
Analysis of Streaming Media Systems

Analysis of Streaming Media Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 21 oktober 2010 om 10:00 uur

door

Yue Lu

elektrotechnisch ingenieur
geboren te ChangSha, Hunan provincie, China.

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. P.F.A. Van Mieghem

Samenstelling promotiecommissie:

Rector Magnificus, Voorzitter
Prof.dr.ir. P.F.A. Van Mieghem, Technische Universiteit Delft, promotor
Dr.ir. F.A. Kuipers, Technische Universiteit Delft, co-promotor
Prof.dr.ir. R.E. Kooij, Technische Universiteit Delft
Prof.dr.ir. E.R. Fledderus, Technische Universiteit Eindhoven
Prof.dr. T. Plagemann, University of Oslo, Norway
Prof.dr. U.R. Krieger, Otto-Friedrich University Bamberg, Germany
Dr.ir. D. De Vleeschauwer, Alcatel-Lucent Bell NV, Belgium

Keywords: Multimedia Streaming, Server-Client and Peer-to-Peer, Quality of Experi-
ence, System Performance Analysis

Copyright c° 2010 by Y. Lu

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanical, including
photocopying, recording or by any information storage and retrieval system, without
written permission from the author or Delft University of Technology.

to Mom, Dad, and Jinglong

vi

Contents

1 Introduction 1
1.1 Peer-to-Peer (P2P) . 1
1.2 Quality of Experience . 3
1.3 Streaming Systems . 4

1.3.1 Part I: TV Streaming Systems 4
1.3.2 Part II: Video-on-Demand Streaming Systems 8
1.3.3 Part III: Video Conferencing Systems 9

I TV Streaming Systems 13

2 P2PTV: Measurement Study 15
2.1 Introduction . 15
2.2 Related work . 16
2.3 How does SopCast work? . 17

2.3.1 Experimental settings . 17
2.3.2 Dissecting the SopCast protocols 18

2.4 Quality of Experience . 23
2.4.1 PlanetLab Experiments Results 23
2.4.2 Subjective Measurements . 33
2.4.3 Conclusions . 34

3 P2PTV: Analytical model 37
3.1 Related Work . 37
3.2 Model with assumptions . 37
3.3 Computation of the blocking probability 38
3.4 Case Study . 40

4 IPTV: Analytical model 45
4.1 Introduction . 45
4.2 Related work . 46

vii

viii CONTENTS

4.3 Model with assumptions . 46
4.4 Computation of the blocking probability 46
4.5 Case Study . 49
4.6 Blocking Comparison between IPTV and P2PTV 50

5 CDN: Analytical model 51
5.1 Introduction . 51
5.2 The service architecture . 52
5.3 Model with assumptions . 53
5.4 Computation of the blocking probability 56

5.4.1 Definition of blocking probability B(k) 56
5.4.2 Computation of Bm(k) . 57
5.4.3 Computation of Bu;i . 58

5.5 Experiments . 60
5.6 Summary and Conclusions . 62

II Video-on-Demand (VoD) Streaming Systems 65

6 P2PVoD Model 67
6.1 Introduction . 67
6.2 Related work . 68
6.3 A general fluid model for P2PVoD . 68

6.3.1 Model description . 70
6.3.2 Start-up phase (0 ≤ t < τ i) . 72
6.3.3 Seed Appearance phase (τ i ≤ t < Li) 72
6.3.4 Seed Departure phase (t ≥ Li) 72
6.3.5 Steady-state . 73

6.4 Linearization of the P2PVoD model . 75
6.5 Experiments . 77

6.5.1 General non-linear system . 78
6.5.2 Linearized system . 80

6.6 Conclusion . 82

7 P2PVoD system with helpers 83
7.1 Limitations of P2PVoD system without helpers 83

7.1.1 Start-up phase problem . 83
7.1.2 Burden on peers . 84

7.2 Solution: Adding helpers into the system 85
7.2.1 Solving the Start-up phase problem when v > bwup 86
7.2.2 Usefulness of helpers in Steady state 89

CONTENTS ix

7.2.3 Case study of the system with helpers when v > bwup 90
7.3 Conclusions . 92

III Video Conferencing (VC) Systems 93

8 VC Background 95
8.1 Classification of VC . 95

8.1.1 Different terminals . 95
8.1.2 User interface . 95
8.1.3 Signaling protocol . 96
8.1.4 Network structure . 96

8.2 Available Desktop VC applications . 97

9 Measurement Study of Multi-Party Video Conferencing 99
9.1 Introduction . 99
9.2 Related work . 100
9.3 Experiments Set-up . 101
9.4 Measurement results . 102

9.4.1 Login and Call establishment process 102
9.4.2 Packet size distribution and traffic load 103
9.4.3 Quality of Experience (QoE) . 105
9.4.4 Worst-case study . 109

9.5 Summary and Conclusions . 109

IV Conclusions 111

10 Research context, methods, and contributions 113
10.1 IPTV . 113
10.2 P2PTV . 114
10.3 CDN . 115
10.4 P2PVoD . 116
10.5 VC . 117

11 General Conclusion on “To Peer or Not to Peer” 119

12 Future Work 121

A Deductions 123
A.1 BEngset(i) in IPTV and BEngset(k) in CDN 123
A.2 How to set the value of v in the start-up phase, without helpers 124

x CONTENTS

A.3 Deduction of γi in the system with helpers 125

B Strategy and Protocols with helpers 127

C Notations 129
C.1 Notation P2PTV model . 130
C.2 Notation IPTV model . 131
C.3 Notation CDN model . 132
C.4 Notation P2PVoD model . 134

D Abbreviations 135

Bibliography 137

Samenvatting (Summary in Dutch) 143

Acknowledgements 145

Curriculum Vitae 147

Summary

Multimedia services have been popping up at tremendous speed in recent years. A large
number of these multimedia streaming systems are introduced to the consumer market.
Internet Service Providers, Telecommunications Operators, Service/Content Providers,
and end users are interested in the mechanisms they use, the Quality-of-Experience
they provide (e.g. video/audio quality, audio-video synchronization, communication
delay, start-up time, etc.), the resources they need, the system stability, and the service
availability. The multimedia streaming systems analyzed in this thesis include IP-
layer multicast TV (IPTV), Peer-to-Peer TV (P2PTV), Content Delivery Networking
(CDN), Peer-to-Peer Video-on-Demand (P2PVoD), Server-to-Client Video Conferenc-
ing (IPVC) and Peer-to-Peer Video Conferencing (P2PVC). A summary of the work
presented in this thesis can be found in Figure 1.

Analytical models
&

Measurements

IPTV

MeasurementsMeasurementsP2PTV

MeasurementsMeasurementsP2PVC

MeasurementsMeasurementsIPVC

System
Stability

Network
& Traffic

QoE
(view of users)

E2E
Blocking

Analytical model
&

Simulation

Analytical model
&

Simulation

P2PVoD

Analytical modelsIPTV+IPVoD
(CDN)

Analytical models
&

Measurements

IPTV

MeasurementsMeasurementsP2PTV

MeasurementsMeasurementsP2PVC

MeasurementsMeasurementsIPVC

System
Stability

Network
& Traffic

QoE
(view of users)

E2E
Blocking

Analytical model
&

Simulation

Analytical model
&

Simulation

P2PVoD

Analytical modelsIPTV+IPVoD
(CDN)

Figure 1: Overview of the research presented in this thesis.

This thesis aims to study various kinds of popular streaming systems, through an-
alytical models, measurement experiments, and simulations, to reveal their character-
istics and performance in different aspects. Based on this research, we can not only

xi

xii SUMMARY

better understand the behavior and limitations of existing systems and find out the key
parameters that affect their performance, but also investigate the potential problems
and predict the system performance for future cases. By comparing the two general
streaming content delivery methods (Server-Client and Peer-to-Peer), we gain in-depth
insights on “which is better” and “what determines better” for different services and in
different scenarios.
In Part I of this thesis, TV streaming systems will be analyzed. In Part II, Video-

on-Demand streaming systems will be discussed. Video Conferencing systems will be
investigated in Part III.

Chapter 1

Introduction

The importance of streaming content distribution (e.g. TV streaming, Video-on-Demand
streaming, Audio/Video Conferencing, Gaming) is already evident and is only expected
to grow in the future. Advances in content distribution are important for entertainment,
social and environmental reasons: For instance, viewing TV programs and movies on
Television or PC or Mobile Phones becomes one significant part of our daily lifes. Be-
sides, interactivity is becoming more and more important. The uses of ICT and media
applications also enable a more efficient use of energy, for instance Video Conferencing
applications that provide an alternative to traveling to conferences/meetings.
Many more examples can be envisioned, all proving the value of streaming content

distribution to our society. However, currently service providers do not know how
to better distribute the streaming content to achieve the fastest and most efficient
delivery while providing the best Quality of Experience to their customers. What kind
of architecture they should implement (Server-Client or Peer-to-Peer) and what key
technologies should be involved will therefore be discussed in this thesis. In this thesis,
via analytical models and measurement studies, we will mainly present which challenges
we need to face, and what key parameters or methods we should properly consider in
order to realize a more stable and well-performed streaming system, for different kinds
of streaming services.
In the following of this Chapter, the description of Peer-to-Peer technology, the

defintion and the usage of Quality of Experience, and different kinds of streaming
systems addressed in this thesis will be introduced.

1.1 Peer-to-Peer (P2P)

In the last years, the success of Peer-to-Peer (P2P) systems has grown exponentially
thanks to the deployment of file-sharing applications. Following the achievement of
P2P file sharing, nowadays the use of P2P technology to distribute media streaming

1

2 CHAPTER 1. INTRODUCTION

content is receiving great interest from both commercial and academic research. This
technology has enhanced the distribution of information on the Internet by enabling
efficient cooperation among end users. Participants in these systems are viewed as
logical and functional equals. This is in contrast to pure Server-Client protocols, where
participants either provide resources or receive resources.
Based on the type of content distribution, a P2P system can be mainly classified

into tree-based and mesh-based systems.
In tree-based systems peers are hierarchically organized in a tree structure where the

root is the original content source provider. The content is spread as a continuous flow
of information from the source down to the tree. The positions of each peer in the tree
are fairly static. In single-tree systems all the traffic load is supported by the interior
nodes of the tree, while the leafs are just receiving data. Thus, if an interior node does
not have the required computational or bandwidth resources to serve all its children,
the position of this interior peer could move down to a lower level of the hierarchical
tree, otherwise its sub-tree nodes will suffer from high delays in data reception. If a
leaf of the tree fails or leaves, the system will not suffer. On the contrary, if an interior
node fails, peers on its sub-tree will lose data until the tree structure is repaired.
In mesh-based systems peers are not organized in a hierarchical structure. Here,

the source splits the content in a series of chunks and distributes them to different
peers. Peers establish relations with each other based on the information about what
content chunks they have. A peer establishes relations with potential providers in
order to get its missing chunks. A peer that cannot get data successfully from a failed
node will download his missing chunk from another peer who contains the content
he needs, without the need of repairing mechanisms. If several peers contain the same
missing chunk, selecting one peer can depend on the resources they have at that moment
(i.e., access capacity, stability, processing capability, the time they are already in the
system, etc.). In these systems it is possible to introduce the concept of fairness (i.e.,
the “choke/unchoke” and “interested/not-interested” mechanisms try to ensure fairness
among participating peers in BitTorrent1). It is also possible to evaluate the behavior
of the other peers and to penalize or reward them accordingly (i.e., a policy known as
“tit-for-tat”2 and a mechanism called “optimistic unchoking”3 have been implemented
to encourage sharing in BitTorrent). Besides, peers can download the rarest chunks

1BitTorrent peers use two different states: “interested” and “choked” to maintain proper transfer.
The “interested” state indicates that the peer is wishing to download specific chunks from other peers.
The not-interested message indicates that the peer no longer needs any data. Similarly, a peer willing
to serve any chunks sends “unchoke” messages to other peers. Once a peer decides to stop sharing, it
transmits “choke” messages to its connected peers.

2Following the initial handshake, peers inform each other regarding availability of content. Because
a serving peer can decide whether to allow uploading to a requesting peer, peers not sharing any
content tend to be reciprocated in the similar way (therefore cannot download any content fast).

3The tit-for-tat mechanism is unfair to newly joined peers that have no content to share. Hence,
this mechanism is introduced to help the newly joined peers.

1.2. QUALITY OF EXPERIENCE 3

first to increase the content availability (e.g., such a rarest-first policy is used in the
BitTorrent protocol [1]).
As mentioned above, the latter architecture (mesh-based) resembles the BitTorrent

protocol. BitTorrent was developed for distribution and replication of large content
files with the help of peer resources. BitTorrent uses file segmentation and the content
that is to be distributed is split into pieces (chunks). There are no fixed data paths for
all chunks since every chunk follows a different route to arrive at peers. The transfer
of chunks can be concurrent. Concurrent flows among peers can be bi-directional,
used for uploading, downloading, or both. BitTorrent can be used to provide not only
file sharing but also P2PTV/P2PVoD streaming and actually this protocol is the most
common mechanism of commercial P2PTV/P2PVoD applications available today. This
type of P2P systems (BitTorrent-like mesh-based) is our main focus in this thesis when
referring to P2PTV and P2PVoD.

1.2 Quality of Experience

A valuable measure of a system and the offered service is users’ satisfaction on its
performance and quality. Quality of Experience (QoE), also known as “Quality of
User Experience”, is the term used to describe end users’ perception. In the fields
of Information Technology and Telecommunications, QoE is a subjective measure of
a customer’s experience of a multimedia service, e.g. Voice-over-IP, TV, VoD, Video
Conferencing, Gaming, etc.
QoE measurements help to quantify the quality improvements, disputes, and repairs

as well as monitor the quality, when designing and evaluating multimedia delivery
systems.
Many factors determine the overall experience at an end user, like the video quality,

the delay, the reliability and robustness of the system, etc.
QoE is related to, but differs from, Quality of Service (QoS), which attempts to

objectively assess the service delivered. QoE represents the subjective measure, but can
also be assessed objectively using three types of models: Full-reference Model, Partial-
reference Model, and No-reference Model. The No-reference model has no knowledge
of the original stream or source file and tries to predict QoE by monitoring several QoS
parameters in real-time. The Partial-reference model has some limited knowledge of
the original stream and tries to combine this with real-time measurements to reach a
prediction on the QoE. The Full-reference model assumes full access to the reference
video by comparing the original video before the transmission and the received video
after the transmission. The Full-reference model gives the best accuracy, but usually is
done offline and only applied in the case that the tester has control over both the sender
and the receiver. The Full-reference model is also the one used in our QoE measurement
study.

4 CHAPTER 1. INTRODUCTION

1.3 Streaming Systems

Streaming can be defined basically as a method of transferring digital data that carries
real-time characteristics in such a way that the recipient can view the content while
receiving data. A client application, known as streaming player, can start playing back
streaming media as soon as enough data has been received without having to wait for
the entire file to have arrived. As data is transferred, it is temporarily stored in a
buffer until enough data has been accumulated to be properly assembled into the next
sequence of the media stream. The main advantage of streaming is that content of any
length, even live content of unlimited length (i.e., webcamera content), can be played by
the end user. The main disadvantage of streaming is that the playback quality depends
on the network bandwidth. Poor network conditions and bandwidth fluctuations easily
result in annoying disruptions.
This thesis is partly based on the analysis of different streaming systems: 1) TV

streaming systems, further divided in P2PTV, IPTV and CDN; 2) Video-on-Demand
Streaming Systems; and 3) Video Conferencing Systems.

1.3.1 Part I: TV Streaming Systems

P2PTV

The P2PTV we consider in this thesis is a chunk-based video streaming system (like
PPlive [2], Coolstreaming [3], and PPStream4). It does not use application-layer mul-
ticast trees, because they currently do not work well in a dynamic environment when
peers arrive and depart frequently.
The core operation of P2PTV is that, in a limited time period, every node downloads

the near-future video content, while displaying the existing content stored in a buffer.
These active peers exchange the video content, depending on the periodically updated
data availability information.
The differences between P2PTV and the P2P file-sharing systems (e.g. BitTorrent

mentioned in Section 1.1) are basically threefold: (1) P2P file sharing has no strict time
limitation so that it may be blocked only if none of the downloaders have the remaining
chunks. However, P2PTV may face much more blocking when a user can not find
available chunks or download them fast enough; (2) In P2P file sharing, after finishing
downloading the whole file, the peer will change from a downloader (uploading at the
same time of downloading) to a pure seed (no downloading, only uploading). However,
P2PTV peers can only be downloaders, not pure seeds because one P2PTV peer only
has two actions: one is opening the P2PTV and watching live TV programs, the other
is closing the P2PTV. In the first case, he needs continuous downloading to feed the
video display. At the same time, he may upload the video chunks in his buffer to

4http://www.ppstream.com/

1.3. STREAMING SYSTEMS 5

other peers. However, the time of keeping a chunk is not infinite because the peer has
to give up old video chunks to release his memory space. Hence, in the first action,
the peer downloads while uploading. In the second action, as soon as he switches off
the P2PTV, he will stop both downloading and uploading; (3) P2PTV systems have
departure pulses due to many peers leaving immediately and simultaneously at the end
of programs. But in P2P file sharing, peers leave mostly after they finish the download.
They have asynchronous completions of file downloads.
We will now turn to describe how P2PTV works.
A TV program streaming content is divided into chunks, each of which consists of

a fixed amount of content (e.g. 10 Kbytes). All video chunks in this TV channel are
made available from an original source provider.
We introduce seven basic steps of a newly joined node registering into the P2PTV

community and setting up connections with its partners for viewing a particular TV
channel.

1. User gets a list of TV channels from a P2PTV website.

2. User selects a particular channel.

3. Once the channel is selected, the user registers with a bootstrap root server and
gets a list of hosts currently watching the same channel.

4. User chooses a subset of active hosts on the list to establish a partner group for
his downloading.

5. In the partner group, peers exchange the “Buffer Map” (BM). A BM message
indicates which chunk a peer currently has buffered and can share. For instance,
assume each chunk contains 1-second of video, a sliding window of 60 chunks can
effectively represent the buffer map of a node. A BM can be recorded by 60 bits,
with 1 indicating that a chunk is available and 0 unavailable.

6. After establishing the partnership and collecting the BMs, the user may download
chunks from these partners simultaneously and also may upload the chunks in his
buffer to these partners, depending on the BMs he gets. A partner can be the
parent, the child, or both, of the user. If there are more than two partners having
a same chunk, then the user can choose the partners using a peer selection policy5

(e.g. choosing the partners with higher upload bandwidth, enough available time,
etc.). In the partnership group, they periodically exchange the data availability
information (BM) to retrieve the necessary chunks continuously. Besides updating

5For example, as indicated in [3], the computation overhead for deciding which chunk should be
downloaded from which partner is quite low, only about 15 ms in their experiments.

6 CHAPTER 1. INTRODUCTION

the BMs periodically, the user can also continuously search for better partners to
establish new partnership6.

7. After downloading and buffering some chunks, e.g. 10 seconds of video, the
P2PTV software will launch a media player to display it. While displaying the
video content already in the buffer, it needs to download the near future video
fast enough.

The P2PTV system will be investigated and analyzed in Chapters 2 and 3.

IPTV

Figure 1.1 gives an overview of the physical configuration of a common type of IPTV
system (for example, KPN’s Mine TV7 in the Netherlands). Another type of IPTV
systems, like Swisscom’s Bluewin TV8 and Microsoft’s IPTV9, combines IPTV service
and Internet access and the bandwidth is not dedicated to a specific service.
In this thesis, the first type of IPTV system, which has a dedicated infrastructure

and bandwidth, is our main focus.
In the infrastructure network in Figure 1.1, video programming, broadband Internet

data, and telephone calls are delivered, where IPTV uses IP multicast and uses the
service provider’s specific broadband network to deliver TV programs. We can see from
Figure 1.1 that, in the core network, regular telephony service is implemented in the
public voice system, while IPTV video data is transmitted in a dedicated IP network
specialized for IPTV service and Internet data is delivered via the Internet network (the
Internet is an IP network, but the IP network does not only represent the Internet). All
these three services are joined at the DSLAM (digital subscriber line access multiplexer)
in the access network. Users connect to the DSLAM with about 1 to 5 km copper wire,
on which DSL is applied.
Focusing on the IPTV service, the television programs are collected at a TV data

centre. This TV data centre is connected to many source providers so that more and
more TV programs can be collected easily from all over the world. The IPTV programs
are encoded using the MPEG4 codec and sent out over the IP network (fully controlled
by the service operator). The servers running IPTV software are in constant communi-
cation with the users’ home set-top boxes, via the DSLAMs at local telephone central
offices.

6For instance, as indicated in [2], one loop time of probing (probe all active peers to find new active
peers and then form a partner group) is 6 seconds in their measurement study.

7http://www.kpn.com/prive/tv/interactieve-tv.htm
8http://www.swisscom.com/GHQ/content/Media/Medienmitteilungen/2005/20050526_03_
bluewin_tv.htm?lang=en
9http://news.cnet.com/Swisscom-to-test-Microsofts-IPTV/2100-1026_3-5102162.html

1.3. STREAMING SYSTEMS 7

DSLAM
Last mile copper wire

f

Voice

Total 4M DSL:
2.5M for IPTV
Rest for internet data

DSL
modem

Set-top
Box

IPTV

PC

Phone

380 homes
45% active

Switch with only
L2 function,

QoS considered

Access NetworkFiber core network

Voice switch

PSTN

Voice system

IPTV video data

Several
ISPs

Internet data

Internet

TV data
centre

Application
Server

C
ollect program

 sources
from

 m
any broadcast co.

…

DSLAM

Multicast
…

1200 DSLAMs

IP
 m

ulticast

IP network

DSLAM
Last mile copper wire

f

Voice

Total 4M DSL:
2.5M for IPTV
Rest for internet data

DSL
modem

Set-top
Box

IPTV

PC

Phone

380 homes
45% active

Switch with only
L2 function,

QoS considered

Access NetworkFiber core network

Voice switch

PSTN

Voice system

IPTV video data

Several
ISPs

Internet data

Internet

TV data
centre

Application
Server

C
ollect program

 sources
from

 m
any broadcast co.

…

DSLAM

Multicast
…

1200 DSLAMs

IP
 m

ulticast

IP network

Figure 1.1: IPTV configuration

Standard IPTV contains embedded software that enables to initiate and receive
television through the data network using protocols such as IGMP and SIP. IGMP
version 2 is used for connecting to a multicast stream (TV channel) and for changing
from one multicast stream to another (TV channel zapping). SIP can establish sessions.
An IP layer multicast tree is used to deliver the live TV programs to viewers. The

DSLAM is facing the most replication workload, because it directly connects the end
users with the leaf link of the multicast tree.
This multicast IPTV system will be analyzed in Chapter 4.

CDN

A content delivery network (CDN) is a system of computers containing copies of data,
placed at various points (caches) in a network so as to maximize content availability for
clients. Caches10 are used to reduce bandwidth requirements, reduce server load, and
improve the client response time for content.
Caching architectures can basically be divided into [4]: (1) hierarchical, (2) distrib-

uted, and (3) hybrid architectures.
In the case of a hierarchical caching architecture, the original complete content

10A cache is equipped with a hard disk of sufficient capacity and with digital recording hardware
and software.

8 CHAPTER 1. INTRODUCTION

sources are stored in a central server located at the highest level of a caching hierarchy,
while Residential Gateways (RGs) at home will act as caches at the lowest level of a
caching hierarchy [5]. The content could be stored not only at the home on a RG, but
also in the caches placed at multiple levels in the hierarchical network [6]. A hierarchi-
cal caching architecture is particularly beneficial when cooperating cache servers do not
have high-speed connectivity. In this case, popular objects can be efficiently diffused
toward the demand. On the other hand, hierarchical caching has several drawbacks,
compared with the other two caching architectures: (1) setting up a cache hierarchy
requires caches to be placed at the key access points in the network, which requires
significant coordination among the participating cache servers, (2) a caching hierarchy
may introduce additional delays, (3) high-level caches may become performance bot-
tlenecks, and (4) multiple copies of the same object may be stored at different cache
levels, which is inefficient.
In distributed caching systems, there are only caches at the bottom level, and there

are no intermediate caching levels. To decide from which cache to fetch an object,
the caches need to keep track of metadata information about the content of the caches.
Consequently, with distributed caching most of the traffic flows through the low network
levels, which are less congested, and no additional disk space is required from the
intermediate levels.
In a hybrid caching scheme, caches may cooperate with other caches at the same

level or at a higher level using distributed caching.
For web caching, Rodriguez et al. [34] performed a numerical analysis of hierarchical

and distributed caching. In their work distributed caching achieves shorter transmission
times (i.e., the time to send a document from the cache to the destination) than hier-
archical caching, and has very good performance in well inter-connected areas without
requiring intermediate cache levels. However, the deployment of distributed caching on
a large scale encounters problems, such as large connection times (i.e., the time that a
request travels to hit a document in the distributed or hybrid caching architectures),
high bandwidth use and administrative issues. Therefore, the CDN system discussed
in this thesis is a hierarchical network which combines the multicast IPTV service and
the unicast cached Video-on-Demand streaming service. It will be analyzed in Chapter
5.

1.3.2 Part II: Video-on-Demand Streaming Systems

For the Video-on-Demand (VoD) service, the simplest way to transfer a multimedia
file is bulk file transfer. The content is simply a common file of known size available
at a source. Every client first downloads the complete file and then can reproduce its
multimedia content.
Differently, the multimedia content could be delivered in the form of a media stream.

The content is not distributed as a complete file anymore, but delivered as a continuous

1.3. STREAMING SYSTEMS 9

ordered flow of data from a source. We call it VoD streaming service, which is also our
main focus in this part of the thesis.
Different from the live TV streaming service, in the VoD streaming system the

viewers can view the media content starting from any point of the video (i.e. from the
beginning of the video or from its middle). When a user wants to reproduce and display
the content, it contacts the source that contains the stream. The biggest challenge for
this service is the start-up delay, which is the time a user has to wait after a request is
ordered to start reproducing the content. However, this service has no strict real-time
requirement like live TV streaming, since users can wait some time before the content
starts to play.
On-demand streaming is to deliver multimedia content of a known size that is avail-

able at a source node. There are several ways to realize the delivery. For example, the
content could be stored at a server and a client downloads it in the displayed order from
the server as he is viewing it. Otherwise the content could be spread in a P2P way.

1.3.3 Part III: Video Conferencing Systems

Video Conferencing (referred to as VC in the following text) conducts a conference
between two or more participants at different sites by using telecommunications to
transmit audio and video data. During the video conference, not only the camera
video streaming content, but also the documents, computer-displayed information and
whiteboards can be shared among participants.

Standards of VC

Three main umbrellas of standards for VC11 by the International Telecommunications
Union (ITU) are listed:

1. ITU H.320 is known as the standard for running Multimedia (Audio/Video/Data)
over Integrated Services Digital Networks (ISDN) [7]. ISDN is a circuit-switched
telephone network system. It specifies technical requirements for narrow-band
visual telephone systems and terminal equipment, typically for videoconferencing
and videophone services. Previously, video conference systems with H.320 as a
basis were common. Business, government, and military organizations predomi-
nantly use H.320. Today video gateways can be used for communication between
the converged H.323 network and the legacy video network.

2. ITU H.324 is an ITU-T recommendation for voice, video, and data transmis-
sion over regular analog phone lines. The H.324 standard is formally known as
terminal for low bit-rate multimedia communication. H.324 covers the technical

11http://en.wikipedia.org/wiki/Videoconferencing

10 CHAPTER 1. INTRODUCTION

requirements for very low bit-rate multimedia telephone terminals operating over
the Plain Old Telephone Service (POTS). H.324 bridging and conversion services
make video conferencing easier by using existing phone lines. The media-enabled
3G mobile phone has caused the creation of a derivative of the H.324, which is
called H.324M (3G-324M).

3. ITU H.323 [8] is a recommendation that defines the protocols to provide audio-
visual communication sessions on any packet network, such as LANs and Internet.
The H.323 standard addresses call signaling and control, multimedia transport
and control, and bandwidth control for point-to-point andmulti-point conferences.
While H.323 excels at providing basic telephony functionality and interoperability,
H.323’s strength lies in multimedia communication functionality designed specif-
ically for IP networks. It is widely implemented by voice and video conferencing
equipment manufacturers, and is used within various Internet real-time applica-
tions (e.g. Microsoft NetMeeting).

For example, for digital lines Cisco video conference solutions [9] use H.323 and
have a H.320 gateway connect to an ISDN network and also support third-party Session
Initiation Protocol (SIP) [10] Proxy.

Technology of VC

According to the study of VC on the Internet, two core technologies of VC are ex-
plained in this section. More technologies like Media Synchronization using Real-time
Transport Control Protocol (RTCP), traffic classification and shaping using the Diff-
Serv (differentiated services) model to provide the appropriate QoS guarantees to video
traffic, will not be discussed here.

1. Video Compression: In VC, audio and video data must be transmitted in real
time. Therefore, a high bandwidth is required. But it is not enough to only have
high bandwidth. For example, “true color” needs 24 bits per pixel. A full screen
image might be 640x480 pixels, over 7 million bits. For full motion video, the
image is refreshed 25 times per second. This adds to over 184 Mbit/second. It
is not desirable to transmit the information at this rate on the Internet, so video
compression is required. The hardware or software performing the compression is
called a codec. The mostly used video codec standards in VC are H.261, H.263,
and MPEG-4, where H.261 and H.263 codecs were developed by the ITU, and
MPEG-4 were developed by ITU-T together with the ISO/IEC Moving Picture
Experts Group (MPEG) [11]. Nowadays, compression rates of up to 1:500 can be
achieved.

2. Data Delivery: The most used ways of data delivery in VC are (1) analog or
digital telephone network (POTS or ISDN), (2) LAN or Internet, and (3) Satellite.

1.3. STREAMING SYSTEMS 11

Firstly, for the approach (1), ISDN is offered by many telephone companies that
provide fast, high-capacity digital transmission of voice, data, still images and
full-motion video over the worldwide telephone network. ISDN is rapidly growing
in popularity and is widely accepted in industry as the way to access multimedia
over a network. Although it is still expensive when compared to a standard line,
particularly for primary rate access, it may be suitable for inter-site conferencing.
Secondly, for the approach (2), Internet Protocol (IP) is the protocol used for
communicating data across the Internet. ITU approved the H.323 transmission
standard in 1996, and Session Initiation Protocol (SIP) was approved by IETF
in 2002. Videoconferencing over IP has become more widely accepted with each
passing year. Finally, for the approach (3), Satellite transmission is usually used
for one-to-many conferences. Although it is expensive, cost will not be affected by
distance. For meetings involving a larger group, or for those taking place in venues
with little or no connectivity, satellite video conferencing is the ideal solution.

A survey about VC can be found in Chapter 8.

12 CHAPTER 1. INTRODUCTION

Part I

TV Streaming Systems

13

Chapter 2

P2PTV: Measurement Study

Increased Internet speeds together with new possibilities for tailor-made television ser-
vices have spurred the interest in providing television via the Internet. Recently, there
has been a growing interest in academic and commercial environments for live streaming
using P2P technology. A number of new P2P digital Television (P2PTV) applications
have emerged. These P2PTV applications have been developed with proprietary tech-
nologies. Their traffic characteristics and the Quality of Experience (QoE) provided by
them are not well known. Therefore, investigating their mechanisms, analyzing their
performance, and measuring their quality are important objectives for researchers, de-
velopers and end users.
In this Chapter, we will focus on an existing popular P2PTV application, called

SopCast. We will investigate its working mechanisms and evaluate its performance via
measurement studies.

2.1 Introduction

The success of peer-to-peer (P2P) BitTorrent1 file sharing is undisputed. Their idea of
exchanging fragments has also been applied to streaming applications over a peer-to-
peer network. In recent years, many such peer-to-peer video streaming applications, e.g.
CoolStreaming2, PPLive3, Tribler4 and SopCast5, have appeared and are receiving much
attention. Measurements on these systems show that more than 100,000 concurrent
users viewing a single channel is not uncommon [2]. In this section, we will investigate
a P2PTV system called SopCast [12]. In order to understand the mechanisms of this

1http://www.bittorrent.com/
2http://www.coolstreaming.us/hp.php?lang=nl
3http://www.pplive.com/en/index.html
4http://www.tribler.org/trac/wiki
5http://www.sopcast.com/

15

16 CHAPTER 2. P2PTV: MEASUREMENT STUDY

BitTorrent-based P2PTV system and its performance, we will investigate by means
of measurements the functionality and the traffic characteristics of SopCast and the
Quality of Experience (QoE) perceived by its end users. QoE can be measured through
objective and subjective measurements.

2.2 Related work

There are numerous P2PTV applications available: e.g. SopCast, CoolStreaming/DONET
[3], Joost6, PPlive [2], PPstream, TVAnts [13], Tribler [14], etc. However, only few mea-
surement studies were performed on P2PTV.

Hei et al. [2] have measured PPLive via passive packet sniffing. Their measurement
study focused on three important aspects of PPLive: streaming performance, workload
characteristics, and overlay properties. They presented detailed session statistics, such
as session duration, packet size and the correlation between them, and traffic breakdown
among sessions. Start-up times and video buffer dimensions were also presented.

Ali et al. [15] evaluated the performance of both PPLive and SopCast. They
collected packet traces of the systems under different conditions and analyzed the data
on a single host joining a system and then tuning into a channel, and collected packet
traces for these cases.

Silverston and Fourmaux [16] analyzed the different traffic patterns and underlying
mechanisms of several P2PTV applications. During the 2006 FIFA World Cup, they
collected packet traces fromPPLive, PPStream, SopCast and TVAnts. This work differs
from [2] by the number of applications studied and the followed comparative approach.
Results in this study are based on a single day where two soccer games were scheduled.
The measured download traffic indicates that the applications use different mechanisms
to obtain the video and in addition they maintain a different peer neighborhood.

Most of the previous work is executed from a single point of observation [16], or from
few nodes within direct access [15] and lacks an automatic mechanism for conducting
measurements. Also, the final perception of the end user, i.e. the Quality of Experience,
is not taken into account. In our opinion, it is important to investigate the Quality of
Experience for P2PTV systems, since P2PTV technology can be considered a promising
candidate for content distribution companies to deploy flexible and interactive TV. In
this Chapter we perform such a study, through objective and subjective measurements,
for the P2PTV application SopCast.

6http://www.joost.com/

2.3. HOW DOES SOPCAST WORK? 17

2.3 How does SopCast work?

SopCast is a free BitTorrent-like P2PTV application, born as a student project at
Fundan University in China. The bit rates of TV programs on SopCast typically range
from 250 Kb/s to 400 Kb/s with a few channels as high as 800 Kb/s. The channels can
be encoded in Windows Media Video (WMV), Video file for Realplayer (RMVB), Real
Media (RM), Advanced Streaming Format (ASF), and MPEG Audio Stream Layer III
(MP3).
The SopCast Client has multiple choices of TV channels, each of which forms its own

overlay. Each channel streams either live audio-video feeds, or loop-displayed movies
according to a preset schedule. The viewer tunes into a channel of his choice and
SopCast starts its own operations to retrieve the stream. After some seconds a player
pops up and the stream can be seen. SopCast also allows a user to broadcast his own
channel.
In this Section, we will investigate the SopCast P2PTV system by answering the

following question: What is the operational mechanism in SopCast?
The full description and more analysis on its topological properties can be found in

[17].

2.3.1 Experimental settings

In order to have a controlled environment to better understand the target packets func-
tionalities and communication patterns, we have used PlanetLab7 as our experiments
platform. The experiments consist of two types of nodes:

1) A standard personal computer located in our campus network, which acts as the
source provider8 (SP). With the SP, we registered a dedicated channel to the
SopCast network. In this channel, a small cartoon movie with a duration of
2 minutes and size of 3.5 MBytes is continuously broadcast in a loop. Thus,
our experiment resembles a streaming system. The SP runs Windows XP. It is
equipped with an Intel Pentium 2.4 GHz processor, 512 MB RAM and a 10/100
FastEthernet network interface, which is further connected through a router to
the Internet.

2) The second type of nodes are PlanetLab nodes that act as SopCast peers viewing the
TV channel released by us. Each of the 51 PlanetLab nodes under consideration
runs the following software: (1) SopCast Client (Linux version), with command
line control; (2) TcpDump9 to enable passive monitoring of the traffic transmitted

7http://www.planet-lab.org/
8The source provider is the node who broadcasts the entire video by using SopCast software.
9http://www.tcpdump.org/

18 CHAPTER 2. P2PTV: MEASUREMENT STUDY

at the SopCast peers; and (3) Perl10 Scripts to remotely control the PlanetLab
nodes to have some actions or collect and record the data.

Thus, our experiment resembles a streaming system, as shown in Figure 2.1.

Internet

Peer

SPPeer
…

Internet

Peer

SPPeer
…

Figure 2.1: The SopCast player at the Peer side (left); The window of the SP interface
(right).

Passive monitoring by its nature is limited to information acquired from the commu-
nications that are visible to the monitoring stations. By accessing all of our PlanetLab
nodes, we attempt to capture data that is as complete as possible and use it for our
characterizations.
We conducted a single experiment on 11:00 am, August 22nd, 2008. The experiment

lasted for roughly 40 minutes. The 51 PlanetLab nodes were controlled in such a
way that they joined and left the network simultaneously. We collected the traffic
log files captured by TcpDump from all the 51 peers. Traffic collection at the SP was
accomplished with Ethereal [18]. The collected trace files from the 51 PlanetLab nodes
were further processed and analyzed with AWK11 scripts.

2.3.2 Dissecting the SopCast protocols

SopCast is a proprietary P2PTV application and consequently the SopCast website only
provides limited information about SopCast’s video delivery mechanism. Although the

10http://www.perl.org/
11AWK is a general programming language that is designed for processing text-based data, either in

files or data streams.

2.3. HOW DOES SOPCAST WORK? 19

work presented in this Section has been conducted in a thorough and careful way,
without having the source code of SopCast, the claims that we have made are based
on our investigation of SopCast. They are not the exact description of the protocol. In
this Section, we only present our conclusions on the peer communication scheme and
video delivery rule in Sopcast.

Identification of SopCast packets

TcpDump reveals that SopCast relies on UDP. Since we are not able to decode the Sop-
Cast traffic, it is not possible to tell exactly what kind of messages are being exchanged
in the captured trace files. To figure out the packet functionalities, we studied the
packet lengths and the corresponding delivery patterns. Table 1 presents our findings.

Table 1. Summary of SopCast traffic

Type Size (bytes) Functionality
Video 1320 Maximum size of the video packets
packet 377, 497, 617, 1081, 1201 Video fragments

52 HELLO packet to initiate link connections
80 Confirmation on receiving the HELLO packet

Control 28 Acknowledgement
packet 42 Keep-alive message with neighbors

46 Video requesting packet

We have captured the traffic at peers and also analyzed how two peers communicate
with each other and set up the video transmission session, which will be described in
the following two sections.

Neighbor communication in SopCast

Assuming that a SopCast peer has retrieved a random list of peers (a peerlist) in the
network, it will start to choose some peers with whom connections are established. If
two peers exchange 42-byte control packets with each other, we refer to these peers as
being neighbors.
Communication between two peers in SopCast is always initiated by a 52− 80 byte

packets pair. Once the connection is established, the pair of peers keeps exchanging
a sequence of 42-byte packets with each other. The 42-byte packets are transmitted
with a high frequency, roughly every second. We denote this packet as a keep-alive
packet. With the keep-alive packets, a peer announces its existence in the network.
The purpose is to accommodate overlay dynamics, and maintain neighbor relation with
others via the decentralized communication between peers. Peers can lose neighbors.
In case a neighbor does not respond to the keep-alive packets, the peer stops contacting

20 CHAPTER 2. P2PTV: MEASUREMENT STUDY

t t

Peer A Peer B

ACK
Keep -alive messageNeighbor link

active

Neighbor
connection lost

t t

Peer A Peer B

Video chunk request A -> B

Video link
B -> A active

Video packets

Video link down

(a) Peer communication (b) Video delivery between peers

Connection
establishment

t t

Peer A Peer B

ACK
Keep -alive messageNeighbor link

active

Neighbor
connection lost

t t

Peer A Peer B

Video chunk request A -> B

Video link
B -> A active

Video packets

Video link down

(a) Peer communication (b) Video delivery between peers

Connection
establishment

Figure 2.2: Diagram of (a) neighbor communication and (b) video delivery in SopCast.

this neighbor until it chooses the neighbor again. A graphic illustration of the neighbor
communication scheme is shown in Fig. 2.2(a).

Video delivery in SopCast

Video delivery in SopCast is chunk-based. The TV content in SopCast is divided into
video chunks or blocks with equal sizes of 10 kbyte. This finding is in line with the video
chopping algorithm implemented in many existing P2P systems, although the chunk
size may be different12. If a peer is providing video packets to its neighbors, we refer to
the peer as a parent. A child is defined if a peer is receiving video packets. A peer is
allowed to have multiple parents and multiple children. A parent-child relation can be
established only when two peers are neighbors. A peer is free to request multiple video
blocks from its parents.
A peer in SopCast never voluntarily delivers video streams to its neighbors. To

download video packets, a child always needs to request them from its parent(s) via
a video request packet with the size of 46 bytes, see Fig. 2.2(b). After receiving the
request, its parent(s) will deliver a series of video packets to the child. In case the child
needs more blocks, it sends another request.
In the trace, we noticed that the non-video packets with 46 data bytes are transmit-

ted periodically. Within the transmission of two consecutive 46-byte packets, a sequence
of video packets with 1320 data bytes are sent to and acknowledged (using a non-video
packet with 28 data bytes) by another peer. After the 1320-byte packets sequence, there
is a smaller-sized video packet (with 377, 497, 617, 1081 or 1201 data bytes) following
at the end for making up a rounding size of one or multiple video chunks (we observed

12In Bittorrent, the default size of the chopped block is 256 kbytes.

2.3. HOW DOES SOPCAST WORK? 21

that a video chunk size is equal to 10 Kbytes). The SopCast traffic pattern during a
video session between any two peers is shown in Figure 2.3.

… … … …
Time

1320 1320 1320

smaller size 2846

…… … … …
Time

1320 1320 1320

smaller size 2846

…

Figure 2.3: Traffic pattern during a video session between 2 peers.

The reason to have this traffic pattern is due to the IP fragmentation principle.
The requested blocks are treated as a large datagram during transmission, and this
large datagram (such as 10 kbytes) should be segmented into smaller pieces in order
to pass over the Ethernet. SopCast sets the maximum size of the video packet to be
transmitted to 1320 bytes. A generalization of the video block fragmentation rule is

n× 10 kbyte = x× 1320 bytes+ y (2.1)

where n is the number of requested video blocks, x is the number of 1320-byte video
packets, and y is the size of the smaller fragment in bytes, as presented in Table 1.

Transport protocol

The reports of Wireshark revealed that SopCast relies on UDP traffic. We have ob-
served two peaks in the packet size distribution: one falls in the region below 100 bytes
and another one at 1320 data bytes. The small packets with less than 100 bytes are
considered non-video packets, which are used for application-layer acknowledgments of
data packets delivered, requests for video chunks, or initial connection establishment.
The bigger packets, with size approximately equal to the Maximum Transmission Unit
(MTU) for IP packets over Ethernet networks, are the video packets.
We also observed that SopCast faces a high overhead, about 60% of non-video pack-

ets versus almost 40% of actual video data packets (see Figure 2.4). This was expected
since the protocol works on top of UDP, which does not guarantee reliability in the way
that TCP does. For time-sensitive applications, UDP is a reasonable choice, because
dropped packets are considered no worse than delayed packets. However a minimum
control on the status of the chunks must be kept. Since the chunks arrive out of order, a
scheme is needed to keep track of the video chunks that need to be reassembled in order
and buffered, and in case a chunk is missing, to retrieve it. Nevertheless, various small
packets are exchanged among peers to keep the peer list up-to-date, to test the status
of peers (e.g., is enough bandwidth available) or to distribute the chunk availability
information and the keep-alive messages. This explains the overhead in this kind of
mesh-based P2PTV system.

22 CHAPTER 2. P2PTV: MEASUREMENT STUDY

0

20

40

60

80

100

100 300 500 700 900 1100 1300 1500

Packet size (Bytes)

%
 o

f p
ac

ke
ts

Figure 2.4: SopCast packet size distribution.

Peer exchange and architecture

When SopCast first starts, it requires some time to search for peers and subsequently it
tries to download data from the active peers. We recorded two types of start-up delay:
the delay from when one channel is selected until the streaming player pops up, and
the delay from when the player pops up until the playback actually starts. The player
pop-up delay is in general 20 to 30 seconds. This is the time for SopCast to retrieve
the peer list and the first video packets. The player buffering delay is around 10 to 15
seconds, which can vary from player to player and is not related to SopCast. Therefore,
the time that passes for a user to enjoy the live streaming ranges between 30 and 45
seconds.

Examining the traffic generated by each node we found that the first task of each
viewer node is sending out a query message to the SopCast channel server to obtain
an updated channel list. This server has been identified, with an IP locator, to be
located in China. After a peer selects one TV channel to watch, it sends out multiple
query messages to some root servers (trackers) to retrieve an online peer list for this
TV channel.

After contacting the tracker, the nodes form a randomly connected mesh that is
used to deliver the content among individual peers. The content of a TV channel is
divided into video chunks, each with equal size. A video chunk is delivered from a parent
to a child peer. Except for the source, each peer in the overlay has multiple parents
and multiple children. The delivery is performed with pull requesting by child peers,
meaning that the chunks that a node has are notified periodically to the neighbors. Then
each node explicitly requests the segments of interest from its neighbors according to
their notification.

2.4. QUALITY OF EXPERIENCE 23

Buffering techniques

Received chunks are stored in the SopCast buffer. The buffer is responsible for down-
loading video chunks from the network and streaming the downloaded video to a local
media player. The streaming process in SopCast traverses two buffers: the SopCast
buffer and the media player buffer, as shown in Figure 2.5.

Figure 2.5: The SopCast buffer.

When the streaming file length in the SopCast buffer exceeds a predefined threshold,
SopCast launches a media player, which downloads video content from the local Web
server listening on port 8902. Most media players have built-in video buffering mech-
anisms. After the buffer of the media player fills up to the required level, the actual
video playback starts.

2.4 Quality of Experience

After discussing about how SopCast works in Section 2.3, we will now investigate how
it performs. In this Section, we present Quality of Experience related results [12] from
a measurement study of SopCast P2PTV clients, using both objective and subjective
measurement technologies. The results obtained in our study reveal the characteristics
and important design issues of SopCast, as well as the QoE that the end users perceive.
The measurement scenario is a global one.

2.4.1 PlanetLab Experiments Results

Measurement set-up

We have used a standard personal computer located in our campus network, as the
source provider (SP) of a TV channel content. With the SP, we registered and broad-
casted a dedicated TV channel to the SopCast network. In this channel, a video with
480*384 resolution and at 45 KB/s is continuously broadcasted in a loop.
On the other hand, we have used scripts not only to remotely control 70 PlanetLab

nodes (as our Peers) to view the TV channel we released, but also to monitor the QoE
at them. Therefore, a bit different from the experiment settings in Section 2.3.1, each

24 CHAPTER 2. P2PTV: MEASUREMENT STUDY

of the 70 PlanetLab nodes under consideration runs not only SopCast, TcpDump, Perl
Scripts, but also13 VLC to capture the stream.
We make use of traced files of this SopCast network captured during 10 months

(May. 2007 - Nov. 2007; Aug. 2008 - Oct. 2008). In particular, we collected the traffic
logs for several one-hour intervals from the 70 peers under investigation.

Upload and Download rate

Comparing the video data upload and download rates (the rate here is the average
value over one hour trace), we noticed that only few nodes have higher upload rate
compared to their download rate. In Figure 2.6 the four nodes that have higher upload
than download rates have been identified as “supernodes”.

0

50000

100000

150000

200000

250000

no
de

 1

no
de

 2

no
de

 3

no
de

 4

no
de

 5

no
de

 6

no
de

 7

no
de

 8

no
de

 9

no
de

 10

no
de

 11

no
de

 12

no
de

 13

no
de

 14

no
de

 15

no
de

 16

no
de

 17

B
yt

es
/s

Download rate

Upload rate

Figure 2.6: Upload and download rates of the peers at 17 of the 70 PlanetLab nodes.

The average download rate at each node is almost the same. This suggests that the
download rate at a peer seems to be confined by SopCast.

Parent’s upload rate to one child

As mentioned in Section 2.3.2, we define a parent as a peer that is uploading video
packets and define a child as a receiver of video packets.
The best choice for a peer is to download from the parent who has enough “parent

upload rate” per peer (the rate is the average value over one hour trace). However, from
Figure 2.7 it can be seen that the majority of the parents keeps the same amount of
upload rate per peer, which is approximately 24 KB/s. This behavior does not change
with the addition of more peers.
Based on the results of Figures 2.6 and 2.7, we can imagine that a parent with larger

upload rate probably has more children than a parent with smaller upload rate.

13VideoLan-Client: http://www.videolan.org

2.4. QUALITY OF EXPERIENCE 25

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 12000 24000 36000 48000 60000

bw [u,U] (bytes/s)

Fr
ac

tio
n

of
 p

ar
en

ts

Figure 2.7: Parent’s upload rate per peer when the network size is 70. u represents a
parent and U represents a child of the parent.

Blocking

We first monitored the download rate without any buffering. We compared the fluc-
tuating download rate with the steady playback rate of the video (45 KB/s). If the
download rate is smaller than the playback rate, the end user faces blocking or video
freezing because no data is buffered. However, due to the fact that the buffering tech-
nology is widely used in practice, the result of this experiment can be considered as a
worst-case study [19].
The worst-case blocking probability is calculated counting the time tblock, where the

download rate is smaller than the playback rate, divided by the total amount t of the
observed time.

Pr[block] =
tblock
t

Based on our calculation, we found that, without buffering, blocking happens during
22% of the time. Such a value is too high for a smooth playback, which illustrates the
significance of a buffer. It also indicates that the existing mesh-based P2P technology
cannot provide a truly real-time streanming service with acceptable blocking probability.
The scenario without a buffer represents that the data will be processed as soon as

it arrives at the destination. However, in a P2P network there is no real data path with
continuous data flow transmitted in order. Different chunks are delivered via different
paths and the arrival time of the chunk is also based on the chunk availability at that
moment. According to the data driven mechanism of SopCast, a buffer is needed to
map video chunks and based on which peers can request what they need.
Sentinelli et al. [20] observed that the SopCast buffer contains one minute of video.

We made the assumption that the media player uses a buffer of m seconds, where m is
usually smaller than 10. When an end user starts up a SopCast TV channel, basically

26 CHAPTER 2. P2PTV: MEASUREMENT STUDY

once the SopCast buffer is filled up, it injects m seconds of streaming content into the
media player buffer, as depicted in Figure 2.5. By the time the media player consumes
those m seconds of video, SopCast is downloading new video packets to refill the buffer.
If the SopCast buffer fails to collect enough data to feed the media player buffer,

blocking occurs.
In Figure 2.8 the buffer behavior of one peer is depicted.

Figure 2.8: SopCast buffer content in bytes of node planetlab1.diku.dk.

We consider the SopCast buffer size as the streaming rate of the video (45 KB/s)
times one minute [20], equal to about 2700 Kbytes, which can be seen in Figure 2.8. We
can observe that after the start-up phase, the buffer maintains stable and the playback
is continuous. The average download rate for this node is with 127 KB/s far higher
than the streaming rate of the video (45 KB/s). Hence, it was expected that blocking
would not happen. However, due to fluctuation of the download rate with time, the
data stored in the buffer has major drops in the intervals between 1040 - 1150 s, 1660
- 1730 s, 1840 - 1920 s. During these drops (meaning that in these periods the data
stored in the buffer is much less than the full buffer size of 2700 Kbytes), end users may
face blocking (e.g., image freezing or loss), because in the worst case, the lacked video
chunks may be the ones which need to be displayed in the next m seconds.

Overall video packet loss

As mentioned in Section 2.3, every peer can be downloading data from other peers and
at the same time be uploading data to others. For instance, we have 4 peers viewing
our TV channel, PlanetLab nodes A, B, C and D. After analyzing the trace file of
node A, we know that he downloads data from nodes B, C and D during the whole

2.4. QUALITY OF EXPERIENCE 27

trace. We can calculate how much video packets A received from B by analyzing the
trace file of A, as well as how much video packets B sends to A by analyzing the trace
file of B. Then in the video session between A and B, we can get its packet loss ratio
(same for the video sessions between A and C, and between A and D). To summarize
the number of packets lost in all video sessions of receiver A, we can get the overall
video packet loss ratio at node A during the whole trace. The same approach is applied
to the other nodes and the distribution of the overall video packet loss ratio is plotted
in Figure 2.9.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

Packet Loss Ratio

f(x
)

Probability Density Function

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Packet Loss Ratio

F(
x)

Cumulative Distribution Function

Mean(x) = 0.0467
Var(x) = 9.2400e-004

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.01

0.02

0.03

0.04

0.05

0.06

Packet Loss Ratio

f(x
)

Probability Density Function

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Packet Loss Ratio

F(
x)

Cumulative Distribution Function

Mean(x) = 0.0467
Var(x) = 9.2400e-004

Figure 2.9: The overall video packet loss ratio during the whole trace.

In Figure 2.9, the x axis represents the overall packet loss ratio during the whole trace
at an end user and the y axis represents the percentage of end users in our network. The
mean value of the packet loss ratio at an end user is over 4%, which is high compared
to the baseline SDTV packet loss ratio requirement in IPTV of 0.4% [19]. Besides, we
observed that the packet loss at a peer is mainly caused in the beginning period of this
peer entering this TV channel network (maybe because the connections between him
and his parents are not optimized or stable yet). However, thanks to the buffer, this
high video packet loss does not have much affect on the video quality, which can be
seen in Section 2.4.1.

28 CHAPTER 2. P2PTV: MEASUREMENT STUDY

Video Quality

Here, we assess the video quality at the end user with respect to their start-up freezing
time, overall frame loss ratio, image quality and audio-video synchronization.

Start-up freezing time Many video decoders use “copy previous” error concealment
to hide missing frames in the video stream from users. This means that in the event
of not receiving a certain frame, the last correctly rendered frame is displayed on the
screen, resulting in the frame freezes that are often seen in Internet video playback.
Through our experiments on PlanetLab, we observed that 97.17% of nodes always

first face a freezing image for a period of time at the beginning of viewing the TV
channel. The reason could be that the node has just started downloading chunks from
other peer nodes and the video buffer of the local SopCast webserver is created but
not filled enough for the media player to access, or the lost or delayed packets cause
undecodable frames. Therefore in the beginning of viewing the TV channel, there
usually occur many frame losses with frame loss ratio approaching 100%. During this
period, the media player handles the position of dropped frames by displaying the
nearest good frame (the first good frame in this case) as a stagnating picture. The
duration of this period (the start-up freezing time) indicates, after the user sees the
first image, for how long (s)he has to wait before the video playback starts playing
smoothly.
We used14 VirtualDub to investigate the beginning of the captured WMV files at

each node. Figure 2.10 shows that very few end users face a start-up freezing time
of more than 10 seconds. The peak appears at 1 second (about 18% of the nodes
experience 1-second freezing time when they start viewing the video). On average, end
users see the first freezing image for 4.13 seconds before seeing the actual stream of the
TV channel.
This result indicates the importance of improving the current scheduling and de-

coding technologies of SopCast.

Overall frame loss The frame loss discussed here only considers lost frames, not
damaged frames (frames downloaded partially with some packets lost) after the start-up
freezing phase.
In Figure 2.11, the x axis represents the overall frame loss ratio during the whole

trace at an end user and the y axis represents the fraction of end users in our network.
The mean value of the frame loss ratio is 0.82%. It means that end users could have

a good video quality with low frame loss ratio after the start-up freezing time.

14VirtualDub is a video capture and video processing utility for Microsoft Windows.

2.4. QUALITY OF EXPERIENCE 29

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time (seconds)

Fr
ac

tio
n

of
 p

ee
rs

Mean (Time) = 4.13

Figure 2.10: Start-up freezing time.

Image Quality After the start-up freezing phase of peers, we cut the received video
at them and synchronized each frame of the cut received video with the cut original
video to get the average objective Mean Opinion Score (MOS) [21], using bVQM [22].
bVQM (Batch Video Quality Metric) is a software tool developed by the Institute for

Telecommunication Science to objectively measure perceived video quality. It measures
the perceptual effects of video impairments including blurring, jerky/unnatural motion,
global noise, block distortion and color distortion, and combines them into a single
metric.
bVQM takes the original video and the processed video and produces quality scores

that reflect the predicted fidelity of the impaired video with reference to its undistorted
counterpart. To do that, the sampled video needs to be calibrated via VirtualDub. The
calibration consists of estimating and correcting the spatial and temporal shift of the
processed video sequence with respect to the original video sequence. The final score
is computed using a linear combination of parameters that describe perceptual changes
in video quality by comparing features extracted from the processed video with those
extracted from the original video. The final score is scaled to an objective MOS value,
a measure for user perceived quality, defined on a five-point scale; 5 = excellent, 4 =
good, 3 = fair, 2 = poor, 1 = bad. MOS here does not take audio quality, zapping time,
etc. into account.
We captured at selected nodes the stream retrieved from the SopCast buffer with

VLC.
We broadcasted two videos at different data rates: one at 45 KB/s (the most com-

mon data rate used in SopCast) and another one at 1 Mb/s. The scores provided by
bVQM are plot in Figure 2.12.
The minimum threshold for acceptable quality corresponds to the line MOS = 3.5.

The average MOS are high for both streaming rates, only a negligible degradation has
been observed. This also suggests that SopCast does not provide any kind of encoding

30 CHAPTER 2. P2PTV: MEASUREMENT STUDY

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

Frame Loss Ratio

f(x
)

Probability Density Function

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Frame Loss Ratio

F(
x)

Cumulative Distribution Function

Mean(x) = 0.0082
Var(x) = 7.8642e-004

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

Frame Loss Ratio

f(x
)

Probability Density Function

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

Frame Loss Ratio

F(
x)

Cumulative Distribution Function

Mean(x) = 0.0082
Var(x) = 7.8642e-004

Figure 2.11: The overall frame loss ratio during the whole trace.

to the broadcasted video.

Audio-Video Synchronization

Audio-video synchronization refers to the relative timing of sound and image portions
of a television program, or movie.
The International Telecommunications Union [23] recommendation states that the

tolerance from the point of capture to the viewer/listener shall be no more than 90 ms
audio leading video to 185 ms audio lagging behind video.
We decided to analyze the A/V synchronization in SopCast with an “artificially

generated” video test sample. The test sample includes a video component and an
audio component. The video component and the audio component both contain a
marker. The video marker displays between a first video state and a second video state,
a red full screen image. Similarly, the audio waveform alternates between a first audio
state and a second audio state, an audio “beep”. The video and audio waveforms are
temporally synchronized to transition from one state to another at the same time.
The video is broadcasted with SopCast. When the audio and video tracks were

extracted and compared, it turned out that there was an average difference in time
between the two tracks of about 210 ms, which exceeds the ITU recommendation. The
reasons are twofold: (1) We believe that the main contribution to this time shift is
caused by the network. When the video is sent into the network, due to its transport

2.4. QUALITY OF EXPERIENCE 31

0

0 .5

1

1 .5

2

2 .5

3

3 .5

4

4 .5

5

node 1 node 2 node 3 node 4 node 5 node 6 node 7

MOS Score (360 K bps)
MOS Score (1 M bps)
MOS threshold

Figure 2.12: Objective MOS for the received videos.

protocol (UDP), some packets might get lost. Since the system is displaying in real time,
a loss of a video packet can cause the decoder to adjust buffer allocations affecting the
synchronization of audio and video tracks. (2) The direct digital-to-digital conversion
from one (usually lossy) codec to another. We needed to convert from the original video
format to the streamed one, passing through a final reconversion of the received file to
extract the tracks. This (re)conversion may also have affected the synchronization.

Peer Synchronization

While watching a football match it could be disturbing to hear the neighbors scream
“GOAL” while still watching the pre-goal action [20]. Such phenomena are common
in P2PTV systems and are referred to as peer lags. While watching the same channel,
peers’ content might not be synchronized. We measured the different lag delays by
injecting in the SopCast network another artificial video that mainly reproduced a
timer. Each second a sequential number is shown. Since SopCast builds a webserver
that feeds the player’s buffer, we connected 6 instantiations of VLC to the webservers
of the representative nodes and we gathered the visualization on a PC, see Figure 2.13.
Clearly, some peer’s content lags behind that of others. In the environment of

PlanetLab, the lag went up to 3 seconds. In reality, the lag is expected to grow even
further. Hence, we can conclude that SopCast clients are not likely to view an exactly
same frame of the stream at the same time. We can say that SopCast nowadays is
not yet suitable to distribute football-like content due to the low synchronization level
among users.

Zapping Time

While watching TV a common behavior is to change from one channel to the other, the
so-called “zapping”. If P2PTV applications want to gain popularity in the field of home
entertainment it is necessary to look at the zapping performance of P2PTV applications.
While for analog TV, zapping consists of scanning through different television channels

32 CHAPTER 2. P2PTV: MEASUREMENT STUDY

Figure 2.13: The video at different nodes.

or radio frequencies, in P2PTV the initial list of hosts must be retrieved, and the system
tries to connect to some of the hosts to get data.
To measure the SopCast zapping time we needed to calculate the time that SopCast

requires to fill its buffer and build the local web server. To do that we developed a Perl
script that starts a counter when a channel is clicked and it stops when enough data to
be displayed has been fetched.
We let the script run when zapping among 20 popular and less popular channels.

Figure 2.14 shows the distribution of the zapping times. It turns out that the zapping
time in SopCast is very high.

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0 50 100 150 200 250

Seconds

P
ro

ba
bi

lit
y

Figure 2.14: Distribution of zapping time.

Changing channels in an analog TV network usually takes about 1
2
to 1 second

compared to Digital TV where zapping times of more than 2 seconds might be experi-
enced. Note that according to the DSL Forum the zapping time should be limited to a
maximum of 2 seconds [24]. In the IPTV environment changing channels or zapping,

2.4. QUALITY OF EXPERIENCE 33

has great importance as this is very often regarded as the most important parameter
used to judge the overall quality of the network seen from the end user perspective.
With an average zapping time of 50 seconds, SopCast (P2PTV) faces an unacceptable
delay. Customers expect information being delivered to their screen as soon as possible.
Hence, much improvement is needed in the start up phase of SopCast.

2.4.2 Subjective Measurements

Subjective video quality is concerned with how video is perceived by a viewer and des-
ignates his or her opinion on a particular video sequence. Subjective video quality tests
are quite expensive in terms of time and human resources. To evaluate the subjective
video quality, a video sequence is chosen. Under typical settings of the system, the
sequence is presented to the users and their opinions are collected. The opinions are
scored and an average value is computed.

Approach

The following steps were used for the subjective evaluation:

• 22 persons participated in the evaluation by viewing SopCast TV channels and
completing a questionnaire.

• The questionnaire contained 10 questions each addressing the expected quality
problems of SopCast.

The 10 questions were:
(1) How fast was the login process?
(2) How long did you have to wait before seeing the stream after you started the

channel?
(3) How long did you have to wait before seeing a stable stream?
(4) Was the size of the video screen satisfactory (resolution, stream bit rate)?
(5) During the observation period, did the video unexpectedly stop?
(6) Did you observe any bad frames in the video (a bad frame refers to a mosaic-like

image)?
(7) Did you observe any freezing frames in the video (a freezing frame refers to

a brief stop, say a second, in the video playback after which it resumes to a normal
playback)?
(8) How was the voice quality (cuts, clarity, volume) of the channel?
(9) Were the audio and video synchronized throughout the playback time?
(10) Are TV channels provided by SopCast interesting and are the amount of TV

channels enough?

34 CHAPTER 2. P2PTV: MEASUREMENT STUDY

The questionnaire used the standard MOS scale. The subjective MOS does not
only consider the quality of video, but also the start-up time, the extent of the usage
convenience, and the feeling about the TV channel content itself.

• Every question had a weight (the weights of the questions are also decided by the
participants) depending on the severity of the issue and its influence on the QoE
of SopCast. Based on the weight given to each question, the overall MOS per
questionnaire was calculated as follows:

MOS =

P10
x=1WeightxScorexP10

x=1Weightx

where Weightx represents the weight of question x and Scorex represents the
score of question x.

Result

The MOS over all the participants is 4.08 (see Figure 2.15). This means that the
channel’s video quality is good. The subjective MOS score is and was expected to be
lower than the objective score in Section 2.4.1, because more measures than only video
quality play a role.

Figure 2.15: Subjective MOS scores.

2.4.3 Conclusions

The aim of this work was to understand, with a series of experiments, the behavior of
a popular P2P streaming system called SopCast. Through passive measurements, we

2.4. QUALITY OF EXPERIENCE 35

characterized SopCast’s behavior and evaluated users’ QoE.
Based on our measurement results on the traffic characteristics of SopCast, the main

conclusions are: (1) There is a lot of overhead in the form of non-video packets; (2) The
average video download rate is almost the same at each peer; (3) Peers’ upload rates
differ substantially, but the majority of the parents keeps the same amount of upload
rate per peer; (4) In the worst case, a peer will face video blocking very frequently, but
the situation can be much improved with the help of buffers; (5) Overall packet loss
ratio is high.
For QoE metrics, in other related works, researchers usually only look at the video

quality when making claims on the QoE. However, in our work we have shown that
more measures should be taken into account, such as the blocking, the audio-video
synchronization, synchronization level among peers, the TV channel zapping time, etc.
Based on our measurement results on the QoE of SopCast, the main conclusions are:
(1) SopCast can provide good quality video to peers: low overall frame loss ratio and
high MOS scores; (2) Audio and video for SopCast can be out-of-sync, and may even
exceed the requirements from the ITU; (3) SopCast suffers from peer lags, i.e. peers
watching the same channel might not be synchronized; (4) The zapping time in SopCast
is extremely high.
The innovative measurement methods and scripts mentioned in this Chapter can

also be applied to other measurement studies and for other streaming applications.

36 CHAPTER 2. P2PTV: MEASUREMENT STUDY

Chapter 3

P2PTV: Analytical model

Disregarding economic incentives, the TV content delivery service operator should con-
sider to deploy P2PTV technology if connecting end-users’ set-top boxes in a P2P way
can achieve better Quality of Experience (QoE) than the tranditional IPTV (Server-to-
Client) infrastructure. Hence, defining, computing and comparing the quality of these
two television architectures is deemed essential.
In this Chapter, we will specifically investigate one important QoE measure, namely

the content blocking probability, via a mathematical model. We will still focus on the
mostly used BitTorrent-like P2PTV system, and analyze its performance in terms of
blocking probability. Our P2PTV case study is based on measurements of SopCast,
discussed in the previous Chapter.

3.1 Related Work

Related work on BitTorrent-like P2P blocking and performance [25], [26], [27], only
targets the P2P file sharing systems. Empirical blocking results were provided [2],
[3], but a definition of and a formula to compute the end-to-end blocking in P2PTV
architectures are still missing. In this Chapter, we provide a first step in this direction.

3.2 Model with assumptions

Figure 3.1 presents our model of chunk-based P2PTV applications. We focus on the
blocking of a single television channel i for a particular user U . User U is viewing a
television channel i. The playback rate of the channel i is v kbits/s. In the worst case,
user U downloads the next second of content when displaying the current second of
content. One second of television content is divided into R chunks. Hence, one chunk
contains v/R kbits.

37

38 CHAPTER 3. P2PTV: ANALYTICAL MODEL

r

1 2

P a re n t

C u rren t
1 se c o n d

d isp lay in g

u se r U

C h a n n e l i

N e x t 1 s e c o n d
N e x t R c h u n k s

d o w n lo a d in g
a t th e sa m e tim e

O th e r ch ild re n

iN

u pb w

O th e r ch ild re n

u

[1,]b w U

M|P |

r

1 2

P a re n t

C u rren t
1 se c o n d

d isp lay in g

u se r U

C h a n n e l i

N e x t 1 s e c o n d
N e x t R c h u n k s

d o w n lo a d in g
a t th e sa m e tim e

O th e r ch ild re n

iN

u pb w

O th e r ch ild re n

u

[1,]b w U

M|P |

Figure 3.1: P2PTV model when user U has 2 parents.

First, based on a peer list that user U obtains, a fixed amount of peers (referred to
as partners) are randomly chosen to form a partner group P for that channel i. In this
partner group, partners exchange information about which chunks are available at which
partner. Based on this chunk-availability information, a user U chooses M ≤ |P| peers
from whom he downloads chunks. Those peers are called parents of user U . A parent
supplies at least 1 chunk to user U . Similarly, the peers downloading the content from
user U will be referred to as children of user U . A parent has Y children at the same
time. We denote byNi the number of available peers in the entire peer list corresponding
to channel i and by bwup the upload bandwidth of a parent. Simultaneously while
downloading the chunks, user U is displaying the content stored in his buffer1. Here,
we consider the worst case of P2PTV blocking where none of these R chunks were
previously downloaded and the download of these R chunks has to be finished within
the coming second.

3.3 Computation of the blocking probability

A P2PTV network built on top of the Internet has, in theory, more available capacity
contributed by peers than the traditional Server-Client network. Hence, the P2PTV
blocking is mainly caused by content unavailability, peer selection randomness and peer
dynamics. Blocking in P2PTV can also occur while watching television. We define
the blocking probability in P2PTV as the probability that user U cannot successfully
download the next R chunks before having displayed the current R chunks.

1There is a zero probability of buffer overflow, because the buffer window is sliding and the outdated
chunks will be deleted automatically.

3.3. COMPUTATION OF THE BLOCKING PROBABILITY 39

If the required R chunks cannot all be found in the partner group, which happens
with probability bchunk(i), blocking will occur. Even when all the chunks can be found
at the |P| partners, a chosen parent may upload his chunks too slowly. This occurs with
probability btime(i). Finally, if a parent leaves during uploading, blocking will occur.
The probability of this occurrence is bdyn(i). As a reasonable approximation, we assume
that the different events are independent. The end-to-end blocking b(i) of channel i in
P2PTV can be presented as:

b(i) = bchunk(i) + (1− bchunk(i))(btime(i) + (1− btime(i))bdyn(i)) (3.1)

In the sequel, we determine bchunk(i), btime(i) and bdyn(i).
bchunk(i): Choosing parents among partners is based on the chunk-availability in-

formation. Blocking arises when user U cannot find all R chunks from the randomly
chosen partners. We let 1− bchunk(i) denote the probability that user U can find all R
chunks in his partner group.

1− bchunk(i) =
R

Π
r=1
(1−Bi(r)) (3.2)

where Bi(r) = [1− πi(r)]
|P| represents the probability that user U cannot find chunk r

successfully among |P| randomly chosen (and hence considered independent) partners.
We use πi(r) to represent the probability that a peer is storing chunk r.

btime(i): Blocking arises when at least one parent u cannot upload his chunks to user
U within 1 second due to insufficient bandwidth. The upload bandwidth that a parent u
has available for user U is bw[u,U], which has a distribution function Pr[bw[u,U] ≤ x].
Given that user U requests Xu chunks of v/R kbits from parent u, the required upload
bandwidth is bwXu =

Xuv
R
. If the available bandwidth is smaller than the bandwidth

required for uploading the requested chunks, blocking will occur.
In the following, we will make use of the theory of partitions [28]. A partition of a

positive integerR is a collection of positive integers whose sum isR. If there areM terms
in the sum, then R is said to be partitioned into M parts. We let pM(R) represent the
number of partitions of R into parts not exceedingM , which has the generating function

[28]:
MY
j=1

(1− xj)
−1
=
P∞

R=0 pM(R)x
R. From the generating function the following

recursion is obtained:
pM(R) = pM−1(R) + pM(R−M)

with pM(0) = p1(R) = 1 and pM(j) = 0 for j < 0.
In our P2PTV model, we need to find the number of partitions of R chunks over

exactly M parents, which equals pM(R) − pM−1(R) = pM(R −M). The occurrence
probability of having M parents has a density function Pr[M = k], however for par-
titions with a same number of M we assume that the occurrence probability of each
possible partition is the same.

40 CHAPTER 3. P2PTV: ANALYTICAL MODEL

Blocking occurs only when the available bandwidth bw[u, U] is smaller than the
required bandwidth. Assuming independence,

btime(i) =
|P|P
k=1

Pr[M = k]

pk(R− k)

pk(R−k)P
j=1

µ
1−

kQ
u=1

(1− Pr[bw[u,U] < Xu(j)v

R
])

¶
(3.3)

where the index j refers to one of the pM(R−M) possible partitions, andXu(j) refers to
how many chunks user U requests from parent u. For instance, we have pM(R−M) = 2
possible partitions of R = 4 chunks over M = 2 parents (u1 and u2), namely partition
j = 1 consisting of Xu1(1) = 1 and Xu2(1) = 3 and partition j = 2 consisting of
Xu1(2) = 2 and Xu2(2) = 2.

bdyn(i): We let bdyn(i) represent the probability that at least one parent leaves during
his uploading period, which causes blocking.
In our P2PTV model, the peer departure process Z(t) is considered Poissonian.

According to the measurement study of X. Hei et al. [2, Fig 13.], the CDF of TV
viewing time follows an exponential distribution, which justifies our assumption that
the TV user departure process is Poissonian. The rate at which peers leave from channel
i is denoted by θi. The departure rate of one peer is θi

Ni
, where Ni stands for the total

number of available peers in channel i.
We denote by Pu(j) the probability that parent u with Xu(j) chunks (in partition

j) leaves during uploading. Pu(j) = Pr[Z(t+t0)−Z(t0) = 1] = (θiNi
t) exp(− θi

Ni
t), where

t = min{1, Xu(j)v/R
bw[u,U]

}.
Hence, we can express bdyn(i) as:

bdyn(i) =
|P|P
k=1

Pr[M = k]

pk(R− k)

pk(R−k)P
j=1

µ
1−

kQ
u=1

(1− Pu(j))

¶
(3.4)

Substituting formulae (3.2), (3.3) and (3.4) into formula (3.1), we obtain the end-
to-end blocking b(i) of P2PTV.

3.4 Case Study

In this P2PTV case study, we analyze the chunk-based P2PTV application SopCast.
We developed scripts and set-up a distributed measurement testbed via Planetlab, as
described in Section 2.4.1. We installed SopCast and TcpDump on each (of in total
80) Planetlab nodes and performed various measurements, among which we believe
three are unique, namely: (1) measurements on the topology - we have the parent
distribution Pr[M = k] for popular as well as unpopular channels, (2) measurements
on the bandwidth distribution Pr[bw[u, U] ≤ k] (see Figure 2.7), and (3) the quality
of experience (e.g., blocking) at the end user. We have used our measurement data

3.4. CASE STUDY 41

as input to our model and then computed the blocking probability according to the
formulae above. We also compared our analytical results with our measurement results
on blocking probability.
Our experiments with SopCast indicated that the upload bandwidth of a parent

bwup is almost uniformly shared by his Y children in a 1 second period of time. Hence,
for user U , we can define bw[u,U] = bwup

Y
. Since each parent can have a different upload

rate and a different number of children at a given time, the value of bw[u, U] may differ
per parent. Later, we will use our empirically obtained bw[u,U] distribution function
into our model.
We assume that there are K available television channels that can be viewed. The

channel popularity distribution αi for the channels (1 ≤ i ≤ 23) is obtained from a
market survey2. We assume that the remaining K−23 channels uniformly share a pop-
ularity of 5.9%. In reality, the channel popularity distribution changes more smoothly,
but here we just classify channels as popular or unpopular.
We letNi = Nαi, whereN is the number of concurrent active peers over all channels.

Ni can be 205200αi (the same size for IPTV for a fair comparison later) or 2, 200, 000αi

(the current peak size of a P2PTV system). For other values, our case study is based on
SopCast. Our measurements were run for 5 times on 5 different days and we have used
the obtained results for our computations. Based on our measurement data, a minimum
of 1 and a maximum of 3 partners are chosen as parents for both popular channels and
unpopular channels in 1 second. The distributions of the number of parents Pr[M = k]
differ for popular and unpopular channels, as shown in Figure 3.2.

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 3 4

Num ber of parents per peer: M

%
 o

f p
ee

rs

for unpopular
channels
for popular
channels

Figure 3.2: The distribution of the number of parents per peer, for popular and unpop-
ular channels.

Our measurement study has also revealed that the channel under study has a play-
back rate v = 300 kbits/s and one chunk size is 10 kbytes (see Section 2.3.2). Hence,

2Channel 1 has a popularity of 15.1% and channel 23 of 0.2%. The 23 channels cover in total 94.1%.

42 CHAPTER 3. P2PTV: ANALYTICAL MODEL

R is around 3 chunks/second. In our computation of the blocking probability bchunk(i),
we assume πi(r) equals to 91% ([29]) for each channel. We set v/R = 104 kbits, to
retrieve the blocking probability btime(i). We assume that the download bandwidth
of an end user is large enough to download R = 3 chunks in 1 second. In order to
obtain the blocking probability bdyn(i), we define QP2PTV =

λ
θi.
and further assume3

θi = 0.00038N/QP2PTV , with θi fixed for each TV channel. λ represents the arrival rate
of users into the system.
Given the above values we can get bchunk(i), btime(i) and bdyn(i), and subsequently

compute the P2PTV blocking b(i) from formula (3.1). Figure 3.3 plots the P2PTV
blocking probability b(i) as a function of the channel index i. Figure 3.3 illustrates

0 10 100
0.1

0.15

0.2

0.25

0.3

0.35

channel index i

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

b(
i)

K=170, Q=60, N=205200

K=50, Q=60, N=205200
K=170, Q=600, N=205200

K=170, Q=60, N=2200000

Figure 3.3: P2PTV end-to-end blocking b(i) with different values for the number of
channels K, the number of active users in the system N , and QP2PTV = λ/θi.

that the 23 most popular channels have a much smaller probability to be blocked than
the remaining unpopular channels. The blocking probability of all channels is quite
high, because what we have modeled is the worst case without any positive effects due
to buffering. In order to validate our model, we measured the blocking at end users,
which was already discussed in Section 2.4.1. We monitored the download speed at each
user using 1 second as unit and we compared the download speed with the playback
rate. The fraction of time the download speed is smaller than the constant playback
rate gives the blocking probability defined in our model. When averaging the blocking
probability over all channels, we find a blocking probability of 22% when excluding the

3As observed in [3, Fig.14], when there are on average N = 1750 active peers, the maximum arrival
rate of peers is λ = 0.67 peers/s and λ

N = 0.00038.

3.4. CASE STUDY 43

buffer effect (see Section 2.4.1), which fits our mathematical results.
The P2PTV end-to-end blocking b(i) shown in Figure 3.3 is mainly contributed by

btime(i). Hence, the limited upload bandwidth of an end user’s parent distributed to him
mainly causes the large blocking. This clearly indicates the importance of the parent
selection policy.
We can also observe that a user will face less blocking if the number of available

channels K is smaller, or if users leave infrequently (high QP2PTV), while changing the
amount of users did not significantly affect the blocking probability.

44 CHAPTER 3. P2PTV: ANALYTICAL MODEL

Chapter 4

IPTV: Analytical model

After having computed the content blocking probability of P2PTV in Chapter 3, we
will compute the blocking probability of IPTV in this Chapter.

4.1 Introduction

IPTV is implemented in a dedicated network, which connects the end-users’ television
set-top boxes through Digital Subscriber Line Access Multiplexers (DSLAMs). The
television programs are collected at a data centre and distributed towards the DSLAMs
along an IP-layer multicast tree. A DSLAM replicates the received signal and sends it
to the end users (see Section 1.3.1).
Disregarding economic incentives, telecom operators will continue to deploy and

extend IPTV in the dedicated network if its quality surpasses the quality of P2PTV.
In this Chapter, we focus on the IPTV blocking probability as our QoE measure of
interest, and ask the following questions:

• What factors contribute to the blocking of IPTV, and how?

• Which technology, IPTV or P2PTV, incurs the lowest end-to-end blocking?

• In what situation can P2PTV offer users better QoE than IPTV?

In order to answer these questions we have developed blocking models for IPTV
which can be compared with the model of P2PTV discussed in Chapter 3. We subse-
quently apply it to a case study as well. Our case study of IPTV is based on measure-
ment data of an existing Dutch IPTV network.

45

46 CHAPTER 4. IPTV: ANALYTICAL MODEL

4.2 Related work

The work on IPTV mainly focuses on designing protocols (e.g., [30]) and implementa-
tions by broadband network operators, router manufacturers, and television providers.
For the performance of IPTV, video quality and packet loss were analyzed, but the
end-to-end blocking of requests has not been computed from a users’ point of view.
Karvo et al. [31] set up a queuing model to calculate the end-to-end multicast blocking,
but their work is not aimed at IPTV and is not based on realistic data. In this Chapter,
we will define and compute the IPTV blocking probability based on realistic data.

4.3 Model with assumptions

Figure 4.1 illustrates a possible realization of an IPTV architecture. As this figure
indicates, end users are connected to DSLAMs which, on their turn, are connected
to an edge router. We only model the blocking of a single television channel over a
single DSLAM. We assume that C represents the capacity of a link from a particular
DSLAM to the edge router. The maximum number of channels that can be transmitted
simultaneously over a link with capacity C ism =

j
C
Co

k
, where Co is the capacity of one

television channel. We further assume that there are K available television channels
that can be viewed. If a channel is being viewed, we say it is “on”. Not all the channels
are equally popular. In our model we assume that the popularity distribution αi is
given1.
The arrival and departure processes of TV users are assumed to be Poissonian. In

reality, the request arrival rate λ(t) is non-stationary. If a popular TV program starts,
the arrival rate will be high, while once the advertisements come, the average arrival
rate decreases. However, we consider the average case over a specific time period. Based
on a TV-users market survey2, the arrival process is approximately Poissonian in the
period of 16:00 to 22:00. According to the measurement study of X. Hei et al. [2, Fig
13.], the CDF of TV viewing time follows an exponential distribution, which justifies
our assumption that the TV user departure process is Poissonian.

4.4 Computation of the blocking probability

In IPTV, the limited equipment processing capability and the limited available band-
width in an infrastructure network is the main cause of IPTV blocking.

1We have used the TV channel popularity distribution in The Netherlands, which is available at
http://www.kijkonderzoek.nl/ (in Dutch).

2Market Report of TV customers in The Netherlands, http://www.kijkonderzoek.nl/.

4.4. COMPUTATION OF THE BLOCKING PROBABILITY 47

D
SL

A
M

D
at

a
ce

nt
er

R
ou

te
r k

Backbone
routing

D
SL

A
M

2U

1User

One Channel

on
e

do
m

ai
n

D
SL

A
M

ed
ge

 ro
ut

er

Considered here

2

sU

One link with capacity C

…

…
…

…
DSL

AM
Another Channel

(more popular)
D

SL
A

M

D
at

a
ce

nt
er

R
ou

te
r k

Backbone
routing

D
SL

A
M

2U

1User

One Channel

on
e

do
m

ai
n

D
SL

A
M

ed
ge

 ro
ut

er

Considered here

2

sU

One link with capacity C

…

…
…

…
DSL

AM
Another Channel

(more popular)

Figure 4.1: A possible realization of an IPTV architecture.

Contrary to P2PTV, where blocking can also occur while watching television, the
main blocking in IPTV only occurs when requesting a television channel. If a user re-
questing a particular television channel i cannot receive its content, we consider channel
i to be blocked. Two main causes of blocking in IPTV are:

I Limited processing capability of a DSLAM. If many users simultaneously desire
content from the same DSLAM, blocking might occur. The blocking probability
of this case is denoted as Bproc.

II Insufficient available capacity from the DSLAM to the edge router. If a maximum
number of m channels is transmitted to the DSLAM, a new user requesting a new
channel i (not among the transmitted m channels) will find his request blocked.
Since the more popular channels have a higher probability to be present among
the already transmitted m channels, Blink(i) depends on which television channel
i is requested.

Since blocking II can only occur if blocking I did not take place, for IPTV the
end-to-end blocking probability B(i) for channel i is

B(i) = Bproc + (1−Bproc)Blink(i) (4.1)

Bproc: Assuming Poisson arrivals and departures, as explained in Section 4.3, we
model the DSLAM as an M/M/n/n/s queue, where s represents the number of users
accessing the DSLAM and n the number of replications that the DSLAM can handle.
In our model ρDSLAM = λDSLAM

μDSLAM
is the same for each user, where λDSLAM represents

48 CHAPTER 4. IPTV: ANALYTICAL MODEL

the rate at which a user requests a TV service, and μDSLAM the rate at which the user
turns his TV off. According to [32, pp. 512], we have

Bproc =

(s−1)!
(s−1−n)!n!ρ

n
DSLAM

nP
h=0

(s−1)!
(s−1−h)!h!ρ

h
DSLAM

(4.2)

Blink(i): To compute Blink(i) we introduce two new probability functions P (i) and
BEngset(i). P (i) is the probability that channel i is “on” and BEngset(i) is the probability
that the link from the DSLAM to the edge router is consumed by m channels other
than the requested channel i. Our computation of BEngset(i) is given in Appendix A.1,
and

Blink(i) = (1− P (i))BEngset(i) (4.3)

P (i): Disregarding possible blocking3, channel i can be modeled as an M/M/∞
queue (in steady state), with infinite positions available in the queue to store all requests
for channel i. Hence, the probability that channel i is “on”, in the condition that no
requests are blocked, is equal to the probability that the M/M/∞ queue [32, pp. 281]
is not empty: Pr[Ns > 0]i = 1− exp(−ρi), where ρi = λi/ui = αiλ/ui. λi is the users’
arrival rate in channel i, and ui is the number of users leaving from channel i per second.
λ is the users’ arrival rate in the IPTV system, which includes both the rate at which
users switch on their television as well as the channel switching rate. αi represents the
popularity of channel i , where 0 ≤ αi ≤ 1.
Channel i can be either “off” or “on”. We therefore resort to a two-state Markov

chain illustrated in Figure 4.2 to analyze its steady state.

0 1

Pr[0]s iN >

Pr[0]s iN =

(1 ())EngsetB i−Pr[0]
Pr[0] ()

s i

s i Engset

N
N B i

= +

> Pr[0]s iN >

0 1

Pr[0]s iN >

Pr[0]s iN =

(1 ())EngsetB i−Pr[0]
Pr[0] ()

s i

s i Engset

N
N B i

= +

> Pr[0]s iN >

Figure 4.2: Two-state Markov chain representing the status of channel i, where “0”
represents the state that channel k is “off” and “1” represents the state that channel i
is “on”.

The probability to be in the state “off” is 1−P (i) and consequently the probability
to be in the state “on” is P (i). To change from the “off” state to the “on” state, requests

3If a user’s request enters when channel i is “on”, the request will be grouped into multicast.
However, if a user’s request enters when channel i is “off”, it has to open a new channel, which might
not be possible in case of insufficient available capacity.

4.5. CASE STUDY 49

should exist for channel i (this event has probability Pr[Ns > 0]i) and these requests may
not be blocked (this event has probability equal to 1−BEngset(i)). The process remains
in the “off” state if there are no requests in the queue for channel i (Pr[Ns = 0]i) or if
the requests are blocked (this event has probability Pr[Ns > 0]iBEngset(i)). To change
from the “on” state to the “off” state, all requests for channel i are served until the
queue becomes empty (with probability Pr[Ns = 0]i). To remain in the “on” state, the
queue may not be empty (Pr[Ns > 0]i).
According to the steady state probability of a two-state Markov chain [32, pp.176],

the probability to be in the state “on” is

P (i) =
Pr[Ns > 0]i(1−BEngset(i))

Pr[Ns > 0]i(1−BEngset(i)) + Pr[Ns = 0]i
(4.4)

= 1− 1

exp(ρi)−BEngset(i) exp(ρi) +BEngset(i)

4.5 Case Study

We focus on a Dutch IPTV network for which we have obtained the following parameter
values:
To allow for a fair comparison with the P2PTV case (in Section 3.4), we will choose

for our IPTV case study similar values, where possible. The channel popularity distri-
bution αi is the same as for P2PTV, and the number of users and TV channels are the
same as for P2PTV.
The link capacityC is typically 155Mb/s in nowadays DSL systems and one MPEG4

coded TV channel consumes 2.5 Mb/s. Hence, approximately m = 60 different TV
channels can be transmitted simultaneously to the DSLAM. We further assume that
the IPTV system consists of 500, 000 subscribers, who are uniformly distributed over
1200 DSLAMs and 41% of the subscribers are active in rush hours. This results in an
average number of s = 171 active users connecting to a single DSLAM. However, only
n = 120 channel replications can be handled by the DSLAM simultaneously. We define
QIPTV = λ/ui.
Figure 4.3 plots the IPTV blocking probability B(i) as a function of the channel

index i, with m = 60 and n = 120.
The less popular channels (higher channel index) have a considerably higher proba-

bility to be blocked than the more popular channels. In addition, we can observe that
the user’s request is less likely blocked if there are less available TV channels (smaller
K), if there are less users per DSLAM (smaller s), or if users leave more frequently
(smaller QIPTV).
Figure 4.3 also plots the capacity C that is required to assure that the IPTV blocking

B(i), as a function of channel index i, does not exceed a certain level.

50 CHAPTER 4. IPTV: ANALYTICAL MODEL

1 10 100
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

channel index i

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

B
(i)

K=170,Q=400,s=171
K=82,Q=400,s=171
K=170,Q=600,s=171
K=170,Q=400,s=205

1 10 100
60

80

100

120

140

160

180

B=10-3

channel index i

ne
ed

ed
 c

ap
ac

ity
 C

 (M
b/

s)

B=10-5

B=10-7

Figure 4.3: (Left) IPTV end-to-end blocking B(i) with m = 60, n = 120. (right)
The required capacity C for meeting different blocking requirements, with K = 170,
s = 171, and QIPTV = 400.

4.6 Blocking Comparison between IPTV and P2PTV

We compare IPTV and P2PTV based on the computations presented in Chapters 3 and
4. We assess which technology (IPTV or P2PTV) incurs the lowest end-to-end blocking.
Currently, if the operator decides to transmit television content to its residential users
using P2PTV instead of IPTV, all channels will likely face more blocking than before.
However, we can predict that when the number of end users increases, this will change.
In a P2PTV system, the number of users has little effect on the blocking, while in
an IPTV system the blocking would largely increase if the processing capability of
the equipment (like DSLAM) cannot scale accordingly. When the total amount of
users increases and the amount of DSLAMs and their processing capability remains the
same, there will be a point at which the P2PTV system will start to outperform the
IPTV system for popular channels, unless the IPTV network is extended accordingly.
In our Dutch case study [19], this cross-over point is around 297, 600 users (s = 248
per DSLAM). Provided the appropriate data is available, our formulas allow for similar
computations for different cases.

Chapter 5

CDN: Analytical model

The centrally controlled CDN system discussed here integrates the real-time TV stream-
ing service and the Video-on-Demand service. From the analysis of Content Delivery
Networking (CDN) techniques, we know that a video streaming service architecture
incorporating storage at the end-user as well as in the network is a viable option for
the near future.
In this Chapter, we develop a performance model for the availability of the required

service. The probability that bandwidth for a required service is available is calculated
as a function of video popularity, the number of available videos, cache sizes, and various
parameters that characterize the network configuration and content viewing behavior.
The model is applied to a MBMS (Multimedia Broadcast and Multicast Services) [35]
MobileTV service with pausing function. The system performance and corresponding
facility requests (e.g. cache size), and the key factors that affect the performance in
different scenarios are analyzed [33].

5.1 Introduction

A content delivery network (CDN) is a system of computers containing copies of data,
placed at various points (caches) in a network so as to maximize content availability
for clients. Caches are used to reduce bandwidth requirements, reduce server load, and
improve the client response times for content.
Caching architectures can basically be divided into: (1) hierarchical, (2) distributed,

and (3) hybrid architectures, which were already explained in Chapter 1.
Based on the related work discussed in Chapter 1, we therefore concentrate our

work on the use of a caching hierarchy model to distribute streaming content and will
explain a realistic architecture in the following section.
The UMTS MobileTV network can be considered as a hierarchical architecture,

hence we can apply our model to a MobileTV service. The MobileTV service investi-

51

52 CHAPTER 5. CDN: ANALYTICAL MODEL

BM-SC GSN RNC BS UE
BM SCL − GSNL

RNCL BSL

BM SCC − →∞ GSNC RNCC UEC

…
…

…
…

…
… …

…
BM-SC GSN RNC BS UE

BM SCL − GSNL
RNCL BSL

BM SCC − →∞ GSNC RNCC UEC

…
…

…
…

…
… …

…

Figure 5.1: Generic model for the caching architecture to deliver video streams.

gated is a real-time live sports/news stream delivery service. It uses multicast to deliver
the TV streams to save resources, which is what MBMS does nowadays. The analytical
model for the multicast TV system without a pausing service can refer to [19]. Here,
we consider that users can pause the TV stream, for instance when a call is coming in.
Mobile Handover is considered as new user arrival/departure in our model. In reality,
the feature considered for MBMS handover can be found in [36], which therefore will
be not discussed here.

5.2 The service architecture

Fig. 5.1 presents a generic model for a hierarchical caching architecture. It is based on a
realistic UMTS network architecture for which we assume that caches can only be placed
at existing accessible locations, i.e. at locations where network equipment is already
present. In Fig. 5.1, BM−SC represents the highest level of a caching hierarchy which
acts as a MobileTV content data center; GGSN/SGSN (referred to collectively as
GPRS Support Node, GSN) represents the 2nd level with Regional Exchanges; RNC
(Radio Network Controller) represents the 3rd level with Local Exchanges; the BS
nodes are the Base Stations which will not be equipped with a cache; and UE acts as
User Equipment (i.e. Mobile Phone) at the lowest level of a caching hierarchy. Ci is the
amount of cache disk space (in bits) at level i reserved for caching video streams, where
i ∈ {UE,RNC,GSN,BM −SC}; and Li represents the capacity (Mbit/s) at level-i of
the link available for the video streaming service, where i ∈ {BS,RNC,GSN,BM −
SC}. For instance, CUE represents the local cache space at an end-user, LBS represents
the access data rate of an end-user which should not be smaller than the video streaming
rate v.
To eliminate unnecessary content multiplication in the network as much as possible,

the use of multicast techniques such as IP Multicast is used for content distribution
when a large number of service subscribers view the same content at the same time.
We only focus on the service of delivering video streams here. The cache size and

the bandwidth discussed in the following are dedicated to this service. The model is

5.3. MODEL WITH ASSUMPTIONS 53

also applied to a realistic use case in Section 5.5.

5.3 Model with assumptions

We only consider streaming video applications that start from the content data center
and multicast to all households connected to the multicast tree. The end-user has the
option of zapping between videos and pausing once during a video. Therefore, each
node must be able to store the video currently being watched in a cache connected to
that node. The caches mentioned here can be located in the network. The maximum
time that can be recorded depends on the cache size and the bandwidth required to
deliver the video at a certain level of Quality of Service. A user may of course pause
more often if a recording function on the UE allows him to do so and the UE contains
enough storage capacity. However, this does not add extra blocking to the CDN as
we model it (because retrieving data from the local cache will not face blocking in our
model). If the user pauses more than once but the left storage capacity at UE is not
enough for recording the delayed stream, he will automatically leave from the service
in our model, otherwise it will cost too much network resources.
After pausing, the user can resume the same video, or zap to a different video. In

the first case, the video is resumed in unicast mode from the closest cache which has
stored and can provide the delayed video. In the second case, the end-user zaps to a
different video, which is received via multicast.
No bandwidth is reserved for multicast and unicast separately, so multicast flows

and unicast flows share the same bandwidth capacity. Hence, if too many users pause
and use unicast, there will probably be insufficient bandwidth left for new multicast
requests. Similarly, if users all have very different tastes and too many video/MobileTV
channels are transmitted via multicast, then a newmulticast request or a unicast request
after pausing may face blocking due to a lack of capacity.
Here, we assume that the arrival processes of MobileTV users are Poissonian and the

user viewing time is exponentionally distributed, based on regular TV user behaviors
[2].
For the user behavior model, we use the following definitions:

• Switch time: duration that the user is watching a MobileTV channel before zap-
ping to a different MobileTV channel. We assume it to be exponentially distrib-
uted with mean 1/μs.

• View time before pausing: the period an end-user watches the video stream with-
out pausing. After this time has expired, the end-user pauses. We assume that
this time is exponentially distributed with mean 1/μv.

54 CHAPTER 5. CDN: ANALYTICAL MODEL

• View time before leaving: the period an end-user continuously watches the video
stream before leaving (excluding the pausing period). After this time has ex-
pired, the end-user leaves from the system. We assume that this time is also
exponentially distributed with mean 1/μL.

• Pause time: the duration of the pause. We assume it to be exponentially dis-
tributed with mean 1/μp. Immediately after the pause, the end-user can have 3
options: 1) switch to another multicast video, with probability Ps; 2) turn off the
MobileTV and leave from the system, with probability PL; 3) or resume the same
video stream, with probability 1− Ps − PL.

Moreover, we use λTV to represent how many users, attached to one BS, turn
on their MobileTV service every second; and NTV represents the average number of
registered MobileTV users, attached to one BS.
A registered user of our video streaming service is always in one of the following

states:

• “off” state: the user is off-line, not using the service at this moment.

• “M” state: the user has started watching the video and the video is delivered via
multicast.

• “Pause” state: the user is pausing.

• “UBM−SC”,“UGSN”,“URNC”,“UUE” (unicast) states: the user continues to watch
the video after having paused, and the stream is unicast from cache BM − SC,
GSN , RNC or UE, respectively.

After pausing, whether the stream will be unicast from UE, RNC, GSN or BM −
SC depends on the cache sizes dedicated to the video at each level and how long the
end-user paused the stream.
We define Pi with i ∈ {BM − SC,GSN,RNC,UE}, as the probability that the

video stream is unicast from a cache at level i after a pause. TUE = CUE
v
is defined as the

time capacity of a local cache UE reserved for a video stream, measured in the number
of seconds of video that may be recorded. CUE is the local cache capacity at an end user
UE, measured in bits (the cache at the leaf of the hierarchy only need to store one video
stream). For other levels, we set Ti = Ci

(
Li
v
)v
= Ci

Li
, where i ∈ {BM − SC,GSN,RNC},

Ci is the amount of cache disk space (in bits) at level i reserved for caching several
concurrent video streams (the cache at higher levels of hierarchy has to be shared by
several multicast video streams), v is the video streaming rate (Mbit/s), and Li

v
is the

maximum number of video streams that can be multicast in parallel at level i. We
assume that the cache at the BM − SC node always contains a copy of the complete
video, i.e. TBM−SC =∞, and TBM−SC > TGSN > TRNC > TUE.

5.3. MODEL WITH ASSUMPTIONS 55

The probability that the pause time is shorter than TUE seconds is equal to 1 −
exp(−μpTUE); and the probability that the pause time is > TUE seconds but ≤ TRNC

seconds is equal to exp(−μpTUE)−exp(−μpTRNC). Hence, Pi can be expressed in terms
of the probability distribution of the duration of a pausing period as follows.

PUE=(1-Ps-PL)(1- exp(-μpTUE))

PRNC=(1-Ps-PL)(exp(-μpTUE)- exp(-μpTRNC))

PGSN=(1-Ps-PL)(exp(-μpTRNC)- exp(-μpTGSN))

PBM−SC=(1-Ps-PL)(exp(-μpTGSN)- exp(-μpTBM−SC))

When TBM−SC → ∞, we have 1 − Ps − PL equal to
X

Pi with i ∈ {BM −
SC,GSN,RNC,UE}.
The dynamics of changing states per individual end-user can be modeled as a

continuous-time Markov chain with the states mentioned above, where the transition
rates are as depicted in Fig. 5.2.

M Pause

BM SCU −

GSNU

RNCU

UEU

off

BM SC PP μ−

GSN PP μ

RNC PP μ

UE PP μ

Lμ

L PP μ
TV

TVN
λ

Lμ

vμ

s PPμ

sμ
sμ

sμ
sμ

Lμ
Lμ
Lμ

M Pause

BM SCU −

GSNU

RNCU

UEU

off

BM SC PP μ−

GSN PP μ

RNC PP μ

UE PP μ

Lμ

L PP μ
TV

TVN
λ

Lμ

vμ

s PPμ

sμ
sμ

sμ
sμ

Lμ
Lμ
Lμ

Figure 5.2: Continuous-time Markov chain for state transitions of a user who registered
for a video streaming service.

We will now concentrate on analyzing this continuous-time Markov process.
1) The infinitesimal generator Q [32, pp.183] is explicitly given by Eq. (5.3), where

the elements qxy in Q at row x and column y reflect a change from state x towards state

56 CHAPTER 5. CDN: ANALYTICAL MODEL

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(μv + μL) μv 0 0 0 0 μL
Psμp −μp PROOTμp PREXμp PLEXμp PRGμp PLμp
μs 0 −(μs + μL) 0 0 0 μL
μs 0 0 −(μs + μL) 0 0 μL
μs 0 0 0 −(μs + μL) 0 μL
μs 0 0 0 0 −(μs + μL) μL
λTV
NTV

0 0 0 0 0 − λTV
NTV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3)

y. We have
7P

y=1,x6=y
qxy = −qxx [32, pp.181] and state 1 = M ; state 2 = Pause; state

3 = UBM−SC ; state 4 = UGSN ; state 5 = URNC; state 6 = UUE; state 7 = off .
2) We define a state vector S(t) : {M, Pause, UBM−SC , UGSN , URNC , UUE, off}

with
7P

s=1

Ss(t) = 1 (total law of probability), and we have lim
t→∞

S(t) = π.

Thus, the steady-state (row) vector π is a solution of

πQ = 0

In the following, the components of π are indexed as πM , πPause, πUBM−SC , πUGSN ,
πURNC

, πUUE , and πoff .

5.4 Computation of the blocking probability

We present a simplified analysis in which user events are independent.

5.4.1 Definition of blocking probability B(k)

In steady state, B(k) denotes the probability that an individual user cannot get access
to the service of his choice when he requests the video channel k, or when he resumes
it after pausing. We define Bm(k) as the end-to-end (E2E) multicast request blocking,
and Bu;i as the E2E unicast request blocking if the end user retrieves the delayed video
data from cache at level i after the pause. According to the total law of probability

Pr[Blocking] =
7P

s=1

Pr[Blocking|state] · Pr[state], we have

B(k) = [PsBm(k) +
X
i

PiBu;i] · πPause

+Bm(k) · (1− πPause) (5.1)

where i ∈ {BM − SC,GSN,RNC,UE}.
Bm(k) and Bu;i will be computed in the following sections.

5.4. COMPUTATION OF THE BLOCKING PROBABILITY 57

5.4.2 Computation of Bm(k)

To compute Bm(k), we introduce two new probability functions P (k) and BEngset(k).
P (k) is the probability that channel k is “on” and BEngset(k) is the probability that1

the link LRNC from RNC to BS is consumed by m multicast channels other than
the requested channel k. Our computation of BEngset(k) is based on the BEngset(i) for
IPTV deduced in the Appendix A.1, but with changing the symbol representing the
TV channel index from i to k and also having some changes/adds on the following
parameters: 1) the number of admitted channels left for multicast m = max{1, LRNC

v
−

NTV (πUBM−SC + πUGSN + πURNC
)}, and 2) λk = λk_LRNC

, uk = uk_LRNC
and μk =

μk_LRNC
(see Eqs. 5.3 and 5.7).

After knowing BEngset(k), we can get Bm(k) using the following formula

Bm(k) = (1− P (k))BEngset(k) (5.2)

P (k): Similar to computing P (i) when deducing the IPTV blocking probability in
Section 4.4, here we can also compute P (k), but with some changes on notations and
deducing the arrival/departure rate. Disregarding possible blocking2, channel k can be
modeled as anM/M/∞ queue (in steady-state), with infinite positions available in the
queue to store all requests for channel k. Hence, the probability that channel k is “on”,
given that no requests are blocked, is equal to the probability that the M/M/∞ queue
[32, pp. 281] is not empty: Pr[Ns;k > 0] = 1− exp(−ρk), where ρk = λk/uk. λk is the
users’ arrival rate in multicast channel k, and uk is the number of users leaving from
multicast channel k per second.
In order to assure content availability, a multicast user pausing the video is not

considered as leaving. A user can only leave the multicast network in state Pause and
state M .
After the pause, resuming the channel k from the local cache UE is not considered

as leaving from the network. Hence, the leaving rate from the multicast channel k after
the Pause is the sum of the leaving rates to all states (except to state UUE), which is
equal to (1−PUE)μP . The leaving rate from the multicast channel k after the state M
is the sum of the leaving rates to state M and to state off (when switching to another
channel and turning off the system), which is equal to μs+μL. Thus, the users’ leaving
rate uk is equal to the number of channel k viewers at link LRNC (NTV αk) multiplied
by the mean leaving rate of a multicast user (πM(μs+μL)+πPause(1−PUE)μP), where
αk represents the popularity of video channel k. In other words, an end-user has a
probability of αk to choose channel k. Similarly, we can also compute the users’ arrival
rate λk based on Fig. 5.2.

1The bandwidth bottleneck of the system is at LRNC .
2If a user’s request enters when channel k is “on”, the request will be grouped into multicast.

However, if a user’s request enters when channel k is “off”, it has to open a new channel, which might
not be possible in case of insufficient available capacity.

58 CHAPTER 5. CDN: ANALYTICAL MODEL

The normalized user arrival rate in channel k and the normalized user leaving rate
from channel k can be expressed as:

λk
NTV

= (πM + πUBM−SC + πUGSN + πURNC
+ πUUE)

(1-αk)μsαk + πPause(1-αk)Psμpαk + πoff
λTV
NTV

αk

uk
NTV

= πMαk(μs+μL)+πPauseαk(1− PUE)μP (5.3)

Channel k can be either “off” or “on”. We therefore resort to a two-state Markov
chain as illustrated in Fig. 4.2 in Section 4.4 to analyze its steady state.

5.4.3 Computation of Bu;i

Bu;i, with i ∈ {BM − SC,GSN,RNC,UE}, is defined as the probability that an
arbitrary attempt to jump to the unicast state Ui is blocked because the amount of
required bandwidth is not available at one of the links over the unicast connection. For
instance, if a unicast user can retrieve data from cache BM − SC without blocking
(Bu;BM−SC = 0), that means the request cannot be blocked at all levels (BM − SC,
GSN , and RNC). We assume that, if an end-user resumes the stream from his local
cache CUE after the pause, this attempt will never be blocked.
Based on the definition of Bu;i and the assumption that the blocking at different

levels are independent with each other, we have

Bu;BM−SC = 1− Π
i∈{BM−SC,GSN,RNC}

(1−Bu_Li)

Bu;GSN = 1− Π
i∈{GSN,RNC}

(1−Bu_Li)

Bu;RNC = Bu_LRNC

Bu;UE = 0 (5.4)

where

Bu_Li =

min{K,bLi/vc}X
j=1

πj_LiBu_Li_j (5.5)

and Bu_Li represents the mean probability that a unicast request is blocked at level i.
In (5.5), πj_Li represents the probability that j video streams are multicast at

link Li in steady state. K represents the amount of available video streams. Bu_Li_j

represents the blocking probability of a unicast request at link Li when j video streams
are multicast at link Li.
Our computation of πj_Li and Bu_Li_j will be given in the following.

5.4. COMPUTATION OF THE BLOCKING PROBABILITY 59

Computation of πj_Li

The probability that j positions are occupied by j MobileTV channels when there are
K available video channels for this system can be deduced as follows:
According to [32, pp.18] and [31], the binomial probability generating function of

πj_Li is

ϕ(z) =
∞P
j=0

πj_Liz
j =

K

Π
k=1

qk_Li + pk_Liz (5.6)

where we always have j < min{K, bLi/vc}, pk_Li = 1− e
−
λk_Li
μk_Li and qk_Li = 1− pk_Li

for a particular link Li, with i ∈ {BM − SC,GSN,RNC}.
λk_Li represents the users’ multicast requests arrival rate at video channel k (which

is also the arrival rate of channel k) at link Li. Next, μk_Li is the leaving rate of channel
k from link Li (which can be computed here via an M/G/∞ model), and uk_Li is the
channel k users’ leaving rate at link Li.
Beside the average number of registered users NTV attaching to one BS, we use

NRNC and NGSN to represent the number of branches connected to a RNC and to a
GSN , respectively.
The users’ multicast request arrival rate into link LGSN is equal to the product of

the users’ multicast request arrival rate per link LRNC and the number of LRNC links
connected to a RNC (see Fig. 5.1). Hence, we have λk_LGSN = NRNCλk_LRNC

. When
computing uk_LGSN (the users’ leaving rate from link LGSN), state transitions from
Pause to UUE and to URNC are not considered as leaving from link LGSN . Similarly,
we can also compute λk_LBM−SC and uk_LBM−SC .
According to Fig. 5.1 and 5.2, we have λk_LRNC

= λk, uk_LRNC
= uk (see (5.3));

and both λk_Li and uk_Li at other levels (BM − SC and GSN) can be expressed as

λk_LGSN = NRNCλk_LRNC

λk_LBM−SC = NRNCNGSNλk_LRNC

uk_LGSN = NRNCNTV πMαk(μs + μL) +NRNCNTV

πPauseαk(1− PUE − PRNC)μP
uk_LBM−SC = NRNCNGSNNTV πMαk(μs+μL)+NRNCNGSN

NTV πPauseαk(1− PUE − PRNC − PGSN)μP

μk_Li =
λk_Li

exp(
λk_Li
uk_Li

− 1)
(5.7)

Computation of Bu_Li_j

We use L(unicast)i_j = Li − jv to represent the bandwidth for unicast when there are j

multicast videos at level i, which corresponds to bL(unicast)i_j /vc = ni_j available unicast

60 CHAPTER 5. CDN: ANALYTICAL MODEL

servers at level i. We assume that this unicast service at level i can be modeled as an
M/M/n queuing system. Based on [32, pp. 277] we have

Bu_Li_j = Pr[Ns ≥ ni_j]

=
Pr[Ns = 0]

ni_j!(1− λi
ni_jβi

)

λ
ni_j
i

β
ni_j
i

(5.8)

where
Pr[Ns = 0] =

1Pni_j−1
a=0

λai
a!βai

+
λ
ni_j
i

ni_j !β
ni_j
i

1

1− λi
ni_j !βi

λi is the arrival rate of unicast requests at Li, and βi is the leaving rate of unicast
transmissions at link Li.
For the arrival rate λRNC, we know that the unicast request has to pass through

link LRNC no matter from which higher-level (BM −SC, GSN , or RNC) the end user
retrieves the delayed video after the pause. For the leaving rate βRNC, we know that
one unicast transmission at link LRNC can be considered as leaving when a unicast
stream from BM − SC or GSN or RNC leaves. Similarly, λGSN , λBM−SC, βGSN and
βBM−SC can also be computed.

λRNC = NTV πPauseμP (PBM−SC + PGSN + PRNC)

λGSN = NRNCNTV πPauseμP (PBM−SC + PGSN)

λBM−SC = NRNCNGSNNTV πPauseμPPBM−SC

βRNC = NTV (πURNC
+πUGSN+πUBM−SC)(μs+μL)

βGSN = NRNCNTV (πUGSN+πUBM−SC)(μs+μL)

βBM−SC = NRNCNGSNNTV πUBM−SC (μs+μL)

Finally, substituting the expression (5.6) for πj_Li and that of Bu_Li_j in (5.8) into
(5.5) and further into (5.4), Bu;i for different cases of i is found.
Furthermore, we can compute its mean unicast request blocking probability, using

formula E[Bu;i] =
P
i

PiBu;i where i ∈ {BM − SC,GSN,RNC,UE}.
In the following section, we will apply our blocking model for this multicast plus

unicast MobileTV service to a realistic case study.

5.5 Experiments

We applied our blocking model to the following realistic case study. We focus on a typi-
cal UMTS MobileTV network architecture for which we have assumed parameter values

5.5. EXPERIMENTS 61

as shown in Table 5.1. The cache sizes are based on current smart phone specifications
and reasonable capital expenditure for the network operator. The average pause time,
which can be considered as the average call duration, is set to be 107.1 seconds based
on the measurement study in [37].

Table 5.1: Parameter values in our case study
v = 250 Kbit/s (for 3.5G) [38] K = 12
NTV = 600 CBM−SC = 10 TBytes
NRNC = 250 CGSN = 800 GBytes
NGSN = 3 CRNC = 20 GBytes
λTV /NTV = 1/600 CUE = 1 GBytes
1/μp = 107.1 seconds LRNC = 2 Mbit/s
1/μs = 1/μv = 1/μL = 300 s LGSN = 70 Mbit/s
Ps = PL = 1/100 LBM−SC = 155 Mbit/s

In a MobileTV system users do not view a TV channel for a long time. Therefore,
the probability that the user wants to pause multiple times is low. Moreover, the
channel popularity distribution αk for the channels is obtained from a Dutch market
survey. Channel 1 has a popularity of 15.1% and channel 23 of 0.2%. The first 23
number of TV channels cover in total 94.1%. The remaining channels uniformly share
a popularity of 5.9%.
Fig. 5.3 plots the CDN overall blocking probability B(k) as a function of the channel

index k, for two different values of K and LRNC .
The results show that the less popular TV channels (higher channel index) have a

slightly lower probability to be blocked than the more popular channels, because the
user arrival rate decreases slower than the user leaving rate, with increasing channel
index k. Furthermore, Fig. 5.3 indicates that for K = 12, a 2.5 Mbit/s bandwidth
between the RNC and the Base Station is enough to support a MobileTV service to
the customers with the end-to-end blocking probability around 1% for all TV channel
viewers. In addition, we can observe that the user’s request is more likely to be blocked if
there are more TV channels available (largerK), and this factor significantly affects the
overall quality. This is illustrated in Fig. 5.4, which illustrates the blocking probability
as a function of the number of available TV channels K for two different LRNC.
WhenK < 8, at LRNC = 2Mbit/s, the value of the blocking probability is negligible,

becauseK is smaller than the number of channels able to be transported simultaneously
in the link LRNC (i.e. K×v < LRNC). To maintain an acceptable user experience (with
the overall blocking probability less than 1% for instance), a maximum of 8 Mobile TV
channels can be provided in this case, however the maximum number of MobileTV
channels can be 11 if LRNC is dedicated to be 2.5 Mbit/s instead of 2 Mbit/s. If we
want to maintain a total service availability of 99.99% or higher, 9 MobileTV channels

62 CHAPTER 5. CDN: ANALYTICAL MODEL

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X: 12
Y: 0.01234

channel index

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

scenario1: K=12, LRNC=2Mbit/s

scenario2: K=50, LRNC=2Mbit/s

scenario3: K=12, LRNC=2.5Mbit/s

Figure 5.3: The overall blocking probablity as a function of the TV channel index
(channel 1 is the most popular TV channel), with CUE = 1 GBytes.

can be supported when LRNC = 2.5 Mbit/s.
With same configuration and parameter settings as shown in Table 5.1, we also

computed the mean unicast blocking probability E[Bu;i] as a function of the local cache
size at the end-user CUE, ranging from 1 MByte to 1 GBytes. We found that the mean
unicast blocking probability will decrease exponentially fast with the local cache size at
the end user. Moreover, we observe that if an end-user wants to successfully resume the
video stream after the pause with probability > 99%, his local cache size CUE should
be at least 16 MByte, and a local cache size of ≥ 31 MByte is enough to guarantee the
unicast service availability is larger than 99.99% after the pause. This easily matches
current mobile phone specifications and the rest storage capacity (if the user has more
than 31 MByte disk space at his mobile device) can support users’ possible multiple
pauses.

5.6 Summary and Conclusions

In this Chapter, a new blocking model for a hierarchical caching multimedia delivery
system is derived, inspired by related work on home gateway caching in [5]. Different
contributions to the blocking probability, namely multicast request blocking and unicast
request blocking, have been analyzed separately.
Our model allows to compute how many MobileTV channels can be supported for

the overall blocking probability not to exceed a certain threshold. Furthermore, we can
compute the required local cache size to assure that an end-user can successfully resume

5.6. SUMMARY AND CONCLUSIONS 63

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

X: 11
Y: 0.005022

The number of MobileTV channels

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

LRNC=2Mbit/s

LRNC=2.5Mbit/s

Figure 5.4: The overall blocking probablity as a function of the number of TV channels,
with CUE = 1 GBytes.

the streaming with a certain probability after the pause. Our results can be used not
only to analyze the blocking in existing stream caching systems, but also to predict the
system behavior. This may be helpful in the design of streaming systems.
Applying our model to a realistic MobileTV use case, we found that the number of

available TV channels strongly affects the overall quality. Apparently, the less popular
channels are still popular enough to end up with many unicast streams, and as such
annihilate the efficiency advantage we hoped to create by multicasting the popular
channels using a hierarchical caching architecture. When we increase the bandwidth
between RNC and the Base Station with 25%, the maximum amount of channels that
could be supported increased with 37.5% (with the cache sizes given in Table 5.1), and
the advantage of having a CDN then becomes significant. The mean unicast blocking
probability will decrease exponentially fast with the local cache size at the end user. To
guarantee an availability of a unicast stream after pausing of more than 99.99%, for a
network with the parameters of Table 5.1, the end user needs a local cache of only 31
MBytes or more at their device for this service. This requirement is easily matched by
today’s mobile phones.
Our model can also be adapted and dimensioned to scenarios with higher link ca-

pacity (such as foreseen for LTE networks) and correspondingly more (HD)TV channels
can then be supported.

64 CHAPTER 5. CDN: ANALYTICAL MODEL

Part II

Video-on-Demand (VoD) Streaming
Systems

65

Chapter 6

P2PVoD Model

The traditional Server-Client Video-on-Demand (VoD) Streaming system is similar to
the unicast part of the CDN system mentioned in the previous Chapter. By removing
the multicast function, the unicast request blocking in the CDN system is equivalent to
the blocking which would appear in the Server-Client VoD Streaming system. However,
in this part, we will particularly focus on another VoD Streaming system using Peer-
to-Peer technology, called the P2PVoD system.
There has been a growing interest for Video-on-Demand (VoD) using Peer-to-Peer

(P2P) technology. Unlike centralized solutions for VoD Streaming services, P2P tech-
nology lets the clients distribute video content among themselves. In this Chapter, we
propose an analytical model for P2PVoD and we compare that model to a realistic
P2PVoD simulator. With our model, parameters that affect the system performance
can be observed, and the system stability can be investigated. Our model leads to de-
sign rules for achieving a good and stable system performance. This work as published
in [39] is, to our knowledge, the first analytical work to model mesh-based P2PVoD.

6.1 Introduction

In P2PTV users can access the available TV channels to view the content that is being
displayed at that particular point in time. In P2P Video-on-Demand (P2PVoD, e.g.
Tribler [14]), users arrive at arbitrary points in time into the system to watch a video
of their choice from its beginning. The question addressed in this Chapter is how
to use mesh-based P2P technology to provide P2PVoD services with good and stable
performance. To answer this question, we have developed a P2PVoD model1.
The rest of this Chapter is organized as follows: In Section 6.2, related work is

discussed. In Section 6.3, we develop our analytical model for P2PVoD. This model
aims to present the number of downloaders and seeds watching a video i and the average

1When referring to P2PVoD, we mean mesh-based P2PVoD.

67

68 CHAPTER 6. P2PVOD MODEL

downloading speed at a peer as a function of time. After linearizing this analytical model
in Section 6.4, we compare it with our simulation results in Section 6.5. Finally, we
conclude the Chapter in Section 6.6.

6.2 Related work

Guo et al. [27] and Qiu et al. [40] model mesh-based P2P file sharing analytically and
present a performance study combined with extensive measurements. In our work, we
adopt an approach similar to [27] and [40] to explore the performance of mesh-based
P2PVoD.
Kumar et al. [41] proposed a fluid model for mesh-based P2PTV, which has only

one seed. Lu et al. [19] proposed a mesh-based model for P2PTV and compared its
blocking to that of IPTV. However, the models in [41] and [19] are not applicable to
P2PVoD.
Some research works (e.g., [42], [43]) target mesh-based P2PVoD, but only use

simulations to analyze which kind of chunk-scheduling method can achieve the best
performance. The proposed system by Chi et al. [44] was evaluated with the help of
analytical models, but what they analyzed is tree-based P2PVoD [45], not mesh-based
P2PVoD.
Prior to our work, an analytical model of mesh-based P2PVoD seemed missing.

6.3 A general fluid model for P2PVoD

Before modeling and analyzing P2PVoD, its basic mechanism and characteristics are
addressed in order to better understand the behavior of the P2PVoD system. The
content of P2PVoD is a video lasting a fixed amount of time. The video in P2PVoD
can be divided into chunks. Each video has a unique ID, e.g. i. All chunks of video i
can be found at the seeds. The distribution of video i starts with one initial seed, the
original video i content provider.
A peer arrives at arbitrary points in time into the system to watch video i from

its beginning. In our model, each P2PVoD peer stores the video i’s content on his
computer until he stops viewing this video. Thus, once a peer obtains a chunk, he
makes the chunk available for downloading by other peers until he leaves.
We refer to the peer who is still downloading as “downloader” and refer to the peer

who already finished the download, but is still viewing the video as “seed.” A peer joins
the system as a downloader and contacts other peers2 in order to download chunks of

2A new peer will choose some other peers who are also watching this video to form a neighbor group.
Within this group, he can download what he needs from other peers based on the chunk availability
information.

6.3. A GENERAL FLUID MODEL FOR P2PVOD 69

video i. After a prebuffering period, the peer starts the playback and from then on
the video content is displayed, while at the same time the near-future video content
is downloaded. After the peer has finished downloading the whole video file, he will
become a seed until he departs.
In our P2PVoD model, there are two kinds of peer departures. One of them is the

random departure and the other is the definite departure. A downloader may leave the
network randomly at rate θi before the download is completed (e.g., when he feels that
the video is boring). Even though a peer becomes a seed, he may still be viewing the
video. Hence, a seed may leave the network randomly at a rate of θi before the video
playback has completed. Nevertheless, the seed will definitely leave after he has viewed
the video, with definite seed leaving rate γi(t) (we can consider 1/γi(t) to be the seed
serving time, see Fig. 6.1).
A peer generally obtains video chunks in playback order. Hence, a peer has to

download the near-future video chunks as high priority within a downloading time
limit.
In our P2PVoD network, beside seeds who will definitely upload data, a downloader

who has not finished downloading yet can also upload data to other downloaders. The
number of downloaders at t is xi(t) and the number of seeds at t is yi(t). A downloader
has probability ηi(t) to be used for sharing his content with others. Based on our
simulations, the value of ηi(t) is approaching 1 except for the first few seconds of the
system. Hence, we can simplify the model by setting ηi(t) = 1.
We list the symbols, which will be used in our P2PVoD model, in Table 6.1.

Table 6.1: Symbols
v: Video playback rate (Mbit/s).
Li: The length (in seconds) of video i.
λi(t): Peers’ arrival rate for video i at time t.
θi: Peer’s random leaving rate from video i.
γi(t): Seed’s definite leaving rate. γi(t) =

1
seed serving time .

xi(t): No. of downloaders in the video i system at t.
yi(t): No. of seeds in the video i system at t.
bwos: The upload rate of the original source provider.
bwup: Avg. upload rate at a peer for video delivery.
bwdown: Max download rate of a peer for video delivery.
ui(t): Avg. download rate of a peer at t in video i system.
Ti(t): Time a peer needs for downloading the video i at t.
τ i: The time interval from the time that video i appeared to the time that the first
seed appears in the system.

70 CHAPTER 6. P2PVOD MODEL

6.3.1 Model description

Our analysis of mesh-based P2PVoD can be considered to be a worst-case study. We do
not consider any extra complex strategies (like peer selection, incentive management,
failure management, chunk scheduling, etc.). We use a fluid model to compute the
time-dependent average number of downloaders and seeds in system i. Hence, we do
not compute any fluctuations around the average.
We will show that our general P2PVoD model leads to a non-linear system. Con-

sequently, we shall analyze which factors cause this non-linearity such that we might
redesign our P2PVoD system to become linear in all conditions.
In the following, we introduce ordinary differential equations to express our fluid

model in general.
The total uploading rate of the system can be expressed asmin{bwdownxi(t), bwup(xi(t)+

yi(t)) + bwos}, where bwdown is the download rate upperbound for video delivery; bwup

is the average upload rate at a peer for video delivery; bwos is the upload rate of the
original source provider (we assume only one original source provider for one video);
xi(t) and yi(t) respectively represent the number of downloaders and seeds for video
i at time t. If there is enough downloading bandwidth, the total uploading rate of
the system reduces to bwup(xi(t) + yi(t)) + bwos. At time t, the overall download-
ing rate related to video i is equal to the overall uploading rate related to video i:
ui(t)xi(t) = min{bwdownxi(t), bwup(xi(t)+ yi(t))+ bwos}. Hence, we express the average
download rate ui(t) as

ui(t) =
min{bwdownxi(t), bwup(xi(t) + yi(t)) + bwos}

xi(t)
(6.1)

In order to analyze the system performance for video i, we need to calculate ui(t).
In order to obtain ui(t), we should first get the values of xi(t) and yi(t), which can be
obtained by solving Eqs. (6.2) to (6.5), explained below.
Each peer joins the P2PVoD system as a downloader. After finishing the download,

a downloader will become a seed. At time t, the total downloading rate ui(t)xi(t)
(Mbit/s) divided by the length of the video Liv (Mbits) can be considered as the
rate at which downloaders become seeds. Continuing with this idea, the downloaders’
generating rate dxi(t)

dt
should be equal to the downloaders’ arrival rate λi(t) minus the

downloaders’ leaving rate θixi(t) and minus the rate of downloaders becoming seeds
ui(t)
Liv

xi(t).

dxi(t)

dt
= λi(t)− θixi(t)−

min{bwdownxi(t), bwup(xi(t)+yi(t))+bwos}
Liv

(6.2)

In our fluid model, the peer arrival process can be any kind of process. For simplicity,
we consider the average arrival rate as a constant value, λi(t) = λi.

6.3. A GENERAL FLUID MODEL FOR P2PVOD 71

The seeds’ generating rate dyi(t)
dt

should be equal to the rate of downloaders becoming
seeds ui(t)

Liv
xi(t) minus the seeds’ leaving rate (θi + γi(t))yi(t). Thus,

dyi(t)

dt
=
min{bwdownxi(t), bwup(xi(t)+yi(t))+bwos}

Liv
− (θi + γi(t))yi(t), (6.3)

Eqs. (6.2) and (6.3) show that there still is one unknown variable: the seed definite
departure rate γi(t). We deduce γi(t) below.
If we make a peer (seed) depart as soon as the display ends3, our P2PVoD system is

possibly non-linear, where the seed’s definite departure rate γi(t) depends on xi(t) and
yi(t).
We obtained the equations of γi(t) and Ti(t) based on Fig. 6.1. When a peer

finishes downloading the video, it will become a seed until the video finishes and the
peer departs. If a peer downloads the data very fast (high downloading speed), this
peer will have a longer seed service time. The service time of a seed at time t, regardless
of the peer arbitrary departures during the viewing, is equal to 1/γi(t) = Li + Bu−
Ti(t). For a given peer, the downloading time Ti(t) times the downloading rate ui(t) is
equal to the video size Liv.

Li

Playback rate

Bu

Number
of chunks

1/ ()i tγ

Downloading
Speed

Ti(t)

Download
ends

Display
ends

As downloader As seed

timeLi

Playback rate

Bu

Number
of chunks

1/ ()i tγ

Downloading
Speed

Ti(t)

Download
ends

Display
ends

As downloader As seed

time

Figure 6.1: A peer U changes from a downloader status to a seed status.

When assuming that a peer definitely departs as soon as the display ends, we obtain

γi(t) =
1

Li +Bu − Ti(t)
, (6.4)

3The seed serving time depends on the average download time, which is determined by the number
of downloaders and seeds in the system.

72 CHAPTER 6. P2PVOD MODEL

where the downloading time equals

Ti(t) = max

½
Liv

bwdown
,

xi(t)Liv

bwup(xi(t) + yi(t)) + bwos

¾
, (6.5)

Eqs. (6.4) and (6.5) indicate that Ti(t) may depend on xi(t) and yi(t), while γi(t)
depends on Ti(t); thus γi(t) depends on xi(t) and yi(t). Eq. (6.3) shows that yi(t)
depends on γi(t). Thus, when the download capacity is large, the seed definite leaving
rate γi(t) depends on xi(t) and yi(t), making xi(t) and yi(t) non-linear.
After having introduced the general idea of how to use differential equations to

model a P2PVoD system, we are going to analyze four phases of the system: Start-up
phase, Seed Appearance (SA) phase, Seed Departure (SD) phase, and Steady-state.

6.3.2 Start-up phase (0 ≤ t < τ i)

The system starts with one original source provider. Thus, the initial number of down-
loaders is xi(0) = 0. We use yi(t) to express the number of seeds in the system at time
t. Here, yi(t) excludes the original source provider and yi(t) = 0 when 0 ≤ t < τ i. The
number of seeds in the system stays zero until a peer finishes downloading the whole
video file and becomes the first seed. At the very beginning phase of the video i system,
0 ≤ t < τ i, the first downloader is able to download video content with the download
rate of ui(t) and τ i = Liv/ui(t).
We define the Start-up phase as the time interval between the availability of the

video and the appearance of the first seed:

0 ≤ t < τ i

⎧⎪⎨⎪⎩
dxi(t)
dt

= λi − θixi(t),
yi(t) = 0,

ui(t) =
bwupxi(t)+bwos

xi(t)
≈ bwup

6.3.3 Seed Appearance phase (τ i ≤ t < Li)

We assume that all peers are able to finish the download before the display ends. We
define the SA phase as the time interval between the appearance of the first seed and
the definite departure of the first seed. In this phase, no definite departures of seeds
occur and no videos are released.
Thus, Eqs. (6.2) and (6.3) are simplified with γi(t)=0.

6.3.4 Seed Departure phase (t ≥ Li)

After the SA phase, the system enters the so-called SD phase (t ≥ Li). We define the
SD phase as the time interval between the departure of the first seed to the start of
steady-state.

6.3. A GENERAL FLUID MODEL FOR P2PVOD 73

In this phase, the seed’s definite leaving rate γi(t) is not equal to zero anymore.
Eqs. (6.4) and (6.5) show that the value of γi(t) depends on Ti(t), which has differ-
ent expressions under different conditions and which depends on xi(t) and yi(t) when
Liv

bwdown
< xi(t)Liv

bwup(xi(t)+yi(t))+bwos
.

The conditions referred to above will be analyzed in Section 6.3.5 on the steady-
state. However, the conditions deduced for the steady-state can also be used to analyze
the SD phase, when we consider the SD phase (varying with time t) as built-up by
many quasi-steady states, each of which is lasting a unit (e.g., 1 second) of time. We
can analyze the SD phase at different time points varying around different equilibrium
points {x̄i, ȳi} deduced in Section 6.3.5 with different values of γi.
In Section 6.5.1, we have used Matlab to compute the results of xi(t) and yi(t)

based on the Eqs. (6.2) to (6.5) and the various conditions presented in the following
section. The conditions relate to the value of γi and the condition that either the upload
bandwidth or the download bandwidth is the constraint4.

6.3.5 Steady-state

Analogous to the steady-state analysis for P2P file sharing in [40], we can find expres-
sions for our P2PVoD model.
In steady-state, nothing varies with time t. Hence, Eqs. (6.2) and (6.3) become

λi − θix̄i −min{
bwdownx̄i

Liv
,
bwup(x̄i + ȳi) + bwos

Liv
} = 0

min{bwdownx̄i
Liv

,
bwup(x̄i + ȳi) + bwos

Liv
}− (θi + γi)ȳi = 0

where x̄i = lim
t→∞

xi(t) and ȳi = lim
t→∞

yi(t) are the equilibrium values of xi(t) and yi(t).

1) We can solve these equations if bwdownx̄i
Liv

≤ bwup(x̄i+ȳi)+bwos
Liv

(the download band-
width is the constraint) as

x̄i =
λi

bwdown
Liv

+ θi
(6.6)

ȳi =
λi

(γi + θi)(1 +
θiLiv
bwdown

)
(6.7)

where γi =
1

Li+Bu−(Liv/bwdown) .

With the expressions of x̄i and ȳi, the assumption that bwdownx̄i
Liv

≤ bwup(x̄i+ȳi)+bwos
Liv

amounts to Liv
bwdown

≥
λiLiv−(

λibwup
γi

+bwos)

λibwup+θibwos
, which is equivalent to

4Here, the download bandwidth is the constraint stands for bwdownxi(t) ≤ bwup(xi(t) + yi(t)) +
bwos, not bwdown ≤ bwup. Accordingly, the upload bandwidth is the constraint means bwdownxi(t) ≥
bwup(xi(t) + yi(t)) + bwos, not bwdown ≥ bwup.

74 CHAPTER 6. P2PVOD MODEL

γi ≤
λibwup

λiLiv − bwos − Liv(λibwup+θibwos)
bwdown

− θi (6.8)

Thus, when γi ≤
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi, we use (6.6) and (6.7) to express

the number of downloaders and seeds in steady state. And in this case, the download
bandwidth per peer is fully used in steady state, with ui = bwdown.
2) On the other hand, if bwdownx̄i

Liv
> bwup(x̄i+ȳi)+bwos

Liv
(the upload bandwidth is the

constraint), we obtain

x̄i =
λiθiLiv + λiγiLiv − bwupλi − bwosθi − bwosγi

S
(6.9)

ȳi =
λibwup + bwosθi

S
(6.10)

where S = bwupγi + θiγiLiv + θ2iLiv, γi =
1

Li+Bu−(Liv/ui) and ui =
bwup(x̄i+ȳi)+bwos

x̄i
.

With the expressions of x̄i and ȳi above, the assumption that bwdownx̄i
Liv

> bwup(x̄i+ȳi)+bwos
Liv

can also be expressed as 0 < Liv
bwdown

<
λiLiv−(

λibwup
γi+θi

+bwos)

λibwup+θibwos
.

Eqs. (6.9) and (6.10) should be used only when λiLiv >
λibwup
γi+θi

+bwos and if Liv
bwdown

<

λiLiv−(
λibwup
γi+θi

+bwos)

λibwup+θibwos
, which is equivalent to

γi >
λibwup

λiLiv − bwos − Liv(λibwup+θibwos)
bwdown

− θi

Thus, when γi >
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi, we use (6.9) and (6.10) to express

the number of downloaders and seeds in steady state.
This analysis shows that the characteristics of the seed’s definite departure rate γi(t)

directly determine whether the system equations are linear or not. The downloading
time of the whole file Ti(t) =

Liv
bwdown

in (6.5) leads to γi(t), which is independent of

xi(t) and yi(t), resulting in linear system equations; while Ti(t) =
xi(t)Liv

bwup(xi(t)+yi(t))+bwos
in

(6.5) leads to non-linear system equations. An example of the issues brought by non-
linear equations can refer to Section 6.5.1. In the following section, we will redesign our
P2PVoD model, such that it becomes linear in all conditions. If the conditions (e.g.,
the bandwidth of end users or the user behavior) cannot be controlled, it is important
to linearize the model to achieve a stable system performance in all conditions.
For the Start-up phase and Seed Appearance phase, there is no effect of γi(t),

because γi(t) = 0. These two phases always lead to linear equations. However, the Seed
Departure phase and the steady state need linearization, because γi(t) may depend on
xi(t) and yi(t) in these two phases.

6.4. LINEARIZATION OF THE P2PVOD MODEL 75

6.4 Linearization of the P2PVoD model

In order to obtain a linear system under all conditions, the seed serving time 1
γi(t)

must
be constant (i.e., a peer departs a fixed amount of time after his download finishes5).
In other words, regardless of whether peers can download fast enough, we will let peers
finish downloading the whole video and continue to share it for a while. We can design
P2PVoD applications to obey this rule. But, how long should the video content be kept
and shared after the download ends (what threshold should the value of 1

γi
satisfy)?

Intuitively, the longer peers’ content is shared, the better for the whole system, but the
more hard disk space and upload bandwidth resources are used at each peer.
Hence, we want the value of 1

γi
to be as small as possible, but with the prerequisite

that it is large enough to compensate the performance of the whole system. In the
following, we analyze the system behavior in different conditions to deduce the best
value for the parameter γi.
The linear differential equations can be expressed as

dZ(t)

dt
= AjZ(t) + bj, j = 1, 2 (6.11)

where Z(t) =
∙
xi(t)
yi(t)

¸
.

There are two possibilities (j = 1 and j = 2) based on the conditions deduced in
Section 6.3.5:

1. Case j = 1, where γi ≤
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi:

Whether the system reaches a steady state is only determined by bwdown, even
when the download bandwidth is large:

A1 =

"
−(θi + bwdown

Liv
) 0

bwdown
Liv

−(θi + γi)

#
and

b1 =

∙
λi
0

¸
The eigenvalues [46] of A1 are μ1 = −(θi+ bwdown

Liv
) and μ2 = −(θi+ γi), which are

both negative.

Since both eigenvalues are negative, we have a stable system that converges ex-
ponentially fast in t to the steady state.

(a) Steady state (t→∞):
5It will be no problem for a P2PVoD developer to achieve this (just make the video content stored

at a seed stop being shared, even when he is still viewing the video).

76 CHAPTER 6. P2PVOD MODEL∙
x̄i
ȳi

¸
= λi

(θi+
bwdown
Liv

)(θi+γi)

∙
(θi + γi)
bwdown
Liv

¸
, which gives the same6 expressions as

(6.6) and (6.7).

(b) Sensitivity of eigenvalues:
A larger value of the normalized download upperbound rate bwdown

Liv
and a

larger value of γi, under the condition that γi ≤
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

−
θi, will cause the eigenvalues to have larger negative values, which on its turn
will cause the number of downloaders and seeds xi(t) and yi(t) to reach a
steady-state faster.

2. Case j = 2, where γi >
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi:

A2 =

"
−(θi + bwup

Liv
) − bwup

Liv
bwup
Liv

bwup
Liv
− (θi + γi)

#
and b2 =

∙
λi − bwos

Liv
bwos
Liv

¸
The eigenvalues of A2 are

μ1 =
−(2θi+γi)+ γ2i−4

bwup
Liv

γi

2
and μ2 =

−(2θi+γi)− γ2i−4
bwup
Liv

γi

2
. Although complex,

both eigenvalues always have negative real parts, which again shows that the
system is stable.

(a) Steady state (t→∞):∙
x̄i
ȳi

¸
= 1

(θi+
bwup
Liv

)(θi+γi−
bwup
Liv

)+(
bwup
Liv

)2"
(θi + γi − bwup

Liv
)(λi − bwos

Liv
)− bwupbwos

(Liv)2
bwup
Liv
(λi − bwos

Liv
) + bwos

Liv
(θi +

bwup
Liv
)

#
, which is the same as Eqs. (6.9)

and (6.10).

(b) Sensitivity of eigenvalues:
Given γi >

λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi, a larger value of γi will make the

system reach the steady state faster.

On the other hand, if the download bandwidth is the constraint, the model equa-
tion changes to be the same as for case 1.

Based on the formulae deduced above, we can examine the effect of some parameters
on the system behavior:
1) What is the effect of bwos?

6Under the condition that γi is independent of x̄i and ȳi.

6.5. EXPERIMENTS 77

The upload bandwidth of the original source provider bwos does not affect the steady-
state at all in case j = 1. In case j = 2, the larger the bwos, the less downloaders and
the more seeds in steady state (see Eqs. (6.9) and (6.10)), which leads to a larger
average download rate ui(t) according to Eq. (6.1). Hence, a larger bwos is helpful
for the system performance when the average seed serving time is small and the peers’
upload bandwidth is limited.
2) What is the effect of bwup?
Assuming all peers are able to finish the download before the display ends, if we

change the average upload bandwidth of the normal peers bwup in case j = 1, the
number of downloaders and seeds in steady state will not change. In case j = 2, the
larger the bwup, the less downloaders and the more seeds in steady state if γi < λi
(see Eqs. (6.9) and (6.10)). Hence, a larger bwup is helpful for the system performance
when the average seed serving time is small and the peers’ upload bandwidth is limited.
When peers cannot finish the download before the planned display ending time, the
effect of bwup will be discussed in Section 7.1.
3) What is the effect of the peer arrival rate λi?
Assuming θi = 0 and ignoring the comparably small bwos

Liv
, if we double the peer

arrival rate λi, we can find that the number of downloaders and seeds in steady state
will double in all conditions. Hence, we could normalize our system equations in steady
state, with the number of peers divided by λi.
4) What is the effect of the seed serving time 1/γi?
If we consider the two conditions individually, a larger value of the seed definite

departure rate γi will make the system reach the steady state faster. However, if we
consider the two conditions simultaneously, our best choice is to set the value of γi
close to, but not exceeding, λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi. Hence, a peer should stay

at least 1/(λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

− θi) seconds after the download finishes. As such

we will have a stable system that not only converges faster to the steady-state, but
also contains a larger number of seeds. For further analyzing the effect of this factor,
detailed experiment results will be shown in Section 6.5.2.

6.5 Experiments

In this section, we compare our analytical results with our simulation results, under the
same conditions.
For the computational part, we can feed the parameters into our fluid model and

solve the ordinary differential equations with Matlab. We set the parameters as shown
in Table 6.2.
For the simulation part, we have set up a discrete-event simulator. The transmission

of chunks in the simulator is discrete, as opposed to our fluid model. A policy is therefore

78 CHAPTER 6. P2PVOD MODEL

Table 6.2: Value of parameters in experiments
v = 0.5Mbit/s (for a video with TV quality),
bwup = 0.9Mbit/s,
bwos = 4Mbit/s,
bwdown = 10Mbit/s,
λi = 1, Bu = 10 sec,
Li = 5min (e.g., a short YouTube-like video clip).

needed to determine for each peer which chunk it will download from which neighbor.
The chunks are transferred from peer i to a neighbor j as follows. Peer i keeps its
neighbors informed about the chunks it has finished downloading. Peer j can request
these chunks and each request is granted by appending the chunk to the send buffer
of peer i. To increase the chunk availability, while maintaining VoD behavior, we let
peers download chunks at random within a window of Bu seconds starting from the
first chunk that has not yet been downloaded. Since playback starts Bu seconds after
the download starts, a peer typically notices no difference due to this change in policy.
Each simulation starts with one initial seed, and the peers arrive according to a

Poisson process. The different departure processes will be explained in Section 6.5.1
and 6.5.2 individually. The simulation results are averaged over 20 runs. We found the
average bandwidth utilization rate of a peer (upload rate/upload capacity) to be equal
to 80% on average, while the bandwidth utilization rate of the original source provider
is nearly 1. Hence, in order to be consistent with the settings in our fluid model, we set
the original source provider’s upload capacity to 4 Mbit/s, and a normal peer’s upload
capacity to 0.9

80%
= 1.1 Mbit/s. The other parameters are equal to the fluid model.

Figs. 6.2, 6.3 and 6.4 show the number of downloaders and seeds, as well as the
average download rate as a function of time t. We can imagine that the more popular
video i is, the more downloaders and seeds there will be in the system.

6.5.1 General non-linear system

Peers arrive at a rate of λi and depart only when the playback is finished (θi = 0). Each
peer stores the video i’s content until this video ends displaying (γi(t) depends on xi(t)
and yi(t)).
Fig. 6.2 illustrates that, since the video was made available, the number of seeds

increased until it reached a steady state, while the number of downloaders increased at
first and then decreased suddenly into a steady state. The average downloading rate at
a peer is small in the start-up phase and reaches its maximum in the steady state.
Comparing the analytical results and simulation results, they closely match except

for the time of the start-up phase and SA phase. That is because we let the average
download rate in start-up phase ui(0 ≤ t ≤ τ i) be roughly equal to bwup in our math-

6.5. EXPERIMENTS 79

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

time (s)

nu
m

be
r o

f p
ee

rs

downloaders (analysis)
downloaders (simulation)
seeds (analysis)
seeds (simulation)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

time (s)

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

(M
bi

t/s
)

ave. download rate (analysis)
ave. download rate (simulation)

Figure 6.2: The number of downloaders xi(t) and seeds yi(t) (left) and the average
download speed per peer ui(t) (right) as a function of time in a non-linear video i
system.

ematical model, while in the real case (in simulation), ui(0 ≤ t ≤ τ i) = bwup +
bwos
λi(t)t

>

bwup, which leads to a smaller τ i = Liv/ui(t). Correspondingly, the peak number of
downloaders in the start-up phase in the simulation was a little bit smaller than the
one in the mathematical model. Nevertheless, the peak number of downloaders and
seeds in our simulations, as well as the steady states, still closely match the analytical
results. Our fluid model can thus be used to predict these numbers, which can then
be used in the design of P2PVoD algorithms. Based on the knowledge of the number
of downloaders and seeds in both start-up phase and steady state, the service operator
can predict the average download rate at the end user to see whether it is enough for a
smooth display. If it is not, maybe some helpers need to be added into the system (see
Chapter 7).
Until seeds actually depart (before SD phase), the number of seeds plus the number

of downloaders can be derived from the arrival rate and has to be equal in both the
analysis and simulations. Then, in the SA phase, the differences between the results
for the seeds and the downloaders are equal, which can be observed in Fig. 6.2.
The differences in download speed are due to the same reason. Our simulation tracks

the average download speed with a history of 10 seconds, and combined with a constant
arrival of peers with an initial download speed of 0. Thus, the average download speed
is lower in the simulation than is predicted by the fluid model.
Other differences between the analytical and simulation results can be caused by the

possible peer correlation and the flexible and stochastic P2P network under simulation.
This includes slower, but more fluent, transitions between states when compared to the
fluid model.

80 CHAPTER 6. P2PVOD MODEL

With our settings above, this non-linear system seems to perform very well. How-
ever, non-linear systems might be unstable. For instance, if too many ADSL peers are
watching this video i (if we change bwup = 0.9Mbit/s to bwup = 0.4Mbit/s), on average
there will be no peers able to finish the download before the display ends. In this case,
there will be no seeds and the average download rate will be always smaller than the
playback rate, which causes blocking everywhere in this P2PVoD system (including all
4 phases). However, the linearized system can mitigate the problem and make seeds
appear in steady state, which further leads to the fact that the average download rate
can be large enough in steady state at least. The linearized system however still has
some limitations which will be specified in Section 7.1.

6.5.2 Linearized system

We use the same values for our parameters, except for the value of γi. Because
λibwup

λiLiv−bwos ≈ 0.00616, we set:
(1) γi = 0.006 (which can be considered the threshold); Each user keeps his stored

video for 1
0.006

≈ 167 seconds after he finishes the download, no matter how fast he
downloaded it (see Fig. 6.3).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

time (s)

nu
m

be
r o

f p
ee

rs

downloaders (analysis)
downloaders (simulation)
seeds (analysis)
seeds (simulation)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

time (s)

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

(M
bi

t/s
)

ave. download rate (analysis)
ave. download rate (simulation)

Figure 6.3: The number of downloaders xi(t) and seeds yi(t) (left) and the average
download speed per peer ui(t) (right) as a function of time in a linearized system with
γi=0.006.

We can see that this linear case with γi <
λibwup

λiLiv−bwos has a similar system performance
as its non-linear counterpart, because the average download rate at a peer is similar,
even though the number of seeds in this case is smaller in steady state. The difference
between the analytical results and the simulation results are similar to those in the
non-linear system.

6.5. EXPERIMENTS 81

Furthermore, once γi <
λibwup

λiLiv−bwos , the average download rate will always be maxi-
mized. Therefore keeping the video at least λiLiv−bwos

λibwup
seconds after becoming a seed is

indeed helpful to lead to a better system performance. Thus, the threshold of λiLiv−bwos
λibwup

is meaningful for P2PVoD application developers.

(2) γi = 0.008; Each user keeps his stored video for 1
0.008

= 125 seconds after he
finishes the download. The situation of the linear system in this case is shown in Fig.
6.4.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

time (s)

nu
m

be
r o

f p
ee

rs

downloaders (analysis)
downloaders (simulation)
seeds (analysis)
seeds (simulation)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

time (s)

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

(M
bi

t/s
)

ave. download rate (analysis)
ave. download rate (simulation)

Figure 6.4: The number of downloaders xi(t) and seeds yi(t) (left) and the average
download speed per peer ui(t) (right) as a function of time in a linearized system with
γi=0.008.

In this case with γi >
λibwup

λiLiv−bwos , not only the number of seeds, but also the average
download rate is smaller than the cases before, which leads to worse system performance.

We can observe from both analytical results and simulation results that the average
download rate is not stable any more, but decreases sharply at around 400 seconds; even
though it rebounds after that, it has a smaller value than in the previous cases. In Fig.
6.4, because the peers cannot download at full speed after 400 seconds in simulations, the
peer correlation becomes critical for the downloaders to obtain the desired chunks. As
a result, the differences between the fluid model and the discrete simulations increase.
Nevertheless, the trends of the simulation results and the analytical results remain
similar.

For both case studies, the lowest value of the avg. download rate appears in the
Start-up phase (first 167 seconds), but it is still larger than the video playback rate so
that the whole system performs well and no blocking will be experienced by end users.

82 CHAPTER 6. P2PVOD MODEL

6.6 Conclusion

In this Chapter, we have modeled mesh-based P2PVoD. This model, which is based
on current P2PVoD applications, leads to non-linear system equations. In a non-linear
model, small perturbations of the input may lead to large (undesirable) changes in the
behavior of the system. Consequently, we have provided rules for a P2PVoD application
that ascertain a linear behavior. A critical factor is the seed definite leaving rate γi. The
best choice for P2PVoD application developers is to set it close to, but not exceeding,
the value of λibwup

λiLiv−bwos − θi.
With our model, parameters that affect the system performance were observed and

analyzed. The results from realistic simulations match well with our analytical model.
Our model can thus be used to predict the system behavior, which can aid in the design
of P2PVoD systems.

Chapter 7

P2PVoD system with helpers

The idea of utilizing helpers’ free upload capacity was first introduced by Wong [47].
Some idle users with spare upload capacity who are not interested in any particular file
can be utilized as helpers to significantly improve the download speed beyond what can
be achieved in a conventional BitTorrent network. Helpers represent a rich resource
of untapped upload bandwidth which can be exploited for increasing the total system
upload bandwidth and hence easing the bottleneck. The usage of helpers in BitTorrent-
like file-sharing systems was discussed in [48]. Here, we discuss the usage of helpers in
P2PVoD systems.

7.1 Limitations of P2PVoD system without helpers

In the previous Chapter, we did not find any problems in the system because we set
parameters to v < bwup. The reason behind this will be explained and analyzed in
Appendix A.2. However, what will happen if v > bwup?
For example, if too many ADSL peers are watching the video i (e.g., if we change

bwup = 0.9 Mbit/s to bwup = 0.4 Mbit/s < v in our case studies), or if a HDTV video
is broadcasted (if we change v = 0.5 Mbit/s to 1 Mbit/s > bwup in our case studies),
will the system still perform well? We found that the system will indeed face problems,
which will be discussed in the following.

7.1.1 Start-up phase problem

Here, the peers’ bad performance in the start-up phase when v > bwup is referred to as
the start-up phase problem.
In the start-up phase of the system (0 ≤ t < τ i, where τ i ≈ Liv

bwup
> Li), peers cannot

download the video data in time before the playback deadline and the whole system
will experience bad performance.

83

84 CHAPTER 7. P2PVOD SYSTEM WITH HELPERS

The system behavior and performance when v > bwup can be further seen in the
following case study.
We let v = 1 Mbit/s > bwup and γi = 0.0033 <

λibwup
λiLiv−bwos−(Livλibwup/bwdown) , but keep

other parameters the same as in Section 6.5.2. We can see from Fig. 7.1 that during
the Start-up phase (first 340 seconds, much longer than that in Fig. 6.3), the average
download speed at a peer ui(t) is smaller than the playback rate v, which means most
peers face video blocking in this case. But afterwards, more and more seeds appear and
stay in the system long enough (1

γi
≈ 303 seconds). In this way, the resources of the

system become larger so that in steady state the download bandwidth at peers can be
fully used and the whole system recovers and performs well.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

350

time (s)

nu
m

be
r o

f p
ee

rs

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

8

9

10

11

12

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

(M
bi

t/s
)

ave. download rate

downloaders
seeds

Figure 7.1: The number of downloaders xi(t) and seeds yi(t) and the average download
speed per peer ui(t) as a function of time in a linearized system with v = 1 Mbit/s
> bwup and γi=0.0033.

7.1.2 Burden on peers

When the network upload bandwidth resources are limited (e.g. v > bwup), peers have
to keep and share the video content stored at them for a long time even after finishing
viewing the video. In this case, the burden on a peer is quite large. More importantly,
it is hard to achieve in reality. If a peer decides to leave from the system after the
video ends (frequently happens in reality), but its seed serving time is still smaller than
λiLiv−bwos−

Livλibwup
bwdown

λibwup
seconds, the software developer has no good way to continue making

7.2. SOLUTION: ADDING HELPERS INTO THE SYSTEM 85

this peer share its content any more.

7.2 Solution: Adding helpers into the system

We propose a new system with helpers. We will explain how to define and set the
helpers’ behavior so that the start-up phase problem can be solved and at the same
time the burden (hard disk and bandwidth usage) at each normal peer can be alleviated
to some extent by adding helpers into the system.
In this system with helpers, each helper (e.g. a peer who is active in the system

but not viewing the video, and possibly with larger upload capacity) only downloads
a small number of useful chunks of the file and actively searches for peers who do not
possess these chunks to upload to.
Before a helper finishes his downloading, he is a helper downloader. Once he finishes

the download, he becomes a helper seed. We propose that a helper stops downloading
after obtaining a small size of the file, Ch (Mbits).
A helper downloader, on one hand, can contribute his upload bandwidth to the

whole system; but on the other hand, he also costs the system resources to download
some video chunks from normal peers or other helpers or the original source provider. A
helper seed does not download any more, but uploads his video content to both helper
downloaders and normal peer downloaders.
A detailed strategy for helpers is further described in Appendix B.
The role and the behavior of normal peers in the system remains the same.
To analyze the system with helpers, besides the symbols listed in Table 6.1, we

introduce additional symbols in Table 7.1.

Table 7.1: Symbols for helpers
λhi : Helper downloaders’ arrival rate for video i.
θhi : Helper’s random leaving rate from video i.
γhi : Helper seed’s definite leaving rate from video i.
xhi (t): No. of helper downloaders in the video i system at t.
yhi (t): No. of helper seeds in the video i system at t.
bwh

up: Avg. upload rate at a helper for video delivery.
bwh

down: Max download rate of a helper downloader for video delivery.
uhi (t): Avg. download rate of a helper downloader at t in video i system.

In this system with helpers, we assume that when the normal peers’ upload band-
width is the constraint, the helpers’ upload bandwidth is also the constraint. If the
resources are not enough for normal peers, there are no extra resources for the helpers.
On the other hand, in the case that the overall upload rate resources are enough, we can

86 CHAPTER 7. P2PVOD SYSTEM WITH HELPERS

assume that when the helpers’ download bandwidth can be fully used, normal peers’
download bandwidth can also be fully used.
Hence, we take only two system situations into consideration: when the upload rate

resources are enough (the download bandwidth is the constraint for both normal peers
and helpers) or when the upload rate resources are limited (the upload bandwidth is
the constraint for both normal peers and helpers). Our system equations transform as
follows:

ui(t)xi(t) + uhi (t)x
h
i (t) = (7.1)

min{bwdownxi(t) + bwh
downx

h
i (t), bwup(xi(t)+yi(t))+bwos+bwh

up(x
h
i (t)+y

h
i (t))}

dxi(t)

dt
= λi − θixi(t)−

ui(t)xi(t)

Liv
(7.2)

dyi(t)

dt
=

ui(t)xi(t)

Liv
− γiyi(t) (7.3)

dxhi (t)

dt
= λhi − θhi x

h
i (t)−

uhi (t)x
h
i (t)

Ch
(7.4)

dyhi (t)

dt
=

uhi (t)x
h
i (t)

Ch
− γhi y

h
i (t) (7.5)

When the resources in the system are enough, ui(t)xi(t)+uhi (t)x
h
i (t) = bwdownxi(t)+

bwh
downx

h
i (t); while when the resources are limited, we have ui(t)xi(t) + uhi (t)x

h
i (t) =

bwup(xi(t)+yi(t))+bwos+bwh
up(x

h
i (t)+y

h
i (t)). If u

h
i (t) is given in our model (can be set

as a constant value smaller than bwh
down in the start-up phase of the system, and equal

to bwh
down in the steady state of the system, which will be discussed later), we can solve

the 5 system equations above to get out the 5 unknown parameters: xi(t), yi(t), ui(t),
xhi (t) and yhi (t).

7.2.1 Solving the Start-up phase problem when v > bwup

In order to let the average download speed at a peer be larger than his video playback
rate (ui(t) > v), we need to let

min{bwdownxi(t)+bwh
downx

h
i (t), bwup(xi(t)+yi(t))+ (7.6)

bwos + bwh
up(x

h
i (t) + yhi (t))}− uhi (t)x

h
i (t) > vxi(t)

In the start-up phase (0 ≤ t < τ i) of the system, we already knew that yi(t) =
0, xi(t) = λit and τ i =

Liv
ui(t)

, as described in Section 6.3.2. The number of helper
downloaders xhi (t) and the number of helper seeds y

h
i (t) can soon reach their steady

7.2. SOLUTION: ADDING HELPERS INTO THE SYSTEM 87

state when Ch is very small1, and we obtain the values of x̄hi and ȳhi in their steady
state by setting Eqs. (7.4) and (7.5) equal to 0.
On the other hand, because in the start-up phase of the system there are no seeds

purely helping the system, bwdown > v > bwup means that the peers’ upload bandwidth
is the constraint. Then, the helpers’ upload bandwidth is also the constraint.
Then, Eq. (7.6) changes to

bwupλit+ bwos + bwh
up

uhi (t)λ
h
i + λhiChγ

h
i

γhi u
h
i (t)

− λhiCh > vλit

We already discussed before that, when the helpers’ upload bandwidth is the con-
straint in the start-up phase of the system, we have uhi (t) < bwh

down. Hence, the condition
can be further expressed as

λhi >
(v − bwup)λit− bwos

bwh
up(

1
γhi
+ Ch

bwhdown
)− Ch

Furthermore, because t < τ i, τ i = Liv
ui(t)

and we suppose ui(t) > v, we have t < Li in
the Start-up phase.
Thus, to make sure ui(t) > v in the start-up phase of the system when v > bwup,

we can set the helper arrival rate λhi as a constant value which satisfies

λhi >
(v − bwup)λiLi − bwos

bwh
up(

1
γhi
+ Ch

bwhdown
)− Ch

(7.7)

We can deduce from condition (7.7) that:

• If helper seeds stay in the system longer (> 1
γhi
), less helpers are needed (< λhi).

Accordingly, a smaller value of 1
γhi
will lead to a larger value of λhi (t), which means

more helpers will be needed2.

By setting and balancing the helper arrival rate λhi and the time
1
γhi
helper seeds

stay in the system, we can make sure ui(t) > v and solve the normal peers’ bad
performance problem in the start-up phase of the system.

1The time interval of the helpers’ start-up phase is equal to Ch
uhi (t)

. The analysis in [48] states that
even with Ch ¿ Liv, the helpers’ efficiency in distributing a file is almost as good as if they have the
entire video file. Hence, Ch can be set ¿ Liv. Then, if the value of uhi (t) is not too small (u

h
i (t) is

not ¿ ui(t)), we have Ch
uhi (t)

< τ i and the very small value of Ch determines the short length of the
Start-up phase of helpers.

2This is reasonable because the shortage of network resources can be complemented by either
adding more helpers, each of which contributes for a shorter time; or adding less helpers, each of which
contributes for a longer time.

88 CHAPTER 7. P2PVOD SYSTEM WITH HELPERS

• If, we assume that (v−bwup)λiLi > bwos, which is easy to satisfy3. Then, in order
to have a positive value of λhi , we should satisfy:

bwh
up(

1

γhi
+

Ch

bwh
down

) > Ch (condition A)

On the other hand, we can also consider this problem from another angle. If
helpers are able to really help this system, overall they should upload more data
than they download. Then we can get:

bwh
up(

1

γhi
+

Ch

uhi (t)
) > Ch (condition B)

We know that once condition A is satisfied, condition B is satisfied.

Thus, the threshold of the helper seed serving time can be expressed as

1

γhi
>
(bwh

down − bwh
up)Ch

bwh
downbw

h
up

(7.8)

where bwh
down > bwh

up agrees with reality.

• Because in reality users do not usually stay in the system as helpers for too long,
1
γhi
should be set as small as possible and at the same time satisfy the prerequisite

of Eq. (7.8). Hence, we should make the Ch video content at a helper seed be

shared for at least, but close to, (bw
h
down−bwhup)Ch
bwhdownbw

h
up

seconds after his downloading of
Ch finishes.

Then, parameter λhi represents how many helpers are needed in the system, which
can be set based on Eq. (7.7) and parameter 1

γhi
means how long a helper should

continue to stay after his download ends, the value of which can be set based on Eq.
(7.8).
Within the start-up phase of the system, ui(t) can be expressed as

ui(t) = bwup +
bwos + λhi bw

h
up(

1
γhi
+ Ch

uhi (t)
)− λhiCh

λit

3Based on a measurement study (in the P2P streaming system PPLive), the peer arrival rate to a
movie λi is at least 0.2/s [2, Fig. 11].

7.2. SOLUTION: ADDING HELPERS INTO THE SYSTEM 89

7.2.2 Usefulness of helpers in Steady state

We analyzed how to set the parameters for helpers to improve the performance of the
start-up phase of the system in the previous section. In this section, we will discuss
how to set the normal peers’ parameters in steady state.
From the analysis in Section 6.3 we know that we can fully use the download band-

width and let the system performwell and stable by setting γi ≤
λibwup

λiLiv−bwos−
Liv(λibwup+θibwos)

bwdown

.

This condition can be reached by solving Liv
bwdown

≥
λiLiv−(

λibwup
γi

+bwos)

λibwup+θibwos
(see the analysis

of condition 1 in Section 6.3.5). Once Liv
bwdown

≥
λiLiv−(

λibwup
γi

+bwos)

λibwup+θibwos
, we will always have

system equations (6.6) and (6.7) in steady state.
Like the deduction for the system without helpers, we can deduce our new condition

for the system with helpers:
In steady state of the system, yi(t) is not equal to 0 and xi(t) is not equal to λit

anymore. As discussed in Section 7.2.1, when the normal peer equations (7.2) and (7.3)
reach the steady state, the helper equations (7.4) and (7.5) have already reached the
steady state.
Condition 1 in Section 6.3.5 becomes bwdownx̄i+bw

h
downx̄

h
i

Liv
≤ bwup(x̄i+ȳi)+bwos+bw

h
up(x̄

h
i +ȳ

h
i)

Liv
.

Based on a similar deduction process (see Appendix A.3), we can get the seed serving
time 1

γi
in the system with helpers as follows,

1

γi
≥ Q

λibwup
(7.9)

where Q = λiLiv+λhiCh− λhi Chbw
h
up

uhi (t)
− bwos− bwhupλ

h
i

γhi
− bwup

bwdown
(λiLiv− λhi Chbw

h
down

uhi (t)
+λhiCh).

The download bandwidth can be fully used in steady state once the value of γi
satisfies the condition (7.9).
We know that a larger value of γi will make the system reach the steady state faster,

so our best choice is to set the value of 1
γi
close to the right hand side of Eq. (7.9).

Comparable to Eq. (7.9) in the system with helpers, Eq. (6.8) gave the seed serving
time threshold in the system without helpers. In steady state, in which system the value
of 1

γi
is larger, and how much larger/smaller depends on the difference

D =

λhi Chbw
h
up

uhi (t)
+

bwhupλ
h
i

γhi
+ bwup

bwdown
λhiCh(1− bwhdown

uhi (t)
)− λhiCh

λibwup

We can input the value range of 1
γhi
in Section 7.2.1 into the expression of D and

we find that this difference value is larger than
λhi Chbw

h
up(

1

uh
i
(t)
− 1

bwh
down

)

λibwup
+

λhi Ch(1−
bwhdown
uh
i
(t)

)

λibwdown
,

90 CHAPTER 7. P2PVOD SYSTEM WITH HELPERS

which is equal to 0 in steady state4.
Hence, we can conclude that the seed serving time in the system without helpers

minus the seed serving time in the system with helpers is larger than 0. As a result, in
steady state when the download bandwidth can be fully used, each normal peer needs
to keep and share the video D seconds less on average when we add helpers into our
system.
Consequently, with adding helpers into the system, the value of 1

γi
will be smaller

so that the burden of each normal peer will be reduced in steady state. How much it
can be reduced depends on the value of D.

7.2.3 Case study of the system with helpers when v > bwup

We can feed the parameters into our mathematical model and solve the system Eqs.
(7.1) to (7.5). Comparable with Table 6.2 in Section 6.5, here we only list parameters
which are new or with changed values in Table 7.2.

Table 7.2: New value of parameters in this case study.
v = 1Mbit/s (for a video with HDTV quality),
bwh

up = 1.1Mbit/s,
bwh

down = 10Mbit/s,
Ch = 2Mbits (based on our helper policy we designed),
γhi = 0.5 (which satisfies condition (7.8)),
λhi = 62 (which satisfies condition (7.7)),
uhi (t) = 1Mbit/s in Start-up phase of the system;
uhi (t) = 10Mbit/s in Steady state of the system,
γi = 0 in Start-up phase;
γi = 0.0037 in Steady state (which satisfies condition (7.9))

In Table 7.2, the values of λhi and γ
h
i represent that much more helpers than the real

video viewers appear in this system within a certain time interval, but these helpers only
need to stay in the system to purely contribute for around 1

γhi
= 2 seconds. Besides,

γi = 0.0037 represents that a normal peer needs to serve the system as a seed for
1
γi
≈ 270 seconds. By adding helpers into the whole system, an average of 33 seconds

resource burden at each normal peer can be reduced in this case, compared to the
1
γi
≈ 303 seconds in the system without helpers (see Section 7.1). Nevertheless, there is

not much burden added to the helpers (only an extra 2 seconds burden will be added
to each helper in this case).

4This is because, once we can fully use the download bandwidth, Eq. (7.1) becomes ui(t)xi(t) +
uhi (t)x

h
i (t) = bwdownxi(t) + bwh

downx
h
i (t), where u

h
i (t) = bwh

down can be set in steady state and we also
have ui(t) = bwdown accordingly.

7.2. SOLUTION: ADDING HELPERS INTO THE SYSTEM 91

As discussed before, we can know from Section 7.2.1 and 7.2.2 that: 1) In the
Start-up phase of the whole system, the resources are limited and we use ui(t)xi(t) +
uhi (t)x

h
i (t) = bwup(xi(t)+yi(t))+bwos+bwh

up(x
h
i (t)+y

h
i (t)), where u

h
i (t) can be assumed

as a constant value; 2) In steady state of the whole system, the resources are enough
and we use ui(t)xi(t)+uhi (t)x

h
i (t) = bwdownxi(t)+bwh

downx
h
i (t), where u

h
i (t) can be equal

to bwh
down.

The situation of normal peers in the system with helpers in this case is shown in
Fig. 7.2.

0 500 1000 1500 2000
0

100

200

300

400

500

600

nu
m

be
r o

f p
ee

rs

0 500 1000 1500 2000
0

2

4

6

8

10

12

X: 300
Y: 1.409

time (s)

av
er

ag
e

do
w

nl
oa

d
sp

ee
d

pe
r p

ee
r (

M
bi

t/s
)

downloaders
seeds

ave. download rate

Figure 7.2: The number of downloaders xi(t) and seeds yi(t) and the average download
speed per peer ui(t) as a function of time in the linearized system with helpers when
v = 1 Mbit/s > bwup and γi=0.0037.

In this case study, besides the results shown in Fig. 7.2, we also obtained the results
regarding helpers: the number of helper downloaders and the number of helper seeds
in the Start-up phase both quickly (around 2 seconds) reach to 124; while in the steady
state, the number of helper downloaders is 13 and the number of helper seeds is 124.
We can observe from Fig. 7.2 that during the whole period, the average download

speed per peer ui(t) is at least 1.409Mbit/s, which means that we always have ui(t) > v
as long as the rules of setting parameters are followed.
Compared to the system with the same settings for our parameters, but without

helpers (shown in Fig. 7.1 in Section 7.1, where ui(t) < v in Start-up phase), adding
helpers into the system can indeed solve the Start-up phase problem of the system when
v > bwup. On the other hand, in the system with helpers, the burden on peers can be
much reduced without adding much burden to the helpers.

92 CHAPTER 7. P2PVOD SYSTEM WITH HELPERS

7.3 Conclusions

The model analyzed in Chapter 6 had some limitations. That is, we have to set the
video playback rate v smaller than the average upload rate at a user bwup in order to
have a good system performance all the time. If v > bwup, we will not only have a
so-called start-up phase problem but also there will be too much burden on peers. To
solve these problems, we proposed an improved system with helpers. With our analysis
of this new system, we deduced the rules of setting some key parameters (e.g. the new
value of the seed serving time, the helper seed serving time and the helper arrival rate)
to make sure that the average download rate of a user is always larger than the fixed
video playback rate. Moreover, in order to optimize the upload bandwidth resource
usage, strategies for helpers were also proposed.
Once our novel designs are employed and the conditions of our parameters are

satisfied, we can have an optimal and stable system performance all the time under all
conditions, while optimizing the system resource usage as well.

Part III

Video Conferencing (VC) Systems

93

Chapter 8

VC Background

8.1 Classification of VC

VC can be classified according to its different terminals, user interfaces, signaling pro-
tocols, and network structures.

8.1.1 Different terminals

1. Desktop VC: Add-ons to normal PCs with Internet access, transforming them
into VC devices. Convenient and low-cost, but quality cannot be guaranteed. In
this thesis, we will focus on this kind of VC systems.

2. Dedicated VC System: All required components are packaged into a single piece
of equipment or in a room. It has high-quality video and audio, but it is fixed and
very expensive. In TU Delft, there is a Room VC system located at Mekelweg 2.
It uses a POLYCOM HDX9000 videoconference system, which costs 40000 USD,
and 125 euro/hour to use. It can support six participants simultaneously.

3. IP VideoPhone: Only point-to-point communication.

8.1.2 User interface

The user interface is the connection between the user and the VC systems. It enables
the user to log in, schedule new meetings, attend meetings, and get some in-conference
controls. In general, there are two kinds of user interface:

1. Web browser interface: Users can schedule a new meeting, or join an existing
meeting through a web browser without installing any software.

95

96 CHAPTER 8. VC BACKGROUND

2. Software user interface: The interface generally consists of a series of menus,
allowing the caller to interact with the system based on a set of context-sensitive
scripts.

8.1.3 Signaling protocol

1. H.323 is an umbrella Recommendation from the ITU Telecommunication Stan-
dardization Sector (ITU-T) that defines the protocols to provide audio-visual com-
munication sessions on any packet network. The H.323 standard addresses call
signaling and control, multimedia transport and control, and bandwidth control
for point-to-point and multi-point conferences. H.323 was the first VoIP standard
to adopt the IETF standard RTP to transport audio and video over IP networks.
H.323 defines several network elements including endpoint, gateways to allow in-
terworking between IP network and other network types (e.g. PSTN) because
H.323 specification also includes the H.245 protocol for the control channel used
in circuit-switched networks like ISDN/PSTN and POTS.

2. The Session Initiation Protocol (SIP) is a TCP/IP-based Application Layer sig-
naling protocol. It was designed by Henning Schulzrinne and Mark Handley in
1996. The latest version of the specification is RFC 3261 from the IETF Network
Working Group. It is also possible to use the H.245 capability description elements
in SIP to achieve interworking between packet-switch networks and circuit-switch
networks.

Hence, in general, H.245 in H.323 defines procedures that allow receivers to con-
trol media encoding, transmission rates, and error recovery. SIP, instead, relies on
RTCP for providing feedback on reception quality. The feedback it provides au-
tomatically scales from a two person point-to-point conference to huge broadcast
style conferences with millions of participants. Other comparisons between H.323
and SIP can be found in [49]. In [50], a video conferencing gateway supporting
interoperability between SIP and H.323 was developed.

8.1.4 Network structure

1. In a centralized or Client-Server model, all the components of a conferencing
system are implemented in a single server (or some servers). Each endpoint only
communicates with the servers.

2. A distributed network can be further divided into a decentralized P2P network
and a hybrid (centralized and decentralized) network. In distributed architectures,
each service provides a logical functionality distributed among multiple physical

8.2. AVAILABLE DESKTOP VC APPLICATIONS 97

devices. There is a server or many servers for signaling, while the media data is
delivered directly among endpoints.

8.2 Available Desktop VC applications

In order to choose suitable VC applications for further study, we made a survey of the
available Desktop VC applications on the Internet.
We have considered eighteen VC applications, for which we list the maximum frame

rate they can support (the best video quality they can provide), the maximum number
of simultaneous conference participants, and the category (S/C or P2P) they belong to,
in Table 8.1.

Table 8.1: Popular video conferencing applications.
Max. frame rate Max. # of simultaneous S/C or P2P
(frames/second) video participants

Eedo WebClass 6 web-based S/C
IOMeeting 30 10 web-based S/C
EarthLink 30 24 S/C
VideoLive 30 6 web-based S/C
Himeeting 17 20 S/C
VidSoft 30 10 S/C
MegaMeeting 30 16 web-based S/C
Smartmeeting 15 4 S/C
Webconference 15 10 web-based S/C
Mebeam 16 web-based S/C
Confest 30 15 S/C
CloudMeeting 30 6 S/C
Linktivity Web 30 6 web-based S/C
WebEx 30 6 web-based S/C
Nefsis Free Trial 30 10 S/C
Lava-Lava 15 5 decentralized P2P
Qnext 4 centralized P2P
Vsee 30 8 decentralized P2P

Besides the applications listed in Table 8.1, Vmukti is a Multi-party video and audio
media call center software, which uses a P2P tree-based methodology to distribute
content. It is an open source application1.

1Vmukti can be downloaded from http://sourceforge.net/projects/vmukti/files/

98 CHAPTER 8. VC BACKGROUND

Even though there exist many free VC applications, many of them turn out to be
instable once installed. From Table 8.1, we observe that the maximum frame rate is
30 frames/s, which corresponds to regular TV quality. All applications support only
a very limited number of participants and the applications that support more than 10
simultaneous participants all use a centralized S/C network structure.
Many other popular online chatting applications (like Skype, MSN, Yahoo messen-

ger, Google talk, etc.) only support multi-party audio conference and 2-party video
conference, and therefore are not considered here.

Chapter 9

Measurement Study of Multi-Party
Video Conferencing

In this Chapter, we take four representative video conferencing applications and re-
veal their characteristics and different aspects of Quality of Experience. Based on our
observations and analysis, we recommend to incorporate the following aspects when
designing video conferencing applications: 1) Traffic load control/balancing algorithms
to better use the limited bandwidth resources and to have a stable conversation; 2) Use
traffic shaping or adaptively re-encode streams in real time to limit the overall traffic.
This work as published in [51] is, to our knowledge, the first measurement work

to study and compare mechanisms and performance of existing free multi-party video
conferencing systems.

9.1 Introduction

In this Chapter, we focus on studying free applications that provide multi-party (≥ 3
users) VC on the Internet, and focus on the following questions:

• How do multi-party VC applications work?

• How much resources do they need?

• What is the Quality of Experience (QoE)?

• What is the bottleneck in providing multi-party VC over the Internet?

• Which technology and architecture offer the best QoE?

99

100CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

In order to answer these questions we chose and measured four representative VC
applications to investigate, namely Mebeam1, Qnext2, Vsee3, and Nefsis4.

9.2 Related work

Most research focuses on designing the network architectures, mechanisms and stream-
ing technologies for VC. In this section we only discuss the work on studying and
comparing the mechanisms and performance of streaming applications.
Skype supports multi-party audio conferencing and 2-party video chat. Baset and

Schulzrinne [52] analyzed key Skype functions such as login, call establishment, media
transfer and audio conferencing and showed that Skype uses a centralized P2P network
to support audio conferencing service. Cicco et al. [53] measured Skype video respon-
siveness to bandwidth variations. Their results indicated that Skype video calls require
a minimum of 40 kbps available bandwidth to start and are able to use as much as 450
kbps. A video flow is made elastic through congestion control and an adaptive codec
within that bandwidth interval.
Microsoft Office Live Meeting (Professional User License) uses a S/C architecture

and has the ability to schedule and manage meetings with up to 1,250 participants.
However, only few participants can be presenters who can upload their videos and the
others are non-active attendees.
Spiers and Ventura [54] implemented IP multimedia subsystem (IMS)-based VC

systems with two different architectures, S/C and P2P, and measured their signaling and
data traffic overhead. The results show that S/C offers better network control together
with a reduction in signaling and media overhead, whereas P2P allows flexibility, but
at the expense of higher overhead.
Silver [55] discussed that applications built on top of web browsers dominate the

world of Internet applications today, but are fundamentally flawed. The problems listed
include delays and discontinuities, confusion and errors, clumsy interfacing and limited
functionality.
Trueb and Lammers [56] analyzed the codec performance and security in VC. They

tested High Definition (HD) VC and Standard Definition (SD) VC traffic characteristics
and their corresponding video quality. In their results, HD provides a better video
quality at good and acceptable network conditions, while in poor network conditions
HD and SD have similar performance.
As we know, no articles compared the different types of existing free multi-party VC

systems or measure their QoE. In this Chapter, our aim is to provide such a comparison.

1http://www.mebeam.com/
2http://www.qnext.com/
3http://www.vsee.com/
4http://www.nefsis.com/leads/free-trial.aspx

9.3. EXPERIMENTS SET-UP 101

9.3 Experiments Set-up

We have chosen four representative applications to study and use their default settings:

• Mebeam: web-browser based S/C with a single server center.

• Qnext (version 4.0.0.46): centralized P2P. The node which hosts the meeting is
the super node.

• Vsee (version 9.0.0.612): decentralized full-mesh P2P.

• Nefsis (free trial version): S/C, network of distributed computers as servers.

We have chosen these four applications because they each represent one of the four
architectures under which all eighteen applications in Table 8.1 can be classified.
We have performed two types of experiments: (1) local lab experiments, composed

of standard personal computers participating in a local video conference, in order to
investigate the login and call establishment process, as well as the protocol and packet
distribution of the four VC applications; (2) global experiments, to learn more about
the network topology, traffic load and QoE, when a more realistic international video
conference is carried out.
The global measurements were conducted during weekdays of May, 2009, under

similar and stable conditions5:

• Client 1: 145.94.40.113; TUDelft, the Netherlands; 10/100 FastEthernet;
Client 2: 131.180.41.29; Delft, the Netherlands; 10/100 FastEthernet;

Client 3: 159.226.43.49; Beijing, China; 10/100 FastEthernet;

Client 4: 124.228.71.177; Hengyang, China; ADSL 1Mbit/s.

• Client 1 always launches the video conference (as the host);

• Clients 1, 3 and 4 are behind a NAT.

To retrieve results, we used the following applications at each participant:

• Jperf to monitor the end-to-end available bandwidth during the whole process of
each experiment. We observed that usually the network is quite stable and that
the available end-to-end bandwidth is large enough for different applications and
different participants.

5We have repeated the measurements in July, 2009 and obtained similar results to those obtained
in May 2009.

102CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

• e2eSoftVcam to stream a stored video via a virtual camera at each VC participant.
Each virtual camera is broadcasting in a loop a “News” video (.avi file) with a
bit rate of 910 Kbit/s, frame rate of 25 frames/s and size 480x270;

• Camtasia Studio 6. Because all applications use an embedded media player to
display the Webcamera streaming content, we have to use a screen recorder to
capture the streaming content. The best software available to us was Camtasia,
which could only capture at 10 frames/s. In order to have a fair comparison of the
original video to the received video, we captured not only the streaming videos
from all participants, but also the original streaming video from the local virtual
camera6.

• Wireshark to collect the total traffic at each participant.

9.4 Measurement results

9.4.1 Login and Call establishment process

Mebeam: We open the Mebeam official website to build a web video-chat room and
all participants enter the room. The traces collected with Wireshark revealed that
two computers located in the US with IP addresses 66.63.191.202 (Login Server) and
66.63.191.211 (Conference Server) are the servers of Mebeam. Each client first sends a
request to the login server, and after getting a response sets up a connection with the
single conferencing server center. When the conference host leaves from the conference
room, the meeting can still continue. Mebeam uses TCP to transfer the signals, and
RTMP7 to transfer video and audio data.
Qnext: The data captured byWireshark reveals two login servers located in the US.

Each client first sends packets to the login servers to join the network. After getting
a response, they use SSLv3 to set up a connection with the login servers. In the call
establishment process, each client communicates encrypted handshake messages with
3 signaling servers located in the US and Romania and then uses SSLv3 to set up a
connection between the client and the signaling server. When client A invites another
client B to have a video conference and client B accepts A’s request, they use UDP to
transfer media data between each other. In a conference, there is only one host and

6We assess the video quality using the full reference batch video quality metric (bVQM) which
computes the quality difference of two videos. Capturing at 10 frames/s a video with frame rate of 25
frames/s may lead to a different averaged bVQM score. However, because the video used has a stable
content (there are only small changes in the person profile and background), we do not expect a large
deviation in bVQM score with that of the 25 frames/s video. The results are accurate for 10 frames/s
videos.

7Real-Time Messaging Protocol (RTMP) is a protocol for streaming audio, video and data over the
Internet, between a Flash player and a server.

9.4. MEASUREMENT RESULTS 103

other clients can only communicate with the host. The host is the super node in the
network. When the host leaves the meeting, the meeting will end. If another node
leaves, the meeting will not be affected. Qnext uses TCP for signaling and UDP for
video communication among participants.
Vsee: Each client uses UDP and TCP to communicate with the web servers during

the login process. In the call establishment process, after receiving the invitation of
the host, each client uses8 T.38 to communicate with each other. Vsee has many web
servers: during our experiment, one in the Netherlands, one in Canada, and 7 located
in the US. Vsee has a full-meshed P2P topology for video delivery. However, only the
host can invite other clients to participant in the conference. When the host leaves
the meeting, the meeting cannot continue. Other peers can leave without disrupting
the meeting. Vsee is a video conferencing and real-time collaboration service. The
communication among users is usually of the P2P type using UDP, with automatic
tunneling through a relay if a direct connection is not available.
Nefsis: In the login process, the clients first use TCP and HTTP to connect to

the Virtual Conference Servers (with IP addresses 128.121.149.212 in the US and
118.100.76.89 in Malaysia) and receive information about 5 other access points from
the Virtual Conference Servers. These 5 access points are also the data server centers
owned by Nefsis, and they are located in the Netherlands (Rotterdam and Amsterdam),
in the UK, India, Australia, and Singapore. Afterwards, the clients choose some access
points to set up connections via TCP. After entering the conference room, each client
communicates with each other through the access point when firewalls/NAT are present
at clients, otherwise clients can set-up an end-to-end connection to communicate with
each other directly. Nefsis uses TCP for signaling and delivering streaming data.

9.4.2 Packet size distribution and traffic load

To differentiate between non-data, video and audio packets, we performed three local
experiments for each application. The first experiment uses two computers with cameras
and microphones to have a video conference. In the second experiment, two computers
are only equipped with microphones, but without cameras (no video packets will be
received). In the third experiment, two computers set-up a connection, both without
microphones and cameras (so only non-data packets will be exchanged).
Based onWireshark traces, we could distill for each VC application the packet size

range as shown in Table 9.1:
Other interesting observations are: 1) If the person profile or background images

in the camera change/move acutely, a traffic peak is observed in our traces. 2) The
traffic does not necessarily increase as more users join the conference. Fig. 9.1 shows
the change of the average traffic load at each user when a new participant joins the

8T.38 is an ITU recommendation for fax transmission over IP networks in real-time.

104CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

Table 9.1: The packet size distribution of Mebeam, Qnext, Vsee and Nefsis.
Packet size Mebeam Qnext V see Nefsis
Audio > 50 bytes 72 bytes 100 ∼ 200 bytes 100 ∼ 200 bytes
Video > 200 bytes 50 ∼ 1100 bytes 500 ∼ 600 bytes 1000 ∼ 1600 bytes
Signaling 50 ∼ 200 bytes 50 ∼ 400 bytes 50 ∼ 100 bytes 50 ∼ 100 bytes

conference9. The decreasing slope after 3 users indicates that Mebeam, Qnext and Vsee
either re-encoded the videos or used traffic shaping in order to reduce/control the overall
traffic load in the system. We can see from Fig. 9.1 that only the traffic load at Nefsis
clients does not decrease when the number of video conferencing participants reaches
to 4. Therefore, we introduced more participants into the video conference for Nefsis,
and we found that the traffic at each Nefsis user starts to decrease at 5 participants.
Hence, we believe that in order to support more simultaneous conference participants,
the overall traffic has to be controlled.

0
0, 2
0, 4
0, 6
0, 8

1
1, 2
1, 4
1, 6

2 3 4
Number of par t i ci pant s

Av
g.

tr
af

fi
c

lo
ad

(M
bi

t/
s)

 p
er

 p
ar

ti
ci

pa
nt

Nef si s
Mebeam
Qnext (Host)
Qnext (normal)
Vsee

Figure 9.1: The average traffic load at an end-user when the number of conference
participants increases from 2 to 4 (Qnext is limited to 4 participants).

Fig. 9.1 illustrates that, compared with the traffic generated by Nefsis which uses
the same coding technology and the same frame rate on the same video, Qnext and
Vsee generate most traffic, especially the host client of Qnext. This is because Qnext
and Vsee use P2P architectures where the signaling traffic overhead is much more than
the traffic generated by a S/C network with the same number of participants. The host
client (super node) of Qnext generates 3 times more traffic than other normal clients.
Hence, for this architecture, a super-node selection policy is recommended to choose a
suitable peer (with more resources, for example) as the super node.

9We captured the packets after the meeting was set up and became stable.

9.4. MEASUREMENT RESULTS 105

Fig. 9.1 also shows that Mebeam generates the least traffic. Considering that the
overall traffic load, which can be supported in a VC network, has an upperbound due
to the limited users’ bandwidth, and each Mebeam client generates much less traffic
than the three other applications, it clarifies why Mebeam can support 16 simultaneous
video users while Nefsis can only support 10 users, Vsee can only support 8 users and
Qnext can only support 4 users.

9.4.3 Quality of Experience (QoE)

In this section, we assess via global measurements the QoE at the end user with respect
to their video quality, audio-video synchronization, and level of interaction.

Video Quality

Similar to the approach used for assessing the image quality of P2PTV in Section 2.4.1,
we use bVQM (Batch Video Quality Metric) to analyze the VC’s video quality off-line
in our objective measurements. bVQM takes the original video and the received video
and produces quality scores that reflect the predicted fidelity of the impaired video with
reference to its undistorted counterpart. The sampled video needs to be calibrated. The
calibration consists of estimating and correcting the spatial and temporal shift of the
processed video sequence with respect to the original video sequence. The final score
is computed using a linear combination of parameters that describe perceptual changes
in video quality by comparing features extracted from the processed video with those
extracted from the original video. The bVQM score scales from 0 to approximately10

1. The smaller the score, the better the video quality.
We captured at every participant the stream from the imbedded multimedia player

of each VC application with Camtasia Studio 6, and used VirtualDub to cut and syn-
chronize the frames of the compared videos.
Table 9.2 provides the bVQM scores per participant for each VC service.
Table 9.2 indicates that Nefsis features the best video quality among the 4 applica-

tions, although with an average bVQM score of 0.61 (its quality is only “fair”, which
will be explained later with the subjective measurements). The highest bVQM score
(the worst video quality) appears at Client 1 (the super node) of Qnext. Generally
speaking, all four VC applications do not provide good quality11 in this case.

10According to [22], bVQM scores may occasionally exceed 1 for video scenes that are extremely
distorted.
11We also objectively measured the audio quality using metric PESQ-LQ (Perceptual Evaluation of

Speech Quality-Listening Quality) [57] [21] and found that the PESQ-LQ average score (scale from 1.0
to 4.5, where 4.5 represents an excellent audio quality) is 2.24, 2.68, 3.08 and 3.15 for Mebeam, Qnext,
Vsee, and Nefsis, respectively.

106CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

Table 9.2: The video quality of Mebeam, Qnext, Vsee and Nefsis at 4 clients.
VQM score Client 1 Client 2 Client 3 Client 4 Average
Mebeam 0.63 0.41 0.94 0.86 0.71
(Flash video, MPEG-4)
Qnext 1.05 0.94 0.63 0.83 0.86
(MPEG-4, H.263, H.261)
V see 0.78 0.82 0.80 0.79 0.80
Nefsis 0.34 0.61 0.61 0.87 0.61
(MPEG-4, H.263, H.263+)

Because no standard has been set for what level of bVQM score corresponds to
what level of perceived quality of a VC service, we have also conducted subjective
measurements. We use the average Mean Opinion Score (MOS) [21], a measure for user
perceived quality, defined on a five-point scale12: 5 = excellent, 4 = good, 3 = fair, 2 =
poor, 1 = bad.
We gave 7 different quality videos generated by VC applications to 24 persons who

gave a subjective MOS score independently. We also objectively computed their bVQM
scores. Fig. 9.2 shows the correlation between the objective bVQM scores and the
subjective MOS values.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Objective bVQM score

S
ub

je
ct

iv
 M

O
S

 s
co

re

y = - 4.1*x + 5.3

data
linear

Figure 9.2: Relation between bVQM and MOS for video conferencing service.

We mapped between the bVQM scores and the average MOS scores over 24 persons,
and found that they have a linear correlation in the range 0.3 <bVQM score≤ 1. Hence,
the VC’s video quality is predictable when using the objective metric bVQM.

12The threshold for acceptable TV quality corresponds to the MOS value 3.5.

9.4. MEASUREMENT RESULTS 107

Compared with the video quality of a global P2PTV distribution service, which has
an average MOS value of 4 [58], the video quality of a global VC service is poor (with
an average bVQM score of 0.74 and MOS value of around 2.2), because the VC service
requires end users to encode and upload their streams in real-time. Even the local
uploaded video has a largely degraded quality although it is still the best among all
participants.

Audio-Video Synchronization

The relative timing of sound and image portions of a streaming content may not be
synchronized. ITU [23] [59] has suggested that the viewer detection thresholds of audio-
video lag are about +45 ms to −125 ms, and the acceptance thresholds are about +90
ms to −185 ms, for video broadcasting.
Similar to the approach used for assessing the audio-video synchronization of P2PTV

in Section 2.4.1, we used an “artificially generated” video test sample, in which the video
and audio waveforms are temporally synchronized with markers, to analyze the A/V
synchronization provided by each VC application. We captured at each end user the
videos from all other participants. When the audio and video tracks were extracted
and compared off-line, there was an average difference in time between the two tracks
of about 650 ms for Mebeam, 470 ms for Qnext, 400 ms for Vsee and 350 ms for Nefsis.
Such large audio-video lags are mainly caused by a large amount of frame losses, which
lead to the low video quality mentioned already in Section 9.4.3.

Interactivity (communication delay)

During a video conference it is annoying to have large communication delay13. Large
communication delay implies lack of real-time interactivity in our global multi-party
VC experiments. We measured the video delays among participants by injecting in
the network another artificial video that mainly reproduced a timer with millisecond
granularity.
In the video conference, this artificial “timer” video was uploaded via the virtual

camera and transmitted among the participants via the different VC applications. At
each participant, we used a standard universal Internet time as reference14. We dis-
played the “timer” videos of all participants in real time. After a 1-minute long stable
video conference, we cut the captured content at each participant with VirtualDub
to compare the “timers” between any 2 participants. For each application, we took
samples at 2 different times to calculate an average delay.

13In IP video conferencing scenarios, the maximum communication delay recommended by ITU is
400 ms [60].
14http://www.time.gov/timezone.cgi?Eastern/d/-5/java

108CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

The video delays among participants are shown in Fig. 9.3. The x axis shows the
4 different clients. The y axis shows the video transmission delay from the participant
on the x axis to the participant shown in the legend.

0
0, 5

1
1, 5

2
2, 5

3
3, 5

4
4, 5

5

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

De
la

y
(s

ec
on

ds
)

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

0

0, 05

0, 1

0, 15

0, 2

0, 25

0, 3

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

De
la

y
(s

ec
on

ds
)

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

(a) Mebeam (b) Qnext

0

0, 1

0, 2

0, 3

0, 4

0, 5

0, 6

0, 7

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

De
la

y
(s

ec
on

ds
)

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

0

0, 2

0, 4

0, 6

0, 8

1

1, 2

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

De
la

y
(s

ec
on

ds
)

Cl i ent 1 Cl i ent 2 Cl i ent 3 Cl i ent 4

(c) V see (d) Nefsis

Figure 9.3: The video delay between different participants.

Fig. 9.3 shows that Qnext provides a video that is most synchronized among the
clients. Qnext, Vsee, and Nefsis have a comparable level of average video delay, respec-
tively 0.15 s, 0.27 s, and 0.41 s. However, Mebeam clients suffer a huge video delay
(2.77 s on average), because the processing time at the server is too long.
We also measured the audio delays among participants by injecting in the video

an artificial DTMF (Dual-tone multi-frequency) tone. We sent and recorded the audio
at Client 1. Other participants kept their speaker and microphone on, but did not
produce extra audio. Based on the recorded audio tracks, we compared the time the
audio marker was sent from Client 1 and the time the same audio marker was heard
again at Client 1 after the transmitted audio was played, recorded, and retransmitted
by a client. The time difference is approximately twice the one-way audio delay plus
the processing delay at a client. Our results revealed 1 s, 1.4 s, 0.2 s and almost 0
s on average for Mebeam, Qnext, Vsee and Nefsis respectively. Nefsis performs best
in the aspect of interactivity, while Qnext in this case provided the least synchronized
audio among the users. When we measure the audio delay and the A/V synchroniza-
tion, the delay is the end-to-end delay including the transmission delay and the delay

9.5. SUMMARY AND CONCLUSIONS 109

introduced by the application. In our experiment, the video delay represents the delay
of a same video scene that was captured at the application interfaces of the sender
and the receiver, which does not include the time used for uploading the video to the
sender via applications. Hence, considering the audio delay, video delay, and the A/V
synchronization, we can conclude that the delay introduced by the application, when
uploading, is large for Qnext.

9.4.4 Worst-case study

In another set of global experiments in June, 2009, our Jperf plots indicated that the
end-to-end connections of clients 3 and 4 with the host were very unstable. We found
that the two participants in China always passively disconnected from the conference
or could not even log into Mebeam, Nefsis and Qnext. Vsee could still work, but the
quality was awful, with bVQM scores close to 1.
In order to investigate the minimum bandwidth to support a video conference, we

repeated many experiments adjusting the upload rate upper-bound (using15 Netlimiter)
at each participant for a particular VC application to test the user’s upload bandwidth
minimally required to launch a video conference.
For Qnext, the threshold is 50 Kbit/s. If an end user’s available upload bandwidth

is < 50 Kbit/s, (s)he cannot launch Qnext. For Vsee, the threshold is 50 Kbit/s; for
Nefsis it is 28 Kbit/s; and forMebeam it is 5 Kbit/s, which we believe are the minimally
supported streaming bit rates set by the applications.

9.5 Summary and Conclusions

Through a series of local and global experiments with four representative video con-
ferencing systems, we examined their behavior and mechanisms, and investigated their
login process, the call establishment process, the packet size distribution, transfer pro-
tocols, traffic load, delivery topology, and different aspects of Quality of Experience.
Our main conclusions from the measurement results on the traffic characteristics

of four different video conferencing systems are: (1) The QoE of multi-party video
conferencing is very sensitive to bandwidth fluctuations, especially in the uplink. Hence,
an adaptive resolution/frame rate policy should be deployed; (2) When the number of
participants increases, the traffic load at each participant does not always increase
correspondingly (see Fig. 9.1), suggesting that re-encoding at the video or a traffic
shaping policy takes place to control the overall traffic in the system.
Our QoE measurement results are summarized as: (1) Compared with the non

interactive multimedia services (i.e. P2PTV [58]), existing Internet video conferencing

15NetLimiter is an Internet traffic control and monitoring tool designed for setting download/upload
transfer rate limits for applications.

110CHAPTER 9. MEASUREMENTSTUDYOFMULTI-PARTYVIDEOCONFERENCING

applications in general cannot provide very good quality to their end users (poor video
and audio quality, large audio-video lag, and long communication delay in some cases);
(2) Only a limited number of multimedia participants are supported and rarely high
definition webcamera streaming is supported due to the limited available bandwidth or
the limited processing capability; (3) The existing systems are not reliable in the worst
cases. When the network is unstable or the available upload bandwidth is very limited
(thresholds have been found), none of the applications work properly.
It seems that the Server-to-Client architecture with many servers located all over

the world is currently the best architecture for providing video conferencing via the
Internet, because it introduces the least congestion at both servers and clients. Load
balancing and load control algorithms help the overall performance of the system and
the codec used is important for the quality that end users perceive. The bottleneck to
support video conferencing with more participants and high definition streams is the
overhead traffic generated by them. To support more simultaneous participants in a
single conferencing session, the traffic load has to be controlled/limited by using traffic
shaping or re-encoding the video streams.
We have chosen four representative video conferencing systems for our study, but

the measurement methodologies mentioned in this Chapter can also be applied to other
video conferencing applications, which could be compared with our study in the future.

Part IV

Conclusions

111

Chapter 10

Research context, methods, and
contributions

In this thesis, multimedia streaming services like IPTV (IP Television streaming),
P2PTV (Peer-to-Peer Television streaming), CDN (Content Delivery Networking), P2PVoD
(Peer-to-Peer Video on Demand), IPVC (IP Video Conferencing) and P2PVC (Peer-to-
Peer Video Conferencing) are analyzed based on E2E Blocking, Quality of Experience
of users, Network characteristics and Traffic usage, System Stability.

10.1 IPTV

For IPTV, an analytical model was set up. Our model is based on the configuration of an
existing IPTV system (KPN’s Mine TV in the Netherlands), where IP-layer multicast
was used to deliver the TV streaming content. One of the most important measures
of Quality of Experience, the end-to-end request blocking probability, was computed
in our model. Two main causes of blocking were considered: 1) limited processing
capability of a DSLAM, and 2) Insufficient available capacity from the DSLAM to the
edge router. In the case study, we focused on a Dutch IPTV network for which we
had obtained the parameter values (i.e., the TV channel popularity distribution, the
link capacity, the number of TV channels, the number of subscribers, the percentage of
active users in rush hour, the Poissonian arrival and departure process of users) from
real data.
The results indicated that the less popular channels (higher channel index) have

a considerably higher probability to be blocked than the more popular channels. In
addition, we observed that the users’ requests are less likely blocked if there are less
available TV channels, if there are less users, or if users leave more frequently. Hence,
based on our model, the probability that a user will face blocking can be computed
in different scenarios as a function of the channel index. In addition, we also plotted

113

114CHAPTER 10. RESEARCH CONTEXT, METHODS, AND CONTRIBUTIONS

the bandwidth capacity that is required to assure that the end-to-end IPTV blocking
probability, as a function of channel index i, does not exceed a certain level, which can
help the system designer to dedicate the proper bandwidth to the IPTV service in order
to guarantee a certain level of Quality of Experience to clients.

10.2 P2PTV

We focused on the popular BitTorrent-like Peer-to-Peer TV systems. To understand
the mechanisms and performance of this system, we studied and analyzed it by means
of measurements and an analytical model.
In the measurement study, an existing popular P2PTV application, called SopCast,

was investigated. Its functionality, the traffic characteristics and the different aspects of
Quality of Experience (e.g., blocking, video quality, audio-video synchronization, peer
synchronization, channel zapping time) were tested and evaluated through objective
and subjective measurements.
In the analytical model of this BitTorrent-like P2PTV system, the performance was

analyzed in terms of end-to-end blocking probability. Blocking arises when 1) user U
cannot find all needed chunks (next 1 second content) from the randomly chosen part-
ners (in a partner group, peers exchange information about which chunks are available
at which partner), or 2) when at least one parent (who directly provides chunks to user
U) cannot upload his chunks to user U within 1 second due to insufficient bandwidth,
or 3) at least one parent leaves during his uploading period. In the case study, our
measurement results on SopCast (e.g., parent distribution and bandwidth distribution)
were used as input and other parameter values (e.g., the TV channel popularity distrib-
ution, the number of TV channels, the number of active users) were chosen to be similar
to the IPTV case study in order to have a fair comparison. Provided the appropriate
data is available, our formulas allow for similar computations for different cases.
The analytical results showed that the popular TV channels have a much smaller

probability to be blocked than the unpopular channels. The P2PTV end-to-end block-
ing is mainly contributed by the second cause mentioned above. Hence, the limited
upload bandwidth of an end user’s parent distributed to him mainly causes the block-
ing. This clearly indicates the importance of the parent selection policy when designing
the system. We also observed that a user will face less blocking if the number of avail-
able channels is smaller, or if users leave infrequently, while changing the number of
users did not significantly affect the blocking probability. In addition, we compared
P2PTV and IPTV based on our computations with realistic data inputs. We assessed
which technology (IPTV or P2PTV) incurs the lowest end-to-end blocking and in which
scenarios. Currently, if the operator decides to transmit television content to its resi-
dential users using P2PTV instead of IPTV, all channels will likely face more blocking
than before. However, we can predict that when the number of end users increases, this

10.3. CDN 115

will change. In a P2PTV system, the number of users has little effect on the blocking,
while in an IPTV system the blocking would largely increase if the processing capability
of the equipment (e.g. DSLAM) cannot scale accordingly. When the total amount of
users increases and the amount of DSLAMs and their processing capability remains the
same, there will be a point at which the P2PTV system will start to outperform the
IPTV system for popular channels, unless the IPTV network is extended accordingly.
In our Dutch case study, this cross-over point is around 297, 600 users.
Hence, is P2PTV ready to replace IPTV? Our measurement results show that

P2PTV nowadays can provide good quality video to end users, but the large peer
lags (i.e. peers watching the same TV channel might not be synchronized, 3 seconds
lag for SopCast) and the huge zapping time (average 50 seconds and maximum 200
seconds for SopCast) hamper it to replace IPTV to deliver the TV streaming content.

10.3 CDN

The centrally controlled Content Delivery Network discussed in this thesis integrates
the real-time multicast streaming service and the server-client Video-On-Demand ser-
vice after the end user pauses the stream and chooses to resume the same stream. We
developed a performance model to compute the availability of the required service. The
probability that the bandwidth for a required service (either the multicast request or
the unicast request after the pause) is available is calculated as a function of video
popularity, the number of available videos, cache sizes, and bandwidth. Different con-
tributions to the blocking probability, namely multicast request blocking and unicast
request blocking, have been analyzed separately. The model is based on a realistic
caching hierarchy and we applied it to a MobileTV service. In the experiment, we fo-
cused on a Multimedia Broadcast and Multicast Services (MBMS) architecture with our
proposed pausing function, for which we obtained the configuration related parameter
values from a Dutch Telco and UMTS network and the user behavior related parameter
values from measurement study in [37].
Based on the results in our realistic MobileTV use case, we found that the users’

requests are less likely blocked if there are less available TV channels. The results
also indicate that the number of TV channels affects the overall quality very much. In
order to support more MobileTV channels, while maintaining a similar performance (an
overall end-to-end blocking probability less than 1%), increasing the bandwidth between
RNC and the Base Station can bring significant improvement. Moreover, in order to
experience a good performance after the pause (e.g. with unicast service availability
more than 99.99%), the end user only needs a moderately sized local cache (e.g. 31
megabytes in our case) at their Mobile Phone for this service.
Our model allows to compute how many MobileTV channels can be supported for

the overall blocking probability not to exceed a certain threshold. Furthermore, we

116CHAPTER 10. RESEARCH CONTEXT, METHODS, AND CONTRIBUTIONS

computed the required local cache size to assure that an end-user can successfully resume
the streaming with a certain probability after the pause. Our results can be used not
only to analyze the blocking in existing stream caching systems, but also to predict
the system behavior in the future when the link capacity increases and correspondingly
more HDTV channels can be supported.

10.4 P2PVoD

A Video-on-Demand system using Peer-to-Peer technology was analyzed in this thesis.
An analytical fluid model was proposed for a mesh-based P2PVoD system and we
compared the model to a realistic P2PVoD simulator. This model, which is based
on current P2PVoD applications, leads to non-linear system equations, in which the
content stored at the end users is released as soon as they complete viewing the video.
In a non-linear model, small perturbations of the input may lead to large (undesirable)
changes in the behavior of the system. Consequently, we have provided rules for a
P2PVoD application that ascertain a linear behavior, where a peer stops sharing his
content a fixed amount of time after his download finishes. A critical factor is the seed
definite leaving rate. In our model, four phases of the system were analyzed seperately:
1) Start-up phase, 2) Seed Appearance phase, 3) Seed Departure phase, and 4) Steady
state. The results in the experiment indicated that our analytical results and simulation
results match well.

However, we still observed some limitations in such a system. That is, we have to
set the video playback rate v smaller than the average upload rate bwup at a user, in
order to have a good system performance all the time. If v > bwup, we will not only
have a so-called start-up phase problem, but there will also be too much burden on the
peers. To solve these problems, we proposed an improved system with helpers. With
our analysis of this new system, we deduced rules for setting some key parameters (e.g.,
the new value of the seed serving time, the helper seed serving time, and the helper
arrival rate) to make sure that the average download rate of a user is always larger than
the video playback rate. In order to optimize the upload bandwidth resource usage,
strategies for helpers were also proposed.

With our model, parameters that affect the system performance were observed, and
the system stability was investigated. Our model leads to desgin rules for achieving a
good and stable system performance all the time under all conditions, while optimizing
the system resource usage as well.

10.5. VC 117

10.5 VC

Existing Video Conferencing applications were classified according to their: different
terminals, user interfaces, signaling protocols, and network structures. Based on our
survey of 18 popular VC applications, we observed that the maximum frame rate is 30
frames/second, which corresponds to regular TV quality. All applications support only
a very limited number of participants and the applications that support more than 10
simultaneous participants all use a centralized server-client (S/C) network structure. We
further chose four video conferencing applications (Mebeam, Nefsis, Vsee, Qnext) for in-
depth study, because each represents one of the four architectures (web-based S/C, S/C,
decentralized P2P, centralized P2P) under which all 18 applications could be classified.
We examined their behavior and mechanisms, and investigated their login process, the
call establishment process, the packet size distribution, transfer protocols, traffic load,
delivery topology, and different aspects of Quality of Experience. Our experiments were
set up both locally and globaly. The global experiments were conducted under similar
and stable conditions, with 4 participants involved (2 clients in the Netherlands and 2
clients in China).
Our main conclusions from the measurement results on the traffic characteristics

of four different video conferencing systems are: (1) The QoE of multi-party video
conferencing is very sensitive to bandwidth fluctuations, especially in the uplink. Hence,
an adaptive resolution/frame rate policy should be deployed; (2) When the number of
participants increases, the traffic load at each participant does not always increase
correspondingly, suggesting that re-encoding at the video or a traffic shaping policy
takes place to control the overall traffic in the system. Our QoE measurement results
are summarized as: (1) Compared to non-interactive multimedia services (e.g. P2PTV),
existing Internet video conferencing applications in general cannot provide very good
quality to their end users (poor video and audio quality, large audio-video lag, and
long communication delay in some cases); (2) Only a limited number of multimedia
participants are supported and rarely high definition webcamera streaming is supported
due to the limited available bandwidth or the limited processing capability; (3) The
existing systems are not always reliable. When the network is unstable or the available
upload bandwidth is very limited (thresholds have been found), none of the applications
work properly.
Based on our observations and analysis, we recommend to incorporate the following

aspects when designing video conferencing applications: It seems that the Server-to-
Client architecture with many servers located all over the world is currently the best
architecture for providing video conferencing via the Internet, because it introduces the
least congestion at both servers and clients. Load balancing and load control algorithms
help the overall performance of the system and the codec used is important for the
quality that end users perceive. The bottleneck to support video conferencing with more
participants and high-definition streams is the overhead traffic generated by them. To

118CHAPTER 10. RESEARCH CONTEXT, METHODS, AND CONTRIBUTIONS

support more simultaneous participants in a single conferencing session, the traffic load
has to be controlled/limited by using traffic shaping or re-encoding the video streams.

Chapter 11

General Conclusion on “To Peer or
Not to Peer”

In this Section, we will give a general comparison between IPTV and P2PTV; IPVC and
P2PVC from aspects of 1) Blocking, 2) MOS (Mean Opinion Score), 3) Audio-Video
Synchronization, 4) User synchronization (Interactivity), 5) Channel zapping time, 6)
System stability when the bandwidth is limited, and 7) Resource usage (Traffic Load).
In Figure 11.1, “+” represents good performance, while “-” represents bad performance,
and “- -” represents worse performance. “+/-” represents good performance right now,
but possibly bad performance in the future.

-
-/+
- -
-

-

+

-/+
P2PTV

+
+

NA

- -

- -

-

NA

IPVC

-+Stability (limit band)
NA+Zapping

-+Traffic load

- -+Audio-Video sync

- -+MOS

-+“Peer” sync

Blocking NA+/-
P2PVCIPTV

-
-/+
- -
-

-

+

-/+
P2PTV

+
+

NA

- -

- -

-

NA

IPVC

-+Stability (limit band)
NA+Zapping

-+Traffic load

- -+Audio-Video sync

- -+MOS

-+“Peer” sync

Blocking NA+/-
P2PVCIPTV

Figure 11.1: Pro’s and con’s of using P2P or not for different streaming services.

For the different services, we have given different suggestions in this thesis. In gen-
eral, the Server-Client approach works fine nowadays. However, with more and more
new-added services, as well as more and more users and content involved in the system,
P2P technology might become better suited. However, based on our observations, the
P2P technologies and applications used nowadays still have much room for improve-

119

120CHAPTER 11. GENERAL CONCLUSION ON “TO PEER OR NOT TO PEER”

ment. We made suggestions for how to improve existing P2P systems, like deploying
helpers in the system and using traffic load balance/shaping algorithms to control the
overhead traffic.

Chapter 12

Future Work

The future work can mainly lie into three folders:

• Study the correlation between QoS and QoE, basd on which a real-time non-
reference performance assessment framework can be proposed. It would further
real-time get the feedback from the system performance and the user perceived
quality, and reversely aid in the internal workings of protocols in aspects such as
peer selection or bandwidth scheduling.

• Extend the analytical model

1. to involve and analyze more policies (e.g. peer selection policy, rare-first
policy, fail-recovery policy, etc.);

2. to consider more parameters (e.g. bandwidth resource usage efficiency, con-
tent availability and latency) and analyze their effect on the performance;

3. to study the traffic overload and performance at users, servers and ISP
routers, when destributing a same streaming content in a same size of net-
work (under same physical configuration) using Server-Client and Peer-to-
Peer respectively.

• Implentment the proposed solutions into real application, and validate them with
our analysis.

121

122 CHAPTER 12. FUTURE WORK

Appendix A

Deductions

A.1 BEngset(i) in IPTV and BEngset(k) in CDN

The IPTV system with K available channels and m admitted channels can be modeled
as an M/M/m/m/K queuing system. In this Engset queue with different channel i
arrival rate λi and channel i leaving rate μi, each channel request can arrive in random
order. Karvo et al. [31] introduced a binomial probability generation function to deduce
the probability π

(i)
j (j positions are occupied by j channels other than channel i in an

infinite capacity system) for this system:

ϕi(z) =
∞P
j=0

π
(i)
j zj =

K

Π
k=1

qk + pkz

qi + piz
(A.1)

in which, qi = 1 − pi and pi = 1 − e
−λi
μi . BEngset(i) = π

(i)
m /

mP
j=0

π
(i)
j . According to

π
(i)
j = 1

j!
djϕi(z)
dzj

|
z=0
([32, pp.18]) and Eq. (A.1),

BEngset(i)=
1
m!

dm [
K
Π
k=1

qk+pkz

qi+piz
]

dzm
|
z=0

mP
j=0

1
j!

dj [
K
Π
k=1

qk+pkz

qi+piz
]

dzj
|
z=0

(A.2)

Our computation of BEngset(k) in CDN is equal to the BEngset(i) for IPTV, but
with changing the symbol representing the TV channel index from i to k and also
some changes on the following parameters: 1) the number of admitted channels left for
multicast m = max{1, LLEX

v
−NTV (πUROOT + πUREX + πULEX)}, and 2) λk = λk_LLEX ,

uk = uk_LLEX and μk = μk_LLEX (see Eqs. 5.3 and 5.7).

123

124 APPENDIX A. DEDUCTIONS

A.2 How to set the value of v in the start-up phase,
without helpers

We know from Section 6.3.5 that

1) When Liv
bwdown

≥
λiLiv−(

λibwup
γi+θi

+bwos)

λibwup+θibwos
(download bandwidth is the constraint), we use

Eqs. (6.6) and (6.7) in steady state;

2) When Liv
bwdown

<
λiLiv−(

λibwup
γi+θi

+bwos)

λibwup+θibwos
(upload bandwidth is the constraint), we use

Eqs. (6.9) and (6.10) in steady state.
We can know from Fig. 6.2 and 6.3 that the system will perform well when the

download bandwidth is fully used, which means that it is better to use Eqs. (6.6) and
(6.7) in steady state. It means that the system developer should set parameters such
that they satisfy condition 1.
In the non-linear system, when assuming θi = 0 and ignoring the small Bu, for

condition 1, Liv
bwdown

≥
λiLiv−(

λibwup
γi+θi

+bwos)

λibwup+θibwos
is equivalent to v ≤

1+ bwos
λiLibwup

1
bwup

+ 1
ui(t)

− 1
bwdown

. Then, as

long as v ≤ 1
1

bwup
+ 1
ui(t)

− 1
bwdown

, we can use Eqs. (6.6) and (6.7) in steady state. Because

ui(t) = bwdown when the download bandwidth is fully used, then we only need to set
v ≤ bwup to satisfy condition 1.
In the linearized system, by carefully setting the value of γi, we should always be

able to use Eqs. (6.6) and (6.7) in steady state.
However, in the Start-up phase (0 ≤ t < τ i), the downloading time τ i = Liv

ui(t)
≈ Liv

bwup

should be smaller than the planned display ending time Li +Bu in order to make sure
that the download finishes before the display ends. To meet this requirement, we need
to set v ≤ bwup for both linearized and non-linear systems.
In other words, the condition of v ≤ bwup is needed in both the Start-up phase and

the steady state in the non-linear system; but needed only in the Start-up phase in the
linearized system. Hence, as long as the system developer makes the video playback
rate v smaller than the average upload rate per peer bwup, the system will perform
well and stable all the time. That is also the reason why most current commercial
P2PVoD systems on the Internet provide only videos with SDTV quality (with rates of
0.5 Mbit/s or lower)1.
On the other hand, no matter how much download capacity bwdown is provided, as

long as bwdown > v, it will not affect the end user performance and the system stability
when v ≤ bwup.

1This is also indicated by the measurement study in [61, Fig 5(c) and Table II], where they found
that even the “naive” random pull scheduling (the simplest system design) can perform well when the
playback rate is 0.48 Mbit/s (which is smaller than the preset average upload rate of 0.55 Mbit/s).

A.3. DEDUCTION OF γI IN THE SYSTEM WITH HELPERS 125

A.3 Deduction of γi in the system with helpers

For the steady state of the system with helpers, we can solve system equations (7.1) to
(7.5) if bwdownx̄i + bwh

downx̄
h
i ≤ bwup(x̄i + ȳi) + bwos + bwh

up(x̄
h
i + ȳhi)

x̄i =
λiLiv − x̄hi (bw

h
down − uhi (t))

θiLiv + bwdown

ȳi =
λibwdown + x̄hi (bw

h
down − uhi (t))θi

γi(θiLiv + bwdown)

where x̄hi =
λhi Ch

θhi Ch+u
h
i (t)

and ȳhi =
uhi (t)λ

h
i

γhi (θ
h
i Ch+u

h
i (t))

.
Assuming θi = 0 and with the expressions of x̄i and ȳi, the condition that bwdownx̄i+

bwh
downx̄

h
i ≤ bwup(x̄i + ȳi) + bwos + bwh

up(x̄
h
i + ȳhi) amounts to

1

bwdown
≥

λiLiv + x̄hi (u
h
i (t)− bwh

up)− (
λibwup

γi
+ bwos + bwh

upȳ
h
i)

bwup[λiLiv − x̄hi (bw
h
down − uhi (t))]

(A.3)

We input the values of x̄hi and ȳhi into Eq. (A.3) and because λiLiv > x̄hi (bw
h
down −

uhi (t)) (which is equivalent to λiLiv > λhiCh(
bwhdown
uhi (t)

− 1), where θhi is assumed to be 0
and uhi (t) = bwh

down can be set in steady state), we can get the seed serving time
1
γi
in

the system with helpers, as expressed in Eq. (7.9).

126 APPENDIX A. DEDUCTIONS

Appendix B

Strategy and Protocols with helpers

The main idea of adding helpers is to bring more upload bandwidth resources to the
system. Then, in order to optimize helpers’ upload bandwidth usage, we design the
protocols for helpers (e.g. how much and what a helper should download). This work
is done together with Hao Zhang.
The video content provider maintains a tracker to keep track of all the participating

normal peers and helpers in the streaming session and to assist building the overlay
network. The normal peers maintain connections to a number of helpers to make up for
the streaming rate that cannot be sustained by its peer neighbors. We make sure that
an average λhi number of helpers per second come into the system to help the system,
starting from downloading the Ch amount of data. After finishing the download, the
helper then continues to stay for 1

γhi
seconds as a helper seed before its departure.

In situations of fluctuating demand, it is advantageous that helpers spread out
their download chunks into different segments of the video. In this way, a helper can
maximize the number of normal peers that potentially need its assistance while keeping
the download and storage amount low. For this reason, we divide the helper’s download
Ch into m segments with one and only one chunk per segment.
The whole video is broken into continuous blocks Bi, i = 1, 2, ..., N, each consisting

ofm segments of equal duration. Each segment contains k chunks, where “chunk” is the
minimum transmission unit on P2PVoD network overlay. The helpers form N separate
swarms, Si, with i = 1, 2, ..., N , each having at least k helpers responsible for serving
one corresponding block Bi. The new incoming normal peer will obtain from the tracker
a number of helpers within swarm S1. As the normal peer continues to watch the video,
its playback time will eventually fall beyond what S1 can supply. Then, the normal
peer queries the tracker for a new list of helpers in the next swarm. The normal peer
continues to perform similar queries as it keeps streaming until the end of the video.
The incoming helpers first join swarm S1 to serve blockB1. When the number of helpers
in S1 reaches k, the new incoming helpers will then join swarm S2, and so on. In case
that some helper seeds depart from the system, the new coming helpers will replace

127

128 APPENDIX B. STRATEGY AND PROTOCOLS WITH HELPERS

their place in S1 with the highest priority. If the number of helpers in the system is
more than N × k, the redundant helpers can download the rarest or most requested
chunks. When a helper fails, the tracker will acquire a new helper to download and
store an equivalence of the lost chunks by connecting to a number of available normal
peers or those redundancy helpers who already have the corresponding data.
Based on this design guideline, we present the architecture for the helper network

as is demonstrated in Figure B.1.

1B 2 1,..., NB B − NB

1 2 … m

k1 … k1 … k1 …
… …

0
video

iL

helper 1 … helper k … …

swarm 1S NSswarm

k1 …

1B 2 1,..., NB B − NB

1 2 … m

k1 … k1 … k1 … k1 … k1 … k1 … k1 … k1 …
… …

0
video

iL

helper 1 … helper k … …

swarm 1S NSswarm

k1 … k1 …

Figure B.1: Helpers’ strategy. Helpers break into N swarms each serving one block of
video. Each swarm consists of at least k helpers each carring one unique parity chunk
for every segment of the block.

Each helper downloads and stores one and only one parity chunk per segment, for
every segment in the corresponding block as is shown in Figure B.1. All the parity
chunks the helpers carry are mutually exclusive. In this way, a normal peer can connect
to the k helpers in the corresponding swarm to download the content of a corresponding
video block. This helps mitigate complex load balancing strategies that are usually
needed in such a decentralized system. If a chunk size1 is w, then we have Ch = m×w.
In general, a helper behaves like a normal peer, but only downloads the appointed

specific Ch amount of video content instead of the whole Li length of video.

1The chunk size of SopCast stream is 10 Kbytes, approximately 5 chunks/second; but the chunk
size may differ depending on the application.

129

130 APPENDIX C. NOTATIONS

Appendix C

Notations

C.1 Notation P2PTV model
v : The playback rate of the channel i (kbits/s).
R : The number of uniform size chunks in one second of TV content.
U : A random user.
P : A partner group of user U for the channel i.
M : The number of parents of user U , chosen from P.
Y : The number of children of user U .
bwup : The upload bandwidth of a parent.
i : The TV channel index.
bchunk(i) : The probability that the required R chunks cannot all be found in P.
btime(i) : The probability that at least one parent u cannot upload his chunks

to user U within 1 second due to insufficient bandwidth, for channel i.
bdyn(i) : The probability that > 1 parent leaves during his uploading period.
b(i) : The end-to-end blocking probability for channel i.
Bi(r) : The probability that user U cannot find chunk r successfully

among |P| randomly chosen partners, for channel i.
πi(r) : The probability that a peer is storing chunk r, for channel i.
bw[u,U] : The upload bandwidth that a parent u has available for user U .
Pr[bw[u, U] ≤ x]: A distribution function of bw[u,U].
Xu : The number of chunks the user U requests from parent u.
pM(R) : The number of partitions of R into parts not exceeding M .
Pr[M = k] : Density function of the occurrence probability of having M parents.
Xu(j) : How many chunks user U requests from parent u.
Z(t) : The peer departure process.
θi : The rate at which peers leave from channel i.
Pu(j) : The probability that parent u with Xu(j) chunks

(in partition j) leaves during uploading.
N : The number of concurrent active peers over all channels.

C.2. NOTATION IPTV MODEL 131

αi : The popularity of channel i.
Ni : The total number of available peers in channel i, equal to Nαi.
λ : The arrival rate of users into the P2PTV system. QP2PTV =

λ
θi.
.

pi : The probability that channel i is “on”.
qi : The probability that channel i is “off”.
bwXu: The required upload bandwidth for parent u to deliver Xu chunks to U in time.
π
(i)
j : The probability that j positions are occupied by j channels other than

channel i in an infinite capacity system.
ϕi(z): A binomial probability generation function to deduce π(i)j .

C.2 Notation IPTV model

C : The capacity of a link from a particular DSLAM to the edge router.
m : The maximum number of channels that can be transmitted

simultaneously over a link with capacity C, equal to
j

C
Co

k
.

Co The capacity of one television channel.
K : The available television channels that can be viewed.
αi : The popularity of TV channel i, where 0 ≤ αi ≤ 1.
λ(t) : The request arrival rate at time t.
Bproc : The blocking caused by the limited processing capability of a DSLAM.
Blink(i) : The blocking probability of TV channel i, caused by the insufficient

available capacity from the DSLAM to the edge router.
B(i) : The end-to-end blocking probability for channel i.

In another word, the probability that the request of channel i is blocked.
s : The number of users accessing the DSLAM.
n : The number of replications that the DSLAM can handle.
λDSLAM : The rate at which a user requests a TV service.
μDSLAM : The rate at which the user turns his TV off. ρDSLAM = λDSLAM

μDSLAM

P (i) : The probability that channel i is “on”.
BEngset(i) : The probability that the link from the DSLAM to the edge router is

consumed by m channels other than the requested channel i.
λ : The users’ arrival rate in the IPTV system, includes both the rate users

switch on their television as well as the channel switching rate.
λi : The users’ arrival rate in channel i, equal to αiλ
ui : The number of users leaving from channel i per second. ρi = λi/ui
QIPTV = λ/ui

132 APPENDIX C. NOTATIONS

C.3 Notation CDN model

BM-SC: The highest level of a caching hierarchy, as a MobileTV content data center.
GSN : The 2nd level of a caching hierarchy with Regional Exchanges.
RNC : The 3rd level of a caching hierarchy with Local Exchanges.
BS : Base Stations which will not be equipped with a cache.
UE : User Equipment (i.e. Mobile Phone) at the lowest level of the hierarchy.
Li : The capacity (Mbit/s) at level i available for the video streaming service,

where i ∈ {BS, RNC, GSN , BM − SC}.
v : The video streaming rate (Mbit/s).
NTV : The average number of registered TV users attaching to one BS.
λTV : How many users attaching to one BS turn on their TV every second.
αk : The popularity of video channel k.
1/μs : The time length the user is viewing a video before zapping to a different one.
1/μv : The period a user watches the video stream before pausing.
1/μL : The period a user continuously watches the video stream before leaving.
1/μp : The duration of the pause.
Ps : Immediately after the pause, the probability that the end user chooses to

switch to another multicast video.
PL : Immediately after the pause, the probability that the end user chooses to

turn off the TV and leave from the system.
Pi : The probability that the stream is unicast from cache at level i after a pause.
Ti : The capacity of a cache at level i reserved for video streams (in seconds).
Ci : The amount of cache disk space (in bits) at level i reserved for caching

video streams, where i ∈ {UE, RNC, GSN , BM − SC}.

πUi : The probability that a user who registered for a video streaming service is
in state “Ui” (the unicast state where the user resumes the video from cache
i after having paused) in steady state; i ∈ {UE, RNC, GSN , BM − SC}.

πoff : The probability that a user is in state “off” (the offline state where the
user is not using the service) in steady state.

πPause: The probability that a user is in state “Pause” (the state where the user
is pausing) in steady state.

πM : The probability that a user is in state “M” (where the user has started
viewing the video and it is delivered via multicast) in steady state.

B(k) : The probability that a user cannot get access to the service of his choice.
Bm(k): The end-to-end (E2E) multicast request blocking for the stream k.
Bu;i : The E2E unicast request blocking if the user retrieves the delayed video

data from cache i after the pause.
E[Bu;i]: The mean unicast request blocking probability.

C.3. NOTATION CDN MODEL 133

Bu_Li : The mean probability that a unicast request is blocked at level i.
πj_Li : The probability that j video streams are multicast at Li in steady state.
Bu_Li_j : The blocking probability of a unicast request at link Li when j video

streams are multicast at link Li.
ϕ(z) : The binomial probability generation function of πj_Li.
pk_Li : The probability the multicast channel k is “on” at Li. qk_Li = 1− pk_Li.
λk_Li : The users’ multicast requests arrival rate at video channel k in link Li.
uk_Li : Channel k users’ leaving rate at link Li.
μk_Li : The leaving rate of channel k from link Li.
P (k) : The probability that channel k is “on”.
K : The number of available multicast TV channels.
BEngset(k): The probability that the link LRNC is consumed by m multicast channels

other than the requested channel k.
λk : Channel k’s multicast requests arrival rate in the model, which is equal

to the channel k’s arrival rate in link LRNC, λk_LRNC
.

uk : Multicast users’ leaving rate from channel k in the model, which is equal
to the leaving rate of users from link LRNC, uk_LRNC

. ρk = λk/uk.
μk : Channel k’s leaving rate from channel k in the multicast blocking model,

which is equal to the leaving rate of channel k from link LRNC, μk_LRNC
.

L
(unicast)
i_j : The bandwidth for unicast when there are j multicast videos at level i.

ni_j : The available unicast servers at level i.
λi : The arrival rate of unicast requests at link Li.
βi : The leaving rate of unicast transmissions at link Li.

134 APPENDIX C. NOTATIONS

C.4 Notation P2PVoD model
ηi(t) : The probability that a downloader is sharing his content with others.
Ti(t) : The downloading time of the whole video file i for a peer at time t.
xi(t) : The number of downloaders in video i system at t. We denote x̄i = lim

t→∞
xi(t).

yi(t) : The number of seeds in the video i system at t. We denote ȳi = lim
t→∞

yi(t).

xhi (t) : The number of helper downloaders in the video i system at t. x̄hi = lim
t→∞

xhi (t).

yhi (t) : The number of helper seeds in the video i system at t. ȳhi = lim
t→∞

yhi (t).

bwh
up : The average upload rate at a helper for video delivery.

θhi : Helper’s random leaving rate from video i.
uhi (t) : The average download rate at each helper at time t for video i.
bwh

down : The average download capacity (the maximum download rate) per helper.
bwos : The upload bandwidth of the original seed.
θi : The random leaving rate of a peer from video i.
λi : The peers’ arrival rate to video i.
γi : The constant seed leaving rate from video i, set in the linearized system.
γi(t) : The seed leaving rate at time t in the non-linear system.
τ i : The time to complete downloading video i for the first seed.
ui(t) : The average download rate at each peer at time t for video i.
Bu : The prebuffer size at each peer.
bwdown : The average download capacity per peer.
bwup : The average upload rate per peer.
λhi : The avg. number of helpers coming to help the system per second.
1
γhi
: The avg. time a helper seed stays in the system after finishing its download.

v : The streaming rate of the video.
N : The number of blocks (referred to as Bi) in the whole video.

The number of swarms (referred to as Si) for helpers. (i = 1, 2, ..., N)
m : The number of segments per block. No. of segments each helper downloads.
k : The number of chunks per segment. The number of helpers per swarm.
w : The size of a chunk.
Ch : The amount of video data a helper needs to download.
Li : The length of the video i in VoD system.

Appendix D

Abbreviations

IPTV : IP multicast Television
P2PTV : Peer-to-Peer Television
CDN : Content Delivery Networking
V oD : Video-on-Demand
IPV C : IP (Server-to-Client) Video Conferencing
P2PV C : Peer-to-Peer Video Conferencing
V C : Video Conferencing
QoE : Quality of Experience
QoS : Quality of Service
E2E : End-to-End
MOS : Mean Opinion Score
bV QM : batch Video Quality Metrics
DSLAM : Digital Subscriber Line Access Multiplexer
ITU : The International Telecommunications Union

135

136 APPENDIX D. ABBREVIATIONS

Bibliography

[1] Bram Cohen, Bittorrent protocol 1.0, www.bittorrent.org, 2002.

[2] X. Hei, C. Liang, J. Liang, Y. Liu and K. W. Ross, “A Measurement Study of a
large-Scale P2P IPTV System”, IEEE Transactions on Multimedia, vol. 9, no. 8,
pp. 1672-1687, 2007.

[3] X. Zhang, J. Liu, B. Li, and TS. P. Yum, “CoolStreaming/DONet: A Data-driven
Overlay Network for Peer-to-Peer Live Media streaming”, Proc. of IEEE INFO-
COM, Mar, 2005, vol.3, pp.2102-2111.

[4] J. Wang, “A survey of Web caching schemes for the Internet”, ACM SIGCOMM
CCR, vol. 29, pp. 36-46, October, 1999.

[5] F.T.H. den Hartog, B.L.G. Bastiaans, M.A. Blom, M.G.M. Pluijmaekers, R.D.
van der Mei, “The use of Residential Gateways in Content Delivery Networking”,
ATNAC, Sydney, Australia, December, 2004.

[6] F.T.H. den Hartog, N.H.G. Baken, D.V. Keyson, J.J.B Kwaaitaal, and W.A.M.
Snijders, “Tackling the complexity of Residential Gateways in an unbundling value
chain”, ISSLS, Edinburg, UK, 2004.

[7] Ira M. Weinstein, “Making the Best of ISDN-Based Videoconferencing”, Wain-
house Research, 2004.

[8] The International Telecommunication Union (ITU) E 10669 (11/98) Recommen-
dation H.323.

[9] Design Guide for the Cisco Unified Videoconferencing Solution Using Desktop
Component Release 7.0 c° 2009 Cisco Systems, Inc., December 2009.

[10] Network Working Group, RFC 3261 AT&T, 2002.

[11] The International Telecommunication Union (ITU), ISO/IEC JTC1/SC29/WG11
N3536, Beijing, 2000.

137

138 BIBLIOGRAPHY

[12] B. Fallica, Y. Lu, F.A. Kuipers, R. Kooij, and P. Van Mieghem, “On the Quality of
Experience of SopCast”, Proc. of IEEE Future Multimedia Networking (FMN’08),
Cardiff, Wales, UK, September 17-18, 2008.

[13] T. Silverston, O. Fourmaux, “P2P IPTVMeasurement: A Case Study of TVAnts”,
in procedings of student workshop of Conference on Future Networking Technolo-
gies (CONEXT’06), December 2006.

[14] J.A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D.H.J. Epema,
M. Reinders, M. van Steen, H.J. Sips, “Tribler: A social based Peer to Peer sys-
tem,” Proc. of IPTPS, Feb. 27-28, 2006.

[15] S. Ali, A. Mathur, and H. Zhang, “Measurement of commercial peer-to-peer live
video streaming”, In proc. of ICST Workshop on Recent Advances in Peer-to-Peer
streaming, 2006.

[16] T. Silverston, O. Fourmaux, “Measuring P2P IPTV Systems”, in proceedings of
Network & Operating Systems Support for Digital Audio & Video (NOSSDAV’07),
June 2007.

[17] S. Tang, Y. Lu, J. Martin Hernandez, F.A. Kuipers, and P. Van Mieghem, “Topol-
ogy dynamics in a P2PTV network”, Proc. of IFIP Networking 2009, Germany,
May 11-15, 2009.

[18] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, “Wireshark & ethereal network
protocol analyzer toolkit (jay beale’s open source security)”, Syngress Publishing,
2006.

[19] Y. Lu, F.A. Kuipers, M. Janic, and P. Van Mieghem, “E2E blocking probability
of IPTV and P2PTV,” Proc. of IFIP Networking 2008, Singpore, May, 2008.

[20] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, S. Tewari, “Will IPTV ride the
peer-to-peer stream?”, Communications Magazine, IEEE, Volume: 45, Issue: 6,
On page(s): 86-92, June 2007.

[21] ITU-T Rec. P.800, “Methods for Subjective Determination of Transmission Qual-
ity”, 1996.

[22] M.H. Pinson and Stephen Wolf, “A New Standardized Method for Objectively
Measuring Video Quality”, IEEE Transactions on Broadcasting, Vol. 50, No. 3,
pp. 312-322, Sep. 2004.

[23] The International Telecommunications Union (ITU) BT.1359-1 (11/98) Relative
timing of sound and vision for broadcasting.

BIBLIOGRAPHY 139

[24] DSL Forum, “Triple Play Services Quality of Experience (QoE) Requirements and
Mechanisms”, Technical Report TR-126, 13 Dec., 2006.

[25] M. Meo and F. Milan, “QoS-aware Content Management in P2P Networks”, Proc.
of HOT-P2P’04.

[26] R. Susitaival, S. Aalto, and J. Virtamo, “Analyzing the dynamics and resource
usage of P2P file sharing by a spatio-temporal model”, Proc. of P2P-HPCS’06.

[27] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding and X. Zhang, “A Performance Study
of BitTorrent-like Peer-to-Peer Systems”, IEEE Journal on selected areas in com-
munications, vol. 25, no. 1, January 2007.

[28] H. Rademacher, Topics in Analytic Number Theory, Springer-Verlag Berlin-
Heidelberg-New York, 1973.

[29] C. Vassilakis, N. Laoutaris and I. Stavrakakis, “On the Benefits of Synchronized
Playout in Peer-to-Peer Streaming”, Proc. of CoNEXT, September 2006.

[30] S.Y. Lim, J.M. Soek and H.K. Lee, “A path control architecture for receiving
various multimedia contents”, Proc. of ICACT2006, February 2006.

[31] J. Karvo, J. Virtamo, S. Aalto, O. Martikainen, “Blocking of dynamic multicast
connections in a single link”, Proc. of IEEE BROADNETS, 1998.

[32] P. Van Mieghem, Performance Analysis of communications Networks and Systems,
Cambridge University Press, 2006.

[33] Y. Lu, F.A. Kuipers, F. den Hartog, P. Van Mieghem, “Blocking probability of
streaming services in a Content Distribution Network”, submitted to CCNC, 2010.

[34] P. Rodriguez, C. Spanner, and E.W. Biersack, “Web caching architectures: hier-
archical and distributed caching”, 4th International Web Caching Workshop, San
Diego, 1999.

[35] 3GPP, MBMS Architecture and Functional Description, Technical Specification,
TS 23.246, Release 6, June 2006.

[36] A. Pitsillides and C. Christophorou, “MBMS Handover control: A new approach
for efficient handover in MBMS enabled 3G cellular networks”, Computer Net-
works, 51(18):4897-4918, 2007.

[37] J. Holub, J. G. Beerend, and R. Smid, “A Dependence between Average Call Du-
ration and Voice Transmission Quality: Measurement and Applications”, Wireless
Telecommunications Symposium, Pomona, California, May, 2004.

140 BIBLIOGRAPHY

[38] “Mobile TV | iLiveTV, Mobistar Case Study”, c° Copyright 2010 Envivio, January
2010.

[39] Y. Lu, J.D.D. Mol, F.A. Kuipers, P. Van Mieghem, “Analytical Model for
Mesh-based P2PVoD”, the 10th IEEE International Symposium on Multimedia
(ISM2008), Berkeley, California, USA, December 15-17, 2008.

[40] D. Qiu and S. Srikant, “Modeling and Performance Analysis of BitTorrent-Like
Peer-to-Peer networks,” Proc. of ACM SIGCOMM 2004, August 2004.

[41] R. Kumar, Y. Liu, and K. Ross, “Stochastic Fluid Theory for P2P Streaming
Systems,” Proc. of IEEE INFOCOM 2007.

[42] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing BitTorrent for
supporting Streaming Applications,” Proc. of IEEE INFOCOM 2006.

[43] J.J.D. Mol, J.A. Pouwelse, M. Meulpolder, D.H.J. Epema, and H.J. Sips, “Give-
to-Get: Free-riding-resilient Video-on-Demand in P2P Systems”, Proc. of SPIE,
MMCN 2008.

[44] H. Chi, Q. Zhang, J. Jia and X. Shen, “Efficient Search and Scheduling in P2P-
based Media-on-Demand Streaming Service”, IEEE Journal on selected areas in
communications, VOL.25, NO.1, January 2007.

[45] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming systems,”
in Journal of Peer-to-Peer Networking and Applications, by Springer New York,
Feburary, 2008.

[46] G. Arfken, “Eigenvectors, Eigenvalues.”, in Mathematical Methods for Physicists,
3rd ed. Orlando, FL: Academic Press, pp. 229-237, 1985.

[47] J. Wong, “Enhancing collaborative content delivery with helpers,” Master’s thesis,
Univeristy of British Columbia, Nov 2004.

[48] J. Wang, C. Yeo, V. Prabhakaran, and K. Ramchandran, “On the role of helpers in
peer-to-peer file download systems: design, analysis and simulation”, International
Workshop on Peer-to-Peer Systems (IPTPS), February 2007.

[49] H. Schulzrinne and J. Rosenberg,“ A Comparison of SIP and H.323 for Internet
Telephony”, Network and Operating System Support for Digit Audio and Video
(NOSSDAV), Cambridge, England, Jul. 1998.

[50] J.M. Ho, J.C. Hu, and P. Steenkiste, “A conference gateway supporting interop-
erability between SIP and H.323”, Proceedings of the ninth ACM international
conference on Multimedia, Ottawa, Canada, 2001.

[51] Y. Lu, Y. Zhao, F.A. Kuipers, and P. Van Mieghem, “Measurement Study of
Multi-Party Video conferencing”, IFIP Networking, Chennai, India, 2010.

BIBLIOGRAPHY 141

[52] S.A. Baset and H. Schulzrinne, “An Analysis of the Skype Peer-to-Peer Internet
Telephony Protocol”, INFOCOM’06, Barcelona, Spain, April, 2006.

[53] L. De Cicco, S. Mascolo, and V. Palmisano, “Skype Video Responsiveness to Band-
width Variations”, NOSSDAV’08, Braunschweig, Germany, May, 2008.

[54] R. Spiers and N. Ventura, “An Evaluation of Architectures for IMS Based Video
Conferencing”, Technical Report of University of Cape Town, 2008.

[55] M.S. Silver, “Browser-based applications: popular but flawed?”, Information Sys-
tems and E-Business Management, Vol. 4, No. 4, October, 2006.

[56] G. Trueb, S. Lammers, and P. Calyam, “High Definition Videoconferencing: Codec
Performance, Security, and Collaboration Tools”, REU Report, Ohio Supercom-
puter Center, USA, 2007.

[57] A.W. Rix, “A new PESQ-LQ scale to assist comparison between P.862 PESQ score
and subjective MOS”, ITU-T SG12 COM12-D86, May, 2003.

[58] Y. Lu, B. Fallica, F.A. Kuipers, R. Kooij, and P. Van Mieghem,“Assessing the
Quality of Experience of SopCast”, International Journal of Internet Protocol Tech-
nology, Vol. 4, No. 1, pp. 11-23, 2009.

[59] J.L. Lias. “HDMI’s Lip Sync and audio-video synchronization for broadcast and
home video”, Simplay Labs, LLC, August, 2008.

[60] I. Bartoli, G. Iacovoni, and F. Ubaldi, “A synchronization control scheme for Video-
conferencing services”, Journal of multimedia, Vol. 2, No. 4, August, 2007.

[61] C. Liang, Y. Guo, and Y. Liu, “Investigating the Scheduling Sensitivity of P2P
Video Streaming: An Experimental Study”, IEEE Transactions on Multimedia,
Vol. 11, No. 3, pp. 348-360, April 2009.

142 BIBLIOGRAPHY

Samenvatting (Summary in Dutch)

Het aantal multimedia diensten is met een enorme snelheid toegenomen in de afgelopen
jaren. Een groot aantal van deze ‘streaming’ multimedia systemen zijn ingevoerd op de
consumentenmarkt. Internet Service Providers, Telecom Operators, Service/Content
leveranciers, en eindgebruikers zijn geïnteresseerd in hoe die systemen werken, hoe de
gebruiker hun kwaliteit (de Quality-of-Experience (QoE)) ervaart (bijv. met betrekking
tot audio / video kwaliteit, audio / video-synchronisatie, vertraging, benodigde tijd
voor het opstarten, enz.), de middelen die ze nodig hebben, de stabiliteit van het sys-
teem, en de beschikbaarheid van de service. De streaming multimedia systemen die
in dit proefschrift geanalyseerd worden zijn ‘IP-multicast TV (IPTV)’, ‘Peer-to-Peer
TV (P2PTV)’, ‘Content Delivery Networking (CDN)’, ‘Peer-to-Peer Video-on-Demand
(P2PVoD)’, ‘Server-to-Client Video Conferencing (IPVC)’, en ‘Peer-to-Peer Video Con-
ferencing (P2PVC)’. Zie figuur 1 voor een overzicht van het onderzoek zoals beschreven
in dit proefschrift.
Dit proefschrift beoogt de verschillende soorten populaire streaming systemen te

bestuderen door middel van analytische modellen, experimenten, en simulaties, zodat
we hun kenmerken en prestaties in verschillende scenarios beter kunnen begrijpen. Mid-
dels dit onderzoek, kunnen we naast het beter begrijpen van het gedrag en de beperkin-
gen van bestaande systemen en het ontdekken van de belangrijkste parameters die hun
prestaties beïnvloeden, ook potentiële problemen onderzoeken en voorspellen wat de
prestaties van het systeem in toekomstige gevallen zal zijn. Door het vergelijken van
de twee algemene streaming methoden (Server-to-Client en Peer-to-Peer), verkrijgen
we goed inzicht in ‘welke methode is beter’ en ‘wat bepaalt of iets beter is’ voor de
verschillende diensten en in verschillende scenario’s.

143

144 SAMENVATTING (SUMMARY IN DUTCH)

Analytische
modellen

&
Experimenten

IPTV

ExperimentenExperimentenP2PTV

ExperimentenExperimentenP2PVC

ExperimentenExperimentenIPVC

Stabiliteit
van het
systeem

Netwerk &
Netwerkve

rkeer

QoEBlokkeringsk
ans

Analytische
modellen

&
Simulaties

Analytische
modellen

&
Simulaties

P2PVoD

Analytische
modellen

IPTV+IPVoD
(CDN)

Analytische
modellen

&
Experimenten

IPTV

ExperimentenExperimentenP2PTV

ExperimentenExperimentenP2PVC

ExperimentenExperimentenIPVC

Stabiliteit
van het
systeem

Netwerk &
Netwerkve

rkeer

QoEBlokkeringsk
ans

Analytische
modellen

&
Simulaties

Analytische
modellen

&
Simulaties

P2PVoD

Analytische
modellen

IPTV+IPVoD
(CDN)

Figure D.1: Overzicht van het onderzoek zoals beschreven in dit proefschrift.

Acknowledgements

First of all, I would like to thank my supervisors Dr. Fernando Kuipers and Prof. Piet
Van Mieghem for their endless patience and kind help. With their guidance, I can more
easily get on track in the early stage of my PhD and I clearly see the improvement of my
paper writing and my presentation skills. Besides their inspiring ideas to upgrade my
work and countless times of modifying my scientific papers, I also learned from them
a serious research attitude and the importance of team work. I am also very grateful
to get their friendly help to solve life problems other than work. Here, I would like to
particularly thank Fernando for being a careful and patient daily advisor.
Furthermore, during my research it was my honor to have lots of cooperations and

have fruitful brainstorms with Rob Kooij, Jan David Mol, Frank den Hartog, Milena
Janic, Siyu Tang, Javier Martin Hernandez, Rene Serral Gracia, Hao Zhang, Rogier
Noldus, Ad Bresser, Edgar van Boven, Xiaoming Zhou and MSc. students Benny Fal-
lica, Yong Zhao, Zhen Qin. In addition, I would like to thank the Dutch Research
Delta (DRD) and the Trans sector Research Academy for complex Networks and Ser-
vices (TRANS), collaborative efforts between KPN, TNO and several Dutch univer-
sities, which funded my PhD research. Besides providing a vibrant enviornment to
closely work with industries, DRD also offers PhD students training courses from which
I learned and enjoyed a lot. I would like to also thank another project I involved in,
CONTENT project, which 3 times a year brings together researchers from 11 Euro-
pean universities and 11 international companies to share inspiring ideas and set up
cooperations.
In addition, my 4-year PhD life became colorful and enjoyable, thanks to my dear

friends on 19th floor, Fernando, Piet, Edgar, Antonio, Anteneh, Javier, Siyu, Jasmina,
Rob, Huijuan, Jing, Gu, Javad, Tom, Rogier, Xiaoming, Xueli, Bingjie, Dajie, Wynand,
Stojan, Norbert, Christian, Ebisa, Katja, Nico, Ignas, Jos and all the others. I feel very
happy and lucky to have such nice colleagues and at the same time friends. I appreciate
them for giving me so much kindness, care, and unforgettable memories during these
years. I would like to also thank Marjon, Wendy, Stefanie, Dominique and Laura for
their assistance during these years.
Last but not least, my special thanks go to my husband, my mom and dad, and my

friends for their generous support, encouragement, and love during my PhD.

145

146 ACKNOWLEDGEMENTS

Curriculum Vitae

Yue Lu, born on March 6th, 1982, is a PhD student in the Network Architecture and
Services (NAS) Group, Department of Telecommunication, Delft University of Technol-
ogy, the Netherlands. She graduated as a B.Sc. student in Electronics and Information
Engineering Department at HUAZHONG University of Science & Technology in July
2004. After she obtained her M.Sc. degree from the Faculty of Electrical Engineering
at Delft University of Technology in 2006, she started her PhD research, working on
multimedia streaming services and networking performance analysis. Since 2004, she
has been researching on P2P systems, real-time Internet streaming services (e.g. TV
streaming, Video on Demand, Audio/Video Conferencing), their Quality of Service and
Quality of Experience, etc.
During her PhD period, she was nominated for the best paper award in IFIP Net-

working 2008 conference (4 out of 249 submissions); and won the best paper award
in IEEE Future Multimedia Networking workshop in 2008 (1 out of 75); and won the
best paper award in IEEE International Symposium on Multimedia conference in 2008
(1 out of 196). She received the Netelcom Award runner-up in 2008, which rewards
the most innovative scientific contribution of PhD students active within the Dutch
Research Delta. She was the Best Presentation Award finalist in the Dutch Research
Delta conference contest, in 2010.

Publications:

• Y. Lu, F.A. Kuipers, M. Janic, and P. Van Mieghem, “E2E blocking probability
of IPTV and P2PTV”, IFIP Networking 2008, Singapore, May 5-9, 2008 (best
paper award runner-up).

• B. Fallica, Y. Lu, F.A. Kuipers, R. Kooij, and P. VanMieghem, “On the Quality of
Experience of SopCast”, IEEE Future Multimedia Networking (FMN’08), Cardiff,
Wales, UK, September 17-18, 2008 (best paper award).

• Y. Lu, J.D.D. Mol, F.A. Kuipers, and P. Van Mieghem, “Analytical Model for
Mesh-based P2PVoD”, the 10th IEEE International Symposium on Multimedia
(ISM2008), Berkeley, California, USA, December 15-17, 2008 (best paper award).

147

148 CURRICULUM VITAE

• Y. Lu, B. Fallica, F.A. Kuipers, R. Kooij, and P. Van Mieghem, “Assessing the
Quality of Experience of SopCast”, the International Journal of Internet Protocol
Technology, 2009.

• S. Tang, Y. Lu, J.M. Hernández, F.A. Kuipers, and P. Van Mieghem, “Topology
dynamics in a P2PTV network”, IFIP Networking, Aachen, Germany, May 11-15,
2009.

• Y. Lu, Y. Zhao, F.A. Kuipers, and P. Van Mieghem, “Measurement Study of
Multi-Party Video conferencing”, IFIP Networking, Chennai, India, 2010.

• Y. Lu, F.A. Kuipers, F. den Hartog, and P. Van Mieghem, “Blocking probability
in a caching hierarchy network”, accepted, IEEE CCNC, Las Vegas, USA, 2011.

• J.L. Zhou, R.V. Prasad, Y. Lu, and I.G.M.M. Niemegeers, “Analysis of a Multi-
hop Integrated UMTS and WLAN Network”, submitted to Journal Telecommu-
nication Systems, Springer, 2010.

• R.S. Gracia, Y. Lu, M. Yannuzzi, and X.M. Bruin, “Effective quality assessment
in P2PTV overlays”, to submit to Journal Computer Networks, 2010.

