made significant progress in enhancing
the reproducibility of libraries, there remains a considerable gap in understanding and
addressing this issue within theMaven ecosystem. The existing focus on Debian has left the
Maven ecosystem relatively understudied, with RC’s list of reproducible Maven libraries
being both limited and challenging to maintain. Our research tried to bridge this gap by
automatically finding the reproducible Maven packages and their build environments.
This enabled us to automatically rebuild the source code of these libraries and compare the
results with the files available on Maven. While the automation is still limited to a subset
of all releases for which a basic set of features can be recovered, the results of our research
are highly promising. Our experiments demonstrate that we can achieve a 99.5% similarity
to manually crafted .buildspec files. Using our approach we found previously missing
reproducible libraries and contributed them to the RC repository. Furthermore, we made
our dataset and tools openly accessible to the public.

3

37

3
Frankenstein: fast and
lightweight call graph
generation for software

builds

Call Graphs are a rich data source and form the foundation for advanced static analyses
that can, for example, detect security vulnerabilities or dead code. This information is
invaluable when it is immediately available, such as in the output of a build system. Call
Graph generation is a whole-program analysis: not just the application, but also all its
dependencies are processed together. Recent work has shown that even advanced static
analyses can use summarization techniques to substantially improve runtime; however,
existing analyses focus on soundness, and as such remain very expensive. When executed
in the build system, which typically has limited resources, even powerful servers suffer from
slow build times, rendering these analyses impractical in today’s fast-paced development.
In this paper, we aim to strike a balance between improving static analyses while remaining
practical for use cases that require quick results in low-resource environments. We propose
a summarization-based implementation of a Class-Hierarchy Analysis algorithm for call
graph generation of Java programs. Our approach leverages the fact that dependency
sets often do not change between builds: we can generate call graphs for these dependen-
cies, cache their generation for subsequent builds, and using a novel stitching algorithm,
Frankenstein, merge all partial results into a complete call graph for the whole program.
Our evaluation results show that this lightweight approach can substantially outperform
existing frameworks. In terms of speed improvements, Frankenstein surpasses the baselines
by up to 38%, requiring an average of just 388 Megabytes of memory. This makes the
proposed approach practical for build systems with limited memory resources. Despite
these optimizations, our generated call graphs maintain a near-identical set of edges when
compared to the baselines, achieving an F1 score of up to 0.98. This summarization-based
approach for call graph generation paves the way for using extended static analyses in

3

38 3 Frankenstein: fast and lightweight call graph generation for software builds

build processes.1

1This chapter is based on the following paper: Mehdi Keshani, Georgios Gousios, and Sebastian Proksch. Franken-
stein: fast and lightweight call graph generation for software builds. Empirical Software Engineering, 29(1):1–31,
2024 [115].

3

39

C ontinuous integration and delivery have revolutionized modern software engineering.
Many tools and analyzers are applied in the build pipelines to enhance developers’

productivity (e.g., improving the handling of pull requests [129]). However, this comes at
a price: increased build time, which hinders build servers from providing fast feedback.
Developers have to decide between faster builds or more helpful analyses. Especially in
open-source software, developers often use shared, resource-limited build services like
GitHub or TravisCI, which require fast and lightweight tools. For instance, Dependabot [58]
conducts relatively basic analysis at the versioned package level to identify vulnerable
dependencies, which lags behind more advanced state-of-the-art approaches [130, 131].
While this is less accurate, it is still useful and fast, so developers widely accept the tradeoff.
We envision leveraging the vast information on centralized infrastructures like GitHub for
ecosystem-scale analyses to provide better support for developers, further emphasizing
the need for scalable approaches.

Traditionally, program analysis aims at soundness as the key property and is performed
through whole-program analyses, which are more precise but also expensive. Recent
results show that even advanced analyses can use summarization techniques without
sacrificing soundness [132]. However, despite substantial performance improvements, they
are still expensive, which hinders their widespread adoption in practice, especially when
high performance is needed. Several thought leaders in the field advocate for relaxed
requirements on soundness and favor trading off soundness to make program analyses
more relevant in practice [133]. Previous work has shown that it is possible to summarize
static analyses and pre-compute certain parts of an analysis [132, 134, 135]. Recent work
even demonstrates that pruning analysis results, while being highly unsound, can have
positive effects for users, as it results in faster execution and higher precision of two static
analyses [136].

Many advanced program analyses, such as the detection of vulnerable call chains or un-
used code, rely on a call graph (CG), an approximation of all call relations between different
callables (i.e., methods) of a system. CGs are generated through powerful data and control
flow analyses on the whole program, including all of its dependencies. Unfortunately,
generating the CG of an average program can easily take minutes, even when only basic
algorithms are used. The resulting CG will take up several gigabytes of memory for big
programs (e.g., h2o [137]), often even more during the generation. This is neither practical
for build systems nor for analyses of large codebases. While the former are limited by their
resources, analyses of the latter are usually restricted to static information [138] because
advanced analyses are beyond existing approaches due to time and memory requirements.
We observe, though, that the largest part of a CG originates from dependencies, both
direct and transitive. Research has shown that 81.5% of programs keep outdated dependen-
cies [139], and it is evident that between the small and frequent changes of two subsequent
builds, the likelihood of dependency change is even lower. We propose to leverage this
and eliminate redundancy to speed up CG generation. The same idea applies in software
ecosystems where a few popular libraries are included in many programs, so caching and
reusing their analysis results pays off [72].

In this paper, we investigate the idea of pre-computing Partial CGs (PCGs) that store
minimal information about isolated dependencies (e.g., their declared types and methods)
and reducing the CG generation to combine these partial results in three distinct steps.

3

40 3 Frankenstein: fast and lightweight call graph generation for software builds

1) Resolve all (direct and transitive) dependencies of the program at hand. 2) Generate
a PCG for each (isolated) dependency and remember the type hierarchies defined in
the dependency. Similar to the caching of dependencies in a build job (to prevent re-
downloading), pre-computed CGs can be cached across builds. They need to be computed
once per dependency and can then be reused whenever this particular dependency is used.
3) Merge the PCGs using our novel stitching algorithm.

In contrast to previous work on summarization [132], we are willing to relax soundness
guarantees and put a strong focus on investigating the trade-offs necessary for a practical
approach. Schubert et al. [132] improve the speed of CG generation using summarization.
They evaluate this formally on several projects. However, it is unclear how effective this
approach is in practice when analyzing large projects with many or large dependencies. An
example of this trade-off is our decision to pick Class-Hierarchy Analysis (CHA) for the CG
generation. CHA is a very basic algorithm, but it only needs to preserve the type hierarchy
and call site information. This is the least amount of information with which it is possible
to generate a CG. The Reachability Analysis (RA) algorithm requires even less information,
but the usefulness of the resulting CG drastically drops due to high imprecision. This
makes CHA the most applicable approach for our use cases.

Advanced approaches, likeModAlyzer, can generate more accurate results and, through
summarization, decrease CG generation by 90% (they report a reduction from 4h to
25min) [132]. However, this takes too long for our use case. Moreover, it is infeasible to
preserve the required context information for complex algorithms on shared infrastructure,
as the points-to-graph and CG quickly grow to enormous sizes. Existing studies found that
practical static analyses are often not sound [140] or that pruning static analysis results
through machine learning (ML) can result in increased usability [141]. While these are fun-
damentally unsound solutions, they are promising directions to make static analysis more
practical. It is necessary to further investigate the trade-off between soundness, precision,
and speed. In this study, we investigate these trade-offs using real-world experiments in
great detail.

We demonstrate the validity of our approach in an extensive set of experiments that
compare our stitched results with the state-of-the-art static analysis frameworks OPAL [142,
143] and WALA [144]. We use them for two tasks: first, we generate PCGs for isolated
versioned packages. Second, we run them on whole programs to generate a baseline for
comparing speed and correctness. Based on our experiments, we have observed that after
the cache is filled, our primary use case of performing subsequent builds experiences a
significant improvement in execution speed, ranging from an average of 15% to 38%. We
further demonstrate that the CGs generated by our approach for the whole program are
comparable to those generated by the baselines. A comparison of the resulting sets of
callables in the CGs reveals that our approach achieves a precision of 0.93 for OPAL and 0.99
forWALA. Furthermore, it attains a recall of 0.97 forWALA and 0.95 for OPAL. Moreover, we
illustrate that, on average, our approach requires between 388 and 432 Megabytes (Mb) of
memory to generate a whole-program CG further highlighting its efficiency in real-world
applications.

Our manual investigation shows that any deviations in precision and recall are not
inherent to our approach and could be fixed with more engineering effort on the partial
analysis. We believe that our approach is promising because the minor reduction in recall

3.1 Background

3

41

allows for improvements that make it practical for inclusion in CI tools.
Overall, this paper presents the following main contributions:

• Adopting an existing library summarization technique for CG generation through a
novel stitching algorithm

• Revisiting existing evaluation methodologies with a focus on correctness, scalability,
and memory consumption designed particularly to assess the practicality of our
proposed approach

• Extensive evaluation on a real-world Maven sample

We release our tool, the dataset, and the analysis scripts on the artifact page of this
paper [145].

3.1 Background
In this section, we first introduce the terminology that is utilized throughout this study.
Subsequently, we provide an overview of existing studies related to our research.

3.1.1 Terminology
To ensure clarity and precision, we present definitions of the key terms used in this article. It
is important to note that some of these terms may have different and overlapping meanings
in various contexts. Therefore, we aim to establish a shared understanding of these concepts
for the rest of this article. The definitions are as follows:

Program A program refers to a piece of code written in any programming language,
regardless of its size or distribution method.

Artifact An artifact is a program distributed to users, offering features related to a core
idea. Artifacts may evolve over time, addressing existing issues or adding new functionali-
ties. In Maven, this is referred to as groupId:artifactId.

Package This term is synonymouswith artifact and can be used interchangeably. Package
is also commonly used to denote namespaces within programs. To avoid confusion in this
study, we use the term Java package when referring to namespaces.

Versioned-package A versioned package is a snapshot of an artifact at a specific point
in time. Versioned packages are released on repositories to be used by others. In Maven,
this is referred to as groupId:artifactId:version.

Project A project is a domain containing multiple packages (groupId). While the term
project may also be used to refer to artifacts or versioned packages in other contexts, in this
study, we consistently use the term project to represent the domain holding a groupId
and containing packages.

3

42 3 Frankenstein: fast and lightweight call graph generation for software builds

Dependency A dependency relationship occurs when one versioned package, such as
A, includes another versioned package, like B, in order to utilize its functionality. In this
scenario, A is considered the dependent program, while B is the dependency. In Maven, this
relationship is established by adding a dependency tag to the pom.xml file of A.

Library This term is synonymous with a dependency, and the two are used interchange-
ably.

Whole program A whole program encompasses the entire code required for successful
compilation, including any versioned package listed as a dependency (direct or transitive).

Dependency set A dependency set consists of the versioned packages required for a
program to compile successfully. The process of determining this set is referred to as
dependency resolution. The concept of a dependency set shares similarities with the whole-
program notion, as both involve the collection of all necessary components for successful
compilation.

Application An application refers to a program that is the current focus of attention.
It serves as the root of a dependency set and the starting point for analyses, such as
dependency resolution. The application is also included in the dependency set.

3.1.2 Related Work
CG generation algorithms There are various algorithms for constructing CGs, inclu-
ding[146–148]. The most basic algorithm is a RA which has multiple variants ranging from
only considering method names to also considering the signatures of reachable methods.
RA has been used in a variety of use cases in the literature, with pioneers such as Srivastava
et al. [149] and Goldberg et al. [150].

Although RA is sound and fast, it significantly reduces precision. To address this
Dean et al. [73] proposed Call Hierarchy Analysis (CHA) as a more precise extension. This
algorithm matches the called method’s signature to subtypes of the receiver type and finds
implementations of the dynamically dispatched target. While CHA is sound and scalable,
it is less precise than other alternatives. It is, however, a good trade-off and the default CG
algorithm for most static analyzers. The next step towards greater precision is Rapid Type
Analysis (RTA), as introduced by Bacon et al. [151]. RTA utilizes a CHA CG and prunes
its edges. Hence, this algorithm has a higher performance overhead compared to CHA.
RTA tracks allocated types and removes unreachable edges from the CHA CG to make
the CG more precise. It is worth noting that we do not propose a new algorithm in this
paper. Instead, we reuse the existing algorithms described here and combine them with
other techniques to make them practical for CI tools.

CG accuracy Several studies have investigated the soundness and precision of CGs. By
definition, a CG is considered sound if it covers all edges that are possible at runtime and
precise if it does not contain edges that cannot be observed at runtime. Sound analysis
is crucial for many use cases, especially security analysis, to avoid missing any positive

3.1 Background

3

43

cases. However, a low precision may result in many false positive alarms, which can hurt
the usefulness of such an analysis. Increasing precision while maintaining soundness is a
challenging and computationally expensive task.

A dynamic analysis can capture a perfect CG for a program execution by instrumenting
the program and storing all observed invocations. However, this result is only valid for
this particular program execution. In contrast, statically generating a perfect CG is an
undecidable problem [152–154]. Furthermore, generating a more precise graph often
requires a slower CG construction process. Users can choose to trade off precision for
soundness and speed. However, some language features, such as reflection, are difficult
to approximate in a static analysis, and generating a sound CG can be challenging in
these cases. Livshits et al. [133] proposed the term soundy to describe an analysis that
balances soundness, precision, and scalability. Additionally, Sui et al. [155] investigated
the soundness of state-of-the-art CG constructions by comparing static and dynamic CGs.
They used the term recall instead of soundness because, unlike soundness, it is not a
binary term. Reif et al. [156] proposed a benchmark and compared the soundness of
existing CG generators in their paper. Their results show that OPAL [142, 143] is faster than
WALA [144], SOOT [157], and DOOP [158], but has lower coverage. They did not study
other frameworks such as SLAM [159] and Chord [160]. In this paper, we do not compare
our approach to these studies. However, we are inspired by the concepts of precision and
recall introduced in these studies and adopt them to compare CGs generated by different
approaches.

Improving existing analyses There is a category of studies that instead of proposing
new algorithms focuses on improving the existing ones from different aspects by utilizing
various techniques.

For example, some studies have investigated CG generation of applications versus
libraries [161, 162]. Ali et al. [163] extensively investigated the effects of the absent parts
of a program during analysis. Reif et al. [164] explain how different entry point calculation
can affect the results of library CG construction and suggest different configurations for
within-application and library CGs.

Other studies investigate incremental static analysis. Souter et al. [165] created the
incremental Cartesian Product Algorithm (CPA). Tip et al. [146] improved the scalability
of CG generation for large programs. Alexandru et al. [166] incrementally analyzed the
historical representation of multi-revisioned software artifacts source code. Their proposed
approach removes redundant computation for similar parts of different versions of an
artifact. The approach only updates the changed parts of new versions in the CG.

Toman et al. [134] discuss the challenges of static analysis and provide possible solutions
to deal with them together with some example articles. Their paper suggests solving
scalability through the pre-computation of library summary, which is very relevant to
the idea of our paper. However, they do not provide any implemented solution and only
discuss ideas that might solve concrete analysis problems. Unfortunately, CG generation
goes beyond a simple merge of summaries and is not trivial. Arzt et al. [167] utilize a
similar idea for the data flow analysis of Android applications.

Nielsen et al. [135] proposed an approach for combining precomputed modules to
compute a full CG. This study is highly relevant to our paper and emphasizes the importance

3

44 3 Frankenstein: fast and lightweight call graph generation for software builds

of modular CG construction. However, the focus is on JavaScript, which has vastly different
challenges than Java. Multiple studies have investigated the summarization techniques
in different domains such as data flow analysis and heap analysis [168–170]. Gopan et
al. [171] propose an approach for generating summary information for a library function
by analyzing its binary. In this study, the authors do not focus on any particular use case
such as CG generation.

Rountev et al. [172, 173] summarize the libraries and use them to do Interprocedural
DataflowAnalysis on a main program source code. Dillig et al. present a heap analysis [174]
technique based on the summarization of functions. Kulkarni et al. [175] investigated the
library summarization idea for CG generation and points-to analysis, which is also closely
related to our work. However, that paper has several shortcomings that we address in our
paper, including not comparing to any state-of-the-art CG generator, not studying memory
consumption, and only using a sample of ten programs. The most related work to this
paper has been presented by Schubert et al. [132]. The authors present ModAlyzer, which
uses summarization to generate CGs for C and C++ programs. The paper shows that the
approach does not have to sacrifice soundness while substantially improving the speed of
CG generation. However, the evaluation focuses on correctness and closely inspects results
for a limited selection of programs. One case is a large project, for which a runtime of 25
minutes is reported. While this improvement of 90% over the 4-hour baseline is impressive,
it is still impractical for our intended use cases. In addition to this, qualitative experiments
show for several smaller programs that the approach does not compromise correctness
when compared to a whole-program analysis. In our work, we decided to go a different
route. First, we employ a much simpler Class-Hierarchy Analysis that does not require
tracking extensive context information. Second, we decided to trade off soundness for
execution speed to achieve scalability. Finally, we believe it is important to understand the
applicability of static analysis to average programs, so we compile a larger set of real-world
versioned packages and their dependencies to evaluate our work.

While soundness is an important property of static analysis, relaxing this requirement
to achieve faster program analyses has been advocated by thought leaders in the field [133].
Many recent works propose tools that are not sound but useful in practice [155], like
the rising area of machine learning that uses ML for increased usability of static analysis
results [141]. While these are fundamentally unsound solutions, they are accepted as
promising directions to make static analyses more practical. The most recent example of
this idea has been proposed by Utture et al. [136]. The idea to prune CGs to make analyses
more scalable is highly unsound, but the authors study the effect of the pruning on two
example analyses, type casts, and null pointer detection, and show that the observed effect
is small. Not all cases can be detected anymore, but the positive effect on performance and
actionability that can be achieved through higher precision outweighs the loss in recall.

We are inspired by the studies that we introduced in this category to improve the
existing frameworks. To the best of our knowledge, there are no existing studies that
focus on the practicality that can be achieved by the summarization of CG generation in
real-world scenarios.

3.2 Approach

3

45

Call-Graph Cache

HTTPClient-0.3-3.jar
abbot-0.13.0.jar
costello-1.4.0.jar

Dependency set Type
Hierarchy

Call Sites

HTTPClient:HTTPClient:jar:0.3-3

abbot:abbot:jar:0.13.0

abbot:costello:jar:1.4.0

{CH1, …, CHn}

CH Indexing
Parents
Children
Methods

GTH

{CS1, …, CSn}

Stitching

CG
Nodes
Edges

2

1

Figure 3.1: Overview of CG construction for a project

3.2 Approach
In this paper, we present a novel approach for scalable CG generation of Java programs
that enables fast analyses, even in resource-limited environments. We call our approach
Frankenstein because it is based on the idea of computing partial results that are stitched
together to generate the final result. An overview of the general steps of this approach
is shown in Figure 3.1. In the first step, all dependencies need to be resolved to generate
the complete dependency set. For each of these dependencies, a partial analysis result
is requested from a caching component, or created if it does not yet exist in the cache.
This partial result consists of 1) the PCG of the isolated dependency, which includes all
static Call Sites (CSs) that we can find in the bytecode, and 2) all types, their parent type,
and their methods that are being declared in this particular dependency. The subsequent
step, the stitching, is the core contribution of our approach. We first build a global type
hierarchy (GTH) and merge all the individual type information of the partial results. We
then perform a basic class hierarchy analysis (CHA) and expand the invocation targets
found in the bytecode. This is achieved by adding links to all overriding methods within
the matching subtypes that override the original targets.

While the underlying idea is straightforward, CG construction remains a complex task.
In the remainder of this chapter, we will elaborate on the individual steps and illustrate the
particular challenges and our strategies to overcome them.

3.2.1 Resolving Dependencies
To generate a CG for an application, it is essential to determine the concrete dependency
set for that application through a process known as dependency resolution. In this regard,
the widely used build automation tool Maven includes a built-in dependency resolver,
simplifying the task for developers. Our proposed tool, Frankenstein, relies on the Maven
dependency resolver to accurately compute the dependency set for an application.

It is worth noting that when defining dependencies in Maven, programs can specify
version ranges [176]. However, this means that dependency resolution may not always be
deterministic. A new release of any dependency, either direct or transitive, could potentially
alter the resolution result from the perspective of a particular package.

Although the set of available packages may remain stable, the resolution results can
vary depending on different contexts. Consider a scenario where a client application 𝑃 has
direct dependencies on two versioned packages, namely 𝐴 and 𝐵, both of which transitively
rely on a library 𝐿. However, each of these versioned packages requires a different version of
𝐿, leading to a resolution conflict in Maven. To resolve this, a breadth-first search algorithm

3

46 3 Frankenstein: fast and lightweight call graph generation for software builds

is used to select the version of 𝐿 declared "closest" in the dependency tree of 𝑃 . This is
because having two versions of the same package in a dependency set simultaneously
is not possible. Therefore, the closest version strategy prioritizes the most relied-upon
version. Thus, depending on whether 𝑃 depends on 𝐴 or not, the resolved dependency set
might differ when viewed from the perspective of 𝐵.

Overall, there are two challenges that make it unfeasible to simply generate a CG for
an application and its dependencies. Firstly, as previously mentioned, the utilization of a
specific dependency version is contextual. Secondly, the merging of partial results is not
a straightforward task and demands a significant level of interaction between the partial
results, which may even change based on the chosen dependency versions.

In Figure 3.2, we present an example dependency set and the interactions among its
versioned packages to illustrate the subsequent steps of our approach. The dependency
set comprises three versioned packages, and the dependency relations are depicted in the
figure. For instance, versions 0 and 1 of dep1 depend on dep2:0. We also demonstrate a
time-sensitive dependency resolution in this example, where app:0 specifies a version
range dependency on com.example:dep1:[0, 1]. This results in a time-sensitive
dependency resolution for app:0. For example, if the resolution is performed at time
t1 when the latest released version of dep1 is 0, then dep1:0 would be included in the
dependency set. Conversely, if the resolution is done at time t2 after version 1 of dep1
has also been released, then the result would include 1. This time-sensitive dependency
resolution highlights the contextuality, the first challenge that we mentioned earlier.

The second challenge occurs at a more granular level, where Dep1 invokes the targ-
et() method from Dep2. In a more complex scenario, Dep1 extends Dep2 and overrides
the m1() method. In the class App, the object dep is used to call m1(). Depending on the
specific type of variable dep, any overridden m1() from sub-classes of Dep2 could be in-
voked. The exact type of dep depends on the time of dependency resolution. For example, if
the dependency resolution occurs in t1, we use dep1:0, and the implemented create()
method in this version returns a Dep1 instance, resulting in a call to Dep1.m1() in the
App class. However, in t2, when version 1 is used, an instance of Dep2 is returned, and
thus the callee of this call would be Dep2.m1(). In this example, the type Dep2 is used to
declare the variable dep, which is referred to as the "receiver type". Determining the exact
type of the receiver object is a challenging problem that different algorithms attempt to
narrow down to varying extents. The CHA algorithm generates a sound CG by including
all potential edges from all subtypes, such as Dep2 and its subtypes, including Dep1.

To generate a whole-program CG from partial results the only information that is
fixed for a versioned package can be stored and it becomes necessary to preserve enough
context information about the versioned package to allow merging the partial results later
in the process. For CG generation this minimal information is the PCG for the isolated
dependency and all its declared types and methods. For simplicity, we refer to this data as
a PCG. Whenever a whole-program CG should be generated, Frankenstein uses Maven for
dependency resolution. The resolved dependency set is then used for the subsequent steps
in our approach.

3.2 Approach

3

47

1 package dep1package;
2 import dep2package.Dep2;
3
4 public class Dep1 extends Dep2{
5 public void m1(){}
6 public static void source(){
7 Dep2.target();
8 }
9 Public static Dep2 create(){
10 return new Dep1();
11 }
12}

1 package dep2package;
2
3 public class Dep2{
4 public static void target(){}
5 public void m1(){}
6 public void m2(){}
7 }

1 package apppackage;
2 import dep1package.Dep1;
3
4 public class App{
5 public static void main(String[] args){
6 Dep2 dep = Dep1.create();
7 dep.m1();
8 }
10 }

1 package dep1package;
2 import dep2package.Dep2;
3
4 public class Dep1 extends Dep2{
5 public void m1(){}
6 public static void source(){
7 Dep2.target();
8 }
9 Public static Dep2 create(){
10 return new Dep2();
11 }
12}

t2
t1

Figure 3.2: Example of a dependency set

3.2.2 Reqesting or Creating PCGs
The next step in generating a whole-program CG is collecting the PCGs for all direct or
transitive dependencies of the project in question. We have this dependency set from the
previous step and we maintain a basic in-memory key-value store to manage access to
the individual results and act as a cache. The key of each PCG is a Maven coordinate that
is composed of a groupId, artifactId, and a version, which uniquely identifies a
package within the whole Maven ecosystem. If the desired PCG is cached, it can be directly
returned, which eliminates redundant processing. However, if the PCG is not yet available
in our database, it has to be created first and then added to the cache for future use.

To create the PCGs, we first download the binary (i.e., .jar file) of the dependency
in question from the Maven repository. We then use an existing static analyzer such as
OPAL [142, 143] to build a CG for this isolated versioned package and transform it into a PCG.
Different static analyzers may have different configurations and options that allow users to
adjust the coverage, accuracy, etc. OPAL for example is highly configurable. We have used
it to generate PCGs and, for that, we configure it for library mode, which uses all public
methods as entry points in the analysis. OPAL considers that non-private classes, fields,
and methods are accessible from outside, non-final classes are extendable and non-final
methods are overridable. We have also enabled rewriting of invokedynamic instructions
to make them easier to analyze. All other configuration options are left at their default
values. The complete configuration can be found in our open-source repository to help
others reproduce our results.

Using existing frameworks for generating the PCGs has substantial benefits. We do
not need to work directly with bytecode and can rely on existing tools. This also enables
users to use the framework of their choice as the approach is not dependent on any specific
framework. Since existing tools allow for the extraction of the required information for
PCG construction, users can use the static analyzer they already have in their CI without
adding another dependency to their program.

3

48 3 Frankenstein: fast and lightweight call graph generation for software builds

TH ={
/apppackage/App}

parent =
/java.lang/Object
super interfaces = {}
methods = {
main(/java.lang/String[])}

CS =
{main(/java.lang/
String[]) = {1, 2}}

receiver type =
/dep1package/Dep1
instruction = invokestatic
signature =
create()/dep2package/Dep2

/apppackage/App
receiver type =
/dep2package/Dep2
instruction =
invokevirtual
signature = m1()

main.pc = 1

main.pc = 2

TH ={
/dep2package
/Dep2}
CS = {}

parent = /java.lang/Object
super interfaces = {}
methods= {target(), m1(), m2()}

/dep2package/Dep2

TH = {/dep1package/Dep1}
CS={source = {1}, create={1}}

parent = /dep2package/Dep2
super interfaces = {}
methods = {source(), m1(),
create()/dep2package/Dep2}

instruction = invokestatic
receiver type =
/dep2package/Dep2
signature = target()

source.pc = 1

/dep1package/Dep1

app:0 dep1:0

dep2:0
instruction = invokespecial
receiver type =
/dep1package/Dep1
signature = init<>()

create.pc = 1

Figure 3.3: PCGs of example versioned packages

As touched upon before, PCGs contain two different types of information: a snapshot of
the (incomplete) type hierarchy that is declared within the versioned package, including the
declared methods, as well as the information about CS within the versioned package. Figure
3.3 shows simplified examples of PCGs for versioned packages in the example dependency
set (resolved in t1).

Type Hierarchy PCGs store the Type Hierarchy (TH) that is defined in a versioned pack-
age. We use a naming convention similar to Java bytecode to identify types. For example, the
type App in the Java package apppackage would be referred to as /apppackage/App.
We do not store parameters of generic types because due to the type erasure [177] of
Java, it is not possible to reason about them. We differentiate between types that have
been declared inside the current versioned package (internal) and those in dependencies
(external).

For every stored type, we preserve the list of declared methods. As Java supports virtual
methods, we can use this later to infer all override relations. We store the method signatures
and preserve their name, list of parameters (including types), and the return type. For exam-
ple, the method signature of the well-known equals method Object.equals(Object)
would be stored as equals(/java.lang/Object)/java.lang/BooleanType. For
conciseness in Figure 3.3 we eliminated the /java.lang/VoidType from the methods
with no return type.

Our data model allows for the storage of arbitrary meta-data as key-value pairs to cater
to the needs of future use cases. We use this, for example, to mark abstract methods without
implementation. These arbitrary metadata fields are also removed from the example in
Figure 3.3 for the sake of brevity.

Call Sites The minimal information that is required from a CG for later reconstruction
is a list of all CS that can be found in the PCG. A CS is an instruction in the bytecode that
results in a method call. For each CS, we identify the surrounding (source) method and the

3.2 Approach

3

49

type ordered list of
parents

/apppackage/App [/java.lang/Object]

/dep2package/Dep2 [/java.lang/Object]

/dep1package/Dep1 [/dep2package/Dep2,
/java.lang/Object]

type set of all children

/apppackage/App {}

/dep2package/Dep2 {/dep1package/Dep1}

/dep1package/Dep1 {}

/java.lang/Object
{/apppackage/App,
/dep2package/Dep2,
/dep1package/Dep1}

type signature pkg

/apppackage/App
main(/java.lang/String[]) app:0
m1() app:0
<init>() app:0

/dep2package/Dep2

target() dep2:0
m1() dep2:0
m2() dep2:0
<init>() dep2:0

/dep1package/Dep1

m1() dep1:0
source() dep1:0
create()/dep2package/Dep2 dep1:0
<init>() dep1:0
m2() dep2:0
target() dep2:0

Children indexParents index Defined methods

Figure 3.4: Global Type Hierarchy of example versioned packages

target method that is being called, and we store this pair as one call relation. For each call
relation, we store the bytecode instruction type, e.g., static invocation.

As Figure 3.3 shows, CSs of each source method are indexed by their program counter
(pc). Since pc is unique for each invocation site, we use it as a key. This is helpful for
tracing the results; however, it is not necessary for the approach, and one can use any
unique key as an index for each CS. For instance, in the case of the App class, there are
two CS in the main method. In the first one, dep is declared, and in the second one, it
is used to call method m1(). The receiver type of the first CS is /dep1package/Dep1
and it is used to call the create() method. In the second CS, /dep2package/Dep2
is the receiver type since it is the type of the variable dep. The first call uses static
invocation while the second one uses virtual invocation. For each CS, we also store
the signature of the target method. In the previous example, the first call’s signature is
create()/dep2package/Dep2 and the second one is m1(). As mentioned before, we
use existing tools, more specifically already implemented CHA algorithms to build the
PCGs. We only need static information, and existing frameworks and algorithms preserve
this information and can be used in this phase. Only receiver type, invocation instruction,
and target signature are required, which are available in the bytecode itself without any
additional analysis. One could even read the bytecode and build the PCGs directly without
using any third-party tool. However, this is beyond the scope of this study. We aim for a
lightweight approach that can be easily used on top of existing tools.

Our database fits in regular machines’ memory, so we can keep it instantiated for
our evaluation. The data model is simple, making it easy to add an efficient, binary disk
serialization. Generating the PCGs is expensive, and it is worthwhile to preserve partial
results across different analysis executions for any actual use case. For instance, build server
integration could preserve partial results from build to build for a substantial speed-up,
similar to the caching of Maven downloads. Alternatively, a central server can host an
in-memory storage of frequently used dependencies across many projects.

3.2.3 Inferring Global Type Hierarchy
After Frankenstein has acquired all PCGs for the different packages in the resolved depen-
dency set, the next step is to merge the (incomplete) typing information of the individual
versioned packages into a (complete) global type hierarchy. This creates the full picture of
the type-system that is used when executing the whole program. We call this a Global Type

3

50 3 Frankenstein: fast and lightweight call graph generation for software builds

Hierarchy (GTH).
Assuming that the dependency set is complete, merging the individual type hierarchies

can be reduced to joining the sets of internal types stored in the individual THs. As an
example, consider the example dependency set in Figure 3.2 (resolved in t1). This set
is 𝐷𝑒𝑝𝑆𝑒𝑡 = {app:0, dep1:0, dep2:0} hence 𝐺𝑇𝐻 = 𝑇𝐻𝑎𝑝𝑝∶0 ∪ 𝑇𝐻𝑑𝑒𝑝1∶0 ∪ 𝑇𝐻𝑑𝑒𝑝2∶0. All
unresolved external types contained in the THs will appear as an internal type in one of
the other versioned packages. For convenience and efficient traversal of type hierarchies,
we transform this information into multiple index tables. These index tables are shown in
Figure 3.4 for the example versioned packages. Every type is indexed using its full name
since this name should be unique in the classpath of the program otherwise it cannot be
compiled. We create three different index tables. One table stores the parents of each type
based on the inheritance order. For example, the class /dep1package/Dep1 directly
extends /dep2package/Dep2 therefore the first parent that appears in the parent list
of /dep1package/Dep1 is /dep2package/Dep2. This sequence continues for each
type until we reach the /java.lang/Object class. After the list of all parent classes,
we also append a set of all interfaces that a type or any of its parents implement. This is
because Java always gives precedence to classes. Also, the order of super interfaces that are
appended to the list of parents does not matter because there cannot be two interfaces with
default implementations of the same signature in the parent list of a type. The parent index
table is not directly used in the stitching phase. It is used to facilitate creating the children
index and defined methods index. Another index that we create is a list of all children of
a type. We identify all types that extend or implement a given type, including indirect
relationships through inheritance. Indirect relationships occur when a type’s ancestor
extends/implements the given type, such as a grandparent. This set also does not keep any
order. The final index in the GTH is the list of methods that each type defines or inherits.
The signatures of these methods are then used as another index to find in which versioned
package they are implemented in. I.e. if a method is not implemented in the current type
itself we refer to its first parent that implements it. We use the ordered list of parents in
the parent index to retrieve this information efficiently. For example, as shown in Figure
3.4 /dep1package/Dep1 inherits method m2() from its dependency dep2:0. Note
that since /dep1package/Dep1 overrides m1() we point to dep1:0 as the defining
versioned package of this signature.

3.2.4 Stitching the Final CG
Once the PCGs are ready and the global type hierarchy has been established for the
complete dependency set, Frankenstein can move to the most crucial part of the approach,
the stitching. Similar to a compiler that resolves symbols in an abstract syntax tree, we need
to connect the CSs that we found in the bytecode with all potential method implementations
that could be reached by the corresponding invoke instruction.

The algorithm to achieve this is sketched in Figure 3.5. After creating the GTH (3.2.3),
the algorithm processes all CSs in all PCGs. The Java virtual machine (JVM) supports five dif-
ferent invocation types that require specific handling (invokestatic, invokevirtual,
invokeinterface, invokespecial, and invokedynamic). Depending on the invo-
cation type, Frankenstein selects the correct resolution strategy for the call when processing
the CSs. While different invocation types are handled differently within JVM we treat them

3.2 Approach

3

51

All source methods All CSs

/app:0/apppackage/
App.main(/java.lang/String[])

pc = 1

pc = 2

/dep1:0/dep1package/Dep1.
source() pc = 1

… … Invokevirtual/
Invokeinterface? Yes

Add children of
receiver type to set
of receiver type/s

Start

CS

Query defined methods
of receiver type/s

Query defending packages
of target signature

End

Add edge/s to CG

/dep1package/Dep1

No

dep1:0

/dep2package/Dep2

{/dep2package/Dep2,
/dep2package/Dep1}

m1()

{dep1:0,
dep2:0}

target()

dep2:0

static
virtual

static

/dep2package/Dep2

create()/dep2package/Dep2

Figure 3.5: Resolving edges of CSs

in two categories of dynamic dispatch (invokevirtual, invokeinterface) and regu-
lar dispatch (invokestatic, invokespecial) calls in our algorithm. In the following,
we briefly explain these invocation types and how we handle them.

Invokestatic invokestatic is used for regular static method calls. This case can
be directly resolved by adding an edge from the surrounding method to the static target
method from the instruction. As long as the dependency set is a valid resolution, the target
type will exist in the GTH and it will always have a matching method declaration signature
either implemented in the type itself or one of its parents. A static call T1.m() has to
have an implementation of m in T1 or one of its parents. If this is not the case, the resolved
dependency set is invalid and not executable.

invokespecial The invokespecial instruction is used for calling non-overridable
methods, like privatemethods, supermethods, and constructors. Similar to static invocation,
the target type of the CS is in the GTH and can look up themethodwith amatching signature
to draw an edge. For example, to resolve the constructor call T2.<init>(), we lookup
T2 and search for a parameterless constructor.

invokevirtual Instructions that require dynamic dispatch during runtime, invoke-
virtual and invokeinterface, are the most challenging to resolve. In Java, the
corresponding CSs point to a base type or an interface, but during runtime, the receiving
instance could have any possible subtype of this base type. For example, even if the

3

52 3 Frankenstein: fast and lightweight call graph generation for software builds

bytecode contains an invocation of the Object.hashCode() method, the receiver type
might be any type in the GTH that overrides the hashCode method. Similarly, while
the bytecode might contain a reference to T3.hashCode(), T3 might not override the
method, but inherits it from its superclass, in which case the correct target of the invocation
is the method declared in the superclass. Frankenstein supports both cases and searches for
matching method signatures in all subtypes of the target and draws edges to those that can
be called. In case there is none, it finds the first supertype that implements this signature.

invokeinterface This invocation is handled in the same way as invokevirtual in
the JVM. Some optimizations are performed by JVM based on which instruction is used
in the bytecode but this does not affect our approach. These optimizations are done on
the virtual method table of JVM which we do not use in our approach. Moreover, for
invokeinterface, it is possible to encounter target methods that are defined outside of
the hierarchy of the target type. For illustration, consider a base type B that implements m
and an interface I that defines m as well. A subtype S implements I and extends B. As m is
inherited, it is not necessary to implement it. For a CG generator, this is a challenging case
to handle, as the invokeinterface instruction points to I, while the correct target is
B.m, despite B having no relation with I. Frankenstein can handle these cases.

Invokedynamic Recent versions of the JVM have introduced the invokedynamic
instruction to support alternate programming languages for the JVM that might use more
advanced invocation logic. Resolving such invocations is the most challenging part of CG
generation tools. Existing frameworks usually have limited support for these invocations
since they require very expensive operation due to their highly dynamic nature. Some
frameworks such as OPAL can rewrite these invocations using other invocation instructions.
We do not have special handling for these invocations in the stitching algorithm. However, if
the framework that we use for PCG construction has the feature to rewrite themwe utilize it
to handle them automaticallywithout special reasoning. As an illustrative example, consider
a scenario in which the OPAL framework employs the invokevirtual instruction to
transform a particular CS that was initially an invokedynamic CS. During the bytecode
analysis for PCG creation, we store the modified version of the CS. Subsequently, in the
stitching phase, we utilize the dynamic dispatch handling technique that was previously
explained.

Figure 3.5 shows howwe use CS information and GTH to resolve each CS of the example
dependency set. Consider the second CS of App.main with pc = 2. This invocation
uses virtual instruction; hence, we need to use the dynamic dispatch category of handling
for it. For that, we first query the children index of the GTH to retrieve all children of
dep2package/Dep2. The result of this query is /dep1package/Dep1. Thus we add
this child type to the list of receivers. In the next step we query the defined methods within
the /dep1package/Dep1 and /dep2package/Dep2 using the defined methods index
of GTH. Having this information we can easily ask for the exact location of the target
method. More specifically we query the result of the previous step for the method signature
of m1(). This will identify the two places where m1() is defined and are thus potential
targets of this call. One target is the implementation within dep1:0 inside Dep1 class
and the other one is implemented in dep2:0 in the Dep2 class. The next CSs will be also

3.3 Evaluation

3

53

processed similarly (see Figure 3.5). After all, PCGs have been processed, the resulting CG
is ready and can be used for further static analyses.

3.3 Evaluation
The approach that we discussed in this paper tries to improve the speed of CG generation
for consecutive software builds by removing redundant computations. In this section,
we investigate how successful the proposed approach is in achieving its goal. We also
investigate the effects of the approach on the soundness of CGs and whether it adds
any overhead to the memory requirements of existing static analyzers. In a quantitative
evaluation, we compare Frankenstein with the current state-of-the-art static analysis
frameworks. The evaluation consists of four Research Questions (RQs):

• RQ1: How accurate are Frankenstein’s CGs?

• RQ2: How Fast is Frankenstein?

• RQ3: Is Frankenstein generalizable?

• RQ4: How much memory does Frankenstein require?

3.3.1 Creating a Representative Dataset
Our evaluation strategy for library summarization drew inspiration from previous work by
Kulkarni et al. [175]. They evaluated their approach using 10 programs. To improve upon
this, we expand the scope of our evaluation by a factor of 5x, using 50 programs in total.

We randomly select 50 packages (i.e., groupId and artifactId) from the Maven
repository and then randomly select one version for each package. We use Shrinkwrap [178]
to resolve the complete dependency sets for the selected versioned packages. Shrinkwrap
is a Java library that re-implements Maven’s built-in dependency resolution. During
the dependency resolution process, we face “missing artifact on Maven” errors in some
cases. In some other cases, dependency resolution results in an empty dependency set,
which either means that they were POM projects and do not contain code, or they do
not include any dependencies. When we face such cases, we discard them and select
another random versioned package until we have 50 fully resolved dependency sets. These
dependency sets include a total of 1044 versioned packages (906 unique versioned packages).
More characteristics of these versioned packages are shown in Figure 3.6. On average, the
selected versioned packages have 20 dependencies and consist of 113 files (6051 including
dependencies).

In the first two RQs of this paper, we compare Frankenstein and OPAL2. To mimic a
representative environment, we decided to limit all of our experiments to 7GB of mem-
ory, which is the available memory size for Linux build jobs on GitHub.3 To achieve
fairness when comparing two approaches, we remove versioned packages for which one
of the approaches failed due to OutOfMemoryException. All statistics that we report in

3

54 3 Frankenstein: fast and lightweight call graph generation for software builds

0

20

40

60

80

Dependencies

0

200

400

600

800

1000

1200

1400

Files

0

5000

10000

15000

20000

Files with dependencies

Figure 3.6: Selected versioned packages’ Characteristics

the research questions are therefore generated for the dependency sets for which both
approaches successfully generated CGs.

3.3.2 RQ1: How accurate are Frankenstein’s CGs?
The most important assessment that we need to do is to understand whether or not
Frankenstein affects the quality of the generated CGs. We are interested in a comparison
between the accuracy of CGs generated by Frankenstein and OPAL on its own. Hence, we
answer the question of how Frankenstein affects the accuracy of the CGs in the form of
two sub-questions:

• How does stitching affect the precision of the CGs?

• How does stitching affect the recall of the CGs?

Methodology To investigate the accuracy of the generated CGs by the proposed ap-
proach, we compare the generated CGs with OPAL. We take the CGs that are generated
by OPAL as the ground truth and do not further investigate their correctness. Previous
studies [156] have already compared OPAL with other well-known existing frameworks
like Wala [144] or Soot [157].

Existing studies[140, 156] measure the soundness of CGs or compare different frame-
works. However, they do not aim to compare the edges of real-world programs. Additionally,
they do not follow our assumption that OPAL’s CGs build the upper bound for our results.
We cannot get more accurate than OPAL, since we use it as a base framework for generating
the PCGs. Ideally, our approach should be as sound and precise as OPAL. Therefore, we
propose an edge-by-edge comparison by calculating the precision and recall of our CGs
compared to OPAL’s results.
2In all of our experiments, we use OPAL version 4.0.0-SNAPSHOT which is included in our artifact page.
3https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#
supported-runners-and-hardware-resources, Accessed: 2022-01-15

https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources

3.3 Evaluation

3

55

8

10

12

14

16
Stitching edges Opal edges

Figure 3.7: Edge comparison of Frankenstein and OPAL

To calculate the precision and recall for each dependency set’s CG, we first group all
edges of the CG by their source method for both OPAL and Frankenstein. All resulting sets
can be identified by type and method name, and we can calculate the precision and recall
of Frankenstein CGs compared to OPAL. For the calculation, we construct the intersection
between the two results for each source. Assuming that i is the intersection set, f is the set
of target methods that Frankenstein found for a particular source, and o is the set of target
methods identified by OPAL, we calculate precision and recall as follows:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑖|

|𝑓 |

𝑟𝑒𝑐𝑎𝑙𝑙 =

|𝑖|

|𝑜|

For example, let’s assume that for the sourcemethod A.src(), OPAL finds three targets:
B.t1(), C.t2(), and D.t3(), while Frankenstein only finds two targets: B.t1() and
X.x(). The intersection set for A.src() only contains B.t1(); hence, the precision is
1

2
and the recall is 1

3
.

Results To investigate the soundness and precision of Frankenstein, we first compare
the number of edges generated by OPAL and stitching. For 50 dependency sets, OPAL found
a total of 25M edges, while Frankenstein found 36M. Figure 3.7 shows the violin plot of
the number of edges. The numbers in this plot are logarithmic. However, these numbers
only provide an initial comparison, and it is necessary to further investigate the overlap
between the generated edges. We consider two edges identical if the source methods and
target methods are identical. We then calculate precision and recall for the targets of each
source method as discussed in 3.3.2. A perfect precision of 1.0 means that all stitched
targets found for a source are also present in OPAL’s CG, while a perfect recall of 1.0 means
that all targets in OPAL’s CG have also been identified by Frankenstein.

The precision and recall of all source methods in 50 dependency sets are shown in Table
3.1. In terms of precision, we achieve an average precision of 92.7% using Frankenstein,
indicating that most stitched edges can also be found in OPAL’s CGs. In terms of recall,

3

56 3 Frankenstein: fast and lightweight call graph generation for software builds

Table 3.1: Precision and recall of Frankenstein

Mean Std. Deviation Median

Precision 92.7% 24.2% 100%
Recall 94.7% 21.4% 100%

there are some cases with a recall of less than 100%, resulting in an average of recall 94.7%.
However, the median of precision and recall is still 100%.

These decreases in the recall can be explained by missing CSs in PCGs, which are caused
by OPAL not supporting all corner cases in partial analysis or having low coverage. For
language features that are not very common, OPAL may not produce complete information
in the partial analysis.

To further investigate these problematic corner cases of partial analysis, we manually
compared the CGs generated by OPAL and Frankenstein for a benchmark that has been
proposed in previous work [156]. This benchmark consists of a set of annotated test
cases that cover numerous possible ways of calling a function in Java. The annotations in
these test cases are written by several experts in the field to indicate the expected edges
that a sound CG must include. After comparing the two resulting CGs edge by edge, we
categorized the CGs of the test cases into four categories:

• 2𝑂𝐹 : both OPAL and Frankenstein can generate a sound CG for the test case.
• 2𝑂 : only OPAL can generate a sound CG for the test case.
• 2: neither OPAL nor Frankenstein can generate a sound CG for the test case.
• ⊠: none of the two approaches was able to generate a CG for the test case.

Table 3.2 shows the results of our manual analysis for the various test cases. The abbrevia-
tions refer to different language features, and we refer to the original work for details [156].
Some language features have multiple test cases to test different ways of calling with that
particular Java language feature. In the table, we reported the number of test cases that we
analyzed per language feature in the first column. For example, out of the five test cases
that cover the language feature JVM Calls (JVMC), four are 2, and one is 2𝑂𝐹 .

In the table, the overall number of test cases in which 2𝑂𝐹 approaches generated sound
CGs is 24. We also have 52 test cases that ⊠ of the approaches could generate CGs for. This
is because we use the library mode of OPAL without providing specific entry points for it
due to the nature of our analysis, hence some of these small test cases are not suitable for
library analysis because of functions not being reachable from the outside. 15 out of 109
test cases are 2 meaning that none of the approaches could generate a sound CG. Since
our PCG generation is dependent on OPAL, it is inevitable not to be sound in cases where
OPAL itself cannot be sound. The most important cases for our study, however, are the
2𝑂 test cases because they can reveal the reason for the reported 94.7% recall. We further
investigate the root cause of these cases to understand whether it is a shortcoming of the
approach or not. We have 18 test cases that only OPAL generated sound CGs for. These
test cases are distributed among five different language features. The common reason for
all missing edges in these test cases is that in the PCG generation phase OPAL does not
provide us with all possible CS. This also means that for all CSs that we could extract in

3.3 Evaluation

3

57

Table 3.2: The results of manual analysis of Stitched CGs.

LF # Cases 2𝑂𝐹 2 ⊠ 2𝑂

CFNE 4 2 0 0 2
CL 1 0 1 0 0
CSR 4 0 1 3 0
DP 1 0 1 0 0
ExtSer 3 3 0 0 0
J8DIM 6 0 0 6 0
J8SIM 1 0 0 1 0
JVMC 5 1 4 0 0
Lambda 4 4 0 0 0
LIB 5 1 1 2 1
LRR 3 0 0 3 0
MR 7 7 0 0 0
NVC 5 1 0 3 1
Ser 9 2 4 3 0
Serlam 2 0 2 0 0
SI 8 3 0 0 5
SPM 7 0 0 7 0
TC 6 0 0 6 0
TMR 8 0 0 8 0
TR 9 0 1 6 2
Unsafe 7 0 0 0 7
VC 4 0 0 4 0
Sum 109 24 15 52 18

3

58 3 Frankenstein: fast and lightweight call graph generation for software builds

the PCG creation phase, we generated the correct edges. Listing 3.1 shows an example of a
reflective call for which OPAL generates a sound CG. This occurs when the whole program
is present during the analysis i.e. the Target class is included in the analysis. However,
in this example, during partial analysis, the Target class is not present, and OPAL does
not provide us with enough information about the target.target() CS in the PCG. Since we
use OPAL for our partial analysis, this affects the soundness of our approach. Similar to
other successful cases, if OPAL had provided the CS information in the PCG, we have could
stitched it to the Target class. That is, we could not find any cases where the proposed
approach inherently causes any unsoundness in these test cases. Nevertheless, the missing
CS problem can be fixed with engineering efforts, either on OPAL or by additional handling
in the PCG creation phase. We have documented these cases and discussed them with the
OPAL developers for future improvements of both tools.

Example 3.1: Reflective method call
1 public static void main(String[] args) throws Exception {
2 Demo demo = new Demo();
3 demo.field = new CallTarget();
4
5 Field field = Demo.class.getDeclaredField("field");
6 Target target = (Target) field.get(demo);
7 target.target();
8 }

3.3.3 RQ2: How Fast is Frankenstein?
The main benefit of summarization of CG generation is the speedup it provides due to less
computation. We need to evaluate whether removing redundant library generation from
the process affects the speed of CG generation. It is also important to investigate the extent
of any improvements, if any.

Methodology We design and implement a tool that creates the CG Cache for randomly
selected dependency sets. Therefore, we will be able to test the performance of our approach
and compare it with the baseline (OPAL).

For this experiment, we need to simulate consecutive builds in software programs.
Maven hosts a large number of packages with different versions. We select random versioned
packages from Maven to build their CGs. Hence, we need to resolve the dependency sets
of selected versioned packages. We use a dependency resolver library called Shrinkwrap
because it is open source and works well with Maven coordinates. In some cases, this tool
may not be perfect and could result in missing dependencies in the resolved sets. However,
we still use it to ease the dependency resolution process, as it is not the main focus of our
paper. We ensure that this does not cause any unfairness by always using the same set of
dependencies for our approach and baselines.

After selecting the dependency sets, we perform the following steps on each dependency
set D:

1. Generate full CGs using Frankenstein:

• For each versioned package in D, we generate a CG using OPAL and parse it into
a PCG.

3.3 Evaluation

3

59

Table 3.3: Time of CG generation different phases (in seconds)

Mean Std. Deviation Median

Frankenstein 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 18.1 21.2 10.2
Frankenstein 𝑐𝑎𝑐ℎ𝑒𝑑 5.0 7.4 2.2
OPAL 6.0 6.6 3.2

• We create the CG Cache using the PCGs.

• For each versioned package in D, we fetch PCGs from the CG Cache and then
stitch them.

2. We generate a full CG for D using OPAL.

3. Finally, we measure time information and CG statistics of the previous steps to find
out how much speed Frankenstein can add in the consecutive generation of the CGs.

Results As shown in Table 3.3, for these 50 dependency sets on average OPAL takes 6s
to generate a CG for each dependency set, whereas Frankenstein takes 5s. The average
time for the first round of Frankenstein generation is 18.1s (as shown in Frankenstein 𝑖𝑛𝑖𝑡𝑖𝑎𝑙).
This round includes PCG generation and caching for the entire set of dependencies, as
well as the stitching process. However, subsequent rounds benefit from a significant speed
improvement. Note that Frankenstein 𝑐𝑎𝑐ℎ𝑒𝑑 represents subsequent rounds of generation
after caching and includes the time for generating the PCG of the current version of the
application but not the rest of the dependency set. This is because the application’s logic
usually changes between CI builds, requiring a rebuild of its PCG. All three rows of this
table show large standard deviations. This is due to the variety of CG sizes. The fact that
multiple dependency sets in the selected sets are considerably larger than others causes
longer generation times and hence bigger standard deviations. Generating a PCG for a
dependency versioned package is a one-time process that needs to be done once and only
once. After that, the cached dependencies can be used in different builds. For the first
time, Frankenstein may take longer than OPAL due to the combination of caching PCGs
and stitching. However, in consecutive software builds, Frankenstein saves a lot of time by
pre-computing the common parts. Over time, the enhanced speed results in significant
time savings, which accumulate with repeated use and translate into considerable overall
efficiency gains.

Figure 3.8 shows the violin plot of the generation time for OPAL, Frankenstein initial
generation, and Frankenstein with cached dependencies for 50 dependency sets. The
numbers are logarithmic for the sake of better presentation, and median lines are visible
for all plots. Frankenstein with a median of 2.2s outperforms OPAL with 3.2s. It is worth
mentioning that Frankenstein’s first round of generation with a median of 20.2s is slower
than OPAL. This slowdown is because we use OPAL for PCG generation and on top of that
we extract the necessary information for PCGs. However, because it is a one-time process
the generation time will improve from the second CG generation onwards.

3

60 3 Frankenstein: fast and lightweight call graph generation for software builds

4

5

6

7

8

9

10

11

Frankenstein initial Frankenstein cached OPAL

Figure 3.8: Time comparison of Frankenstein and OPAL

Table 3.4: Precision and recall of Frankenstein when generating with WALA

Mean Std. Deviation Median

Precision 98.9% 0.07% 100%
Recall 97.5% 11.0% 100%

3.3.4 RQ3: Is Frankenstein generalizable?
In the previous sections, we presented the benefits of Frankenstein in terms of the speed
of CG generation. We also investigated its effects on the accuracy of the CGs. However,
since the proposed Frankenstein aims to make CG generation practical for software builds,
it is vital to consider the limitations that build servers have to validate the practicality of
Frankenstein. On the one hand, Frankenstein requires memory to cache partial results. On
the other hand, build servers often have limited memory available. Therefore, we need to
investigate how much memory Frankenstein requires.

Methodology To investigate whether Frankenstein is generalizable, we slightly adapt
our setup and use WALA as the static analysis backend for generating CGs. Apart from
this adjustment, we use the same methodology as in RQ1 and RQ2 to compare the speed
and accuracy of the generated CGs. Overall, we compare the CGs generated by WALA
and Frankenstein for 50 randomly selected versioned packages. We use WALA both for the
whole-program analysis and the PCG generation, configured to run the CHA algorithm,
and using all methods of all classes as entry points. To measure the accuracy of the stitched
CGs, we use the precision and recall metrics defined in Section 3.3.2.

Results Similar to the evaluation on OPAL, the goal of this experiment is to understand
the speed and accuracy of Frankenstein compared to a plain WALA approach. Table 3.4

3.3 Evaluation

3

61

shows the results for precision and recall of the generated CGs. The results confirm the
same effects forWALA CGs that we have seen before in Table 3.1. On average, Frankenstein
achieves 99% precision, meaning that virtually all identified edges also exist in the WALA
CGs. Similar to theOPAL experiment, Frankenstein also misses some edges in comparison to
WALA, resulting in a recall of 97.5%. When we investigated these cases manually, we found
some corner cases that require special handling during CG generation. For example, WALA
contains hard-coded information about Java-related classes (such as Object) and functions
(such as Object.hashcode()), resulting in additional edges that Frankenstein does not have.
Since we did not provide any additional information to Frankenstein about Java-related
classes, it is not surprising that it cannot reproduce these edges. These limitations can be
addressed in the future by adding special handling for said Java classes or by providing
such classes in the dependency set. A second explanation that we found for missing edges
is that existing static analyzers are not perfect and might create incorrect edges. In our
manual analysis, we also found a case in which classes were copied from a dependency
and were then modified locally. When ignoring the origin of a class file, the name of the
class is the same locally and in the dependency. As a result, WALA cannot distinguish the
classes and adds additional nodes and edges to the dependency class. Since the including
.jar file is part of Frankenstein’s fully-qualified names, we can avoid these edges. Across
the manually inspected cases, we could not find any differences indicating any conceptual
limitations, and all deviations could be addressed through more engineering effort. Most
importantly, all limitations come at our own cost, and we believe that the results present a
fair comparison. Overall, Frankenstein achieves 98.2% F1 compared to WALA.

Regarding our performance investigation of Frankenstein, we observed similar im-
provements for WALA (Table 3.5) and OPAL (Table 3.3). Both tables show substantial speed
improvement once the PCGs are cached. On average, WALA generates a CG in 16.6s,
and Frankenstein generates it in 10.2s. This means that caching the PCGs speeds up the
process by 38% on average. The caching mechanism applies only to dependencies, not
to the application itself. This means that the PCG generation time for the application
versioned package is included in the Frankenstein 𝑐𝑎𝑐ℎ𝑒𝑑 . It is important to realize that the
first round of generation is slower due to additional analysis to create the PCGs (119.8
seconds). However, this slowdown pays off in the next rounds of CG generation by saving
a lot of time and resources. Compared to the OPAL results, the numbers are generally
a bit higher, which can be mostly explained by WALA generating a larger CG that has
more nodes and edges. However, the relative comparison and performance increments are
comparable.

Overall, our results show that Frankenstein is a generic solution. Users can choose a
static analysis framework that fulfills their needs, such as OPAL or WALA. Using Franken-
stein then allows for substantial speedup of CG generation through pre-computing and
caching PCGs with minimal side effects on accuracy.

3.3.5 RQ4: How much memory does Frankenstein reqire?
In the previous sections, we presented the benefits of Frankenstein in terms of the speed
of CG generation. We also investigated its effects on the accuracy of the CGs. However,
since the proposed Frankenstein aims to make CG generation practical for software builds,
it is vital to consider the limitations that build servers have to validate the practicality of

3

62 3 Frankenstein: fast and lightweight call graph generation for software builds

Table 3.5: Time of CG generation different phases (in seconds) with WALA

Mean Std. Deviation Median

Frankenstein 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 119.8 147.8 65.0
Frankenstein 𝑐𝑎𝑐ℎ𝑒𝑑 10.2 3.3 9.8
WALA 16.6 11.4 12.7

Frankenstein.

Methodology To answer the third research question we investigated memory usage
from two perspectives.

First, we imposed memory constraints on all of our experiments. In the CG generation
steps detailed in Section 3.3.3 (specifically the first and second steps), we restricted the
memory available to the JVM. This meant that both our baselines and the CGs generated
by Frankenstein for the chosen versioned packages (as described in Section 3.3.1) operated
within a limited-resource environment, simulating a build server. Following the generation
steps, we compared their success rates and the frequency of OutOfMemoryException. This
allowed us to examine the impact of memory limitations in real-world scenarios on our
proposed method.

Second, we employed the open JDK profiling tool JOL [179] to measure the space
occupied by Frankenstein within the JVM heap. Specifically, we determined the sizes of
the PCGs and index tables (refer to Section 3.2.3) utilized in the stitching process.

Results After running the experiment, we realized that out of 50 dependency sets, both
OPAL-based Frankenstein and OPAL encountered memory errors for 3 versioned packages.
The fact that they had the same number of memory exceptions indicates that Frankenstein
does not introduce any additional memory requirements or add memory overhead to the
base framework OPAL. When generating with WALA, however, WALA-based Frankenstein
faced fewer memory exceptions compared toWALA itself. WALA failed in 8 instances, while
Frankenstein failed in 4 cases due to OutOfMemoryException. This lower memory demand
may be attributed to Frankenstein holding just enough information about each versioned
package to perform a basic CHA algorithm, whereas WALA, as a general static analysis
framework, needs to capture a more comprehensive view of the entire dependency set’s
bytecode.

To assess the memory requirements of Frankenstein for generating a complete program
CG, we examined all data necessary for the stitching process. For each dependency set,
Frankenstein initially caches all dependency PCGs, followed by the creation of GTH each
time stitching is executed. Table 3.6 displays the memory usage in megabytes for these Data
Structures (DSs) in both OPAL-based and WALA-based implementations of Frankenstein.
The PCGs row is determined by summing the sizes of all PCGs for each dependency set. We
then calculated the mean, median, and standard deviations for the selected 50 dependency
sets, as shown in the table. Likewise, the GTH row is based on the 50 stitching operations
performed on the selected dependency sets, with the mean, median, and standard deviations
reported. In summary, on average, OPAL-based Frankenstein necessitates a total of 432 Mb

3.3 Evaluation

3

63

Table 3.6: Memory required by Frankenstein (in Mb) to stitch a whole program

DS Mean Std. Deviation Median

OPAL-based PCGs 285 299 159
GTH 152 146 93

WALA-based PCGs 272 301 173
GTH 116 102 88

0

200

400

600

800

1000

1200

OPAL PCGs OPAL GTH WALA PCGs WALA GTH

Figure 3.9: Distribution of Data Structure sizes (in Mb) required by Frankenstein

of memory, while WALA-based Frankenstein demands 388 Mb of memory to generate a
whole-program CG. Figure 3.9 further illustrates the distribution of this data.

An interesting observation from this table is that both WALA-based and OPAL-based
figures are within the same order of magnitude. This outcome is somewhat expected
since the general approach is similar. However, differences may arise from two factors.
One reason is the variation in successfully generated dependency sets. As previously
mentioned, some dependency sets did not have a CG generated due to memory exceptions.
This implies that the sets of projects successfully generated forWALA-based andOPAL-based
Frankenstein are not identical. Another reason for the discrepancies is that the outputs
of different frameworks are not identical, even for the same operations. For instance, as
we discussed in previous sections the CGs generated by WALA are generally larger than
those generated by OPAL due to the different coverages of these tools. This may result
from numerous differences in the implementations of the various frameworks.

3

64 3 Frankenstein: fast and lightweight call graph generation for software builds

3.4 Discussion
As manual inspection has revealed that the lack of recall is mainly due to missing CS
information during PCG construction or the internal handling of special cases withinWALA
or OPAL such as built-in handling of Java-related classes. Nevertheless, we are confident
that this limitation can be fixed through engineering work. We strongly believe that the
proposed approach has the potential to be adopted by engineers, software companies,
and researchers to implement fast and lightweight CG-based analyses that are practical
for software development pipelines such as CI tools. Moreover, our proof of concept
Frankenstein shows that summarization works in practice. Thus we highly recommend
that developers of existing static analysis frameworks adopt the summarization technique
that we propose. These tools can benefit from the speed up while reusing their handling
of special cases. This potentially can remove or mitigate the accuracy penalties that we
reported in this paper.

Our results confirm previous findings in the field. First, as pointed out by Toman
et al. [134], library pre-computation can effectively solve the scalability problems of the
analysis. Our study validates this idea, particularly for CG generation. However, applying
this technique to different static analysis tasks can have similar positive effects as examined
by Arzt et al. [167] for data flow analysis.

We believe that the concept of summarization will strongly impact the design of future
static analysis tools. Although configurability and modularity are essential requirements
for static analyzers it is important to consider them not only for program design but also for
data flow design. Currently, these tools can be highly configurable and different modules
can be combined in a pipeline based on specific requirements. For a given configuration,
this flexible pipeline of modules is created and executed on top of a single input data,
producing a single output. We propose that by modularizing the intermediate data, analysis
modules can save the current state at specific points and restart the task from the point
of interruption. This approach would make the summarization of different static analysis
tasks straightforward. We believe that this will make static analysis more practical for
daily usage such as in CI tools.

In this paper, we acknowledge the tradeoff between memory, speed, and cache utiliza-
tion when using Frankenstein. The caching mechanism significantly improves speed by
reusing precomputed PCGs but requires memory for cached PCGs. Our experimental re-
sults illustrate these tradeoffs, providing a practical evaluation of Frankenstein’s real-world
performance improvements and its memory usage. This information will help developers
make informed decisions based on the benefits and costs of the tool.

3.5 Threats to Validity
Internal validity WALA and specially OPAL offer a plethora of configuration options,
all of which may affect our results. To mitigate this we attempted to utilize the maximum
coverage that these frameworks provide, such as using the most comprehensive entry point
strategies or the assumption of library openness [164]. Additionally, we provide public
access to our code including an aggregated configuration file on our artifact page to ensure
a fixed and transparent configuration throughout the study.

Our approach supports all Java invocations except invokedynamic. We use OPAL’s

3.6 Future Work

3

65

invokedynamic rewrite feature, which rewrites this type of method invocation in the
form of other invocations. However, some frameworks may not support the invokedyna-
mic rewrite feature, requiring the implementation of heuristics to support invokedyna-
micwhen adopting our approach. Nonetheless, this and other corner cases that we reported
earlier in this paper result in minor accuracy penalties that can be mitigated if developers
of existing frameworks adopt the Frankenstein solution within their frameworks. They
can reuse the same treatment that they already have in their toolbox for these cases while
benefiting from the advantages of Frankenstein.

Since we have implemented multiple tools and conducted various experiments for this
study any hidden bug in our implementation can affect our results. To mitigate this threat,
we ran our tools on a large data set of real-world versioned packages, addressing bugs as
we discovered them. Additionally, we implemented an extensive test suite for our tools
and programs.

External validity In this study, we rely on the WALA and OPAL static analysis frame-
works. We chose these tools because they are widely used, actively maintained, and we
could contact their maintainers. However, this choice may result in inheriting their po-
tential flaws. To mitigate this, we support more than one framework in our approach
and designed our intermediate representation (PCGs) in a generic way. Thus, they can be
extracted from the output of other frameworks as well. The information required in PCGs
is present in the bytecode and does not require further analysis. Therefore, one could even
construct them directly from the bytecode.

3.6 Future Work
This paper has introduced a summarization-based algorithm for CG generation. In this
study, we used WALA and OPAL as the basis of our approach and as a baseline. During
this study, we observed that the difference between different frameworks is significant in
practice, to the extent that even for themost basic algorithm their outputs differ significantly.
Therefore, we believe that it is valuable to investigate these differences and their effects
on Frankenstein as future work. For example, we can explore the size of the difference
between OPAL and WALA, and how the stitched version of these two differs.

The improvements in the scalability of CG generation also affect downstream tasks. In
this study, we found evidence of imperfections in existing frameworks themselves. One
direction for future work is to evaluate Frankenstein by comparing the effects of CGs
generated by Frankenstein and existing frameworks on downstream tasks. For example, we
could investigate whether the vulnerable call chains that Frankenstein can find differ from
those found by WALA. Using Frankenstein it is also possible to perform more extensive
analyses that require CGs. Hence as a next step, we plan to use this approach to generate a
large number of CGs and conduct an ecosystem-wide analysis. It is valuable to understand
the current state of vulnerability propagation or change impact inMaven Central. Another
direction for future work is to study other languages and investigate whether our proposed
approach can be applied to them. We plan to explore the differences and specific challenges
that other languages may present for summarization.

3

66 3 Frankenstein: fast and lightweight call graph generation for software builds

3.7 Summary
Generating CGs is essential for many advanced program analyses. The inherent complexity
of CG generation and the high memory requirements challenge scalability, making certain
static analysis tasks impractical in resource-limited environments such as hosted build
servers. In this paper, we propose a summarization-based approach Frankenstein that
makes CG construction fast and lightweight. Instead of performing a whole-program
analysis, we introduce a summarization-based algorithm that precomputes PCGs for all
dependencies of an application and caches the results. For whole program CG generation,
an algorithm stitches all PCGs on demand. In our extensive evaluation, we investigate
the impact of Frankenstein on accuracy, speed, and memory usage. Our results are very
promising when compared to the state-of-the-art approaches. Our results demonstrate
that Frankenstein has a minimal impact on the soundness of the generated CGs and can
achieve an F1 score of up to 98%. Additionally, we show a significant improvement in
performance, with up to 38% lower execution time on average and memory usage of only
388 megabytes for the whole program analysis. We believe that the proposed approach in
this paper addresses the current key challenges that limit the practicality of static analyzers.
Our results show that pre-computing partial static analysis results has a high potential
to improve CG generation. We propose a novel algorithm that is the first step towards
scalable static analysis in CI tools.

4

67

4
On the relation of method

popularity to breaking
changes in the Maven

ecosystem

Software reuse is a common practice in modern software engineering to save time and
energy while accelerating software delivery. Dependency managers likeMaven offer a large
ecosystem of reusable libraries that build the backbone of software reuse. Breaking changes,
i.e., when an update to a library introduces incompatible changes that break existing client
programs, are troublesome barriers to this library reuse. Semantic Versioning has been
proposed as a practice to make it easier for the users to find safe updates by encoding
the change impact in the version number. While this practice is widely studied from the
framework perspective, no detailed insights exist yet into the ecosystem perspective. In
this work, we study violations of semantic versioning in the Maven ecosystem for 13,876
versions of 384 artifacts to better understand the impact these violations have on the 7,190
dependent versioned packages. We found that 67% of the artifacts introduce at least one type
of semantic versioning violation, either a breaking change or an illegal API extension in
their history. An impact analysis on breaking methods that (direct or transitive) dependents
reference revealed strong centralization: 87% of publicly accessible methods are never used
by dependents and among methods with at least one usage, half of the unique calls from
dependents concentrate on only 35% of the defined methods. We also studied method
popularity and could not find an indication that popularity affects stability: even popular
methods break frequently. Overall, we confirm the previous result that Semantic Versioning
is violated repeatedly in practice. Our results suggest that the frequency of breaking
changes might be a sign of insufficient change-impact awareness on the ecosystem and
we believe that developers require more adequate information, like method popularity, to

4

68 4 On the relation of method popularity to breaking changes in the Maven ecosystem

improve their update strategies.1

1This chapter is based on the following paper: Mehdi Keshani, Simcha Vos, and Sebastian Proksch. On the relation
of method popularity to breaking changes in the maven ecosystem. Journal of Systems and Software, 2023 [79].

4

69

S oftware reuse is a pillar of modern software engineering. The availability of mature
and powerful open-source libraries has boosted the productivity of developers both in

open-source and industry. For easy release, discovery, and distribution, package managers
like Maven, npm, or PyPi usually rely on centralized repositories. These repositories contain
vast numbers of inter-dependent packages that build self-contained, ever-growing software
ecosystems [180]. The use of dependencies has already been the focus of a rich body of
previous works that studied, for example, the evolution of dependency networks [16, 17],
bloated dependencies [18, 19], and vulnerable dependencies [20].

Depending on a third-party library means that a project accepts a coupling to the
API of said library. However, libraries might introduce breaking changes in subsequent
versions that change the API in an incompatible way, for example, by removing a method
or by changing its arguments. Updates are often necessary for consumers to fix bugs or
vulnerabilities, so such a breaking change to the API is often an unwelcome surprise for
the developers of the depending project, which forces them to adapt their code. Semantic
versioning has emerged as a best practice to signal compatibility of a change to the previous
version, but it is voluntary and not enforced in the ecosystem.

Numerous studies already investigated various aspects such as usage [45, 46], evolu-
tion [47–50], and stability [51] of APIs. However, the closest related work is presented
by Raemaekers et al. [37] who studied the relation of semantic versioning and breaking
changes in Maven. The paper finds evidence that many libraries break versioning rules and
introduce breaking changes even in non-major upgrades. However, they did not provide
any details about the extent of the method-level impact on the ecosystem which is the
main goal of our study.

In this paper, we advance the perspective on breaking changes from the library creator
to the ecosystem. Instead of treating a breaking change to a library method as a single
incident, we consider the methods’ popularity in the ecosystem to weigh the severity of a
breaking change. This is achieved by identifying all dependents of a library in question
through a global dependency graph [17]. This global dependency graph includes a large
part of the recent releases in the ecosystem. It is important to note that we can query
this graph for all possible dependents of any given library that is released recently. All
dependents start using a version after its release date. Therefore, if we select a library
that was released x months ago, all of its dependents are at least x months old hence our
dependent graph includes them. After generating the call graphs (CGs) for all dependents,
we can identify all references to method definitions in the original library (through calls or
inheritance). A breaking change can then be identified by comparing the list of extracted
references to the available methods in the next version of the library. This methodology
not only allows us to replicate previous work and identify breaking changes in the library
but also helps us to reason about the severity of a breaking change for the ecosystem. We
expect that widely-used methods are more damaging to break because they affect more
users. In this study, we aim to answer three research questions: 1) How often do semantic
versioning violations occur? 2) How is popularity distributed among library methods? and
3) Is there a relation between popularity and breaking changes?

We have created a sample of 384 artifacts and 19,639 unique versions of them. From
each of these artifacts, we picked one version. For the picked versions we identified a total
of 7,190 unique dependents on Maven Central. We used these dependents to infer method

4

70 4 On the relation of method popularity to breaking changes in the Maven ecosystem

popularity. Our results confirm previous work by showing that 67% of artifacts violate
semantic versioning. To better understand the effects that these violations have on the
ecosystem, we have further investigated the methods’ popularity. We found that 87% of
publicly defined methods are never called by another library. From the remaining 13% only
35% receive half of all calls to the respective library.

In this study, we show that maintainers introduce breaking changes in popular methods
as often as less popular methods. One possible explanation for this is that library maintain-
ers may not always be aware of the popularity of their methods. It is important to note
that the adoption of a library is typically in the best interest of its maintainers, and the
lack of upgradability may sometimes hinder this goal. Providing sufficient information to
library maintainers about the popularity of their methods has the potential to help them
enhance the upgradability of their library. While some breaking changes may be inevitable,
there are cases where the severity of certain breaking changes may be underestimated. In
situations where a breaking change affects a widely used method, maintainers may decide
to notify users with a major release.

The contributions of this study are as follows:

• A quantitative analysis of API method extensions and contractions that violate
semantic versioning.

• An empirical study of the popularity distribution in typical APIs of Maven libraries.

• An investigation of the extent of user breakage that semantic versioning incompati-
bilities cause on Maven.

4.1 Related Work
We found three areas of research to be closely related to this paper: software ecosystems,
dependency management, and APIs and breaking changes.

Software Ecosystems Multiple studies investigated the software ecosystems from dif-
ferent aspects. Decan et al. [180] found that dependency networks are growing over time
by analyzing the evolution of different package managers. Moreover, they realized that a
minority of packages are used by a majority of the network. Several studies [16, 17, 181]
modeled software ecosystems using graphs with package versions as nodes. They used
these graphs to studyMaven Central and the CRAN. Their findings show thatMaven ecosys-
tem has a more conservative approach to updating dependencies than CRAN. They also
studied activity, popularity, and timeliness of more than 1M artifacts in the Maven Central.
However, these studies only consider package-level relations. Raemaekers et al. [33] pre-
sented the dataset of Maven containing information about 148K Java libraries and their
CGs. The authors only provided a dataset of metrics and CGs but contrary to our work
they do conduct any ecosystem analysis using this data. Hejderup et al. [130] proposed
a fine-grained dependency network that uses CGs to model function interactions in the
ecosystem. The authors present a methodology to construct and analyze this network.
This study also does not provide insights into the method-level relations of the ecosystems.

4.1 Related Work

4

71

Dependency Management Various studies studied different aspects of dependency
management such as their updates, trends, and adoption. Several other studies [18, 19]
studied the use of bloated (i.e., unused) dependencies. They showed that once a package
becomes bloated in a project it is likely to stay bloated. They also found that bloated
dependencies are mostly the result of transitive dependencies. Zapata et al. [20] studied
developer reactions to known vulnerable dependencies. This study shows that 73.3% of
clients using vulnerable dependencies are not running vulnerable code. Hence they confirm
that analysis at the library level is an overestimation and function-level analysis is needed.
Alrubaye et al. [182] automated library migration to save time and reduce the knowledge
requirements for engineers. They use method-level changes in programs that already
migrated and automate the procedure for others that are interested in migration. Mileva
et al. [183] presented an approach to support developers in their decision to upgrade a
dependency using wisdom of the crowds. Macho et al. [35] analyzed trends of changes in
Maven build files. Kula et al. [107] presented a way to decide when a library needs to be
updated based on its usage level. Kula et al. [139] conducted an empirical study that covers
over 4,600 GitHub software projects and 2,700 library dependencies. The findings of this
study show that 81.5% of the studied systems keep outdated dependencies. Kula et al. [36]
studied the adoption habits and trust of maintainers towards new releases of an existing
library. The study concludes that maintainers are becoming more trusting of new releases
and becoming inclined to update their existing systems to the latest release.

The aforementioned studies inspect dependency-related topics. However, none of them
empirically studies the API usages of the Maven ecosystem. Most of them only considered
package-level relationships between packages. In this study, we will consider API usage
and empirically study method-level networks. We leverage the CGs of libraries to provide
insights about the APIs of the Maven with method-level precision.

APIs and Breaking Changes Some studies specifically targeted the library APIs and
investigated their patterns, stability, usage, etc. Qiu et al. [45] studied API usage of 5k
open-source projects. Their findings show that the API usage obeys a Zipf distribution and
deprecated APIs are still widely used. Bavota et al. [47] studied the evolution of a set of
projects. They show that when releases contain major changes a large amount of them
are bug fixes. They also show that developers are more reluctant to upgrade when APIs
are removed or altered. Wang et al. [46] empirically investigated the usage and updates of
packages in Java projects. They also provide a prototype of a tool that alerts developers
about updating packages. Xavier et al. [184] studied the frequency of breaking changes,
the behavior of these changes over time, their impact on users, and the characteristics of
libraries with a high frequency of breaking changes. Lima et al. [185] categorized APIs
into popular, ordinary, and unpopular. They found that popular APIs often have more
public methods, more lines of code, a higher complexity, higher relative complexity per
method, change more frequently, and have more contributors. However, they also found
that there is no change in the relative line of code, method name length, or the number of
parameters of popular APIs and they are often used early in the development cycle and
are often more unstable. Harrand et al. [34] performed a large scale study on Maven. They
discovered that with sufficient users, all APIs seem to be used, but there is a concentration
of usage on a small set of APIs. Meaning developers could focus on a smaller portion of

4

72 4 On the relation of method popularity to breaking changes in the Maven ecosystem

APIs and save time. Hora et al. [48] proposed a tool to extract rules by monitoring API
invocation changes in the code history. This then can be used to keep track of the evolution
of an API. Kim et al. [186] performed a large analysis of API refactorings and bug fixes.
Their findings revealed that the number of bug fixes increased after refactorings, while the
time required to address these bugs decreased. Kocci et al. [49] investigated changes that
happen to APIs and classified them to gain a bigger picture of API evolution. Nguyen et
al. [187] presented LibSync, a tool for developers who want to upgrade their dependencies.
It suggests to users a way of adapting their API usage by learning from clients that have
already migrated to a new library version. Hora et al. [188] performed an exploratory
study to observe API evolution and its impact on the Pharo software ecosystem. Lamothe
et al. [50] reviewed the literature on APIs and API evolution. They conclude that the main
challenges are identifying factors that drive API changes, creating a uniform benchmark for
research evaluation, and the impact of API evolution on various programming languages.
Raemaekers et al. [51] proposed four different metrics for the stability of the libraries.
Raemaekers et al. [37] studied how new releases of a library impact the client libraries
and their semantic versioning. They found that on average one in three releases introduce
breaking changes that produce compilation errors that need to be addressed. The above-
mentioned studies investigated APIs from different aspects. However, none of them focuses
on an analysis of public APIs from the consumer perspective at the ecosystem level.

4.2 Experimental Setup
Our approach contains multiple components that enable us to perform the desired analyses.
In this section, we first provide a brief overview of these components and the overall
methodology. Then we elaborate on different components for example the Sampler compo-
nent that is used for the data selection.

4.2.1 Overview
Within Maven Central, all packages are uniquely identified by a triplet consisting of
groupId:artifactId:version. In this paper, we refer to such an identifier as a
Versioned Package (VP). We also use the term artifact to refer to a package but not a

Figure 4.1: Overview of the Methodology

4.2 Experimental Setup

4

73

particular version, i.e. groupId:artifactId.
Figure 4.1 illustrates an overview of the methodology of the paper. We resolve de-

pendents of all versioned packages released in a particular time frame on Maven. For
this, we use our Dependent resolver component which is described in Section 4.2.2. This
component internally uses Dependency Resolver (red arrow in the overview figure). The
next step is selecting a subset of versioned packages to analyze. We select 384 versioned
packages for the analysis using the Sampler component. This component is described in
detail in Section 4.2.3. For the dependents of any selected versioned package, we resolve
their dependencies. We describe our dependency resolution in Section 4.2.4. Note that, the
list of dependencies of each dependent contains the original versioned package that was
selected as a target for the analysis.

In the rest of the paper, we call these versioned packages target versioned packages and
their corresponding artifacts target artifacts.

In the next step, all dependency sets are transmitted to the Static Analyzer component
(see Section 4.2.5). This component performs two crucial tasks. Firstly, it generates a Call
Graph (CG) for each dependency set and transmits it to the CG Joiner. Secondly, it forwards
the method definitions of the target artifacts and their respective versions to the SemVer
analyzer (explained in Section 4.2.6). The CG Joiner (refer to Section 4.2.5) combines these
Call Graphs into a single joined CG for each target versioned package.

These CGs contain all method calls from dependent versioned packages to the target
versioned packages. All other edges such as internal calls of these libraries are filtered.
Finally, we analyze method declarations to find violations of semantic versioning in SemVer
Analyzer resulting in violation information. Popularity Analyzer then uses this information
together with joined CGs to find if the violations affect the most popular methods.

Figure 4.1 also shows the data that goes through this pipeline alongside an example.
Consider 𝑔 ∶ 𝑎 ∶ 𝑣1 as a versioned package that is released within our target time frame.
𝑔 ∶ 𝑎 ∶ 𝑣𝑥 is one of its dependents resolved by Dependent Resolver. In the second step
Sampler selects 𝑔 ∶ 𝑎 ∶ 𝑣1 as a target versioned package. Afterward, Dependency Resolver
includes 𝑔 ∶ 𝑎 ∶ 𝑣1 among the dependencies of 𝑔 ∶ 𝑎 ∶ 𝑣𝑥 . In the fourth step, Static Analyzer
generates a CG for all dependency sets including 𝑔 ∶ 𝑎 ∶ 𝑣𝑥 ’s. This component also uses
Maven to find all the versions of selected artifacts and extracts their method definitions
such as method n() in 𝑔 ∶ 𝑎 ∶ 𝑣1.

After acquiring all the versions of the selected artifacts, the SemVer Analyzer computes
any breaking changes and illegal API extensions, such as the removal of the method n() in
𝑔 ∶ 𝑎 ∶ 𝑣1𝑖, which is the subsequent minor release after 𝑔 ∶ 𝑎 ∶ 𝑣1. Meanwhile, the CG Joiner
joins the CGs it receives, resulting in a unified CG that contains an edge from method
m(), defined in 𝑔 ∶ 𝑎 ∶ 𝑣𝑥 , to method n(), defined in 𝑔 ∶ 𝑎 ∶ 𝑣1. Using all the calls to the
methods defined in the target versioned packages, the Popularity Analyzer calculates the
popularity values for methods. For instance, the popularity value of n() is greater than
zero because it is utilized at least once by 𝑔 ∶ 𝑎 ∶ 𝑣𝑥 .

By removal of n() method m() would break should developers of 𝑔 ∶ 𝑎 ∶ 𝑣𝑥 decide to
update to 𝑔 ∶ 𝑎 ∶ 𝑣1𝑖. We use popularity values, breaking changes, and illegal API extension
information for the reports and figures of this study.

4

74 4 On the relation of method popularity to breaking changes in the Maven ecosystem

4.2.2 Dependent resolver
Dependent resolution is the process of identifying versioned packages that refer to a partic-
ular target versioned package, either directly or transitively. One needs to first perform
dependency resolution for all versioned packages on the ecosystem. Using this information,
one can create a so-called dependency graph. This graph determines which versioned
packages are dependent on a given versioned package by retrieving the incoming edges of
the given node. We replicated the approach presented by Benelallam et al. [16] to create
this graph.

We created this graph by including releases from 1st of October 2021 to 31st of March
2022. This contains 537K versioned packages that are released in this time frame and we
add them as initial nodes of this graph.

Maven index [88] lists all versioned packages that are being released. We use this index
to include releases of our target time frame. We also include all dependencies of each
versioned package by analyzing their POM files. We do not resolve the exact versions of
these dependencies in this phase and only store the information available in the POM file.
Most dependency definitions specify the exact versions. For these cases, we simply add a
dependency edge between two versioned packages. However, some POMs define version
range dependencies. This is less common than exact versions dependency definitions. For
these cases, we also store the range information separately. Consider versioned package
g:a:0 and g:a:1 that both define the dependency g:d:[1,5] in their POM files. This
dependency refers to all releases between version 1 and 5. We use this example in the
rest of this paragraph to show how Dependent Resolver functions. While adding g:d
as a dependency we store the range information [1,5]. We resolve the exact versions
only on demand once we receive queries. For each query about the dependents of a given
versioned package, we first return all potential dependents that exist in the whole graph.
This includes both direct and transitive dependents. For example, when A depends on B and
B depends on C we also count A as a dependent of C. Next, we use the dependency resolver
(see Section 4.2.4) to resolve the dependencies of each potential dependent at the current
moment. After that, we check whether or not the given versioned package is present in
their dependency sets. For example, when we receive a query about the dependents of
g:d:1 we return both g:a:0 and g:a:1. We then resolve dependencies of g:a:0 and
g:a:1 to validate whether or not g:d:1 is among their dependencies. Assuming that
g:a:0’s dependency set does not contain g:d:1 and g:a:1’s does, we keep g:a:1 and
eliminate g:a:0 from the list of its dependents. We opted for analyzing a particular time
frame because it enables us to find the complete set of dependents for any versioned package
that is released within or after our target time frame. Users can depend on each versioned
package only after its release, not before, so this approach provides a comprehensive view
of the dependents existing on Maven.

4.2.3 Sampler
We have continuously collected data from Maven central and created a dataset that repre-
sents the current state of the ecosystem. This dataset contains all versioned packages that
are released between the 1st of October 2021 and 31st of March 2022. We call this time
frame our sampling frame. The sampler component is responsible for selecting a set of
versioned packages that is representative of this dataset. This sampling is done because CG

4.2 Experimental Setup

4

75

Figure 4.2: Random selection example

generation is a highly expensive task and not feasible to perform for all existing versioned
packages. Figure 4.2 shows an example of this sampling. In the remainder of the Section, we
use this example to describe the steps we take in our data selection. In the sampling time
frame, some artifacts may have only one release (g2:a1), some may have multiple releases
(junit:x, g3:a2), and some may have no release (g1:a2, g3:a1). As the first step
of our selection, we filter the artifacts without any release in the sampling frame (g3:a1,
g1:a2). Maven Central repository contains approximately 9M indexed packages. However,
the aforementioned 6 months time frame contains approximately 537K versioned packages.
These versioned packages are released within the sampling frame. For example, in Figure
4.2 there are 6 versioned packages within the sampling frame (gray area) including two
junit:x, one g2:a1, and three g3:a2 releases. Figure 4.3 shows the number of versioned
packages that are released within the sampling frame on Maven Central.

Before we sample, we apply two filters to the sampling frame; which allows us to
create a more representative set of versioned packages. The first filter we apply is to
remove testing-related versioned packages that contain the keywords assertj, junit,
mock and test from the dataset. We do this because our purpose is to analyze the
regular library API usage while testing-related libraries have different usage patterns.
Also, the versioned packages uploaded toMaven Central usually do not contain sufficient
bytecode information to analyze the testing-related part of the code. In the example, artifact
junit:x will be filtered after this step which leads to four remaining versioned packages
derived from two unique artifacts i.e. g2:a1, g3:a2. After applying this filter onMaven
data, approximately 380K versioned packages remain. These versioned packages are derived
from 10.6K unique artifacts. To avoid a bias towards artifacts with a high release frequency,
we randomly select only one version from each of the 10.6K unique artifacts that we
could identify in the dataset. In the example, this step is specified with S1. I.e. from each
remaining artifact (g2:a1, g3:a2) we randomly select one version. In case of g2:a1
there is only one versioned package (Vi1) in sampling the frame, while g3:a2 has three
versions and we pick the second one (Vj2) randomly as shown in the Figure 4.2.

Popular versioned packages with many dependents influence the overall ecosystem
more, thus we perform weighted random sampling based on the number of dependents
(direct and transitive) that versioned packages have. In example, assume that g3:a2:vj2
has 20 dependents and g2:a1:vi1 has 10. Consequently, g3:a2:vj2 is twice more
likely than g2:a1:vi1 to be selected in this step. Sampler uses Dependent resolver (see
Section 4.2.2) to get the number of dependents that each versioned package has. Table
4.1 shows the number of dependents per versioned package. More than 7.5K artifacts do
not have any dependents, which using weighted random sampling cannot be selected.
To verify the correctness of this, we randomly picked 10 of these cases and manually

4

76 4 On the relation of method popularity to breaking changes in the Maven ecosystem

0

30000

60000

90000

120000

Oct 21 Nov 21 Dec 21 Jan 22 Feb 22 March 2022

Releases

Figure 4.3: Number of releases in the dataset per month

checked their dependent number with two other sources: Libraries.io2 and the usage
tab of Maven. They all had no dependents. We observed that some of them are very
new releases. Therefore, they did not have the chance yet to attract users. The rest are
unpopular versioned packages due to different reasons such as being from a very unpopular
package. We believe these cases happen because the majority of the versioned packages
are barely used, especially in the early stages of their lives while a minority are highly
used. Previous research [17, 34, 180] as well as our findings show very similar patterns
in library usage within the ecosystem. To achieve generalizable results, we made sure to
select a representative subset of libraries. The dependent distribution for versioned packages
follows an inverse logarithmic distribution. We selected 384 versioned packages from the
3.1K versioned packages with 10.7K non-unique dependents (7,190 unique), which gives our
results a confidence level of 95% and max the margin of error of 5%.

Our popularity analysis requires CG generation for all dependents of selected versioned
packages. Thus we use the described 384 versioned packages in Popularity Analyzer compo-
nent (Section 4.2.8). However, Static Analyzer (Section 4.2.5) and SemVer Analyzer (Section
4.2.6) use all versions of the selected artifacts that are available onMaven. In Figure 4.2 we
show this by S2 as the final step of our selection process. Using weighted random sampling
we pick g3:a2:vj2. This versioned package is used in Popularity Analyzer component
for the impact analysis. However, Static and SemVer Analyzers inspect all versions of the
corresponding artifact g3:a2 including vj0, vj1, vj2, vj3, and vj4.

4.2.4 Dependency resolver
Dependency resolution is resolving what dependencies a versioned package needs to compile,
build, test or run. These dependencies are (directly or transitively) specified in the pom.xml
file. For transitive dependency resolution, one needs to recursively get the dependencies of
all dependencies and consider theMaven-specific resolution rules for solving conflicting
definitions within the dependency set.
2https://libraries.io/

https://libraries.io/

4.2 Experimental Setup

4

77

Table 4.1: Number of dependents

Dependents versioned package

0 7533
1 2091

2-9 844
10-24 88
25-49 33

50 27

Dependency resolution in Maven is not deterministic because of version ranges [176].
New releases onMaven may change the outcome of dependency resolution for existing
projects, even if the specified dependencies in pom.xml are stable. One such scenario
arises when there are conflicting versions in transitive dependencies. Suppose we have
two dependencies, 𝐷1 and 𝐷2, that rely on different versions of the library 𝐿, for instance,
𝐷1 → 𝐿𝑣1 and 𝐷2 → 𝐿𝑣2, and project 𝑋 depends directly on both 𝐷1 and 𝐷2. This leads
to a dependency conflict because 𝑋 cannot include both 𝐿𝑣1 and 𝐿𝑣2 in its dependency
set simultaneously. Different versions of the same package may have varying APIs and
behaviors, so Maven permits only one version from each package to be present in the
dependency set after resolution.

When a conflict occurs,Maven addresses it by conducting a breadth-first search and
choosing the closest version of the conflicting dependency to the root. For instance, if 𝑋
defines 𝐷1 before 𝐷2, the closest version of 𝐿 to the root (𝑋) is 𝐿𝑣1. As 𝐷2 defines 𝐿𝑣2 in the
dependency tree of 𝑋 , 𝐿𝑣2 appears after 𝐿𝑣1. In this example, the dependency set may alter
from the perspective of 𝐷2 when 𝑋 relies on 𝐷1, compared to when it does not. Maven
has numerous similar cases of dependency resolution, making it excessively complicated.
We do not implement this feature ourselves, but instead, we use a re-implementation of
Maven’s built-in dependency resolution from a Java library [178]. This tool enables us to
include all dependencies, including transitive ones, when resolving dependencies. As a
result, we handle transitive dependencies similarly to direct dependencies.

4.2.5 Static analyzer
The static analyzer component extends an existing framework OPAL [143] to perform
two types of analyses. This analyzer both generates CGs for versioned packages and their
dependencies and extracts the method definitions in versions of a given artifact. In the
following, we explain each of these analyses.

Generation After receiving a dependent and its dependency set we perform class hierar-
chy analysis (CHA) [73] to ensure all possible method calls are contained within the CG.
A class hierarchy analysis determines a program’s class inheritance graph and the set of
methods defined in each class. Using these two pieces of information we add all possible
invocations of any method to the CG.

Figure 4.4 illustrates a minimal dependency set and its corresponding CG, which we
will use as an example to elaborate on the steps we take in our analyses. As previously

4

78 4 On the relation of method popularity to breaking changes in the Maven ecosystem

gy:ay:0gx:ax:0

CG

Depends on

B.n

B.o

A.init

A.m

B.m

Figure 4.4: Example dependency set and its CG

explained, CHA analysis overapproximates and draws edges to all possible implementations
of a target method. For example, in the running example, method n in class B calls method
m using object a. However, since the CHA algorithm does not reason about the control
flow of the program, the exact type of a is unknown. Therefore, B.n is connected to both
A.m and B.m, as illustrated in Figure 4.4. This becomes more complicated when object a is
not defined in the same scope, such as when it is passed as an argument to method n. It is
worth noting that A could also be an interface, and m could be an abstract method. In such
cases, the algorithm would perform similarly, except it would not draw an edge to A.m
because an abstract method is not executable. Nonetheless, the algorithm considers A in
the type hierarchy and draws edges to its subtypes.

It is important to note that the imprecision caused by this algorithm only occurs
for virtual dispatch calls, which are calls that cannot be statically resolved. Despite this
imprecision, we believe CHA is a suitable trade-off for our analysis, balancing soundness,
scalability, and precision. More precise analyses, such as CFACG generation, lack scalability.
Dynamic CG generation is also not practical for our use case due to a lack of scalability
and coverage.

In this part, we also generate unique identifiers for each method within the ecosystem.
We call these identifiers Global IDs (GID). These GIDs help us join the generated CGs in CG
Joiner 4.2.7.

Method definition extraction For each target artifact, we first query Maven for all
versions. Having all versions we extract all public method definitions that they have and
assign them aGID. It is important to note that we only consider method definitions (methods
with a body) because CGs only resolve edges to defined methods since declared methods
(without a body) cannot be executed. In the next steps of the study, we limit the scope
to methods with body i.e. method definitions to be able to connect semantic versioning
violations to method popularity. Moreover, since public visibility is the most common
access modifier for library usage we consider such methods as API endpoints that we
analyze. Hence, we use the term publicly defined method to refer to such methods.

4.2 Experimental Setup

4

79

Figure 4.5: Two releases of an example artifact and their dependents.

4.2.6 SemVer analyzer
This component analyzes semantic versioning violations in a given versioned package. We
categorize these violations into two categories. The first category is breaking changes,
which are changes that break compatibility within a major version. The second category is
illegal API extensions, which is considered an extension of the API in patch versions.

We define breaking changes as changes that alter or remove a method signature. In
addition to the name, our definition of method signature also includes return type and all
arguments. Such changes should be introduced in major version upgrades only, Semantic
Versioning is violated when these changes occur in minor or patch releases. This means that,
when a new minor or patch version is released, a public method signature has been altered
or removed which breaks the compatibility of an API. This leads to issues in case this
method is called by some dependents. Therefore, changes that remove method signatures
are not allowed, unless they are part of a major version upgrade.

To detect such violations we analyze the evolution of method signatures in the release
history within the sampling frame. We look at the set of method signatures publicly
available in a given versioned package 𝑣𝑛 and compare it to the previous version’s set of
method signatures, the goal is to identify cases, in which signatures that existed before are
removed in 𝑣𝑛 (See Equation 4.1).

𝐵𝐶(𝑣𝑛) =

{

𝑆𝑖𝑔(𝑣𝑛−1)− 𝑆𝑖𝑔(𝑣𝑛) ∃{(𝑣𝑛, 𝑣𝑛−1) ∈𝑀𝑎𝑗𝑜𝑟(𝑣𝑛)}

∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.1)

where:

𝐵𝐶(𝑣𝑛) = Set of breaking change signatures introduced in 𝑣𝑛

𝑀𝑎𝑗𝑜𝑟(𝑣𝑛) = Set of patch and minor in the same major version as 𝑣𝑛
𝑆𝑖𝑔(𝑣𝑛) = Set of public method signatures defined in 𝑣𝑛

Figure 4.5 shows two consecutive releases of artifact a. We use this figure as a running
example to explain the next steps of our approach. For conciseness, we use a number to
refer to each method. This figure also shows fully qualified method names next to their
corresponding number. To calculate the breaking changes of versioned package 𝑎 ∶ 𝑣𝑛,
assuming that 𝑣𝑛 and 𝑣𝑛−1 are within the same major version, we need to subtract the set of

4

80 4 On the relation of method popularity to breaking changes in the Maven ecosystem

methods in 𝑎 ∶ 𝑣𝑛 from 𝑎 ∶ 𝑣𝑛−1. This means {1,2,3}− {1,2,4,5} resulting in {3} which can
also be illustrated as 𝐵𝐶(𝑎 ∶ 𝑣𝑛) = 𝑎 ∶ 𝑣𝑛−1/𝑥/𝑌 .𝑐()𝑣𝑜𝑖𝑑.

The second category of violations is the extension of the API in a patch version. We
use a similar approach as before with a small adaptation. We iterate over the different
patch versions and detect if a new method signature is added. This means there has been
an extension of the API within a patch version. We find illegal API extensions of versioned
package 𝑣𝑛 by finding the difference between the previous patch version’s set of method
signatures and the set of method signatures in 𝑣𝑛, the goal is to identify cases, in which a
signature did not exist before but was added to the 𝑣𝑛 (See Equation 4.2).

𝐼𝐸𝑋 (𝑣𝑛) =

{

𝑆𝑖𝑔(𝑣𝑛)− 𝑆𝑖𝑔(𝑣𝑛−1)−𝑈𝑝(𝑣𝑛) ∃{(𝑣𝑛−1, 𝑣𝑛) ∈𝑀𝑖𝑛𝑜𝑟(𝑣𝑛)}

∅ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.2)

where:

𝐼𝐸𝑋 (𝑣𝑛) = Set of signatures illegally added to 𝑣𝑛

𝑈𝑝(𝑣𝑛) = Set of updated signatures in 𝑣𝑛

𝑀𝑖𝑛𝑜𝑟(𝑣𝑛) = Set of patch releases within the same minor version as 𝑣𝑛
𝑆𝑖𝑔(𝑣𝑛) = Set of public method signatures defined in 𝑣𝑛

Our approach shares similarities with a conventional diff calculation function in that
it treats updated parts as a removal and an addition. Consequently, the updated methods
belong to both the ’BC’ and ’IEX’ categories if we do not exclude them. While these updated
methods qualify as ’BC’ because they may impact users, they should not be considered as
’IEX’ because they are related to previously existing methods and not independently added.
To identify the methods that truly belong to the ’IEX’ category, we subtract the updated
methods (𝑈𝑝(𝑣𝑛)) in Equation 4.2. To compute the set of potential updated methods, we
use a heuristic approach that only considers sets of fully qualified signatures in releases.
The heuristic approach, outlined in Algorithm 1, identifies five categories of changes in a
release, including package name, class name, method name, parameters, and return types
refactoring. This heuristic searches for pairs of removals and additions that contain only
one renamed piece of fully qualified method names. For instance, if an added method has a
similar package name, class name, method name, and parameters to a removed method and
only differs in the return type, we consider it as one potential update. We do not consider
other cases of updates in this heuristic such as when two or more elements of the signature
are updated. Although this approach may not capture all types of updates that can occur
in a release, it provides a reasonable approximation for our study.

𝑈𝑝(𝑣𝑛) is the only source of unsoundness in our calculation of ’IEX’ and can be replaced
with more accurate approaches if necessary. Notably, achieving accuracy in this context
would require calculating the differences between the complete binary files of consecutive
releases, which is resource-intensive and impractical in terms of scalability. Therefore, this
approach falls outside the scope of our study.

Returning to the example in Figure 4.5, we illustrate the process of calculating illegal
API extensions for versioned package 𝑎 ∶ 𝑣𝑛. First, we subtract the set of methods in 𝑎 ∶ 𝑣𝑛−1

from 𝑣𝑛. That is, 1,2,4,5−1,2,3, which results in 4,5. Alternatively, we can express this
as 𝐼𝐸𝑋 (𝑣𝑛) + 𝑈𝑝(𝑣𝑛) = 𝑥/𝑌 .𝑑()𝑣𝑜𝑖𝑑,𝑥/𝑌 .𝑒(𝑖𝑛𝑡)𝑖𝑛𝑡. Next, using Algorithm 1, we compare

4.2 Experimental Setup

4

81

Algorithm 1 Find Updated Methods
Require: 𝑎𝑑𝑑𝑒𝑑: list of method signatures added to 𝑣𝑛

Require: 𝑟𝑒𝑚𝑜𝑣𝑒𝑑: list of method signatures removed from 𝑣𝑛

Ensure: 𝑟𝑒𝑠𝑢𝑙𝑡: list of updated signatures in 𝑣𝑛

1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← {}

2: for 𝑎 ∈ 𝑎𝑑𝑑𝑒𝑑 do
3: for 𝑟 ∈ 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 do
4: 𝑟 .𝑠𝑖𝑔 ← [𝑟 .𝑝𝑘𝑔, 𝑟 .𝑐𝑙𝑎𝑠𝑠, 𝑟 .𝑛𝑎𝑚𝑒, 𝑟 .𝑝𝑎𝑟𝑎𝑚𝑠, 𝑟 .𝑟𝑒𝑡𝑢𝑟𝑛]

5: 𝑎.𝑠𝑖𝑔 ← [𝑎.𝑝𝑘𝑔,𝑎.𝑐𝑙𝑎𝑠𝑠,𝑎.𝑛𝑎𝑚𝑒,𝑎.𝑝𝑎𝑟𝑎𝑚𝑠,𝑎.𝑟𝑒𝑡𝑢𝑟𝑛]

6: if r.sig differs from a.sig in only one element then
7: 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟𝑒𝑠𝑢𝑙𝑡 ∪ {𝑎}

8: end if
9: end for
10: end for
11: return 𝑟𝑒𝑠𝑢𝑙𝑡

M1

M2

M3

M4

M5

M6

M4

M5

M6

M1

M2

M3

 P P P

Figure 4.6: Example of CG joining

all pairs of additions and removals in 𝑣𝑛. The set of additions in 𝑣𝑛 is 4,5 and the set of
removals is 3. This means that in this algorithm, we compare 𝑥/𝑌 .𝑐()𝑣𝑜𝑖𝑑 to 𝑥/𝑌 .𝑑()𝑣𝑜𝑖𝑑

and 𝑥/𝑌 .𝑒(𝑖𝑛𝑡)𝑖𝑛𝑡. The only two cases with a single element difference (method names) are
3 and 4. Thus, we count 4 as an updated version of 3. This implies that 𝑈𝑝(𝑣𝑛) = 𝑥/𝑌 .𝑑()𝑣𝑜𝑖𝑑

and 𝐼𝐸𝑋 (𝑣𝑛) = 𝑥/𝑌 .𝑒(𝑖𝑛𝑡)𝑖𝑛𝑡.

4.2.7 CG joiner
Using the list of dependents, we need to determine how every dependent interacts with
target versioned package. Within Static Analyser 4.2.5 we generated a CG for every
dependent and its dependencies. Note that the dependencies of each dependent contain a
target versioned package. Initially, we build one unique CG per dependent, but as every node
has a unique identifier, we can join these individual CGs to get a joint CG for one target
versioned package. Every node within our CGs has a unique identifier. While analyzing
each versioned package for the first time we use a combination of Maven coordinates of the
versioned package and fully qualified names of methods (including java package and return
types) to uniquely identify each method within the ecosystem. Consequently, we can join
CGs that are related to a target versioned package into a single CG. See Figure 4.6 for an
example of CG joining. In this Figure, a node 𝑃 is common between two graphs. When we
join these graphs the result shows what other nodes call this node from both graphs. See
Equation 4.3 for the mathematical formula behind joining CGs.

4

82 4 On the relation of method popularity to breaking changes in the Maven ecosystem

𝐺1 ∪𝐺2 = (𝑉1 ∪𝑉2,𝐸1 ∪𝐸2 ∪ {(𝑎,𝑏) ∶∈ 𝑉1, 𝑏 ∈ 𝑉2}) (4.3)

where:

𝐺𝑥 = Graph 𝑥

𝑉𝑥 = Vertices of graph 𝑥

𝐸𝑥 = Edges of graph 𝑥

After joining the CGs of a target versioned package we have a representation of the
interactions between versioned package and its dependents, in an individual CG. However,
this joined CG contains many edges that are irrelevant to our study. Every possible edge
that happens in the context of each dependent is present in this joined graph, such as
internal calls of the dependents. In the next step, we filter all irrelevant edges. Suppose
we are analyzing target versioned package 𝑥 , we reduce this joint CG to the edges that
have a source outside of 𝑥 and a target inside of 𝑥 . Consider the running example in
Figure 4.4. Suppose gy:ay:0 is one of our target versioned packages. In the filtering step,
we iterate over all four CG edges shown in this figure. For each of them, we check the
two aforementioned conditions. All of these edges pass the first check which is whether
or not their source method is defined outside of gy:ay:0. This is because B.n is defined
in gx:ax:0 and not in our target versioned package (gy:ay:0). In the second condition
check, however, two of the edges are identified as filterable edges. Since B.o and B.m
are defined within gx:ax:0 we filter B.n->B.o, B.n->B.m. Similarly, we process
any existing edge in the joined CG. This procedure also filters indirect calls to versioned
packages. For example, a call from another method to B.n would be filtered since B.n is
not defined within target versioned package. In this study, our focus is the intentional usage
of library methods and indirect calls in the CG do not capture them. The remaining CG
only includes the method-level interactions between the library and its dependents. This
allows us to determine popularity scores and influence ratings based on all interactions
within a given versioned package.

4.2.8 Popularity analyzer
This component calculates two types of popularity values. Firstly, it calculates the popular-
ity of the target versioned packages. And secondly, it calculates the popularity of methods
within them. We are inspired by Raemaekers et al. [37] to use the term popularity in this
study. For the library popularity, we divide the number of dependents of versioned package
𝑣 by the number of all unique dependents (7,190) to calculate the popularity of 𝑣 (see
Equation 4.4). The value reflects the popularity of a versioned package among dependents.

𝑃(𝑣) =

|𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑣)|

|
|
|
⋃

𝑡∈𝑇

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑡)
|
|
|

(4.4)

where:

𝑃(𝑣) = popularity of versioned package 𝑣
𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑣) = dependent set of versioned package 𝑣
𝑇 = set of target versioned packages

4.3 RQ1: How often do semantic versioning violations occur?

4

83

Consider the Figure 4.5. To calculate the popularity of 𝑎 ∶ 𝑣𝑛 we should divide the
number of dependents that 𝑎 ∶ 𝑣𝑛 has by the number of all dependents. Assuming that our
dataset only includes four dependent versioned packages (𝑑1, 𝑑2, 𝑑3, 𝑑4) we should divide
one by four. 𝑑4 is the only dependent that uses 𝑎 ∶ 𝑣𝑛 thus 𝑃(𝑣𝑛) = 1/4. This value is 3/4
for 𝑃(𝑎 ∶ 𝑣𝑛−1).

Having the joined CGs we count the distinct dependents that call each method of the
target versioned package. We then divide this by the number of all dependents that the
target versioned package has to understand the relative popularity of a method among its
dependents. We devise a simple metric called distinct dependents usage. Equation 4.5 shows
this metric for a given method 𝑀 .

𝐷𝑅(𝑚) =

1

|𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑝)|

∑

𝑑∈𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑝)

{

1 ∃{𝑑,𝑚} ∈ 𝐶𝐺𝑃

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4.5)

where:

𝑚 ∈ 𝑝 = versioned package p defines method m
𝐷𝑅(𝑚) = ratio of dependents that call the method 𝑚

𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑠(𝑝) = dependents set of the target versioned package 𝑝
{𝑑,𝑚} = edge between a dependent 𝑑 and a method 𝑚

𝐶𝐺𝑃 = joined CG of 𝑝

Consider Figure 4.5 once again. The popularity value for 𝑎 ∶ 𝑣𝑛−1/𝑥/𝑌 .𝑎(𝑖𝑛𝑡)𝑣𝑜𝑖𝑑 is
2/3 since out of three dependents of 𝑎 ∶ 𝑣𝑛−1 (𝑑1, 𝑑2, 𝑑3) two of them (𝑑2, 𝑑3) call this
method. Moreover, 𝐷𝑅(𝑎 ∶ 𝑣𝑛−1/𝑥/𝑌 .𝑏()𝑖𝑛𝑡) = 1/3 since only 𝑑1 calls this method. 𝐷𝑅(𝑎 ∶
𝑣𝑛−1/𝑥/𝑌 .𝑐()𝑣𝑜𝑖𝑑) equals 1/3 because only 𝑑2 calls it. Finally, 𝐷𝑅(𝑎 ∶ 𝑣𝑛/𝑥/𝑌 .𝑑()𝑣𝑜𝑖𝑑) = 1/1

as 𝑑4 is the only dependent of 𝑎 ∶ 𝑣𝑛 and the only caller of this method.

4.3 RQ1: How often do semantic versioning viola-
tions occur?

The first category of violations of semantic versioning is through breaking changes, which
are changes that break compatibility. We expect that the evolution of an API sometimes
leads to incompatibility, due to developers removing or changing the existing set of method
signatures of an artifact within a minor or patch release. The second category of violations
of semantic versioning is the extension of an API through patch versions. Hence, we
investigate the extent of semantic versioning violations in the first research question.

As a first step, we filter the versioned packages that do not comply with the semantic
versioning structure. I.e we filter versioned packages with a qualifier such as pre-releases,
snapshots, betas, etc. We do this because semantic versioning does not provide any rules
for them. Selected artifacts have 5,763 releases with one type of such qualifiers. However,
they have 13,876 releases that adhere to the default structure of the semantic versioning
and we use them in our study.

We use SemVer Analyzer as described in Section 4.2.6 to retrieve the set of breaking
change methods in all remaining target versioned packages and their newer versions. We
compare the retrieved set of breaking change methods with the set of total methods defined

4

84 4 On the relation of method popularity to breaking changes in the Maven ecosystem

Table 4.2: Type of release per artifact for the selected artifacts

mean median std sum

major 1.4 1.0 2.1 509
minor 11.1 5.0 16.6 3894
patch 26.8 11.0 55.2 9473
total 39.3 23.0 60.1 13876

in respective artifacts and calculate the percentage of methods that break in each artifact.
Using this data, we can show the extent of violations within the ecosystem at the library
level. We then compare the number of methods that artifacts define and the number of
breaking changes they introduce. This information helps us discover any method-level
trends between the number of methods and the number of violations if they exist. We
conduct similar analyses for illegal API extensions as well.

To understand the extent of semantic versioning violations we analyze the selected
artifacts. Table 4.2 shows the number of releases per artifact. As this table shows, patch
releases (9,473) happen more often than minor releases (3,894). This is expected because
multiple patches are usually released between two minor releases. The same explanation is
also valid when comparing the number of minor (3,894) and major (509) releases. Overall,
we analyze all releases (13,876) of 384 selected artifacts. In the rest of this section, we
investigate how often breaking changes occur and, if they occur, what portions of the
artifacts are affected. Firstly, we found that among selected artifacts 244(63%) introduce at
least one breaking change in their history. Secondly, as Figure 4.7 shows the percentage
of methods involved in breaking changes differs among artifacts that have at least one
breaking change. This figure shows the percentage of public methods, defined in an artifact,
that are involved in breaking changes. In 22(9%) of artifacts, less than 1% of methods are
involved in breaking changes. These percentages are calculated for only artifacts with
breaking changes. On average, 19% of methods of the artifacts with breaking changes are
affected by the breakage. In addition, we can notice that for higher ratios, only a small
number of artifacts have such a high ratio. Only 22(9%) artifacts have more than 50% of
their methods involved in breaking changes. Fifty-five percent of artifacts feature a ratio
that is not bigger than 15%. However, several outliers exist that feature a noticeably higher
ratio, indicating that these artifacts contain many breaking changes.

Now we realize different artifacts break to different extents. That is the number of
methods involved in breaking changes highly differ between artifacts. We suspect that
some libraries may break more methods because they have more methods in total. To this
end, we investigate whether or not the total number of methods that these artifacts define
is related to the number of breaking change methods. Figure 4.8 shows the total number of
public methods that artifacts have against the total number of breaking changes that occur
in them. The axes in this figure are logarithmically scaled because the number of methods
and breaking change methods highly differ between artifacts. Therefore, it is not practical
to show them in a linear plot. As can be seen in this figure there is a tendency for artifacts
with more methods to involve more methods in breaking changes. We fit a linear regression
model with a confidence interval of 95% to better show this trend. The blue line in the

4.3 RQ1: How often do semantic versioning violations occur?

4

85

0 5 10 15 20 25 30 35
Percentage of methods with breaking changes

0

20

40

60

80

100

120

140

160

N
um

be
r o

f a
rti

fa
ct

s

Figure 4.7: Ratio of methods involved in breaking changes

figure shows this regression model. We conclude that indeed a larger number of methods
leads to a larger number of breaking changes. However, we observe that the number of
breaking changes does not grow as rapidly as the number of methods. This is in line with
the findings of Raemaekers et al. [37]. They found a correlation between the number of
methods in a library and the number of breaking changes and showed that bigger libraries
introduce more breaking changes. They also reported that 30% of all releases contain at
least one breaking change. Unlike them, in this RQ we conduct artifact-level analysis. To
further understand how our results compare to theirs we calculated the number of minor
and patch releases that contain breaking changes. We found that 14% of minor and patch
releases contain breaking changes. We did not include the major releases here because
major releases are allowed to have backward incompatible changes according to semantic
versioning. The difference can be explained by another finding of Raemaekers et al. [37]
that says adherence to semantic versioning principles increases over time. For example,
they reported a decrease of breaking changes in non-major releases from 28.4% in 2006 to
23.7% in 2011. This is a positive observation about the ecosystem and shows significant
improvement in practices over time.

We showed that there exist some artifacts that introduce the first category of semantic
versioning violation, breaking changes, and they do this to different extents. Now, we
investigate the second type of semantic versioning violation, Illegal API extensions. There-
fore, we inspect the number of methods that are added in patch releases. In Figure 4.9,
the number of artifacts is plotted against the percentage of methods of artifacts that are
added via illegal API extensions. One may notice the distribution is similar to breaking
changes (Figure 4.7), however, the number of artifacts with API extensions is overall a bit
lower than breaking changes. More specifically, 207(54%) of the artifacts introduce at least
one illegal API extension in their history. Note that, the set of artifacts is not equal to the
set of artifacts that feature breaking changes. Overall, 257(67%) of artifacts introduce at
least one type of semantic versioning violation. It is worth mentioning that artifacts with
illegal extensions on average add 14% to their set of existing methods through the illegal

4

86 4 On the relation of method popularity to breaking changes in the Maven ecosystem

10
1

10
2

10
3

10
4

Total number of methods

10
0

10
1

10
2

10
3

10
4

To
ta

l n
um

be
r o

f b
re

ak
in

g
ch

an
ge

s

Figure 4.8: Increase of breaking changes in relation to the total number of methods

0 5 10 15 20 25 30 35
Percentage of methods with illegal API extensions

0

50

100

150

200

N
um

be
r o

f a
rti

fa
ct

s

Figure 4.9: Ratio of methods involved in illegal API extensions
API extension. Thirty-eight (18%) of these artifacts illegally extend their API methods up
to 1% and only 12(5%) of them add 50% or more methods via illegal extensions.

Finally, after elaborating on illegal extensions, we realize that similar to breaking
changes the extent of the effect is different between libraries. Therefore we aim to un-
derstand whether or not this extent is related to the overall size of the artifacts. One
could expect that bigger libraries may prevent adding yet more methods in general not
to mention adding via illegal extensions. However, surprisingly Figure 4.10 shows that
similar to breaking changes the number of illegal API extensions also grows along with
the number of methods.

Sixty-three percent of the artifacts introduce breaking changes, and 67% of the artifacts
feature at least one type of semantic versioning violation. Furthermore, the more public
methods artifacts define the more likely it is that they introduce semantic versioning
violations.

4.4 RQ2: How is popularity distributed among library methods?

4

87

10
1

10
2

10
3

10
4

Total number of methods

10
0

10
1

10
2

10
3

10
4

To
ta

l n
um

be
r o

f i
lle

ga
l A

P
I e

xt
en

si
on

s

Figure 4.10: Increase in number of API extensions in relation to the total number of methods

4.4 RQ2: How is popularity distributed among li-
brary methods?

Now that we have answered the first research question, we have an insight into how often
violations of semantic versioning occur in general. However, understanding the importance
of the methods that break from the perspective of users within the ecosystem is also critical.
Hence, as the next step, we investigate the popularity of the methods. Despite any relation
that popularity and breaking changes may have, all attributes of popular methods propagate
more within the ecosystem. Therefore, it becomes important to understand what portion
of libraries are generally popular and widely used. Maintainers could for example pay extra
attention to the important parts of their libraries and be more careful not to break them.

To answer this research question, we first investigate the popularity of target versioned
packages at the library level. We use the output of Sampler component (see Section 4.2.3)
to show the difference between the number of dependents that target versioned packages
have. After this, we analyze the method-level popularity. We use the Popularity Analyzer
as described in Section 4.2.8 to calculate a popularity score for every method within target
versioned packages. We inspect these popularity scores in two groups. Firstly, the popularity
scores for the majority of the public methods indicate zero usage by other libraries. Hence,
we first look into the ratio of unused methods compared to the total number of public
methods that versioned packages define. Secondly, we analyze the methods that are used
by other libraries at least once and show how their popularity scores are distributed.

To fully comprehend the distribution of library-method popularity, one must recognize
that not all libraries have the same number of users. Figure 4.11 shows the number of
dependents that selected versioned packages have. As shown in this figure a limited number
of versioned packages are used by many dependents but most of the versioned packages have
less than 100 dependents. More specifically, only 12(3%) of the selected versioned packages
have more than 100 dependents while 310(80%) of them have less than 20 dependents. The
distribution follows the Pareto principle, which states that roughly 80% of consequences

4

88 4 On the relation of method popularity to breaking changes in the Maven ecosystem

0 50 100 150 200 250 300 350 400
selected versioned packages

0

100

200

300

400

500

de
pe

nd
en

ts

Figure 4.11: Distribution of Number of Dependents for selected versioned packages

come from 20% of the causes [189].
There also exist public methods within libraries that are not used by others. To this end,

we first look into the extent of public methods that are not used by other libraries. Figure
4.12 shows that the majority of publicly defined methods are not used by any other library.
On average versioned packages that we selected for this study define 1,688 public methods.
However, the median of public methods for this versioned packages is 386 which indicates
that some outlier projects skew the average. That is, we have a versioned package with 32k
publicly defined methods as an outlier that affects the average. Additionally, there are some
versioned packages that primarily concentrate on interfaces and define only a few public
methods that can be called externally. In fact, we have 13 versioned packages with less than
10 publicly defined methods. Moreover, the second violin plot shows the distribution of
publicly defined methods that are not called by any other library. On average 1.4k unused
public methods are defined by selected versioned packages. However, similar to the number
of methods this average is skewed by the outliers such as the project with the maximum
number of unused methods with 31.6k unused methods. Therefore, the median of the
unused methods is 386. There are also 14 versioned packages with less than 10 unused
public methods. Finally, on average, the ratio of public methods that are not used by other
libraries is 87% (median of 92%). The minimum ratio is 0.39 and the maximum ratio is 1.
That is, 1) maximum coverage of public methods is 39% among all analyzed libraries, and 2)
there exist libraries within selected packages that non of their publicly defined methods are
used by others, which is because of their interface-based nature as our manual inspection
revealed.

To look more closely at the used parts of these libraries we calculate the dependent
usage ratio metric (see Section 4.2.8) for each method in the selected libraries that is used
at least once by others. As seen in Figure 4.13, the dependent ratio follows a logarithmic
distribution. The x-axis of this plot shows the public methods of libraries. Since libraries
have a different number of methods we normalize this axis by using the Quintiles when
sorted by the value of the y-axis. The y-axis is the ratio of dependents calling the method.
Each dot in this plot shows the mean of all selected versioned packages in that particular x
value. The orange line shows the trend that the mean of all selected versioned packages

4.4 RQ2: How is popularity distributed among library methods?

4

89

0

5000

10000

15000

20000

25000

30000

all public methods unused methods

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ratio of unsused

Figure 4.12: Unused public methods of selected versioned packages

0 1 2 3 4 5
Quintile

0.05

0.10

0.15

0.20

0.25

D
ep

en
de

nt
 U

sa
ge

 R
at

io

Figure 4.13: Popularity Distribution for Dependent Usage Percentage

follow. This line is calculated by a regression model that we fit on the aforementioned dots.
Hence, this figure shows that on the current state of Maven on average there are only a
limited number of methods in each library that are widely used.

The statement regarding the Pareto Principle also relates to the conclusions made by
Harrand et al. [34], which notes that most clients depend on a small fraction of an API.
From our research, we can come to a similar conclusion; popularity skews towards the
most used methods, but comparatively, more methods exist with low popularity values.
More specifically, the area under the orange curve in Figure 4.13 is 0.53. A coordinate with
x=1.76 and y=0.1 is a point where the left area and right area under the curve are almost
equal. This means that on average 35% of the methods in Maven libraries are receiving 50%
of all calls from dependents. The remaining majority (65% of the public methods) receive
the other half of the unique dependent calls. Note that these are only about the 13% of the
methods that are at least called once by another library.

4

90 4 On the relation of method popularity to breaking changes in the Maven ecosystem

The majority of public methods that libraries define are not used by others. On average,
87% of publicly defined methods are never used by other libraries, and 35% of the
remaining 13%, cover half of the dependent calls.

4.5 RQ3: Is there a relation between popularity
and breaking changes?

In the next step, we want to investigate the extent of the problem from the users’ point of
view by connecting popularity information and breaking changes. Deletion of an unpopular
method does not nearly have as many consequences as the deletion of a popular method.
We aim to understand the relationship between popularity and breaking changes, this
would reveal if the maintainers of the libraries are already aware of their users and try not
to break them.

We investigate this research question in two levels similar to previous questions, i.e.,
library and method levels. For the library-level investigation, we first get the library
popularity scores for the target versioned packages from Popularity Analyzer as described
in Section 4.2.8. We want to inspect if there is any relation between these popularity scores
and semantic versioning violations. So we also retrieve the violations of the target versioned
packages from SemVer Analyzer as described in Section 4.2.6. We then calculate the ratio of
the number of packages with violations to their corresponding popularity scores. By fitting
a second-order regression model on the popularity scores and their corresponding violation
ratio, we inspect whether or not a trend exists. Next, we use the Popularity Analyzer to
obtain method-level popularity scores for target versioned packages. We investigate the
difference between the population curve of these scores for methods that are involved in
breaking changes and those that are not.

To explore the relationship between popularity and breaking changes we first analyze
the popularity of the libraries. As described in Section 4.2.8 we measure what portion of the
dependents are attracted to each target versioned package. Thenwe connect this information
to the breaking changes to understand whether or not the popularity of libraries has any
effects on making breaking changes. As shown in Figure 4.14 there exists a slight tendency
for more popular versioned packages to introduce more breaking changes. This can be due
to the higher number of change requests that popular libraries receive from their users.
Note that the overall number of unique dependents is 7,190. Therefore, when we divide
the number of dependents of each versioned package by such a big number, the maximum
popularity value lies around 0.04.

To look closer at the popularity of breaking changes we inspect the relation between
method popularity and breaking changes. Figure 4.15 shows the population of the popularity
of methods that are not involved in breaking changes compared to the popularity of
methods involved in breaking changes. The popularity is represented by the percentage
of dependents that call the method. For example, when the x-axis is equal to one, the
method is called by every dependent of the versioned package. The orange line in the
figure shows the density of the population of the methods that are defined in our target
versioned packages and are not identified as a breaking change. The blue curve, however,
is the methods of the same versioned packages that are involved in the breaking changes.
Methods with zero popularity are filtered from this figure since they make the rest of the

4.5 RQ3: Is there a relation between popularity and breaking changes?

4

91

0.00 0.01 0.02 0.03 0.04
popularity of versioned packages

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 o
f v

er
sio

ne
d

pa
ck

ag
es

 w
ith

 v
io

la
tio

n

Figure 4.14: Semantic versioning violations and popularity of the versioned packages

figure invisible due to their high number. More specifically, 61k methods that were not
used by any other library were filtered from the orange curve and 2.2k were eliminated
from the blue curve.

In Figure 4.15, we can compare the difference between two populations by investigating
the difference in the density at a certain point of the x-axis. If the curve of breaking changes
has a higher density than the curve without breaking changes on a certain point 𝑥 , this
means that on average, a method with a breaking change more often has popularity 𝑥

than a method without a breaking change. However, in this figure, it can be noted that
both lines follow a very similar distribution. Whether or not the method is involved in a
breaking change does not seem to be related to its popularity. To prove this, we performed
a T-test on both populations and observed that there is no significant difference between
them. The results of this test show a p-value=0.48 for a two-sided independent samples,
showing that these populations do not have a significant difference.

One observation that we can also make from this figure is that the orange curve contains
several spikes. Our manual inspection shows that the popularity values of methods can be
concentrated on the same numbers. This means many methods are assigned with similar
popularity values. Since versioned packages have a limited number of dependents and there
are not many permutation options for method usage, these numbers can be similar. For
example, assume a versioned package v has 10 dependents and 20 methods. If 4 of these
methods are related to one functionality and are usually used together, when five of the
dependents only use this functionality, the popularity value will be 0.5 for all four methods.
The popularity of the remaining 16 methods can also be 0.5 if they are used by five of the
dependents. Hence these spikes can be observed when creating the population curve for all
data points. However, despite these spikes, the overall distributions are similar as validated
by the T-test.

The popularity of a method does not play a role in whether or not it is involved in
breaking changes, no significant difference exists between the popularity of the methods
that break the semantic versioning and the ones that do not.

4

92 4 On the relation of method popularity to breaking changes in the Maven ecosystem

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of dependents that call method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

Methods involved in a breaking change
Methods not involved in a breaking change

Figure 4.15: Distribution of percentage of dependents that call methods

4.6 Discussion
We found that a large number of versioned packages contain breaking changes. Users
run into issues when they unsuspectingly attempt to upgrade their dependencies, as the
API is no longer compatible with their artifact. This happens even though the versioning
convention of the library promises compatibility. Furthermore, illegal API extensions
do not pose a threat to the compatibility of users. Therefore, it might seem intuitive
that maintainers can be less concerned with these illegal API extensions. However, the
maintainers that extend their API illegally are not only employing bad practices but also
increasing the chances of having more breaking changes and violations in the future. This
is because having more methods in a library increases the chance of violations as we
showed in Section 4.3. By doing this study, we found that maintainers on one hand need
to pay more attention to semantic versioning and any type of library API expansion as a
preventive measure to decrease the chance of semantic versioning violations. Researchers
on the other hand can continue our work by investigating what type of tooling, design
decisions, and development methodologies lead to more stable APIs.

We did not find a meaningful relationship between the popularity of a method and
whether it is involved in a breaking change or not. However, there might be some factors
at stake. For example, on one hand, more popular methods may get involved in more issues
by the users. This can potentially help maintainers understand which methods are more
popular. On the other hand, attracting more attention to the issues naturally increases
the chance of changes in the methods and consequently more involvement in breaking
changes. Similarly, in the case of unpopular methods, maintainers may realize that not as
many people open issues related to a particular method. Hence they are not very popular.
Maintainers may change such methods more easily since they assume they would not affect
many people. We speculate that there are many similar factors affecting the behaviors of
maintainers in case of breaking changes that are worth understanding for the software
community. Hence, we encourage researchers to conduct more research to understand
such aspects. Our results emphasize the need for such studies by showing that breaking

4.6 Discussion

4

93

changes are still a big problem for members of the ecosystems. However, in this study, we
only focused on finding the breaking change usages in the ecosystem. It is also important
to understand the collective cost that breaking changes impose on the ecosystem members
in terms of time and money since the cost may differ from one dependent project to another.
We encourage researchers to reuse some parts of our approach as a starting point to study
these collective costs.

We speculate that library maintainers do not have sufficient data to accurately differ-
entiate between popular and unpopular methods. They can use this information before
introducing breaking changes and during their maintenance. An established popularity
ranking of the usage of their own methods across the whole ecosystem would allow library
maintainers to improve their workflow. Utilizing such a popularity ranking, one could pri-
oritize a list of issues to work on based on their importance within the ecosystem; a change
to a popular method will have more impact compared to an unpopular one. During this
study, we realized that there are numerous opportunities for client-side and platform-based
tools. IDEs can recommend maintainers to adjust their version appropriately whenever a
change in method signatures is detected. Build tools can offer warnings when finding an
inappropriate version upgrade. GitHub can warn users when they break a popular method
in their pull requests. Maven Central can warn developers about incompatibilities, impose
strict requirements for versioning of artifacts, or give a high score to projects without
any semantic versioning violations. To create a safer and more trustworthy environment
within the ecosystem researchers and engineers can focus on building such tools in the
future as we indicated the need in this study.

Method popularity also introduces opportunities for the users of the libraries. Method
popularity might be used as a recommender system that supports developers during the
coding activity. Currently, library popularity in Maven helps users determine which library
to use. However, users can also pay attention to the popularity of themethods that they need
or compare the popularity of methods with similar functionalities. Another use case that
is worth further research is integrating method popularity ranking within auto-complete
engines to improve their recommendations.

In this study, we only focused on public methods as the main mean of library reuse.
While it is possible for the developers to use package private and protected library methods,
such methods may not as often be intended for API usage. Maintainers intentionally expose
the public methods for the reuse of their library. Hence, we limit our scope to the intended
and most common modifier for library reuse. We also limited the scope of violations to the
defined methods since the CGs only add edges to such methods. We ran our popularity
analysis experiment on all methods and we observed minimal difference in the overall
results. We believe a more detailed investigation in this regard is out of this study’s scope.
Future research is needed to investigate this in detail. We realized that despite the existing
studies there is room for further research. For example what parts of code are more likely
to break or whether public methods break more often than protected methods. Answering
these questions benefits the community to understand what parts of the code they should
pay more attention to.

4

94 4 On the relation of method popularity to breaking changes in the Maven ecosystem

4.6.1 Threats to Validity
In this study, we limit our dependent resolution to a recent six months while multiple
decades of evolution are available on Maven Central. We believe our dataset is already
extensive and that a larger study would substantially increase the cost of execution, while
there is no reasonable intuition to expect that the insights would differ for a bigger period.
A more extended period surely increases the number of versioned packages and their
dependents. However, we do not expect the overall usage pattern of versioned packages to
change.

Generating a perfect static CG is an undecidable problem. Hence existing solutions
use over-approximation and sacrifice precision for scalability. Our illegal API extension
extraction also uses approximation. An AST-level solution is needed for better precision
which was not practical for our scale. Although these design decisions may impact our
precision, we opted to prioritize scalability, which enabled us to offer a more comprehensive
perspective of the ecosystem. Nevertheless, our findings entirely align with previous
research which shows the effects are minor.

Maven Central does not only contain Java artifacts; it also contains artifacts that are
implemented in other JVM-based languages. In some cases, we had difficulty generating
CGs for such versioned packages, and thus the artifacts were not included in the analysis.
However, we found that no more than 1% of analyzed artifacts were Scala or Kotlin
packages. Thus, we believe it is safe to only focus on Java projects in this study.

During this study, we developed several programs and used open-source libraries which
may contain implementation errors. One can never ensure all implementations are bug-free.
However, we tried to mitigate this by performing manual tests and code reviews as well as
releasing our code and executable to the public.3

4.7 Summary
In this study, we showed that a large number ofMaven libraries do not completely adhere to
semantic versioning. We know this, as 63% of analyzed artifacts break compatibility within
their major versions. Illegal API extensions also occur in 54% of artifacts. Therefore, these
violations form a big problem for the trustworthiness of semantic versioning on Maven.
Moreover, deletion or alteration of an unpopular method does not have the same impact
as changing a popular method. We investigated whether a relationship between method
popularity and involvement in breaking changes exists. We discovered that breaking
changes occur in popular methods as frequently as in unpopular ones. By analyzing all
interactions between software artifacts and their dependents we found that the majority
(87%) of publicly defined methods are not used by others and 35% of the remaining are
responsible for half of the dependent calls. Similarly, the number of dependents per library
also follows a power law distribution.

3https://github.com/ashkboos/semver-vs-popularity

https://github.com/ashkboos/semver-vs-popularity

5

95

5
Maven Unzipped: Exploring

the Impact of Library
Packaging on the Ecosystem

Maven is a popular dependency management tool and ecosystem used by millions of
developers. However, the overwhelming amount of available open-source software and
the lack of proper ecosystem governance pose risks to the security and effectiveness of the
ecosystem. This necessitates a comprehensive understanding of the ecosystem to guide
future decision-making and promote effective practices. Despite numerous studies on
aspects of Maven, such as vulnerabilities, breaking changes, and bloated dependencies, a
knowledge gap concerning its overall state and health still exists. This gap impedes the
adoption of effective practices, potentially impacting the productivity and efficiency of
projects and the ecosystem as a whole. This paper explores the fundamental aspects of the
Maven ecosystem. We investigate the packaging practices of Maven libraries with a focus
on the content of the libraries, their impact on the ecosystem and each other, and their
evolution over time. Our goal is to provide insights into the ecosystem’s practices and trends.
To achieve this, we create a scalable infrastructure and collect a comprehensive dataset of
480K unique packages by randomly selecting one version from eachMaven project. We
use this dataset to analyze the content of Maven releases and their packaging practices.
We discover three concerning practices that deserve the community’s attention: various
data inconsistencies within Maven, improper use of Maven archives, and exponential
dependency growth. We discuss practical recommendations to mitigate these issues, such
as implementing stricter release checks and dependency minimization during deployments.
To help promote more research, we open our dataset and tools for public use.1

1This chapter is based on the following paper: Mehdi Keshani, Gideon Bot, Priyam Rungta, Maliheh Izadi, Arie
Van Deursen, and Sebastian Proksch: Maven Unzipped: Exploring the Impact of Library Packaging on the
Ecosystem. IEEE International Conference on Software Maintenance and Evolution (ICSME), 2024.

5

96 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

M aven is the most relevant software ecosystem for Java development and represents a
vibrant, central hub for managing, storing, and sharing reusable open-source software

libraries. It has also grown substantially over the last few years [190]. Recent reports
have shown that 96% of proprietary software uses open-source [191]. This highlights the
importance of ecosystems likeMaven in the entire software industry with a revenue of
$699B in 2024 [192].

Even politics identified the role that such ecosystems play in innovation and value
generation in the economy and the risk of insecure supply chains: The US executive
order #14028 was issued to “Improve the Nation’s Cyber Security” [12], and the EU Cyber
Resilience Act [193] aims in the same direction. As such, many studies investigate various
aspects of software ecosystems, such as Maven. These studies include examining the
effects of vulnerabilities [40–43, 108, 194], breaking changes [28, 32, 79], and bloated
dependencies [29]. However, it seems that the unprincipled and prolific use of public
repositories has navigated the industry into a challenging situation: the explosively growing
amount of available open-source software makes it hard to keep a holistic view of the
ecosystem and maintain its health.

Previous works studied dependency practices in software ecosystems like NPM [22–
26] and PyPi [27], focusing on the developer’s perspective. However, considering the
entire ecosystem is also crucial. Some practices are harmless in isolated instances, but
they compound and become problematic on an ecosystem scale. We postulate that the
governance of ecosystems can be improved only if a comprehensive understanding of their
contents and evolution is available. This knowledge can inform future decisions within
the software development community and catalyze the development of effective software
practices and tools. In this paper, we explore theMaven ecosystem to identify and quantify
recurring patterns in the ecosystem that yield negative effects. We refer to these issues as
ecosystem bad practices.

We aim to explore the software ecosystem as a whole. The term ecosystem originates
from biology, where it refers to “A biological system composed of all the organisms found
in a particular physical environment, interacting with it and with each other” [195]. To
understand an ecosystem, we need to determine which organisms live within it and their
interactions with their ecosystem and each other. In the Maven context, projects resemble
organisms, and the repository serves as their environment. These organisms interact
with the ecosystem by hosting their files in it and with each other through dependency
relations. We explore these fundamental aspects of Maven by asking the following Research
Questions (RQs):

RQ1 What type of files are being released in Maven?

RQ2 What areMaven packages’ storage requirements?

RQ3 What factors contribute to larger libraries?

RQ4 How has the size of dependency sets evolved over time?

We focus solely on Maven Central, the largest repository of Maven, which, as of
the time of writing, is at least five times larger than any other Maven repository [190].
While answering the RQs, we look for recurring patterns that are harmful to the ecosystem.

5.1 Dataset Creation

5

97

Dataset
Index

Reader Resolver

Fact
Extractor

Index

Remote
Repository .m2 Folder

1
2

3

Figure 5.1: Overview of dataset creation

Sonatype [196], the maintainer of this repository, ensures a minimum quality for uploaded
artifacts by enforcing mandatory requirements [197]. We aim to explore opportunities for
enhancing such quality assurance measures. Throughout the paper, we will use the term
Maven interchangeably to refer both to the Central repository and the build tool.

To answer our RQs, we establish a scalable infrastructure and collect a comprehensive
dataset of Maven packages. From all availableMaven projects (group and artifact), we
select one random version to avoid bias towards very active projects. We chose not to pick
the newest version of each project, to cover a wider period. The result is a dataset of 480K
uniqueMaven releases, which we use to answer our RQs.

Our analysis results reveal three issues within Maven that need the community’s
attention: 1) the prevalence of missing and inconsistent data in the ecosystem, 2) improper
use of archives, resulting in a rising trend in the average size of Maven libraries, and 3)
exponential growth in the number of dependencies, which leads to a tenfold increase in the
space needed for transitive dependency sets over the last decade. We coin these three issues
Erratic Data, Archive Misuse, and Transitive Growth, respectively. These issues negatively
impact the ecosystem’s maintainability, and security. Addressing these challenges through
enhanced tooling, stricter guidelines, and further research will be crucial to sustaining and
improving the health of the Maven ecosystem. We discuss the implications of these issues
on the ecosystem and provide actionable recommendations for different stakeholders to
mitigate them. These recommendations include enforcing rigorous consistency checks
during deployment, separating versioning and management of data and code, as well as
monitoring and minimizing project dependencies. In summary, this paper presents the
following main contributions:

1. An infrastructure to mine Maven packaging data.

2. A study of the structure, size, and evolution of packages.

3. Identification of three ecosystem bad practices.

4. Discussion on the implications of the identified bad practices, along with actionable
insights and practical solutions.

5. Publicly available code, and dataset [198].

5.1 Dataset Creation
To answer the RQs, we create a dataset by analyzing public resources like the Maven
repository. This section outlines our approach and the technologies used to implement our
pipeline.

5

98 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

Table 5.1: Number of versions per groupId:artifactId

Min Avg Median Std Max

1 21.5 5 81 4631

0.8 1 1 0.9 0.7 0.7 0.6 0.6 0.5 0.6 0.5 0.5 0.7

Year

0

500000

1000000

1500000

2000000

0

20000

40000

60000

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

All Sampled Err margin(%)

Figure 5.2: Maven vs our sample clustered by release year.

Infrastructure The data from eachMaven release is independent, so we designed and
implemented an extensible infrastructure that extracts data in parallel for each package,
only limited by available computing resources. We utilized a powerful server with 256
cores that took 3.5 hours to populate the whole dataset and another 6 hours to resolve
dependencies. The infrastructure can be extended through custom analyzers that add
additional information to the dataset. We employ a reusable execution environment that
eases reproducing our dataset from scratch or updating it periodically with new packages.
We create a docker-compose environment that minimizes environment dependencies and
executes all experiments with a single command. Ultimately, a Postgres database can be
queried to generate insights about the ecosystem.

Dataset We use the methodology in Figure 5.1 to generate our dataset and answer RQs.
Maven Centralmaintains a weekly-updated index file [88] cataloging all new releases, with
metadata like the last modification date. We process indices from May 17, 2023 using the
Index Reader as shown in Figure 5.1. As of this writing,Maven Central hosts 10.3M releases
of 480K distinct packages. Table 5.1 presents summary statistics for the number of versions
per package. Notice that the standard deviation is high, which biases the average, making
the median a more appropriate metric. Each release is uniquely identified by a triplet in the
format groupId:artifactId:version. Our goal is to obtain a representative sample
of Maven, which is feasible to process. Analyzing all projects (instead of sampling projects)
is most generalizable. Different versions of the same project may share similarities, but
different projects represent independent data points and diversify the results. Therefore,
we insert a randomly selected version from each package (groupId:artifactId) into
our dataset and keep the identifiers as the key. This sampling strategy ensures our results
are not skewed towards packages with higher release frequencies.

Figure 5.2 presents the distribution of releases on Maven Central and our sampled data,
showing a significant increase in the number of libraries released within the ecosystem
over time. It also shows that our sampled data mirrors the overall population of Maven
releases over time. The margin of error for each year, varying from 0.5 to 1, is shown
in this figure for a confidence level of 99%. This indicates that we can draw conclusions
about the history of Maven Central. Importantly, selecting only the last or first versions of
libraries does not yield such a distribution, thus preventing historical analyses. The total

5.2 What type of files are being released?

5

99

number of sampled packages is statistically representative of the entire Maven Central
population with a confidence level of 99% and a margin of error of 0.18%, allowing us to
draw conclusions about the entire ecosystem.

All libraries, their files, and directory structures are stored in the local .m2 Maven
repository. The Resolver component allows querying the dataset. On request, the Resolver
inspects this folder to find a queried library. If it does not exist, the Resolver downloads it
from the remote repository, resolves the dependencies, and records them in the dataset.

Our main components then start the data collection process. The Fact Extractor first
reads the list of selected libraries from the dataset. For each artifact, it aggregates infor-
mation like file details and sizes from either the local .m2 folder or the remote repository,
depending on where the required data is available.

Overall, our dataset contains 480K releases. Among these, 6,419 (1.3%) packages were
unresolvable, due to corrupted POMs (Project Object Model) or non-available parent POMs.
As the Resolver is unable to download these packages into the .m2 folder, they are excluded
from the results. Another 63,250 packages do not have an archive file, for example, parent
POMs that define dependencies or configure settings for child artifacts. We exclude these
packages as well.

5.2 What type of files are being released?
5.2.1 Packaging types
The most crucial element in libraries is their archive, which enables code reuse. In addition
to their groupId:artifactId:version, each package has a packaging type. Most
files are packaged in compressed jar files, which contain multiple class files, metadata,
and resources. It serves as a specialized zip file for distributing Java libraries. Our study
extends beyond jar files to explore types such as ear, war, and various generic types,
each with its own unique use case [199].

Collecting data To derive packaging types, we utilize three sources: theMaven index,
the package’s pom.xml file, and the Maven repository itself. First, when we read the
Maven index using Index Reader we identify the executable (archive) artifact and record
its packaging type. Second, we utilize the package’s pom.xml file previously downloaded
by Resolver. A POM file is a configuration file utilized byMaven to manage projects. The
POM file instructs Maven on how to build the project and specifies the dependencies.
To facilitate the retrieval of information from the pom.xml, we leverage Maven’s built-
in model [99]. This model provides us with a convenient framework for accessing and
extracting the required data. We perform this extraction in the Fact Extractor component.
Then, we interact directly with theMaven repository, which acts as our third source of
data. We send a request for each package to obtain the list of files linked to that particular
package in the repository. By examining this list, which also includes the executable file,
we determine packaging types. We extract the executable file’s extension from a file name
in the format of artifactId-version.extension. We then compare these three
sources to determine their agreement level.

5

100 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

Table 5.2: Packaging types found in three sources

POM % Index % Repo %

jar 75.0 jar 80.8 jar 80.0
pom 12.0 pom 11.3 pom 11.0
bundle 4.6 aar 2.3 aar 2.4
aar 2.4 module 1.7 module 1.7
maven-plugin 1.3 zip 1.3 zip 1.2
war 1.2 war 1.2 war 1.2
Others <1.0 3.5 Others <1.0 1.4 Others <1.0 2.4

Findings In our analysis of POM files, we identified 181 distinct packaging types, with
jar being themost prevalent, accounting for 75% of all types. Excluding the top 6 packaging
types, the rest constitute only 3.5% of the total. Table 5.2 shows the distribution of the top
6 most frequent packaging types from our three sources. Regarding the packaging types
from theMaven Index, we identified 110 distinct types, with jar being the dominant type,
constituting approximately 80.8% of all types found in the Index. Moreover, only 1.4% of
packages fall outside the top 6 most prevalent types. From the Maven Central Repository
itself, we identified 137 distinct types, with jar again being the most prevalent, accounting
for approximately 80% of the total distribution. Excluding the top 6 packaging types, only
2.4% of packages fall into alternative categories. All sources also agree on the second most
common packaging type, pom, prevalent due to the abundance of parent projects onMaven
that provide configurations for their child projects without having an executable archive.

Some packages in the Maven repository have multiple archive files. A manual inspec-
tion of 40 of such packages, revealed that alternative archives, despite differing extensions,
typically contained identical content to the archive specified in the POM file or the Maven
index. 97% of packages only have a single type of packaging. Around 3%, incorporate two
types. Having three or more types is very rare (<0.001%).

Ideally, the packaging type in the POM should dictate the project’s packaging and
distribution, with all three sources in agreement. However, we found discrepancies. The
packaging types in the POM and index differ for 9.2% of packages, showing 293 unique
discrepancy pairs. The most common disparity (48.7%) occurs when the POM specifies a
bundle but the index lists it as a jar. The bundle type, used in Open Service Gateway
Initiative (OSGi) framework projects, is a jar file complying with OSGi specifications,
containing additional metadata and Manifest files. Maven produces OSGi-compliant jar
files during the build process, leading to a jar extension. Besides bundle to jar,Maven
inherently converts certain packaging types into jar during the library publishing process,
as its default packaging value is jar [200]. Additionally, 3.9% of packages show different
packaging types in theMaven repository compared to the Index due to theMaven indexer
capturing only one packaging type per package, though developers sometimes upload
more than one type for a package. Furthermore, a 12.3% discrepancy exists between the
packaging types in the POM and the repository. In a manual inspection of 30 such packages,
we found that the packaging type in the index might not be the library’s primary archive.
For example, we observed a case where the main jar, containing typical binary files, exists
in the repository, but the index lists an archive that includes the jar with dependencies
along with other resources, all zipped into a single file [201].

5.2 What type of files are being released?

5

101

Table 5.3: Checksums combinations and their percentage

Checksum Combinations %

1 MD5, SHA-1 98.5
2 MD5, SHA-256, SHA-512, SHA-1 1.4
3 None <0.1
4 Various subsets of (2) combined < 0.1

5.2.2 Checksum files
The generation of checksums (or hashes) plays a pivotal role in the Maven ecosystem
by ensuring the integrity of artifacts and associated metadata. These checksums validate
the correctness of downloaded artifacts by comparing the computed checksum with the
expected value. For example, a file a-1.jar.md5 contains the checksum for the corre-
sponding file a-1.jar. The .md5 extension indicates the MD5 algorithm was used to
generate the checksum. Maven supports multiple checksums per uploaded file, and we
undertake a comprehensive analysis of these checksums next.

Collecting data We retrieve checksum information from the list of files uploaded to the
Maven repository using the request method discussed in Section 5.2.1. We rely exclusively
on this source for its reliability and comprehensiveness, as the .m2 folder and index file
alone might not have all files available remotely. We store the checksum component in the
dataset for artifact names conforming to the specified pattern of filename.checksum.

Findings Table 5.3 shows the checksums found in our dataset, with an overwhelm-
ing majority, 99.9%, of packages employing both MD5 and SHA-1 checksums, aligning
withMaven’s default configuration. In 98.4% of the packages, MD5 and SHA-1 are used
exclusively. Another 1.4% of packages additionally employ the more robust SHA-256
and SHA-512 checksums, attributable to maintainers facilitating a transition to stronger
algorithms while ensuring compatibility with systems reliant on weaker ones.

Alarmingly, a small subset of packages (∼0.07%), does not incorporate any form of
checksum, and another small subset of packages (<0.07%) is lacking some checksums. This
has likely been caused by failed artifact uploads and would have been easy to detect in the
release process. However, the non-availability now makes it impossible for users to validate
their downloads, which can have a major impact, depending on the number of package
users. Upon manual inspection of 50 such cases, we found that 17 of them have other
dependent libraries on Maven Central. This number represents only the direct usages
reported by Maven. However, it is important to note that these usages also propagate
transitively, affecting even more packages. Moreover, previous studies indicate that the
majority of packages either have no users or very few users [79]. Therefore, it is expected
to find many packages without any usage.

To gain a deeper understanding, we analyze the temporal evolution of two preva-
lent checksum combinations. Figure 5.3 shows the annual ratio of releases employing
these popular checksum combinations, revealing a trend of gradual adoption of stronger
checksum algorithms starting in 2014, peaking in 2021, and then quickly declining from
2022 onwards. Naturally, there is an inverse relationship between the usage of the two

5

102 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

Table 5.4: Classifiers and their percentage

Classifier %

sources 82.3
javadoc 76.8
tests 5.9
test-sources 2.3
source-release 0.6
jar-with-dependencies 0.6

0

0,01

0,02

0,03

0,04

0,05

0,92

0,94

0,96

0,98

1

1,02
20

11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

[.md5, .sha1]

[.md5, .sha256,
.sha512, .sha1]

Figure 5.3: Checksum ratio over time. Left axis for MD5,SHA-1

combinations: as the adoption of stronger algorithms increases, that of weaker algorithms
decreases, and vice versa. In 2021, the adoption of strong algorithms peaked at 0.04, but
over the last two years, the trend has reversed to its earlier levels. This decline correlates
with a discussion on Maven’s mailing list [202] at the end of 2021. The conversation,
starting with a call for more secure algorithms, revealed that the use of checksums in
Maven confuses some users. It was clarified that there was no need for better algorithms
in Maven, as they serve only as integrity checks for downloads, without offering security
benefits. Ultimately, the overhead of such algorithms is not justified inMaven’s context.
Basic algorithms suffice for integrity validation, which has been explicitly mentioned in
theMaven checksum documentation [203] since. This observation emphasizes the value
of discussions, interventions, and updated documentation for an ecosystem.

5.2.3 Additional files
In addition to archive files containing binary content of libraries,Maven also hosts doc-
uments and source codes. A classifier acts as an optional attribute distinguishing ar-
tifacts sharing the same group, artifact ID, and version. For example, the presence of
a-1-sources.jar indicates that the jar file contains source code files, such as Java
source files. In our investigation, we explore the common usage of classifiers withinMaven
Central as our next aspect.

Collecting data To gather all classifier artifacts associated with a specific package,
we utilized the same approach as for checksum retrieval. The pattern for these artifacts
is in the format artifactId-version-classifier.extension. Among artifact
names adhering to this pattern, we store the classifier component in the dataset as a
supplementary file with the package.

5.2 What type of files are being released?

5

103

0,45

0,55

0,65

0,75

0,85

0,95

1,05

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

sources javadoc

Figure 5.4: Ratio of packages with sources/javadoc over years

Findings We identified a total of 2,673 distinct classifiers in theMaven Central repository,
underscoring the repository’s diversity of classifiers. Notably, a significant proportion of
them, 46.3% and 43.2%, are sources and javadoc, respectively. Table 5.4 displays the
top 6 classifiers in Maven Central, along with the percentage of packages that employ
them. The sources classifier emerges as the most prevalent, found in 82.3% of the
packages. The second most common classifier, javadoc, is included in 76.8% of the
packages. These numbers indicate an emphasis on code transparency and documentation
within the ecosystem. This represents a notable improvement compared to Raemaekers et
al.’s findings in 2013 [28], where only 68.4% of jar libraries had source files and 53.1% had
Javadoc files. The tests and test-sources classifiers are found in a relatively smaller
proportion of packages, 8.2% when combined. Furthermore, 0.6% of the packages include
their dependencies in their releases using the jar-with-dependencies classifier.

The wide availability of sources and javadoc classifiers is unsurprising, as they
are commonly consumed by modern development environments to enhance usability and
transparency for developers. The numbers reported in this section only include projects
with archives though, which means that ∼23.2% of releases do not feature javadoc and
∼17.7% are lacking sources. To understand the impact of this situation on the ecosystem,
we examine the evolution of the javadoc and sources classifiers over time.

Figure 5.4 demonstrates the evolution of the usage of the sources and javadoc
classifiers in Maven. We exclude the packages with pom packaging from this figure since
theMaven documentation mentions that the sources and javadoc classifiers are not
mandatory for such releases [197]. In 2011, the proportion of packages with the sources
classifier was relatively low, at ∼68%, but it significantly increased to 89.4% by 2012. We
speculate that this sudden increase might be due to the introduction of requirements for
javadoc and sources. However, unfortunately, the history of these requirements is
not transparent, which prevents us from confirming this. From 2012 onwards, we observe
a gradual increase, peaking at ∼95% in 2023. The javadoc classifier follows a similar
trajectory, albeit with lower overall percentages. It started at 49.5% in 2011 and experienced
a substantial increase to 78.3% in 2012. In the subsequent years, it witnessed a steady
climb, reaching a peak at ∼90.3% in 2017. Following this, there were mild fluctuations, with
percentages generally hovering ∼88.0%. While we observe progress over time, the growth
rate appears to have slowed down, suggesting a plateauing trend, especially in the past
few years. It is important to note that there is still considerable room for improvement,
particularly in the inclusion of the javadoc.

5

104 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

5.2.4 Inside executables
The content of the executable itself is the most crucial component of libraries, as it forms
the foundation upon which clients build their projects. Consequently, as our fourth aspect,
we aim to identify the specific types or categories of files that comprise the executables
distributed within Maven libraries.

Collecting data To retrieve all files within the executable artifact, we begin by de-
compressing the executable artifact. This step is performed for all packages except POM
packages, which do not contain any executable files and, therefore, no binary content to
investigate. We parse the names of all entries within the extracted artifact, collecting and
storing their extensions in the dataset. Since Java 9, Java Modules help developers to encap-
sulate and organize related Java packages into discrete, manageable entities. By defining
required packages and specifying exported ones in a module-info.java file, developers can
use this feature. This is particularly relevant as this Java feature directly introduces an
additional file to the content of executables. Java modules are identified by unique module
descriptors. Each descriptor resides in a single file, named module-info.class, for every
module. To determine if an archive uses Java modules, one can simply scan all its entries.
The presence of any files named module-info.class confirms the use of Java modules.

Findings Our experiments uncovered more than 14K distinct file types, with class files
representing ∼22.1% of the total. About 65% of all files in the ecosystem do not belong to
the 6 most commonly used file types, and 99.9% of the packages contain file types outside
these top 6 categories. This emphasizes the ecosystem’s broad diversity in file type usage.
Table 5.5 shows the top file extensions within the archives and the percentage of packages
incorporating these file types. class files constitute ∼84.8M of the files in the entire
ecosystem and are included in 71.2% of Maven libraries. Java projects typically contain
numerous class files, each encapsulating different functionalities and components such
as classes and inner classes. The artifact with the most class files has ∼208K of them.

The second and third most frequent file extensions are sjsir and js, mainly used
in Scala and JavaScript projects, respectively. These files are found in only around 3.2%
and 6.8% of the packages. Interestingly, png files rank high, despite being included in just
3.6% (17K) of the releases. However, these libraries contain a significant number of png
files, averaging approximately 70.4 per package, explaining their high ranking. Common
extensions also include mf and xml. A manifest file (mf) contains archive metadata, present
in about 78.6% of libraries. Over 1M xml files are used in approximately 61.2% of packages,
primarily due toMaven projects’ pom.xml files. Lastly, around 1.69% of analyzed packages
utilize Java modules, but they are not included in Table 5.5 since they are rare and not
among the top files.

These findings highlight the extensive diversity within Maven. This diversity high-
lights the necessity for developers of tools that analyzeMaven artifacts to ensure broad
compatibility and support across a wide array of technologies and languages.

5.3 How much storage do packages need?

5

105

Table 5.5: Number of occurrences of archived files and percentage of packages that include them.

Packaged file Count %packages

class 84.8M 71.2
sjsir 2.8M 3.2
js 1.8M 6.8
png 1.2M 3.6
xml 1M 61.2
mf 380K 78.6

25% of Maven libraries are not in the jar format. Almost all releases utilize MD5
and SHA-1 checksums. While the majority of Maven releases include sources and
javadoc, many projects do not release these crucial artifacts. Lastly, the primary
archive contents are class files and their corresponding files in Scala (sjsr) and
JavaScript (js).

5.3 How much storage do packages need?
Library size is important. Bigger libraries often have more features, saving users from
unnecessary duplication of effort. However, they also bring challenges. Bigger libraries
are more likely to introduce more bugs [30], lead to breaking changes [79], and consume
more disk space, memory, and download bandwidth. This can be an issue for users with
limited resources. Such libraries can also expose more vulnerabilities and often have
more dependencies, thus contributing to dependency bloat in projects. They are harder to
manage, slower to load, and more complex. Yet, we do not have a thorough understanding
of library sizes in software ecosystems, specifically in Maven Central. This section aims to
address this gap.

Collecting data Weuse the Fact Extractor to extract details for each archive file, collecting
information such as file count, archive file byte size, and various file extensions with their
statistical measures within the archives. This provides a comprehensive understanding of
library sizes.

0 100 200 300 400 500
Size (KB)

0

50000

100000

150000

Fr
eq

ue
nc

y

Figure 5.5: Distribution of size of artifacts in Maven Central. The x-axis has been cut off at 500KB for readability.

5

106 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

600

800

1000

1200

1400

1600

1800

2000

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Av
er

ag
e

Si
ze

 (K
B)

Figure 5.6: Average size of an artifact per year

Findings Figure 5.5 shows that the size distribution of Maven libraries has a long tail.
Most libraries are small and the bigger the size, the fewer libraries fall into that category.
We determined that the average size of a Maven library is ∼1,447 KB and the median size
is 25.9 KB. The large difference between the average and median suggests a significant
variance in Maven library sizes. The majority of the packages are significantly smaller
than the average size, though: 73% of libraries fall within the 0-100 KB range, and 86%
use less than 400 KB of space. To improve readability, Figure 5.5 is truncated at 500 KB,
which removes the biggest ∼49K packages from the plot (∼12%). Some packages occupy
an enormous amount of space, the largest identified package has ∼987 MB [204], which
dominates the average values.

We observed that a minority of packages are substantially large and pull the average
towards themselves. Now, we aim to understand how the average size changes over time.
Figure 5.6 shows that the average size of a library has increased from ∼723 KB in 2011 by
more than 232% to 1,683 KB in 2023. Despite some observable fluctuations, the diagram
reveals a clear overall trend: library sizes on Maven have been substantially increasing
over time.

The size distribution of Maven artifacts is long-tailed. 73% of libraries are smaller than
100 KB. An average library size is 1.4 MB, while the median is 25.9 KB, indicating a
significant variation. Over the last decade, the typical library doubled in size.

5.4 What factors contribute to larger libraries?
After understanding the space requirements of libraries, our goal is to explore the potential
factors that contribute to larger libraries. Identifying these factors can help us pinpoint
any specific patterns or practices that lead to unnecessary bloat in the package sizes.

Collecting data We examine correlations between library sizes and other characteristics,
such as the number of files. We also manually inspect a variety of cases, such as libraries
with a small number of files yet a large total archive size.

Findings Figure 5.7 displays the relationship between the size of the libraries and the
number of files they contain. Two distinct categories of libraries emerge from this figure,
forming visible trend lines in this figure at 0 degrees and at ∼60 degrees. The former

5.4 What factors contribute to larger libraries?

5

107

Figure 5.7: Number of files included in a jar and archive size

exhibits a slight increase in size as more files are added, which is the expected behavior.
The latter, however, have few files but their sizes span from very small to very large as
they contain some large files that contribute substantially to the overall library size.

We manually examine the top 10 largest packages that contain fewer than 200 files. We
documented these libraries in our replication package. Most of these were data analysis
and machine learning-related projects containing significantly large files (primarily data
files), such as .data, .csv, .db, .nt, and .rnn (recurrent neural network). Some of
these packages, which focus on natural language analysis, house many large .ol files
detailing specific language rules (e.g., hyphenation rules for the Bulgarian language). We
also observed one package containing three enormous .so files. Shared object (SO) files
are dynamically linked libraries that encapsulate compiled code and data in Unix-like
operating systems. By establishing links to these shared object files, programs can access
functions, data, and other resources contained within the files without incorporating them
directly into the archive.

The cases we have discussed so far are rather diverse. A single type of file can sig-
nificantly increase the size of a particular library. However, such instances are relatively
rare, as depicted in Figure 5.7. Each case involves different files with distinct functions, but
they all share a common feature: they involve one or a few extremely large files. These
types of libraries can affect both their direct and indirect users. However, another pattern
collectively impacts many more libraries within the Maven ecosystem. This pattern arises
when certain types of files, though not large individually, accumulate and contribute to
the increased size of libraries. When many libraries incorporate these types of files, they
collectively bloat libraries and the ecosystem as a whole, despite their small individual file
size. A widespread use then affects many developers.

Table 5.6 displays the top 10 file extensions with the largest accumulated size onMaven
Central. Each file extension may occur multiple times within a release, so we also include
the average space occupied by each file extension in libraries that contain them. This
analysis highlights the specific file types that significantly contribute to the overall space
requirements of Maven. Interestingly, the most prevalent file type is jar, accumulating
to 308 GB across our dataset. It’s important to note that these figures only account for
files packaged inside the archives. These jar files are likely repackaged dependencies that
developers use to modify their dependencies’ code or for similar purposes. Libraries that
include these inner jar files are, on average, enlarged by 10.8 MB. Our dataset contains

5

108 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

Table 5.6: File extensions by total size on the ecosystem

Extension Total (MB) AVG/package (KB) #Packages

jar 308019 10881 29005
class 94075 369 336672
so 18697 5002 4012
war 10516 23256 459
zip 9778 4888 2069
none 9775 192 54346
gz 7634 6467 1219
js 5235 263 31959
png 5220 413 17238
dll 4515 2211 2417

29,005 releases (∼7%) that include internal jars.
The table also lists other types of internal archives, such as war, zip, and gz, which

cause similar problems to varying degrees. The second-largest file type is the class file.
As this file extension corresponds to Java bytecode, it is unsurprising that it occupies 94 GB
of space in our dataset. Of all the releases in our dataset that included an archive, 336,672
(82%) contained class files, with an average size of 369 KB per library. Comparing these
figures with the repackaged files, the significant impact of the latter on the ecosystem
becomes clear. On average, inner jars occupy 29.5 times more space per library than
class files. In other words, inner jars occupy 3.27 times more space than the primary
content of the ecosystem, class files. This problem is even more pronounced for inner
war files. They occupy 23.2 MB of space per library, which is 63 times more than class
files. However, due to the smaller number of libraries containing inner war files (only 459
libraries), the cumulative effect is not as significant as with jar files.

We identified two key issues that can cause libraries to become excessively large. First,
large files, such as data or models, can contribute to the size of these libraries. Second,
when combined, nested archives can also lead to an increase in library size.

5.5 How has the size of dependency sets evolved?
There is another critical aspect to consider in the space requirements of libraries. When
developers incorporate a dependency into their project, they include not just the library
itself but also its direct and transitive dependencies. This means the total space taken up by
a program consists of its own space plus the space of its direct and transitive dependencies.
Consequently, we examine the number of dependencies Maven libraries have.

Collecting data For each release, we resolve the dependency set and store both the
number of its direct and transitive dependencies. The dependency resolution process is
conducted using Shrinkwrap [178], an open-source implementation of Maven’s default res-
olution. We do not limit dependency resolution results to the selected versions; Shrinkwrap
may output any release, not just the sampled versions. Since we only need to compare
the number of dependencies, the exact versions are less relevant to us. Additionally, we
used the same resolver for all releases, so any inaccuracies inherited from the open-source

5.5 How has the size of dependency sets evolved?

5

109

R² = 0,9023

R² = 0,991

0

5

10

15

20

25

30

2011 2013 2015 2017 2019 2021 2023

#direct #transitive

Figure 5.8: Average number dependencies per year

resolver affect all data points equally and should not impact our conclusions. However,
for transparency, we store all resolution results, allowing other researchers to compare
different resolutions with ours in the future.

Findings Figure 5.8 illustrates the average number of direct and transitive dependencies
of Maven libraries. There is a notable increase in the number of dependencies thatMaven
libraries introduce over time. This rise is more subtle for direct dependencies compared to
transitive ones. This figure also shows a linear trendline with 𝑅

2=0.9 for the growth in the
average number of direct dependencies. In 2011, Maven libraries had on average 3.4 direct
dependencies, which increased to 5.2 by 2023. This 53% increase in direct dependencies
might not seem substantial initially. Nonetheless, it is essential to understand that this
increase has a compounding effect on the ecosystem. An increase is passed down to all
users of libraries and their subsequent users. Hence, an increase in the number of direct
dependencies by one popular library can potentially affect a significant portion of the
ecosystem, not just its immediate users.

Figure 5.8 also displays the average number of transitive dependencies. The increase in
transitive dependencies is more pronounced than the direct ones, as it shows exponential
growth. The exponential trendline on transitive dependencies fits with 𝑅

2=0.99. This
means the degree of interdependency between libraries is increasing at an accelerating rate
inMaven, which results in a substantial increase in the complexity of their dependency
management process. The figure rose from 6 in 2011 to 25.9 in 2023, a 4.3X growth. A
possible explanation for this increase in the number of transitive dependencies could be
the aforementioned compounding propagation. With a 53% rise in the number of direct
dependencies, stronger growth in the number of transitive dependencies can be anticipated.

The combination of a distinct upward trend in the library file sizes and the counts of
direct and transitive dependencies results in an exponential growth in the space require-
ments of Maven applications. With a 2.3X increase in Maven library sizes and a 4.3X
increase in the number of dependencies, the average Maven application in 2023 requires
10X more space than it did 12 years ago.

The Maven ecosystem has been witnessing substantial growth in the number of its
libraries and their sizes. Furthermore, there is an exponential increase in the number of
transitive dependencies, leading to a corresponding rise in the overall size of applications.

5

110 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

5.6 Discussion
We have presented several non-obvious and concerning practices that will compound and
hinder the effective use and evolution of the Maven ecosystem if they go unaddressed.
In this section, we delve into their implications and propose specific strategies to address
them. We believe that this reflection can assist stakeholders, such as the governors of the
ecosystem (ecosystem maintainers), in improving the overall health and robustness of the
ecosystem, and represents one of the main contributions of this paper.

5.6.1 Erratic Data
Inconsistent packaging As shown in Section 5.2.1, there are inconsistencies in Maven
packaging across various sources. These inconsistencies can compromise reliability and
disrupt downstream tasks that depend on Maven libraries. Relying solely on the index
or POM files may lead to errors. Manual inspection for accurate data per package is
time-consuming and not scalable. Therefore, stricter automated checks and consistent
communication about release processes are required from ecosystem maintainers and
library developers to mitigate this issue. Reviewing configuration files and scripts, in
addition to implementing an automated change-tracking system could help detect and
rectify such discrepancies.

Default packaging Downstream tasks in Maven often assume that the majority of
packages use the default jar packaging. However, our findings (as shown in Section 5.2.1)
indicate that approximately 25% of libraries do not use the jar format. As such, relying
solely on default packaging results in a significant number of overlooked libraries. We
suggest that developers of downstream tasks consult the additional sources we identified
in this study for a more comprehensive perspective.

Design documentation As discussed in Section 5.2.2, there is a possibility that users
may mistakenly attribute a different purpose to checksums inMaven and consider using
more powerful algorithms for improved security. Our findings indicate that this misunder-
standing can be widespread throughout the ecosystem. Although current ecosystems offer
comprehensive and well-maintained documentation to assist developers, we postulate that
extensive and up-to-date resources are required for every ecosystem to explain the funda-
mental design decisions. Such documentation would also facilitate effective contributions
from outsiders and researchers.

Rigorous checks and monitoring Some released packages violate Sonatype’s exten-
sive list of requirements for publishing artifacts inMaven Central [197], as discussed in
Sections 5.2.2 and 5.2.3. For example, some packages do not include any checksums. We
recommend that ecosystem maintainers enforce more rigorous checks for package releases
and closely monitor the repository’s content to prevent such cases in the future. Simple
inconsistencies are easier to prevent in a more rigorous release process than through the
execution of an external infrastructure like ours. More advanced checks might be needed
though, for which this paper caters with the required infrastructure.

5.6 Discussion

5

111

Missing required files Source code and documentation are explicitly required for every
library onMaven Central, yet, they are missing for a significant percentage of libraries,
as illustrated in Section 5.2.3. This poses difficulties for developers who rely on these
resources, for example, they cannot get support from their development environments
when working with these libraries. Libraries lacking these files disrupt this convenience
and block downstream analyses dependent on these files, such as code quality attribute
assessments. While library developers should prioritize addressing this issue, ecosystem
maintainers should also improve their checks for these requirements. It is worth noting
that even libraries that do have these files may contain meaningless content, as even the
Maven documentation suggests uploading placeholder files with simple READMEs if the
actual documentation cannot be provided, just to pass the checks. The fact that many
libraries still lack documentation and sources despite this advice is concerning.

Future research Further research can provide insights into the proportion of libraries
with placeholder files, reasons for the absence of proper documentation, or the use of
placeholder files, as well as strategies and tools to encourage more libraries to provide these
resources. The rise of Large Language Models (LLMs) holds the potential for improvements,
as they simplify the documentation tasks. We encourage researchers to investigate the
effects of LLMs on documentation uploaded toMaven. Exploring solutions that leverage
LLMs to assist developers in preparing these files, and potentially generating them for
libraries that lack them, would also be valuable.

5.6.2 Archive Misuse
Large library problem As discussed in Sections 5.3 and 5.5, the size of libraries and
dependency sets has been increasing at an accelerating rate. While storage and computing
capacities continue to grow, an exponential increase in the size of programs is not sustain-
able. Computers may continue to scale at a similar pace but the increasing size of programs
significantly adds to their complexity and reduces maintainability. It is widely accepted
that very large libraries slow down builds and deployments, making applications more
challenging to distribute and scale. Furthermore, larger libraries tend to contain more code,
making them more prone to bugs, security vulnerabilities, and breaking changes [30, 79].
The presence of multiple versions of packages, with newer versions often incorporating
additional features, can contribute to the libraries’ gradual growth. It is generally advanta-
geous if developers pay attention to it and mitigate the impact through regular refactoring
and improvements. Large Files and Inner Archives are two additional causes for the increase
in size requirements, which can become severe problems if left unaddressed.

Large files As emphasized in Section 5.4, projects that incorporate significantly large files,
such as data files, contribute substantially to overall size growth. Many of these projects
are in the domains of machine learning and big data, a trend that aligns with the recent
expansion in these fields. Beyond size-related issues, these files also present challenges
in version control. Data often changes at a different pace compared to code, and merging
them can compromise the ability to manage the code and data separately. Furthermore,
data and model files are likely to increase in size at a faster rate than code. Therefore, we
repeat the advice of modern ML-Ops practices and recommend that library maintainers

5

112 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

ensure data and model files are versioned separately from the code [205]. Developers may
also consider using specialized platforms like Hugging Face, TensorHub, or Kaggle, which
are specifically designed for hosting machine-learning models and datasets.

Inner archives Inner archives contribute to larger libraries, as discussed in Section 5.4.
When these files appear, they usually increase the size of the libraries substantially. Many of
these inner files are libraries developers embed to modify functionalities or avoid complex
dependency trees ("shading"). This practice results in overlooked vulnerability patches
and improvements in subsequent versions of the nested library. These inner libraries
also block downstream analyses, such as an automated vulnerability detector, which
does not recognize the nested library. When libraries package another vulnerable library,
they not only block the detection of vulnerability but effectively prevent a meaningful
dependency management that could otherwise be used to introduce very specific updates
to libraries in the dependency tree. Embedded libraries might cause code duplication when
the original libraries are included as regular dependencies. Given that the ecosystem has
millions of users and a highly complex network of transitive relationships, these files can
accumulate rapidly and worsen the overall effect. To mitigate the accidental introduction
of nested libraries by developers who may not thoroughly examine the content of their
dependencies when adopting them, we recommend the automatic detection of such nesting
upon deployment. It should then be mandatory for these libraries to openly document
the content of the inner archives and justify their inclusion. This approach discourages
the maintainers of such libraries from engaging in this practice while also allowing users
to make informed decisions about whether they wish to adopt such libraries, given the
potential risks.

Future research We identified various problems and inconsistencies in the ecosystem
and discussed their combined effects. Yet, the impact of these issues from the users’
perspective deserves exploration. Researchers could conduct surveys or ecosystem-wide
impact analyses [79] to measure how these issues affect users. Future research could
also explore the domain of the projects and examine how these issues evolve within the
packages, such as whether they are resolved in subsequent versions or worsen over time.
Moreover, these issues might correlate with other problems, like concealing vulnerabilities
in inner archives. We encourage researchers to investigate the relationship between the
problems identified in this study and related issues, such as examining the ratio of vulnerable
inner archives and their propagation or assessing the quality of libraries engaging in such
practices. They could also explore whether lower quality results in larger libraries and
vice versa. The outcomes of these studies could inform the development of better tooling,
like refactoring tools to break down or declutter large libraries. Researchers can utilize
our infrastructure for follow-up studies and extend their investigations to other software
ecosystems, such as npm and PyPI. This allows for the creation of comparable datasets to
explore the aspects studied here across different ecosystems and to conduct comparisons.

5.6.3 Transitive Growth
Exponential transitive growth Our analysis in Section 5.5 demonstrates that the
number of direct and transitive dependencies has been consistently increasing over time,

5.6 Discussion

5

113

with transitive dependencies expanding exponentially. This significant increase poses
major risks for library users and the entire ecosystem. It contributes to larger project
sizes, leading to decreased maintainability and increased complexity. Additionally, a
larger number of dependencies amplifies potential vulnerability exposure. Developers
must dedicate additional time to managing these dependencies [206] to avoid problems
like “dependency hell” [207, 208]. Consequently, a critical challenge emerges concerning
dependency resolution and usage within ecosystems.

Dependency minimization We believe this issue may stem from developers’ lack of
awareness about the extent of transitive effects. We recommend developers consistently be
mindful of their dependencies, particularly transitive ones. When adding new dependen-
cies, developers usually consider the new library’s quality aspects. However, the quality
and number of transitive dependencies a new addition brings can be equally important.
We advise frequent reviews of dependency sets to decrease the number by eliminating
unused ones or replacing those introducing more transitivity. Automated approaches like
DEPCLEAN [29] can help reduce dependency bloat. The authors showed that 75.1% of
dependencies in Maven are bloated, so debloating can significantly alleviate the issue. We
encourage ecosystem maintainers to integrate research-based solutions into their tools, like
Maven packaging, or at least into library deployment. Notably, the same authors indicated
that transitive dependencies and the complexity of managing them inmulti-module projects
are the main bloat causes. This aligns with our findings. They also demonstrated that
developers are eager to remove bloated dependencies. Thus, we deduce that the present
situation stems from escalating complexity and unawareness, which is likely to worsen if
current trends continue.

Future research Optimized dependency resolutions try to resolve dependencies based
on specific goals, such as minimizing dependencies or vulnerabilities. Previous research
has shown promising results for npm [209]. It is an open question whether the Maven
ecosystem would also benefit from such approaches. Thus, we encourage researchers to
explore optimized resolvers and their potential effects on Maven.

5.6.4 Threats to validity
In this section, we discuss the limitations of this study.

Internal Validity The internal validity of this study may be affected by several factors.
We conducted multiple manual inspections, introducing the possibility of human errors.
To mitigate this, we documented these cases. Additionally, one author performed manual
investigations while another randomly verified cases, finding no mistakes. We also used
the open-source tool ShrinkWrap for resolving dependencies. Although ShrinkWrap is
widely used and actively maintained there is a potential for inheriting flaws from this tool.
We addressed this by designing a flexible infrastructure that allows the incorporation of
alternative dependency resolvers for comparison. Moreover, hidden bugs in our imple-
mentation could impact results. To mitigate this, we conducted numerous manual tests,
developed an extensive test suite, and made our data and code publicly available for review.

5

114 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

Construct Validity The analysis of file types for executables was limited to artifacts
classified as primary executables in theMaven Index file. Therefore, the findings pertain
specifically to these executables and exclude other archive types in the repository for
multi-archive packages. We acknowledge the potential issues with theMaven Index, as
mentioned in Section 5.2.1. To mitigate this, we thoroughly reported on the prevalence of
multi-archive packages within the ecosystem.

External Validity We acknowledge that there are 6,419 packages for which the POM
file could not be resolved due to the parent being hosted on a different repository. While
other repositories besides Maven Central can be investigated similarly, we only focused on
Maven Central because it is the biggest and the main repository. We also used a subset of
releases fromMaven, which could bias our results. To mitigate this, we ensured that our
data was statistically representative of both the entirety of the ecosystem and its history.

5.7 Related Work
Numerous studies analyzed various aspects of software ecosystems. In this section, we
discuss the studies most relevant to this research and classify them into subsequent topics.

Software updates Kula et al. [36] found 59.63% of existing project dependencies and
81.16% of new dependencies used the latest versions. The same authors [107] observed a
growth-peak-decay trend in 93.87% of popular Maven packages. Bavota et al. [47] studied
the Apache Java ecosystem’s [210] evolution, including dependency graphs, project size,
and developer activity. Düsing et al. [108] found half of Maven vulnerabilities were patched
before disclosure. Jafari et al. [211] discovered that the number of dependencies, age, and
release status of packages influence their update strategies.

Maven repository Raemaekers et al. [28] created the Maven Dependency Dataset,
revealing 68.4% of libraries had sources and 53.1% had Javadoc. Keshani et al. [79] linked
method popularity to breaking changes, finding similar rates of breaking changes across
popular and unpopular methods. Karakoidas et al. [106] generated a dataset from metrics
related to object-oriented design and program size. Tufano et al. [116] found uncompilable
snapshots in 96% of Apache projects due to dependency issues. He et al. [212] studied
similar compilation issues. Soto-Valero et al. [29] found 75.1% of dependencies bloated and
introduced DEPCLEAN to resolve it. They also [17] found that 30% of libraries had multiple
actively used versions. Mitropoulos et al. [30] linked artifact size to bugs, finding larger
artifacts are more likely to contain bugs.

Software ecosystems Abdalkareem et al. [109] explored trivial packages, finding they
constitute 16.8% of npm packages studied. Chowdhury et al. [213] investigated the uni-
versality of these packages and found that removing even a single trivial package could
impact up to 29% of the ecosystem, highlighting their importance despite their small size.
Cogo et al. [110] studied same-day releases in the npm ecosystem, discovering that 96%
of popular packages had at least one. 39% of these releases were error-prone, requiring
additional same-day fixes. Cogo et al. [214] also investigated dependency downgrades in

5.8 Concluding Remarks

5

115

the npm ecosystem, finding that 49% of downgrades replace a range of acceptable versions
with a specific old version, suggesting a more conservative approach to updates after a
downgrade. Kula et al. [111] introduced the Software Universe Graph (SUG) for analyzing
software ecosystems like Maven. The SUG allows insights into library popularity and
adoption. Decan et al. [180, 215] and Kikas et al. [216] compared multiple ecosystems and
elaborated on their differences. Hejderup et al. [217] proposed a method-level dependency
network for analyzing crates.io. Claes et al. [218] conducted a historical analysis of pack-
age incompatibilities in the Debian ecosystem and studied how package conflicts evolve.
Nguyen et al. [219] conducted a twelve-year longitudinal study on the evolution of the
Debian software collection. They investigated the life cycle of packages from inception
to end and analyzed attributes such as package age, bugs, maintainers, and popularity.
Herraiz et al. [220] investigated the relationship between installation counts and perceived
quality in the Debian ecosystem. Their study revealed that widely deployed programs tend
to have more reported defects, regardless of their actual defect count.

Library duplication Benelallam et al.[16] developed an artifact-level model of the
Maven Central Repository, showing that 12.5% of artifacts are duplicated or have corrupted
pom.xml files, and unique libraries average 10 versions. Kanda et al.[112] studied inner
jar file occurrences and duplications within the Maven Central Repository, revealing
around 0.8% of jar files contained inner jars. Tools like DepTrim[221] prune symbols
without errors. Repackaging can involve merging multiple jars, not easily detected
by file extensions, often in the Android ecosystem, and identified using techniques like
CodeMatch[222]. Y. Shao et al. [223] proposed a technique to detect these repackaged
libraries, relying on external resources like GUI layout files, which remain unaltered by
repackaging.

Overall, existing research provides insights into various facets of libraries and software
ecosystems. However, none of them offers a comprehensive view of packaging practices,
their trends, and impacts at the ecosystem level. This gap hinders the community, especially
ecosystem maintainers, from making effective decisions for the future of the ecosystem.
In this study, we complement the existing knowledge by offering a holistic view of the
Maven ecosystem and its packaging practices that did not exist before.

5.8 Concluding Remarks
Our comprehensive examination of the Maven ecosystem and its Java libraries, includ-
ing 479,915 releases, uncovered important insights into its evolution and practices. We
pinpointed three critical bad practices within the ecosystem that deserve attention. The
first, Erratic Data is characterized by the presence of missing and inconsistent data in
the ecosystem. The second issue, Archive Misuse, highlighted the concerning usage of
archives which contributes to an increasing trend in the average size of Maven libraries.
The third bad practice, Transitive Growth, refers to the exponential rise in the number of
dependencies, which has led to a tenfold increase in the space requirements for transitive
dependency sets over the past 12 years. Our study’s findings bear significant implications
for various stakeholders in the ecosystem, including maintainers, library developers, and

5

116 5 Maven Unzipped: Exploring the Impact of Library Packaging on the Ecosystem

researchers. In response to these issues, we provided practical recommendations such as
stricter checks at deployment stages and the minimization of dependency sets.

6

117

6
Conclusion

In this chapter, we revisit our research questions, provide answers to them, and discuss the
implications and future directions of our research. We also explain the limitations of our
studies and end this section with concluding remarks.

6.1 ResearchQuestions Revisited
In this section, we answer the research questions that were laid out in Chapter 1.

6.1.1 RQ1: To what extent can published libraries be automat-
ically reproduced from code?

This RQ explores the potential for automating the process of reproducing artifacts, which
is critical for securing software supply chains. Security breaches, such as the SolarWinds
attack [68], exploit the issue of non-reproducible binaries. The state of reproducibility
varies across different ecosystems; in some, like Go and Debian, it is quite advanced [224],
while in others, such asMaven, it is less developed. The initiative Reproducible Central,
which curates a list of reproducible Maven libraries, represents a manual and limited
solution to date.

In Chapter 2, we introduced AROMA, a tool designed to automate the process of linking
Maven releases to their source code and reconstructing the original release environment.
AROMA streamlines the identification of reproducible artifacts by extracting build informa-
tion through heuristics. We demonstrated that automatic reproducibility is achievable for
a substantial portion of the ecosystem. AROMA enables reproduction for 23.4% of packages,
and full reproducibility was achieved for 8% of these.

We discussed several key insights and actionable recommendations regarding re-
producibility. There seems to be a lack of awareness among developers regarding the
project.build.outputTimestamp property that can be set inMaven projects, which
significantly improves automated reproducibility. We suggested Maven tools to highlight
the absence of this property, or even set it automatically [225] to encourage its use and
enhance reproducibility as a quality attribute for packages. We highlighted the need for
standardization in release tagging styles to facilitate automated processing and improve

6

118 6 Conclusion

ecosystem transparency. We highlighted the potential to significantly expand the repro-
ducible dataset despite only a small fraction of all Maven packages being fully or partially
reproducible. We elaborated on the areas that could be improved in future work such as
heuristics to extract release profiles.

Overall, our findings highlight the feasibility and importance of automating repro-
ducibility within software ecosystems. Our study can enhance the security of Maven by
achieving high accuracy in information retrieval and identifying flaws in existing man-
ually curated lists. Furthermore, it contributes actionable insights and resources to the
reproducibility community. It demonstrates that even in ecosystems likeMaven, where
reproducibility rates are currently lower compared to other ecosystems like Debian, au-
tomation can greatly accelerate the process towards achieving overall reproducibility.
Nevertheless, the algorithms and techniques used in this study may need to be adjusted for
application in other ecosystems.

6.1.2 RQ2: How can we improve the scalability of call graph
generation for library analysis?

The scalability of method-level analysis of Maven library interactions, as discussed in
Chapter 3, can be significantly enhanced through the adoption of a summarization-based
approach for call graph generation. This approach was specifically tailored for Java pro-
grams and used caching of Partial CGs (PCGs) for dependencies that remain unchanged
between builds. It employs a stitching algorithm named Frankenstein for merging these
partial results into a CG for the entire program.

The proposed approach showed substantial improvements in performance over existing
frameworks, with speed enhancements of up to 38% and an average memory requirement
of just 388 megabytes despite processing millions of edges. This illustrates a substantial
improvement in making static analyses practical for use in build systems with limited
resources, without sacrificing the quality of the analyses. The generated CGs maintain a
near-identical set of edges compared to baseline frameworks, achieving an F1 score of up
to 0.98, which indicates a high level of precision and recall in the analysis results.

Furthermore, we highlighted the practicality of this approach by evaluating it in a real-
world application, particularly in environments similar to GitHub’s continuous integration
environment. We also justified the adoption of Class-Hierarchy Analysis (CHA) for CG
generation, despite its basic nature, due to its efficiency and the applicability of the gener-
ated CGs in practical use cases. We emphasized the importance of balancing soundness,
precision, speed, and memory consumption in program analysis to make static analyses
more relevant and feasible in real-world scenarios, especially those involving large projects
with numerous dependencies. We highlighted the potential of summarization techniques
to improve CG generation for practical use cases. We recommended that existing static
analysis frameworks adopt these techniques for enhanced practicality. We emphasized
the importance of configurability, modularity, and modularizing intermediate data, which
would allow analysis modules to pause and resume tasks, enabling the incorporation of
static analysis into daily use cases, such as continuous integration tools. We also discussed
the trade-offs between accuracy, memory usage, and speed.

Although we implemented this approach only for Java, it can be adapted for other
languages as well. In fact, within the FASTEN project, a similar approach was implemented

6.1 ResearchQuestions Revisited

6

119

for C++ and Python. Moreover, a company named EndorLabs [59] is currently extending
this approach to other languages such as Go and Rust. Therefore, we believe that this
approach can be generalized to other languages and help improve library analysis for
the supply chain of other languages. However, it is important to note that adapting this
approach to other languages can be challenging and requires extensive knowledge of the
target language.

6.1.3 RQ3: How do libraries impact their users at the method
level?

In Chapter 4, we discussed a detailed analysis of how libraries impact their users at the
method level by examining the frequency and nature of semantic versioning violations
across 13,876 versions of 384 artifacts. We studied the impact of these libraries on 7,190
dependent projects. We found that 67% of the artifacts introduced at least one type of
semantic versioning violation, such as breaking changes or illegal API extensions, through-
out their version history. Our impact analysis highlighted strong centralization in method
usage: 87% of publicly accessible methods were never utilized by dependents, and half
of the unique method calls from dependents were concentrated on only 35% of the used
methods. This suggests that most public methods in a library are rarely, if ever, used
by others. Additionally, our study found no correlation between method popularity and
stability. Popular methods are just as likely to undergo breaking changes as less popular
ones. This suggests a potential lack of awareness among library maintainers regarding the
popularity of their methods and the impact of breaking changes on the ecosystem. The
findings highlight the need for better tools and practices to inform library maintainers
about the usage of their methods to enhance library upgrade strategies and minimize
disruption caused by breaking changes.

We found that maintainers who extend their API in a way that is incompatible with
semantic versioning not only engage in poor practices but also increase the likelihood of
future breaking changes and violations. We found no direct correlation between method
popularity and breaking changes. This highlights the importance of future research on the
factors that influence maintainers’ decisions. We proposed that library maintainers could
benefit from data onmethod popularity whenmaking decisions regarding breaking changes
and prioritizing maintenance tasks. This could, for example, include the development of
tools and features in IDEs, build tools, and platforms like GitHub andMaven.

The findings of this study were focused solely on Maven. We expect that other ecosys-
tems may also exhibit similar trends. However, future research should extend our analyses
to other ecosystems and compare the results. Nonetheless, the methodology enabling
our analyses has also been implemented for C++ and Python within the FASTEN project.
Therefore, we believe it is feasible to conduct similar studies for other languages.

6.1.4 RQ4: How do the packaging practices of libraries impact
the package repositories?

As discussed in Chapter 5, our analysis identifies three specific issues arising from the
existing packaging practices within theMaven ecosystem: the presence of missing and
inconsistent data, improper utilization of archives, and an exponential increase in the
number of transitive dependencies.

6

120 6 Conclusion

These issues could be mitigated largely by better governance of the ecosystem, as
suggested in Chapter 5. However, understanding the concrete reasons behind developers’
frequent engagement in such practices requires further research into their processes and
mindsets when developing and deploying their libraries. Nevertheless, it is clear that if
library maintainers were more mindful of their impact on users, many of these issues could
be avoided. For example, a developer deciding whether to include a dependency for a
simple task or to implement the task themselves would benefit from understanding the
transitive impact of adding this dependency on the ecosystem. Additionally, raising aware-
ness about the security aspects of developing and deploying libraries could significantly
mitigate the mentioned issues. For instance, informing developers that the library they
are considering calls a vulnerable method from another library might encourage them to
seek a more secure option. Similarly, if developers were made aware that an alternative
library not only avoids using any vulnerable methods but also is reproducible, they might
be encouraged to use that library. Another scenario involves a developer attempting to
add a library’s jar file to another archive as an inner jar. Being notified about the library’s
vulnerabilities could discourage them from this practice, as they would understand that it
exposes dependents to risk and effectively conceals the vulnerability from them. In this
thesis, we proposed solutions aimed at increasing developers’ awareness of their users and
the security implications of their programs and dependencies. We believe these measures
would help mitigate the existing challenges within the ecosystem.

We identified pressing issues inMaven. To mitigate them, we recommended various
solutions such as stricter checks and ecosystem design documentation. We suggested
future research to explore the impact of Large Language Models (LLMs) on documentation
quality inMaven. We pointed out the problems with large libraries, large files, and inner
archives and discussed their negative impacts on maintainability, performance, and security.
We discussed strategies to address these issues, including adhering to modern ML-Ops
practices for separate versioning of data/model files and code. We explained that the
exponential increase in the number of transitive dependencies is a major risk, contributing
to larger project sizes and increased complexity. We advised developers to be mindful of
their dependencies, especially transitive ones, and recommended using automated tools
like DEPCLEAN to reduce dependency bloat. We also encouraged ecosystem maintainers
to integrate debloating practices into development and deployment tooling. We proposed
future research directions such as exploring the evolution of these issues over time and
examining the potential benefits of optimized dependency resolutions for the Maven
ecosystem.

Although this study focused exclusively on the Maven ecosystem, we believe the find-
ings and recommendations could be also beneficial for other ecosystems. We acknowledge
that the challenges faced by each ecosystem may be unique; however, the similarities
among different ecosystems suggest that some of these challenges could be common across
them. For instance, any build tool that enables transitive dependencies might cause a
similar exponential growth to what we observed in Maven. Ecosystems like NPM, famous
for the use of small and numerous libraries, could encounter even more critical issues.
Nevertheless, future research should explore the challenges we identified in Maven within
other ecosystems to find their prevalence and impact.

6.2 Discussion

6

121

6.2 Discussion
In this section, we elaborate on the impact of this thesis, new insights, ideas, and future
directions that emerged from this thesis. We also explain the limitations of the thesis.

Reflection on the impact of the thesis In this thesis, we started by envisioning
more effective dependency management for Maven projects. Our goal was to create
better tooling and techniques for dependency analysis. This thesis was also part of the
FASTEN project, which aimed at enhancing the accuracy of dependency analysis using
CGs. Specifically, our goal was to address challenges regarding the impact and security of
libraries. The tools and techniques developed in this thesis formed the core of FASTEN.
Frankenstein was directly used within FASTEN to analyze Java libraries in various scenarios
and use cases. Other work packages of FASTEN were also inspired by Frankenstein and
implemented similar techniques for Python and C++. One of the FASTEN industrial partners,
Software Improvement Group (SIG) [60], continues to use our tooling and technologies in
their products to provide services for their clients. Later, a US-based startup in the field,
EndorLabs [59], also adopted Frankenstein and expanded its application to more languages,
such as Go and Rust. Given these accomplishments, we believe we have largely achieved
what we envisioned at the start of this thesis. However, we also identified many areas that
could be further improved and new research directions that emerged from our work. In
the next section, we will discuss these directions and the existing challenges in detail.

Limitations This section provides an overview of the challenges faced in this thesis and
the measures taken to ensure the reliability and generalizability of the findings.

Internal validity concerns in this thesis were addressed through a combination of
manual inspections, extensive testing, and public availability of code and data across all
chapters. The reliance on manual inspections and heuristics, despite the risk of human
error and the potential for overlooking corner cases, was mitigated by involving multiple
authors in these processes and by benchmarking against manually curated baselines or
existing frameworks. The dependency on external tools like ShrinkWrap, WALA, and
OPAL introduced a risk of inheriting their limitations. This was addressed by developing
flexible infrastructures to allow for the integration of alternative tools and by making our
implementations and test suites publicly available for validation by the community.

The external validity of this thesis is primarily influenced by its focus on specific
tools, languages, and repositories, which may limit the generalizability of its findings to
other contexts. The studies mainly utilized Maven and Java projects, leveraging static
analysis frameworks like WALA and OPAL. This focus was chosen due to the prevalence
and importance of Java and Maven in the software development ecosystem, as well as
the active maintenance of the selected analysis tools. However, this approach excludes
projects hosted on other repositories or developed in other JVM-based languages such as
Scala or Kotlin.

To mitigate these external validity concerns, the thesis acknowledges its scope limita-
tions and suggests areas for future research. Replicating the study in different ecosystems,
examining projects developed in other JVM-based languages, and exploring the impact of
different version control systems could provide broader insights into software dependency
management and its challenges.

6

122 6 Conclusion

Analyses precision The motivation behind transitioning from package-level to method-
level analysis lies in the increased precision of analyses. Analyzing dependencies at the
package level is highly inaccurate. Moving to method-level analysis is a significant step
towards achieving more accurate analyses, as outlined in this thesis. However, CGs are
not entirely accurate; they tend to overapproximate to remain sound, resulting in many
false positive edges in a CG. Consequently, conducting analyses on top of CGs may also
cause inaccuracies. The analyses may mistakenly inform developers that they are using a
function in their dependencies when they are not. This happens due to the reported chain
of calls originating from overapproximated edges in the CG. Our experiments frequently
observed such cases, highlighting a limitation of current state-of-the-art analyses. Recently,
there has been significant progress towards developing more practical CGs that prioritize
precision without solely focusing on soundness. These techniques [194, 226, 227] prune the
CGs to enhance their practicality for downstream analyses such as the ones we addressed
in this thesis. These studies leverage Machine Learning (ML) to prune CG edges. However,
these approaches are costly post-processing of the resulting CG when applied to the entire
CG. We observed cases where overapproximation is concentrated in certain areas of CGs.
These areas could potentially be found through simple heuristics and direct ML techniques
to focus their effort only on these parts for better scalability. Such cases are recurring
patterns of false positives, particularly related to native Java methods that lead to numerous
overapproximations in the CG. For instance, when Iterator.iterate is overridden
and used extensively within a program, it leads to the generation of many edges in a CG.
Yet, Iterator.iterate typically executes basic operations and may not be relevant in
dependency analysis scenarios, where the focus is on calls to dependencies. This research
direction deserves further exploration in future research, where configuring the analysis
to relax certain requirements in specific scenarios could produce more practical results for
certain use cases.

Compatibility While studying the compatibility of packages in software ecosystems,
we observed a fundamental challenge. Libraries use the Semantic Versioning convention
to signal to their users about the changes made in each version. By doing so, maintainers
announce, in their opinion, whether the current version is compatible with the previous
ones or not. However, we realized that, firstly, it is very subjective and error-prone to ask
a person to determine if the changes they introduced in the past few weeks or months are
compatible. Secondly, compatibility is a feature of clients and not the libraries. Changes
that may break one client may be totally safe for another. Thirdly, semantic changes may
also break clients, and changes do not have to only affect the APIs to break the clients; it is
not possible to detect such cases automatically. Therefore, future research can consider
addressing these challenges by creating a network of users similar to what we did in
Chapter 4 and examine compatibility by running the users’ tests or even only by trying to
compile them. This will enable us to treat compatibility as a more dynamic concept that
can be largely automated and made more accurate.

Standardization and distribution Central repositories have become popular over the
past decade, enabling clients to download their dependencies from a central location. These
repositories conduct minimal quality checks on released items to ensure there are no

6.2 Discussion

6

123

fundamental flaws in the packages. Unfortunately, Chapter 5 showed that these checks
are not always thorough, and many artifacts uploaded to the ecosystems contain flaws.
Additionally, we have observed that many developers employ release practices that are
harmful to the ecosystem. There is also a noticeable trend where developers host their
artifacts in their own repositories instead of in central ones. Thus, a future research
direction is to develop standards and protocols for library releases, along with rigorous
automatic checks for libraries that adhere to these standards regardless of their repository
location. This approach encourages a more distributed method of publishing libraries,
eliminates the necessity for everyone to publish to a central location, and enables developers
to release their binaries closer to their code. Moreover, by subscribing to the provided
standards and protocols, developers will ensure a high level of quality that is transparent
to the users.

Support beyond writing code In this thesis, we observed many instances of a lack of
quality and awareness regarding important aspects of software, such as security, across
different development phases. Many developers rely on libraries found on the internet with
minimal investigation into their quality. The free nature of open-source software makes it
challenging to incentivize quality-focused efforts. Additionally, we observed the number
of transitive dependencies increasing exponentially, which means developers’ actions can
have a significant impact on the ecosystem transitively. For instance, a library maintainer
might add a dependency, believing it to be harmless. However, they cannot foresee the
effect of this addition on their users, as dependency relationships are dynamic and can
change from one moment to another. The addition of a specific library might suddenly
make a user call a vulnerable method due to a change in their class hierarchy. Even if
developers were incentivized to deliver higher quality, the growing complexity makes it
impractical for them to do so manually and thoroughly.

To mitigate these issues, a deeper understanding of not only our programs but also
our processes and dependencies is necessary. Furthermore, the development of tools
and techniques for better quality and the automation of processes that support this are
beneficial. Currently, automation efforts are mainly focused on implementation tasks that
enable the generation of more code in less time. A notable example is using Large Language
Models (LLMs) for code generation. While LLMs automate many aspects of coding, they
may hinder the deep understanding of complex systems if used carelessly or they may
generate low-quality code. Recent studies [228] have shown that the licensing, privacy, and
security implications of LLM-generated code are often overlooked. Given the discussed
points, we expect LLMs to worsen the situation and contribute to the lack of quality and
awareness, and security problems.

We believe the research community should prioritize automation in other aspects of
development, such as maintenance, improvement of quality and security, and intuitive
methods that help developers understand complex systems more deeply, rather than solely
focusing on reducing implementation time and effort. This thesis represents the first step
towards this goal, but it is insufficient, as automation in these areas significantly lags
behind the automation of code generation. Automated tools that improve quality and
security, such as those proposed in this thesis, as well as those that ease maintenance and
enhance understandability, should be explored more extensively. For example, researchers

6

124 6 Conclusion

could consider using graph neural networks to assess or predict the addition, removal, or
replacement of library links for optimized security and quality.

6.3 Concluding remarks
This thesis explores and introduces novel approaches to address security challenges within
theMaven ecosystem, an essential part of the software supply chain. The insights, methods,
and tools presented provide valuable resources for developers, maintainers, and researchers.
Our contributions include the development of tools for library reproducibility and scalable,
call-graph-based dependency analysis techniques. We have introduced a set of methods to
enhance dependency management and made them publicly available. Through empirical
research and data mining, we examined the current state of Maven and identified issues in
packaging practices that pose risks to ecosystem users. Additionally, we discussed various
directions for future research that have emerged from this work. The results of this thesis
were published in premier venues of our field, applied in practical software by our partners
(SIG [60]), and continued by affiliated companies (Endorlabs [59]), which not only shows
the impact of this work but also highlights the importance of future work in this research
direction. We hope that the availability of our tools and datasets will enable others to
continue where our work in this thesis has ended.

125

Bibliography

References
[1] Software supply chain management: An introduction. https://www.sonatype.com/

resources/software-supply-chain-management-an-introduction. Accessed: 2024-02-
01.

[2] What is software supply chain security? https://www.redhat.com/en/topics/security/
what-is-software-supply-chain-security. Accessed: 2024-02-01.

[3] E. Levy. Poisoning the software supply chain. IEEE Security & Privacy, 2003.

[4] Robert J Ellison, John B Goodenough, Charles B Weinstock, and Carol Woody.
Evaluating and mitigating software supply chain security risks. Software Engineering
Institute, Tech. Rep. CMU/SEI-2010-TN-016, 2010.

[5] William Enck and Laurie Williams. Top five challenges in software supply chain
security: Observations from 30 industry and government organizations. IEEE Security
& Privacy, 2022.

[6] Log4shell. https://en.wikipedia.org/wiki/Log4Shell. Accessed: 2024-03-20.

[7] Nusrat Zahan, Elizabeth Lin, Mahzabin Tamanna, William Enck, and LaurieWilliams.
Software bills of materials are required. are we there yet? IEEE Security & Privacy,
2023.

[8] Marc Ohm, Henrik Plate, Arnold Sykosch, and Michael Meier. Backstabber’s knife
collection: A review of open source software supply chain attacks. Detection of
Intrusions and Malware, and Vulnerability Assessment: 17th International Conference,
DIMVA 2020, Lisbon, Portugal, June 24–26, 2020, Proceedings 17, 2020.

[9] Log4j is why you need a software bill of materials (sbom). https://www.reversinglabs.
com/blog/log4j-is-why-you-need-an-sbom. Accessed: 2024-03-20.

[10] One year after log4shell, firms still struggle to hunt down
log4j. https://www.contrastsecurity.com/security-influencers/
one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j. Accessed:
2024-03-20.

[11] Sbom. https://security.cms.gov/learn/software-bill-materials-sbom. Accessed: 2024-
03-20.

[12] Executive order 14028. https://www.federalregister.gov/documents/2021/05/17/
2021-10460/improving-the-nations-cybersecurity. Accessed: 2023-07-31.

https://www.sonatype.com/resources/software-supply-chain-management-an-introduction
https://www.sonatype.com/resources/software-supply-chain-management-an-introduction
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://www.redhat.com/en/topics/security/what-is-software-supply-chain-security
https://en.wikipedia.org/wiki/Log4Shell
https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom
https://www.reversinglabs.com/blog/log4j-is-why-you-need-an-sbom
https://www.contrastsecurity.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://www.contrastsecurity.com/security-influencers/one-year-after-log4shell-firms-still-struggle-to-hunt-down-log4j
https://security.cms.gov/learn/software-bill-materials-sbom
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity

126 Bibliography

[13] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. Sok: Taxonomy
of attacks on open-source software supply chains. 2023 IEEE Symposium on Security
and Privacy (SP), 2023.

[14] Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra
Maddila, and Laurie Williams. What are weak links in the npm supply chain?
Proceedings of the 44th International Conference on Software Engineering: Software
Engineering in Practice, 2022.

[15] Amir M Mir, Mehdi Keshani, and Sebastian Proksch. On the effect of transitivity
and granularity on vulnerability propagation in the Maven ecosystem. In 2023 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 201–211. IEEE, 2023.

[16] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and Olivier
Barais. The Maven dependency graph: a temporal graph-based representation
of Maven central. IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR), 2019.

[17] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit
Baudry. The emergence of software diversity in Maven Central. IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR), 2019.

[18] César Soto-Valero, Thomas Durieux, and Benoit Baudry. A longitudinal analysis of
bloated java dependencies. Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021.

[19] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. A
comprehensive study of bloated dependencies in the Maven ecosystem. Empirical
Software Engineering, 2020.

[20] Rodrigo Elizalde Zapata, Raula Gaikovina Kula, Bodin Chinthanet, Takashi Ishio,
Kenichi Matsumoto, and Akinori Ihara. Towards smoother library migrations: A look
at vulnerable dependency migrations at function level for npm javascript packages.
IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018.

[21] Maven stats. https://mvnrepository.com/repos. Accessed: 2024-03-24.

[22] Abbas Javan Jafari, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, and Nikolaos
Tsantalis. Dependency smells in javascript projects. IEEE Transactions on Software
Engineering, 2021.

[23] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. How to
break an API: cost negotiation and community values in three software ecosystems.
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016.

https://mvnrepository.com/repos

References 127

[24] Chris Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. When and
how to make breaking changes: Policies and practices in 18 open source software
ecosystems. ACM Transactions on Software Engineering and Methodology (TOSEM),
2021.

[25] Md Mahir Asef Kabir, Ying Wang, Danfeng Yao, and Na Meng. How do developers
follow security-relevant best practices when using npm packages? 2022 IEEE Secure
Development Conference (SecDev), 2022.

[26] Stan Zajdel, Diego Elias Costa, and Hafedh Mili. Open source software: an approach
to controlling usage and risk in application ecosystems. Proceedings of the 26th ACM
International Systems and Software Product Line Conference-Volume A, 2022.

[27] Yulu Cao, Lin Chen, Wanwangying Ma, Yanhui Li, Yuming Zhou, and Linzhang
Wang. Towards better dependency management: A first look at dependency smells
in python projects. IEEE Transactions on Software Engineering, 2022.

[28] Steven Raemaekers, Arie Van Deursen, and Joost Visser. The Maven repository
dataset of metrics, changes, and dependencies. 10th Working Conference on Mining
Software Repositories (MSR), 2013.

[29] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. A
comprehensive study of bloated dependencies in the Maven ecosystem. Empirical
Software Engineering, 2021.

[30] Dimitris Mitropoulos, Vassilios Karakoidas, Panos Louridas, Georgios Gousios, and
Diomidis Spinellis. The bug catalog of the Maven ecosystem. Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014.

[31] Xinlei Ma and Yan Liu. An empirical study of Maven archetype. SEKE, 2020.

[32] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen Vinju. Breaking bad?
semantic versioning and impact of breaking changes in Maven Central: An external
and differentiated replication study. Empirical Software Engineering, 2022.

[33] Steven Raemaekers, Arie van Deursen, and Joost Visser. The Maven repository
dataset of metrics, changes, and dependencies. 10th Working Conference on Mining
Software Repositories (MSR), 2013.

[34] Nicolas Harrand, Amine Benelallam, César Soto-Valero, François Bettega, Olivier
Barais, and Benoit Baudry. API beauty is in the eye of the clients: 2.2 million Maven
dependencies reveal the spectrum of client–API usages. Journal of Systems and
Software, 2022.

[35] Christian Macho, Stefanie Beyer, Shane McIntosh, and Martin Pinzger. The nature of
build changes: An empirical study of Maven-based build systems. Empirical Software
Engineering, 2021.

128 Bibliography

[36] Raula Gaikovina Kula, Daniel M German, Takashi Ishio, and Katsuro Inoue. Trusting
a library: A study of the latency to adopt the latest Maven release. IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015.

[37] S. Raemaekers, A. van Deursen, and J. Visser. Semantic versioning and impact of
breaking changes in the Maven repository. Journal of Systems and Software, 2017.

[38] Mircea Cadariu, Eric Bouwers, Joost Visser, and Arie van Deursen. Tracking known
security vulnerabilities in proprietary software systems. In 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER), pages
516–519. IEEE, 2015.

[39] Tobias Lauinger, Abdelberi Chaabane, and Christo Wilson. Thou shalt not depend
on me: A look at javascript libraries in the wild. Queue, 16(1):62–82, 2018.

[40] Alexandre Decan, Tom Mens, and Eleni Constantinou. On the impact of security
vulnerabilities in the npm package dependency network. Proceedings of the 15th
international conference on mining software repositories, 2018.

[41] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. Empirical analysis of
security vulnerabilities in python packages. Empirical Software Engineering, 2023.

[42] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
Small world with high risks: A study of security threats in the npm ecosystem. 28th
USENIX Security Symposium (USENIX Security 19), 2019.

[43] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
Demystifying the vulnerability propagation and its evolution via dependency trees
in the npm ecosystem. Proceedings of the 44th International Conference on Software
Engineering, 2022.

[44] Ken Thompson. Reflections on trusting trust. Communications of the ACM, 1984.

[45] Dong Qiu, Bixin Li, and Hareton Leung. Understanding the API usage in java.
Information and software technology, 2016.

[46] YingWang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng, Yijian
Wu, and Yang Liu. An empirical study of usages, updates and risks of third-party
libraries in java projects. IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2020.

[47] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Sebas-
tiano Panichella. How the apache community upgrades dependencies: An evolu-
tionary study. Empirical Software Engineering, 2015.

[48] André Hora, Anne Etien, Nicolas Anquetil, Stéphane Ducasse, and Marco Tulio
Valente. Apievolutionminer: Keeping API evolution under control. Software Evo-
lution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse
Engineering (CSMR-WCRE), 2014.

References 129

[49] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto Abelló. Classification
of changes in API evolution. IEEE 23rd International Enterprise Distributed Object
Computing Conference (EDOC), 2019.

[50] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A systematic review of
API evolution literature. ACM Comput. Surv., 2021.

[51] Steven Raemaekers, Arie van Deursen, and Joost Visser. Measuring software library
stability through historical version analysis. 28th IEEE International Conference on
Software Maintenance (ICSM), 2012.

[52] Xz. https://www.puppet.com/blog/xz-backdoor. Accessed: 2024-04-06.

[53] Solarwinds compromise. https://attack.mitre.org/campaigns/C0024/. Accessed: 2024-
05-08.

[54] Log4shell vulnerability. https://www.ibm.com/topics/log4shell. Accessed: 2024-05-
08.

[55] left-pad incident. https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm.
Accessed: 2024-03-26.

[56] Equifax incident. https://en.wikipedia.org/wiki/2017_Equifax_data_breach. Ac-
cessed: 2024-03-26.

[57] Fasten website. https://www.fasten-project.eu/.

[58] Dependabot. https://github.com/dependabot.

[59] Endorlabs. https://www.endorlabs.com/.

[60] Sig. https://www.softwareimprovementgroup.com/.

[61] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,
David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Preliminary guidelines for
empirical research in software engineering. IEEE Transactions on software engineering,
28(8):721–734, 2002.

[62] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, et al. Em-
pirical standards for software engineering research. arXiv preprint arXiv:2010.03525,
2020.

[63] Empirical standards. https://github.com/acmsigsoft/EmpiricalStandards/tree/master/
docs/standards. Accessed: 2024-05-08.

[64] Roel Wieringa. Design science methodology: principles and practice. In Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2,
pages 493–494, 2010.

https://www.puppet.com/blog/xz-backdoor
https://attack.mitre.org/campaigns/C0024/
https://www.ibm.com/topics/log4shell
https://blog.npmjs.org/post/141577284765/kik-left-pad-and-npm
https://en.wikipedia.org/wiki/2017_Equifax_data_breach
https://www.fasten-project.eu/
https://github.com/dependabot
https://www.endorlabs.com/
https://www.softwareimprovementgroup.com/
https://github.com/acmsigsoft/EmpiricalStandards/tree/master/docs/standards
https://github.com/acmsigsoft/EmpiricalStandards/tree/master/docs/standards

130 Bibliography

[65] Ahmed E Hassan. The road ahead for mining software repositories. In 2008 frontiers
of software maintenance, pages 48–57. IEEE, 2008.

[66] Tudelft research. https://research.tudelft.nl/. Accessed: 2024-04-06.

[67] Mehdi Keshani, Tudor-Gabriel Velican, Gideon Bot, and Sebastian Proksch. Aroma:
Automatic reproduction of Maven artifacts. FSE, 2024.

[68] Solarwinds attack. https://www.cisecurity.org/solarwinds. Accessed: 2023-09-28.

[69] David A Wheeler. Countering trusting trust through diverse double-compiling. 21st
Annual Computer Security Applications Conference (ACSAC’05), 2005.

[70] Reproducible central repo. https://github.com/jvm-repo-rebuild/
reproducible-central. Accessed: 2023-06-20.

[71] Maven pom. https://maven.apache.org/pom.html. Accessed: 2023-06-05.

[72] Mehdi Keshani. Scalable call graph constructor for Maven. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion), pages 99–101. IEEE, 2021.

[73] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. European Conference on Object-
Oriented Programming, 1995.

[74] Continuous integration. https://en.wikipedia.org/wiki/Continuous_integration. Ac-
cessed: 2024-03-26.

[75] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. Trade-offs in continuous integration: assurance, security, and flexibility. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
pages 197–207, 2017.

[76] Github actions. https://github.com/features/actions. Accessed: 2024-03-26.

[77] Travis ci. https://www.travis-ci.com/. Accessed: 2024-03-26.

[78] Semantic versioning. https://semver.org/. Accessed: 2024-03-26.

[79] Mehdi Keshani, Simcha Vos, and Sebastian Proksch. On the relation of method
popularity to breaking changes in the Maven ecosystem. Journal of Systems and
Software, 203:111738, 2023.

[80] Mehdi Keshani, Gideon Bot, Priyam Rungta, Maliheh Izadi, Arie Van Deursen, and
Sebastian Proksch. Maven unzipped: Packaging impacts the ecosystem. Under
review, 2024.

[81] Chris Lamb and Stefano Zacchiroli. Reproducible builds: Increasing the integrity of
software supply chains. IEEE Software, 2021.

https://research.tudelft.nl/
https://www.cisecurity.org/solarwinds
https://github.com/jvm-repo-rebuild/reproducible-central
https://github.com/jvm-repo-rebuild/reproducible-central
https://maven.apache.org/pom.html
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/features/actions
https://www.travis-ci.com/
https://semver.org/

References 131

[82] Reproducible builds. https://cwiki.apache.org/confluence/pages/viewpage.action?
pageId=74682318. Accessed: 2023-06-14.

[83] Zhilei Ren, He Jiang, Jifeng Xuan, and Zijiang Yang. Automated localization for
unreproducible builds. Proceedings of the 40th International Conference on Software
Engineering, 2018.

[84] Zhilei Ren, Changlin Liu, Xusheng Xiao, He Jiang, and Tao Xie. Root cause localiza-
tion for unreproducible builds via causality analysis over system call tracing. 2019
34th IEEE/ACM International Conference on Automated Software Engineering (ASE),
2019.

[85] Zhilei Ren, Shiwei Sun, Jifeng Xuan, Xiaochen Li, Zhide Zhou, and He Jiang. Au-
tomated patching for unreproducible builds. Proceedings of the 44th International
Conference on Software Engineering, 2022.

[86] Debainrepstats. https://reproducible-builds.org/citests/. Accessed: 2023-09-19.

[87] Replication package. https://doi.org/10.5281/zenodo.8380775. Accessed: 2023-09-27.

[88] Maven index. https://repo.maven.apache.org/maven2/.index/. Accessed: 2022-10-28.

[89] Maven version plugin. https://www.mojohaus.org/versions/versions-maven-plugin/
index.html. Accessed: 2023-09-27.

[90] Maven scm requirenment. https://central.sonatype.org/publish/requirements/
#scm-information. Accessed: 2023-09-28.

[91] Jiakun Liu, Xin Xia, David Lo, Haoxiang Zhang, Ying Zou, Ahmed E. Hassan, and
Shanping Li. Broken external links on stack overflow. IEEE Transactions on Software
Engineering, 2022.

[92] Vcs ranking. https://survey.stackoverflow.co/2022/
#section-version-control-version-control-systems. Accessed: 2023-09-28.

[93] Git tagging. https://git-scm.com/book/en/v2/Git-Basics-Tagging. Accessed: 2023-
09-28.

[94] apache repository. https://infra.apache.org/blog/
relocation-of-apache-git-repositories. Accessed: 2023-08-22.

[95] Maven requirentments. https://central.sonatype.org/publish/requirements/
#developer-information. Accessed: 2023-08-23.

[96] Replacing build-jdk with build-jdk-spec jira. https://issues.apache.org/jira/browse/
MSHARED-797. Accessed: 2023-09-26.

[97] Replacing build-jdk with build-jdk-spec github. https://github.com/apache/
maven-archiver/pull/2/files. Accessed: 2023-09-25.

https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=74682318
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=74682318
https://reproducible-builds.org/citests/
https://doi.org/10.5281/zenodo.8380775
https://repo.maven.apache.org/maven2/.index/
https://www.mojohaus.org/versions/versions-maven-plugin/index.html
https://www.mojohaus.org/versions/versions-maven-plugin/index.html
https://central.sonatype.org/publish/requirements/#scm-information
https://central.sonatype.org/publish/requirements/#scm-information
https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
https://survey.stackoverflow.co/2022/#section-version-control-version-control-systems
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://infra.apache.org/blog/relocation-of-apache-git-repositories
https://infra.apache.org/blog/relocation-of-apache-git-repositories
https://central.sonatype.org/publish/requirements/#developer-information
https://central.sonatype.org/publish/requirements/#developer-information
https://issues.apache.org/jira/browse/MSHARED-797
https://issues.apache.org/jira/browse/MSHARED-797
https://github.com/apache/maven-archiver/pull/2/files
https://github.com/apache/maven-archiver/pull/2/files

132 Bibliography

[98] Maven plugin. https://maven.apache.org/plugins/maven-compiler-plugin/. Accessed:
2023-06-13.

[99] Mavenmodel. https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/apache/
maven/model/Model.html. Accessed: 2023-06-12.

[100] Plugin management. https://maven.apache.org/pom.html#Plugin_Management. Ac-
cessed: 2023-06-13.

[101] Rc default Maven. https://github.com/jvm-repo-rebuild/reproducible-central/blob/
844298749c5f78b2a914f9180b949d9e1fc2bc56/doc/BUILDSPEC.md#format. Accessed:
2023-09-28.

[102] Maven package: com.crawljax.crawljax-cli. https://mvnrepository.com/artifact/org.
infinispan/infinispan-commons-jdk21. Accessed: 2023-08-01.

[103] Git newline. https://www.git-scm.com/book/en/v2/
Customizing-Git-Git-Configuration. Accessed: 2023-09-28.

[104] diffoscope. https://diffoscope.org/. Accessed: 2023-09-25.

[105] Reproducible build Maven plugin. https://zlika.github.io/
reproducible-build-maven-plugin/. Accessed: 2024-02-11.

[106] Vassilios Karakoidas, Dimitrios Mitropoulos, Panos Louridas, Georgios Gousios,
and Diomidis Spinellis. Generating the blueprints of the java ecosystem. IEEE
International Working Conference on Mining Software Repositories, 2015.

[107] Raula Kula, Daniel German, Takashi Ishio, Ali Ouni, and Katsuro Inoue. An ex-
ploratory study on library aging by monitoring client usage in a software ecosystem.
IEEE 24th International Conference on Software Analysis, Evolution and Reengineering
(SANER), 2017.

[108] Johannes Düsing and Ben Hermann. Analyzing the direct and transitive impact
of vulnerabilities onto different artifact repositories. Digital Threats: Research and
Practice, 2022.

[109] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad
Shihab. Why do developers use trivial packages? an empirical case study on npm.
Proceedings of the 2017 11th joint meeting on foundations of software engineering, 2017.

[110] Filipe R. Cogo, Gustavo A. Oliva, Cor-Paul Bezemer, and Ahmed. E. Hassan. An
empirical study of same-day releases of popular packages in the npm ecosystem.
Empirical Software Engineering, 2021.

[111] Raula Gaikovina Kula, Coen De Roover, Daniel M. German, Takashi Ishio, and
Katsuro Inoue. Modeling library popularity within a software ecosystem. Tech. Rep.,
2017.

[112] Tetsuya Kanda, Daniel Morales German, Takashi Ishio, and Katsuro Inoue. Measuring
copying of java archives. Electronic Communications of the EASST, 2014.

https://maven.apache.org/plugins/maven-compiler-plugin/
https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/apache/maven/model/Model.html
https://maven.apache.org/ref/3.0.4/maven-model/apidocs/org/apache/maven/model/Model.html
https://maven.apache.org/pom.html#Plugin_Management
https://github.com/jvm-repo-rebuild/reproducible-central/blob/844298749c5f78b2a914f9180b949d9e1fc2bc56/doc/BUILDSPEC.md#format
https://github.com/jvm-repo-rebuild/reproducible-central/blob/844298749c5f78b2a914f9180b949d9e1fc2bc56/doc/BUILDSPEC.md#format
https://mvnrepository.com/artifact/org.infinispan/infinispan-commons-jdk21
https://mvnrepository.com/artifact/org.infinispan/infinispan-commons-jdk21
https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://www.git-scm.com/book/en/v2/Customizing-Git-Git-Configuration
https://diffoscope.org/
https://zlika.github.io/reproducible-build-maven-plugin/
https://zlika.github.io/reproducible-build-maven-plugin/

References 133

[113] Chen Zhang, Bihuan Chen, Junhao Hu, Xin Peng, and Wenyun Zhao. Buildsonic:
Detecting and repairing performance-related configuration smells for continuous
integration builds. 37th IEEE/ACM International Conference on Automated Software
Engineering, 2022.

[114] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
Build code analysis with symbolic evaluation. 2012 34th International Conference on
Software Engineering (ICSE), 2012.

[115] Mehdi Keshani, Georgios Gousios, and Sebastian Proksch. Frankenstein: fast and
lightweight call graph generation for software builds. Empir. Softw. Eng., 29(1):1,
2024.

[116] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. There and back again: Can you
compile that snapshot? Journal of Software: Evolution and Process, 2017.

[117] Paul Gazzillo. Kmax: Finding all configurations of kbuild makefiles statically. Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, 2017.

[118] Thodoris Sotiropoulos, Stefanos Chaliasos, Dimitris Mitropoulos, and Diomidis
Spinellis. A model for detecting faults in build specifications. Proceedings of the ACM
on Programming Languages, 2020.

[119] Foyzul Hassan and Xiaoyin Wang. Hirebuild: An automatic approach to history-
driven repair of build scripts. Proceedings of the 40th international conference on
software engineering, 2018.

[120] Yiling Lou, Junjie Chen, Lingming Zhang, Dan Hao, and Lu Zhang. History-driven
build failure fixing: how far are we? Proceedings of the 28th ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2019.

[121] Yiling Lou, Zhenpeng Chen, Yanbin Cao, Dan Hao, and Lu Zhang. Understanding
build issue resolution in practice: symptoms and fix patterns. Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, 2020.

[122] Andrea Höller, Nermin Kajtazovic, Tobias Rauter, Kay Römer, and Christian Kreiner.
Evaluation of diverse compiling for software-fault detection. 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2015.

[123] Yong Shi, Mingzhi Wen, Filipe R Cogo, Boyuan Chen, and Zhen Ming Jiang. An
experience report on producing verifiable builds for large-scale commercial systems.
IEEE Transactions on Software Engineering, 2021.

[124] Hongjun He, Jicheng Cao, Lesheng Du, Hao Li, Shilong Wang, and Shengyu Cheng.
Constbin: A tool for automatic fixing of unreproducible builds. 2020 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops (ISSREW), 2020.

134 Bibliography

[125] Omar S Navarro Leija, Kelly Shiptoski, Ryan G Scott, Baojun Wang, Nicholas Renner,
Ryan R Newton, and Joseph Devietti. Reproducible containers. Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020.

[126] Marcel Fourné, Dominik Wermke, William Enck, Sascha Fahl, and Yasemin Acar. It’s
like flossing your teeth: On the importance and challenges of reproducible builds
for software supply chain security. In 44th IEEE Symposium on Security and Privacy,
2023.

[127] Simon Butler, Jonas Gamalielsson, Björn Lundell, Christoffer Brax, Anders Mattsson,
Tomas Gustavsson, Jonas Feist, Bengt Kvarnström, and Erik Lönroth. On business
adoption and use of reproducible builds for open and closed source software. Software
Quality Journal, 2022.

[128] Xavier de Carné de Carnavalet andMohammadMannan. Challenges and implications
of verifiable builds for security-critical open-source software. Proceedings of the 30th
Annual Computer Security Applications Conference, 2014.

[129] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar T. Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in
GitHub. In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, In
the proceedings of the 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE, Bergamo, Italy, pages 805–816. ACM, 2015.

[130] Joseph Hejderup, Arie van Deursen, and Georgios Gousios. Software ecosystem call
graph for dependency management. Proceedings of the 40th International Conference
on Software Engineering: New Ideas and Emerging Results, 2018.

[131] Paolo Boldi and Georgios Gousios. Fine-Grained Network Analysis for Modern
Software Ecosystems. ACMTRANSACTIONSON INTERNET TECHNOLOGY, 21(1):1:1–
1:14, 2021.

[132] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Lossless, Persisted Sum-
marization of Static Callgraph, Points-To and Data-Flow Analysis. In Anders Møller
and Manu Sridharan, editors, In the proceedings of the 35th European Conference on
Object-Oriented Programming, ECOOP, Aarhus, Denmark (Virtual Conference), volume
194 of LIPIcs, pages 2:1–2:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[133] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller,
and Dimitrios Vardoulakis. In defense of soundiness: a manifesto. Communications
of the ACM, 58(2):44–46, 2015.

[134] John Toman and Dan Grossman. Taming the Static Analysis Beast. In Benjamin S.
Lerner, Rastislav Bodík, and ShriramKrishnamurthi, editors, 2nd Summit on Advances
in Programming Languages, SNAPL, Asilomar, CA, USA, volume 71 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

References 135

[135] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call
graph construction for security scanning of Node.js applications. In Cristian Cadar
and Xiangyu Zhang, editors, In the Proceedings of the 30th ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA, Virtual Event, Denmark, pages
29–41. ACM, 2021.

[136] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. Striking
a Balance: Pruning False-Positives from Static Call Graphs. In In the proceedings of
the 44th IEEE/ACM International Conference on Software Engineering, ICSE, Pittsburgh,
PA, USA, pages 2043–2055. ACM, 2022.

[137] h2o project. https://mvnrepository.com/artifact/ai.h2o/sparkling-water-package_2.
11/3.26.8-2.4. Accessed: 2022-10-21.

[138] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: Ultra-
Large-Scale Software Repository and Source-Code Mining. ACM Transactions on
Software Engineering and Methodology, 25(1):7:1–7:34, 2015.

[139] Raula Kula, Daniel German, Ali Ouni, Takashi Ishio, and Katsuro Inoue. Do develop-
ers update their library dependencies? Empirical Software Engineering, 2018.

[140] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir. On the
Soundness of Call Graph Construction in the Presence of Dynamic Language Features
- A Benchmark and Tool Evaluation. In Sukyoung Ryu, editor, In the proceedings of the
16th Asian Symposium on Programming Languages and Systems, APLAS, Wellington,
New Zealand, volume 11275 of Lecture Notes in Computer Science, pages 69–88.
Springer, 2018.

[141] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Y. Aravkin.
ALETHEIA: Improving the Usability of Static Security Analysis. In Gail-Joon Ahn,
Moti Yung, and Ninghui Li, editors, In the proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, pages 762–774. ACM,
2014.

[142] Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif, Guido Salvaneschi,
and Mira Mezini. Lattice based modularization of static analyses. In Julian Dolby,
William G. J. Halfond, and Ashish Mishra, editors, In the companion proceedings for
the ISSTA/ECOOP Workshops, Amsterdam, Netherlands, pages 113–118. ACM, 2018.

[143] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and Mira Mezini.
Modular collaborative program analysis in opal. Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering, 2020.

[144] T. j. watson libraries for analysis. http://wala.sf.net/. Accessed: 2022-01-15.

[145] Replication package for “frankenstein: fast and lightweight call graph gener-
ation for software builds”. https://github.com/ashkboos/LightWeightCGs/tree/
mainrepPackage.

https://mvnrepository.com/artifact/ai.h2o/sparkling-water-package_2.11/3.26.8-2.4
https://mvnrepository.com/artifact/ai.h2o/sparkling-water-package_2.11/3.26.8-2.4
http://wala.sf.net/
https://github.com/ashkboos/LightWeightCGs/tree/mainrepPackage
https://github.com/ashkboos/LightWeightCGs/tree/mainrepPackage

136 Bibliography

[146] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In Mary Beth Rosson and Doug Lea, editors, In the proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications OOPSLA, Minneapolis, Minnesota, USA, pages 281–293. ACM, 2000.

[147] Olin Shivers. Control-Flow Analysis in Scheme. In Richard L. Wexelblat, editor, In
the proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI, Atlanta, Georgia, USA, pages 164–174. ACM, 1988.

[148] Vijay Sundaresan, Laurie J. Hendren, Chrislain Razafimahefa, Raja Vallée-Rai, Patrick
Lam, Etienne Gagnon, and Charles Godin. Practical virtual method call resolution
for Java. In Mary Beth Rosson and Doug Lea, editors, In the proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications, OOPSLA, Minneapolis, Minnesota, USA, pages 264–280. ACM, 2000.

[149] Amitabh Srivastava. Unreachable Procedures in Object-Oriented Programming.
LOPLAS, 1(4):355–364, 1992.

[150] Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Implementa-
tion. Addison-Wesley, 1983.

[151] David F. Bacon and Peter F. Sweeney. Fast Static Analysis of C++ Virtual Function
Calls. In Lougie Anderson and James Coplien, editors, In the proceedings of the 1996
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications, OOPSLA, San Jose, California, USA, pages 324–341. ACM, 1996.

[152] William Landi. Undecidability of Static Analysis. LOPLAS, 1(4):323–337, 1992.

[153] G. Ramalingam. The Undecidability of Aliasing. ACM Transactions on Programming
Languages and Systems, 16(5):1467–1471, 1994.

[154] Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM
Transactions on Programming Languages and Systems, TOPLAS, 22(1):162–186, 2000.

[155] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static
call graph construction in practice. In Gregg Rothermel and Doo-Hwan Bae, editors,
In the proceedings of the 42nd International Conference on Software Engineering, ICSE,
Seoul, South Korea, pages 1049–1060. ACM, 2020.

[156] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and Mira Mezini.
Judge: identifying, understanding, and evaluating sources of unsoundness in call
graphs. In Dongmei Zhang and Anders Møller, editors, In the proceedings of the
28th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA,
Beijing, China, pages 251–261. ACM, 2019.

[157] Lam, Patrick and Bodden, Eric and Lhoták, Ondrej and Hendren, Laurie. The Soot
framework for Java program analysis: a retrospective. In Cetus Users and Compiler
Infrastructure Workshop CETUS, volume 15, 2011.

[158] The doop project. http://doop.program-analysis.org/. Accessed: 2022-01-15.

http://doop.program-analysis.org/

References 137

[159] Thomas Ball and Sriram K. Rajamani. Bebop: a path-sensitive interprocedural
dataflow engine. In John Field and Gregor Snelting, editors, In the proceedings of
the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis For Software Tools and
Engineering, PASTE, Snowbird, Utah, USA, pages 97–103. ACM, 2001.

[160] Chord: A program analysis platform for java. https://www.seas.upenn.edu/~mhnaik/
chord/user_guide/index.html. Accessed: 2022-01-15.

[161] Karim Ali and Ondrej Lhoták. Application-Only Call Graph Construction. In James
Noble, editor, In the proceedings of the 26th European Conference on Object-Oriented
Programming, ECOOP, Beijing, China, volume 7313 of Lecture Notes in Computer
Science, pages 688–712. Springer, 2012.

[162] Karim Ali and Ondrej Lhoták. Averroes: Whole-Program Analysis without the
Whole Program. In Giuseppe Castagna, editor, In the proceedings of the 27th European
Conference on Object-Oriented Programming, ECOOP, Montpellier, France, volume
7920 of Lecture Notes in Computer Science, pages 378–400. Springer, 2013.

[163] Karim Ali. The Separate Compilation Assumption. PhD thesis, University of Waterloo,
Ontario, Canada, 2014.

[164] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, andMiraMezini. Call
graph construction for Java libraries. In Thomas Zimmermann, Jane Cleland-Huang,
and Zhendong Su, editors, In the proceedings of the 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE, Seattle, WA, USA, pages
474–486. ACM, 2016.

[165] Amie L. Souter and Lori L. Pollock. Incremental Call Graph Reanalysis for Object-
Oriented Software Maintenance. In In the proceedings of the International Conference
on SoftwareMaintenance, ICSM, Florence, Italy, pages 682–691. IEEEComputer Society,
2001.

[166] Carol V. Alexandru, Sebastiano Panichella, Sebastian Proksch, and Harald C. Gall.
Redundancy-free analysis of multi-revision software artifacts. Empirical Software
Engineering, 24(1):332–380, 2019.

[167] Steven Arzt and Eric Bodden. StubDroid: automatic inference of precise data-flow
summaries for the android framework. In Laura K. Dillon, Willem Visser, and
Laurie A. Williams, editors, In the proceedings of the 38th International Conference on
Software Engineering, ICSE, Austin, TX, USA, pages 725–735. ACM, 2016.

[168] ThomasW. Reps, Susan Horwitz, and Shmuel Sagiv. Precise Interprocedural Dataflow
Analysis via Graph Reachability. In Ron K. Cytron and Peter Lee, editors, Conference
Record of POPL: 22ndACMSIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, pages 49–61. ACM Press, 1995.

[169] Sharir, Micha and Pnueli, Amir and others. Two approaches to interprocedural data
flow analysis. In New York University. Courant Institute of Mathematical Sciences,
1978.

https://www.seas.upenn.edu/~mhnaik/chord/user_guide/index.html
https://www.seas.upenn.edu/~mhnaik/chord/user_guide/index.html

138 Bibliography

[170] John Whaley and Martin C. Rinard. Compositional Pointer and Escape Analysis for
Java Programs. In Brent Hailpern, LindaM. Northrop, andA.Michael Berman, editors,
In the proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages & Applications, OOPSLA, Denver, Colorado, USA, pages 187–206.
ACM, 1999.

[171] Denis Gopan and Thomas W. Reps. Low-Level Library Analysis and Summarization.
In Werner Damm and Holger Hermanns, editors, In the proceedings of the 19th
International Conference on Computer Aided Verification, CAV, Germany, volume 4590
of Lecture Notes in Computer Science, pages 68–81. Springer, 2007.

[172] Atanas Rountev, Scott Kagan, and Thomas J. Marlowe. Interprocedural Dataflow
Analysis in the Presence of Large Libraries. In Alan Mycroft and Andreas Zeller, edi-
tors, In the proceedings of the 15th International Conference on Compiler Construction,
CC, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS, Vienna, Austria, volume 3923 of Lecture Notes in Computer Science, pages
2–16. Springer, 2006.

[173] Atanas Rountev, Mariana Sharp, and Guoqing Xu. IDE Dataflow Analysis in the
Presence of Large Object-Oriented Libraries. In Laurie J. Hendren, editor, In the
proceedings of the 17th International Conference on Compiler Construction, CC, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS,
Budapest, Hungary, volume 4959 of Lecture Notes in Computer Science, pages 53–68.
Springer, 2008.

[174] Isil Dillig, Thomas Dillig, Alex Aiken, and Mooly Sagiv. Precise and compact modular
procedure summaries for heap manipulating programs. In MaryW. Hall and David A.
Padua, editors, Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, pages 567–577.
ACM, 2011.

[175] Sulekha Kulkarni, Ravi Mangal, Xin Zhang, and Mayur Naik. Accelerating program
analyses by cross-program training. In Eelco Visser and Yannis Smaragdakis, editors,
In the proceedings of the ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA, part of SPLASH, Ams-
terdam, The Netherland, pages 359–377. ACM, 2016.

[176] Maven version ranges. https://maven.apache.org/enforcer/enforcer-rules/
versionRanges.html, 2022. Accessed: 2022-10-21.

[177] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
Future Safe for the Past: Adding Genericity to the Java Programming Language. In
Bjørn N. Freeman-Benson and Craig Chambers, editors, In the proceedings of the
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications, OOPSLA, Vancouver, British Columbia, Canada, pages 183–200. ACM,
1998.

[178] Shrinkwrap. https://github.com/shrinkwrap/resolver. Accessed: 2023-06-26.

https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://maven.apache.org/enforcer/enforcer-rules/versionRanges.html
https://github.com/shrinkwrap/resolver

References 139

[179] Jol. https://openjdk.org/projects/code-tools/jol/. Accessed: 2023-05-06.

[180] Alexandre Decan, Tom Mens, and Philippe Grosjean. An empirical comparison of
dependency network evolution in seven software packaging ecosystems. Empirical
Software Engineering, 2019.

[181] Raula Gaikovina Kula, Coen De Roover, Daniel M. Germán, Takashi Ishio, and
Katsuro Inoue. Modeling library popularity within a software ecosystem. Tech. Rep.,
2017.

[182] Hussein Alrubaye and Mohamed Wiem Mkaouer. Automating the detection of
third-party java library migration at the function level. CASCON, 2018.

[183] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.
Mining trends of library usage. Proceedings of the joint international and annual
ERCIM workshops on Principles of software evolution (IWPSE) and software evolution
(Evol) workshops, 2009.

[184] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. Historical and
impact analysis of API breaking changes: A large-scale study. IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2017.

[185] Caroline Lima and Andre Hora. What are the characteristics of popular APIs? a
large-scale study on java, android, and 165 libraries. Software Quality Journal, 2020.

[186] Miryung Kim, Dongxiang Cai, and Sunghun Kim. An empirical investigation into
the role of API-level refactorings during software evolution. Proceedings of the 33rd
international conference on software engineering, 2011.

[187] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr, Anh Tuan Nguyen,
Miryung Kim, and Tien N Nguyen. A graph-based approach to API usage adaptation.
ACM Sigplan Notices, 2010.

[188] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas Anquetil, Anne Etien,
and Stéphane Ducasse. How do developers react to API evolution? a large-scale
empirical study. Software Quality Journal, 2018.

[189] Rosie Dunford, Quanrong Su, and Ekraj Tamang. The Pareto principle. The Plymouth
Student Scientist, 2014.

[190] Maven repos. https://mvnrepository.com/repos. Accessed: 2023-11-15.

[191] Gartner Inc. Technology insight for software composition analysis. Gartner Inc.,
2023.

[192] Software market revenue. https://www.statista.com/outlook/tmo/software/
worldwide. Accessed: 2023-07-26.

[193] Cyber resilience act. https://digital-strategy.ec.europa.eu/en/policies/
cyber-resilience-act. Accessed: 2023-07-31.

https://openjdk.org/projects/code-tools/jol/
https://mvnrepository.com/repos
https://www.statista.com/outlook/tmo/software/worldwide
https://www.statista.com/outlook/tmo/software/worldwide
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/policies/cyber-resilience-act

140 Bibliography

[194] Amir M Mir, Mehdi Keshani, and Sebastian Proksch. On the effectiveness of
machine learning based call graph pruning: An empirical study. arXiv preprint
arXiv:2402.07294, 2024.

[195] Oxford ecosystem definition. https://www.oed.com/dictionary/ecosystem_n?tab=
meaning_and_use#5970695. Accessed: 2023-11-15.

[196] Sonatype. https://www.sonatype.com/. Accessed: 2023-11-15.

[197] Maven requirements. https://central.sonatype.org/publish/requirements/. Accessed:
2023-07-19.

[198] Replication package. https://zenodo.org/doi/10.5281/zenodo.10143429. Accessed:
2023-08-1.

[199] Packaging types. https://www.baeldung.com/maven-packaging-types. Accessed:
2023-11-17.

[200] Maven indexer. https://github.com/apache/maven-indexer/blob/
master/indexer-core/src/main/java/org/apache/maven/index/artifact/
DefaultArtifactPackagingMapper.java. Accessed: 2023-07-03.

[201] Multi-archive example. https://repo.maven.apache.org/maven2/de/mediathekview/
MServer/3.1.60/. Accessed: 2023-07-03.

[202] Checksum discussion. https://www.mail-archive.com/dev@maven.apache.org/
msg125281.html. Accessed: 2023-07-19.

[203] Checksum documentation. https://maven.apache.org/resolver/about-checksums.
html. Accessed: 2023-07-06.

[204] Maven package: com.crawljax.crawljax-cli. https://repo1.maven.org/maven2/com/
crawljax/crawljax-cli/5.1.1/. Accessed: 2023-08-01.

[205] Grace A. Lewis, Ipek Ozkaya, and Xiwei Xu. Software architecture challenges for ml
systems. In International Conference on Software Maintenance and Evolution, pages
634–638, 2021.

[206] Russ Cox. Surviving software dependencies. Commun. ACM, 2019.

[207] Cyrille Artho, Kuniyasu Suzaki, Roberto Di Cosmo, Ralf Treinen, and Stefano Zac-
chiroli. Why do software packages conflict? 9th IEEE Working Conference on Mining
Software Repositories (MSR), 2012.

[208] Christopher Bogart, Christian Kästner, and James Herbsleb. When it breaks, it
breaks: How ecosystem developers reason about the stability of dependencies. 30th
IEEE/ACM International Conference on Automated Software Engineering Workshop
(ASEW), 2015.

https://www.oed.com/dictionary/ecosystem_n?tab=meaning_and_use#5970695
https://www.oed.com/dictionary/ecosystem_n?tab=meaning_and_use#5970695
https://www.sonatype.com/
https://central.sonatype.org/publish/requirements/
https://zenodo.org/doi/10.5281/zenodo.10143429
https://www.baeldung.com/maven-packaging-types
https://github.com/apache/maven-indexer/blob/master/indexer-core/src/main/java/org/apache/maven/index/artifact/DefaultArtifactPackagingMapper.java
https://github.com/apache/maven-indexer/blob/master/indexer-core/src/main/java/org/apache/maven/index/artifact/DefaultArtifactPackagingMapper.java
https://github.com/apache/maven-indexer/blob/master/indexer-core/src/main/java/org/apache/maven/index/artifact/DefaultArtifactPackagingMapper.java
https://repo.maven.apache.org/maven2/de/mediathekview/MServer/3.1.60/
https://repo.maven.apache.org/maven2/de/mediathekview/MServer/3.1.60/
https://www.mail-archive.com/dev@maven.apache.org/msg125281.html
https://www.mail-archive.com/dev@maven.apache.org/msg125281.html
https://maven.apache.org/resolver/about-checksums.html
https://maven.apache.org/resolver/about-checksums.html
https://repo1.maven.org/maven2/com/crawljax/crawljax-cli/5.1.1/
https://repo1.maven.org/maven2/com/crawljax/crawljax-cli/5.1.1/

References 141

[209] Donald Pinckney, Federico Cassano, Arjun Guha, Jonathan Bell, Massimiliano Culpo,
and Todd Gamblin. Flexible and optimal dependency management via max-smt.
IEEE/ACM 45th International Conference on Software Engineering (ICSE), 2023.

[210] Apache software foundation. https://www.apache.org/. Accessed: 2023-06-01.

[211] Abbas Javan Jafari, Diego Elias Costa, Emad Shihab, and Rabe Abdalkareem. Depen-
dency update strategies and package characteristics. ACM Transactions on Software
Engineering and Methodology, 2023.

[212] Jincheng He, Sitao Min, Kelechi Ogudu, Michael Shoga, Alex Polak, Iordanis Fo-
stiropoulos, Barry Boehm, and Pooyan Behnamghader. The characteristics and
impact of uncompilable code changes on software quality evolution. Proceedings -
2020 IEEE 20th International Conference on Software Quality, Reliability, and Security,
QRS 2020, 2020.

[213] Md Atique Reza Chowdhury, Rabe Abdalkareem, Emad Shihab, and Bram Adams. On
the untriviality of trivial packages: An empirical study of npm javascript packages.
IEEE Transactions on Software Engineering, 2021.

[214] Filipe Roseiro Cogo, Gustavo A Oliva, and Ahmed E Hassan. An empirical study
of dependency downgrades in the npm ecosystem. IEEE Transactions on Software
Engineering, 2019.

[215] Alexandre Decan, Tom Mens, and Maëlick Claes. An empirical comparison of
dependency issues in oss packaging ecosystems. IEEE 24th international conference
on software analysis, evolution and reengineering (SANER), 2017.

[216] Riivo Kikas, Georgios Gousios, Marlon Dumas, and Dietmar Pfahl. Structure and
evolution of package dependency networks. IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), 2017.

[217] Joseph Hejderup, Moritz Beller, Konstantinos Triantafyllou, and Georgios Gousios.
Präzi: from package-based to call-based dependency networks. Empirical Software
Engineering, 2022.

[218] Maelick Claes, Tom Mens, Roberto Di Cosmo, and Jérôme Vouillon. A historical
analysis of debian package incompatibilities. 2015 IEEE/ACM 12thWorking Conference
on Mining Software Repositories, 2015.

[219] Raymond Nguyen and Ric Holt. Life and death of software packages: an evolutionary
study of debian. Proceedings of the 2012 Conference of the Center for Advanced Studies
on Collaborative Research, 2012.

[220] Israel Herraiz, Emad Shihab, Thanh HD Nguyen, and Ahmed E Hassan. Impact of
installation counts on perceived quality: A case study on debian. 2011 18th Working
Conference on Reverse Engineering, 2011.

https://www.apache.org/

142 Bibliography

[221] César Soto-Valero, Deepika Tiwari, Tim Toady, and Benoit Baudry. Automatic
specialization of third-party java dependencies. arXiv preprint arXiv:2302.08370,
2023.

[222] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann, Johannes
Lerch, and Mira Mezini. Codematch: obfuscation won’t conceal your repackaged
app. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
2017.

[223] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei Zhang. Towards a
scalable resource-driven approach for detecting repackaged android applications.
Proceedings of the 30th Annual Computer Security Applications Conference, 2014.

[224] Reproducible builds projects. https://reproducible-builds.org/who/projects/. Ac-
cessed: 2024-03-25.

[225] Guide reproducible builds. https://maven.apache.org/guides/mini/
guide-reproducible-builds.html. Accessed: 2024-04-07.

[226] Thanh Le-Cong, Hong Jin Kang, Truong Giang Nguyen, Stefanus Agus Haryono,
David Lo, Xuan-Bach D Le, and Quyet Thang Huynh. Autopruner: transformer-
based call graph pruning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 520–532, 2022.

[227] Akshay Utture, Shuyang Liu, Christian Gram Kalhauge, and Jens Palsberg. Striking
a balance: pruning false-positives from static call graphs. In Proceedings of the 44th
International Conference on Software Engineering, pages 2043–2055, 2022.

[228] A Al-Kaswan and M Izadi. The (ab) use of open source code to train large language
models. In 2023 IEEE/ACM 2nd International Workshop on Natural Language-Based
Software Engineering (NLBSE), 2023.

https://reproducible-builds.org/who/projects/
https://maven.apache.org/guides/mini/guide-reproducible-builds.html
https://maven.apache.org/guides/mini/guide-reproducible-builds.html

Curriculum Vitæ 143

Mehdi Keshani

Education
05/2019 – 01/2024 PhD, Software Engineering Research Group,

Delft University of Technology, The Netherlands,
Topic: Enhancing the Security of Software Supply Chains:
Methods and Practices.
Supervisor: Dr. Sebastian Proksch
Promoter: Prof. Dr. Arie van Deursen

09/2016 – 12/2018 MSc, Software Engineering,
Sharif University of Technology, Iran,
Topic: Cross-project code clones in GitHub.

09/2011 – 05/2016 BSc, Software Engineering,
University of Isfahan, Iran

Services
2019 – 2022 Member of leading team, FASTEN Project, TU Delft
2019-2023 Co-reviewer, ICSE, FSE, and ASE conferences
2024 PC member, NLBSE
2020 Organizer, A member of ICSE virtualization team

Supervision
2019 - 2023 Supervisor of twelve undergraduate theses
2019 - 2022 Co-supervisor of five undergraduate research assistants
2017 Supervisor of one undergraduate thesis

Teaching
2022 Teaching Assistant, Release Engineering for Machine Learning

by Dr. S. Proksch and Dr. L. Cruz, Graduate course, TU Delft
2018 Teaching Assistant, Database Design

by Dr. A. Heydarnoori, Undergraduate course, Sharif
2017 Teacher, Operating System Workshop,

Undergraduate course, Sharif
2017 Teaching Assistant, System Analysis and Design

by Dr. A. Heydarnoori, Undergraduate course, Sharif

Tech. Experience
Coding JAVA, Python
Data analysis SQL, Redis, RocksDB, Kafka, Python, R
AI/Data Science Python, R
System Linux, Docker, K8

