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Abstract

Pressure hulls are, especially for manned vehicles, one of the key structures of a submarine.

Contributing roughly one third to the total submarine weight, these hulls provide a watertight

envelope that must bear the hydrostatic external load. The design of such a structure can

be complex as the whole submarine has to reach neutral buoyancy. Hence, the addition of

structural hydrostatic load bearing capacity is not a straightforward operation. Increase of

structural weight is not an option as it decreases the weight budget of the payload, engine and

other performance related features. Obviously, the use of a lightweight pressure hull opens the

door to a performance increase.

In the search of a lightweight pressure hull, it is found that use of composite materials can be

a solution. However, a composite pressure hull design encapsulates the design of the composite

itself. For this reason, pressure hull finite element models are created that include the composite

related material mechanics. Suitable weight minimization techniques are performed on these

models and results were compared to the conventional heavyweight pressure hull. As a result, it

is demonstrated that pressure hulls made of sandwich-constructed composite offer a promising

weight reduction of 28% with respect to the conventional reference design.
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Chapter 1

Introduction

Pressure hulls are, especially for manned vehicles, one of the key structures of a submarine.

Contributing roughly one third to the total submarine weight [1], these hulls provide a water-

tight envelope that must bear the hydrostatic external load. The design of such a structure

can be complex as the whole submarine has to reach neutral buoyancy. Hence, the addition of

structural hydrostatic load bearing capacity is not a straightforward operation. Increasing the

structural weight as a (very possible) result of this operation decreases the weight budget of the

payload, engine and other performance related features. Obviously, reduction of the structural

weight opens the door to performance increase.

To accomplish such weight reductions one has to consider the whole pressure hull design. With

the mechanical analysis and functional knowledge of the these hulls, concepts in weight reduc-

tion can be made. It can be said that the utilization of lightweight materials is one of the most

promising concepts. Similar to aerospace development, composite materials can play a key role

in lightweight pressure hull design. But as the design of a composite structure comprises the

design of the actual composite material itself, understanding the mechanics of such a material

is crucial. However, mechanical behavior of composites is more complex than the convention-

ally applied metals. The inherent anisotropic properties of composites can, if applied correctly,

cause an increase of the (specific) structural mechanical performance. On the other hand, when

wrongly applied, numerous failure mechanisms can cause unwanted collapse of the structure.

Hence, the weight reduction process for a composite structure deals with these mechanics. Ul-

timately, the composite is tailored such that it provides enough strength to bear the structural

loads. In this field, optimization algorithms are powerful tools to accomplish the latter while

the weight is reduced. But as a composite laminate consists of many plies, this optimization

can be quite a challenge, especially in a finite element (FE) formulation. The use of lamination

parameters in a FE description of the structure decreases this computational intensity because

of their higher level (or homogenized sectional) description of the material. In the present thesis,

these parameters are used in a framework that minimizes the weight of the composite pressure

4



hull. Subsequently, with the knowledge of the optimal lamination parameters, a lay-up for the

hull can be found in a computational extensive manner.

The conventional pressure hull is handled as a reference throughout the present work. Re-

sults for weight reduced designs are compared with this reference in order to get an idea of

the reduction. Collapse of these ring-stiffened cylinders can originate from different mechanical

sources such as geometrical imperfections or material yielding. The influence of these mecha-

nisms on the overall collapse are elaborated. Ultimately, a FE model of a experimentally tested

pressure hull is constructed that accounts for these effects. This model is validated and its limit

in weight reduction is estimated by means of an optimization. Results in weight reduction are

compared to the composite pressure hull optimization outputs and conclusions are drawn.

To summarize, in the present master’s thesis the author focuses on the potential of compos-

ite pressure hulls with respect to the conventional pressure hull. At first, a brief journey into

pressure hull history is treated in Section (2.1). Hereafter, an overview of the submarines found

nowadays is provided in Section (2.2). Subsequently, the general aspects of a pressure hull are

treated in Section (2.3) and the motivation for a weight reduced design and the focus for the

present thesis is presented in Section (2.4). Before the composite pressure hulls are treated, it

is important to understand the mechanics of an conventional pressure hull. These mechanical

aspects are treated in Section (3). As mentioned earlier, the knowledge of the mechanical be-

havior for a composite material is crucial. Hence, Section (4) elaborates the most important

mechanical topics for composites. The use of lamination parameters and the framework for a

structural composite optimization process in FE are treated in Section (4.3). Along with the

reference model, FE models of composite pressure hulls are described and optimized according

to this framework in Section (5). At last, conclusions and recommendations are presented in

Section (6).

5



Chapter 2

General description of

submarines

This chapter has the purpose to give a concise background description of the present thesis.

As a brief journey in time the historical background of submarines is treated in Section (2.1).

Additionally, various submarine vehicles that are found nowadays are presented in Section (2.2).

The hydrostatic pressure bearing structure that is found in the majority of submarine vehicles,

the pressure hull, is introduced in Section (2.3). Next, the effect of structural weight reductions

and the possibilities for weight reduction are discussed in Section (2.4). As an important note,

the general purpose for the present thesis is proposed in Section (2.5). Finally, important

conclusions of this chapter are found in Section (2.6).

2.1 Historical background

In the following a concise historical background for the pressure hull is provided. The present

author has chosen to pick a few important events from the past for the sake of brevity.

The Drebbel

The first steerable submersible was built in 1620 by Cornelis Jacobszoon Drebbel. This Dutch-

man created the vehicle with the standards outlined by an earlier design from the English

mathematician William Bourne. The hull of the so-called ”Drebbel” was made of leather and

reinforced by an internal structure of wood. Negative buoyancy was accomplished by letting

in water through holes in the sides that flooded water tight compartments between orloppes

(i.e. decks). To return to the surface, bellows-pistons operated by large wooden screws forced

the water back out through holes in the hull, a technique suggested earlier by William Bourne [2].

Drebbel presented the submersible to the English Royal Navy at the river Thames in 1620.
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Figure 2.1: Artist impression of the Drebbel in the Thames, the figure is in the public domain.

Figure 2.2: Diagram of David Bushnell’s Turtle submarine from [3]

The vehicle was powered by 6 oars and was able to carry 16 persons. At the time, the provision

of oxygen was the main issue. He managed to create oxygen with the help of potassium ni-

trate or sodium nitrate. By heating these substances oxygen is emitted. Although the Drebbel

was submerged successfully for three hours with an average cruising depth of 4-5 meters, the

Royal Navy was not convinced that submersibles were applicable in naval warfare. This event

is illustrated in Fig. (2.1).

The American Turtle

Ironically, the first military submersible was build by David Bushnell, an American Patriot that

designed it for use against the British Royal Navy during the American Revolutionary War in

1775. The vehicle which was called the Turtle (or American Turtle) had only place for one per-

son. It was about 10 feet long, 6 feet tall and 3 feet wide and was named after its shape. Two

tar covered wooden shells were reinforced with steel to form the hull. The craft’s propulsion

was hand and feet powered with horizontal and vertical Archimedean screw propellers. It could

stay submerged for about 30 minutes because of the amount of air contained in the vessel. As

Fig. (2.2) illustrates, there was a detachable mine at the back of the submersible.

With an mechanically timed mine explosion the stealthy submersible was the first submersible
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Figure 2.3: Diagram of a German Type XXI U-boat class submarine, from the U.S. government docu-
mentation found in [5]

that was used in combat and was specially designed to eliminate warships. It was able to move

rapidly for 20 feet underwater while carrying and attach the 2000 pounds of gunpowder to the

hull of a enemy ship. Unfortunately for Bushnell, all attempts to sink the British warships failed.

Moreover, in 1776 Bushnell tried to transport the Turtle on a sloop; but the British discovered

him, and with a few well-placed cannonballs sank the vessel and its precious cargo [4].

XXI U-Boat

During World War II the Germans developed a XXI U-Boat class submarine (displayed in

Fig.(2.3)) primarily designed for submerged performance. Unlike the surface ships that could

submerge once in danger, these electric powered boats were able to travel submerged at about

5 knots for two or three days before recharging. By the use of a snorkel the batteries were

re-charged within five hours. The design also decreased its appearance on marine or airborne

radar when surfaced. As a result the XXI U-boat was more stealthy and less in danger from

aircraft which sank about 56% of all U-boats lost in the war [6]. Because of the streamlined

design and the increased battery power these boats were able to outrun many surface ships at

a speed over 17 knots, while submerged.

The Trieste

In 1960 Jacques Piccard and U.S. Navy Lieutenant Don Walsh were the first that have reached

the bottom of the Challenger deep at Mariana Trench, i.e. the deepest known point in the Earths

ocean floor. By reaching a depth of about 10,890 meters the vehicle, bathyscaphe ”Trieste”,

was able to withstand over 110 MPa hydrostatic pressure. Due to the over-dimensioned nickel-

molybdenum alloyed steel pressure sphere with a thickness of 12.7 centimeters a float was needed
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Figure 2.4: Cutaway of Trieste, adapted from [7]

to attain neutral buoyancy. This float was made of thin steel (about 0.5 centimeter) and was

filled with 85,000 liters of aviation gasoline, a liquid with a specific gravity of approximately

0.7. Since this gasoline is more compressible than water, the rigid steel float has to be pressure-

compensated during the descent. By allowing sea water to flow in via a two way valve located

in the float, the pressure difference is compensated during the trip. As a result from this

compressibility, every descending 900 meters 1 ton ballast must be dropped to maintain neutral

buoyancy [7]. An illustration of the Trieste is displayed in Fig.(2.4).

2.2 Submarines: State of the art

Submarine vehicles that are found nowadays are treated in the following. A division is made be-

tween military submarines, Section (2.2.1), and submersibles in the commercial field, in Section

(2.2.2).

2.2.1 Military submarines

Advanced modern day military submarines never need to refuel throughout their life spans of

about 25 years because of their nuclear powered propulsion [8]. Being even faster submerged

than surfaced, supply in food, other payload and maintenance of the vehicle are the only limiting

factor in terms of submerged time. A part of the electricity provided by the nuclear reactor is

used to produce oxygen by electrolysis of water. The only major loss of stealth is that the nuclear

power plant is noisier than a battery powered submarine. The use of pumps in active cooling

systems and steam turbine generators brings the noise to an unwanted higher level. However,

recent developments in noise isolation and damping have made nuclear submarines quieter and

hence notorious.
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Figure 2.5: Impression of the ”Deepsea Challenger”, illustration is adapted from Acheron Project Pty
Ltd Deepsea Challenger

Another modern day trend is the use of a so-called swimmer or seal delivery vehicle (SDV)

to serve as a clandestine special forces transport [9]. This relatively small submarine vehicle,

commutes between the larger main submarine and the hostile shores. It is able to carry 4 Special

Forces and their equipment over a distance of a nautical mile. An example of such a vehicle is

the Sivercrest Marine SDV which is constructed from glass fiber reinforced plastic attached to

a marine grade aluminium frame. The vehicle serve can operate at depths up to 50 meters.

2.2.2 Submersibles

Recently, in 2012 the Canadian film director James Cameron piloted the deep-diving submersible

named ”Deepsea Challenger” to reach the bottom of the Challenger Deep. Remarkably, this

was the second manned dive ever to dive the Challenger Deep, 52 years after the Trieste (see

Section (2.1)). The submersible, displayed in Fig.(2.5) had a pilot sphere of steel with a 64 mm

wall thickness. It was tested successfully to withstand 114 MPa of pressure. At its decent, the

vehicle carried 500 kg of ballast weight that was released at the ocean floor to be able to rise to

the surface. Cameron equipped the craft with cameras and recording devices, his aim is create

a movie with the recorded material.

Apart manned submersibles, major development of unmanned vehicles such as remotely oper-

ated vehicles (ROVs) and autonomous underwater vehicles (AUVs) has taken during the last

decades. ROVs are tethered to a ship and could for instance be used in deep water industries

such as offshore oil and gas industries. In this field, ROVs are required to perform versatile tasks

ranging from inspection to the connecting underwater pipelines. Hence it is no surprise that these
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vehicles are highly maneuverable and are well equipped in terms of sensors and mechanical tools.

The AUV, which is the autonomous variant of the latter, is mainly found in fields where un-

derwater research needs to be performed. Oceanographers use these vehicles to study the water

by performing measurements with equipped sensors. Furthermore, ocean floors can be mapped

with AUVs cost efficiently in for instance oil and gas industries. Because of their autonomic

character these vehicles are mainly powered by batteries with a sufficiently large capacity with

respect to the operation requirements.

2.3 Pressure hull description

The concept of a pressure hull is treated in this section. A basic description is given in Section

2.3.1. In the succeeding section the emphasis is on requirements, in Section 2.3.2.

2.3.1 Basic description

Pressure hulls are structures found in most of the submarines nowadays. The function of these

structures is to form a watertight envelope which forms the barrier between the hydrostatic

external pressure and the desired internal pressure. According to the actual submarine design,

the pressure hull could be exposed on the outer envelope of the hull or hidden behind a light

hull. All forms in between are of course also possible.

AUVs and UAVs carry equipment that needs to operate in a dry and atmospheric environ-

ment, therefore a pressure hull is required for fulfilling this task. For manned vehicles, the

inside of the pressure hull is where the pilot (and crew) are located. Designing a pressure hull

is a challenging task. Requirements like depth, fatigue life and impact can result in a pressure

hull that is negatively buoyant due to the increase structural weight. Hence, as a designer it is

important to understand the mechanics behind different pressure hull concepts that arise from

particular requirements. In the next, a selection of these concepts is treated.

Conventional submarines are equipped with ring stiffened pressure hulls. Contrarily, pressure

hulls in deep diving submersibles are in general spherical. Since there are lot of different pressure

hull concepts, a selection is presented in Appendix A. Note that the the ring stiffened pressure

hull is treated as a reference in the present thesis. The mechanics and capabilities of this concept

are explored and elaborated, with the idea to understand and ultimately improve this concept.

2.3.2 Operational requirements

The aforementioned applications in Section (2.2) are considered to be the most fundamental

appearances of a pressure hull found nowadays. In order to come up with various pressure hull

concepts for a particular application, the operational requirements must be formulated. For
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Figure 2.6: Hypsometric curve of the Earth’s wet surface with operation depth indicators for various
types of submarines

each individual application a list of basic requirements can be created. The requirements listed

in the next are presented in a minimal form. More specific and precise requirements are not in

the scope of the present thesis.

Diving depth

To start with the discussion on submarine diving depth capabilities, the earth’s ocean floor is

considered. In Fig.(2.6) an cumulative graph is shown for the earth’s ocean floor depth distri-

bution. In this figure, maximum diving depths are indicated for several sorts of submarines.

As indicated, military submarines usually dive 300-450 meters at max. Since it is important

for a military submarine to remain undetected and with acoustic detection as the primary form

of detection, the submarine has to travel silent. A solution other than adding damping to e.g.

noise producing equipment is the increase of the diving capabilities. Sound waves rarely travel

in straight lines in sea water, the variations in temperature and salinity causing their refraction.

This phenomenon can often result in a surface duct in which sound waves initiated, by active

acoustic detection from surface units, are refracted back up to the surface along a curved path of

only limited depth penetration. The surface duct depth will vary depending on ocean climatic

conditions, but it is clearly advantageous to a submarine to be able to get below this depth

where it can avoid detection from surface surveillance [1].

For these and other types of submarines such as offshore ROVs, estimated maximum diving

depths are listed in Table (2.1). In this table one can see that for non-military purpose sub-

marines, the diving depths maximal diving depths are relatively large. But because of the
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Category Maximum diving depth [m]

Shallow water submarine 50[1]

Military submarine 400[1]

Deep water military submarine 750[10]

Offshore submersible 5000[11]

Research submersible 11000[11]

Table 2.1: List of diving depth requirements

increasing threat in anti-submarine warfare, depth performance is becoming more important for

military applications [11].

Performance

In Appendix B a typical list of general requirements for a military submarine is presented. For

the sake of briefness, only this list is added to the present thesis. Requirements related to for

instance research submersibles are much alike; of course apart from e.g. load requirements due

to weapon effects and stealth requirements.

The focus for the present thesis will be on the depth induced hydrostatic pressure requirement.

To form an actual pressure hull performance with respect to overall weight of the structure is

considered to be of great importance. This important aspect of the current research is elaborated

in Section (2.4), which is the next section.

2.4 Design for weight reduction

In general, a submarine is a weight-sensitive structure in which the buoyancy and weight have

to reach an equilibrium state. For a given enveloped volume, reducing the structural weight

of the submarine has positive effects, e.g. larger payload capability, increase of engine size or

even additional structural reinforcement which can ultimately result in even larger depths [12].

The weight of the pressure hull is an important part of the overall weight. For a conventional

submarine the steel pressure hull represents roughly one third of the submerged displacement

[9]. Hence, the application of lightweight materials as a replacement for the conventional steel

in pressure hulls can improve the overall performance of the vehicle [13]. In the search of such

materials, the focus is in the first place on materials that show large specific (normalized w.r.t.

density) properties in compressive strength and stiffness. This search is performed in Appendix

C. From this search it is observed that construction in composite materials is promising. For the

present thesis, the composite and composite sandwich cylindrical pressure hull are considered. Of

course, the idea of such composite pressure hulls is not new and has been researched intensively

(e.g. by [14], [13],[15] and [12]). Furthermore, a comprehensive cost based study is performed

[11] in the light of these pressure hulls which indicates that the use composites of composite

should definitely be considered in future pressure hull design. It is proposed that unstiffened
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cylindrical composite cylinders are the optimal choice when the submarine operates in deep

water regimes. Additionally, sandwich pressure hulls are found to be superior in shallow design

depths. However, the author indicated that a more accurate description, e.g. a FE model,

is needed to analyze and investigate an actual design. Additionally, it is important to note

that composites are already successfully applied in pressure hulls. In fact, the first submersible

(built by Vickers-Slingsby) for commercial operation with a glass fiber reinforced plastic (GRP)

pressure hull is the so called L.2. This submersible, has a maximum operating depth of over

350 meter, successfully made its first dive in 1975 in Loch Linnhe in Scotland. The former is

described by [16] and indicates that this submersible is found to be extremely successful during

operations.

2.5 Purpose of the present work

As indicated earlier, much research is performed in the field of composite pressure hulls. In the

search of a composite laminate design, [17] used an linearized analytical buckling model coupled

to a genetic algorithm to determine numerically optimized stacking sequences. However, the in-

vestigated model was prone to buckling and material failure effects did not had major influence

on the collapse. Moreover, the found optimum was modeled in FE but due to computational

intensity this model was not optimized and only used for the purpose of validation.

The optimum design of filament-wound multi-layer sandwich pressure hulls is treated in [18].

Analogous to the previous, a genetic algorithm is used which is coupled to an analytical lin-

earized buckling model in order to find an optimum. Although material failure is taken into

account general accuracy is still comparable with [17].

The ultimate purpose of this thesis is to formulate a basis for a lightweight design framework

that uses composite and composite sandwich pressure hull FE models to accomplish an opti-

mization procedure. If applied correctly, more realistic modeling can be performed with the use

of FE. In order to do this, at first, the fundamentals of pressure hull mechanics needs to be as-

sessed and together with an accurate mechanical composite and sandwich material description,

FE models need to be created. Second, optimization can be performed to obtain the preferred

goal, e.g. weight minimization or maximization of collapse pressure. Resulting designs from this

procedure are treated and in order to quantify the improvement of such a lightweight pressure

hull, the conventional ring stiffened cylindrical pressure hull is treated as a reference.

2.6 Conclusion

From the very first documented steerable submarine to present time, pressure hulls form one

of the most important parts of submarine vehicles. Section (2.4) states that the appliance of

lightweight materials in pressure hulls holds the key for the gain in performance increase. In
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this field, much research is performed but the optimal laminate design is only treated in a low

fidelity mechanical description.

To the author’s best knowledge, the use of FE pressure hull models in a thorough compos-

ite laminate optimization context has not been investigated. Hence, the ultimate purpose of

this thesis is to formulate a basis for a lightweight design framework that uses composite and

composite sandwich pressure hull FE models to accomplish an optimization procedure. Besides,

it is important to elaborate the related mechanics within a pressure hull, the methods laminate

design and composite related mechanics. Resulting designs from this procedure are treated and

in order to quantify the improvement of such a lightweight pressure hull, the conventional ring

stiffened cylindrical pressure hull is treated as a reference.
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Chapter 3

Pressure hull mechanics

For the search of a lightweight pressure hull, it is important to describe the actual mechanics of

such a structure. A rough first order description is given in Section (3.1). Because the conven-

tional ring stiffened cylinder is treated as a reference, a mechanical description is elaborated in

Section (3.2). Furthermore, buckling of these cylinders is specifically treated in Section (3.3).

Because differences in nominal structural geometry can affect the overall ability to resist the

external pressure tremendously, it cannot be neglected in the present thesis. Therefore, Section

(3.4) describes this important effect.

3.1 Boiler formulae approach

A first approach to understand the basic mechanics of a hull under external pressure is analogous

to the approach discussed in [12]. It makes use of the boiler formula and despite the simplicity

it is a good start in the process of pressure hull mechanics. This approach considers an infinite

cylinder under external pressure. The so-called boiler formulae yield:

σθ =
pd

2t
, (3.1)

σx =
pd

4t
. (3.2)

For simplicity the longitudinal stresses σx are ignored. Now, the formula for the circumferential

stress remains in this section. Giving that σθ is the circumferential stress, which is compressive

in case of an external pressure p. Further, d stands for the inner diameter and the thickness

is denoted by t. From here, the formula can be written in terms of the external pressure.

By introduction of the compressive yield strength σyc, the critical pressure for the concerned

material can be found. Hence,

pcm =
2σyct

d
. (3.3)
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Here, pcm is the critical pressure related to compressive yield of the material. Unfortunately,

another big failure mechanism for these structures is buckling. Again, by assuming the infi-

nite cylinder and ignoring the longitudinal effects, a critical pressure related to circumferential

buckling is given by [19]:

pcb =

(
n2 − 1

)
Dshell

r3
. (3.4)

In this formula, pcb is the critical pressure related to buckling failure. The number of circumfer-

ential buckling waves is given by n. The inner radius is denoted by r. The flexural shell rigidity

Dshell is given by:

Dshell = 1/12Et3 . (3.5)

In this expression, E is the Young’s modulus or stiffness. If one writes Eq. (3.4) in terms of the

inner diameter d, one will easily find that:

pcb =
2Et3

d3
. (3.6)

Note that collapse in the so-called ovalizing mode (n = 2) is assumed in this equation. In

hydromechanics, an important measure for any hull is its weight to displacement ratio. It can

be interpreted as an indication of buoyancy. If this ratio is smaller or larger than unity, the

structure will float or sink, respectively. For neutral buoyancy this ratio is equal to unity. To

express this ratio for a cylinder the expressions for weight (W ) and displacement (∆) are given

by:

W = ρ gπ dt , (3.7)

∆ = 1/4 ρwgπ d2 , (3.8)

where in Eq. (3.7) the ρ denotes the (average) hull density and the gravitational acceleration is

g. And where in Eq. (3.8) the density of water is ρw . The weight to displacement ratio can now

be expressed as:
W

∆
=

4ρ t

dρw
. (3.9)

From here Eq. (3.3) and Eq. (3.6) are written as function of this ratio.

pcm =
σycρw
2ρ

W

∆
, (3.10)

pcb =
E

32

(
ρwW

ρ∆

)3

. (3.11)

Additionally, the critical pressure can be translated through Eq. (3.12) to a collapse depth of

the hull. In this equation, pc is the collapse pressure, i.e. collapse due to either buckling or

material failure. The equation yields

Hc =
pc
gρw

. (3.12)
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Material E [Gpa] σyc [MPa] ρ [kg/m3]
Steel - HY80a 207 550 7800
CFRP (epoxy / HS carbon unidirectional)a 210 1200 1700
GRP (epoxy / S-glass filament wound)a 50 1000 2100
Titanium (6-4 STOA alloy)a 110 830 4500
Reinforced concreteb 28 87 1950

Table 3.1: List of material properties. Properties indicated with a,b are adopted from [12],[20] respec-
tively.

Note that in this equation g is the gravitational acceleration. With this expression, Eq. (3.10)

and Eq. (3.11) can be written in terms of the collapse depth:

Hcm =
σyc

2ρg

W

∆
, (3.13)

Hcb =
Eρw

2

32ρ3g

(
W

∆

)3

. (3.14)

With the knowledge about the density ρ, Young’s modulus E and compressive yield strength

σyc of a material, a collapse depth vs. weight to displacement ratio graph can be constructed.

This list of material properties is found in Table (3.1).

In the following, Eq. (3.13) and Eq. (3.14) are visualized, using the materials listed in Ta-

ble (3.1). The result is shown in Fig. (3.1) for a range of 0 - 11 km in depth. For each material

there is a dashed line yielding the material failure collapse depth. The buckling collapse is in-

dicated with a solid line, which is curved because of the cubic relation between collapse depth

and the weight to displacement ratio. Clearly, for large depths, CFRP (Carbon Fiber Rein-

forced Plastic) is in this approach superior. The performance of GRFP (Glass Fiber Reinforced

Plastic) is also quite surprising. The performance of titanium is still better than steel. Also,

steel still performs better than the reinforced concrete for large weight to displacement ratios.

The same formulae are used for a shallow water application, i.e. 0 - 1000 m depth. The result

is given in Fig. (3.2). Given the previous assumptions, steel performs the worst in this region.

Titanium comes second, followed by reinforced concrete and GFRP. Like the deep-water sub-

mersible, CFRP performs the best of all the selected materials. It is clear that from the treated

calculations one can deduce that CFRP and GFRP are promising pressure hull materials. But

one must not forget the simplicity of the model, i.e. the infinite cylinder with circumferential

collapse due to buckling and material failure.

3.2 Basics of stiffened cylinders

To observe the mechanical behavior of a stiffened cylinder, which is in the present work consid-

ered as the reference model, the method treated in [21] is elaborated in the following. Going

back to the boiler formulae, i.e. Eq. (3.1) and Eq. (3.2), the internal forces per unit length can
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Figure 3.1: Critical collapse depths (0 - 11 km) for material failure (dashed lines) and buckling (solid
lines) as a function of the weight to displacement ratio.

be deduced. When a slice of length ∆x is cut of the shell, the hoop force is given by:

Nθ = pr . (3.15)

And the longitudinal force per unit length yields:

Nx =
pr

2
. (3.16)

The values of Nθ and Nx, in the unstiffened case, are simply found by multiplying σθ and σx

with t, respectively. But if we now define the effective thicknesses as:

tθ = t+
AR

l
, (3.17)

tx = t . (3.18)

With tθ as the effective thickness in the circumferential direction. In this stiffened case there

are ring-stiffeners in the circumferential direction, each at a distance l apart from each other.

Further, the cross section of the ring stiffener is AR. The effective thickness in the longitudinal
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Figure 3.2: Critical collapse depths (0 - 1000 m) for material failure (dashed lines) and buckling (solid
lines) as a function of the weight to displacement ratio.

direction is tx. The axial and hoop stress for the unstiffened cylinder is found by division of the

hoop force per unit length and the shell thickness. But since there are ring stiffeners that share

the same hoop strain and with the assumption that there is a plane-stress condition in the shell,

Hooke’s law can be applied:

Eϵθ = σθ − νσx = σR , (3.19)

Where σR is the stress in the ring stiffeners. Likewise, the stress in shell in longitudinal direction

is given by σx and the hoop stress is σθ. The Poisson’s ratio is given by ν. Given that the internal

forces are calculated as:

Nθ = tσθ +
AR

l
σR , (3.20)

Nx = tσx . (3.21)

The three equations, Eq. (3.19), Eq. (3.20) and Eq. (3.21) can now give information about the

stresses:

σθ =
pr

2

2 t+ ν tθ − ν t

tθt
, (3.22)

σx =
pr

2t
, (3.23)
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Figure 3.3: The ratio between longitudinal and circumferential hull stress as a function of the ring
stiffener density

σR =
pr

2

2− 4 ν2 + ν

tθ
. (3.24)

Notice that Eq. (3.23) is the same as obtained in the boiler formula approach (see Section 3.1).

The ratio (σx/σθ) for a varying quantity which can be seen as a ring stiffener density (AR/lt)

is shown in Fig. (3.3) for a typical value for the Poisson’s ratio ν = 0.3. In this figure it can

be observed that this ratio changes significantly when the ring density is increased. Notice that

for a situation where no ring stiffeners are present, i.e. AR/lt = 0, the well-known 2:1 stress

relation for unstiffened shells straightforwardly appears. Obviously, the circumferential stress is

lowered by ring application. This is desirable since there is not much over-all bending of the

hull due to hydrodynamic forces.

The stress situation in a ring stiffened cylinder, which is the common form of a pressure

hull, is explored and explained more precisely. For a given cylinder with internal ring stiffeners,

as illustrated in Fig.(3.4a), the hull and ring structure deforms due to the (uniform) external

pressure. Increasing radial stiffness at specific locations, i.e. ring stiffeners, means less local

deformation. Halfway between the rings the hull experiences the largest displacement in radial

direction. It is straightforward that due to this behavior, being the periodical mismatch in

radial position of the hull, the hull experiences longitudinal bending. At the stiffener the hull
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Figure 3.4: The Von Mises stress in a stiffened structure
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Figure 3.5: Close-up of the out-of-plane stress

experiences a compressive stress at the inside and tensile stress on the outside Fig.(3.4b). The

stress situation inverses halfway between the ring stiffeners, as indicated in the figure. If there

is too much space between the stiffeners the use of stiffeners is inappropriate. This phenomenon

is displayed in Fig.(3.4c). It can be observed that the infinite cylinder solution, at the right of

the figure, for the radial displacement and stress also occurs between the stiffeners. This is not

desired since the hull (partially) still behaves in the same way as in the unstiffened case.

As mentioned earlier, the axial compressive stress σx induced by the hydrostatic stress on

the end domes can be superimposed on the other axial stresses in the hull. For the part of

the hull which is in axial tension this rather positive, but for the part in the compressive state

this is not quite nice. Furthermore, due to this axial stress the structure could collapse in a

concertina-like mode. The out-of-plane stress, which is for instance important when construct-
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ing with composite plies or in weldments, is illustrated in Fig.(3.5). It is important to note that

the interface between the stiffener and hull experiences compression. If one places the stiffeners

outside the hull, there will be tension at this interface. For composite plies and also for weld-

ments this is potentially unwanted.

Failure or material yielding can be described by means of a failure or yield criterion, respectively.

Generally, these criteria can be imagined as curves or surfaces in stress or strain space. Within

the contour of the criterion the material shows no failure or yielding. If the stress or strain state

in the material has reached the contour, the yield point is reached. For the conventional metal

ring stiffened cylinder, the well-known von Mises yield criterion is commonly used to indicate

yielding. The von Mises stress (or equivalent tensile stress) is described by

σcr =
√
3J2 , (3.25)

where J2 is the second invariant of the deviatoric stress tensor. This invariant is found by matter

of solving the the characteristic equation for λ, i.e:

|S− λI| = λ3 − J1λ
2 + J2λ− J3 = 0 , (3.26)

where the determinant is indicated by |...|, I is de identity tensor, Jn is the n-th deviatoric

invariant and S is the deviatoric stress tensor defined as

S = σ − 1

3
tr (σ) , (3.27)

with σ as the Cauchy stress tensor. To be complete, Eq.(3.25) can be elaborated for a description

in stress tensor element space:

σcr =

√√√√[ (σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2 + 6

(
σ2
12 + σ2

31 + σ2
23

)
2

]
, (3.28)

or in principle stress space:

σcr =

√[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]
. (3.29)

By taking the von Mises stress equal to the tensile yield strength of the material, e.g. 690MPa

for HY100 steel (see Appendix C), the criterion can be visualized. The result is shown for a two

dimensional principle stress (σ1, σ2, 0) space in Fig.(3.6). Notice that the intersections with the

principle stress axes correspond to the yield strength of the material.
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Figure 3.6: The von Mises yield criterion for HY100 steel in principle stress state.

3.3 Buckling of ring stiffened pressure hulls

In general, pressure hulls are prone to buckling. For the conventional ring stiffened pressure

hull, these non-linear effects occur in different modes. In the next the most common modes,

which ultimately result in collapse, are treated. For a well designed stiffened pressure hull, full

advantage of the material strength is taken when the critical failure mode is the elasto-plastic in-

terframe collapse [22]. In this mode, which is relatively predictable [1], shell yielding takes place

before buckling occurs. This concertina-type pleat mode can be observed from Fig.(3.7(a)). It

should be noted that this collapse mode can occur partially or fully about the circumference.

Another typical collapse mode is elastic interframe buckling. This mode, which is also known

as elastic lobar buckling, occurs in shell sections between adjacent ring stiffeners. Small lobes

are formed between the stiffeners, with a size proportional to the (characteristic) shell length

between these stiffeners. Because of this relative small length, multiple lobes occur in circum-

ferential direction as can be observed from Fig.(3.7(b)).

Thirdly, general instability of the stiffened cylinder can occur. This unwanted collapse mode is

characterized by a insufficiently stiffened shell. To be precise, the radial stiffness of the ring stiff-

eners is not enough to prevent this overall collapse. Increasing the cross-sectional area and/or

inertia of the stiffeners is needed, so that the support against this general instability is increased.

This type of collapse can arise in compartments between rigid bulkheads, or spread over the

entire structure. An example of this mode is shown in Fig.(3.7(c)).
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Figure 3.7: Compartmentalized pressure hull structure with inelastic interframe buckling (a), elastic
interframe buckling in (b) and overall elastic buckling in (c). This figure is adapted from [22]

.

Classical solutions for the corresponding collapse pressures are generally used for stiffened cylin-

drical shells [23]. For the elasto-plastic interframe collapse the pressure is given by

Pcr =
σy(t/R)

(A−B)
1/2

, (3.30)

where

A =
3

4
+ α2

[
F 2
2 + F2F4 (1− 2ν)

√
0.91

1− ν2
+ F 2

4 (1− ν + ν2)

(
0.91

1− ν2

)]
, (3.31)

B =
3

2
α

[
F2 − νF4

√
0.91

1− ν2

]
(3.32)

and

α =
AS

tLS
(3.33)

In these equations, σy is the yield strength of the material, t is the shell thickness and R is the

mean shell radius. The Poisson’s ratio is ν, the cross-sectional area of the ring-stiffeners is AS

and the frame spacing is denoted by LS . These expressions where derived from the considera-

tion of a point on the shell outer surface midway between adjacent rings [24]. Accordingly, the

Huber-von Mises-Hencky yield criterion is applied to the point’s biaxial stress field to derive the

collapse pressure. The coefficients Fi are found via a graphical or iterative method. This method

is not treated in the present thesis and hence the reader is advised to read [25] for further details.
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Next, interframe buckling collapse occurs if the pressure is

Pcr =
2.42E (t/2R)

5/2

(1− (ν)2)
0.75 [

(LS/2R)− 0.447(t/2R)1/2
] , (3.34)

and the overall buckling collapse pressure yields

Pcr =
m4Et

R
(
n2 − 1 + m2

2

)
(n2 +m2)

+
EIxx

(
n2 − 1

)
R3LS

, (3.35)

where

Rf = R− YS − t

2
, and m =

πR

L
. (3.36)

In Eq.(3.35) n and m denote the number of circumferential and longitudinal buckling lobes,

respectively. E is the Young’s modulus of the material and Ixx is the moment of inertia of the

shell-stiffener geometry.

Because elastic buckling in thick shell plating will occur at a high pressures, a more precise

collapse prediction with the account for plasticity effects is needed. The well-known Johnson-

Ostenfeld formula is used to describe this elasto-plastic behavior.

σcr = σe for σe ≤
σy

2
, (3.37)

σcr = σy

(
1− σy

4σe

)
for σe >

σy

2
, (3.38)

where the critical buckling strength σcr is a function of the yield strength σy and the elastic

buckling strength σe. Of course, the latter can be estimated from the classical solutions pre-

viously treated. To be complete, an example of this inelastic correction is graphically shown

in Fig.(3.8). It can be observed from the figure that the curves has two asymptotes being the

elastic and plastic solutions.

3.4 The effect of shape imperfections

Previous formulations only described ideal or perfect geometric pressure hulls. However, in a

real structure all sorts of non-ideal features can be found due to for instance fabrication aspects.

These features can greatly affect the load-carrying capabilities of the pressure hull. Initial or

residual stresses are known to cause early yielding of the pressure hull. Although the author

is aware of the significance these residual stresses, the present thesis will only consider the ge-

ometric imperfections. Geometric imperfections, which are shape deviations from the nominal

perfect dimensioned pressure hull, are known to lower the critical buckling pressure considerably

[24]. In Fig.(3.9) a typical load displacement curve is illustrated. It can be observed from the

figure that the collapse pressure is considerably lower for the imperfect shell compared to the
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Figure 3.8: Impression of the critical strength according to the Johnson-Ostenfeld formula

bifurcation point pressure Pc for the perfect shell.

As indicated before, initial geometric imperfections are likely to arise from fabrication pro-

cesses and hence their nature is not completely random. It is demonstrated in [26] that, indeed,

one can associate characteristic initial imperfection distributions with different fabrication pro-

cesses. Vital information about the shape and magnitude of these imperfections can be gathered

by measurements. The use of a chord gauge device at equally spaced intervals around the cir-

cumference of the cylinder for measuring the out of circularity (OOC) was first described by

Kendrick [27]. Accordingly, the use of this device is probably the only practical method to mea-

sure the OOC for large cylinders. Especially for pressure hulls with internal structures where

measurement can only take place at the outer shell surface. Earlier, Kendrick [28] showed a

way to express the measured imperfections mathematically. This method uses a double Fourier

series:

w0(x, θ) =
∞∑

m=1

∞∑
n=1

C0mn cosnθ sin (mπx/L) , (3.39)

where the deviation or imperfection is denoted by w0, C0mn is the magnitude of the imperfection

for a particular mode (m,n) and (θ, x) are the shell coordinates. For the measured imperfection

data, the magnitudes have to be calculated in order to obtain a correct mathematical shape

representation of the imperfect structure.

The imperfect state of the pressure hull can give rise to localized bending effects due to the

externally applied pressure. These effects will cause high stresses and early yielding in the

structure. Secondly, they can cause the structure to fail in the elastic range through contribu-
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.

tion to the nonlinear large-displacement effects [29]. These imperfection induced phenomena

can be captured in a FE analysis, or, can be accounted for in analytical descriptions.

For the analytical description (first described by Kendrick), the displacement effects are captured

in

w =

(
P

Pe − P

)
w0 , (3.40)

where w is the displacement, P the applied pressure and Pe is the overall elastic buckling

pressure. The initial OOC w0 can be expressed as

w0 = C0 cosnθ sin (mπx/L) , (3.41)

which is one specific (m,n) mode corresponding term of the Fourier series of Eq.(3.39). This ap-

proach shows that the imperfect shape is amplified if the pressure increases. Straightforwardly,

when the applied pressure in Eq.(3.40) tends to the overall perfect elastic collapse pressure, the

equation has a root which will result in large displacements.

Stresses due to bending effects can be related to curvature changes that occur due to the previ-

ously described displacements. For a stiffener flange, Kendrick found that

σ = σ0 +

(
n2 − 1

)
Eefw

a2
(3.42)

where σ0 is the axisymmetric stress, a is the radial coordinate, ef the combined section neutral

axis to the frame flange and w is the normal displacement already described in Eq.(3.40).
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3.5 Conclusion

The fundamental mechanics of a pressure hull are treated with the help of the boiler formulae.

It is found in this approach that in contrast to an unstiffened steel pressure hull, large weight

savings can be obtained if construction is performed with lightweight materials as CFRP.

Because this approach is simplistic and the fact that conventional pressure hulls are gener-

ally ring-stiffened cylinders, the mechanics of such a structure is also elaborated. Hence, the

most important causes of collapse are treated. Starting with the effect of frame spacing on the

stress distribution in the shell, the importance of appropriate stiffener design is indicated. Be-

cause adding stiffeners also increases the number of mechanisms of the structure to fail, various

buckling effects are described and corresponding collapse pressures are analytically quantified.

In the last part of this chapter, the effect of shape imperfections is briefly discussed. Because

imperfections can be deleterious to the structural integrity, the measurement and mathematical

representations of these geometric deviations is important. Furthermore, approaches to estimate

the collapse pressure for this imperfect structural state were presented.
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Chapter 4

Composite pressure hulls

The goal of the present chapter is to describe the mechanical background needed in order to

design a composite lightweight pressure hull. Since designing a composite structure includes

the design of the composite material itself, aspects as for instance lamination theory and failure

prediction of composites are crucial in such a design process. Therefore, these and other impor-

tant composite related topics are described in Section (4.1). Because a composite pressure hull

can also fail due to buckling effects, an analytic method to derive these collapse pressures are

treated in Section (4.2). At last, Section (4.3) describes the way to design a composite structure

such that the total weight is minimized.

4.1 Composite mechanics and material behavior

Starting with the actual basics of a composite, Section (4.1.1) shows how macro-mechanical

material properties can be estimated with the help of simple formulae. The mechanical response

of composite plies and laminates is elaborated in Section (4.1.2) and ply stacking guidelines

concerning the latter is treated in Section (4.1.3). Because the prediction of material failure in a

composite is a complex story but of great importance, strength prediction is treated in Section

(4.1.4). In Section (4.1.6) failure functions are introduced.

4.1.1 Basics of a composite material

A composite material, as the words imply, is composed of two or more materials and is therefore

heterogenous. Composites are made up of two or more individual materials which are later in

this work referred to as constituents. In case of two constituents, one material embeds the other

and hence it is called matrix (or resin). The other constituent functions as reinforcement for this

matrix. For the present thesis, a composite material is a fiber reinforced plastic consisting of

two different materials. That is, a plastic representing the matrix which is generally a polymer,

reinforced by a fibrous material which forms the skeleton of the composite. Composites are

anisotropic materials that, if applied and designed correctly, are superior to metals due to their
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Figure 4.1: Composite fibrous ply with the applied coordinate systems

.

mechanical properties with respect to weight. Hence, in aerospace and other weight critical

industries composites are widely applied. In the following a short mechanical description is

given of algebraic methods to determine the properties of composite materials. The rule or

method of mixtures is a very basic algebraic description of a composite, but is a good starting

point for estimations of its properties. Only suitable for uni-directional (UD) plies, i.e. a single

orientation for the inherent fibers, this rule uses the fiber volume fraction, Vf together with the

properties of the constituents to estimate properties of the composite. For the density of the

composite this yields [30]

ρ = Vfρf + (1− Vf )ρm, (4.1)

where ρ, ρf and ρm are the composite, fiber and matrix densities, respectively. Similar equations

are used to estimate the properties in fiber direction, that is X-direction (see Fig.(4.1) for an

impression) for the estimated Young’s modulus of the composite, EX , that is [30]

EX = VfEf + (1− Vf )Em, (4.2)

and for the composite tensile strength σXT in fiber direction one obtains [30]

σXT = Vfσ
T
f + (1− Vf )σ

T
m. (4.3)

Likewise, the longitudinal Poisson’s ratio νXY is defined as [30],

νXY = νfVf + νm(1− Vf ). (4.4)

In this equation νf and νm are the Poissons ratios for the fiber and matrix, respectively. Of

course, it is assumed here that both constituents are isotropic.

The properties of an UD composite ply can be predicted by analytical and practical meth-

ods. These can then be used in a macro-mechanical analysis of the considered structure. But
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micro-mechanical effects are also important to mention. For instance, if there is poor bonding

between matrix and fiber on a micro-mechanical level, this will also affect the macro-mechanical

properties.

For the rule of mixtures and the following listed methods, a few assumptions are made: The

matrix and the fiber are both homogenous and isotropic. The fiber is nicely dispersed in the

matrix and perfectly aligned with regular spacing. The UD ply is macroscopically homogeneous

and transverse isotropic, which is a special case of orthotropy. There is a perfect bond between

the fibers and matrix. And it behaves in a linear elastic manner. Further the effect of thermal

shrinkage on the stress state is not considered, the ply is assumed to be initially stress free.

Different from the previous, there is not a single analytical formula for the transverse mod-

ulus i.e. EY . A selection is made among those formulae and later the behavior for different fiber

volume fractions is displayed graphically. The considered methods are:

The Jones [31] method:

EY =
EfEm

Ef (1− Vf ) + EmVf
. (4.5)

The Förster/Knappe [32] method:

EY =
E0

m

(1− Vf )
1.45

+ Vf E0
m/Ef

. (4.6)

With E0
m defined as

E0
m =

Em

1− νm2
. (4.7)

The Schneider [33] method:

EY =
E0

m

(
1 + Vf

3
)

(1− Vf )
0.75

+ 6Vf E0
m/Ef

, (4.8)

with E0
m defined as in 4.7.

The Puck [34] method:

EY =
E0

m

(
1 + 0.85Vf

2
)

(1− Vf )
1.25

+ Vf E0
m/Ef

, (4.9)

again, with E0
m defined as in 4.7. As mentioned earlier, the behavior of these methods under

varying fiber volume fraction Vf is graphically illustrated in 4.2. The transverse Poisson’s ratio

νY X is defined as,

νY X = νXY
EY

EX
, (4.10)

where νXY is defined earlier in 4.4.

Again, for transverse shear modulus GXY a selection is made among various methods and
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Figure 4.2: The transverse stiffness for different methods as functions of the fiber volume fraction.
Note that Ef = 250GPa, Em = 3000MPa and νm = 0.3, which are typical values for a carbon/epoxy
composite.

.

later the behavior for different fiber volume fractions is displayed graphically. The considered

methods are: The Jones [31] method is derived from a representative volume element:

GXY =
GfGm

Gf (1 + Vf ) +GmVf
. (4.11)

The Förster/Knappe [32] method is based on semi-empirical glass/epoxy experiments:

GXY = Gm

1 + 0.4
√

Vf

(1− Vf )
1.45

+ Vf Gm/Gf

. (4.12)

Schneider [33] also formulated a semi-empirical method with carbon/epoxy experiments:

GXY = Gm

1 + 0.25
√

Vf

(1− Vf )
1.25

+ 1.25Vf Gm/Gf

. (4.13)

The Puck [34] method, which is semi-empirically derived from glass/epoxy experiments:

GXY = Gm

1 + 0.4
√

Vf

(1− Vf )
1.45

+ Vf Gm/Gf

. (4.14)

From a constructing point of view, these UD properties by themselves offer the basis to calculate
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Figure 4.3: The transverse shear modulus for different methods as functions of the fiber volume fraction.
Note that Gf = 30 GPa and Em = 1300 MPa which are typical values for a carbon/epoxy composite.

.

the laminate properties. For an orthotropic UD ply Hooke’s law can now be formulated as:



ε1

ε2

ε3

ε4

ε5

ε6


=



1

E1
−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1

E2
−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1

E3
0 0 0

0 0 0
1

G23
0 0

0 0 0 0
1

G13
0

0 0 0 0 0
1

G12





σ1

σ2

σ3

σ4

σ5

σ6


(4.15)

and because this compliance matrix is symmetric one obtains

−ν12
E1

= −ν21
E2

, −ν13
E1

= −ν31
E3

, −ν23
E2

= −ν32
E3

. (4.16)
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Furthermore, the previously assumed transverse isotropy implies that E2 = E3 = EY and hence

Hooke’s law can be simplified as



ε1

ε2

ε3

ε4

ε5

ε6


=



1

EX
−νY X

EY
−νY X

EY
0 0 0

−νXY

EX

1

EY
− νY
EY

0 0 0

−νXY

EX
− νY
EY

1

EY
0 0 0

0 0 0
2(1 + νY )

EY
0 0

0 0 0 0
1

GXY
0

0 0 0 0 0
1

GXY





σ1

σ2

σ3

σ4

σ5

σ6


, (4.17)

note that symmetry of this matrix can be checked with Eq.(4.10).

Multiple layers of plies form a so called laminate. The laminate can be tailored such that

the properties are an outcome of the design. Each ply has a thickness and one or more fiber

directions. A single ply can, as mentioned earlier be an unidirectional composite if all fibers in a

laminate are in one specific direction. On the other hand, fabrics are multidirectional plies and

consist of fibers which are woven together. Mechanical properties of a composite lay-up could

also be estimated via algebraic methods. This is performed in Section (4.1.2).

35



4.1.2 Classical laminate theory

The laminate theory is developed to obtain the stiffness and strength properties of a lami-

nate, according to the composition and properties of each individual layer. In this theory, the

Kirchhoff-Love hypothesis is active. Therefore it is assumed that a material line perpendicular

to the mid-plane of the laminate, remains straight and perpendicular in the deformed config-

uration. Shear stresses in the out-of-plane direction are therefore neglected. Additionally, the

out-of-plane stress will be neglected such that a plane stress situation arises. The result is that

the deformation of the plate will now be completely described by the deformation of the mid-

plane.

For this theory, thin plates are considered with a constant thickness. The xy-plane is located

at the mid-plane of the plate. Straightforwardly, the z-axis is perpendicular to the plate. The

deformation can be expressed by means of the displacement vector

u = ui+ vj+ wk. (4.18)

Where i,j and k are the unit vectors corresponding to the x, y and z coordinates and u,v and

w are the components of the displacement vector. The components of the strain vector are

described by

εx =
∂u

∂x
, εy =

∂v

∂y
, εz =

∂w

∂z
,

γyz =
∂v

∂z
+

∂w

∂y
, γxz =

∂u

∂z
+

∂w

∂x
, γxy =

∂u

∂y
+

∂v

∂x
.

(4.19)

It is important to say that the strains are assumed to be small, since there are only first-order

derivatives in Eq.(4.19). The length of the material line perpendicular to the mid-plane is

unchanged after the deformation, hence:

w(x, y) = w0(x, y). (4.20)

Note that the superscripted zero refers to the mid-plane. The angle β, which is illustrated in

Fig.(4.4), is the same as the slope of the plate, thus:

β =
∂w0

∂x
. (4.21)

The displacement in the x direction can be described by the displacement of the mid-plane and

a term related to the bending described in Eq.(4.21), i.e.

u = u0 − βz. (4.22)
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x,u

Undeformed

Deformed

β=
∂w0

∂x

(u0,w0)

(u,w)

Figure 4.4: Deformation of a plate with the Kirchhoff-Love hypothesis, notice that in this situation
β < 0

In this equation the z denotes the distance to the mid-plane. More general, the displacement in

the x direction is given by

u(x, y, z) = u0(x, y) + z
∂w0

∂x
. (4.23)

Analogously, the displacement in the y direction yields

v(x, y, z) = v0(x, y) + z
∂w0

∂y
. (4.24)

Since all displacements are described, the strains from Eq.(4.19) can be expressed as

εx =
∂u0

∂x
− z

∂2w0

∂x2
, εy =

∂v0

∂y
− z

∂2w0

∂y2
, εz = 0,

γyz = 0, γxz = 0, γxy =
∂u0

∂y
+

∂v0

∂x
− 2z

∂2w0

∂x∂y
.

(4.25)

The extensional strains and the shear strain of the mid-plane are simply described by:

ε0x =
∂u0

∂x
, ε0y =

∂v0

∂y
, γ0

xy =
∂u0

∂y
+

∂v0

∂x
. (4.26)

The definition of curvature κ0
x is

κ0
x = −

∂2w0

∂x2(
1 +

(
∂w0

∂x

)2) 3
2

≈ −∂2w0

∂x2
. (4.27)

Similarly the curvature in y-direction of the mid-plane is:

κ0
y ≈ −∂2w0

∂y2
. (4.28)
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Figure 4.5: Schematic representation of a laminate with n = 5 plies

The twisting of a plate is described by the (technical) curvature

κ0
xy ≈ −2

∂2w0

∂x∂y
. (4.29)

With the definitions of the extensional strains for the midplane and the midplane curvatures

the strain vector (for the plane stress situation) is given in a compact manner:

εx = ε0x + zκ0
x,

εy = ε0y + zκ0
y,

γxy = γ0
xy + zκ0

xy.

(4.30)

Notice that Eq.(4.30) can be written as the system:

ε = ε0 + zκ0, (4.31)

with 
εx

εy

γxy

 =


ε0x

ε0y

γ0
xy

+ z


κ0
x

κ0
y

κ0
xy

 . (4.32)

Hooke’s law can be applied to describe the stress-strain relationship:
σx

σy

τxy

 =


Q11 Q12 Q16

Q22 Q26

Q66




εx

εy

γxy

 . (4.33)

Consider a laminate with n plies, each with an orthogonal coordinate system that has a xy-

plane that coincides with the ply’s mid-plane as illustrated in Fig.(4.5). For the k-th ply within
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the laminate Hooke’s law can be formulated:
σx

σy

τxy


k

=


Q11 Q12 Q16

Q22 Q26

Q66


k


εx

εy

γxy


k

. (4.34)

If each coordinate system (x, y, z)k is rotated such that the x-axis is aligned with the fibers, one

obtains (x′, y′, z′)k. Each rotation is measured clockwise, with angle ϕk as the orientation of the

k-th ply. With respect to the stresses, the following relation holds in the k-th ply:
σx

σy

τxy


k

=


c2 s2 2 sc

s2 c2 −2 sc

−sc sc c2 − s2


k


σ′
x

σ′
y

τ ′xy


k

. (4.35)

In this relation c = cosϕk and s = sinϕk. In short Eq.(4.35) can be written as:

σ′
k = Tkσk (4.36)

Where Tk is the transformation matrix and σ′
k is the stress in the k-th ply according to coor-

dinate system (x′, y′, z′)k. Further, a similar relation holds for the strains:

ε′k = Tkϵk (4.37)

Now with the help of Eq.(4.34) there is enough information to express the stress-strain relations

in the (x,y,z) coordinate system:

σk = T−1
k σ′

k = T−1
k Qkε

′
k = T−1

k QkTkεk. (4.38)

The following substitution can be made:

Qk
′ = T−1

k QkTk. (4.39)

After some algebra, the following is found:

Q′
11 = Q11c

4 + 2(Q12 + 2Q66)s
2c2 +Q22s

4 ,

Q′
22 = Q11s

4 + 2(Q12 + 2Q66)s
2c2 +Q22c

4 ,

Q′
12 = (Q11 +Q22 − 4Q66)s

2c2 +Q12(s
4 + c4) ,

Q′
16 = (Q11 −Q12 − 2Q66)sc

3 + (Q12 −Q22 + 2Q66)s
3c ,

Q′
26 = (Q11 −Q12 − 2Q66)s

3c+ (Q12 −Q22 + 2Q66)sc
3 ,

Q′
66 = (Q11 +Q22 − 2Q12 − 2Q66)s

2c2 +Q66(s
4 + c4) .

(4.40)
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where c = cosϕk, s = sinϕk, Q
′ = Q′

k and Q = Qk are used for the description of the k-th ply.

With the transformed reduced stiffness matrix Q′ Eq.(4.38) is rewritten into:

σk = Q′
kεk. (4.41)

This relation is important for laminate stress-strain calculations. Now, the k-th ply is considered

with distance z corresponding too the ply’s midplane. With Eq.(4.31) it is clear that

εk = ε0 + zκ0, zk−1 ≤ z ≤ zk. (4.42)

Again with Hooke’s law returns:

σk = Q′
kε

0 + zQ′
kκ

0, zk−1 ≤ z ≤ zk. (4.43)

The normal forces per unit length Nx,Ny and the shear force Nxy per unit length are directed

in-plane. These forces per unit length are related to the stress at a cross section of a ply by:

(Nx)k =

zk∫
zk−1

(σx)k dz,

(Ny)k =

zk∫
zk−1

(σy)k dz,

(Nxy)k =

zk∫
zk−1

(τxy)k dz.

(4.44)

The total forces per unit length in the laminate are found by summation over the individual

plies, i.e.:

Nx =
n∑

k=1

zk∫
zk−1

(σx)k dz,

Ny =
n∑

k=1

zk∫
zk−1

(σy)k dz,

Nxy =
n∑

k=1

zk∫
zk−1

(τxy)k dz.

(4.45)

Or, more compact:

N =

n∑
k=1

zk∫
zk−1

σk dz. (4.46)
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Analogously, the bending and torsional moments per unit length are found by:

Mx =

n∑
k=1

zk∫
zk−1

(σx)k z dz,

My =

n∑
k=1

zk∫
zk−1

(σy)k z dz,

Mxy =

n∑
k=1

zk∫
zk−1

(τxy)k z dz.

(4.47)

Or, more compact:

M =
n∑

k=1

zk∫
zk−1

σk z dz. (4.48)

With Eq.(4.43) it is found that the total forces and moments per unit length are:

N =
n∑

k=1

zk∫
zk−1

Q′
kε

0 + zQ′
kκ

0 dz =

(
n∑

k=1

(zk − zk−1)Q
′
k

)
ε0 +

(
1

2

n∑
k=1

(z2k − z2k−1)Q
′
k

)
κ0,

M =
n∑

k=1

zk∫
zk−1

zQ′
kε

0 + z2Q′
kκ

0 dz =

(
1

2

n∑
k=1

(z2k − z2k−1)Q
′
k

)
ε0 +

(
1

3

n∑
k=1

(z3k − z3k−1)Q
′
k

)
κ0.

(4.49)

Now define the extensional stiffness matrix A as

A =
n∑

k=1

(zk − zk−1)Q
′
k, (4.50)

the coupling stiffness matrix B as

B =
1

2

n∑
k=1

(z2k − z2k−1)Q
′
k (4.51)

and the bending stiffness matrix D as

D =
1

3

n∑
k=1

(z3k − z3k−1)Q
′
k. (4.52)

The last three equations form a system that governs the response of a laminate to forces and

moments. To illustrate: [
N

M

]
=

[
A B

B D

][
ε0

κ0

]
(4.53)
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Figure 4.6: Schematic representation of a laminate with distance a offset between the midplane and the
coordinate system

With the symmetric properties of Q′
k it is straightforward that matrices A,B and D are also

symmetric. Therefore the system can be written as:

Nx

Ny

Nxy

Mx

My

Mxy


=



A11 A12 A13 B11 B12 B13

A22 A23 B22 B23

A33 B33

D11 D12 D13

D22 D23

D33





ε0x

ε0y

γ0
xy

κ0
x

κ0
y

κ0
xy


. (4.54)

An inverted expression of the system can be produced when there are no singularities. The

strains and curvatures are in this case equal to:

ε0 = (A−BD−1B)−1N+ (B−DB−1A)−1M,

κ0 = (B−AB−1D)−1N+ (D−BA−1B)−1M.
(4.55)

Again, this is a system of equations, hence:[
ε0

κ0

]
=

[
a b

bT d

][
N

M

]
(4.56)

It is important to mention that the CLPT can be formulated such that the reference plane,

which was the laminate midplane in the treated case, can have an offset of a to the midplane.
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In such a situation, as illustrated in Fig.(4.6), Eq.(4.46) and (4.48) change in:

Na =

n∑
k=1

a+zk∫
a−zk−1

σk dz
a =

n∑
k=1

zk∫
zk−1

σk dz = N , (4.57)

Ma =
n∑

k=1

a+zk∫
a−zk−1

σk z
a dza =

n∑
k=1

zk∫
zk−1

σk (a+ z) dz = M + aN . (4.58)

Furthermore, the strain description throughout the laminate simply becomes

ε = εa + zκa, (4.59)

where the a represents strain and curvature changes at the reference plane. Multiplication with

the reduced stiffness matrix ultimately results in[
Na

Ma

]
=

[
Aa Ba

Ba Da

][
εa

κa

]
(4.60)

where the translated stiffness matrices are:

Aa = A ,

Ba = B+ aA ,

Da = D+ 2aB+ a2A .

(4.61)

Notice that change in reference plane does not affect the extensional stiffness matrix A.

A shortcoming in the CLPT is the absence of out of plane shear effects, deformations are

solely caused by the internal bending resultants. Especially for sandwich structures these effects

cannot be neglected. This theory over-estimates the stiffness of such a structure. The first order

shear deformation theory (FSDT) includes the effect of transverse shear deformations. With the

assumption that the displacement components are expanded in series of powers of the thickness

coordinate z [35]. For an N-th order theory, the displacement u can be written as

u(x, y, z) = u0(x, y) +
N∑

n=1

znθx
(n)(x, y) , (4.62)

note that all coordinates refer to the midplane and the coefficients θx
(n)(x, y) are

θx
(n)(x, y) =

dnu

dzn

∣∣∣∣
z=0

for n = 0, 1, 2, ... (4.63)

By doing the same for v, the displacements are found for (N = 1) i.e. first order:
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Figure 4.7: Deformation of a plate according to the FSDT

u(x, y, z) = u0(x, y) + zθx(x, y),

v(x, y, z) = v0(x, y) + zθy(x, y),

w(x, y, z) = w0(x, y).

(4.64)

One can clearly see from the equations and Fig.(4.7) that the shearing angle θi is assumed to

be constant in the z-direction. The principle of minimum total potential energy can be used to

find five equilibrium equations in terms of u0, v0, w0, θx and θy. The expressions for the strains

are for this first order theory:

εx =
∂u0

∂x
+ z

∂θx
∂x

,

εy =
∂v0

∂y
+ z

∂θy
∂y

,

εz = 0,

γyz =
∂w0

∂y
+ θy,

γxz =
∂w0

∂x
+ θx,

γxy =
∂u0

∂y
+

∂v0

∂x
+ z

(
∂θy
∂x

+
∂θx
∂y

)
.

(4.65)

The extensional strains and in-plane shear strain of the mid-plane are the same as in Eq.(4.26).

The definitions for the curvatures changes, i.e.:

κx =
∂θx
∂x

,

κy =
∂θy
∂y

,

κxy =
∂θx
∂y

+
∂θy
∂x

.

(4.66)
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

ε0x

ε0y

γ0
xy

κx

κy

κxy


. (4.67)

The forces and moments per unit length in this equation as functions of the ply stresses are

already elaborated in Eq.(4.45) and (4.47), respectively. The transverse shear forces per unit

length due to the transverse shears are:[
Vx

Vy

]
=

[
S̃11 S̃12

S̃21 S̃22

] [
γxz

γyz

]
(4.68)

Where S̃ is the transverse shear stiffness matrix. As a function of stress, the transverse forces

per unit length (Vx, Vy) are given by the integrals:

Vx =
n∑

k=1

zk∫
zk−1

(τxz)k dz,

Vy =
n∑

k=1

zk∫
zk−1

(τyz)k dz.

(4.69)

Or, more compact:

V =

n∑
k=1

zk∫
zk−1

τk dz. (4.70)

Because of the assumption that all layers behave in the same manner, the equivalent single layer

(ESL) theory, a sandwich material is can be described even more accurate. Multi-layer theories

are developed to solve this problem. For the sake of briefness these are not treated in the present

work.
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4.1.3 Lay-up guidelines

In a search for an actual laminate it is important to look at existing guidelines. NASA reviewed

design guidelines for composite laminates [36]. Because of the large amount of relevancy in this

work, the most appropriate guidelines concerning the present thesis are treated in the next.

1.Design for uncoupled membrane and bending response

In 4.1.2 the coupling stiffness matrix B is introduced. For a laminate, this matrix governs the

coupling between membrane and bending response (see Eq.4.60). In practice this means that

membrane loading results in bending and bending moments induce membrane strains. These

coupling effects increase the complexity of the laminate behavior. In most practical cases, a

zero coupling stiffness matrix is desired [30]. Furthermore, uncoupling laminate bending and

membrane response also eliminates warping due to changes in temperature [36]. Hence the

relation

B =
1

2

n∑
k=1

(z2k − z2k−1)Q
′
k = 0 (4.71)

has to be satisfied. This uncoupled state of the laminate can be obtained by a symmetric lay-up

with respect to the middle surface. This is proved in the following for a laminate with n plies:

Let the laminate be defined as illustrated in Fig.(4.5). Furthermore, for two identical and equal

orientated plies of the same thickness, located oppositely with respect to the laminate midplane

(in the following referred to as a symmetric pair), Eq.(4.71) can be obtained. First, because of

the equality in orientation and engineering properties of each ply pair, the transformed reduced

stiffness matrix Q′ is equal. For n layers this means that

Q′
k = Q′

n+1−k (4.72)

is satisfied. For the z-coordinate a similar equation is found, because of the geometric symmetry:

zk = −zn−k ,

zk−1 = −zn+1−k .
(4.73)

These equalities result in

z2k − z2k−1 = z2n−k − z2n+1−k = −(z2n+1−k − z2n−k). (4.74)

With this result it easily seen that summation of the two plies in a symmetric pair result in a

zero coupling stiffness matrix B. Consequently, for a symmetric lay-up Eq.(4.71) is satisfied.

2. Design for balanced laminates

Balance in a laminate is obtained when the angle plies (+θ or −θ), other than 90◦ and 0◦, only

occur in ±θ pairs in the lay-up. The individual +θ and −θ layers are not necessarily adjacent

to each other [31], but as the balanced laminate has to be symmetric about the mid-plane there
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will be two ±θ pairs per angle ply θ required. A balanced laminate zeroes the shear extension

coupling coefficients in the extensional stiffness matrix A as described in Eq.(4.50). With help

from Eq.(4.40) it is found that:

A16 =
n∑

k=1

[Q′
16]k(zk − zk−1)

=
n∑

k=1

[(Q11 −Q12 − 2Q66)sc
3 + (Q12 −Q22 + 2Q66)s

3c]k(zk − zk−1) ,

A26 =
n∑

k=1

[Q′
26]k(zk − zk−1)

=
n∑

k=1

[(Q11 −Q12 − 2Q66)s
3c+ (Q12 −Q22 + 2Q66)sc

3]k(zk − zk−1) ,

(4.75)

where c = cos θ and s = sin θ. Notice that plies in the 0◦ and 90◦ direction do not contribute

to A16 and A26. It is easily observed from Eq.(4.75) that there are only odd powers of cosθ and

sinθ in the equation and since cos(θ) = cos(−θ) and sin(θ) = −sin(−θ) the equations A16 and

A26 equal zero for a ±θ pair with equal thickness.

It has to be mentioned that the bending-twisting coupling still exists in balanced laminates

since D16 and D26 are always nonzero for symmetric laminates with angle plies other than 0◦

and 90◦. Because the angle plies occur in pairs through the laminate, these coupling coefficients

will be relatively small.

3. 10% rule

This guideline has no formal documentation regarding the validity but it is has been followed

with great success on a number of production programs [36]. To increase the fiber domination,

a laminate should have at least 10% of plies in each of the 0◦,±45◦ and 90◦ directions. The

robustness is increased when this rule is satisfied and unpredicted deviations in load directions

are accounted for.

4. The four contiguous ply rule

The interlaminar shear effects that occur at the edges of the laminate can be critical if the

number of neighboring UD layers with the same fiber orientation is too large. Also, effects like

matrix cracking can occur due to the (now) large influence of the Poisson effect. Stacking not

more than four contiguous plies at the same orientation angle prevents these effects.
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Figure 4.8: Response of the statistical determined tensile strength of an UD composite, with β as a
material property.

4.1.4 Composite strength prediction

This section describes the most common used static strength formulae of composites. A com-

posite material shows numerous failure mechanisms, an approach is performed to describe the

most important of these.

Fiber failure is one of the most important failure mechanisms of a composite. Fiber failure due

to tensile forces is one of the simplest failure mechanisms to identify and quantify, and occurs

when the loads applied to a composite structure cause fracture in the fibers [37]. Similar fibers

under stress do not all have the same fracture strength nor do they fracture in the same place

[38]. Therefore the tensile strength of an UD composite is statistically studied. For instance it

has been found on basis of statistical analysis that for commercial E-glass fibers the average of

fiber strength is about 1.42 that of the bundle strength [39]. By use of statistical analysis, Dow

and Rosen [40] obtained:

σtmax = σrefVf

(√
1− νf
√
νf

)−1/2 β

. (4.76)

The parameter σref indicates the reference tensile strength level and β is a statistical parameter

in the Weibull distribution of fiber strength (β = 7.7 for E-Glass) [38]. The response of Eq.(4.76)

is plotted in Fig.(4.8).

The fibers in a composite are the load carrying constituents, both in tension as in compression.

This capability is only possible due to fiber stabilization induced by the matrix. Since this sta-

bilization is not always performed in an ideal way, fiber micro buckling (Fig.(4.9)) can occur in

a composite under compression [41]. Fiber buckling can also take place when thermal shrinkage

is developed during the cure process of a composite. The author is aware of this but these

effects are beyond the scope of the present thesis. In composites with very low fiber volume
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Figure 4.9: SEM-capture of fiber buckling due to compressive loading, adapted from [41]

EXTENSION MODE SHEAR MODE

X

Y

Figure 4.10: Buckling modes of fibers under compression, adapted from [38]

content, fiber buckling may occur even when the matrix stresses are in the elastic range. But for

higher volume fractions (Vf > 0.4) fiber buckling is generally preceded by matrix yield and/or

constituent debonding and matrix microcracking [38].

There are two modes in fiber buckling: The (symmetric) extension mode and the (asymmetric)

shear mode. A schematic drawing of these modes is shown in Fig.(4.10). The extension mode

buckling of the fiber is characterized by fibers deforming out-of-phase with one another. The

matrix compressed and extended transverse to the fibers. This is only possible when the inter-

fiber distance is quite large, i.e. for a small fiber volume fraction (Vf ) [38]. The more common

fiber buckling mode is the shear mode. Here the matrix shows shear strain due to the in-phase

displacement of the fibers. In this mode the initial separation of the fibers is unchanged. The

Rosen theory describes the two modes of buckling. The main assumption for this theory is that

the fibers are regarded as being much stiffer than the matrix (Gf >> Gm). Hence fiber-shearing
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Figure 4.11: The longitudinal compressive strength of a composite for debonding, extension mode and
shear mode failure

deformations are negligible [38]. In the following the Rosen theory is elaborated for extension

and shear mode buckling. For extension mode buckling the critical stress in the composite is:

σcmax = 2Vf

√
VfEmEf

3(1− Vf )
. (4.77)

For shear mode buckling the critical stress in the composite is:

σcmax =
Gm

1− Vf
. (4.78)

The observation that transverse splitting or debonding might be the initiating failure event

is formulated in [38]. The expression for the maximum composite compressive strength for a

debonding type of failure is:

σcmax =
(EfVf + Em (1− Vf ))

(
1− 3

√
Vf

)
εmu

νfVf + νm (1− Vf )
. (4.79)

The value of the maximum compressive strength is displayed in Fig.(4.11) for Eq.(4.77),(4.78)

and (4.79). It is important to note that typical values for the composite are used, being Ef =

250GPa, Em = 3GPa, νf = 0.4, νm = 0.3 and the maximum strain of the matrix εmu = 0.05.

Generally, the properties in strength in the fiber direction for UD composites are good. However,

for the transverse direction the properties are matrix dominated. In this case it is the matrix that

carries the main load. In this case the fibers can be seen as defects in the matrix. Increasing Vf

means the addition of more defects in the matrix, which has a negative effect on the transverse

strength of the UD. To illustrate that [38] describes the transverse strength in tension for an
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Figure 4.12: The transverse strength of an UD composite with an increasing fiber volume fraction Vf .

UD ply by:

σTU =
σmu

S
. (4.80)

In this equation, σmu is the strength of the matrix in a tensile state and S is the strength

reduction factor. The latter is described by:

S =
1− Vf

(
1− Em

Ef

)
1−

√
4Vf

π

(
1− Em

Ef

) (4.81)

It is important to show how Vf affects the transverse strength σTU . From Fig.(4.12) it can be

observed that especially for high fiber volume contents (Vf ) the transverse strength is diminished.

The material properties to create this figure are Ef = 250GPa, Em = 3GPa, νf = 0.4 and

σmu = 400MPa. Of course, in a proper laminate, the transverse strength can be made fiber

dominated.

For compression, the same effect as the treated transverse tensile strength is active. The failure

mechanism for this type of strength is mainly based on matrix shear effects that occur at an

angle of (around) 45◦ relative to the axis of compression [30].

4.1.5 Sandwich strength

Since a general sandwich structure consists of a compliant core material between two strong and

stiff skin layers, the mechanical complexity increases with respect to the previous. Apart from

of the skins, the core and bonding material can show failure effects. In the next an approach to

describe the most common failure mechanisms is elaborated. A division is made between global
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Figure 4.13: Loads and dimensions of a sandwich plate (a), from [42]. The directions and dimensions
for a honeycomb core are indicated in (b)

and local failure modes.

For the global modes, failure of the facings can occur. This event can be the result of e.g.

insufficient thickness for the applied loads. Also, the core can show failure with shear domi-

nated failure as the most common mechanism. When the adhesive has insufficient strength in

shear or tension debonding occurs.

An important local failure mechanism is face wrinkling. This can for instance occur if a sand-

wich panel is subjected to out-of-plane bending and/or in-plane compression. The face wrinkling

stress can be found by means of the solution for a plate on a elastic foundation. For isotropic

cores this stress [38] is

σfw = Q 3

√
EcEfGc

(1− ν2f )
, (4.82)

for orthotropic cores, such as honeycombs, the face wrinkling stress [38] is found by

σfw = Q

√
EcEf tf
(1− ν2f )tc

. (4.83)

In these equations, Ef refers to the Young’s modulus of the face in the compressive direction

and νf =
√
νxνy is the Poisson’s modulus. For the isotropic and orthotropic core the Young’s

modulus is Ec. Note that for the latter the modulus refers to the through-the-thickness direction.

The tf and tc refer to the face and core thickness, respectively, as indicated in Fig.(4.13a).

Because the equations are related to perfect plates, the factor Q < 1 has to be applied for

realistic imperfect sandwich structures.

For honeycomb and other discontinuously face supporting cores, a more local buckling effect

can occur. This so-called dimpling of the face is a buckling effect that is dependent of the
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unsupported area of the face. With the assumption that the face can be modeled as a simply

supported plate with orthotropic properties, the ”Norris” formula [38] can be used to calculate

the critical buckling stress:

σd =
KdEx

(1− νxyνyx)

(
tf
S

)2

. (4.84)

With Kd as an empirical factor, which is usually 2 to 2.25. The characteristic plate length S,

i.e. the cell size, see Fig.(4.13b) is for a honeycomb defined as the diameter of the inscribed circle.

Because this ”Norris” formula is conservative with respect to the buckling stress, an improved

(but still conservative) formula [38] for the dimpling stress is developed:

σd =
KdD22

tfb2
, (4.85)

where

Kd = π2

[
D11

D22

(
b

a

)2

+
8

3

(D12 + 2D66)

D22
+

16

3

(a
b

)2]
. (4.86)

The elements Dij belong to the bending stiffness matrix of the face. The dimension of the

honeycomb cells i.e. a and b is illustrated in Fig.(4.13b). It is important to note that this formula

showed a 15% lower critical dimpling stress than in experiments, which is indeed conservative.

Further, b is equal to the cell size S which is used earlier.

4.1.6 Failure criteria

For composite materials it is appropriate to describe failure with a so-called failure function. As

a yield criterion for metals, this failure function represents a surface in stress or strain space.

Sometimes, this surface is described piecewise, this is a result of multiple failure criterion each

capturing a specific failure mechanism of the composite. The description of all failure mecha-

nisms of a composite is beyond the scope of the present thesis. However, the most important

failure mechanisms in a composite are briefly described before, this section describes the corre-

sponding failure functions.

The (static) stress state of an isotropic material can be described as a point in a six-

dimensional stress space. Here, the origin of the space is equivalent to the unstressed condition.

Therefore, as the stress state moves further away from the origin, the chance that the material

fails will increase. The purpose of a failure criterion is to describe a surface in this stress space

which envelopes the ’safe area’ where the material is undamaged. If a stress point is located

outside this envelope, the function will indicate material failure. At first, the failure criteria

in a plane-stress space are treated. Because of the (assumed) in plane loaded orthotropic UD

composite ply the components σ33, σ13 and σ23 are considered to be equal to zero.

The most simplistic failure criteria are the independent criteria. The main assumption for these

criteria is that there is no interaction between the six stress components. For each of the com-

ponents there is a lower and upper bound, independent from the state of the other components.
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The maximum stress criterion is described by:

σ11 = Xt or Xc ,

σ22 = Yt or Yc ,

|σ12| = Q , (4.87)

where Xt and Xc are the composite tensile and compressive strengths in 1-direction, respec-

tively. Yt and Yc refer to the strengths transverse direction and Q is the shear strength. It is

important to note that failure is said to occur if any one of the stresses σ11, σ22 and σ12 reaches

the allowable value in Eq.(4.88).

The second independent failure criterion is described by strains. The so called maximum strain

criterion. The criterion is described by:

ε11 = εXt or εXc ,

ε22 = εYt or εYc ,

|ε12| = εQ. (4.88)

This criterion has the same format as the maximum stress criterion, i.e. strains become critical

when reaching maximal strains. Both the maximum stress and strain criteria can be for instance

used as an indication of fiber failure, but due to the non-interactive their correspondence with

the true nature of failure is limited. Note that the tensorial description is used for the stresses

and strains.

The simple Puck criterion separates the fiber and matrix failure. The former is assumed to

originate solely by σ11 (with the fibers aligned in the 1-direction), the latter from a combination

of σ22 and σ12. To illustrate, the simple Puck criterion is given by:

σ11 = X1 or Xc,

or

(
σ22

Yt

)2

+

(
σ12

Q

)2

= 1,

or

(
σ22

Yc

)2

+

(
σ12

Q

)2

= 1.

(4.89)

The part related to matrix failure is plotted in Fig.(4.14). The figure is created with the

maximum transverse tensile and compressive strength Yt = 200 and Yc = 450 and shear strength

Q = 100. In the modified Puck criterion describes the matrix failure as a single ellipse. This is

more convenient when there is a large difference between the tensile and compressive strength,
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Figure 4.14: The simple and modified Puck matrix failure criteria.

according to [38]. The modified Puck criterion for both fiber failure and matrix failure yields:

σ11 = X1 or Xc,

or
σ22

2

YtYc
+ σ22

(
1

Yt
− 1

Yc

)
+

(
σ12

Q

)2

= 1
(4.90)

The modified Puck criterion for matrix failure is shown in Fig.(4.14). The same strengths are

used as the simple Puck criterion, in order to plot this matrix failure criterion.

An anisotropic generalization of the von Mises criteria, with taking interaction into account

between different components of the stress tensor, are the quadratic criteria. The most used

quadratic failure criterion is the Tsai-Wu [43] criterion, that is, for plane stress described by

σT : F : σ + f : σ = 1 , (4.91)

where σ is the Cauchy stress tensor and F and f are the symmetric strength tensors of fourth

and second order, respectively. In a plane-stress situation the criterion can be written as

F11σ
2
11 + F22σ

2
22 + 2F12σ11σ22 + F66σ

2
12 + f1σ11 + f2σ22 = 1 , (4.92)

with

F11 =
1

XtXc
, F22 =

1

YtYc
, F66 =

1

Q2
, F12 = F ∗

12

√
F11F22 (4.93)

and

f1 =
1

Xt
+

1

Xc
, f2 =

1

Yt
+

1

Yc
, (4.94)
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Figure 4.15: The Tsai-Wu failure function in stress-space.

where F ∗
12 is a coefficient, mainly considered to be empiric but by default taken as F ∗

12 = −0.5.

To give an idea of the criterion, the contour is plotted for a typical CFRP UD ply (Xt =

275MPa, Xc = 250MPa, Yt = 50MPa, Yc = 200MPa, S = 50MPa) in Fig.(4.15). Notice the

strength corresponding at the contour-axis intersections. This failure envelope should be, as

can be verified from the figure, a convex elliptical contour that describes the material strengths

accurately. However, this failure criterion does not distinguish the different failure mechanisms

of the composite ply but is a accurate fit of the experimental values.

4.1.7 Environmental effects

During operation the pressure hull can suffer from various environmental effects such as oxi-

dation, moisture absorption and temperature related degradation. Although widely applied in

marine structures, moisture absorption in the matrix of a composite can cause critical material

degradation. Moisture acts like a plasticizer, which softens the matrix and lowers the glass tran-

sition temperature [38]. Ultimately, the matrix dominated properties of the composite, such as

(interlaminar) shear strength and compression strength can be affected by the absorption. Also,

the stiffness of the composite can be altered. It is found [38] that the effect of degradation for

the initial Young’s modulus given by

Ec = VfEf + VmEm , (4.95)

can be described with the rule of mixtures:

E∗
c = VfEf + VmE∗

m − αEfVfWc , (4.96)
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where E is the Young’s modulus with subscript c, f,m denoting the composite, fiber and matrix.

The asterisk (∗) is used to indicate the degraded entities. The same notation is used for the

volume fraction V and α is an empirical constant belonging to the type of reinforcement and

coupling agent and W is the composite moisture content by weight. It is found that this formula,

rewritten for a [0/90] laminate, correlates very closely to experimental results with α = 3 for

carbon fiber.

As mentioned already, the initial properties in strength are also degraded due to moisture

effects. In [38] an formula is mentioned that describes this retention, i.e.

σ∗
c = σf

(
Vf + Vmβ

E∗
m

Ef

)
− ασfVfWc , (4.97)

where σ denotes the strengths either for the composite or the constituents and β is an empirical

factor belonging to the coupling agent and the type of reinforcement.
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Figure 4.16: A differential cylindrical shell element with force (a) and moment equilibrium (b)

4.2 Buckling of composite cylinders

Analogous to the conventional pressure hull, the collapse of a pressure hull is mainly related

to material failure and buckling effects. In the next a linearized buckling theory is elaborated

that describes buckling of externally pressurized shells. The equilibrium equations concerning

the forces and moments in a differential cylindrical shell element as graphically illustrated in

Fig.(4.16) of the Flügge model [44] are

∂Nx

∂x
+

∂Nxy

∂y
− p

(
r
∂2u

∂y2
+

r

2

∂2u

∂x2
− ∂w

∂x

)
= 0 ,

∂Nxy

∂x
+

∂Ny

∂y
+

1

r

∂My

∂y
+

1

r

∂Mxy

∂x
− p

(
r
∂2v

∂y2
+

r

2

∂2v

∂x2
+

∂w

∂x

)
= 0 ,

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
− Ny

r
− p

(
∂u

∂x
− ∂v

∂y
+ r

∂2w

∂y2
+

r

2

∂2w

∂x2

)
= 0 .

(4.98)

In these equations Ni is the acting force per unit length and Mi is the moment per unit length

in the i-th direction. The displacements u,v and w refer to the axial, circumferential and radial

direction, respectively. It is important to note that the radius r is measured between the axis

of symmetry and the the mid-shell surface.

The kinematic relations are

ε0x =
∂u

∂x
, ε0y =

∂v

∂y
+

w

r
, γ0

xy =
∂u

∂y
+

∂v

∂x
,

κx = −∂2w

∂x2
, κy = −∂2w

∂y2
+

w

r2
, κxy = −2

∂2w

∂x∂y
− 1

r

∂u

∂y
+

1

r

∂v

∂x
,

(4.99)

where the superscripted 0 indicates the mid-surface. The proposed solutions for the displace-

ments are
u = U cos (αx) cos (βy) ,

v = V sin (αx) sin (βy) ,

w = W sin (αx) cos (βy) ,

(4.100)
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where
α =

mπ

L
,

β =
n

r
.

(4.101)

In Eq.4.100 the variables U ,V and W are the displacement amplitudes. For Eq.4.101 the cylin-

ders length is denoted by L, m = 1, 2, 3... is the number of buckling half-waves in the axial

direction and n = 1, 2, 3... is the number of full-waves around the circumference.

If the proposed solution (Eq.4.100) is substituted into the kinematic relations (Eq.4.99) and

the result is used in the equilibrium equations, a system of homogeneous equations can be

established, i.e: 
a11 a12 a13

a22 a23

a33




U

V

W

 =


0

0

0

 , (4.102)

where for a symmetric and balanced laminate with the assumption that the bending twisting

terms D16 and D26 are relatively small compared to other Dij terms:

a11 = −A11α
2 −A66β

2 + prβ2 + 1
2 prα

2 ,

a12 = αβ (A12 +A66) ,

a13 = α 1
r (A12 + pr) ,

a22 = − 1
2L2r2

(
2A66m

2π2r2 + 2A22n
2L2 + 2D66m

2π2 − 2prn2L2 − pr3m2π2
)
,

a23 = − n
r4L2

(
A22r

2L2 +D12m
2π2r2 +D22L

2n2 +D22L
2 + 2D66m

2π2r2 − pr3L2
)
,

a33 = − 1
2L4r4 (4D12m

2π2n2L2r2 + 2D22n
4L4 + 8D66m

2π2n2L2r2 + 2D11m
4π4r4

+2D12m
2π2L2r2 + 2A22L

4r2 − 2pr3L4n2 − pr5L2m2π2) .

(4.103)

The homogeneous system could be abbreviated as:

Aδ = 0 , (4.104)

where the solution of this system for the external pressure p is found when

detA = 0 . (4.105)

In general, this equation has to be evaluated for a range of m and n in order to identify the

lowest buckling pressure. By writing Eq.(4.105) in a polynomial form of pressure p one obtains

the following:

detA = c3p
3 + c2p

2 + c1p+ c0 = 0 , (4.106)

with the constants ci defined in Appendix D, for the sake of briefness.
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4.3 Composite design and weight minimization techniques

A higher level description of a laminate with the use of lamination parameters is given in Section

(4.3.1). Furthermore, the utilization of lamination parameters for a laminate optimization is

also performed in this section. Optimization of composite laminates in a FE context with these

lamination parameters is treated in Section (4.3.2).

4.3.1 Laminate optimization with the use of lamination parameters

As indicated earlier in the treated classical laminate theory in Section (4.1.2), the laminate

stiffness matrix governs the relation between the generalized strains and stresses as{
N

M

}
=

[
A B

B D

]{
ε0

κ

}
, (4.107)

where the in-plane stiffness is A, the coupling stiffness is B and out-of-plane stiffness is denoted

by D. Note that B = 0 for a symmetric lay-up with respect to the midplane. The components

of these stiffness tensors can be expressed in lamination parameters ξ and material invariants U

as follows: 

A11

A22

A12

A66

A16

A26


= h



1 ξ1 ξ2 0 0

1 −ξ1 ξ2 0 0

0 0 −ξ2 1 0

0 0 −ξ2 0 1

0 ξ3/2 ξ4 0 0

0 ξ3/2 −ξ4 0 0





U1

U2

U3

U4

U5


, (4.108)



B11

B22

B12

B66

B16

B26


=

h2

4



0 ξ5 ξ6 0 0

0 −ξ5 ξ6 0 0

0 0 −ξ6 0 0

0 0 −ξ6 0 0

0 ξ7/2 ξ8 0 0

0 ξ7/2 −ξ8 0 0





U1

U2

U3

U4

U5


, (4.109)



D11

D22

D12

D66

D16

D26


=

h3

12



1 ξ9 ξ10 0 0

1 −ξ9 ξ10 0 0

0 0 −ξ10 1 0

0 0 −ξ10 0 1

0 ξ11/2 ξ12 0 0

0 ξ11/2 −ξ12 0 0





U1

U2

U3

U4

U5


, (4.110)
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with the lamination parameters defined as

ξ[1,2,3,4] = ξA[1,2,3,4] = 1
2

∫ 1

−1
[cos(2θ(z̄)), cos(4θ(z̄)), sin(2θ(z̄)), sin(4θ(z̄))] dz̄,

ξ[5,6,7,8] = ξB[1,2,3,4] =
∫ 1

−1
[cos(2θ(z̄)), cos(4θ(z̄)), sin(2θ(z̄)), sin(4θ(z̄))] z̄ dz̄,

ξ[9,10,11,12] = ξD[1,2,3,4] = 3
2

∫ 1

−1
[cos(2θ(z̄)), cos(4θ(z̄)), sin(2θ(z̄)), sin(4θ(z̄))] z̄2 dz̄.

(4.111)

The orientation of the plies is a function of the normalized thickness i.e. θ(z̄). Note that this

normalized thickness is z̄ = (2/h)z. Where h is the thickness and z is the thickness coordinate.

The material parameters can be expressed as

U1 = (3Q11 + 3Q22 + 2Q12 + 4Q66) /8,

U2 = (Q11 −Q12) /2,

U3 = (Q11 +Q22 − 2Q12 − 4Q66) /8,

U4 = (Q11 +Q22 + 6Q12 − 4Q66) /8,

U5 = (Q11 +Q22 − 2Q12 + 4Q66) /8.

(4.112)

In this equation Q is the reduced stiffness matrix. For an unidirectional ply the indices can be

expressed as function of material parameters by

Q11 = E2
11/(E11 − E22ν

2
12),

Q22 = E11E22/(E11 − E22ν
2
12),

Q12 = ν12Q22,

Q66 = G12.

(4.113)

Where E11 and E22 correspond to the Young’s modulus in the fiber and transverse direction,

respectively. Other in-plane properties are ν12 which is the Poisson’s modulus and G12 as the

shear modulus.

Originally, the lamination parameters first appeared in the work of Miki [45] and Miki &

Sugiyama [46]. Because the lamination parameters are coupled by trigonometric relations, Miki

defined feasible regions between some of these parameters. For an orthotropic laminate using

two in-plane or out-of-plane lamination parameters he defined the feasible region to be:

2(ξj1)
2 − 1 ≤ ξj2, (4.114)

where j = A,D. Fukunaga & Sekine [47] extended these regions to a formulation of the four

in-plane or for out-of-plane lamination parameters, i.e:

2(1 + ξ22)(ξ
j
3)

2 − 4ξj1ξ
j
3ξ

j
4 + (ξj4)

2 − (ξj2 − 2(ξj1)
2 + 1)(1− ξj2) ≤ 0 ,

(ξj1)
2 + (ξj3)

2 ≤ 1 ,
(4.115)
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where j = A,D. Later, Diaconu et al. [48] derived a feasible region of lamination parameters that

describes the connection between in-plane, coupling and out-of-plane lamination parameters:

4(ξAi + 1)(ξDi + 1) ≤ (ξAi + 1)4 + 3(ξBi )2 ,

4(ξAi − 1)(ξDi − 1) ≤ (ξAi − 1)4 + 3(ξBi )2 ,
(4.116)

where i = 1, .., 4. Apart from the previously treated regions, much research is performed on this

topic and feasible regions are only known for specific parameters or restrictions of the laminate.

[49] showed the relation between the four lamination parameters governing the laminate stiff-

ness and a method to determine the laminate configurations corresponding to the lamination

parameters. Mathematical programming is used to obtain the optimal laminate configurations

for a maximum buckling load. In their work they considered a buckling optimization problem

of an orthotropic laminated cylindrical shell. Because their work is highly relevant in the light

of the present thesis, a similar approach is elaborated in the next.

A generalized symmetric and balanced laminate is considered Section 4.1.3. Because the lami-

nate is symmetric, the B coupling stiffness matrix vanishes. This means that the constitutive

equation changes into: {
N

M

}
=

[
A 0

0 D

]{
ε0

κ

}
, (4.117)

Note that for simplicity the bending-twisting coupling terms D16 and D26 are neglected. The

result of this assumption and since B = 0, the description of A and D can be simplified into:


A11

A22

A12

A66

 = h


1 ξ1 ξ2 0 0

1 −ξ1 ξ2 0 0

0 0 −ξ2 1 0

0 0 −ξ2 0 1





U1

U2

U3

U4

U5


, (4.118)


D11

D22

D12

D66

 =
h3

12


1 ξ9 ξ10 0 0

1 −ξ9 ξ10 0 0

0 0 −ξ10 1 0

0 0 −ξ10 0 1





U1

U2

U3

U4

U5


. (4.119)

It is important to note that the description of the laminate stiffness has dropped from 12 to 4

lamination parameters, being:

ξ[1,2] = ξA[1,2] = 1
2

∫ 1

−1
[cos(2θ(z̄)), cos(4θ(z̄))] dz̄ ,

ξ[9,10] = ξD[1,2] = 3
2

∫ 1

−1
[cos(2θ(z̄)), cos(4θ(z̄))] z̄2 dz̄ .

(4.120)
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ξ∗1 ξ∗2 ξ∗9 ξ∗10
−0.173 −0.163 −0.858 −0.853

Table 4.1: The target lamination parameters ξ∗i for the found optimum of 12.02 MPa

The material invariants Ui are calculated with the engineering constants

E11 = 129 [GPa] , E22 = 8.5 [GPa] ,

ν12 = 0.32 [−] , G12 = 3.74 [GPa] ,
(4.121)

which are in the standard range of a carbon-epoxy UD laminate. The considered cylinder has a

geometry with dimensions similar to the L510-No18 specimen from MacKay [50], that is

L = 510 [mm] , h = 13 [mm] , r = 116.5 [mm] . (4.122)

The first goal is to find the target lamination parameters belonging to a composite cylinder that

is prone to buckling. To be able to do this, the earlier treated Flügge model in Section (4.2)

is used to describe the critical pressure. With the previous defined constants, the coefficients

aij of matrix A in Eq.(4.105) are only a function of the lamination parameters ξA1 , ξ
A
2 , ξ

D
1 , ξD2

and the pressure p for a given m and n. A small computer programme is written to investigate

the behavior of the critical pressure as a function of the lamination parameters. For m = 1 and

n = 3 an impression of the critical pressure found by the computer programme is displayed in

Fig.(4.17).

Next, this model is coupled to an optimization algorithm which is able to find the global op-

timum of this convex domain. A suitable optimizer for this non-linear convex optimization

problem is the interior point algorithm which is implemented in the MATLAB fmincon opti-

mizer. The result of this optimization i.e. the target lamination parameters, are listed in Table

4.1. As indicated, the optimum is found at 12.02 MPa, which has a strong global character as

it is found for different starting points.

At this point, with knowledge of the target lamination parameters, the corresponding lay-up has

to be found. This lay-up could for instance be found by using a optimization algorithm which

fits the lay-up lamination parameters to the target values. However, most practical composite

laminates are restricted to some discrete sets of ply orientation angles such as 0◦, 90◦ and ±45◦

because of the availability of test data for structural verification [51]. Yamazaki [52] proposed

that for this two level procedure, which is at top level described by the search for the optimal

lamination parameters, a genetic algorithm (GA) is used to search for the matching lay-up.

Although GAs are not known for computational efficiency, good performance is found for this

combinatorial stacking sequence problem. The author is aware of these algorithms but in the

present thesis the lay-up is fitted by a total combinatorial approach that is comparable to a
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Figure 4.17: The response of the critical pressure pcr for various choices of lamination parameters ξA1 , ξA2
at fixed out-of-plane parameters with (ξD1 , ξD2 ) = (−1, 0) in (a),(b) and with (ξD1 , ξD2 ) = (0, 0) in (c),(d)

brute force method. In this method a basis vector is used that consists of the considered ply

angles to generate a n-dimensional grid, where n refers to the number of plies in the laminate.

With all possible lay-ups generated, guidelines are checked for each lay-up via conditional state-

ments and for the feasible lay-ups the lamination parameters are calculated, with the help of

Eq.(4.108),(4.109) and (4.110), which can in this case be written as a finite set, i.e.:

ξ[1,2,3,4] = ξA[1,2,3,4] =
1

2

N∑
k=1

[cos2θk, cos4θk, sin2θk, sin4θk] (z̄k − z̄k−1) , (4.123)

ξ[5,6,7,8] = ξB[1,2,3,4] =
1

2

N∑
k=1

[cos2θk, cos4θk, sin2θk, sin4θk] (z̄
2
k − z̄2k−1) , (4.124)

ξ[9,10,11,12] = ξD[1,2,3,4] =
1

2

N∑
k=1

[cos2θk, cos4θk, sin2θk, sin4θk] (z̄
3
k − z̄3k−1) , (4.125)

where N is the number of plies and z̄ is the normalized thickness coordinate. The difference

between the target and these lamination parameter is checked such that the lay-up(s) with the

64



Ply count n Laminate ∆ξ Pcr

8 [90 90 0 0]s 4.83 8.66 MPa
12 [45 -45 -45 90 45 0]s 0.66 8.80 MPa
16 [45 -45 90 -45 90 45 0 0]s 0.59 8.86 MPa
20 [45 -45 90 -45 45 90 -45 45 0 0]s 0.54 8.75 MPa
24 [90 -45 45 45 -45 45 -45 -45 45 90 0 0]s 0.56 8.68 MPa

Table 4.2: The found laminates for different ply counts n accompanied by the error ∆ξ and corresponding
critical pressure Pcr

Ply count n Laminate ∆ξ′ Pcr

8 [90 90 0 0]s 2.37 8.66 MPa
12 [90 90 90 0 0 0]s 2.37 8.66 MPa
16 [90 90 45 -45 -45 0 45 0]s 1.74 9.27 MPa
20 [90 90 90 -45 45 0 45 0 0 -45]s 1.74 9.13 MPa
24 [90 90 90 90 -45 45 0 45 0 -45 0 0]s 1.69 9.32 MPa

Table 4.3: The found laminates for different ply counts n accompanied by the modified error ∆ξ′ and
corresponding critical pressure Pcr

least error is returned. Table 4.2 lists the resulting lay-up for this process for some values of ply

count n. From this table, the results for different lay-ups is shown a varying number of plies in

a lay-up. In this table, the error is defined as

∆ξ =

12∑
i=1

(ξi − ξ∗i )
2
, (4.126)

which is the squared difference between the estimated lamination parameters ξi and the target

parameters ξ∗i . From the table it can be seen that the pressure found by evaluation of the

laminate corresponding to the least error is at around 72-74% of the target. Furthermore, a

decrease in error does not mean, for this particular problem, that a higher pressure is found.

But since this error treats all lamination parameters with the same importance (or weight factor),

which does not correspond to the nature of the Flügge model where this can be illustrated in

terms of derivatives [
∂P (ξ∗)

∂ξ(1,2,9,10)

]
= [−2.5 −0.8 4.9 1.6] , (4.127)

where P (ξ∗j ) is the pressure at the target. By appliance of weight factors with magnitudes corre-

sponding to the derivatives in Eq.(4.127) to the terms in Eq.(4.126), Table (4.3) is constructed.

With this new definition of error it is observed that the response has improved. Furthermore, it

can be seen that the found laminates for the increasing ply count develop more in a structured

way than the random behavior observed in Table (4.2).
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4.3.2 FE optimization of composites and composite sandwich pressure

hulls

The use of lamination parameters is also suitable in a finite element (FE) description of the

pressure hull. [53] determined optimal stacking sequences for laminate panels using a two-stage

optimization method. For practical applications the ply orientations were limited to a finite

set of angles. With a assumed number of plies, optimal balanced laminates were obtained in

this method. For a pressure hull, an analogous approach is elaborated in the following. At the

first stage of the optimization the target lamination parameters need to be found. This higher-

level description of the model gives an indication of the entire design domain and the global

optimum. Furthermore, the FE model, which is computational intensive, is only evaluated for

different lamination parameters subjected to the constraints treated in the previous section. If

the target lamination parameters are found, these parameters are estimated by a combinatorial

search of laminate stacking sequences at the second stage of optimization. These estimations

are relatively small calculations. Therefore, this two-stage approach reduces the computation

time tremendously. The details of the first stage are treated in the next.

At first, the sectional stiffness matrix is constructed by the lamination (design) parameters

ξji . Subsequently the FE model is evaluated and sectional membrane strains and curvature

changes can be inquired. Also, a linear buckling analysis can be evaluated to obtain the linear

buckling pressure. A simple failure criterion for the composite cannot be applied because there is

no lay-up defined. In order to indicate material failure, a suitable (conservative) failure criterion

developed by IJsselmuiden et al. [54], deduced from the Tsai-Wu failure criterion [43], predicts

material failure in the defined section without an established lay-up. The failure criterion yields:

4u2
6I

2
2 − 4u6u1I

2
2 + 4

(
1− u2I1 − u3I

2
1

)
(u1 − u6) + (u4 + u5I1)

2
= 0 , (4.128)

u2
1I

4
2 − I22 (u4 + u5I1)

2 − 2u1I
2
2

(
1− u2I1 − u3I

2
1

)
+
(
1− u2I1 − u3I

2
1

)2
= 0 , (4.129)

where the strain invariants for volumetric strain is I1 and the maximum shear strain I2 are given

by

I1 = εx + εy ,

I2 =

√(
εx−εy

2

)2
+ ε2xy .

(4.130)

The coefficients ui are

u1 = G11 +G22 − 2G12 ,

u2 = (G1 +G2) /2 ,

u3 = (G11 +G22 − 2G12) /4 ,

u4 = G1 −G2 ,

u5 = G11 −G22 ,

u6 = G66 ,

(4.131)
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Figure 4.18: Impression of the Tsai-Wu failure criterion envolopes for high strength carbon-epoxy

where
G11 = Q2

11F11 +Q2
12F22 + 2F12Q11Q12 ,

G22 = Q2
22F11 +Q2

12F22 + 2F12Q22Q12 ,

G1 = Q11F1 +Q12F2 ,

G2 = Q12F1 +Q22F2 ,

G12 = Q11Q12F11 +Q12Q22F22 + F12Q
2
12 + F12Q11Q22 ,

G66 = 4Q2
66F66 .

(4.132)

In this equation Q is the reduced stiffness matrix and the coefficients of the Tsai-Wu failure

criterion are denoted by Fij and Fk. The latter are given given by:

F11 =
1

XTXC
,

F22 =
1

YTYC
,

F1 =
1

XT
− 1

XC
,

F2 =
1

YT
− 1

YC
,

F12 = − 1

2
√
XTXCYTYC

,

F66 =
1

S2
,

(4.133)

where the strength in fiber direction for an UD-ply in tension is XT and XC for compression,

the transverse strengths in tension and compression are denoted by YT and YC , respectively.

The shear strength is given by S.
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In order to understand this failure criterion, it has to be clear that the first criterion Eq.(4.128)

is a second order equation with respect to the strains, while the second criterion Eq.(4.129) is

of the fourth order. The failure criterion which is represented by both equations, is graphically

shown in Fig.(4.18) for a high strength carbon-epoxy composite in strain space. It can be ob-

served from this figure that the fourth order envelope is the critical envelope, since it is forms

the inner strain envelope. Therefore, the so called safe region is given by the common area of

the two ellipses belonging to the fourth order envelope. It is important to note that the critical

envelope is a material property.

In a linear elastic description of the composite, a strength constraint suitable to the present

description is developed by IJsselmuiden et al. [54]. It is practical to use in optimization and

uses a safety factor λ which is defined as

λ =
b

a
(4.134)

where a is the distance between the origin and an arbitrary point P in strain space i.e. (εx, εy) =

(0, 0) and (εx, εy) = (Px, Py). The distance b is defined as the length between the origin and a

point on the critical failure envelope P ∗ which is in the direction of P . The strain invariants that

are initially described in Eq.(4.130), belonging to point P ∗ are now defined in similar fashion:

I∗1 = λI1 ,

I∗2 = λI2 .
(4.135)

With this description of the strain invariants Eq.(4.128) and Eq.(4.129) can be reformulated for

the critical state, hence

4u2
6 (λI2)

2 − 4u6u1 (λI2)
2
+ 4

(
1− u2λI1 − u3 (λI1)

2
)
(u1 − u6)

+ (u4 + u5λI1)
2
= 0 ,

(4.136)

u2
1 (λI2)

4 − (λI2)
2
(u4 + u5λI1)

2 − 2u1 (λI2)
2
(
1− u2λI1 − u3 (λI1)

2
)

+
(
1− u2λI1 − u3 (λI1)

2
)2

= 0 .
(4.137)

The next step is to express these equations in terms of λ:

a12λ
2 + a11λ+ a10 = 0 , (4.138)

a24λ
4 + a23λ

3 + a22λ
2 + a21λ+ a20 = 0 , (4.139)
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where Eq.(4.138) corresponds to Eq.(4.136) and Eq.(4.139) to Eq.(4.137). The coefficients aij

are given by

a10 = u2
4 + 4u1 − 4u6 ,

a11 = 4u2I1u6 − 4u2I1u1 + 2u4u5I1 ,

a12 = −4u3I1
2u1 + 4u3I1

2u6 + 4u6
2I2

2 − 4u6u1I2
2 + u5

2I1
2 ,

a20 = 1 ,

a21 = −2u2I1 ,

a22 = −I2
2u4

2 − 2u3I1
2 + u2

2I1
2 − 2u1I2

2 ,

a23 = 2u1I2
2u2I1 − 2I2

2u4u5I1 + 2u2I1
3u3 ,

a24 = 2u1I2
2u3I1

2 + u1
2I2

4 − I2
2u5

2I1
2 + u3

2I1
4 ,

(4.140)

which are functions of the strain invariants I1, I2 and coefficients ui which were treated in

Eq.(4.131). For a given material under known strain state, the failure constraint can be cal-

culated by finding the solutions of Eq.(4.138) and Eq.(4.139). The smallest absolute real root

among the six root solution for λ is the active critical safety factor for failure, i.e. the corre-

sponding λ for the critical envelope belonging to the strain state. [54] formulated the strength

constraint as
1

λ2
c

− 1 ≤ 0, (4.141)

where λc is the active critical safety factor. However, before this strength constraint is useable

for the whole laminate, the strain within the laminate has to be defined. An assumption is made

that

ε(x, y, z) = ε0(x, y) + zκ(x, y), (4.142)

which is similar to Eq.(4.31). As a result, the strength constraint of Eq.(4.141) can be either

critical at the top or bottom surface of the laminate, i.e. z = ±h/2 with h representing the

laminate thickness. IJsselmuiden and coworkers [54] described that this result may seem para-

doxical at first because it is well known that the most critical point through the thickness of

a composite need not be one of the extreme fibers. But since the formulation of the failure

criterion is regardless to the ply orientation this result is expected. Hence this failure criterion

is conservative with in particular for bending dominated problems.

Having the strength constraint defined, together with the linear buckling pressure, a optimiza-

tion procedure can be constructed for the composite pressure hull. It has to be mentioned that

the treated method can be utilized on composite sandwich pressure hulls as long as the effect

of core failure and face wrinkling effects are also described in additional constraints. For both

models, a logical objective function can be either the buckling pressure or the weight of the

pressure hull. As described previously, the strength of the structure forms the constraint and

the lamination parameters are the design variables at this first optimization stage. With a opti-

mal solution for the lamination parameters found, i.e. target lamination parameters, the second

(and last) stage of the optimization procedure is started. Since the lamination parameters are
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simple sequential functions of the desired finite set of ply orientations and thicknesses of the

laminate, evaluation of this procedure is computational efficient. Hence, the method presented

in Section 4.3.1 can be used to fit an actual laminate to the desired target values.

4.4 Conclusion

The mechanical basics of a composite material are treated and techniques to gather engineer-

ing constants at ply level are shown. But as composite laminates mostly consists of multiple

stacked plies that vary in orientation the ply description is not appropriate. Therefore, the

classical laminate theory is elaborated. As an important note this theory neglects through-the-

thickness shear deformations, which cannot be neglected for all laminates. Furthermore, in the

search of an actual laminate, the most appropriate lay-up guidelines are presented and applied

throughout this work.

However, composite materials bring more complexity in the light of failure and strength predic-

tion. Most important failure mechanisms are shown for a composite laminate and for sandwich

structures. The used formulae for strength and failure criteria are treated and, of course, applied

in the present thesis. Apart from material failure, buckling effects can dominate the collapse of

a composite cylinder. A linearized buckling theory is elaborated which is used as a basic model

in the subsequent section.

A higher level approach for a laminate description in terms of lamination parameters is elabo-

rated. The advantage of these parameters is demonstrated for an analytic linearized description

of a composite cylinder prone to buckling. It turns out that this approach is very appropriate

and an indication of the global optimum is easily found. Since this optimum is formulated

in terms of the (target) lamination parameters, an actual laminate needs to be found. The

proposed method for this fitting problem selects the most appropriate lay-up which also is in

accordance with the laminate guidelines.

The use of lamination parameters in a FE context is outlined. The missing link turns out

to be a constraint that indicates material failure. The Tsai-Wu based failure criterion in the

context of a lamination parameter approach, deduced by IJsselmuiden et al. [54] is the answer

for this problem. It is demonstrated that it is a conservative failure criterion since it is regardless

to the ply orientations in the potential laminate.
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Chapter 5

FE modeling, analysis and weight

minimization of pressure hulls

In this chapter the majority of the topics treated earlier are applied. For the stiffened cylinder,

which is the reference and is described in Section (5.1), an experimentally tested cylinder is

modeled in FE. Different analyzes are performed and results are compared to the experiment.

With the FE model defined, weight minimization is performed. With the experience of this model

and description in terms of lamination parameters, a FE composite cylinder is modeled in Section

(5.2). Target lamination parameters are found for the maximization of the critical buckling load

and weight minimization. Corresponding lay-ups are presented. At last, a composite sandwich

FE model is created and described in Section (5.3). Similar optimizations as in the previous

section are performed and results are presented.

5.1 Stiffened cylinder FE analysis and optimization

In this chapter a stiffened cylinder is modeled. This is a proven pressure hull concept (see Section

(3.2)) and understanding the mechanics up to the collapse pressure is paramount. Hence, a FE

model is created that predicts this collapse pressure. This model is based on an experiment

with an aluminium stiffened cylinder subjected to external pressure described by MacKay [50].

Ultimately, with the geometry defined in a parametric manner, weight minimization is performed

in Section (5.1.6).

5.1.1 Experiment

MacKay [50] describes collapse tests on twelve small-scale ring-stiffened aluminium cylinders.

Out-of-circularity (OOC) in the critical collapse mode was applied by mechanically deforming

the specimens. MacKay studied the effect of corrosion damage on the specimens’ stability. Half

of the specimens was subjected to artificial damage, while the other half was still intact. The
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Figure 5.1: Typical internally stiffened cylinder of MacKay’s test series [50]

Figure 5.2: Design dimensions of the test specimen, figure is adapted from [50]

L510-No-18 cylinder which is one of MacKay’s intact specimens (in the following referred to as

the test specimen), is described in the next. Ultimately, the specimen is modeled in FE and

validation of the model is performed with the specimen’s test results.

5.1.2 Geometry

The nominal axisymmetric geometry of the test specimen is CNC machined from 6082-T6 alu-

minium alloy tubing. An impression of such a typical test specimen is given in Fig.(5.1). As

illustrated in Fig.(5.2), the cylinder is stiffened by eight internal T-section ring stiffeners. Di-

mensions of the specimen are chosen such that the cylinders would fail in a overall elasto-plastic

collapse of the shell and stiffeners. This means that the stiffeners are small in terms of bending

stiffness compared to the shell. The end sections of the shell are thick and the transition to the

thin mid-shell is tapered. This prevents undesired end bay failures and gives enough material
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Maximum radial eccentricitya Maximum Fourier Amplitudeb

(mm) (mm)

Outward Inward Average n = 2 n = 3 n = 4 n = 5 n = 6
0.337 0.503 0.399 0.023 0.366 0.022 0.023 0.090

Table 5.1: List of measured eccentricites and Fourier decomposition for the outer shell radii of the
specimen L510-No-18
a. Outward and inward eccentricity are based on the absolute maximum values of the positive and
negative deviation, respectively, from the mean outer shell radius for all axial measurement locations.
The average eccentricities are computed at each axial measurement location and taken as half the
difference between the maximum outward and inward eccentricities. The listed maximum average
eccentricity is the maximum of all average eccentricities.
b. Maxiumum Fourier amplitudes, based on decomposition of outer shell radii at all axial measurement
locations, are reported. Fourier amplitudes for n > 6 are negligible.

Young’s Poisson’s Yield strength Tensile Compressive Elongation
modulus ratio (elastic limit) strength strength at break
[GPa] [-] [MPa] [MPa] [MPa] [%]

L510-No-18 57.2 - 305.1 328.0 - 11.7
Handbook 70-74 0.325-0.335 240-290 280-340 295-326 5-11

Table 5.2: Engineering properties AA 6082-T6: measurements on the specimen [50] and handbook
values [55]

to secure the end caps with bolts, as described by MacKay.

The specimen is subjected to a mechanical deformation with the purpose to leave a dominating

(n = 3, m = 1) mode. This mode shape is the most critical for collapse of the test specimen.

The resulting OOCs are measured and listed in Tab.(5.1). Note that these measurements were

made with the earlier described chord gauge. From Tab.(5.1) it is easily seen that the critical

collapse mode n = 3 dominates.

5.1.3 Material

As mentioned earlier in this chapter, the test specimen is made from AA-6082-T6 aluminium

alloy. MacKay performed tensile tests on the alloy and showed that anisotropic material behavior

was present. He suggested that this would be related to the extrusion process for the aluminium

tubing, which preferentially align the grain structure in the axial direction. The engineering

properties for the test specimen, accompanied by the typical handbook values [55] are listed

in Tab.(5.2). It has to be mentioned that the Young’s modulus is significantly lower than the

typical handbook value of 70 to 74 GPa. MacKay indicated that the measured value could be

incorrect due to the fact that only one extensometer was used instead of the typical number of

two. Any unwanted bending effects could not be measured and therefore the results can differ

from the true material behavior.
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(a) (b)

Figure 5.3: Picture of the specimen with the strain gauge instrumentation in (a) and a graphical
visualized OOC model (b) both adapted from [50]

5.1.4 Strain gauge plan

The instrumentation consists of uni-axial linear strain gauges (Vishay Micro-Measurements

gauge designated CEA-13-250UW-350) together with bi-axial 90◦ stacked rosettes (Vishay Micro-

Measurements gauge designated CEA-13-125WT-350). The accuracy of these gauges is around

0.5% of the reported value. The tabular instrumentation plan of the test specimen is listed in

Appendix E.1.

In short, there are twelve uni-axial gauges fixed to each of the two central-right stiffeners (i.e.

Frames 4 and 5) at 30◦ increments about the circumference. Additionally, twelve bi-axial gauges

were fixed to the outside of the shell mid-way between the two central ring-stiffeners in Bay 4 at

30◦ increments about the circumference. Lastly, a row of thirteen bi-axial gauges are located at

the outer shell along the length of the cylinder at each mid-bay and and ring stiffener location,

starting at Bay 1. To illustrate this, a picture of the the test specimen is shown in Fig.(5.3a).

5.1.5 FE model

The test specimen is modeled with finite elements (FE) in Abaqus/CAE. The general idea

behind this approach is to achieve a similar behavior in the FE model as in the test specimen’s

experiment. In order to get to this point, certain phases is terms of modeling have to be

completed.

First, a linear elastic FE model (Section 5.1.5) is created with shell elements. Appropriate
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(a) Details of the mesh (b) Rendered thickness of shell elements

Figure 5.4: Close-up of the mesh for the stiffened cylinder cross section

loads and boundary conditions have to be applied. The initial measured stiffness of the test

specimen has to be more or less the same as this linear elastic FE model. In order to make a

comparison, the strain gauge readings are compared with strain gauges modeled in FE. Second,

a linear buckling analysis is performed in Section 5.1.5. Mode shapes and buckling loads have

to be extracted. If correct boundary conditions are applied, the critical buckling mode with

n = 3 has to be found. Third, a non-linear material model needs to be created to imitate the

true material behavior. With this model and accounting for large-displacements, a non-linear

buckling analysis has to be performed (see Section 5.1.5). Because the specimen is sensitive to

imperfections, these have to be modeled according to measurements that are already listed in

Tab.(5.1). The non-linear material model has to be implemented. Further, FE strain gauges

have to be modeled in order to compare the output with the experiment.

Linear elastic model

The linear elastic FE model consists of shell elements and is comparable to the FE model treated

in [50]. It has to be noted that the general mesh size is equal to 2 mm. This mesh is illustrated

in Fig.(5.4a), with the colors corresponding to specific sections. The tapered section of the

shell is created by a stepwise (linear) change in thickness. An overview of the model is shown

in Fig.(5.4b). It can be seen from the figure that the end plates are not modeled. Instead of

that, appropriate boundary conditions are applied to simulate the end plates. As [50] described,

”quasi-clamped” boundary conditions are applied whereby out-of-plane bending is prevented at

the cylinder ends, while end-warping is allowed. The external pressure is applied as an uniform

pressure of 10 MPa at the outer shell surface. As a result from the missing end plates, an axial

force on a reference point which is coupled to the shell’s end section represents the pressure

axial component of the pressure. At the opposite end section the axial displacement is equal to

zero. The rigid body modes are prevented by locking the tangential displacement at two node

pairs. The thick end plates are modeled with the same ”quasi clamped” boundary condition at

the axial outer shell location of the inner end plate surface. The aluminium is modeled with a

handbook Young’s modulus of 70GPa.
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Figure 5.5: The von Mises stress distribution in the linear elastic model at 8 MPa

The results are compared via strain gauge readings. The strain gauges are modeled as a linear

connector with zero stiffness between two reference points that are constrained to the corre-

sponding outer surface of the shell elements. The reference points follow the displacement of the

facing and the change in length will be measured for the connector. This method is a proven

concept and widely applied in the aerospace industry. The results are shown in Appendix E.2.

The match with the experiments for the initial slope of the readings is shown in Appendix E.4.

The initial response for the majority of the gauges is very comparable to the experimental mea-

sured values. Some of the longitudinal strain gauge array show a moderate match with the test

results, this behavior is discussed later in Section (5.1.5).

It is important to note that the model has an imperfect geometry, the critical n=3 mode is added

(as initial geometric deviations of the nodes corresponding to the values listed in Table(5.1))

with an Abaqus/Standard *IMPERFECTION command at the model’s input file. In order to

add this mode to the geometry, an linear buckling analysis has to be performed and a *NODE

FILE command has to be added to the model’s input file. This linear buckling analysis is treated

in the next section.

In Fig.(5.5) the von Mises stress is illustrated for the outer shell surface and the stiffened cylin-

der interior. In the grey colored contour area the von Mises stress is higher than the (assumed)

typical handbook strength value of 280 MPa. With the applied 8 MPa it can be clearly seen

that yielding takes place at this pressure. To be more precise, first yielding occurs at the outer

shell when 7.5 MPa uniform pressure is applied.
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Figure 5.6: Illustration of the lowest eigenvalue (n = 3, m = 1)

Mode
n=3, m=1 n=4, m=1 n=4, m=2 n=8, m=7

Eigenvalue [MPa] 15.1 20.3 22.8 23.5

Table 5.3: Found eigenvalues for the test specimen a the linear buckling analysis

Linear buckling analysis

Since the test specimen is prone to buckling it is essential to perform a buckling analysis.

Additionally, the imperfection needed in the linear elastic and non-linear buckling analysis can

be extracted in this process. This FE model is in the initial configuration the same as in the

linear elastic model described in Section (5.1.5). A linear buckling analysis is performed and

the first found mode shape, which has the lowest buckling load, is illustrated in Fig.(5.6). To be

complete the found values and mode shapes are listed in Table (5.3). As expected a typically

large pressure is found as buckling load compared to the experiment. To be complete, the

mode shapes belonging to the other eigenvalues are graphically shown in Appendix F. With

the knowledge of the previous section it is easily demonstrated that yielding occurs at a lower

pressure than the first linear buckling mode. Hence, the expected collapse of the imperfect

pressure with an nonlinear material model will be around this lower pressure. This is also a

result of the previously described approach of Johnson-Ostenfeld in Section (3.3). Therefore,

it is important to implement a more realistic model that accounts for material yielding and

geometrical imperfections. This approach is elaborated in the next.

Non linear buckling FE model

A non-linear buckling analysis is performed to accurately describe the test specimen. This Sec-

tion describes the aspects of the model and this analysis. First, the boundary conditions are

the same as in the previously treated linear elastic FE model. Additionally, the geometry is not

axi-symmetric but the critical n = 3 mode shape imperfection is added to imitate the imperfect

test specimen. The amplitude of this imperfection is the same as in the experiment, which was
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Figure 5.7: Applied pressure as a function of the arc length

already listed in Table (5.1) as the Fourier amplitude for this mode. The non-linear material

behavior of the AA-6082-T6 aluminium alloy is characterized with a (typical handbook) tensile

yield strength of 280 MPa. Furthermore, the strain hardening modulus is 350 MPa. The imple-

mented material model is a bilinear material model with an initial (handbook) Young’s modulus

of 70 GPa. As before, the strain gauges are modeled and the output can be compared with the

experimental gauges. The readings are compared to the experimental values and graphically

plotted in Appendix E.3. Furthermore, an arc length method is used as a step method. To

attain good convergence a maximum arc length of 0.025 is used for an applied pressure at 10

MPa.

The results of the FE strain gauge readings are compared to the experiment. An indication

of output matches is listed in Appendix E.4. After inspection of these readings, the collapse

pressure is found to be 7.8 MPa. The collapse pressure is conveniently close to the measured

value in the experiment, i.e. 7.71 MPa [50]. As in the linear elastic model, the readings are

compared to the experimental values. Good correspondence is found for the majority of the

FE readings. Again, in the longitudinal strain gauge array there is a moderate match. These

discrepancies could originate from various simplifications in the FE model. Residual stress that

occurs after mechanically applying the n = 3 mode shape imperfection changes the local dis-

placement behavior. Other imperfections, such as higher modes or local dents (see Fig.(5.3b) for

an impression) that are present in the model can be the origin of this error. The local behavior

that governs the strain gauges could also change if these modes are also added to the FE model.

Other effects can have influence on the strain gauges, e.g. the anisotropic behavior which is

found in samples from the cylinders.

Because the collapse is clearly caused by the initiation of material yielding, the elastic or plastic

condition of the model is visualized with a so-called yield flag in Fig.(5.8). As can be seen from

Fig.(5.8a), first yielding occurs at the centermost stiffener flanges (frames 4 and 5) at an arc

length of 0.7. From Fig.(5.7) one can observe that this arc length corresponds to a pressure of
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(a) Arc length = 0.7 (b) Arc length = 0.75

(c) Arc length = 0.75 (d) Arc length = 0.8

Figure 5.8: The contour plot of the red yielding flag at different arc lengths

6.6 MPa. This plasticity extends when the arc length is increased to 0.75, at an equivalent 7

MPa the outer shell starts to yield at the inter-frame locations, see Fig.(5.8c) for a complete

impression. In Fig.(5.8d) the equivalent pressure is 7.3 MPa and first yielding occurs at the stiff-

ener webs. Material yielding was also observed in the experimental model. It has to be noted

that the found yield pressures were, according to MacKay [50], predicted by assuming that the

as-tested cylinders were in a stress-relieved condition; that is, the effect of residual stresses that

necessarily arose during application of OOC were neglected. As such, the reported yield pres-

sures may be greater or less than the actual yield pressures, depending on the interaction of

the residual stresses with the applied load. However, by comparing the yielding locations and

relative values of the yield pressure it is found that the test specimen also shows first yielding

at the centermost stiffener flanges and outer shell yielding at a slightly higher pressure.

5.1.6 Optimization the FE model

The previously treated FE model is constructed by means of scripting. With this scripting

interface for Abaqus/Standard which is written in the language Python, modeling can easily be

made parametric. This opens the possibility to see how dimensional changes in the geometry
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Figure 5.9: Design dimensions of the test specimen in terms of design variables, figure is adapted from
[50] but customized

alter the collapse strength. Of course, the weight of the structure can change during this

process and this should not be neglected. In order to see the potential of this conventional

design, the parametric model is subjected to an optimization that has the purpose to minimize

the structural weight while keeping the performance with respect to collapse on the same level.

The optimization problem therefore yields

minimize W ∗ (ts, tw, tf , lw, lf , N
s)

subject to Eq.(5.2) and Eq.(5.3)

design variables {ts, tw, tf , lw, lf , Ns}
(5.1)

where the unit weight W ∗ is defined as the weight in [kg] per [mm] unit length, neglecting the

tapered and thick end sections. The design parameters ts, tw and tf are the thickness of the

shell, stiffener web and flange, respectively. The radially measured length of the stiffener web

and the length of the stiffener flange in axial direction are denoted by lw and lf . To be complete,

these dimensions are shown in Fig.(5.9). The last design parameter is the number of stiffeners

Ns. It has to be noted that the stiffeners are evenly distributed between the two stiffeners near

the end sections. For the constraints, the von Mises stress in the material in the static analysis

has to be satisfy the condition√[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

2

]
− σy ≤ 0 , (5.2)

and the critical pressure from the linear buckling analysis (Pcr,le) has to be larger or equal than

in the reference model (P ∗
cr,le), i.e:

P ∗
cr,le − Pcr,le ≤ 0 . (5.3)
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Material Objective Optimal design variables Constraint values
W ∗ ts tw tf lw lf Ns Eq.(5.2) Eq.(5.3)

[kg/mm] [mm] [mm] [mm] [mm] [mm] [-] [MPa] [MPa]

AA-6082-T6 6.52E-3 2.31 0.91 2.06 8.63 5.63 18 −9.9E-4 −1.1E-2
HY80 9.9E-2 1.41 0.115 0.49 8.63 5.56 28 −3.45 −3.08

Ti-6Al-4V 6.57E-3 1.36 0.44 2.06 7.00 3.37 19 −7.5 −6.5E-2

Table 5.4: Results of the optimization process of the conventional stiffened cylinder for the reference
aluminium alloy (AA-6082-T6), the commonly applied high-yield steel (HY80) and titanium alloy (Ti-
6Al-4V)

with of course the absolute value of the external pressures Pcr,le and P ∗
cr,le.

Because of the present formulation, i.e. five continuous design variables and one integer de-

sign variable, a suitable solver for this optimization problem is a so-called mixed-integer global

optimizer that can deal with this discontinuity. MIDACO optimization software [56] is capable

to solve such problems. The routine, which is originally written in Fortran77, has direct C

translation which can be called from Matlab [57] via a gateway function in the form of a MEX

file. The mixed-integer optimizer from MIDACO is used to solve the optimization problem.

The results of this optimization are listed in Table (5.4). Also, a convergence curve is provided

in Fig.(5.10) which shows that the unit weight, which is the objective function, lowers quickly

to the found optimum. It has to be noted that all constraints are satisfied. The material failure

constraint i.e. the von Mises stress is active at the optimum. To be complete, the model in

optimal form is displayed in Fig.(5.12a) and Fig.(5.12b). The von Mises stress at an external

pressure of 10 MPa is plotted in Fig.(5.12c) and Fig.(5.12d) the critical mode shape for the

linear buckling analysis is shown in Fig.(5.12e) and Fig.(5.12f). As a result of inspection the

critical von Mises stress is found to be located at the inside of the shell near the stiffener webs.

With the knowledge that the original model had a unit weight of 7.73E-3 kg/mm, it can be

said that the optimization caused an impressive 15% weight reduction while keeping the same

strength in terms of yielding and buckling with respect to the reference model.

The current optimization is also applied at an FE model with material properties belonging to

the widely applied HY80 steel. The properties used for stiffness and strength are given in tabular

format in Appendix C. In this appendix one can observe the difference in specific strength for

HY80 steel and the reference aluminium 6082-T6, which is about 20% higher for the aluminium.

Furthermore, the specific stiffness is only 1.4% higher for steel. With this in mind, the same

mixed-integer weight minimization is performed and the result indicates the expected: An unit

weight optimum of 9.9E-3 kg/mm is found, which is 50% heavier than the optimized reference

model. As such, titanium (Ti-6Al-4V, see Appendix C) is evaluated. This material shows a 75%

higher specific strength but a 5% lower specific stiffness. Hence the found optimum of 6.57E-3
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Figure 5.10: The automatically generated convergence plot of the mixed-integer optimization process
for the unit weight minimization of the stiffened pressure hull

Figure 5.11: The titanium hull in its optimal design

kg/mm unit weight is more or less the same as the reference optimum. The optimization results

of HY80 and the titanium hull are listed in Table (5.4) An impression of the optimal design for

the titanium hull is given in Fig.(5.11).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Impression of the found optimal stiffened model with the mesh in (a), the rendered shell
thicknesses in (b), the von Mises stress distribution at 10 MPa external pressure in (c) and (d), the
critical buckling mode shape in (e) and (f).
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5.2 Optimization of a composite pressure hull using lam-

ination parameters

As a start, Section (5.2.1) describes the general procedure for a optimization of a composite

laminate pressure hull FE model. The FE model itself is described in Section (5.2.2) and the

optimization is performed in Section (5.2.3).

5.2.1 General procedure

At this stage, the approach outlined and described in Section.(4.3.2) is used to optimize a com-

posite pressure hull. The first of the two-stage optimization process is schematically shown in

Fig.(5.13). As illustrated the lamination parameters, which are the design variables are passed

via the Python scripting interface to Abaqus/Standard. Because the total lay-up thickness needs

to be defined in order to evaluate the FE model, this is also written to a data file by MATLAB.

The FE model is evaluated with the sectional stiffness matrix. The details of this implementa-

tion are provided in the next.

An Abaqus/Standard user subroutine (UGENS ) is used to define the shell section stiffness for

the FE analysis. The advantage of this subroutine which is written in the Fortran 90 language,

is that the mechanical behavior the shell section can be defined in terms of generalized section

quantities. The ABD matrix which is a function of the lamination parameters, governs the

relation between the sectional membrane forces, bending moments and the membrane strains

and curvature changes. Consequently, this matrix is implemented in the subroutine.

The FE analysis of the model is analogous to the validated stiffened shell model (Section 5.1),

i.e. a linear buckling analysis to extract the eigenvalues (i.e. linear buckling load) and a static

analysis with a uniformly applied external pressure of 10 MPa. In addition, similar boundary

conditions and loads are applied. In order to perform the analysis the composite section thick-

ness and transverse shear moduli are needed. The latter quantities are calculated as described

in [58]:

Kts
11 = Kts

22 =
(
1
6 (D11 +D22) +

1
3D33

)
Y , Kts

12 = 0 (5.4)

where Y is the initial scaling modulus which is equal to unity and Dij are components of the

section stiffness matrix.

The section membrane strain and curvature changes of the mid-plane (that is the reference

plane in this case) are requested as output of the static analysis. The material failure criterion,

which is the Tsai-Wu strength constraint described in Section.(4.3.2), is evaluated with these

quantities at the top- and bottommost section points of the shell. Together with the lowest

eigenvalue found in the linear buckling analysis, these failure criterion values are returned to

the optimizer.
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Figure 5.13: Simplified overview of the FE optimization procedure using lamination parameters

It is important to note that because of the gross size of the procedure, the model needs to

be validated. By evaluation of a similar FE model for a set of non-trivial lay-ups, the FE model

is evaluated and the sectional stiffness matrix are extracted. Perfect correspondence is found

for the FE model that is constructed by lamination parameters.

The MATLAB algorithm fmincon, which is a constrained nonlinear optimization algorithm,

is used as an optimizer. It is capable to find a optimum for multi-variable functions. The

interior-point algorithm is selected because it is capable to find the optimum in nonlinear con-

vex function. It has to be mentioned that numerical experience seems to indicate that the

feasible and strength-constrained domain is indeed convex or nearly so [54]. Implementation of

user defined constraint functions is possible, in order to specify the desired design domain. The

used constraints are feasible regions of the lamination parameters and material failure, both

described in Section.(4.3.2). As a first step, the objective is chosen to be the maximization of

the linear buckling pressure. The lay-up thickness and hence the weight of the pressure hull is

constant.

5.2.2 FE model description

The main idea behind the construction of this FE model is to adapt most of the features from

the reference model, i.e. the previously treated stiffened cylinder FE model, since good cor-

respondence between this model and the experiment. This choice is made since there is no

information about an existing model and/or experiments for the composite cylinder. Hence, the

dimensions are the same for the outer shell radius and cylinder length. Boundary conditions

are also similar. The only difference is that the thick end sections of the L510-No18 are not

modeled. Instead, a single wall thickness is applied to the whole model, which can ultimately
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(a) (b)

Figure 5.14: Impression of FE composite cylinder model with the boundary conditions in (a) and the
applied loads in (b)

be used as a design variable for the optimization process. The consequence of this choice is that

stresses will occur at the boundary conditions. Because the thicker and tapered end section of

the reference model, these stresses are diminished. However, in the present thin single walled

specimen these stresses will be higher. By assuming that the far field stresses are crucial and

by neglecting these stresses, this effect is omitted. Because an end section has to be designed

such that these boundary stresses will not occur, e.g. in the reference model, this is a valid

choice. A side effect of this choice is that the model will be conservative with respect to the

reference model. Boundary conditions are applied at the cylinder ends and at the thick side of

the tapered section. Furthermore, the reference model still has an increased stiffness due to this

tapered section and a smaller characteristic buckling length.

An impression of the geometry, the boundary conditions and loads is given in Fig.(5.14). As

said before, no changes in boundary conditions or loads are made with respect to the reference

model. It has to be noted that no imperfections are modeled because of the lack of experimen-

tal data. The mesh of the model consists of 10 mm S4 elements which are fully integrated,

general-purpose, finite-membrane-strain shell elements. The element’s membrane response is

treated with an assumed strain formulation that gives accurate solutions to in-plane bending

problems, is not sensitive to element distortion, and avoids parasitic locking. These elements

are of course more computational intensive than the reduced integration elements but a greater

solution accuracy is obtained for prone to membrane- or bending-mode hourglassing [58].
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Thickness Lamination parameters Critical pressure Unit weight
h [mm] ξ1 ξ2 ξ9 ξ10 Pcr [MPa] [kg/mm]

4 -0.111 -0.133 0.655 0.618 5.27 4.71 E-3
6 0.134 0.094 0.838 0.781 12.99 7.01 E-3
8 0.368 0.355 0.937 0.932 27.96 9.27 E-3

Table 5.5: Result of the critical pressure maximization process with target lamination parameters for
specific choices of laminate thickness h

As noted before the mechanical behavior of the shell section is defined by an UGENS user

subroutine. To activate this general shell section behavior the *SHELL GENERAL SECTION

keyword in the input file is needed. Now, the subroutine is called at the beginning of the in-

crements in all integration points. At the end of the increment it returns the section stiffness

matrix of the shell section and the forces and moments per unit length of the shells surface.

5.2.3 Optimization

With the procedure and FE model described, the optimization to obtain the target lamination

parameters is elaborated in the next. In general, for a maximization of the linear buckling

pressure Pcr the optimization problem can be stated as

maximize Pcr (ξ1, ξ2, ξ9, ξ10)

subject to Eq.(4.114) - Eq.(4.116) and Eq.(4.141)

design variables {ξ1, ξ2, ξ9, ξ10}
(5.5)

First, the ply properties belong to a AS4 carbon fiber/3501-6 epoxy UD composite and are

given in Table(C.5). By taking h as the lay-up thickness, the FE model can be defined in terms

of the lamination parameters. The found target lamination parameters are provided in Table

5.5. The active constraint in all considered cases is the lamination feasible domain restriction

in Eq.(4.116). Furthermore, if one directly compares the unit weight of the stiffened cylinder,

being the weight per unit length in axial direction for a characteristic mid-section which is equal

to 7.33E-3 kg/mm, one can observe the potential of the 6 mm cylinder in terms of weight. The

second stage, which is the search for the most appropriate lay-up is treated in the next.

Analogous to the approach outlined in Section 4.3.1, the construction of a lay-up is performed

via a combinatorial fitting of the target lamination parameters with the eye for laminate guide-

lines. The result for the experiments is displayed in Table 5.5. Again, the minimized error is

not the simple squared difference but the derivatives at the target is calculated, as discussed

in Section 4.3.1. The Tsai-Wu failure criterion is checked for all lay-ups in Table (5.6) and as

expected, all laminates are intact. Furthermore, it can be observed from the table that the

lay-ups do not change between range of thicknesses. This is a result of the definition of the error
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Figure 5.15: Graphical illustration of the found 6 mm laminate with 20 plies

that is minimized throughout the laminate selection fitting process. Note that the s indicates a

symmetric laminate e.g. [0 90]s=[0 90 90 0].

If one compares the results to the found optimum in critical buckling pressure in terms of

lamination parameters, one will see that laminates with a high amount of plies are closer to the

this pressure than the lower numbers as there are more degrees of freedom in the fitting process.

Of course, this is expected but one has to remember that laminate guidelines can influence this

behavior. Notice that the for the found laminates the critical linear buckling pressure can reach

values up to an impressive 97% of the target design.

From the target lamination parameter results, which were listed in Table (5.5), it is easily

observed that the found optimal design of 6.52E-3 kg/mm for the stiffened conventional pres-

sure hull is a better choice than the more heavy composite cylinder. Since the critical pressure

of the stiffened specimen in the linear buckling analysis was 15.1 MPa. However, for deep depth

regimes material failure is the critical collapse mechanism and roles are reversed.
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Thickness Ply count n Laminate ∆ξ Pcr

4 mm 12 [-45 45 45 0 -45 90]s 0.862 3.38 MPa
4 mm 16 [0 0 -45 45 45 90 -45 90]s 0.069 4.94 MPa
4 mm 20 [0 0 0 -45 45 90 45 90 90 -45]s 0.053 4.97 MPa
4 mm 24 [0 0 0 0 45 -45 90 -45 90 45 90 90]s 0.064 4.99 MPa
6 mm 12 [-45 45 45 0 -45 90]s 2.512 9.26 MPa
6 mm 16 [0 0 -45 45 45 90 -45 90]s 0.42 12.215 MPa
6 mm 20 [0 0 0 -45 45 90 45 90 90 -45]s 0.351 12.44 MPa
6 mm 24 [0 0 0 0 45 -45 90 -45 90 45 90 90]s 0.292 12.64 MPa
8 mm 12 [-45 45 45 0 -45 90]s 14.520 18.14 MPa
8 mm 16 [0 0 -45 45 45 90 -45 90]s 3.119 25.05 MPa
8 mm 20 [0 0 0 -45 45 90 45 90 90 -45]s 2.279 25.70 MPa
8 mm 24 [0 0 0 0 45 -45 90 -45 90 45 90 90]s 1.744 26.26 MPa

Table 5.6: The found laminates for different ply counts n and thicknesses h accompanied by the modified
error ∆ξ and corresponding critical pressure Pcr. An impression of the 6 mm 20 ply laminate is shown
in Fig.(5.15)
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5.3 Optimization of a composite sandwich pressure hull

using FE

The FE model of a composite sandwich pressure hull is described together with the general

procedure for analysis in Section (5.3.1). Optimization is performed in Section (5.3.2).

5.3.1 General procedure and FE model

The general approach to find an optimal composite sandwich structure is very similar to the

previously treated composite pressure hull, in Section (5.2). But as the core adds a new feature

to the model, the FE model is slightly changed. The model is created such that the skins can

consist of different composite laminates. As such, the thickness of each skin can also be used as

design variable. As in the previous, S4 shell elements are used to model these skins. The core

is modeled with C3D8I continuum elements. These are first-order incompatible mode elements

that are enhanced by incompatible modes to improve their bending behavior. In addition to

the standard degrees of freedom, incompatible deformation modes are added internally to the

elements to eliminate the parasitic shear stresses that cause the response of normal first order

displacement elements to be too stiff in bending. Furthermore, the artificial stiffening caused

by the Poisson’s effect in bending is eliminated with these modes [58]. An impression of the

mesh that has a global seed of 10 mm, is given in Fig.(5.16). The used modeling technique in

Abaqus/CAE is to apply so-called skin layers at the inner and outer facings of the solid elements.

As a result from this approach, the reference plane for the laminates are not at the shell mid-

plane. Hence, the material is translated and therefore the translated sectional stiffness matrix

i.e. Eq.(4.60) is used to describe the sectional mechanical behavior.

Analogous to the previously discussed composite cylinder, validity of the model is cross-checked

by evaluation of a similar FE model for a set of non-trivial lay-ups. The FE model is evaluated

and the sectional stiffness matrix are extracted. Perfect correspondence is found for the FE

model that is constructed by lamination parameters.

Core failure is captured by a three dimensional formulation of the Tsai-Wu criterion:

F11σ
2
11 + F22σ

2
22 + F33σ

2
33 + 2F12σ11σ22 + 2F13σ11σ33 + 2F23σ22σ33

+F44σ
2
23 + F55σ

2
13 + F66σ

2
12 + f1σ11 + f2σ22 + f3σ33 ≤ 1 ,

(5.6)
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Figure 5.16: Overview of the sandwich mesh, note that the continuum elements are clearly visible while
the shell elements are situated at the cylinder inner and outer face
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(5.7)

where the Z refers to the out-of-plane direction and the Qij refers to the shear strength in the

ij-plane. Other values are already described in Section 4.1.6.

Face wrinkling effects are captured with the maximum compressive stress formula for a sandwich

with orthotropic cores Eq.(4.83). In-plane sectional forces in the laminate and the engineering

constants of the laminates, i.e. according to [30]:

E0
x =

A11A22 −A2
12

hA22
, E0

y =
A11A22 −A2

12

hA11
, ν0xy =

A12

A22
, G0

xy =
A66

h
, (5.8)

are used to determine the ultimate wrinkling stress of the sandwich faces.

For honeycomb cores the local face dimpling effect is captured with Eq.(4.85). The largest

compressive strength found among all section points is divided by the laminate thickness. Both

constraints are constructed with this conservative measure of stress and are applied in fiber and

transverse direction. Furthermore, the Tsai-Wu failure criterion in terms of strain components

is used to indicate material failure at the skins.
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Thicknesses Lamination parameters Unit weight
hfi [mm] hfo [mm] hc [mm] ξ1 ξ2 ξ9 ξ10 [kg/mm]

1.66 1.51 7.77 0.218 0.043 0.287 0.031 4.47 E-3

Table 5.7: Result of the weight minimization process with target lamination parameters and thicknesses

Since the weight is in the following, the buckling strength has to be at least at the same level

as the reference, i.e:

P ∗
cr − Pcr ≤ 0 (5.9)

5.3.2 Optimization

For simplicity the considered sandwich has two equal orientated lay-ups with different thick-

nesses. When the core thickness is also taken as a design variable, minimization of the unit

weight W ∗ can be stated as the following optimization problem:

minimize W ∗ (hfi, hfo, hc)

subject to Eq.(4.114) - Eq.(4.116), Eq.(4.141), Eq(5.6),

Eq.(4.83), Eq.(4.85) and Eq.(5.9)

design variables {ξ1, ξ2, ξ9, ξ10, hfi, hfo, hc}

(5.10)

Where the unit weight is influenced by the thickness of the inner and outer laminate facing, hfi

and hfo respectively. Because of the computational intensive description of the sandwich model

a single optimization is performed. Target values for lamination parameters are listed in Table

(5.7). With the fitting procedure, the lay-ups are found and presented in Table (5.8).

As the results in Table (5.7) indicate, a tremendous decrease in structural weight is possible. In

fact, with this target design a weight saving of 31% can be realized. The target design satisfies

all constraints. A margin of 0.37 MPa for the critical linear buckling pressure is reserved and

the material failure constraints show that the external pressure could be increased with 10%.

Since there is a relatively small margin in linear buckling pressure, the linear buckling constraint

for fitted laminates is not satisfied. This can be observed from Table (5.8). Of course, instead

of a further search for a more appropriate laminate, a simple but not so elegant solution is to

increase the thicknesses. In this way, a design is found which has a little more weight than the

target. The details of this design are listed in Table (5.9). This design is closely investigated and

all constraints are satisfied, including of course the critical linear buckling pressure constraint.

As the thicknesses are changed, the unit weight increases with 4.5% with respect to the target.

Moreover, this sandwich designs offers a total weight reduction up to 28% with respect to the

optimized reference design treated in Section (5.1.6).
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Thickness Laminate Error Unit Critical
weight pressure

hc hfi hfo ∆ξ W∗ Pcr

[mm] [mm] [mm] [−] [kg/mm] [MPa]

7.77 1.66 1.51 [-45 45 45 0 -45 90]s 0.146 4.47E-3 12.87
7.77 1.66 1.51 [-45 45 0 45 0 -45 90 90]s 0.125 4.47E-3 14.258
7.77 1.66 1.51 [0 0 90 45 -45 90 -45 0 90 45]s 0.126 4.47E-3 14.378
7.77 1.66 1.51 [0 90 0 0 -45 45 45 90 -45 -45 45 90]s 0.124 4.47E-3 14.307

Table 5.8: The laminates that satisfy all constraints accompanied by the unit weight, critical linear
buckling pressure Pcr, for different ply counts n, core thickness hc, inner and outer facing thicknesses
hfi and hfo

Thickness Laminate Unit Critical
weight pressure

hc hfi hfo W∗ Pcr

[mm] [mm] [mm] [kg/mm] [MPa]

7.77 1.75 1.60 [0 0 90 45 -45 90 -45 0 90 45]s 4.67E-3 15.135 MPa

Table 5.9: The laminate that satisfies all constraints and with an equal critical pressure in the linear
buckling analysis accompanied by the unit weight, critical linear buckling pressure Pcr, for different ply
counts n, core thickness hc, inner and outer facing thicknesses hfi and hfo

For the sake of completeness, the total optimization procedure is presented in Appendix G. In

short, the optimization is called from the MATLAB main.m file. The fmincon solver is calls the

objective function (objectiveFunction.m) and the user defined constraint function (confun.m).

Within the objective function, Abaqus/Standard is called with so-called system commands, which

of course vary between operating systems. The present system commands can be used in a Linux

operating system. At first, the sandwich model in constructed with the Python programmed cre-

ateSandwich2.py script. Subsequently, the input file for the FE analysis is modified with another

Python script called inputFileModify sandwich.py to be able to use the user subroutine UGENS

for the sectional description. The modified input file called with this subroutine (ugens v1.f )

and results are gathered via the Python scripting interface with readOutput sandwich3.py. Of

course, the constraints are checked with this information. Now, the objective and constraints

are passed back to the fmincon solver, which will evaluate the previous until convergence is

satisfied within the predetermined tolerances.
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5.4 Conclusion

As an analogy for the first part of this work, the cylindrical stiffened pressure hull is taken as a

reference and is modeled with FE. In an approach to stay in touch with the actual mechanics

in such a structure, a pressure hull specimen described by MacKay [50] with comprehensive ex-

perimental data is modeled. For the geometry of the specimen, which on purpose deviates from

the nominal geometry, the most critical mode shape (n = 3) is captured in a linear buckling

analysis and later on added to the FE geometry. Of course, the mode shape has an amplitude

corresponding to the Fourier decomposition found in [50], which is by far the largest among all

amplitudes. With this geometry and a plasticity model for the used material, a non-linear buck-

ling analysis is evaluated. Strain gauge readings of the experiment are compared with output

from the strain gauges modeled in FE. Good correspondence is found for the majority of the

gauges.

The potential of this conventional model is investigated with a minimization of the structural

unit weight. A suitable optimizer was able to find an optimum that satisfies all constraints

within the given tolerance. The unit weight was reduced an impressive 15%; maintaining the

same strength in terms of yielding and buckling with respect to the reference.

For the composite pressure hull the framework described in Section 4.3.2 is used to form a

FE model. The major advantage of this sectional formulation with lamination parameters is

a tremendous decrease in calculation time for the FE analysis. As a result, the model can be

used in an optimization procedure. Maximization of the linear buckling pressure is first treated

and target lamination parameters are found. A combinatorial fitting procedure is subsequently

performed to find the most suitable lay-up for different numbers of plies within the laminate. As

an addition, a weight minimization procedure which is comparable to the approach outlined in

Section 5.1.6, i.e. the reference model, is adopted. Results showed that the optimized stiffened

reference model is still a better choice in the search for lightweight design in the considered

depth regime. It has to be mentioned that the used FE model for the composite pressure hull

is conservative, which is in advantage of the reference model. This conservatism is used in for

instance the absence of tapered end sections and in the failure function.

The FE modeling of the sandwich pressure hull is very similar to the previously treated com-

posite hull. But as the sandwich structure has a core that needs to be described accurately,

the framework has to be modified for these changes. Again, optimization is performed for the

description with lamination parameters for the two skin facings. Again, modeling is performed

on a conservative level, and unwanted numerical effects as shear locking are prevented. Results

for the weight minimization in terms of target lamination parameters, core and face thicknesses

are found with satisfaction of all constraints. Lay-ups are found at the second stage of optimiza-

tion which show good correspondence with the found optimum. In fact, a 28% weight reduction

compared to the optimized stiffened pressure hull is demonstrated with the found design.
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Chapter 6

Conclusions and

Recommendations

6.1 Lightweight pressure hull design

In general, a submarine is a weight-sensitive structure in which the buoyancy and weight have

to reach an equilibrium state. For a given enveloped volume, reducing the structural weight of

the submarine has positive effects, e.g. larger payload capability, increase of engine size or even

additional structural reinforcement which can ultimately result in even larger depths [12]. The

appliance of lightweight materials in pressure hulls holds the key for the gain in performance

increase. It is observed that composite materials are promising lightweight candidates. Hence,

it is important to investigate such a lightweight composite pressure hull, the related mechanics,

the methods in design and compare the new properties with the conventional pressure hull as a

reference.

The conventional internally stiffened cylindrical steel pressure hull is found to be 15% heav-

ier than the composite hull and over 2 times heavier when compared to the sandwich hull. This

is very promising in terms of performance. As a typical third of the submarine structural weight

is occupied by the conventional pressure hull. This means that there is at least 16% of the

submarine weight available for extra payload and for instance extra structural reinforcements.

Of course it should be remembered that this is only in case of the considered specimen and

loads. The effect of e.g. imperfections, fatigue and required load cases has to be investigated.

But as there is weight budget left for structural reinforcements, the composite and sandwich

hull are still promising candidates.
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6.2 Composite pressure hulls

As indicated, the mechanical behavior of a composite material needs to be known before such

materials are applied in a pressure hull. The mechanical basics of a composite material are

treated and techniques to gather engineering constants at ply level are shown. But as composite

laminates mostly consists of multiple stacked plies that vary in orientation the ply description

is not appropriate. Therefore the classical laminate theory is elaborated. As an important note

this theory neglects through-the-thickness shear deformations, which cannot be neglected for

all laminates. Furthermore, in the search of an actual laminate, the most appropriate lay-up

guidelines are presented and applied throughout this work.

However, composite materials bring more complexity in the light of failure and strength predic-

tion. Most important failure mechanisms are shown for a composite laminate and for sandwich

structures. Descriptions for the onset of failure in terms of analytical formulae, so-called failure

criteria, are found to be highly usable to indicate material failure.

A higher level approach for a laminate description in terms of lamination parameters offers

a powerful tool when the global optimum in terms of resistance for, say a composite specimen

prone to buckling, needs to be assessed for any possible laminate. Since this optimum is formu-

lated in terms of so-called target lamination parameters, an actual laminate needs to be found

that is sufficiently close to this target. The proposed method for this fitting problem selects the

most appropriate lay-up in accordance with laminate design guidelines.

6.3 FE modeling of pressure hulls

The cylindrical stiffened pressure hull is taken as a reference and elaborated in a FE analysis.

In an approach to stay in touch with the actual mechanics in such a structure, a pressure hull

specimen described by MacKay [50] with comprehensive experimental data is modeled. For the

geometry of the specimen, which on purpose deviates from the nominal geometry, the most

critical mode shape (n = 3) is captured in a linear buckling analysis and later on added to the

FE geometry. With this geometry and a plasticity model for the applied material, a non-linear

buckling analysis is evaluated. Strain gauge readings of the experiment are compared with out-

put from the strain gauges modeled in this FE analysis. Good correspondence is found for the

majority of the gauges and the collapse pressure. For the considered specimen an thorough

weight optimization showed that a reduction of 15% is feasible without a decrease in collapse

pressure.

Lessons learned in the process of FE modeling for the stiffened pressure hull are applied in

the foundation of a composite pressure hull. For the used FE application, i.e. Abaqus, the lam-

ination parameter formulation of the material is implemented via a sectional description of the
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material. The user subroutine UGENS opens the possibility use such a description for a material.

The use of lamination parameters in a FE context is outlined. The missing link turns out

to be a constraint that indicates material failure. The Tsai-Wu based failure criterion in the

context of a lamination parameter approach, proposed by IJsselmuiden et al. [48] is the answer

for this problem. It is demonstrated that this is a conservative failure criterion since it is re-

gardless to the ply orientations in the potential laminate.

The FE modeling of the composite sandwich pressure hull is very similar to the previously

treated composite hull. But as the sandwich structure has a core material that needs to be

described accurately, the framework used for the description of a single laminated composite

cylinder has to be slightly modified for these changes.

6.4 Weight minimization of composite FE models

The major advantage of this sectional formulation with lamination parameters is the tremen-

dous decrease in calculation time for the FE analysis. As a result, the model can be used in

an optimization procedure and target lamination parameters are easily found. A computational

extensive combinatorial fitting procedure on the target lamination parameters is subsequently

performed to find the most suitable lay-up for different numbers of plies within the laminate.

Weight minimization for a FE model of the composite cylindrical pressure hull which is sub-

jected to constraints related to material failure and buckling effects is found to be convenient

when lamination parameters are used. Compared to the reference model, it is shown that for

the considered depth regime the optimized reference model is still superior to the composite

FE model. However, it is important to note that the composite FE model is described in a

conservative manner.

The weight minimization for the composite sandwich model is performed with a sectional de-

scription in terms of lamination parameters for the two skin layers. The core brings some extra

complexity to the model when compared to the single laminated cylinder. The use of lamina-

tion parameters provides computational profit in calculation time. As for the composite model,

results for the optimization in terms of target lamination parameters are found with satisfaction

of all constraints. In this search for a minimal structural weight it is lay-ups are found at the

second stage of optimization which show good correspondence with the found optimum. In fact,

a weight reduction up to 28%, with respect to the optimized stiffened pressure hull, is demon-

strated with the found lay-up sandwich design.

For the considered shallow water depth regime, calculations have shown that the sandwich-

structured composite pressure hull performs better than the composite monocoque pressure
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hull, in terms of weight. Because the collapse for the monocoque is buckling dominated, this

result is expected as the sandwich hull has more bending stiffness. For deeper depths the need

of a core material diminishes because the collapse is dominated by material failure. Eventually,

when depths are increased, the sandwich will converge to a monocoque for the optimum in unit

weight.

6.5 Recommendations for future work

Validation of the composite and composite sandwich FE models has to be performed. In order

to do this, experimental models have to be produced and accurate measurements have to be

performed, similar to MacKay’s [29] specimens of conventional pressure hulls. In this context,

the material properties have to be gathered from experiments. Additionally, the effect of resid-

ual stresses due to curing of the laminate should be estimated and modeled in an FE context to

get an accurate description. The geometry of such a test specimen has to be carefully designed.

The end sections can potentially be a source of failure due to the increase of radial stiffness.

Hence, the specimen should be designed such that failure initiates at the mid-section which is,

as an important note, also the design philosophy in MacKay’s work.

With these test specimens designed and tested, knowledge is gained about shell to end sec-

tion transitions. A straightforward next step would be to design a whole pressure hull, that

is for instance, including the end domes and bulkheads. It should be noted that these design

problems can be solved with the present use of lamination parameters. Specific areas that need

other mechanical properties can in this context be seen as laminates with different lamination

parameters. Extreme care has to be taken for these discontinuities in the sandwich cylinder.

Existing design solutions for these transitions have to be assessed.

The FE part of this work is deduced from small-scale pressure hull specimens. Likewise, the

found results correspond to this small-scale. It is important to note that scale effects can influ-

ence the mechanical behavior or collapse on a full-scale (or larger-scale). Scale effects can for

instance appear in the strength of the applied material. A statistical approach as the Weibull

theory is commonly used to investigate the effect of size on strength. Hence, the correspondence

with realistic full-scale models has to be investigated and an extrapolation to such a model is

not straightforward.

Since the present thesis focusses only at the resistance against the external hydrostatic pressure,

more load cases need to be investigated. The mechanical performance that arises from opera-

tional requirements, e.g. in terms of fatigue life and impact, cannot be neglected in the further

design procedure.

The sectional description in terms of lamination parameters needs to be further explored in
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terms of the feasible region. The more accurately these regions are defined, the more precise

the global optimum (target) refers to an actual laminate design. The effect of development

(and possible changes) in the formulation of feasible regions for lamination parameters should

be taken into account for future research.

The application of composites instead steel in the conventional hull with internal stiffeners

should be investigated for shallow depths. This design could potentially provide a larger gross

interior volume than the proposed sandwich hull. For an actual design, the stiffeners should be

modeled with sets of lamination parameters. In this way, the presented framework for optimiza-

tion can be utilized to design such a structure with minimized weight.

99



Acknowledgements

The author gratefully acknowledges the helpful support and advise provided by Prof.dr.ir. Fred

van Keulen and Dr.ir. John R. MacKay in his Master’s Thesis process.

100



Bibliography

[1] R. Burcher and L. Rydill, Concepts in submarine design. Cambridge University Press, 1994.

[2] T. P. C. Staff, Steel Boats, Iron Men: History of the U.S. Submarine Force. Turner Pub-

lishing Company, 1994.

[3] W. Stevens and A. Westcott, A history of sea power. G. H. Doran company, 1920.

[4] P. Walker, Engineers of Independence: A Documentary History of the Army Engineers in

the American Revolution, 1775-1783. University Press of the Pacific, 2002.

[5] “Battle of the atlantic.” Technical Intelligence from Allied C.I., SRH-25, vol. 4.

[6] J. Schlemm, “U-boat types: Type xxi.” Date of access: 19-7-2012.

[7] D. Walsh, “The bathyscaph trieste,” Research report 1096, U.S. Navy Electronics Labora-

tory, 1962.

[8] R. O’Rourke, The United States Navy: Current Issues and Background. Nova Science

Publishers, 2003.

[9] C. Prins, P. Breen, D. Simons, J. Wilgenhof, J. Reijmers, E. Jansen, and A. van Koersel,

“Reach - a submerged remote sensing reconnaissance system,” tech. rep., Dutch Underwater

Knowledge Centre, 2008.

[10] N. Polmar and J. Noot, Submarines of the Russian and Soviet Navies, 1718-1990. Naval

Institute Press, 1991.

[11] D. Haynes, “Composite materials for submarine pressure hulls,” Master’s thesis, University

college london, 1999.

[12] C.S. and Smith, “Design of submersible pressure hulls in composite materials,” Marine

Structures, vol. 4, no. 2, pp. 141 – 182, 1991.

[13] C.-J. Moon, I.-H. Kim, B.-H. Choi, J.-H. Kweon, and J.-H. Choi, “Buckling of filament-

wound composite cylinders subjected to hydrostatic pressure for underwater vehicle appli-

cations,” Composite Structures, vol. 92, no. 9, pp. 2241 – 2251, 2010. ¡ce:title¿Fifteenth

International Conference on Composite Structures¡/ce:title¿.

101



[14] C. Ross, “A conceptual design of an underwater vehicle,” Ocean Engineering, vol. 33, no. 16,

pp. 2087 – 2104, 2006.

[15] Derek and Graham, “Buckling of thick-section composite pressure hulls,” Composite Struc-

tures, vol. 35, no. 1, pp. 5 – 20, 1996. ¡ce:title¿Stability of Composite Structures¡/ce:title¿.

[16] J. Tucker, “Glass reinforced plastic submersibles,” Trans. NEC Inst. Engrs. and Ship-

builders, vol. 95, no. 2, pp. 48 – 59, 1979.

[17] T. Messager, M. Pyrz, B. Gineste, and P. Chauchot, “Optimal laminations of thin under-

water composite cylindrical vessels,” Composite Structures, vol. 58, no. 4, pp. 529 – 537,

2002.

[18] C.-C. Liang, H.-W. Chen, and C.-Y. Jen, “Optimum design of filament-wound multilayer-

sandwich submersible pressure hulls,” Ocean Engineering, vol. 30, no. 15, pp. 1941 – 1967,

2003.

[19] C. Smith, Design of marine structures in composite materials. Elsevier Science Publishers,

1990.

[20] J. Gao, W. Sun, and K. Morino, “Mechanical properties of steel fiber-reinforced, high-

strength, lightweight concrete,” Cement and Concrete Composites, vol. 19, no. 4, pp. 307

– 313, 1997.

[21] W. Flugge, “Stress problems in pressurized cabins,” Tech. Rep. NACA TN 2612, National

Advisory Committee for Aeronautics, 1952.

[22] J. MacKay, Experimental and Numerical Modeling in support of a Structural Design Frame-

work for Submarine Pressure Hulls based on Nonlinear Finite element Collapse Predictions.

PhD thesis, Delft University of Technology, 2012.

[23] P. Radha and K. Rajagopalan, “Ultimate strength of submarine pressure hulls with failure

governed by inelastic buckling,” Thin-Walled Structures, vol. 44, pp. 309–313, 2006.

[24] W. Nash, Hydrostatically loaded structures. Elsevier Science Publishers, 1995.

[25] M. A. Krenzke and R. D. Short, “Graphical method for determining maximum stresses in

ring-stiffened cylinders under external hydrostatic pressure,” tech. rep., Defense Technical

Information Center, 1998.

[26] J. Arbocz and J. Hol, “Collapse of axially compressed cylindrical shells with random im-

perfections,” Thin-Walled Structures, vol. 23, no. 1-4, pp. 131 – 158, 1995.

[27] S. Kendrick, “Shape imperfections in cylinders and spheres: Their importance in design

and methods of measurement,” The Journal of Strain Analysis for Engineering Design,

vol. 12, no. 2, pp. 117–122, 1977.

102



[28] S. Kendrick, The Stress analysis of pressure vessels and pressure vessel components. Perg-

amon Press, 1970.

[29] J. MacKay, “Structural analysis and design of pressure hulls: the state of the art and future

trends,” tech. rep., Defence R&D Canada - Atlantic, 2007.

[30] A. Nijhof, Vezelversterkte kunststoffen: mechanica en ontwerp. VSSD, 2005.

[31] R. Jones, Mechanics of composite materials. Taylor and Francis, 1975.

[32] R. Förster and S. Knappe, W., “Experimentelle und theoretische untersuchungen zur riß-

bildungsgrenze an zweischichtigen wickelrohren aus GFK unter innendruck,” Kunststoffe,

vol. 8, no. 61, 1971.

[33] H. Schneider, “Experimentelle und theoretische betrachtungen zur ermittlung von elas-
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Appendix A

Basic pressure hull concepts

A.1 Geometrical pressure hull concepts

In the following an overview is given of existing pressure hull geometries. The discussed concepts

can later be used as ingredients for concept generation.

Sphere

The ideal shape of a pressure vessel subject to uniform hydrostatic pressure is a sphere. The

sphere is ideal due to the efficient stress and strain situation in the material. Efficiency in a way

that stresses and strains are equally distributed throughout the material. For submarines that

are designed only to withstand the external pressure, a sphere may be a suitable shape. But in

terms of hydrodynamics, as mentioned earlier, a slender body is required to lower the form drag

forces.

Tear shaped shell

The most streamlined form of a submerged body is tear or needle shaped. For a submarine that

has to be the most efficient in traveling underwater, one has to adopt this form. Unfortunately

this shape causes a lot of bending effects in the material, unlike the spherical form, especially at

the front and aft of the shell. It can be said that if the submarine is created for shallow water

purposes only, the tear shaped form of the hull could be advantageous.

Right circular cylinder

In order to make a compromise between the spherical ideal pressure withstanding shape and

the streamlined tear drop shape, a cylindrical form is a fitting option. The stresses in the

cylinder are distributed such that the circumferential part is two times as large as the axial

part, which is less efficient than the sphere. Also, there are bending effects at the front and

the aft of the cylindrical shell in the dome-cylinder transition region. On the other hand, the
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parabolic stern elliptic bow

Figure A.1: Hydrodynamic efficient forms

Figure A.2: Example of a cylindrical pressure hull

sphere is not quite as efficient in volumetric efficiency, i.e. the possibility to fill the internal

space. Full occupation of the internal space by the interior is a difficult task since the sphere

is doubly curved. The cylinder has a single curvature which increases the volumetric efficiency.

The hydrodynamic shape, which is optimal for (L/D = 6), is streamlined.

Shaped circular cylinder

A smooth diametrically varying shaped circular cylinder is desired if the form drag has to be

lowered. This idea can be seen as a step in the tear shaped form, from the right circular

cylinder point of view. In cases that the pressure hull outside is actually the outside of the

whole submarine, this shape is desired [1].

Corrugated cylinder

The idea to use corrugated cylinders as a pressure hull is proposed by Ross in [14]. In view of the

manufacturability of the submarine this shape, as shown in Fig.(A.4) can ease the production

of the whole. Due to the repeatedness of the segments the efficiency in production can be

increased. The segments itself can also be changed in shape. Ross proposed conical segments,

while spherical segments can potentially be more efficient in terms of stress distribution. [59]

showed that in fact, the spherical segments perform good in terms of collapse strength. An

impression of the spherical segments is given in Fig.(A.5).

A.2 Concept generation

Pahl [60] describes the steps to enhance the process of conceptual design. The approach is as

follows: By identifying the essential problems in designing a pressure hull through abstraction

the first step is made in concept generation. Subsequently the main and subfunctions have to

be established. With these functions a set of appropriate working principles is created. From

here a basic solution path is created to describe the principle solutions i.e. the concept.
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Figure A.3: The right circular cylinder (top) and the shaped circular cylinder (bottom)

Figure A.4: The corrugated cylinder as presented in [14]

Concept related requirements and functions

In order to generate pressure hull concepts and to get a clear view on the philosophy concerned

with the different concepts, the pressure hull is considered to be a system with (at first) the

following requirements:

1 General

F1.1 Provide internal space

F1.2 Resist hydrostatic pressure

The most important boundary conditions are listed in the next.

1 Performance

B1.1 Lower the acoustic signature

B1.2 Lower the magnetic signature

2 Costs

B2.1 Lower the operational costs

B2.2 Lower fabrication costs

Search for solutions

Previously a list of main functions and boundary conditions is established. With this information

the search for solutions is started. From F1.1 and F1.2 a set of solutions is found:
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Figure A.5: The corrugated flanged sphere cylinder as presented in [59]

[S 1] Sphere

[S2] Cylinder

With the given functions the perfect solution would be a sphere [S1]. The stress in the plane

induced by the external pressure is the same in both directions. As a result the (isotropic) hull

material is used in an effective way. A cylinder [S2] with end closures is also a solution, but the

2:1 (circumferential to axial) stress relation is less efficient than the sphere. To optimize this

efficiency the following solutions are found:

[S3] Ring stiffened cylinder

[S4] Cylinder with anisotropic skin

[S5] Corrugated cylinder

[S6] Thick-walled cylinder

By adding material in the circumferential direction and maintaining the amount in the axial

direction, the stress relation can be equalized to a 1:1 situation. This is positive with respect

to the material efficiency. The found solutions with this philosophy are listed above. The first

solution, the ring stiffened cylinder [S3], is a proven concept. Due to the use of ring stiffeners in

the circumferential direction the (mean) stress in the circumferential direction can be lowered.

In this way the stress relation can be 1:1. The stiffeners can have different appearances. Differ-

ent appearances can be for instance the internal placement of the stiffeners in the cylinder. In

this case the interface between the hull and the stiffeners is loaded in compression. Second, a

known solution is the external stiffened cylinder. The interface is now loaded in tension.

The use of an anisotropic material [S 4] that is tailored such that the direction and magnitude

of the stresses correspond to the strength of the material can be a very efficient solution. Com-

posites are known for their anisotropic behavior. Hence, it is important to mention composite

as a potential candidate. To give an example, a filament wound composite cylinder would be

appropriate. The desired anisotropic behavior can be obtained by filament winding in the axial

direction and in the hoop direction, with the amount of a higher amount of fibers in the hoop

direction.

The solution for the function to resist the hydrostatic pressure F1.2 does not only concern hull
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strength only. The collapse of a pressure hull can also take place due to buckling, especially

for thin walled structures which are used in small depths. To increase the amount of resistance

against buckling the following solutions are found: A corrugated cylinder [S5] is known to be

very resistant to lateral buckling.

Another way to avoid the buckling regime is to thicken the hull. That is why a thick-walled

pressure hull [S 6] can be suitable. A proven solution is for instance a sandwich structure. Dif-

ferent skin and core types can be applied. Additionally the anisotropic behavior can also be

imitated by the use of a composite skin.

[S 7] Noise damping skin materials

[S8] Streamlined hull

[S 9] Non-ferromagnetic skin materials

[S 10] Hull with dimensions L/D=6

[S11] Modular hull sections

In the next the listed boundary conditions are treated. In an approach to lower the acoustic

signature B1.1 the hull material must have good damping properties [S 7]. The reduction due

to isolation of the acoustic signature, with steel as reference, can be achieved with composites

and sandwich structures. These materials have good noise damping properties compared to

steel. Sound produced internally by for instance machinery can be silenced to improve stealth.

Another approach to lower the acoustic signature is to minimize the hydrodynamic noise. This

noise is generated in transit due to the perturbation of water caused by the outside of the hull.

A streamlined body will minimize this noise [S 8]. An example is the tear-shaped hull Fig.A.1.

The magnetic signature B1.2 refers to the ferromagnetic property of the hull material. There

are only a few substances that are ferromagnetic, and the only relevant examples here are iron

and nickel. To increase stealth, the magnetic signature should be lowered. The main solution

for this is to construct in non-ferromagnetic materials [S 9].

Additionally, boundary conditions for costs are also mentioned. The most relevant costs during

operation arise when the submarine powers the engine in transit. Obviously, the drag on the hull

has to minimized in order to decrease the amount of power. The application of a streamlined

hull is therefore also a suitable solution here. But for a given volume, it is already mentioned

that the drag is the lowest for (L/D = 6). Hence, this optimal shape is a good solution in

lowering the desired engine propulsion power [S10].

The second cost related boundary condition concerns the fabrication costs. Apart from the

material costs of the hull, there are labor costs. The fabrication of a steel main hull structure

is described by [1]: The usual procedure is to assemble the plating and frames into lengths

of two to three meters of the hull and these are known as hoops. Some of the hoops will be

cylindrical, others will have slight conicality and others near the stern may have quite marked

conical shaping to them. It is now common practice to have some form of very large mandrel on
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which the whole hoop section can be rotated to allow hand-down welding on both internal and

external welds of the hull. The next stage of fabrication is to join the cylindrical hoops together

with cones and domes and some of the external structure to form a few major sub-assemblies

of the hull say, three or four major assemblies. After the internal fitting out process the hull

is joined together. If the creation of the major sub-assemblies of the hull is performed in fewer

steps or even automated the costs on labor could be decreased. For instance, when a machine

produces modular main hull section that is later joined together with other modular sections [S

11], the amount of time and labor of the hull fabrication process could potentially drop.
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Appendix B

General Requirements

An small part of a general requirements list for military purposes, excerpted from [61], is listed

in the following.

1 Performance

1.1 The considered loading on the structure is the following:

R1.1.1 Hydrostatic and hydrodynamic pressure

R1.1.2 Pressure/load induced by the interior

R1.1.3 Pressure/load due to operational equipment

R1.1.4 Shock pressure loads and accelerations

R1.1.5 Rolling and pitching motions

R1.1.6 Bottoming and docking

1.2 Shock load design guidance:

R1.2.1 Avoid large difference in stiffness of adjoining members

R1.2.2 Avoid use of unsymmetrical stiffening

2 Materials

2.1 The materials proposed for the pressure hull structure should meet the following

criteria regarding the mechanical properties.

R2.1.1 High yield strength

R2.1.2 High toughness levels

R2.1.3 Ability to withstand extreme deformation at high strain rates

R2.1.4 Low susceptibility to stress corrosion cracking

R2.1.5 Resistance to high stress low cycle fatigue

R2.1.6 Resistance to corrosion or loss of properties at environmental extremes
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Appendix C

Hull materials

In this section an overview is given on materials that are capable to be applied in the pressure

hull. Not only the resistance to external pressure is of great importance but also withstanding

the exposed environment. The environment could for instance cause oxidation for some metals.

Specific properties as acoustic and magnetic signatures are important for naval applications. In

the following the most important traits of the selected materials are summed up. Apart from

that, each material is outlined for the following features:

• Structural properties (Young’s modulus, compressive/tensile/yield strength, density, fail-

ure strain)

• Approximate price per unit mass

• Operating temperatures

• Fatigue strength after 107 cycles

• Fracture toughness

• Fabrication properties

• Environmental durability (Flammability, salt water resistance, water absorption after 24h)

With the help of a material selection software package, CES Edupack [55], different property

diagrams are made in order to visualize the mechanical properties and to create a pre-selection

of materials. In the process of material selection, this software turns out to be a powerful tool.

C.1 Selected materials

Because lightweight design is paramount, ranking materials in the present thesis is performed

on a specific mechanical property basis. By doing this for all materials, envelopes for material

families are easily created. By creation of such envelopes for the Youngs modulus and compres-

sive strength a combined envelope is created. The result is shown in Fig.(C.1). In this figure, it
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Figure C.1: The specific strength versus specific Youngs modulus chart. The illustration is created with
[55]

is easily seen that the technical ceramics are the best choice when one only wants high specific

compressive strength and stiffness. But, since other mechanical properties as fracture toughness

are important, construction of a hull in technical ceramics is not the best choice. With the

assumption that a potential hull material has to have similar or better properties in fracture

and fatigue strength as the conventional hull material, i.e. high strength steel, a new diagram

is constructed in Fig.(C.2). The characteristics of this small but suitable selection of materials

is treated in the next.

C.2 Metals

The most common choice for a pressure hull materials are metals and especially high strength

steel [1]. A more exotic choice is utilized in the Russian Alfa class; titanium alloys are used to

reach great performance in speed and diving depth.

C.2.1 Steel

High strength steels are the most suitable among the ferrous metals for submarine applications.

HY80 is the most commonly used of the high strength steels [14]. Note that the HY refers to high

yield and the 80 is the yield strength in ksi, i.e. in thousands of psi) According to [62] HY-80 is

a low carbon, nickel, chromium, molybdenum allay steel exhibiting moderate strength combined

with excellent ductility at tall expected service temperatures. It can be readily welded to form

tough weldments. This steel was developed as a high yield strength material with excellent

low temperature impact properties. It performs good under dynamic loading, shows an high

resistance to crack propagation and joints welded according proper procedures can be made
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Figure C.2: The specific strength versus specific Youngs modulus chart. The illustration is created with
[55]

to approach prime plate in strength and toughness. The HY100 steel performs similar to the

HY80 but its composition and heat treatment have been adjusted to achieve a higher yield

strength. It can be welded readily with existing processes to form weldments which are tough

enough to withstand repeated shock loading without failure. It provides great resistance to

crack initiation and propagation, even at low temperatures [63]. For higher strength steels

e.g. HY130, associated problems in welding, control of pre-heat and post-weld cooling makes

fabrication difficult especially for large structures. The main advantages of steel are its ductility,

high modulus and that the material is inexpensive and readily available [11]. An overview of

relevant mechanical properties is provided in Table (C.1). Note that these steels are subject

to temper embrittlement. Stress relief treatments of heavy welded sections can result in such

embrittlement due to the time spent during cooling in the temperature 560◦C to 400◦C [64].

The corrosive behavior of steel is the general disadvantage. Moreover, the magnetic property

and the brittleness at low temperatures are potential show stoppers.

C.2.2 Titanium alloys

Titanium alloys are known for their high (specific) compressive and tensile strength. Also these

alloys are non-magnetic and show superior corrosion resistance. The primary disadvantages of

titanium are the high material cost and the problems in welding [11] and machining. Titanium

alloys are fully resistant to seawater, up to 315◦ C (i.e. steam) [65]. Table (C.2) shows the

properties of typical titanium alloys.
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Name Steel HY-80 Steel HY-100 Steel HY-130
Density [kg/m3] 7700 - 7800 7700 - 7800 7700 - 7800
Price [EUR/kg] N/A N/A N/A
Youngs modulus [GPa] 200 - 207 200 - 207 200 - 207
Compressive strength [MPa] 710 - 720 N/A N/A
Strength to weight ratio [KNm/kg] 92 - 92 N/A N/A
Tensile yield strength [MPa] 552 - 690 690 - 827 896 - 1034
Tensile strength [MPa] 710 - 720 N/A N/A
Fatigue strength n = 107 [MPa] 280 - 315 N/A N/A
Fracture toughness [MPa

√
m] 66 - 95 N/A N/A

Elongation [%strain] 19 - 20 18 - 18 18 - 18
Service temperature [◦C] -35 - 470 N/A N/A
CO2 footprint, Primary production [kg/kg] 2.36 - 2.61 N/A N/A
Flammability Non-Flammable Non-Flammable Non-Flammable
Salt water N/A N/A N/A
UV Radiation (sun) Excellent Excellent Excellent
Recylcle Yes Yes Yes
Magnetic Yes Yes Yes

Table C.1: List of different types of Steel [55]

Name Titanium,Ti-6Al-4V Titanium, Ti-5Al-
2.5Sn-0.5Fe

Density [kg/m3] 4410 - 4450 4460 - 4510
Price [EUR/kg] 42 - 46.1 35.6 - 39.2
Youngs modulus [GPa] 110 - 119 107 - 112
Compressive strength [MPa] 848 - 1080 600 - 896
Strength to weight ratio [KNm/kg] 192 - 243 135 - 199
Tensile yield strength [MPa] 786 - 910 758 - 862
Tensile strength [MPa] 862 - 1200 793 - 945
Fatigue strength n = 107 [MPa] 529 - 566 410 - 450
Fracture toughness [MPa

√
m] 84 - 107 93 - 100

Elongation [%strain] 10 - 14 6 - 10
Service temperature [◦C] -273 - 350 -273 - 530
CO2 footprint, Primary production [kg/kg] 38.8 - 42.9 36.6 - 40.4
Flammability Non-Flammable Non-Flammable
Salt water Excellent Excellent
UV Radiation (sun) Excellent Excellent
Recylcle Yes Yes
Magnetic No No

Table C.2: List of different types of Titanium [55]
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Name Aluminum,
6082-T6

Aluminum,
5086-O

Aluminum,
7075-T6

Density [kg/m3] 2640 - 2730 2640 - 2670 2770 - 2830
Price [EUR/kg] 2.10 - 2.31 1.85 - 2.03 1.84 - 2.03
Youngs modulus [GPa] 70 - 74 70 - 73.6 69 - 76
Compressive strength [MPa] 295 - 326 97 - 200 393 - 530
Strength to weight ratio [KNm/kg] 110 - 119 37 - 75 142 - 187
Tensile yield strength [MPa] 240 - 290 97 - 107 359 - 530
Tensile strength [MPa] 280 - 340 241 - 266 359 - 530
Fatigue strength n = 107 [MPa] 90 - 100 125 - 135 152 - 168
Fracture toughness [MPa

√
m] 33 - 35 27 - 37 30 - 33

Elongation [%strain] 5 - 11 14 - 18 2 - 10
Service temperature [◦C] -273 - 110 -273 - 130 -273 - 130
CO2 footprint, Primary production [kg/kg] 12 - 13.3 11.4 - 12.6 11.4 - 12.6
Flammability Non-Flammable Non-Flammable Non-Flammable
Salt water Acceptable Acceptable Acceptable
UV Radiation (sun) Excellent Excellent Excellent
Recylcle Yes Yes Yes
Magnetic No No No

Table C.3: List of different types of Aluminum [55]

C.2.3 Aluminium alloys

The second lightest of all metals with a density of about one-third of steel is aluminum. Alu-

minium alloys are commonly used in shipbuilding. Furthermore, the material is non-magnetic

and has a good strength to weight ratio. However, aluminium reacts to oxygen very rapidly, but

formation of this tough oxide skin prevents further oxidation of the metal. Aluminium is not

prone to brittle fracture at low temperatures and has a higher strength and toughness at low

temperatures [65]. Unfortunately, a structural loss of strength is developed for temperatures

above 200◦ C. Aluminium is also characterized by poor fatigue life properties [11]. Note that

these and other properties are listed in Table (C.3) for a few commonly used aluminium alloys.

C.3 Composites

Composites are made up of two or more individual materials referred to as constituents. In the

case of two constituents one material embeds the other and hence it is called matrix (or resin).

The other constituent functions as reinforcement for this matrix. The shape of the reinforcement

plays an important role for mechanical performance. Composites with fibrous reinforcements are

known to show excellent mechanical properties. In the present work, composites with a fibrous

reinforcement are considered and the word composite refers to these composite materials. In

the next, the most appropriate composite materials for a pressure hull are evaluated.
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Name Polyester/E-
Glass fiber,
woven cloth, .5

Polyester/E-
Glass fiber,
chopped roving

Epoxy/E-Glass
fiber,.45 Quasi-
isotropic

Epoxy/S-Glass
fiber, UD
composite, .5
Quasi-isotropic

Density [kg/m3] 1600 - 2000 1700 - 2100 1750 - 1970 1840 - 1970
Price [EUR/kg] 27.3 - 30.1 3.22 - 3.54 23.2 - 25.5 18.2 - 20
Youngs modulus [GPa] 14.1 - 31 6.3 - 13.8 21 - 21.8 23.9 - 24.2
Compressive strength
[MPa]

172 - 345 103 - 207 207 - 257 301 - 312

Strength to weight ratio
[KNm/kg]

108 - 173 61 - 99 118 - 130 164 - 158

Tensile yield strength
[MPa]

166 - 276 82.4 - 166 207 - 304 117 - 121

Tensile strength [MPa] 207 - 345 103 - 207 207 - 304 117 - 121
Fatigue strength n = 107

[MPa]
82.8 - 138 41.2 - 82.8 41.3 - 91.1 23.3 - 36.3

Fracture toughness
[MPa

√
m]

10.7 - 20.9 6.6 - 11.4 6.12 - 29.9 6.12 - 32.7

Elongation [%strain] 1 - 2 1 - 5 0.85 - 0.95 0.44 - 0.48
Service temperature [◦C] -27 - 172 -27 - 172 -73 - 140 -28 - 140
CO2 footprint, Primary
production [kg/kg]

14.9 - 16.5 7.13 - 7.88 7.46 - 8.25 13.4 - 14.8

Water absorption after
24h [%]

0.05 - 0.5 0.01 - 1 0.0456 - 0.078 0.0456 - 0.078

Flammability Highly
flammable

Highly
flammable

Slow-burning Slow-burning

Salt water Excellent Excellent Excellent Excellent
UV Radiation (sun) Good Good Fair Fair
Recylcle No No No No
Magnetic No No No No

Table C.4: List of different types of GFRP [55]

C.3.1 Glass fiber reinforced plastic

The most widely used fiber for commodity composites is fiberglass [65]. The most common

type of glass fibers is E-Glass. A rather high strength in combination with low stiffness and

cost are the main properties of these glass fibers [19]. The relatively high compressive strength

and their relative inexpensiveness has led to their selection for use in underwater deep diving

applications. Electric properties of glass-reinforced composites allowed their use as radomes and

other applications that require high dielectric strength [65]. Properties of typical glass fiber

reinforced plastics (GFRP or GRP) are listed in Table (C.4).

C.3.2 Carbon fiber reinforced plastic

Carbon/graphite fibers have demonstrated the widest variety of strengths and moduli. Addi-

tionally, in terms of specific mechanical properties, carbon fiber reinforced plastics (CFRPs)
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Name Epoxy/HS car-
bon fiber, UD
composite, 0.6
Quasi-isotropic

Epoxy/carbon
fiber SMC

AS4 carbon
fiber/3501-6
epoxy, UD
composite 0.6

Density [kg/m3] 1550 - 1580 1400 - 1700 1550
Price [EUR/kg] 29.4 - 32.3 15.1 - 16.6 N/A
Youngs modulus [GPa] 49.7 - 60.1 69 - 150 126
Compressive strength [MPa] 542 - 657 207 - 276 1480
Strength to weight ratio [KNm/kg] 350 - 416 148 - 162 954
Tensile yield strength [MPa] 249 - 356 221 - 276 N/A
Tensile strength [MPa] 249 - 356 276 - 345 1950
Fatigue strength n = 107 [MPa] 137 - 231 109 - 142 N/A
Fracture toughness [MPa

√
m] 137 - 231 9.45 - 28.4 N/A

Elongation [%strain] 0.32 - 0.35 0.5 - 2 1.38
Service temperature [◦C] -73 - 140 -73 - 166 N/A
CO2 footprint, Primary production [kg/kg] 16.4 - 18.1 16.4 - 18.1 N/A
Water absorption after 24h [%] 0.036 - 0.0525 1.45 - 1.76 N/A
Flammability Slow-burning Self-

extinguishing
N/A

Salt water Excellent Excellent N/A
UV Radiation (sun) Good Good N/A
Recylcle No No N/A
Magnetic No No N/A

Table C.5: List of different types of CFRP [55] for Epoxy/HS and SMC, [66] for the data belonging to
the AS4/3501-6 UD composite

are superior to GRP and titanium. It has to be noted that, analogous to GRP, degradation of

mechanical properties occurs when CFRPs are exposed to UV light. Furthermore, for different

resin systems mechanical properties can be reduced due to moisture effects. Properties of typical

CFRPs are listed in Table (C.5).

C.3.3 Metal matrix composite

This special type of composite is a more futuristic than the previously treated materials. Since

the production is not sufficiently large and prices are too high for pressure hull applications [11],

these metal matrix composites (MMCs) are only treated shortly. As can be observed from Table

(C.6) that this expensive composite material has excellent mechanical properties.

C.4 Sandwich structures

The sandwich materials treated here consist of a core material, sandwiched between two skin

layers. The core, which shows a relatively lower stiffness than the skin layers, connects the two

skins in order to increase the bending stiffness. In the present work, skin layers of FRP are

considered. Also, a selection of appropriate cores is made and treated in the next section.
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Name MMC, Al 6061-SCS-2
Cross-Ply

MMC, Al/Nextel 610
fiber .65 composite,
Quasi-isotropic

Density [kg/m3] 2840 - 2850 3400 - 3400
Price [EUR/kg] 1270 - 1480 5470 - 6230
Youngs modulus [GPa] 135 - 140 158 - 179
Compressive strength [MPa] 1460 - 1530 361 - 405
Strength to weight ratio [KNm/kg] 514 - 537 106 - 119
Tensile yield strength [MPa] 260 - 645 183 - 252
Tensile strength [MPa] 673 - 723 183 - 252
Fatigue strength n = 107 [MPa] 454 - 488 91.6 - 126
Fracture toughness [MPa

√
m] 11 - 16 7 - 16

Elongation [%strain] 0.7 - 1 0.1 - 0.16
Service temperature [◦C] -273 - 270 -273 - 290
CO2 footprint, Primary production [kg/kg] 953 - 1050 3070 - 3400
Flammability Non-Flammable Non-Flammable
Salt water Acceptable Acceptable
UV Radiation (sun) Excellent Excellent
Recylcle No No
Magnetic No No

Table C.6: List of different types of MMC

C.4.1 Core materials

Since sandwich cores are in general lightweight materials, airy matter as honeycomb and foam

materials are commonly applied. Table (C.7) gives an overview of the mechanical properties of

typical core materials. it has to be noted that through-the-thickness properties are listed in this

table.
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Name Alumina foam
(99.8perc)(1.2)

End-grain balsa
(0.22)

Aluminum 5052
honeycomb
(0.198)

PVC cross-
linked foam
(0.400)

Density [kg/m3] 1180 - 1220 210 - 257 194 - 202 390 - 410
Price [EUR/kg] 25.7 - 38.8 5.24 - 7.08 12.3 - 20.5 9.11 - 18.2
Youngs modulus [GPa] 17.1 - 34.2 0.193 - 0.236 0.0403 - 0.0446 0.46 - 0.48
Compressive strength
[MPa]

77 - 85 6.67 - 8.15 17.4 - 19.2 10.5 - 12

Strength to weight ratio
[KNm/kg]

65 - 70 32 - 32 90 - 95 27 - 29

Tensile yield strength
[MPa]

57.8 - 63.8 0.916 - 1.12 0.336 - 0.372 10.5 - 12

Tensile strength [MPa] 57.8 - 63.8 1.05 - 1.28 0.392 - 0.44 10.9 - 12.4
Fatigue strength n = 107

[MPa]
46.2 - 51 N/A N/A 8.4 - 9.6

Fracture toughness
[MPa

√
m]

0.177 - 0.197 N/A N/A 0.0735 - 0.0792

Elongation [%strain] 0.17 - 0.37 N/A N/A 3 - 5
Service temperature [◦C] -273 - 1800 -191 - 147 -69.5 - 130 -200 - 92
CO2 footprint, Primary
production [kg/kg]

6.53 - 7.22 0.405 - 0.494 11.4 - 12.6 3.55 - 3.93

Water absorption after
24h [%]

0.5 - 1 180 - 220 0.001 - 0.002 0.688 - 0.713

Flammability Non-flammable Highly-
flammable

Non-flammable Self-
extinguishing

Salt water Excellent Limited use Acceptable Excellent
UV Radiation (sun) Excellent Good Excellent Good
Recylcle No No Yes No
Magnetic No No No No

Table C.7: List of different types of core materials [55]
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Appendix D

Coefficients of homogeneous

buckling system

In order to be complete, the coefficients ci belonging to Eq.(4.106) which is described in Section

4.2 are:

c0 = − 1
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Appendix E

Strain gauge results

E.1 Strain gauge locations

This Section lists the description and location of the used strain gauges for the L510-No18.

Strain Gauge ID Description

Location

Axial Radial Circumferential

(mm) (mm) (deg)

L510-No18-13 Flange-Frame-4 230.0 110.0 4.6

L510-No18-24 Flange-Frame-4 230.0 110.0 34.6

L510-No18-23 Flange-Frame-4 230.0 110.0 64.6

L510-No18-22 Flange-Frame-4 230.0 110.0 94.6

L510-No18-21 Flange-Frame-4 230.0 110.0 124.6

L510-No18-20 Flange-Frame-4 230.0 110.0 154.6

L510-No18-19 Flange-Frame-4 230.0 110.0 184.6

L510-No18-18 Flange-Frame-4 230.0 110.0 214.6

L510-No18-17 Flange-Frame-4 230.0 110.0 244.6

L510-No18-16 Flange-Frame-4 230.0 110.0 274.6

L510-No18-15 Flange-Frame-4 230.0 110.0 304.6

L510-No18-14 Flange-Frame-4 230.0 110.0 334.6

Table E.1: Locations of the uni-axial strain gauges for L510-No18 at frame 4
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Strain Gauge ID Description

Location

Axial Radial Circumferential

(mm) (mm) (deg)

L510-No18-01 Flange-Frame-5 280.0 110.0 4.6

L510-No18-12 Flange-Frame-5 280.0 110.0 34.6

L510-No18-11 Flange-Frame-5 280.0 110.0 64.6

L510-No18-10 Flange-Frame-5 280.0 110.0 94.6

L510-No18-09 Flange-Frame-5 280.0 110.0 124.6

L510-No18-08 Flange-Frame-5 280.0 110.0 154.6

L510-No18-07 Flange-Frame-5 280.0 110.0 184.6

L510-No18-06 Flange-Frame-5 280.0 110.0 214.6

L510-No18-05 Flange-Frame-5 280.0 110.0 244.6

L510-No18-04 Flange-Frame-5 280.0 110.0 274.6

L510-No18-03 Flange-Frame-5 280.0 110.0 304.6

L510-No18-02 Flange-Frame-5 280.0 110.0 334.6

Table E.2: Locations of the uni-axial strain gauges for L510-No18 at frame 5
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Strain Gauge ID Description

Location

Axial Radial Circumferential

(mm) (mm) (deg)

L510-No18-25 Outside Shell-Mid-Bay-4 255.0 123.0 4.6

L510-No18-36 Outside Shell-Mid-Bay-4 255.0 123.0 34.6

L510-No18-35 Outside Shell-Mid-Bay-4 255.0 123.0 64.6

L510-No18-34 Outside Shell-Mid-Bay-4 255.0 123.0 94.6

L510-No18-33 Outside Shell-Mid-Bay-4 255.0 123.0 124.6

L510-No18-32 Outside Shell-Mid-Bay-4 255.0 123.0 154.6

L510-No18-31 Outside Shell-Mid-Bay-4 255.0 123.0 184.6

L510-No18-30 Outside Shell-Mid-Bay-4 255.0 123.0 214.6

L510-No18-29 Outside Shell-Mid-Bay-4 255.0 123.0 244.6

L510-No18-28 Outside Shell-Mid-Bay-4 255.0 123.0 274.6

L510-No18-27 Outside Shell-Mid-Bay-4 255.0 123.0 304.6

L510-No18-26 Outside Shell-Mid-Bay-4 255.0 123.0 334.6

L510-No18-48 Outside Shell-Mid-Bay-1 105.0 123.0 124.6

L510-No18-47 Outside Shell-Fr-2 130.0 123.0 124.6

L510-No18-46 Outside Shell-Mid-Bay-2 155.0 123.0 124.6

L510-No18-45 Outside Shell-Fr-3 180.0 123.0 124.6

L510-No18-44 Outside Shell-Mid-Bay-3 205.0 123.0 124.6

L510-No18-43 Outside Shell-Fr-4 230.0 123.0 124.6

L510-No18-42 Outside Shell-Fr-5 280.0 123.0 124.6

L510-No18-41 Outside Shell-Mid-Bay-5 305.0 123.0 124.6

L510-No18-40 Outside Shell-Fr-6 330.0 123.0 124.6

L510-No18-39 Outside Shell-Mid-Bay-6 355.0 123.0 124.6

L510-No18-38 Outside Shell-Fr-7 380.0 123.0 124.6

L510-No18-37 Outside Shell-Mid-Bay-7 405.0 123.0 124.6

Table E.3: Locations of the bi-axial strain gauges on the outer shell surface for L510-No18

E.2 Linear elastic strain gauge readings

This appendix shows the strain gauge readings for the internally stiffened conventional pres-

sure hull experiment (EXP ) and the linear elastic FE analysis. Note that channel A is the

circumferential direction and C the longitudinal direction.
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Figure E.1: Linear elastic FE analysis and experimental strain gauge readings
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Figure E.2: Linear elastic FE analysis and experimental strain gauge readings
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E.3 Non-linear buckling strain gauge readings

This appendix shows the strain gauge readings for the internally stiffened conventional pressure

hull experiment (EXP ) and the non-linear buckling FE analysis. Note that channel A is the

circumferential direction and C the longitudinal direction.
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Figure E.3: Non-linear buckling FE analysis and experimental strain gauge readings
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Figure E.4: Non-linear buckling FE analysis and experimental strain gauge readings
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E.4 Strain gauge results

Strain Gauge ID Description Initial slope Match

L510-No18-13 Flange-Frame-4 GOOD GOOD

L510-No18-24 Flange-Frame-4 GOOD GOOD

L510-No18-23 Flange-Frame-4 GOOD GOOD

L510-No18-22 Flange-Frame-4 GOOD MODERATE

L510-No18-21 Flange-Frame-4 GOOD GOOD

L510-No18-20 Flange-Frame-4 GOOD GOOD

L510-No18-19 Flange-Frame-4 GOOD GOOD

L510-No18-18 Flange-Frame-4 GOOD GOOD

L510-No18-17 Flange-Frame-4 GOOD GOOD

L510-No18-16 Flange-Frame-4 GOOD GOOD

L510-No18-15 Flange-Frame-4 GOOD GOOD

L510-No18-14 Flange-Frame-4 GOOD GOOD

L510-No18-01 Flange-Frame-5 GOOD GOOD

L510-No18-12 Flange-Frame-5 GOOD GOOD

L510-No18-11 Flange-Frame-5 GOOD GOOD

L510-No18-10 Flange-Frame-5 GOOD MODERATE

L510-No18-09 Flange-Frame-5 GOOD GOOD

L510-No18-08 Flange-Frame-5 GOOD GOOD

L510-No18-07 Flange-Frame-5 GOOD GOOD

L510-No18-06 Flange-Frame-5 GOOD GOOD

L510-No18-05 Flange-Frame-5 GOOD GOOD

L510-No18-04 Flange-Frame-5 GOOD GOOD

L510-No18-03 Flange-Frame-5 GOOD GOOD

L510-No18-02 Flange-Frame-5 GOOD GOOD

Table E.4: Uni-axial strain gauge matches for the non-linear FE analysis with respect to the experi-
mentally measured values
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Strain Gauge ID Description Initial slope Match

L510-No18-25-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-36-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-35-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-34-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-33-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-32-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-31-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-30-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-29-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-28-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-27-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-26-A Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-48-A Outside Shell-Mid-Bay-1 GOOD GOOD

L510-No18-47-A Outside Shell-Fr-2 GOOD GOOD

L510-No18-46-A Outside Shell-Mid-Bay-2 GOOD GOOD

L510-No18-45-A Outside Shell-Fr-3 GOOD GOOD

L510-No18-44-A Outside Shell-Mid-Bay-3 GOOD MODERATE

L510-No18-43-A Outside Shell-Fr-4 GOOD GOOD

L510-No18-42-A Outside Shell-Fr-5 GOOD GOOD

L510-No18-41-A Outside Shell-Mid-Bay-5 GOOD GOOD

L510-No18-40-A Outside Shell-Fr-6 GOOD GOOD

L510-No18-39-A Outside Shell-Mid-Bay-6 MODERATE MODERATE

L510-No18-38-A Outside Shell-Fr-7 GOOD GOOD

L510-No18-37-A Outside Shell-Mid-Bay-7 MODERATE MODERATE

Table E.5: Bi-axial strain gauge matches for the non-linear FE analysis with respect to the experimen-
tally measured values. These are the results for the circumferential direction (i.e. channel A).

132



Strain Gauge ID Description Initial slope Match

L510-No18-25-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-36-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-35-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-34-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-33-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-32-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-31-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-30-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-29-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-28-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-27-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-26-C Outside Shell-Mid-Bay-4 GOOD GOOD

L510-No18-48-C Outside Shell-Mid-Bay-1 GOOD GOOD

L510-No18-47-C Outside Shell-Fr-2 GOOD MODERATE

L510-No18-46-C Outside Shell-Mid-Bay-2 GOOD GOOD

L510-No18-45-C Outside Shell-Fr-3 MODERATE MODERATE

L510-No18-44-C Outside Shell-Mid-Bay-3 GOOD GOOD

L510-No18-43-C Outside Shell-Fr-4 MODERATE MODERATE

L510-No18-42-C Outside Shell-Fr-5 MODERATE MODERATE

L510-No18-41-C Outside Shell-Mid-Bay-5 GOOD GOOD

L510-No18-40-C Outside Shell-Fr-6 MODERATE MODERATE

L510-No18-39-C Outside Shell-Mid-Bay-6 MODERATE MODERATE

L510-No18-38-C Outside Shell-Fr-7 MODERATE MODERATE

L510-No18-37-C Outside Shell-Mid-Bay-7 GOOD MODERATE

Table E.6: Bi-axial strain gauge matches for the non-linear FE analysis with respect to the experimen-
tally measured values. These are the results for the longitudinal direction (i.e. channel C).
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Appendix F

Buckling mode shapes

Figure F.1: Illustration of the second lowest eigenvalue (n = 4, m = 1)

Figure F.2: Illustration of the third lowest eigenvalue (n = 4, m = 2)
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Figure F.3: Illustration of the fourth lowest eigenvalue (n = 8, m = 7)
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Appendix G

Scripts

In this appendix, the complete script of the sandwich optimization framework is given, including

the FE model generation. As an important note, the mother-file is the main.m MATLAB file

which is treated first.

1 %find target lamination parameters - optimization main file

%Note: written in Matlab

3 %Copyright - Stanley I. Wong - 2012

clear all; clc; close all; format long;

5 global props data Xn Xdat

diary on

7

data = [];

9 props = [];

flags = [];

11

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13 % Process control panel %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 data.refSkinIn = ’top’; %check this from the cae (refplane)

data.refSkinOut = ’bottom ’; %check this from the cae (refplane)

17

data.L = 510; % cylinder length

19 data.r_out =123; % cylinder outer radius

data.extPressure =8.0; % external pressure for static analysis

21 data.minBucklingPressure =15.1; % minimal required buckling pressure

data.minThicknessConstraint = 1e-3;

23 data.maxThicknessConstraint = 13;

25 data.fileCaseName = ’case_sandwich.dat’;% written in initPropsWrite

data.filePropsName = ’props_sandwich.dat’;% written in initPropsWrite

27 data.fileCorePropsName = ’props_core.dat’;

data.fileABDNameSkinIn = ’ABDskinIn.dat’;% written in createABDfromLP

29 data.fileABDNameSkinOut = ’ABDskinOut.dat’;% written in createABDfromLP

data.fileTSNameSkinIn = ’TSskinIn.dat’; % written in calcTransverseShearModuli
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31 data.fileTSNameSkinOut = ’TSskinOut.dat’;

33 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Set initial design variables %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data.eval.counter = 0;

37 data.optimizer.flag = ’OBJ’;

39 %temp. symmetry condition (determination of design variables)

Xn = [1 2 9 10];

41 %temporary: define bounds

lb = [-1 -1 -1 -1]; ub= [1 1 1 1];

43 disp(’MAKE SURE LB & UB ARE OK!’)

45 %initial lamination parameters:

X1i = 0.336297570631182;

47 X2i = 0.157014356779905;

X9i = 0.890557917363859;

49 X10i= 0.283363339099736;

51 X1o = X1i;

X2o = X2i;

53 X9o = X9i;

X10o= X10i;

55 %initial thicknesses:

hSkinIn = 2.79; %note: weight < 3.6453 kg

57 hSkinOut = 2.79;

hCore = 7.42 -4;

59

X0i = [X1i X2i 0 0 0 0 0 0 X9i X10i 0 0];

61

X0o = [X1o X2o 0 0 0 0 0 0 X9o X10o 0 0];

63

X0=[X0i X0o hSkinIn hSkinOut hCore ]; %length = 27!

65 % [1-12, 13-24, 25, 26, 27]

67 Xdat =[];

for i = 1: length(X0)

69 eval([’X’,num2str(i),’=X0(’,num2str(i),’);’]);

eval([’Xdat.X’,num2str(i),’=X0(’,num2str(i),’);’]);

71 end

73 %set fmincon options

options=optimset(’Algorithm ’,’interior -point ’,’TolFun ’,1e-3,’MaxIter ’ ,5000,...

75 ’DiffMinChange ’,1e-3,’ScaleProblem ’,’none’,’MaxFunEvals ’ ,5000,...

’TolCon ’,1e-6,’TolX’,1e-6,’FinDiffType ’,’central ’,’SubproblemAlgorithm ’,’cg’

,...

77 ’FunValCheck ’,’on’);

79 %Create a flexible way to determine design variables

tmpStr=’’;
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81 for i=1: length(Xn)

if i<length(Xn)

83 space=’ ’;

else

85 space=’’;

end

87 tmpStr =[ tmpStr ’X’ num2str(Xn(i)) space];

end

89 tmpStr =[’Xopt = [’ tmpStr ’];’];

eval(tmpStr);

91 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Obtain material information %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data.hCore = hCore; %also in objective

95 data.hSkinIn = hSkinIn; %etc

data.hSkinOut = hSkinOut; %etc

97 [props ,data] = initPropsWrite(props ,data); %etc

data = materialInvariants(data ,props); %etc

99 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Run optimization %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[x,fval ,flag ,output ,lambda] = fmincon(@objectiveFunction ,Xopt ,[],[],[],[],lb,ub ,

@confun ,options);

103 %Show the converged values , if existing:

if flag >=1

105 disp(’The converged values are:’)

x’

107 fval

end

scripts/main.m

function objective = objectiveFunction(Xopt)

2 %Objective function for the sandwich optimization

%Note: written in Matlab

4 %Copyright - Stanley I. Wong - 2012

global props data Xn Xdat

6 disp(’started with objective function ’)

Xopt

8 %React at the history flag of the model

%Do not evalute objectiveFunction again , to save time!

10 if strcmp(data.optimizer.flag ,’XOBJ’)

%objective=-data.history(data.eval.counter).criticalPressure;

12 objective=data.history(data.eval.counter).totalWeight;

data.history(data.eval.counter).status.XOBJ =1;

14 data.optimizer.flag = ’OBJ’;

else

16 if strcmp(data.optimizer.flag ,’XCON’)

data.optimizer.flag = ’XOBJ’;

18 data.history(data.eval.counter +1).status.XCONXOBJ =1;

else
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20 data.optimizer.flag = ’OBJ’;

data.history(data.eval.counter +1).status.XCONOBJ =1;

22 end

for i=1: length(fieldnames(Xdat)) %X1 to X27

24 eval([’X’ num2str(i) ’= Xdat.X’ num2str(i) ’;’]);

end

26 tmpLengthOld =1;

for i=1: length(Xn)

28 eval([’tmpLength = length(X’ num2str(Xn(i)) ’);’])

tmpLength=tmpLength+tmpLengthOld;

30 eval([’X’ num2str(Xn(i)) ’= Xopt(tmpLengthOld:tmpLength -1);’])

tmpLengthOld=tmpLength;

32 end

%temp symmetry condition:

34 X0 = [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X11 X12 X25 X25 X27];

36 data.hCore = X27;

data.hSkinIn = X25;

38 data.hSkinOut = X26;

40 [props ,data] = initPropsWrite(props ,data);

data = materialInvariants(data ,props);

42

%now for inner skin:

44 data.refSkin = data.refSkinIn;

data.hSkin = data.hSkinIn;

46 data.fileABDNameSkin = data.fileABDNameSkinIn;

data.fileTSNameSkin = data.fileTSNameSkinIn;

48

data = createABDfromLP_sandwich(X0,props ,data);

50 data = calcTransverseShearModuli_sandwich(data);

52 data.ABDSkinIn = data.ABDSkin;

data.factorPosDefSkinIn = data.factorPosDefSkin;

54

56 %now for outer skin:

data.refSkin = data.refSkinOut;

58 data.hSkin = data.hSkinOut;

data.fileABDNameSkin = data.fileABDNameSkinOut;

60 data.fileTSNameSkin = data.fileTSNameSkinOut;

62 data = createABDfromLP_sandwich(X0,props ,data);

data = calcTransverseShearModuli_sandwich(data);

64

data.ABDSkinOut = data.ABDSkin;

66 data.factorPosDefSkinOut = data.factorPosDefSkin;

68 %From here the ABAQUS model is evaluated:

%Generate model with the help of the python scripting interface for ABAQUS:

139



70 system(’abq6101 cae noGUI=createSandwich2.py’)

72 system(’abq6101 cae noGUI=inputFileModify_sandwich.py’)

74 %Evalute model , for linear buckling pressure and static analysis:

system(’yes | abq6101 job=myInputFile_python_sandwich user=ugens_v1.f cpu =12

inter ’)

76 %Obtain results with the help of python:

system(’echo "Done with evaluation , now post -processing"’)

78 system(’abq6101 cae noGUI=readOutput_sandwich3.py’)

disp(’READY WITH FE ANALYSIS ’)

80

criticalPressure = importdata(’buckle.dat’);

82

data.eval.counter = data.eval.counter + 1

84

data.history(data.eval.counter).Xopt0 = Xopt;

86 data.history(data.eval.counter).XoptX0 = [data.factorPosDefSkinIn*X0 (1:12)

data.factorPosDefSkinOut*X0 (13:24) X0 (25:27) ];

data.history(data.eval.counter).factorPosDefSkinIn =data.factorPosDefSkinIn;

88 data.history(data.eval.counter).factorPosDefSkinOut =data.factorPosDefSkinOut

;

data.history(data.eval.counter).criticalPressure =criticalPressure;

90

[totalWeight ,unitWeight] = calcMassSandwich(data ,props);

92 data.history(data.eval.counter).totalWeight = totalWeight;

data.history(data.eval.counter).unitWeight = unitWeight;

94

%objective=-criticalPressure;

96 objective=totalWeight;

disp(sprintf(’>> objective = %f’,objective))

98 disp(’evaluated objective function ’)

end

scripts/objectiveFunction.m

1 function [c, ceq] = confun(Xopt)

%Constraint function for the sandwich optimization

3 %Note: written in Matlab

%Copyright - Stanley I. Wong - 2012

5 global props data Xn Xdat

7 %Check the flag of the optimization model ,

%redirect to objective function if not evaluated yet

9 if strcmp(data.optimizer.flag ,’CON’) || strcmp(data.optimizer.flag ,’XOBJ’)

data.optimizer.flag = ’XCON’;

11 objective = objectiveFunction(Xopt);

data.history(data.eval.counter).status.XCON =1;

13 else

data.optimizer.flag = ’CON’;

15 data.history(data.eval.counter).status.CON=1;
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end

17 disp(’started with constraints ’)

for i=1: length(fieldnames(Xdat)) %X1 to X27

19 eval([’X’ num2str(i) ’= Xdat.X’ num2str(i) ’;’]);

end

21 tmpLengthOld =1;

for i=1: length(Xn)

23 eval([’tmpLength = length(X’ num2str(Xn(i)) ’);’])

tmpLength=tmpLength+tmpLengthOld;

25 eval([’X’ num2str(Xn(i)) ’= Xopt(tmpLengthOld:tmpLength -1);’])

tmpLengthOld=tmpLength;

27 end

%temp. symmetry condition:

29 X0 = [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X12 X25 X25 X27];

xi0 = X0 (1:24);

31 xi=[data.factorPosDefSkinIn*xi0 (1:12) data.factorPosDefSkinOut*xi0 (13: end)];

c=[];

33 ceq =[];

35 for num = [0] %temp. symmetry condition:

%------------------------------------------%

37 % check constraints and nonlinear constraints

%------------------------------------------%

39 % First rough constraint: -1< xi <1 :

%------------------------------------------%

41 j=1+ num;

c(end+1) = xi(j) - 1;

43 c(end+1) = -xi(j) - 1;

j=2+ num;

45 c(end+1) = xi(j) - 1;

c(end+1) = -xi(j) - 1;

47 j=9+ num;

c(end+1) = xi(j) - 1;

49 c(end+1) = -xi(j) - 1;

j=10+ num;

51 c(end+1) = xi(j) - 1;

c(end+1) = -xi(j) - 1;

53 %------------------------------------------%

% Parabola -type:

55 %------------------------------------------%

%for A (From Miki @ Bloomfield)

57 j=1+ num;

c(end+1) =2*xi(j)^2-1-xi(j+1);

59 j=8+ num;

c(end+1) =2*xi(j)^2-1-xi(j+1);

61

%------------------------------------------%

63 % In and out of plane (Diaconu et al.)

%------------------------------------------%

65 %for A (B) and D (From Diaconu @ Bloomfield)
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j=1+ num;

67 c(end+1)=( (xi(j) -1)^4 + 3*(xi(4+j))^2 ) -( 4*(xi(8+j) -1) * (xi(j) -1) );

j=2+ num;

69 c(end+1)=( (xi(j) -1)^4 + 3*(xi(4+j))^2 ) -( 4*(xi(8+j) -1) * (xi(j) -1) );

j=1+ num;

71 c(end+1)=( (xi(j)+1)^4 + 3*(xi(4+j))^2 ) -( 4*(xi(8+j)+1) * (xi(j)+1) );

% j=4;

73 j=2+ num;

c(end+1)=( (xi(j)+1)^4 + 3*(xi(4+j))^2 ) -( 4*(xi(8+j)+1) * (xi(j)+1) );

75 end

77 %INNER SKIN

stuff = importdata(’outputSkinIn.csv’,’,’);

79 ref = ’top’;

h = data.hSkinIn;

81 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%format of output.csv:

83 %elementlabel ,SE1 ,SE2 ,SE6 ,SE3 ,SE4 ,SE5 ,SK2 ,SK1 ,SK3

% SE1= Direct membrane strain in local 1-direction.

85 % SE2= Direct membrane strain in local 2-direction.

% SE6= Strain in the thickness direction.

87 % SE3= Shear membrane strain in local 1-2 plane.

% SE4= Transverse shear strain in the local 1-direction.

89 % SE5= Transverse shear strain in the local 2-direction.

% SK2= Curvature change about local 1-axis.

91 % SK1= Curvature change about local 2-axis.

% SK3= Surface twist in local 1-2 plane.

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ex = stuff (:,2);

95 Ey = stuff (:,3);

Exy = stuff (:,5);

97 Kx = stuff (:,8); %rate of change of slope in x-direction

Ky = stuff (:,9); %rate of change of slope in y-direction

99 Kxy = stuff (:,10);%amount of bending in the x-direction along the y-axis (i.e.

twisting)

Nx = stuff (:,11);

101 Ny = stuff (:,12);

Nxy = stuff (:,13);

103 %determine strains for in and outer planes:

if strcmp(ref ,’mid’)

105 zmin = -h/2;

zmax = h/2;

107 elseif strcmp(ref ,’top’)

zmin = -h;

109 zmax = 0;

elseif strcmp(ref ,’bot’)

111 zmin = 0;

zmax = h;

113 end

%the local strain is described as:

115 %epsilon[x y xy] = epsilon0(x,y)+z*kappa(x,y)
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%inner surface:

117 epsXzmin = Ex+zmin.*Kx;

epsYzmin = Ey+zmin.*Ky;

119 epsXYzmin= Exy+zmin.*Kxy;

I1Zmin = epsXzmin+epsYzmin;

121 I2Zmin = sqrt( (( epsXzmin .^2- epsYzmin .^2) ./2)+epsXYzmin .^2);

ffZmin = zeros(length(I1Zmin) ,1);

123 for i = 1: length(I1Zmin) %number of elements ..

ff = failureFunctionTsaiWuLP ([ I1Zmin I2Zmin],data.u);

125 ffZmin(i) = ff;

end

127

c(end +1) = max(ffZmin);

129

%outer surface:

131 epsXzmax = Ex+zmax.*Kx;

epsYzmax = Ey+zmax.*Ky;

133 epsXYzmax= Exy+zmax.*Kxy;

I1Zmax = epsXzmax+epsYzmax;

135 I2Zmax = sqrt( (( epsXzmax .^2- epsYzmax .^2) ./2)+epsXYzmax .^2);

ffZmax = zeros(length(I1Zmax) ,1);

137 for i = 1: length(I1Zmax) %number of elements .. should not be different than the

former

ff = failureFunctionTsaiWuLP ([ I1Zmax I2Zmax],data.u);

139 ffZmax(i) = ff;

end

141 c(end +1) = max(ffZmax);

143 %face wrinkling:

A11 = data.ABDskinIn (1,1);

145 A22 = data.ABDskinIn (2,2);

A12 = data.ABDskinIn (1,2);

147 A66 = data.ABDskinIn (3,3);

D11 = data.ABDskinIn (4,4);

149 D22 = data.ABDskinIn (5,5);

D12 = data.ABDskinIn (4,5);

151 D66 = data.ABDskinIn (6,6);

Ex0 = (A11*A22 -A12^2)/(h*A22);

153 Ey0 = (A11*A22 -A12^2)/(h*A11);

nu120 = A12/A22;

155 nu210 = nu120/Ex0*Ey0;

Gxy0 = A66/h;

157 S = props.core.cellSize;

a = S/sqrt (3);

159 b = S;

Ec = props.core.E11;

161 Ef = Ex0;

tf = h;

163 vf = sqrt(props.nu12*props.nu21);

tc = data.hCore;

165 Q = 0.5; %safety factor
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sFW = Q*sqrt(Ec*Ef*tf/((1-vf^2)*tc));

167 c(end +1) = -(min(Nx)/h)/sFW -1; %constraint face wrinkling (1-dir)

Ef = Ey0;

169 sFW = Q*sqrt(Ec*Ef*tf/((1-vf^2)*tc));

c(end +1) = -(min(Ny)/h)/sFW -1; %constraint face wrinkling (2-dir)

171

%dimpling stress:

173 Kd = pi^2*( D11/D22*(b/a)^2+8/3*( D12 *2* D66)/D22 +16/3*(a/b)^2);

sD = Kd*D22/(tf*b^2)

175 c(end +1) = -(min(Nx)/h)/sD -1; %constraint dimpling (1-dir)

c(end +1) = -(min(Ny)/h)/sD -1; %constraint dimpling (2-dir)

177

%OUTER SKIN

179 stuff = importdata(’outputSkinOut.csv’,’,’);

ref = ’bot’; %i.e. bot mid or top

181 h = data.hSkinOut;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

183 %format of output.csv:

%elementlabel ,SE1 ,SE2 ,SE6 ,SE3 ,SE4 ,SE5 ,SK2 ,SK1 ,SK3

185 % SE1= Direct membrane strain in local 1-direction.

% SE2= Direct membrane strain in local 2-direction.

187 % SE6= Strain in the thickness direction.

% SE3= Shear membrane strain in local 1-2 plane.

189 % SE4= Transverse shear strain in the local 1-direction.

% SE5= Transverse shear strain in the local 2-direction.

191 % SK2= Curvature change about local 1-axis.

% SK1= Curvature change about local 2-axis.

193 % SK3= Surface twist in local 1-2 plane.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

195 Ex = stuff (:,2);

Ey = stuff (:,3);

197 Exy = stuff (:,5);

Kx = stuff (:,8); %rate of change of slope in x-direction

199 Ky = stuff (:,9); %rate of change of slope in y-direction

Kxy = stuff (:,10);%amount of bending in the x-direction along the y-axis (i.e.

twisting)

201 Nx = stuff (:,11);

Ny = stuff (:,12);

203 Nxy = stuff (:,13);

%determine strains for in and outer planes:

205 if strcmp(ref ,’mid’)

zmin = -h/2;

207 zmax = h/2;

elseif strcmp(ref ,’top’)

209 zmin = -h;

zmax = 0;

211 elseif strcmp(ref ,’bot’)

zmin = 0;

213 zmax = h;

end

215 %the local strain is described as:
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%epsilon[x y xy] = epsilon0(x,y)+z*kappa(x,y)

217 %inner surface:

epsXzmin = Ex+zmin.*Kx;

219 epsYzmin = Ey+zmin.*Ky;

epsXYzmin= Exy+zmin.*Kxy;

221 I1Zmin = epsXzmin+epsYzmin;

I2Zmin = sqrt( (( epsXzmin .^2- epsYzmin .^2) ./2)+epsXYzmin .^2);

223 ffZmin = zeros(length(I1Zmin) ,1);

for i = 1: length(I1Zmin) %number of elements

225 ff = failureFunctionTsaiWuLP ([ I1Zmin I2Zmin],data.u);

ffZmin(i) = ff;

227 end

229 c(end +1) = max(ffZmin);

231 %outer surface:

epsXzmax = Ex+zmax.*Kx;

233 epsYzmax = Ey+zmax.*Ky;

epsXYzmax= Exy+zmax.*Kxy;

235 I1Zmax = epsXzmax+epsYzmax;

I2Zmax = sqrt( (( epsXzmax .^2- epsYzmax .^2) ./2)+epsXYzmax .^2);

237 ffZmax = zeros(length(I1Zmax) ,1);

for i = 1: length(I1Zmax) %number of elements

239 ff = failureFunctionTsaiWuLP ([ I1Zmax I2Zmax],data.u);

ffZmax(i) = ff;

241 end

243 c(end +1) = max(ffZmax);

245 %face wrinkling:

A11 = data.ABDskinOut (1,1);

247 A22 = data.ABDskinOut (2,2);

A12 = data.ABDskinOut (1,2);

249 A66 = data.ABDskinOut (3,3);

D11 = data.ABDskinOut (4,4);

251 D22 = data.ABDskinOut (5,5);

D12 = data.ABDskinOut (4,5);

253 D66 = data.ABDskinOut (6,6);

Ex0 = (A11*A22 -A12^2)/(h*A22);

255 Ey0 = (A11*A22 -A12^2)/(h*A11);

nu120 = A12/A22;

257 nu210 = nu120/Ex0*Ey0;

Gxy0 = A66/h;

259 S = props.core.cellSize;

a = S/sqrt (3);

261 b = S;

Ec = props.core.E11;

263 Ef = Ex0;

tf = h;

265 vf = sqrt(props.nu12*props.nu21);

tc = data.hCore;
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267 Q = 0.5; %safety factor

sFW = Q*sqrt(Ec*Ef*tf/((1-vf^2)*tc));

269 c(end +1) = -(min(Nx)/h)/sFW -1; %constraint face wrinkling (1-dir)

Ef = Ey0;

271 sFW = Q*sqrt(Ec*Ef*tf/((1-vf^2)*tc));

c(end +1) = -(min(Ny)/h)/sFW -1; %constraint face wrinkling (2-dir)

273

%dimpling stress:

275 Kd = pi^2*( D11/D22*(b/a)^2+8/3*( D12 *2* D66)/D22 +16/3*(a/b)^2);

sD = Kd*D22/(tf*b^2)

277 c(end +1) = -(min(Nx)/h)/sD -1; %constraint dimpling (1-dir)

c(end +1) = -(min(Ny)/h)/sD -1; %constraint dimpling (2-dir)

279

281 if props.core.threeD

Xt=props.core.XT;

283 Xc=props.core.XC;

Yt=props.core.YT;

285 Yc=props.core.YC;

Zt=props.core.ZT;

287 Zc=props.core.ZC;

Q12 = props.core.Q12;

289 Q13 = props.core.Q13;

Q23 = props.core.Q23;

291

F11 = 1/(Xt*Xc);

293 F22 = 1/(Yt*Yc);

F33 = 1/(Zt*Zc);

295 F1 = 1/Xt - 1/Xc;

F2 = 1/Yt - 1/Yc;

297 F3 = 1/Zt - 1/Zc;

F12 = -1/(2* sqrt(Xt*Xc*Yt*Yc));

299 F13 = -1/(2* sqrt(Xt*Xc*Zt*Zc));

F23 = -1/(2* sqrt(Yt*Yc*Zt*Zc));

301 F44 = 1/(Q12 ^2);

F55 = 1/(Q13 ^2);

303 F66 = 1/(Q23 ^2);

else

305 %EXTRACT CORE:

XT = props.core.XT;

307 XC = props.core.XC;

YT = props.core.YT;

309 YC = props.core.YC;

Q = props.core.Q;

311

F11 = 1./(XT*XC);

313 F22 = 1./(YT*YC);

F1 = 1./XT - 1./XC;

315 F2 = 1./YT - 1./YC;

F12 = -1./(2.* sqrt(XC*XT*YC*YT));

317 F66 = 1./(Q^2);
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end

319 stuff = importdata(’outputCore.csv’);

maxTsaiWuIndices = find(stuff.data(:,end) == max(stuff.data(:,end))); %last

column is the tsai -wu

321 maxTsaiWu = max(stuff.data(:,end));

if maxTsaiWu > 1

323 disp(’BEWARE: material failure is active!’)

end

325 stresses = stuff.data(maxTsaiWuIndices ,2:end -1);

tsaiWu = zeros(size(stresses ,1) ,1);

327 lambdaCoeffMat = zeros(size(stresses ,1) ,3);

lambdaRootsMat = [];

329 for i = 1:size(stresses ,1)

if props.core.threeD

331 S11 = stresses(i,1);

S22 = stresses(i,2);

333 S33 = stresses(i,3);

S12 = stresses(i,4);

335 S13 = stresses(i,5);

S23 = stresses(i,6);

337 tsaiWu(i)=F11*S11^2 +F22*S22^2 +F33*S33 ^2+...

F44*S12 ^2+ F55*S13^2+F66*S23 ^2+...

339 F1*S11 + F2*S22 + F3*S33 +...

2.* F12*S11*S22+ 2.*F13*S11*S33+ 2.* F23*S22*S33;

341 else

S11 = stresses(i,1);

343 S22 = stresses(i,2);

S12 = stresses(i,3);

345 tsaiWu(i) = F11*S11^2 +F22*S22^2 +F66*S12^2+F1*S11 + F2*S22 +2.* F12*S11*

S22;

lambdaCoeffVec = [-1; (F1*S11 + F2*S22); (F11*S11^2 + F22*S22^2 + 2*F12*

S11*S22 + F66*S12^2)]’;

347 lambdaCoeffMat(i,:) =lambdaCoeffVec;

lambdaRootsMat(i,:) = roots(fliplr(lambdaCoeffVec));

349 end

end

351

%Note that the tsai -Wu is double checked

353 error = max([tsaiWu -stuff.data(maxTsaiWuIndices ,end)]);

if error > 1e-8

355 disp(’check tsaiWu ’)

data.error.tsaiWu1 = tsaiWu;

357 data.error.tsaiWu2 =stuff.data(maxTsaiWuIndices ,end);

eof

359 end

361 if props.core.threeD

maxMatPressure=data.extPressure /(1-max(tsaiWu));

363 else

tmp =[];

365 for i = 1:size(lambdaRootsMat ,1)
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tmp(end +1)=max(lambdaRootsMat(i,:));

367 end

369 if min(tmp) <= 0

disp(’check roots ’)

371 eof

else

373 smallestPositiveRoot = min(tmp);

end

375 maxMatPressure = data.extPressure*smallestPositiveRoot;

end

377

c(end +1) = -maxMatPressure+data.extPressure;

379 disp(sprintf(’Failure [Core %f],[SkinOut %f],[SkinIn %f] ’,c(end),c(end -1),c(end

-2)))

c(end +1) = -data.history(data.eval.counter).criticalPressure+data.

minBucklingPressure;

381

%Thickness Constraints

383 hC = data.hCore;

hSi = data.hSkinIn;

385 hSo = data.hSkinOut;

c(end +1) = (hC+hSi+hSo)-data.maxThicknessConstraint;

387 c’

data.history(data.eval.counter).c = c;

389 disp(’confunction evaluated !!’)

scripts/confun.m

function [props ,data] = initPropsWrite(props ,data)

2 %write the material properties to file and save in structurals

%Note: written in Matlab

4 %Copyright - Stanley I. Wong - 2012

%AS4 fiber /3501 -6 epoxy

6 props.E11 = 126e3; %[MPa]

props.E22 = 11e3; %[MPa]

8 props.nu12 = 0.28; %[-]

props.nu21 = props.nu12/props.E11*props.E22; %[-]

10 props.G12 = 6.6e3; %[MPa]

props.XT = 1950; %[MPa]

12 props.XC = 1480; %[MPa]

props.YT = 48; %[MPa]

14 props.YC = 200; %[MPa]

props.Q = 79; %[MPa]

16 props.rho = 1.55E+3; %[kg/m^3]

18 % aluminium 5056 honeycomb (0.147) (3D description)

props.core.threeD = 1;

20 props.core.E11 = 3280; %[MPa]% out -of -plane

props.core.E22 = 19.1; %[MPa]% W-dir

22 props.core.E33 = 5.96; %[MPa]% L-dir
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props.core.nu12 = 0.001; %[-]

24 props.core.nu13 = 0.001; %[-]

props.core.nu23 = 0.01; %[-] checked via orthocheck

26 props.core.G12 = 328; %[MPa]

props.core.G13 = 758; %[MPa]

28 props.core.G23 = 6; %[MPa]

props.core.XT = 11.8; %[MPa]

30 props.core.XC = 11.8; %[MPa]

props.core.YT = 0.25; %[MPa]

32 props.core.YC = 0.25; %[MPa]

props.core.ZT = 0.92; %[MPa]

34 props.core.ZC = 0.92; %[MPa]

props.core.Q12 = 3.93; %[MPa]

36 props.core.Q13 = 6.42; %[MPa]

props.core.Q23 = 0.1; %[MPa]

38 props.core.rho = 147; %[kg/m^3]

props.core.cellSize = 1.588 %[mm]

40

%note that for the core the axes are:

42 % 1 = out of plane

% 2 = circumferential

44 % 3 = longitudinal

46 % FOR I/O these values are written to a props file:

outputFormat2=’%21.14e ’;

48 file1 = fopen(data.filePropsName ,’w’);

50 fprintf(file1 ,outputFormat2 ,props.E11);

fprintf(file1 ,outputFormat2 ,props.E22);

52 fprintf(file1 ,outputFormat2 ,props.nu12);

fprintf(file1 ,outputFormat2 ,props.nu21);

54 fprintf(file1 ,outputFormat2 ,props.G12);

fprintf(file1 ,outputFormat2 ,props.XT);

56 fprintf(file1 ,outputFormat2 ,props.XC);

fprintf(file1 ,outputFormat2 ,props.YT);

58 fprintf(file1 ,outputFormat2 ,props.YC);

fprintf(file1 ,outputFormat2 ,props.Q);

60 fprintf(file1 ,outputFormat2 ,data.hSkinIn);

fprintf(file1 ,outputFormat2 ,data.hSkinOut);

62 fclose(file1);

64 % FOR I/O these values are written to a case file:

outputFormat2=’%21.14e ’;

66 file1 = fopen(data.fileCaseName ,’w’);

68 fprintf(file1 ,outputFormat2 ,data.L);

fprintf(file1 ,outputFormat2 ,data.r_out);

70 fprintf(file1 ,outputFormat2 ,data.hCore);

fprintf(file1 ,outputFormat2 ,data.hSkinIn);

72 fprintf(file1 ,outputFormat2 ,data.hSkinOut);

fprintf(file1 ,outputFormat2 ,data.extPressure);
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74 fclose(file1);

76 % FOR I/O these values are written to a core props file:

outputFormat2=’%21.14e ’;

78 file1 = fopen(data.fileCorePropsName ,’w’);

80 fprintf(file1 ,outputFormat2 ,props.core.E11);

fprintf(file1 ,outputFormat2 ,props.core.E22);

82 fprintf(file1 ,outputFormat2 ,props.core.E33);

fprintf(file1 ,outputFormat2 ,props.core.nu12);

84 fprintf(file1 ,outputFormat2 ,props.core.nu13);

fprintf(file1 ,outputFormat2 ,props.core.nu23);

86 fprintf(file1 ,outputFormat2 ,props.core.G12);

fprintf(file1 ,outputFormat2 ,props.core.G13);

88 fprintf(file1 ,outputFormat2 ,props.core.G23);

fprintf(file1 ,outputFormat2 ,props.core.XT);

90 fprintf(file1 ,outputFormat2 ,props.core.XC);

fprintf(file1 ,outputFormat2 ,props.core.YT);

92 fprintf(file1 ,outputFormat2 ,props.core.YC);

if props.core.threeD

94 fprintf(file1 ,outputFormat2 ,props.core.ZT);

fprintf(file1 ,outputFormat2 ,props.core.ZC);

96 fprintf(file1 ,outputFormat2 ,props.core.Q12);

fprintf(file1 ,outputFormat2 ,props.core.Q13);

98 fprintf(file1 ,outputFormat2 ,props.core.Q23);

else

100 fprintf(file1 ,outputFormat2 ,props.core.Q);

end

102 fclose(file1);

scripts/initPropsWrite.m

function data = materialInvariants(data ,props)

2 %Calculate the material invaraints and save in structural

%Note: written in Matlab

4 %Copyright - Stanley I. Wong - 2012

% ------------------------------------------%

6 % read props

% ------------------------------------------%

8 E11 = props.E11;

E22 = props.E22;

10 nu12 = props.nu12;

G12 = props.G12;

12 XT = props.XT;

XC = props.XC;

14 YT = props.YT;

YC = props.YC;

16 S = props.Q;

% ------------------------------------------%

18 % construct reduced stiffness matrix

% ------------------------------------------%
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20 Q11 = E11 ^2/(E11 -E22*nu12 ^2);

Q22 = E11*E22/(E11 -E22*nu12 ^2);

22 Q12 = nu12*Q22;

Q66 = G12;

24 Q = [Q11 Q12 0;...

Q12 Q22 0;...

26 0 0 Q66];

data.Q = Q;

28

% ------------------------------------------%

30 % construct material invariant vector

% ------------------------------------------%

32 U1=(3* Q11+3* Q22 +2*Q12+4*Q66)/8;

U2=(Q11 -Q12)/2;

34 U3=(Q11+Q22 -2*Q12 -4*Q66)/8;

U4=(Q11+Q22 +6*Q12 -4*Q66)/8;

36 U5=(Q11+Q22 -2*Q12+4*Q66)/8;

U=[U1;U2;U3;U4;U5];

38 data.U = U;

40 F=[];

F(11) =0.1e1 / XT / XC;

42 F(22) =0.1e1 / YT / YC;

F(1) =0.1e1 / XT - 0.1e1 / XC;

44 F(2) =0.1e1 / YT - 0.1e1 / YC;

F(12)=-(XT * XC * YT * YC) ^ (-0.1e1 / 0.2e1) / 0.2e1;

46 F(66) =0.1e1 / S ^ 2;

48 u=[];

u(1)=Q(1,1) ^ 2 * F(11) + Q(1,2) ^ 2 * F(22) +...

50 2 * F(12) * Q(1,1) * Q(1,2) + Q(1,2) ^ 2 * F(11) +...

Q(2,2) ^ 2 * F(22) + 2 * F(12) * Q(1,2) * Q(2,2) -...

52 2 * Q(1,1) * Q(1,2) * F(11) - 2 * Q(1,2) * Q(2,2) * F(22) ...

- 2 * F(12) * Q(1,2) ^ 2 - 2 * F(12) * Q(1,1) * Q(2,2);

54

u(2)=Q(1,1) * F(1) / 0.2e1 + Q(1,2) * F(2) / 0.2e1 +...

56 Q(1,2) * F(1) / 0.2e1 + Q(2,2) * F(2) / 0.2e1;

58 u(3)=Q(1,1) ^ 2 * F(11) / 0.4e1 +...

Q(1,2) ^ 2 * F(22) / 0.4e1 +...

60 F(12) * Q(1,1) * Q(1,2) / 0.2e1 +...

Q(1,2) ^ 2 * F(11) / 0.4e1 + Q(2,2) ^ 2 * F(22) / 0.4e1 +...

62 F(12) * Q(1,2) * Q(2,2) / 0.2e1 +...

Q(1,1) * Q(1,2) * F(11) / 0.2e1 +...

64 Q(1,2) * Q(2,2) * F(22) / 0.2e1 +...

F(12) * Q(1,2) ^ 2 / 0.2e1 +...

66 F(12) * Q(1,1) * Q(2,2) / 0.2e1;

68 u(4)=Q(1,1) * F(1) + Q(1,2) * F(2) -...

Q(1,2) * F(1) - Q(2,2) * F(2);

70
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u(5)=Q(1,1) ^ 2 * F(11) + Q(1,2) ^ 2 * F(22) +...

72 2 * F(12) * Q(1,1) * Q(1,2) - Q(1,2) ^ 2 * F(11) -...

Q(2,2) ^ 2 * F(22) - 2 * F(12) * Q(1,2) * Q(2,2);

74

u(6)=4 * Q(3,3) ^ 2 * F(66);

76 data.u = u; %save in structural

scripts/materialInvariants.m

#This script creates a composite sandwich cylinder

2 #Note: written in Python , for ABAQUS

#Copyright - Stanley I. Wong - 2012

4 from part import *

from material import *

6 from section import *

from assembly import *

8 from step import *

from interaction import *

10 from load import *

from mesh import *

12 from job import *

from sketch import *

14 from visualization import *

from connectorBehavior import *

16 from Numeric import *

import regionToolset

18 #### $$$$$ #### $$$$$ ##### MY LITTLE TUI #### $$$$$ #### $$$$$ #####

caeName=’myCae ’

20 jobName=’Job -1-sandwich ’

writeJob=True

22 writeCAE=True

meshSize = 10.0

24 #############################################################

#case file read

26 case_vars = []

f = open(’case_sandwich.dat’,’r’)

28 for line in f:

tmp = line.split ()

30 for value in tmp:

case_vars.append(float(value))

32 f.close()

34 cylinderLength = case_vars [0]

cylinderOuterRadius = case_vars [1]

36 coreThickness = case_vars [2]

skinInThickness = case_vars [3]

38 skinOutThickness = case_vars [4]

externalPressure = case_vars [5]

40 #other variables

coreOutRadius = cylinderOuterRadius - skinOutThickness

42 coreInRadius = coreOutRadius - coreThickness
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coreMidRadius = (coreOutRadius+coreInRadius)/2.

44 cylinderInnerRadius = cylinderOuterRadius - coreThickness - skinOutThickness -

skinInThickness

pert = 1e-3 #for geometry searching

46 #############################################################

#CREATE CORE MATERIAL AND SKIN (DUMMY) MATERIAL

48 #for the lamination parameters this is overwritten:

props_skin = []

50 f = open(’DUMMYmaterial_props.dat’,’r’)

for line in f:

52 tmp = line.split ()

props_skin.append(float(tmp [0]))

54 f.close()

props_core = []

56 f = open(’props_core.dat’,’r’)

for line in f:

58 tmp = line.split ()

for value in tmp:

60 props_core.append(float(value))

f.close()

62

#props for skin (a) #THIS IS A DUMMY

64 skinMaterialName=’skinMaterial ’

E1a = props_skin [0]

66 E2a = props_skin [1]

E3a = props_skin [2]

68 nu12a = props_skin [3]

nu13a = props_skin [4]

70 nu23a = props_skin [5]

G12a = props_skin [6]

72 G13a = props_skin [7]

G23a = props_skin [8]

74 #props for core (b)

coreMaterialName=’coreMaterial ’

76 E1b = props_core [0]

E2b = props_core [1]

78 E3b = props_core [2]

nu12b = props_core [3]

80 nu13b = props_core [4]

nu23b = props_core [5]

82 G12b = props_core [6]

G13b = props_core [7]

84 G23b = props_core [8]

if len(props_core) <> 18:

86 print ’Something going on with core props ’

z = 1/0 #LET IT CRASH!

88 ##other (dummy) properties

opt_vars = []

90 f = open(’DUMMYopt_vars.dat’,’r’)

for line in f:

92 tmp = line.split ()
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opt_vars.append(float(tmp [0]))

94 f.close()

96 nPlySkinIn = int(opt_vars [2])

nPlySkinOut = int(opt_vars [3])

98 plyThicknessArrayIn = []

for i in range (4,4+ nPlySkinIn):

100 plyThicknessArrayIn.append(opt_vars[i])

iTmp = i

102 plyThicknessArrayOut= []

for i in range(iTmp+1,iTmp +1+ nPlySkinOut):

104 plyThicknessArrayOut.append(opt_vars[i])

iTmp = i

106 plyOriArrayIn = []

for i in range(iTmp+2,iTmp +2+ nPlySkinIn):

108 plyOriArrayIn.append(opt_vars[i])

iTmp = i

110 plyOriArrayOut = []

for i in range(iTmp+1,iTmp +1+ nPlySkinOut):

112 plyOriArrayOut.append(opt_vars[i])

iTmp = i

114

116 #############################################################

#PRESETS

118 myModel = ’Model -1’

myPart = ’Part -1’

120 mySketch = ’__profile__ ’

122 loadPressure=externalPressure

session.journalOptions.setValues(recoverGeometry=INDEX)

124 session.journalOptions.setValues(replayGeometry=INDEX)

#############################################################

126 #create sketch

mdb.models[myModel ]. ConstrainedSketch(name=mySketch , sheetSize =1000.0)

128 mySketch = mdb.models[myModel ]. sketches[mySketch]

mySketch.ConstructionLine(point1 =(0.0, -500.0), point2 =(0.0, 500.0))

130 mySketch.rectangle(point1 =( coreInRadius , 0.0), point2 =( coreOutRadius ,

cylinderLength))

mdb.models[myModel ].Part(name=myPart , dimensionality=THREE_D , type=

DEFORMABLE_BODY)

132 mdb.models[myModel ].parts[myPart ]. BaseSolidRevolve(sketch=mySketch , angle =360.0 ,

flipRevolveDirection=OFF)

del mdb.models[myModel ]. sketches[’__profile__ ’]

134 partName = mdb.models[myModel ].parts[myPart]

136 #############################################################

#DATUMS

138 xzPlaneOffsetBase=partName.DatumPlaneByPrincipalPlane(offset =20.0, principalPlane

=XZPLANE)
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xzPlaneOffsetTop=partName.DatumPlaneByPrincipalPlane(offset=cylinderLength -20.0 ,

principalPlane=XZPLANE)

140 xyPlane=partName.DatumPlaneByPrincipalPlane(offset =0.0, principalPlane=XYPLANE)

yzPlane=partName.DatumPlaneByPrincipalPlane(offset =0.0, principalPlane=YZPLANE)

142 xzPlane=partName.DatumPlaneByPrincipalPlane(offset =0.0, principalPlane=XZPLANE)

#############################################################

144 #CREATE SETS IN PART

setFaceCoreIn=’Set -Face -Core -In’

146 faceNumber=partName.faces.getClosest(coordinates =([0.0 ,0.0 , cylinderInnerRadius ],)

)[0][0]. index

partName.Set(faces=partName.faces[faceNumber:faceNumber +1], name=setFaceCoreIn)

148

setFaceCoreOut=’Set -Face -Core -Out’

150 faceNumber=partName.faces.getClosest(coordinates =([0.0 ,0.0 , cylinderOuterRadius ],)

)[0][0]. index

partName.Set(faces=partName.faces[faceNumber:faceNumber +1], name=setFaceCoreOut)

152

setFaceCoreTop=’Set -Face -Core -Top’

154 faceNumber=partName.faces.getClosest(coordinates =([0.0 , cylinderLength ,

coreMidRadius ],))[0][0]. index

partName.Set(faces=partName.faces[faceNumber:faceNumber +1], name=setFaceCoreTop)

156

setFaceCoreBase=’Set -Face -Core -Base’

158 faceNumber=partName.faces.getClosest(coordinates =([0.0 ,0.0 , coreMidRadius ],))

[0][0]. index

partName.Set(faces=partName.faces[faceNumber:faceNumber +1], name=setFaceCoreBase)

160

setCellCore=’Set -Cell -Core’

162 partName.Set(cells=partName.cells [0:1] , name=setCellCore)

#############################################################

164 #CREATE SURFACE IN PART

partName.Surface(name=’Surf -1’, side1Faces=partName.sets[’Set -Face -Core -Out’].

faces)

166

#############################################################

168 #CREATE MATERIALS

modelName=mdb.models[myModel]

170 modelName.Material(name=skinMaterialName)

mdb.models[myModel ]. materials[skinMaterialName ]. Elastic (\

172 table =((E1a , E2a , E3a ,\

nu12a , nu13a , nu23a ,\

174 G12a , G13a , G23a), ), type=ENGINEERING_CONSTANTS)

modelName.Material(name=coreMaterialName)

176 modelName.materials[coreMaterialName ]. Elastic (\

table =((E1b , E2b , E3b ,\

178 nu12b , nu13b , nu23b ,\

G12b , G13b , G23b), ), type=ENGINEERING_CONSTANTS)

180

#create orientations

182 partName.DatumPointByCoordinate(coords =(0.0 , 0.0,- coreMidRadius))#!mod

indexVertex=partName.vertices.getClosest ([(0. ,0. ,1.)]) [0][0]. index
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184 partName.DatumCsysByThreePoints(coordSysType=

CYLINDRICAL , name=’Datum csys -1’, origin =(0.0, 0.0, 0.0), point1=

186 partName.vertices[indexVertex], point2=

partName.datums[max(partName.datums.keys())])

188 datumID=partName.features[’Datum csys -1’].id

layupOrientation = partName.datums[datumID]

190

##create skins

192 skinCoreOut = ’Skin -Core -Out’

partName.Skin(faces=partName.sets[setFaceCoreOut ].faces , name=skinCoreOut)

194 skinCoreIn = ’Skin -Core -In’

partName.Skin(faces=partName.sets[setFaceCoreIn ].faces , name=skinCoreIn)

196

#create layup

198 myLayupIn=’CompositeLayup -In’

tmpFaces = partName.sets[setFaceCoreIn ]. faces

200 region = regionToolset.Region(skinFaces =(( skinCoreIn ,tmpFaces) ,))

partName.CompositeLayup(description=’’,

202 elementType=SHELL , name=myLayupIn , offsetType=TOP_SURFACE ,

symmetric=False , thicknessAssignment=FROM_SECTION)

204 partName.compositeLayups[myLayupIn ]. Section(

integrationRule=SIMPSON , poissonDefinition=DEFAULT , preIntegrate=OFF ,

206 temperature=GRADIENT , thicknessType=UNIFORM , useDensity=OFF)

partName.compositeLayups[myLayupIn ]. ReferenceOrientation(

208 additionalRotationType=ROTATION_NONE , angle =0.0, axis=AXIS_1 , fieldName=’’,

localCsys=partName.datums[datumID], orientationType=GLOBAL)

210 partName.compositeLayups[myLayupIn ]. orientation.setValues(orientationType=SYSTEM ,

localCsys=layupOrientation)

212 for i in range(0, nPlySkinIn):

partName.compositeLayups[myLayupIn ]. CompositePly(additionalRotationField=’’,

additionalRotationType=ROTATION_NONE , angle=plyOriArrayIn[i],axis=AXIS_3 ,

material=skinMaterialName , numIntPoints =3, orientationValue =0.0,

orientationType=SPECIFY_ORIENT ,plyName=’Ply -’+str(i+1+ nPlySkinOut)+’-Shell ’

, region=region ,suppressed=False ,thickness=plyThicknessArrayIn[i],

thicknessType=SPECIFY_THICKNESS)

214

myLayupOut=’CompositeLayup -Out’

216 tmpFaces = partName.sets[setFaceCoreOut ]. faces

region = regionToolset.Region(skinFaces =(( skinCoreOut ,tmpFaces),))

218 partName.CompositeLayup(description=’’,

elementType=SHELL , name=myLayupOut , offsetType=BOTTOM_SURFACE ,

220 symmetric=False , thicknessAssignment=FROM_SECTION)

partName.compositeLayups[myLayupOut ]. Section(

222 integrationRule=SIMPSON , poissonDefinition=DEFAULT , preIntegrate=OFF ,

temperature=GRADIENT , thicknessType=UNIFORM , useDensity=OFF)

224 partName.compositeLayups[myLayupOut ]. ReferenceOrientation(

additionalRotationType=ROTATION_NONE , angle =0.0, axis=AXIS_1 , fieldName=’’,

226 localCsys=partName.datums[datumID], orientationType=GLOBAL)

partName.compositeLayups[myLayupOut ]. orientation.setValues(orientationType=SYSTEM

,localCsys=layupOrientation)
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228 for i in range(0, nPlySkinOut):

partName.compositeLayups[myLayupOut ]. CompositePly(additionalRotationField=’’,

additionalRotationType=ROTATION_NONE , angle=plyOriArrayOut[i],axis=AXIS_3 ,

material=skinMaterialName , numIntPoints =3, orientationValue =0.0,

orientationType=SPECIFY_ORIENT ,plyName=’Ply -’+str(i+1+ nPlySkinOut)+’-Shell ’

, region=region ,suppressed=False ,thickness=plyThicknessArrayOut[i],

thicknessType=SPECIFY_THICKNESS)

230

232 myLayupCore=’CompositeLayup -Core’

partName.CompositeLayup(description=’’, elementType=SOLID , name=myLayupCore ,

symmetric=False , thicknessAssignment=FROM_SECTION)

234 partName.compositeLayups[myLayupCore ]. Section(

integrationRule=SIMPSON , poissonDefinition=DEFAULT , preIntegrate=ON,

236 temperature=GRADIENT , thicknessType=UNIFORM , useDensity=OFF)

partName.compositeLayups[myLayupCore ]. ReferenceOrientation(

238 additionalRotationType=ROTATION_NONE , angle =0.0, axis=AXIS_1 , fieldName=’’,

localCsys=partName.datums[datumID], orientationType=GLOBAL)

240 partName.compositeLayups[myLayupCore ]. orientation.setValues(orientationType=

SYSTEM ,localCsys=layupOrientation ,stackDirection=STACK_3)

partName.compositeLayups[myLayupCore ]. CompositePly(additionalRotationField=’’,

additionalRotationType=ROTATION_NONE , angle =0.0, axis=AXIS_3 , material=

coreMaterialName , numIntPoints =3, orientationType=ANGLE_0 ,plyName=’Ply -Core’,

region=partName.sets[’Set -Cell -Core’],suppressed=False , thickness =3.0,

thicknessType=SPECIFY_THICKNESS)

242

flipNormalRegions = partName.sets[setFaceCoreIn]

244 partName.flipNormal(regions=flipNormalRegions)

246 # partitioning

#CREATE PARTITION , EXTRA SETS

248

partName.PartitionCellByDatumPlane(datumPlane=

250 partName.datums[xzPlaneOffsetBase.id], cells=

partName.cells [0: len(partName.cells)])

252 partName.PartitionCellByDatumPlane(datumPlane=

partName.datums[xzPlaneOffsetTop.id], cells=

254 partName.cells [0: len(partName.cells)])

256 edgeNumber1=partName.edges.getClosest(coordinates =([pert ,20.0, coreMidRadius ],))

[0][0]. index

edgeNumber2=partName.edges.getClosest(coordinates =([-pert ,20.0, coreMidRadius ],))

[0][0]. index

258 edgeNumber3=partName.edges.getClosest(coordinates =([pert ,20.0,- coreMidRadius ],))

[0][0]. index

edgeNumber4=partName.edges.getClosest(coordinates =([-pert ,20.0,- coreMidRadius ],))

[0][0]. index

260

setEdgeBaseOffset=’Set -Edge -Base -Offset ’

262 partName.Set(edges=partName.edges[edgeNumber1:edgeNumber1 +1]+\

partName.edges[edgeNumber2:edgeNumber2 +1]+\
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264 partName.edges[edgeNumber3:edgeNumber3 +1]+\

partName.edges[edgeNumber4:edgeNumber4 +1]\

266 , name=setEdgeBaseOffset)

268 edgeNumber=partName.edges.getClosest(coordinates =([0.0 , cylinderLength -20.0,

coreMidRadius ],))[0][0]. index

edgeNumber1=partName.edges.getClosest(coordinates =([pert ,cylinderLength -20.0 ,

coreMidRadius ],))[0][0]. index

270 edgeNumber2=partName.edges.getClosest(coordinates =([-pert ,cylinderLength -20.0,

coreMidRadius ],))[0][0]. index

edgeNumber3=partName.edges.getClosest(coordinates =([pert ,cylinderLength -20.0,-

coreMidRadius ],))[0][0]. index

272 edgeNumber4=partName.edges.getClosest(coordinates =([-pert ,cylinderLength -20.0,-

coreMidRadius ],))[0][0]. index

274 setEdgeTopOffset=’Set -Edge -Top -Offset ’

partName.Set(edges=partName.edges[edgeNumber1:edgeNumber1 +1]+\

276 partName.edges[edgeNumber2:edgeNumber2 +1]+\

partName.edges[edgeNumber3:edgeNumber3 +1]+\

278 partName.edges[edgeNumber4:edgeNumber4 +1]\

, name=setEdgeTopOffset)

280

282 partName.PartitionCellByDatumPlane(datumPlane=

partName.datums[yzPlane.id], cells=

284 partName.cells [0: len(partName.cells)])

partName.PartitionCellByDatumPlane(datumPlane=

286 partName.datums[xyPlane.id], cells=

partName.cells [0: len(partName.cells)])

288

## midSection:

290 # 5 times sqrt(r_out*t_max) ~= 200

# Thus for a given mesh size the partition needs to be:

292 charLength = 5.* sqrt(cylinderOuterRadius *13.0)

nElementsBending = charLength/int(meshSize)+1

294 partitionYmin = float(meshSize)*nElementsBending

partitionYmax = cylinderLength -partitionYmin

296

xzPlaneOffsetBendingBase=partName.DatumPlaneByPrincipalPlane(offset=partitionYmin

, principalPlane=XZPLANE)

298 xzPlaneOffsetBendingTop=partName.DatumPlaneByPrincipalPlane(offset=partitionYmax ,

principalPlane=XZPLANE)

partName.PartitionCellByDatumPlane(datumPlane=

300 partName.datums[xzPlaneOffsetBendingBase.id], cells=

partName.cells [0: len(partName.cells)])

302 partName.PartitionCellByDatumPlane(datumPlane=

partName.datums[xzPlaneOffsetBendingTop.id], cells=

304 partName.cells [0: len(partName.cells)])

306 i1 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness)*cos(pi/4.0) ,

cylinderLength /2.0 ,( cylinderOuterRadius -skinOutThickness)*sin(pi/4.0) ,))).
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index

f1 = partName.faces[i1:i1+1]

308 i2 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness)*cos(pi/4.0+ pi

/2.0),cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness)*sin(pi/4.0+pi

/2.0) ,))).index

f2 = partName.faces[i2:i2+1]

310 i3 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness)*cos(pi/4.0+ pi

),cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness)*sin(pi /4.0+pi),))

).index

f3 = partName.faces[i3:i3+1]

312 i4 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness)*cos(pi/4.0+ pi

*1.5),cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness)*sin(pi/4.0+pi

*1.5) ,))).index

f4 = partName.faces[i4:i4+1]

314

partName.Set(skinFaces =((’Skin -Core -Out’, f1),(’Skin -Core -Out’, f2),(’Skin -Core -

Out’, f3) ,(’Skin -Core -Out’, f4) ), name=’Set -Skin -Out -Mid’)

316

i1 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness -coreThickness)

*cos(pi/4.0),cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness -

coreThickness)*sin(pi /4.0) ,))).index

318 f1 = partName.faces[i1:i1+1]

i2 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness -coreThickness)

*cos(pi/4.0+pi/2.0) ,cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness -

coreThickness)*sin(pi /4.0+pi /2.0) ,))).index

320 f2 = partName.faces[i2:i2+1]

i3 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness -coreThickness)

*cos(pi/4.0+pi),cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness -

coreThickness)*sin(pi /4.0+pi) ,))).index

322 f3 = partName.faces[i3:i3+1]

i4 = partName.faces.findAt (((( cylinderOuterRadius -skinOutThickness -coreThickness)

*cos(pi/4.0+pi*1.5) ,cylinderLength /2.0,( cylinderOuterRadius -skinOutThickness -

coreThickness)*sin(pi /4.0+pi *1.5) ,))).index

324 f4 = partName.faces[i4:i4+1]

326 partName.Set(skinFaces =((’Skin -Core -In’, f1),(’Skin -Core -In’, f2),(’Skin -Core -In’

, f3),(’Skin -Core -In’, f4) ), name=’Set -Skin -In -Mid’)

328 i1 = partName.cells.findAt (((( coreMidRadius)*cos(pi/4.0) ,cylinderLength /2.0,(

coreMidRadius)*sin(pi /4.0) ,))).index

c1 = partName.cells[i1:i1+1]

330 i2 = partName.cells.findAt (((( coreMidRadius)*cos(pi/4.0+ pi/2.0) ,cylinderLength

/2.0 ,( coreMidRadius)*sin(pi/4.0+ pi/2.0) ,))).index

c2 = partName.cells[i2:i2+1]

332 i3 = partName.cells.findAt (((( coreMidRadius)*cos(pi/4.0+ pi),cylinderLength /2.0 ,(

coreMidRadius)*sin(pi /4.0+pi) ,))).index

c3 = partName.cells[i3:i3+1]

334 i4 = partName.cells.findAt (((( coreMidRadius)*cos(pi/4.0+ pi*1.5) ,cylinderLength

/2.0 ,( coreMidRadius)*sin(pi/4.0+ pi*1.5) ,))).index

c4 = partName.cells[i4:i4+1]

336 partName.Set(cells =((c1) ,(c2),(c3),(c4) ), name=’Set -Core -Mid’)
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338 #create mesh

#assign mesh controls

340 partName.setElementType(elemTypes =( ElemType(elemCode=S4R , elemLibrary=STANDARD ,

secondOrderAccuracy=OFF , hourglassControl=ENHANCED),),regions =( partName.skins

[skinCoreOut ].faces ,))

partName.setElementType(elemTypes =( ElemType(elemCode=S4R , elemLibrary=STANDARD ,

secondOrderAccuracy=OFF , hourglassControl=ENHANCED),),regions =( partName.skins

[skinCoreIn ].faces ,))

342 partName.setElementType(elemTypes =( ElemType(elemCode=C3D8R , elemLibrary=STANDARD ,

kinematicSplit=AVERAGE_STRAIN , secondOrderAccuracy=OFF ,hourglassControl=

ENHANCED , distortionControl=DEFAULT),),regions =( partName.sets[setCellCore ].

cells ,))

344 #seed

partName.seedPart(deviationFactor =0.1, size=meshSize)

346 partName.generateMesh ()

348 #############################################################

#CREATE ASSEMBLY

350 mdb.models[myModel ]. rootAssembly.DatumCsysByDefault(CARTESIAN)

assName=mdb.models[myModel ]. rootAssembly

352 mdb.models[myModel ]. rootAssembly.Instance(dependent=ON, name=myPart+’-1’,

part=partName)

354 iName=assName.instances[myPart+’-1’]

myInstance=myPart+’-1’

356

#############################################################

358 #CREATE STEP

modelName.StaticStep(initialInc =1.0, maxInc =1.0, name=’Step -1’,

360 nlgeom=ON , previous=’Initial ’)

362 #############################################################

#CREATE BCs

364

modelName.YsymmBC(createStepName=’Initial ’, name=’BC -Base -Ysymm ’, region=

366 assName.instances[myInstance ].sets[setFaceCoreBase ])

modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,

368 distributionType=UNIFORM , fieldName=’’, fixed=OFF , localCsys=None , name=

’BC -Top -Offset -XZ’, region=iName.sets[setEdgeTopOffset],

370 u1=0.0, u2=UNSET , u3=0.0, ur1=UNSET , ur2=UNSET , ur3=UNSET)

modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,

372 distributionType=UNIFORM , fieldName=’’, fixed=OFF , localCsys=None , name=

’BC -Base -Offset -XZ’, region=iName.sets[setEdgeBaseOffset],

374 u1=0.0, u2=UNSET , u3=0.0, ur1=UNSET , ur2=UNSET , ur3=UNSET)

modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,

376 distributionType=UNIFORM , fieldName=’’, fixed=OFF , localCsys=None , name=

’BC -Base -XZ’, region=iName.sets[setFaceCoreBase],

378 u1=0.0, u2=UNSET , u3=0.0, ur1=UNSET , ur2=UNSET , ur3=UNSET)

380 tmpIndex1=partName.vertices.findAt(coordinates =(0.,0.,- coreOutRadius),).index
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tmpIndex2=partName.vertices.findAt(coordinates =(0.,0., coreOutRadius) ,).index

382 modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,

distributionType=UNIFORM , fieldName=’’, localCsys=None , name=’BC-Base -X’,

384 region=Region(

vertices=assName.instances[myInstance ]. vertices[tmpIndex1:tmpIndex1 +1]+\

386 assName.instances[myInstance ]. vertices[tmpIndex2:tmpIndex2 +1])

, u1=SET , u2=UNSET , u3=UNSET , ur1=UNSET , ur2=UNSET , ur3=UNSET)

388 tmpIndex1=partName.vertices.findAt(coordinates =(-coreOutRadius ,0. ,0.) ,).index

tmpIndex2=partName.vertices.findAt(coordinates =( coreOutRadius ,0. ,0.) ,).index

390 modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,

distributionType=UNIFORM , fieldName=’’, localCsys=None , name=’BC-Base -Z’,

392 region=Region(

vertices=assName.instances[myInstance ]. vertices[tmpIndex1:tmpIndex1 +1]+\

394 assName.instances[myInstance ]. vertices[tmpIndex2:tmpIndex2 +1])

, u1=UNSET , u2=UNSET , u3=SET , ur1=UNSET , ur2=UNSET , ur3=UNSET)

396

#############################################################

398 #CREATE UNIFORM PRESSURE

modelName.Pressure(amplitude=UNSET , createStepName=’Step -1’,

400 distributionType=UNIFORM , field=’’, magnitude=loadPressure , name=’Load -1’,

region=

assName.instances[myInstance ]. surfaces[’Surf -1’])

402 mdb.models[’Model -1’].steps[’Step -1’]. setValues(minInc =2e-06, timePeriod =1.0)

#############################################################

404 #CREATE AXIAL FORCE

refPoint=assName.ReferencePoint(point =(0.0 , cylinderLength +10.0, 0.0))

406 loadAxial=-( cylinderOuterRadius **2*pi)*loadPressure

modelName.Coupling(controlPoint=Region(referencePoints =( assName.referencePoints[

refPoint.id], )), couplingType=KINEMATIC , influenceRadius=WHOLE_SURFACE ,

localCsys=None , name=’Constraint -RP’, surface=Region(faces=iName.sets[

setFaceCoreTop ]. faces), u1=ON , u2=ON , u3=ON , ur1=ON, ur2=OFF , ur3=ON)

408 modelName.ConcentratedForce(cf2=loadAxial , createStepName=’Step -1’,

distributionType=UNIFORM , field=’’, localCsys=None , name=’Load -2’, region=

Region(referencePoints =( assName.referencePoints[refPoint.id], )))

#############################################################

410 #EXTRA BC FOR RP

refPointNumber=assName.referencePoints.items(refPoint)[0][0]

412 modelName.DisplacementBC(amplitude=UNSET , createStepName=’Initial ’,\

distributionType=UNIFORM , fieldName=’’, localCsys=None , name=’BC-RP -XZ -rXrZ’,

region=Region(referencePoints =(\

414 assName.referencePoints[refPointNumber ],\

)), u1=SET , u2=UNSET , u3=SET , ur1=SET , ur2=UNSET , ur3=SET)

416 #############################################################

#FIELD OUTPUT REQUESTS

418 #WHOLE MODEL

#COMPOSITE LAYUP

420 modelName.FieldOutputRequest(createStepName=’Step -1’,

layupLocationMethod=SPECIFIED , layupNames =( myInstance+’.’+myLayupIn , ),

422 name=’F-Output -Skin -In’, outputAtPlyBottom=False , outputAtPlyMid=False ,

outputAtPlyTop=True , rebar=EXCLUDE , variables =(’SE’,’U’,’RF’,’CF’,’SF’,’TF’,’

SDV’))
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424 modelName.FieldOutputRequest(createStepName=’Step -1’,

layupLocationMethod=SPECIFIED , layupNames =( myInstance+’.’+myLayupOut , ),

426 name=’F-Output -Skin -Out’, outputAtPlyBottom=True , outputAtPlyMid=False ,

outputAtPlyTop=False , rebar=EXCLUDE , variables =(’SE’,’U’,’RF’,’CF’,’SF’,’TF’,

’SDV’))

428 modelName.FieldOutputRequest(createStepName=’Step -1’,

layupLocationMethod=SPECIFIED , layupNames =( myInstance+’.’+myLayupCore , ),

430 name=’F-Output -Core’, outputAtPlyBottom=False , outputAtPlyMid=True ,

outputAtPlyTop=False , rebar=EXCLUDE , variables =(’S’, ’E’))

432 modelName.fieldOutputRequests[’F-Output -Core’]. setValues(

layupLocationMethod=ALL_LOCATIONS)

434 #############################################################

#LINEAR BUCKLING ANALYSIS

436 modelName.BuckleStep(name=’Step -2’, numEigen=1, previous=’Initial ’,

vectors =30, maxIterations =3000)

438 modelName.steps[’Step -1’]. setValues(nlgeom=OFF)

modelName.Pressure(amplitude=UNSET , createStepName=’Step -2’,\

440 distributionType=UNIFORM , field=’’, magnitude =1.0, name=’Load -3’, region =\

assName.instances[myInstance ]. surfaces[’Surf -1’])

442 forceRP = -cylinderOuterRadius **2.0* pi

modelName.ConcentratedForce(cf2=forceRP , createStepName=

444 ’Step -2’, distributionType=UNIFORM , field=’’, localCsys=None , name=’Load -4’

, region=Region(referencePoints =(

446 mdb.models[’Model -1’]. rootAssembly.referencePoints [6], )))

448 #############################################################

#OUTPUT CREATE JOB , INPUT FILE AND CAE

450 mdb.Job(atTime=None , contactPrint=OFF , description=’’, echoPrint=OFF ,

explicitPrecision=SINGLE , getMemoryFromAnalysis=True , historyPrint=OFF ,

452 memory =90, memoryUnits=PERCENTAGE , model=myModel , modelPrint=ON,

multiprocessingMode=DEFAULT , name=jobName , nodalOutputPrecision=SINGLE ,

454 numCpus=1, queue=None , scratch=’’, type=ANALYSIS , userSubroutine=’’,

waitHours =0, waitMinutes =0)

456

#write input

458 if writeJob:

mdb.jobs[jobName ]. writeInput ()

460 if writeCAE:

mdb.saveAs(pathName=caeName + ’.cae’)

462 print ’done!!’

scripts/createSandwich2.py

1 #Modify the sandwich input file for the given values

#Note: written in Python , for ABAQUS

3 #Copyright - Stanley I. Wong - 2012

from abaqus import *

5 from abaqusConstants import *

from viewerModules import *

7 from math import *

from Numeric import *
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9 from LinearAlgebra import *

# inputs: (formats are for writing)

11 inputFile = ’Job -1-sandwich.inp’ #blank inputfile

newInputFile= ’myInputFile_python_sandwich.inp’

13 elementSetSkinIn = ’CompositeLayup -In -1’

elementSetSkinOut = ’CompositeLayup -Out -1’

15 nstatev = 6

orientationSkinIn = ’Ori -2’

17 orientationSkinOut = ’Ori -3’

19

dataFileSkinIn= ’ABDskinIn.dat’

21 dataFileSkinOut= ’ABDskinOut.dat’

dataFormat1=’%32.16e ’

23 dataFormat2=’%21.14e ’

25 propsFile = ’props_sandwich.dat’

propsFormat = ’%21.14e ’

27

transverseShearFileSkinIn=’TSskinIn.dat’

29 transverseShearFileSkinOut=’TSskinOut.dat’

transverseShearFormat=’%21.14e ’

31

# --------------------------------------------------------------#

33 # READ ALL DATA FILES CREATED BY MATLAB :

# --------------------------------------------------------------#

35

#read ABD matrix created by matlab (inner skin)

37 f = open(dataFileSkinIn ,’r’)

lines = f.readlines ()

39 f.close()

41 ABDskinIn = zeros ((6,6),’d’)

i = -1

43 for line in lines:

i+=1

45 row = line.split()

j=-1

47 for index in row:

j+=1

49 ABDskinIn[i,j] = float(index)

51 #read ABD matrix created by matlab (outer skin)

f = open(dataFileSkinOut ,’r’)

53 lines = f.readlines ()

f.close()

55

ABDskinOut = zeros ((6,6),’d’)

57 i = -1

for line in lines:

59 i+=1
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row = line.split()

61 j=-1

for index in row:

63 j+=1

ABDskinOut[i,j] = float(index)

65

67 #read props used in matlab

f = open(propsFile ,’r’)

69 lines = f.readlines ()

f.close()

71 nprops = len(lines [0]. split())

props = zeros(( nprops),’d’)

73 row = lines [0]. split ()

i = -1

75 for index in row:

i+=1

77 props[i] = float(index)

79 #needed properties (maybe things like strength on a later stage):

hSkinIn = props[nprops -2]

81 hSkinOut = props[nprops -1]

#read transverse shear moduli (in)

83 f = open(transverseShearFileSkinIn ,’r’)

lines = f.readlines ()

85 f.close()

nTS = len(lines [0]. split ())

87 TSskinIn = zeros ((nTS),’d’)

row = lines [0]. split ()

89 i = -1

for index in row:

91 i+=1

TSskinIn[i] = float(index)

93 #read transverse shear moduli (out)

f = open(transverseShearFileSkinOut ,’r’)

95 lines = f.readlines ()

f.close()

97 nTS = len(lines [0]. split ())

TSskinOut = zeros ((nTS),’d’)

99 row = lines [0]. split ()

i = -1

101 for index in row:

i+=1

103 TSskinOut[i] = float(index)

105 # ---------------------------------------------------------------#

# prepare lines to write

107 # ---------------------------------------------------------------#

#shell general section:

109 nABDvalues = 36

nProps2Write = 1+ nABDvalues #i.e. {h,ABD(i,j)}
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111 SGSskinIn =[]

commentLine=’** Section: General Shell (ABD) passed to be created by UGENS\n’

113 SGSskinIn.append(commentLine)

s1 = ’*Shell General Section , ’

115 s2 = ’elset=’+elementSetSkinIn+’, ’

s3 = ’user , ’

117 s4 = ’variables=’+str(nstatev)+’, ’

s5 = ’properties=’+str(nProps2Write)+’, ’

119 s6 = ’orientation=’+orientationSkinIn+’, ’

s7 = ’controls=EC -1’+’\n’

121 SGSskinIn.append(s1+s2+s3+s4+s5+s6+s7) #LINE1: header

#LINE2: only the thickness:

123 SGSskinIn.append(str(hSkinIn)+’ \n’)

#LINE(3 : 7) : ABD values

125

tmpStr = ’’

127 count = -1

for i in range (0,6):

129 for j in range (0,6):

count +=1

131 if (count == 8) or ((i ==5) and (j==5)):

if ((i==5) and (j==5)):

133 tmpStr=tmpStr+str(ABDskinIn[i,j])+’ ’

tmpStr=tmpStr+’\n’

135 SGSskinIn.append(tmpStr)

else:

137 count=0

tmpStr=tmpStr+’\n’

139 SGSskinIn.append(tmpStr)

tmpStr=’’

141 if (count ==7):

tmpStr=tmpStr+str(ABDskinIn[i,j])+’ ’

143 else:

tmpStr=tmpStr+str(ABDskinIn[i,j])+’, ’

145

147 #transverse shear stiffness:

t1 = ’*TRANSVERSE SHEAR STIFFNESS\n’

149 SGSskinIn.append(t1)

tmpStr = ’’

151 count = 0

for index in TSskinIn:

153 count +=1

if (count < len(TSskinIn)):

155 tmpStr=tmpStr+str(index)+’, ’

else:

157 tmpStr=tmpStr+str(index)+’ \n’

SGSskinIn.append(tmpStr)

159 SGSskinOut =[]

161 commentLine=’** Section: General Shell (ABD) passed to be created by UGENS\n’
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SGSskinOut.append(commentLine)

163 s1 = ’*Shell General Section , ’

s2 = ’elset=’+elementSetSkinOut+’, ’

165 s3 = ’user , ’

s4 = ’variables=’+str(nstatev)+’, ’

167 s5 = ’properties=’+str(nProps2Write)+’, ’

s6 = ’orientation=’+orientationSkinOut+’, ’

169 s7 = ’controls=EC -1’+’\n’

SGSskinOut.append(s1+s2+s3+s4+s5+s6+s7) #LINE1: header

171 SGSskinOut.append(str(hSkinOut)+’ \n’)

#LINE(3 : 7) : ABD values

173

tmpStr = ’’

175 count = -1

for i in range (0,6):

177 for j in range (0,6):

count +=1

179 if (count == 8) or ((i ==5) and (j==5)):

if ((i==5) and (j==5)):

181 tmpStr=tmpStr+str(ABDskinOut[i,j])+’ ’

tmpStr=tmpStr+’\n’

183 SGSskinOut.append(tmpStr)

else:

185 count=0

tmpStr=tmpStr+’\n’

187 SGSskinOut.append(tmpStr)

tmpStr=’’

189 if (count ==7):

tmpStr=tmpStr+str(ABDskinOut[i,j])+’ ’

191 else:

tmpStr=tmpStr+str(ABDskinOut[i,j])+’, ’

193

#transverse shear stiffness:

195 t1 = ’*TRANSVERSE SHEAR STIFFNESS\n’

SGSskinOut.append(t1)

197 tmpStr = ’’

count = 0

199 for index in TSskinOut:

count +=1

201 if (count < len(TSskinOut)):

tmpStr=tmpStr+str(index)+’, ’

203 else:

tmpStr=tmpStr+str(index)+’ \n’

205 SGSskinOut.append(tmpStr)

207 # --------------------------------------------------------------#

# Write values in ori. input file (created by createSandwich2.py)

209 # --------------------------------------------------------------#

#first copy the input file and search for the correct lines

211 f = open(inputFile ,’r’)

lines = f.readlines ()
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213 f.close()

flag = False

215 stopFor = False

count=-1

217

219 for line in lines:

count +=1

221 if line [0:32] == ’** Section: CompositeLayup -Out -1’:

nLineTop = count

223 flag = True

if (flag):

225 if (line [0:13] == ’*Orientation ,’):

nLineBot = count+1

227 stopFor = True

if (stopFor):

229 break

231 # writing part

nLinesInpOld = len(lines)

233 nLinesNewData = len(SGSskinOut)

nLinesRemove = nLineBot -nLineTop

235 nLinesInpNew = nLinesInpOld + nLinesNewData - nLinesRemove

f = open(newInputFile ,’w’)

237 count = -1

subCount =-1

239 flag=False

for i in range(0, nLinesInpNew):

241 if (count <nLineTop -1):

count +=1

243 f.write(’%s’%(lines[count ]))

if (count >=nLineTop -1) and (count <nLineTop+nLinesNewData) and (subCount <

nLinesNewData -1):

245 subCount +=1

print ’>>subcount = ’+str(subCount)

247 f.write(’%s’%( SGSskinOut[subCount ]))

if (subCount == nLinesNewData -1):

249 count += nLinesRemove

break

251 for i in range(count ,nLinesInpOld):

f.write(’%s’%lines[i])

253 f.close()

255 #first copy the input file and search for the correct lines

f = open(newInputFile ,’r’)

257 lines = f.readlines ()

f.close()

259 flag = False

stopFor = False

261 count=-1
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263 for line in lines:

count +=1

265 if line [0:31] == ’** Section: CompositeLayup -In -1’:

nLineTop = count

267 flag = True

if (flag):

269 if (line [0:9] == ’*End Part’):

nLineBot = count+1

271 stopFor = True

if (stopFor):

273 break

275 # writing part

nLinesInpOld = len(lines)

277 nLinesNewData = len(SGSskinIn)

nLinesRemove = nLineBot -nLineTop

279 nLinesInpNew = nLinesInpOld + nLinesNewData - nLinesRemove

f = open(newInputFile ,’w’)

281 count = -1

subCount =-1

283 flag=False

for i in range(0, nLinesInpNew):

285 if (count <nLineTop -1):

count +=1

287 f.write(’%s’%(lines[count ]))

if (count >=nLineTop -1) and (count <nLineTop+nLinesNewData) and (subCount <

nLinesNewData -1):

289 subCount +=1

print ’>>subcount = ’+str(subCount)

291 f.write(’%s’%( SGSskinIn[subCount ]))

if (subCount == nLinesNewData -1):

293 count += nLinesRemove

break

295 for i in range(count ,nLinesInpOld):

f.write(’%s’%lines[i])

297 f.close()

print ’done with input file modification ’

scripts/inputFileModify sandwich.py

subroutine UGENS(ddndde ,force ,statev ,sse ,spd ,pnewdt ,stran ,dstran ,

2 1 tss ,time ,dtime ,temp ,dtemp ,predef ,dpred ,cename ,ndi ,nshr ,nsecv ,

2 nstatv ,props ,jprops ,nprops ,njprop ,coords ,celent ,thick ,dfgrd ,curv ,

4 3 basis ,noel ,npt ,kstep ,kinc ,kit ,linper)

c

6 include ’aba_param.inc’

c

8 character *80 cename

DIMENSION ddndde(nsecv ,nsecv),force(nsecv),statev(nstatv),

10 1 stran(nsecv),dstran(nsecv),tss(2),time (2),predef (*),

2 dpred (*),props (*),jprops (*),coords (3),dfgrd (3,3),
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12 3 curv (2,2),basis (3,3)

real*8 ABD(6,6)

14 integer counter

parameter (zero =0.0d0, half =0.5d0 , one =1.0d0)

16 !--------------------------------------------------------!

! DESCRIPTION !

18 !--------------------------------------------------------!

! This is a FORTRAN file that describes the sectional

20 ! material behavior of a material , given a ABD matrix

! Copyright - Stanley I. Wong - 2012

22 !--------------------------------------------------------!

! PROPS !

24 !--------------------------------------------------------!

!

26 ! ABD(1,1) = props (1) - Stiffness matrix index

! ABD(1,2) = props (2) - ...

28 ! ... = props (..) - ...

! ABD(2,1) = props (7) - ...

30 ! ... = props (..) - ...

! ABD(6,6) = props (36) - ...

32 !--------------------------------------------------------!

! STATE VARIABLES !

34 !--------------------------------------------------------!

!

36 ! force -i per unit length = statev(i=1..3)

! moment -j per unit length = statev (3+j=1..3)

38 !--------------------------------------------------------!

! Define variables

40 !--------------------------------------------------------!

counter =0

42 do i = 1,6

do j = 1,6

44 counter = counter +1

ABD(i,j) = props(counter)

46 end do

end do

48

!--------------------------------------------------------!

50 !DEFINE DDNDDE

!--------------------------------------------------------!

52 if (nsecv.eq.4) then

write (*,*) ’ERROR: nsecv == 4’

54 call XIT

else if (nsecv.eq.6) then

56 ddndde = ABD

end if

58

!--------------------------------------------------------!

60 !UPDATE FORCES AND MOMENTS

!--------------------------------------------------------!

62 if(linper.eq.0) then
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do i=1,nsecv

64 do j=1,nsecv

force(i) = force(i) + ddndde(i,j)*dstran(j)

66 end do

end do

68 else

do i=1,nsecv

70 do j=1,nsecv

force(i) = ddndde(i,j)*stran(j)

72 end do

end do

74 endif

76 !--------------------------------------------------------!

!DEFINE STATE VARIABLES

78 !--------------------------------------------------------!

do i=1,nsecv

80 statev(i) = force(i)

end do

82 RETURN

END

scripts/ugens.f

#Read the output of the evaluated sandwich cylinder calculation

2 #Write stresses and Tsai -Wu failure criteria to csv files

#Note: written in Python , for ABAQUS

4 #Copyright - Stanley I. Wong - 2012

from Numeric import *

6 from odbAccess import *

jobName=’myInputFile_python_sandwich ’

8 myPart=’PART -1’

myStep=’Step -1’

10 myBuckleStep=’Step -2’

myInstance=myPart+’-1’

12 fileName = ’buckle.dat’

corePropsFile =’props_core.dat’

14

#read core props that are used in matlab

16 f = open(corePropsFile ,’r’)

lines = f.readlines ()

18 f.close()

nprops = len(lines [0]. split())

20 props = zeros(( nprops),’d’)

row = lines [0]. split ()

22 i = -1

for index in row:

24 i+=1

props[i] = float(index)

26 if nprops == 18:

Q23 = props[nprops -1]
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28 Q13 = props[nprops -2]

Q12 = props[nprops -3]

30 ZC = props[nprops -4]

ZT = props[nprops -5]

32 YC = props[nprops -6]

YT = props[nprops -7]

34 XC = props[nprops -8]

XT = props[nprops -9]

36 threeD = 1

else:

38 Q = props[nprops -1]

YC = props[nprops -2]

40 YT = props[nprops -3]

XC = props[nprops -4]

42 XT = props[nprops -5]

threeD = 0

44 #for the Tsai -Wu criterion:

if threeD == 0:

46 F11 = 1./(XT*XC)

F22 = 1./(YT*YC)

48 F33 = 1./(ZT*ZC)

F1 = 1./XT - 1./XC

50 F2 = 1./YT - 1./YC

F12 = -1./(2.* sqrt(XC*XT*YC*YT))

52 F66 = 1./(Q**2)

if threeD == 1:

54 F11 = 1./(XT*XC)

F22 = 1./(YT*YC)

56 F33 = 1./(ZT*ZC)

F1 = 1./XT - 1./XC

58 F2 = 1./YT - 1./YC

F3 = 1./ZT - 1./ZC

60 F12 = -1./(2.* sqrt(XT*XC*YT*YC))

F13 = -1./(2.* sqrt(XT*XC*ZT*ZC))

62 F23 = -1./(2.* sqrt(YT*YC*ZT*ZC))

F44 = 1./( Q12 **2)

64 F55 = 1./( Q13 **2)

F66 = 1./( Q23 **2)

66

#partial set names:

68 elSetNameSkinIn = ’SET -SKIN -IN-MID’

elSetNameSkinOut = ’SET -SKIN -OUT -MID’

70 elSetNameCore = ’SET -CORE -MID’

72 #output files

fileNameSkinOut =’outputSkinOut.csv’

74 fileNameSkinIn =’outputSkinIn.csv’

fileNameCore =’outputCore.csv’

76

#open the database

78 odb = session.openOdb(name=jobName+’.odb’)
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80 # READ BUCKLING PRESSURE

bucklingPressure = float(odb.steps[myBuckleStep ]. frames [1]. description.split ()

[-1])

82 file = open(fileName ,’w’)

file.write(’%21.14e’ %( bucklingPressure))

84 file.close()

print ’Buckling pressure is written to file’

86

88 #READ SECTION STRAINS (see abaqus documentation 26.6.7)

#first get subsets

90 setSkinIn = odb.rootAssembly.instances[’PART -1-1’]. elementSets[elSetNameSkinIn]

setSkinOut = odb.rootAssembly.instances[’PART -1-1’]. elementSets[elSetNameSkinOut

]

92 setCore = odb.rootAssembly.instances[’PART -1-1’]. elementSets[elSetNameCore]

94 fileSkinIn = open(fileNameSkinIn ,’w’)

fileSkinOut = open(fileNameSkinOut ,’w’)

96 fileCore = open(fileNameCore ,’w’)

98 datSEskinIn = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SE’]. getSubset(region=

setSkinIn).values

datSKskinIn = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SK’]. getSubset(region=

setSkinIn).values

100 datSFskinIn = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SF’]. getSubset(region=

setSkinIn).values

datSEskinOut = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SE’]. getSubset(region=

setSkinOut).values

102 datSKskinOut = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SK’]. getSubset(region=

setSkinOut).values

datSFskinOut = odb.steps[myStep ]. frames [-1]. fieldOutputs[’SF’]. getSubset(region=

setSkinOut).values

104 datScore = odb.steps[myStep ]. frames [-1]. fieldOutputs[’S’]. getSubset(region=

setCore).values

106 if (len(datScore)/5 <> len(datSKskinOut)) or (len(datSEskinIn) <> len(

datSEskinOut)):

zz = 1/0 #cause an error!

108 for i in range(0,len(datSEskinIn)):

datE=datSEskinIn[i]

110 datK=datSKskinIn[i]

datF=datSFskinIn[i]

112 SE1=datE.data [0] # Direct membrane strain in local 1-direction.

SE2=datE.data [1] # Direct membrane strain in local 2-direction.

114 SE6=datE.data [2] # Strain in the thickness direction.

SE3=datE.data [3] # Shear membrane strain in local 1-2 plane.

116 SE4=datE.data [4] # Transverse shear strain in the local 1-direction.

SE5=datE.data [5] # Transverse shear strain in the local 2-direction.

118 SK2=datK.data [0] # Curvature change about local 1-axis.

SK1=datK.data [1] # Curvature change about local 2-axis.
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120 SK3=datK.data [2] # Surface twist in local 1-2 plane.

SF1=datF.data [0] # Membrane force in local 1-direction

122 SF2=datF.data [1] # Membrane force in local 2-direction

SF6=datF.data [2] # Membrane shear force in 1-2 plane

124 elLbl=datE.elementLabel

fileSkinIn.write(’%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e

,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e,\n’ %( float(elLbl),SE1 ,

SE2 ,SE6 ,SE3 ,SE4 ,SE5 ,SK2 ,SK1 ,SK3 ,SF1 ,SF2 ,SF6))

126

datE=datSEskinOut[i]

128 datK=datSKskinOut[i]

datF=datSFskinOut[i]

130 SE1=datE.data [0] # Direct membrane strain in local 1-direction.

SE2=datE.data [1] # Direct membrane strain in local 2-direction.

132 SE6=datE.data [2] # Strain in the thickness direction.

SE3=datE.data [3] # Shear membrane strain in local 1-2 plane.

134 SE4=datE.data [4] # Transverse shear strain in the local 1-direction.

SE5=datE.data [5] # Transverse shear strain in the local 2-direction.

136 SK2=datK.data [0] # Curvature change about local 1-axis.

SK1=datK.data [1] # Curvature change about local 2-axis.

138 SK3=datK.data [2] # Surface twist in local 1-2 plane.

SF1=datF.data [0] # Membrane force in local 1-direction

140 SF2=datF.data [1] # Membrane force in local 2-direction

SF6=datF.data [2] # Membrane shear force in 1-2 plane

142 elLbl=datE.elementLabel

fileSkinOut.write(’%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e

,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e,\n’ %( float(elLbl),SE1 ,

SE2 ,SE6 ,SE3 ,SE4 ,SE5 ,SK2 ,SK1 ,SK3 ,SF1 ,SF2 ,SF6))

144

fileSkinIn.close ()

146 fileSkinOut.close()

if threeD:

148 for i in range(0,len(datScore)):

datS=datScore[i]

150 des = datS.sectionPoint.description

if des[0]<>’S’:

152 des = ’,’+des

S11=datS.data [0] # normal stress in 1 direction

154 S22=datS.data [1] # normal stress in 2 direction

S33=datS.data [2] # normal stress in 3 direction

156 S12=datS.data [3] # shear stress in 12 plane

S13=datS.data [4] # shear stress in 13 plane

158 S23=datS.data [5] # shear stress in 23 plane

tsaiWu3D = F11*S11**2 +F22*S22 **2 +F33*S33**2 +\

160 F44*S12 **2+ F55*S13 **2+ F66*S23 **2+\

F1*S11 + F2*S22 + F3*S33+\

162 2.*F12*S11*S22+ 2.*F13*S11*S33+ 2.* F23*S22*S33

elLbl=datS.elementLabel

164 fileCore.write(’%s ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e

,%21.14e\n’ %(des ,float(elLbl),S11 ,S22 ,S33 ,S12 ,S13 ,S23 ,tsaiWu3D))

fileCore.close()
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166 else:

for i in range(0,len(datScore)):

168 datS=datScore[i]

des = datS.sectionPoint.description

170 if des[0]<>’S’:

des = ’,’+des

172 S11=datS.data [0] # normal stress in 1 direction

S22=datS.data [1] # normal stress in 2 direction

174 S12=datS.data [3] # shear stress in 12 plane

elLbl=datS.elementLabel

176 tsaiWu = F11*S11**2 +F22*S22 **2 +F66*S12 **2+F1*S11 + F2*S22 +2.* F12*S11*S22

fileCore.write(’%s ,%21.14e ,%21.14e ,%21.14e ,%21.14e ,%21.14e,\n’ %(des ,float(

elLbl),S11 ,S22 ,S12 ,tsaiWu))

178 fileCore.close()

odb.close()

180 print "Three Dimensions = "+str(threeD)

scripts/readOutput sandwich3.py

1 function data = createABDfromLP_sandwich(xi0 ,props ,data)

%Create the (translated) ABD matrix for the sandwich model

3 %Note: written in Matlab

%Copyright - Stanley I. Wong - 2012

5 factorPosDef = 1; %initiate factor

stepSizeFactor = 1e-5;

7 h = data.hSkin;

%-refers to top , + bottom

9 if strcmp(data.refSkin ,’top’)

transCoeff = -0.5*h;

11 elseif strcmp(data.refSkin ,’bottom ’)

transCoeff = 0.5*h;

13 end

15 % calculate material invariants

E11 = props.E11;

17 E22 = props.E22;

nu12 = props.nu12;

19 G12 = props.G12;

21 Q11 = E11 ^2/(E11 -E22*nu12 ^2);

Q22 = E11*E22/(E11 -E22*nu12 ^2);

23 Q12 = nu12*Q22;

Q66 = G12;

25

U1=(3* Q11+3* Q22 +2*Q12+4*Q66)/8;

27 U2=(Q11 -Q22)/2;

U3=(Q11+Q22 -2*Q12 -4*Q66)/8;

29 U4=(Q11+Q22 +6*Q12 -4*Q66)/8;

U5=(Q11+Q22 -2*Q12+4*Q66)/8;

31 U=[U1;U2;U3;U4;U5];

data.U = U;
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33

%set up translated ABD matrix

35 Axi = zeros (6,5);

Bxi = zeros (6,5);

37 Dxi = zeros (6,5);

converged = 0;

39 while not(converged) %do while not(ABD=positive definite)

xi=factorPosDef*xi0;

41 Axi(1,1)=1; Axi(2,1)=1; Axi(3,4)=1; Axi(4,5)=1;

Axi(1,2)=xi(1);

43 Axi(1,3)=xi(2);

Axi(2,2)=-xi(1);

45 Axi(2,3)=xi(2);

Axi(3,3)=-xi(2);

47 Axi(4,3)=-xi(2);

Axi(5,2)=xi(3) /2;

49 Axi(5,3)=xi(4);

Axi(6,2)=xi(3) /2;

51 Axi(6,3)=-xi(4);

Avec=(data.hSkin)*Axi*data.U;

53 A = [Avec (1) Avec (3) Avec (5) ;...

Avec (3) Avec (2) Avec (6) ;...

55 Avec (5) Avec (6) Avec (4)];

57 Bxi(1,2)=xi(5);

Bxi(1,3)=xi(6);

59 Bxi(2,2)=-xi(5);

Bxi(2,3)=xi(6);

61 Bxi(3,3)=-xi(6);

Bxi(4,3)=-xi(6);

63 Bxi(5,2)=xi(7) /2;

Bxi(5,3)=xi(8);

65 Bxi(6,2)=xi(7) /2;

Bxi(6,3)=-xi(8);

67 Bvec=(data.hSkin ^2)/4*Bxi*data.U;

B = [Bvec (1) Bvec (3) Bvec (5) ;...

69 Bvec (3) Bvec (2) Bvec (6) ;...

Bvec (5) Bvec (6) Bvec (4)];

71

73 Dxi(1,1)=1; Dxi(2,1)=1; Dxi(3,4)=1; Dxi(4,5)=1;

Dxi(1,2)=xi(9);

75 Dxi(1,3)=xi(10);

Dxi(2,2)=-xi(9);

77 Dxi(2,3)=xi(10);

Dxi(3,3)=-xi(10);

79 Dxi(4,3)=-xi(10);

Dxi(5,2)=xi(11) /2;

81 Dxi(5,3)=xi(12);

Dxi(6,2)=xi(11) /2;

83 Dxi(6,3)=-xi(12);
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Dvec=(data.hSkin ^3) /12* Dxi*data.U;

85 D = [Dvec (1) Dvec (3) Dvec (5) ;...

Dvec (3) Dvec (2) Dvec (6) ;...

87 Dvec (5) Dvec (6) Dvec (4)];

89 ABDnoError = [A B;B’ D];

if min(eig(ABDnoError)) > 0

91 converged = 1; %matrix is positive definite

else

93 factorPosDef = factorPosDef -stepSizeFactor;

end

95 end

ABD = ABDnoError;

97

ABD_trans = zeros (6);

99 ABD_trans (1:3 ,1:3) = ABD (1:3 ,1:3);

ABD_trans (1:3 ,4:6) = transCoeff*ABD (1:3 ,1:3)+ABD (1:3 ,4:6);

101 ABD_trans (4:6 ,1:3) = ABD_trans (1:3 ,4:6) ’;

ABD_trans (4:6 ,4:6) = transCoeff ^2*ABD (1:3 ,1:3) +2* transCoeff*ABD (1:3 ,4:6)+ABD

(4:6 ,4:6);

103

ABD = ABD_trans;

105

% FOR I/O the ABD is written to a file:

107 outputFormat2=’%21.14e ’;

file1 = fopen(data.fileABDNameSkin ,’w’); %fileABDName is defined in the main file

109 for i=1:6

for j=1:6

111 fprintf(file1 ,outputFormat2 ,ABD(i,j));

end

113 fprintf(file1 ,’\n’);

end

115 fclose(file1);

117 data.factorPosDefSkin=factorPosDef; %very important quantity

data.ABDSkin = ABD;

scripts/createABDfromLP sandwich.m

function data = calcTransverseShearModuli_sandwich(data)

2 %Calculate the transverse shear moduli for the sandwich model

%Note: written in Matlab

4 %Copyright - Stanley I. Wong - 2012

TS = zeros (3,1);

6 D = data.ABDSkin;

%For a general shell with a given section stiffness ,

8 %the transverse shear moduli are given by:

%TS(1)=TS(2) =(1/6*(D(1,1)+D(2,2))+1/3*D(3,3))*Y

10

%according to Abaqus documentation:

12 %(@ 26.6.4 Shell section behavior)
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%the default value of Y is:

14 Y = 1;

TS(1) = (1/6*(D(1,1)+D(2,2))+1/3*D(3,3))*Y;

16 TS(2) = TS(1);

18 % FOR I/O these values are written to a file:

% outputFormat1 = ’%32.16e ’;

20 outputFormat2=’%21.14e ’;

file1 = fopen(data.fileTSNameSkin ,’w’);

22 fprintf(file1 ,outputFormat2 ,TS(1));

fprintf(file1 ,outputFormat2 ,TS(2));

24 fprintf(file1 ,outputFormat2 ,TS(3));

fclose(file1);

26 data.TS=TS;

scripts/calcTransverseShearModuli sandwich.m

function ff = failureFunctionTsaiWuLP(Iv ,u)

2 %Calculate the material failure constraint for a

%section that is defined by lamination parameters

4 %Note: written in Matlab

%Copyright - Stanley I. Wong - 201

6 %coefficients for the failure function:

a=[];

8 a(10)=u(4) ^ 2 + 4 * u(1) - 4 * u(6);

a(11)=-4 * u(2) * Iv(1) * (u(1) - u(6)) + 2 * u(4) * u(5) * Iv(1);

10 a(12)=4 * u(6) ^ 2 * Iv(2) ^ 2 - 4 * u(3) * Iv(1) ^ 2 * (u(1) - u(6)) - 4 * u(6)

* u(1) * Iv(2) ^ 2 + u(5) ^ 2 * Iv(1) ^ 2;

a(20) =1;

12 a(21)=-2 * u(2) * Iv(1);

a(22)=-2 * u(3) * Iv(1) ^ 2 + u(2) ^ 2 * Iv(1) ^ 2 - Iv(2) ^ 2 * (u(4) ^ 2 + 2 *

u(1));

14 a(23)= 2 * u(2) * Iv(1) ^ 3 * u(3) - Iv(2) ^ 2 * (2 * u(4) * u(5) * Iv(1) - 2 * u

(1) * u(2) * Iv(1));

a(24)=u(1) ^ 2 * Iv(2) ^ 4 - Iv(2) ^ 2 * (u(5) ^ 2 * Iv(1) ^ 2 - 2 * u(1) * u(3)

* Iv(1) ^ 2) + u(3) ^ 2 * Iv(1) ^ 4;

16

EQ1=roots([a(12) a(11) a(10)]);

18 EQ2=roots([a(24) a(23) a(22) a(21) a(20)]);

realRootsEQ1=EQ1(find(imag(EQ1)==0));

20 realRootsEQ2=EQ2(find(imag(EQ2)==0));

answerTry1=min(realRootsEQ1(find(realRootsEQ1 >0)));

22 answerTry2=min(realRootsEQ2(find(realRootsEQ2 >0)));

lambda = min(answerTry1 ,answerTry2);

24

r = 1/( lambda ^2);

26 ff = r-1; %If intact , this ff is smaller or equal to 0

scripts/failureFunctionTsaiWuLP.m

function [totalWeight ,unitWeight] = calcMassSandwich(data ,props)
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2 %Calculate the mass of the cylinder

%Note: written in Matlab

4 %Copyright - Stanley I. Wong - 2012

hC = data.hCore; %[mm]

6 hSi = data.hSkinIn; %[mm]

hSo = data.hSkinOut; %[mm]

8 rhoS = props.rho; %[kg/m^3]

rhoC = props.core.rho; %[kg/m^3]

10

L = data.L; %[mm]

12 R = data.r_out; %[mm]

14 %mid -planes for the three different layers

rMidOut = R -0.5* hSo;

16 rMidCore = R-hSo -0.5*hC;

rMidIn = R-hSo -hC -0.5* hSi;

18

%perimeters:

20 pOut = 2*pi*rMidOut;

pCore = 2*pi*rMidCore;

22 pIn = 2*pi*rMidIn;

24 factor = 1/(1000^3); % [m^3 to mm]

26 %unitWeights:

unitWeightOut = pOut*factor*hSo*rhoS;

28 unitWeightCore = pCore*factor*hC*rhoC;

unitWeightIn = pIn*factor*hSi*rhoS;

30

unitWeight = unitWeightOut+unitWeightCore+unitWeightIn; % weight per unit length

[kg/mm]

32 totalWeight = unitWeight*L; % total weight [kg]

scripts/calcMassSandwich.m
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