

Delft University of Technology

A pencil-distributed finite-difference solver for extreme-scale calculations of turbulent wall
flows at high Reynolds number

Diez Sanhueza, Rafael; Peeters, Jurriaan; Costa, Pedro

DOI
10.1016/j.cpc.2025.109811
Publication date
2025
Document Version
Final published version
Published in
Computer Physics Communications

Citation (APA)
Diez Sanhueza, R., Peeters, J., & Costa, P. (2025). A pencil-distributed finite-difference solver for extreme-
scale calculations of turbulent wall flows at high Reynolds number. Computer Physics Communications,
316, Article 109811. https://doi.org/10.1016/j.cpc.2025.109811

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cpc.2025.109811
https://doi.org/10.1016/j.cpc.2025.109811

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

A pencil-distributed finite-difference solver for extreme-scale calculations

of turbulent wall flows at high Reynolds number

Rafael Diez Sanhueza ,∗, Jurriaan Peeters, Pedro Costa

Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, the Netherlands

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Peter Vincent

Keywords:

Direct numerical simulation

Distributed Poisson solver

GPU acceleration

High-performance computing

We present a computational method for extreme-scale simulations of incompressible turbulent wall flows at high
Reynolds numbers. The numerical algorithm extends a popular method for solving second-order finite differences
Poisson/Helmholtz equations using a pencil-distributed parallel tridiagonal solver to improve computational
performance at scale. The benefits of this approach were investigated for high-Reynolds-number turbulent channel
flow simulations, with up to about 80 billion grid points and 1024 GPUs on the European flagship supercomputers
Leonardo and LUMI. An additional GPU porting effort of the entire solver had to be undertaken for the latter. Our
results confirm that, while 1D domain decompositions are favorable for smaller systems, they become inefficient
or even impossible at large scales. This restriction is relaxed by adopting a pencil-distributed approach. The
results show that, at scale, the revised Poisson solver is about twice as fast as the baseline approach with the full

transpose algorithm for 2D domain decompositions. Strong and weak scalability tests show that the performance
gains are due to the lower communication footprint. Additionally, to secure high performance when solving for
wall-normal implicit diffusion, we propose a reworked flavor of parallel cyclic reduction (PCR) that is split into
pre-processing and runtime steps. During pre-processing, small sub-arrays with independent 1D coefficients are
computed by parallel GPU threads, without any global GPU communication. Then, at runtime, the reworked
PCR enables a fast solution of implicit 1D diffusion without computational overhead. Our results show that
the entire numerical solver, coupled with the PCR algorithm, enables extreme-scale simulations with 2D pencil
decompositions, which do not suffer performance losses even when compared to the best 1D slab configurations
available for smaller systems.

1. Introduction

Turbulent flows at high Reynolds numbers are among the most
complex and prevalent problems in engineering and physics. While nu

merous flows at low Reynolds numbers may be studied using simple
analytical or numerical models, many flows found in nature and indus

try operate at high Reynolds numbers in a turbulent regime. These flows
exhibit complex behavior, which is difficult to predict using existing cor

relations or upscaled models. Fundamental understanding of turbulence
that can improve engineering models requires direct numerical simula

tions (DNS), where the chaotic and multi-scale flow dynamics are fully
resolved up to the smallest temporal and spatial scales. While this has a
large computational cost, the exponential growth in computing power
during the last decades, along with the development of efficient numer

ical methods, have enabled the simulation of flows at increasingly high
Reynolds numbers. Indeed, following the developments since the first

* Corresponding author.

E-mail address: R.G.DiezSanhueza-1@tudelft.nl (R. Diez Sanhueza).

DNS of isotropic turbulence by Orszag and Patterson [1] in 1972, it is
now possible to perform large-scale simulations with trillions of grid
points in modern supercomputers [2,3].

We are experiencing yet another breakthrough, thanks to the recent
proliferation of general-purpose GPU-based supercomputers [4,5]. GPUs
are known to perform well in tasks that only require simple arithmetic
operations or RAM access patterns [6], which are common in computa

tional fluid dynamics (CFD). They have much higher throughput than
CPUs by allowing many parallel threads to perform the same operation
per clock cycle. Thus, when successfully ported, GPU-accelerated solvers
can easily outperform multi-core CPU solvers [7,8], enabling the numer

ical solution to complex problems at much lower costs. However, large

scale CFD problems need to operate at scale, in a distributed-memory
paradigm where the data is distributed among many GPUs. This intro

duces new challenges, as many-GPU systems are more prone to feature
performance bottlenecks associated with intra and internode commu

https://doi.org/10.1016/j.cpc.2025.109811

Received 9 February 2025; Received in revised form 8 July 2025; Accepted 4 August 2025

Computer Physics Communications 316 (2025) 109811

Available online 8 August 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0009-0004-1402-7666
mailto:R.G.DiezSanhueza-1@tudelft.nl
https://doi.org/10.1016/j.cpc.2025.109811
https://doi.org/10.1016/j.cpc.2025.109811
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109811&domain=pdf
http://creativecommons.org/licenses/by/4.0/

R. Diez Sanhueza, J. Peeters and P. Costa

Table 1
Specifications for the GPU nodes in the Leonardo and LUMI supercomputers
[10,9,11,12]. The data formally corresponds to the Booster partition in Leonardo,
and the LUMI-G nodes for LUMI. The abbreviation ``Gb'' refers to Gigabit, whereas
“GB''/``TB'' corresponds to Gigabyte/Terabyte.

Leonardo LUMI
GPU model NVIDIA A100 AMD MI250X
Number of devices 4 GPUs 8 GCDs (2 per GPU)
Inter-node bandwidth 100 Gb/s 100 Gb/s†

Intra-node bandwidth 800 Gb/s 400 -- 1600 Gb/s†

Internal memory bandwidth 1.6 TB/s 1.6 TB/s†

HBM 64 GB 64 GB†

FP64 Peak Performance
9.7 TFLOPs

23.95 TFLOPs†
19.5 TFLOPs with Tensor Cores

† Data for each GCD in LUMI.

nication, which may require adjustments in the numerical algorithm.
Let us consider the current European pre-exascale flagship supercom

puters Leonardo and LUMI. A summary of the GPU specifications for
both supercomputers can be found in Table 1. In the case of LUMI, it
is important to highlight that each MI250x is split into two Graphics
Compute Dies (GCDs)1 [9], each with roughly similar characteristics as
a NVIDIA A100 GPU in terms of memory and processing power. The in

ternal memory bandwidths for both AMD and NVIDIA GPUs are much
faster than intra- and inter-node communication. Therefore, algorithms
that minimize device-to-device communication can be optimal, even if
they slightly increase the number of arithmetic operations or HBM (High
Memory Bandwidth) usage per device. Additionally, opportunities for
code optimization can be found by selecting algorithms that replace
inter-node communication with faster intra-node data transfers.

Several works have performed large-scale turbulent flow simulations
using multi-GPU configurations. Compressible flow solvers, for instance,
contain many fully explicit calculations that can be readily parallelized
using GPUs. The DNS solver STREAmS [13] can use multi-GPU sys

tems to simulate compressible wall-bounded flows, taking into account
complex effects such as shock-wave interactions. In URANOS [14], a
compressible flow solver is developed for large-scale simulations us

ing various modeling frameworks, and several possible choices for the
discretization schemes. In incompressible flow solvers, GPU porting for
distributed-memory calculations at scale faces an extra challenge. Typ

ically, a major performance bottleneck is solving a large linear system
associated with the pressure Poisson equation to ensure incompressibil

ity. Nevertheless, several recent works have shown great progress in
the development of multi-GPU solvers. Focusing on spectral or finite

difference approaches, an example is the AFiD-GPU code [15] for large

scale simulations of wall-bounded flows using multi-GPU (or multi-CPU)
configurations. Another example is the CaNS code, which is used in the
present study [16,17]. CaNS is an incompressible DNS solver, which is
compatible with various types of boundary conditions for canonical flow
cases in rectangular grids, such as isotropic turbulence or wall-bounded
flows. This solver is compatible with both multi-GPU and multi-core
CPU architectures, and has been recently re-ported to GPUs porting
using OpenACC and the hardware-adaptive cuDecomp library for GPU
communications at scale [18]. This library allows pencil-distributed
solvers that require collective transpose operations to perform runtime
autotuning and determine the optimal domain decomposition and GPU
communication backend. A simple FFT-based finite-differences numer

ical solver like CaNS requires two types of communication operations:
halo exchanges and transposes. Halo exchanges are relatively simple,
standard operations, where each task exchanges boundary values with
its neighbors. Transposes are more expensive all-to-all collective oper

ations, where 3D data of a field is redistributed among MPI tasks such

1 In this work, we consider each GCD in LUMI to be an independent GPU
(unless explicitly noted), since they are exposed to the user’s software as separate
devices.

that all cells aligned in a specific dimension are local to a single pro

cess/task. This is important while performing, for instance, fast Fourier

based transformations in spectral Poisson/Helmholtz solvers, since FFT
algorithms require frequent access to the arrays being transformed. Nat

urally, all transpose operations involving 3D arrays are expensive, and
often the major performance bottleneck.

Second-order FFT-based finite-difference solvers such as those used
in AFiD and CaNS require performing FFTs along two directions, and
the solution of a resulting tridiagonal system along the other direction,
which is typically the wall-normal one in the case of wall-bounded flows
with one inhomogeneous direction. The solution of the tridiagonal sys

tem has been typically performed using transpose operations, such that
the whole system is local to each task and serially solved. However,
there is possible room for improvement here by exploiting a parallel
tridiagonal solver that avoids this collective operation. Notably, an in

teresting approach was presented by László et al. [19] and exploited in
[20--23], which showed compelling performance gains at scale. In short,
this method uses a hybrid Thomas–parallel cyclic reduction (PCR) algo

rithm that effectively converts the tridiagonal system to be solved in
parallel into a series of smaller systems that can be solved indepen

dently, coupled to a smaller problem to be solved collectively for the
first and last unknowns of each small system [22].

Most works exploring PCR in this context have adopted a 1D par

allelization [21,23], with slabs parallel to directions of FFT-based syn

thesis. This is efficient and was proven to work up to a certain scale.
However, as the flow Reynolds number increases, it becomes impos

sible to resort to a 1D parallelization. As an example, Fig. 1 presents
the total memory requirement in a DNS solver (CaNS), to simulate tur

bulent channel flows at increasing friction Reynolds number (𝑅𝑒𝜏), as
well as the total size of a single 𝑛𝑥 ×𝑛𝑦 wall-parallel slice. Expectedly, as
𝑅𝑒𝜏 increases, in addition to stricter time steps restrictions, the number
of grid cells increases roughly as 𝑁𝑥,𝑦 ∝𝑅𝑒𝜏 in the streamwise (𝑥) and
spanwise (𝑦) directions of the channel flow, and 𝑁𝑧 ∝𝑅𝑒

3∕4
𝜏 in the wall

normal direction (𝑧) [24,25]. Hence, as the Reynolds number increases,
the thickness of a wall-parallel slab that fits a fixed amount of grid points
(e.g., dictated by the RAM constrains of a GPU or CPU device) becomes
ever thinner, until it becomes impossible to decompose the domain fur

ther. This is particularly problematic in wall-bounded turbulence, where
the number of grid points along the wall-parallel directions should be
larger than in the wall-normal one [24]. Yet, the same is bound to hap

pen in other turbulent flows (e.g., homogeneous isotropic turbulence)
at sufficiently high Reynolds number.

Consequently, even with the ever-increasing memory capacity of
GPUs, for DNS of high Reynolds number flows with this type of ap

proach, one may be bound to adopt a 2D pencil-like domain decompo

sition. Leveraging a less communication-intensive approach for solving
the Poisson equation, while retaining a pencil-distributed decomposi

tion, is precisely the motivation of the present work. One alternative
within this context is to replace serial TDMA (tridiagonal matrix al

gorithms) by parallel methods, with a lower communication footprint.

Computer Physics Communications 316 (2025) 109811

2

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 1. Estimates of the total memory requirements for double-precision DNS
runs of turbulent channel flows on a 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 12.8 × 6.4 × 2 domain
at different friction Reynolds numbers (𝑅𝑒𝜏), as well as the size of a single slice
𝑛𝑥 ×𝑛𝑦 of the DNS domain in HBM for all points in the streamwise (𝑥) and span

wise (𝑦) directions. The calculations are performed using the domain partition
algorithms of the DNS solver CaNS [17] and the parallel decomposition library
cuDecomp [18]. The symbols denote the limits where a 1D slab decomposition
becomes impossible for GPUs with 64 GB and 128 GB of memory, respectively,
which is typical of current high-end HPC GPUs, along with the total GPU mem

ory of the largest supercomputer as of 2025: El Capitan [26]. This marks an
upper bound of the maximum Reynolds number that could be investigated with
current computational resources: Re𝜏 ≈ 50,000.

We develop such an approach based on a PCR-TDMA method (named
P-TDMA hereafter), and test it on the CaNS solver with a focus on many

GPU calculations at scale. To run our solver on an AMD-based system
like LUMI, an additional porting effort was undertaken, which we will
also describe here. We report the revised solver’s performance and scal

ability for large-scale DNS of turbulent channel flow at high Reynolds
number. Moreover, we show that particular care should be taken for
wall-normal implicit diffusion, to secure high performance at scale. Our
results show an almost 2× speedup at scale for the Poisson solver with
2D decomposition, which significantly improves the overall solver per

formance on large-scale GPU-based supercomputers.

This manuscript is organized as follows. Section 2 describes the gov

erning equations, the discretization scheme, and the implementation of
the Poisson/Helmholtz solver, including the cross-platform effort to run
on AMD-based systems. Then Section 3 discusses the study and the scal

ability benchmarks. Finally, Section 4 presents the conclusions.

2. Methodology

2.1. Governing equations and numerical discretization

The current numerical framework solves the incompressible Navier

Stokes equations,

∇ ⋅ u = 0, (1)

𝜕𝑡u + (u ⋅∇)u = −∇𝑝+ 𝜈∇2u, (2)

where u and 𝑝 correspond to the fluid velocity vector and the pres

sure scaled by the fluid density; 𝜈 is the fluid kinematic viscosity.
The numerical scheme is based on an incremental pressure correction
scheme or fractional-step method [27,28], where a prediction velocity
𝐮∗ is first calculated by integrating the momentum equation in time,
and continuity is imposed using a correction pressure Φ, which is ob

tained from the solution of a Poisson equation. The equations were
solved on a rectangular box using a structured Cartesian grid with a
staggered (MAC) arrangement for the velocity and pressure grid cells.
As per the restriction of the Poisson solver, we employ uniform spac

ing along two Cartesian directions (𝑥,𝑦) and non-uniform spacing in
the third spatial direction (𝑧). Second-order finite differences are used

for spatial discretization. This has several advantages with respect to
higher-order methods, such as being computationally efficient while
still enabling simulations with similar fidelity as spectral discretiza

tion methods in practice [29], and being flexible and easily extended
with numerical techniques for handling complex geometries like the
immersed-boundary method [30--32], or multifluid flows [33]. Finally,
Wray’s low-storage Runge-Kutta scheme [34] is used for temporal dis

cretization. The numerical scheme is presented below in semi-discrete
form:

u∗ = u𝑘 +Δ𝑡
(
𝛼𝑘

(
u𝑘 + 𝜈u𝑘

)
+ 𝛽𝑘

(
u𝑘−1 + 𝜈u𝑘−1

)
− 𝛾𝑘𝑝𝑘−1∕2

)
,

(3)

Φ= u∗

𝛾𝑘Δ𝑡
, (4)

u𝑘+1 = u∗ − 𝛾𝑘Δ𝑡Φ, (5)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 +Φ, (6)

where 𝛼, 𝛽, and 𝛾 refer to the coefficients of the RK3 scheme, which
are given by: 𝛼 = {8∕15, 5∕12, 3∕4}, 𝛽 = {0, −17∕60, −5∕12} and 𝛾 =
𝛼 + 𝛽; the index 𝑘 refers to the RK3 sub-iteration index 𝑘 = {0,1,2},
and Δ𝑡 is the time step. For flows at very low Reynolds numbers, or
highly refined grids, the time step size Δ𝑡 can be prohibitively small if
diffusive terms are integrated in time explicitly. In such cases, it may be
preferable to perform an implicit discretization of the diffusion terms at
the cost of solving an extra Helmholtz equation per velocity component,
as illustrated below:

u∗∗ = u𝑘 +Δ𝑡
(
𝛼𝑘u𝑘 + 𝛽𝑘u𝑘−1 + 𝛾𝑘

(
−𝑝𝑘−1∕2 + 𝜈u𝑘

))
, (7)

u∗ − 𝛾𝑘
𝜈Δ𝑡
2

u∗ = u∗∗ − 𝛾𝑘
𝜈Δ𝑡
2

u𝑘, (8)

Φ= u∗

𝛾𝑘Δ𝑡
, (4)

u𝑘+1 = u∗ − 𝛾𝑘Δ𝑡Φ, (9)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 +Φ− 𝛾𝑘
𝜈Δ𝑡
2

Φ. (10)

Note that, indeed, Eq. (8) is a Helmholtz equation for the prediction ve

locity 𝐮∗, which is implicit in the three spatial directions (x,y,z). While
this equation can be solved efficiently using the fast direct methods pre

sented in Section 2.2, the computational overhead is still considerable.
Fortunately, in many cases, the time step constraints for Δ𝑡 are due
to fine grid spacing only along the non-uniform grid direction (here,
𝑧). This is particularly true for wall-bounded flows with one inhomo

geneous direction, such as pipes or channels, which require fine grid
spacing near the walls [15,16]. In these cases, one can discretize only
the wall-normal diffusion term implicitly, and replace Eq. (8) with a
one-dimensional system per velocity component:

u∗ − 𝛾𝑘
𝜈Δ𝑡
2

𝑧u
∗ = u∗∗ − 𝛾𝑘

𝜈Δ𝑡
2

𝑧u
𝑘, (11)

where 𝑧 denotes the discrete Laplacian term associated with the 𝑧
direction. This is numerically much cheaper, as the second-order finite

difference discretization of this equation requires the solution of a sim

ple tridiagonal system.

2.2. Numerical solution of the Poisson/Helmholtz equation

2.2.1. Fourier-based synthesis

The solution of the Poisson equation for the pressure comprises some
of the numerical algorithm’s most computation and communication

intensive steps. Here, Eqs. (4) and (8) are solved using the method
of eigenfunctions expansions, which allows for fast, direct solutions by
leveraging the FFT algorithm [35,16]. After performing a Fourier-based
synthesis of the Poisson/Helmholtz equation along directions 𝑥 and 𝑦,
the following system of tridiagonal equations can be obtained along the
non-uniform grid direction 𝑧 for a grid cell with index 𝑖, 𝑗, 𝑘:

Computer Physics Communications 316 (2025) 109811

3

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 2. Schematic representation of a FFT-based linear solver using a 2D pencil decomposition for the DNS domain. The black arrows indicate the global transpose
operations for the data stored among different MPI tasks. The color of each 2D pencil represents a different MPI task. Forward (fwd.) operations are first performed
from left to right following the direction of the black arrows. Then, all transpose operations are reversed, and inverse/backward (bwd.) Fourier-based transforms are
performed, as indicated by the gray arrows. Note that the first transpose operation is often implemented as two consecutive transposes: 𝑧 → 𝑦 and 𝑦 → 𝑥. (For
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(
𝜆𝑖∕Δ𝑥2+𝜆𝑗∕Δ𝑦2

)
Φ̃𝑖,𝑗,𝑘+

(
𝜂𝑘−1Φ̃𝑖,𝑗,𝑘−1+𝜂𝑘Φ̃𝑖,𝑗,𝑘+𝜂𝑘+1Φ̃𝑖,𝑗,𝑘+1

)
= 𝑓𝑖,𝑗,𝑘,

(12)

where the tilde (̃) denotes two successive discrete Fourier-based (i.e.,
Fourier/cosine/sine) transforms applied to a variable along the 𝑥 (in

dex 𝑖) and 𝑦 (index 𝑗) directions. Note that each (𝑖, 𝑗) pair corresponds
to a tridiagonal system along the non-uniform direction (𝑧, index 𝑘).
The coefficients 𝜆𝑖 and 𝜆𝑗 are the second-order accurate eigenvalues
(or modified wavenumbers); see, e.g., [35]; Δ𝑥 and Δ𝑦 correspond to
the uniform grid spacing in the 𝑥 and 𝑦 directions, whereas the set of
coefficients 𝜂 represent the finite-different discretization of the 𝑧 op

erator along 𝑧. While the method of eigenfunctions expansions aims at
exploiting the FFT algorithm, it still allows for multiple combinations
of boundary conditions representative of different classes of canonical
turbulent flows, from isotropic turbulence to several boundary-free and
wall-bounded shear flows.

After obtaining Φ̃𝑖,𝑗,𝑘 from Eq. (12), the final solution (Φ𝑖,𝑗,𝑘) is eas

ily computed from the inverse Fourier-based synthesis. The numerical
methods and algorithms to solve Eq. (12) are the key parts of the present
work and will be discussed next in Section 2.2.2. Finally, there are note

worthy nuances in implementing fast real-to-complex/complex-to-real
(Fourier) and real-to-real (sine/cosine) transforms on GPUs in a unified
framework, which we describe in Appendix A.

2.2.2. Original distributed-memory solution

The numerical solution of the second-order finite-difference Pois

son/Helmholtz equations in rectangular grids is solved using FFT-based
methods in a distributed-memory setting. The original approach used
to solve this problem is described below,2 and illustrated in Fig. 2. The
following steps are taken:

1. Compute right-hand side term 𝑑𝑖,𝑗,𝑘 of eq. (12) in 𝑧-aligned pencils.

2. Transpose data to 𝑥-aligned pencils and perform 𝑁𝑦𝑁𝑧 Fourier

based transforms along 𝑥.

3. Transpose data to 𝑦-aligned pencils and perform 𝑁𝑥𝑁𝑧 Fourier

based transforms along 𝑦.
4. Transpose data to 𝑧-aligned pencils and solve the resulting 𝑁𝑥𝑁𝑦

tridiagonal systems of equations along 𝑧.
5. Perform the reciprocate transpose operation as in step 4.

2 It is important to note that, while the code CaNS allows for an arbitrary
default pencil orientation (i.e., outside the pressure solver), we start from 𝑍

aligned pencils since this minimizes the number of collective communications
when solving the momentum equation with 𝑧-implicit diffusion. Starting from 𝑥

aligned pencils would avoid transpose operations in the Poisson solver, but many
additional transpose operations would be required for inverting a tridiagonal
system per velocity component.

6. Perform the reciprocate inverse transforms and transpose operation
as in step 3.

7. Perform the reciprocate inverse transforms and transpose operation
as in step 2, to obtain the final solution in 𝑧-aligned pencils.

Here, 𝑁𝑥∕𝑦∕𝑧 are the local number of grid cells along 𝑥∕𝑦∕𝑧 during
the different steps of the algorithm for each MPI task. The transpose op

erations are an all-to-all collective, which may be very expensive. Within
this approach, the FFT-based transforms and solution of the tridiagonal
systems can be trivially mapped to different parallel (GPU) threads. Note
that, whenever a 1D slab-like parallelization is possible, some of the
transpose operations shown above would turn into a no-op, making it
often desirable. In this regard, the best-performing slab configurations
are those partitioned along 𝑦. This is convenient, since each GPU can
perform Fourier transformations along the 𝑥-direction, and solve tridi

agonal systems of equations along the 𝑧-direction, without performing
additional collective operations. Even with 1D implicit diffusion, only
one pair of transposes is required per step: the 𝑥 ↔ 𝑦 transposes shown
in Fig. 2.

While the approach presented in Fig. 2 enables GPU-accelerated DNS
of fluid flows on many CPUs/GPUs, the transposing operations may re

sult in a major performance loss. This may be particularly problematic
in modern GPU-based systems at scale, as the inter-node bandwidth is
orders of magnitude slower than the GPU memory bandwidth or the
intra-node communication. Hence, we need an approach that: (1) keeps
a 2D parallelization, which is unavoidable at scale, and (2) reduces the
amount of data used in collective communications to a reasonable min

imum. We will explain this approach below.

2.2.3. Solution with parallel tridiagonal solver

In this approach, we split the computational domain along the 𝑧
direction, and exploit a parallel tridiagonal solver as in [19,21,36] to
circumvent the large all-to-all operations in the previous section. This
approach is shown in Fig. 3. This algorithm starts with a cyclic reduc

tion step, such that only information regarding the boundaries of every
slice in the 𝑧-direction must be communicated to other MPI tasks. Sub

sequently, a tri-diagonal system for the boundary values is constructed.
While an all-to-all type of collective is still needed, internal data points
are not communicated, which can drastically reduce the communication
overhead. The steps of this algorithm are summarized as follows:

1. Compute right-hand side term 𝑑𝑖,𝑗,𝑘 of eq. (12) in 𝑥-aligned pencils.

2. Perform 𝑁𝑦𝑁𝑧 Fourier-based transforms along 𝑥 (see Fig. 3).

3. Transpose data to 𝑦-aligned pencils and perform 𝑁𝑥𝑁𝑧 Fourier

based transforms along 𝑦.
4. Perform 𝑁𝑥𝑁𝑦 cyclic reductions along 𝑧, pack 2𝑁𝑥𝑁𝑦 boundary

values, and transpose the packed boundaries to 𝑧-aligned pencils.

Computer Physics Communications 316 (2025) 109811

4

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 3. Modified parallel tridiagonal solver for large-scale DNS. The first two sub-images follow the same conventions as Fig. 2, where the color of each partition
indicates a different MPI task. In the third and fourth sub-images, the process of cyclic reduction is highlighted, by applying a different color to the boundary values
for each partition.

5. Solve 𝑁𝑥𝑁𝑦 reduced systems of tridiagonal equations along 𝑧, with
local size 2𝑝𝑧.

6. Transpose data to 𝑦-aligned pencils, unpack 2𝑁𝑥𝑁𝑦 boundary val

ues, and reconstruct the internal solution fields.

7. Perform the reciprocate inverse transforms and transpose operation
as in step 3.

8. Perform the reciprocate inverse transforms as in step 2.

In the previous steps, 𝑁𝑥∕𝑦∕𝑧 is again the local grid size for each
MPI rank in each Cartesian direction, whereas 𝑝𝑧 is the number of divi

sions of the computational domain along the 𝑧-direction, which would
correspond to 𝑝𝑧 = 4 in Fig. 3. The details of the parallel tridiagonal
algorithm, and the modifications proposed in this work for the compu

tation of its internal coefficients, are explained in Sections 2.2.4. Clearly,
the amount of data transferred among MPI tasks is substantially reduced
[21]. The tridiagonal system of equations found in the right-side of Fig. 3
have a size of 2𝑝𝑧, where 𝑝𝑧 is the number of partitions of the computa

tional domain along the z-direction. Therefore, the parallel tridiagonal
solver should be efficient as long as 2𝑝𝑧 ≪ 𝑁𝑧, where 𝑁𝑧 is the total
number of grid points in the 𝑧-direction.

Interestingly, in the parallel tridiagonal solver, increasing the num

ber of lateral divisions (𝑝𝑦) favors strong scalability: When 𝑝𝑦 is in

creased, the size of the boundaries (per MPI task) is reduced as 2𝑛𝑥𝑛𝑦∕𝑝𝑦.
Therefore, doubling 𝑝𝑦 halves the data communicated per task, leading
to excellent scalability. In contrast, increasing the number of vertical
partitions (𝑝𝑧) does not reduce the MPI workload, and thus it is un

favorable for scalability. This is particularly relevant for 1D slab con

figurations where 𝑝𝑦 = 1 and 𝑝𝑧 is the total of GPUs. Still, 1D slab
configurations are optimal when 𝑝𝑧 ≪𝑁𝑧.

2.2.4. Parallel tridiagonal algorithm

Numerous approaches may be considered to parallelize the Thomas
algorithm to solve a tridiagonal system (see, e.g., the survey in [21]).
Here we adopt the method proposed by [19], which uses cyclic reduc

tion, combined with a Thomas algorithm for a reduced system. We have
illustrated the approach in Fig. 3, and summarize it below.

First, the distributed tridiagonal systems of this form (cf. eq. (12))

𝑎𝑘 𝜙𝑘−1 + 𝑏𝑘 𝜙𝑘 + 𝑐𝑘 𝜙𝑘+1 = 𝑑𝑘, (13)

are locally reduced to a problem where inner unknowns within the com

putational subdomain are only a function of the values at its top and
bottom boundary:

𝑎′
𝑘
𝜙0 +𝜙𝑘 + 𝑐′𝑘 𝜙𝑚−1 = 𝑑

′
𝑘, (14)

using a cyclic reduction step. The original set of coefficients and right

hand-side (𝑎, 𝑏, 𝑐, 𝑑) are then reduced to the (𝑎′, 𝑐′, 𝑑′), where the main
diagonal is normalized to have unit weight. Algorithm 1 describes this
approach for completeness, and more details can be found in [19,21,36].

Second, the sets of values (𝑎′, 𝑐′, 𝑑′) at the boundaries of every do

main 𝑘 = {0,𝑚 − 1} can be grouped and transposed in a collective
operation (recall Fig. 3). Then, the standard Thomas algorithm solves
the reduced systems of tridiagonal equations for the boundary values
of all subdomains. Finally, the boundary data for 𝜙𝑖,𝑗,𝑘 can be globally
transposed, and the values of 𝜙𝑖,𝑗,𝑘 in the interior of every sub-domain
can be reconstructed using eq. (14).

Algorithm 1 Cyclic reduction step of the parallel tridiagonal algorithm
[19,21], where d corresponds to the right-hand-side of the system (see
Eq. (12)).

1: Step 1: Initialization

2: Input: a,b,c,d

3: a0 ← a0∕b0 ; c0 ← c0∕b0 ; d0 ← d0∕b0
4: a1 ← a1∕b1 ; c1 ← c1∕b1 ; d1 ← d1∕b1
5: for i=2,...,m-1 do

6: 𝑟← 1∕(b𝑖 − a𝑖c𝑖−1)
7: d𝑖 ← 𝑟(d𝑖 − a𝑖d𝑖−1)
8: c𝑖 ← 𝑟c𝑖
9: a𝑖 ← −𝑟a𝑖a𝑖−1

10: end for

11: for i=m-3,...,1 do

12: d𝑖 ← d𝑖 − c𝑖d𝑖+1
13: a𝑖 ← a𝑖 − c𝑖a𝑖+1
14: c𝑖 ← −c𝑖c𝑖+1
15: end for

16: 𝑟← 1∕(1 − a1c0)
17: d0 ← 𝑟(d0 − c0d1)
18: a0 ← 𝑟a0
19: c0 ← −𝑟c0c1
20: b = 1

21:

22: Step 2: Solve reduced system of equations for boundary values

23:

24: Step 3: Reconstruct the solution in-place

25: Input: a,c,d,x0,x𝑚−1
26: d0 ← x0
27: d𝑚−1 ← x𝑚−1
28: for i=1,...,m-2 do

29: d𝑖 ← d𝑖 − a𝑖x0 − c𝑖x𝑚−1
30: end for

A few important notes should be considered to secure parallel per

formance at scale when combining the pressure Poisson equation with
𝑧-implicit diffusion. While the same computational approach may be
taken for solving both cases, the straightforward implementation of Al

gorithm 1 would be far from optimal in both cases. Note that: (1) the
reduced tridiagonal system for the Poisson equation is time-invariant
(eq. (4)), with a problem that changes for each (𝑖, 𝑗) index, yet (2) the
𝑧-implicit matrix is constant for each (𝑖, 𝑗) index, but time-dependent
(eq. (11)). Hence, a key optimization for the Poisson equation is to

Computer Physics Communications 316 (2025) 109811

5

R. Diez Sanhueza, J. Peeters and P. Costa

perform the transpose operations associated with the reduced system co

efficients (𝑎′, 𝑏′, 𝑐′) only once as an initialization step (recall the penulti

mate step in Fig. 2), as only 𝑑′ varies with the right-hand-side of eq. (4).
Regarding implicit 𝑧 diffusion, (𝑎′, 𝑏′, 𝑐′) are time-dependent, but iden

tical for all (𝑖, 𝑗) indexes mapped to different GPU threads to solve the
equations along 𝑧. Thus, rather than communicating (𝑎′, 𝑏′, 𝑐′) through
MPI operations, it is much faster to have each GPU computing the global
(𝑎′, 𝑏′, 𝑐′) coefficients corresponding to all MPI tasks aligned in the z

direction, and locally copy the values pertaining to its own subdomain.
This is done on the GPUs with unnoticeable computational overhead,
and effectively avoids expensive MPI communication operations.

Accordingly, to efficiently handle implicit 𝑧 diffusion, Algorithm 1
was re-derived in a flavor that splits the solution into an initialization
with pre-computed coefficients and a runtime step. This approach is pre

sented in Algorithm 2. A major advantage of this approach is that only
the array 𝑑′ is modified in-place at runtime. This marks a large con

trast to Algorithm 1, which requires thread-private arrays (or memory
buffers) to track intermediate changes in the arrays (𝑎′, 𝑐′). This change
is particularly relevant when solving for implicit 1D diffusion, since only
1D arrays with precomputed (𝑎′, 𝑏′, 𝑐′) coefficients can handle the solu

tion process.

From a mathematical perspective, the new algorithm is derived by
analyzing the cyclic reduction process, and carefully tracking which ref

erences to the (𝑎′, 𝑏′, 𝑐′) arrays can be replaced by either their input or
output values. After making this distinction, it becomes evident that the
reduction process for the array 𝑑′ does not depend on intermediate val

ues for (𝑎′, 𝑏′, 𝑐′) being over-written. Therefore, it is natural to split the
process into initialization and runtime stages. Moreover, it is important
to highlight that only the initial values of (𝑎′, 𝑐′) are used. In the DNS
solver, the variables (𝑎′, 𝑐′) always correspond to 1D vectors, even for
Poisson or Helmholtz solvers. As a result, storing the initial values of
(𝑎, 𝑐) creates a negligible performance overhead.

2.3. Implementation

As previously noted, the approaches we have presented are imple

mented in the open-source code CaNS [16,17]. CaNS is written in Mod

ern Fortran, and since its version 2.0 offloads data and computation to
GPUs using OpenACC. At the fine-grained parallelization level of the
TDMA implementations, each 𝑖, 𝑗 index is assigned to a thread, which
serially performs operations along the third domain direction. The CPU
implementation uses the 2DECOMP&FFT library [37] to perform trans

poses. Conversely, the multi-GPU implementation uses the cuDecomp
library for pencil-distributed calculations at scale that feature trans

poses and halo exchanges [18] is used in CaNS. The main advantage
of cuDecomp is its runtime autotuning capabilities, which allows to con

fidently select a well-performing combination of 2D processor grid and
communication backend (with several low-level implementations of the
transposing algorithm in CUDA-aware MPI, NCCL, or NVSHMEM). cuD

ecomp’s flexibility allowed for a very straightforward implementation of
the communication operations that can be visualized in Fig. 2. Indeed,
the all-to-all operations needed to communicate the boundary values for
each sub-group of slices along the z-direction could be replaced by the
existing transpose operations available in the cuDecomp or 2DECOMP
libraries.

The distributed-memory implementation of CaNS, using cuDecomp
and cuFFT, allowed for very efficient calculations at scale on NVIDIA

based systems. However, in the present work we decided to benchmark
our approach on the supercomputers Leonardo (NVIDIA-based) and
LUMI (AMD-based). We summarize our implementation approach for
the latter, which we plan to incorporate in the CaNS public repository
in the near future.

Regarding the verification of the implementation, CaNS has been
extensively validated in the past [16,17]. Therefore, the correctness
of the current implementation can be trivially verified, since only the
parallel tridiagonal solvers have been touched. An explicit comparison

Algorithm 2 Alternative flavor of the cyclic reduction method proposed
in this work, with a separation between initialization and runtime oper

ations. The variables (A,B,C) correspond to the original coefficients of
the tridiagonal equations, whereas (a,b,c) are the modified coefficients
after cyclic reduction.

1: Step 1: Initialization

2: Input: A,B,C,a,b,c

3: a1 ←𝐴1
4: b1 ← B1
5: for i=2,...,m-1 do

6: b𝑖 ← B𝑖 −𝐴𝑖 𝐶𝑖−1∕b𝑖−1
7: a𝑖 ← −𝐴𝑖 a𝑖−1∕b𝑖−1
8: end for

9: c𝑚−1 ← 𝐶𝑚−1
10: c𝑚−2 ← 𝐶𝑚−2
11: for i=m-3,...,1 do

12: a𝑖 ← a𝑖 −𝐶𝑖 a𝑖+1∕b𝑖+1
13: c𝑖 ← −𝐶𝑖 c𝑖+1∕b𝑖+1
14: end for

15: a0 ←𝐴0
16: b0 ← B0 −𝐶0 a1∕B1
17: c0 ← −𝐶0 c1∕B1

⊳ Note: To avoid GPU divisions in Steps 2 and 4, optimized implementations
can store 1∕b instead of b.

18:

19: Step 2: Runtime reduction

20: Input: A,B,C,a,b,c,d

21: for i=2,...,m-1 do

22: d𝑖 ← d𝑖 −𝐴𝑖 d𝑖−1∕b𝑖−1
23: end for

24: for i=m-3,...,0 do

25: d𝑖 ← d𝑖 −𝐶𝑖 d𝑖+1∕b𝑖+1
26: end for

27:

28: Step 3: Solve reduced system of equations for boundary values

29:

30: Step 4: Reconstruct the solution in-place

31: Input: a,b,c,d,x0,x𝑚−1
32: d0 ← x0
33: d𝑚−1 ← x𝑚−1
34: for i=1,...,m-2 do

35: d𝑖 ← (d𝑖 − a𝑖x0 − c𝑖x𝑚−1)∕b𝑖
36: end for

with respect to the output of the full-transpose method is accurate up
to machine precision for the modified subroutines, which verifies the
correctness of the implementation.

2.3.1. Many-GPU implementation on LUMI

On LUMI, the Cray Fortran compiler is readily compatible with Ope

nACC, and GPU-aware MPI is supported to perform data transfer among
GPU devices (or GCDs). However, since LUMI has AMD cards, some
work was required to port the transpose and halo exchange algorithms
for LUMI. One approach would be to adjust cuDecomp such that the
NVIDIA-specific features of the library are masked out of the build work

flow. In the present work, we took a different route and developed a
cross-platform communication library based on Fortran and OpenACC
named diezDecomp. Its source code is available on GitHub under an MIT
license [38]. This implementation uses OpenACC and GPU-aware MPI to
perform transpose and halo exchange operations. During transpose oper

ations, diezDecomp has been optimized to pack and unpack data related
to different MPI ranks simultaneously (in parallel GPU threads), and
it supports conversions between different indexing orders (e.g., 𝑥∕𝑦∕𝑧
to 𝑦∕𝑥∕𝑧). As further verification, the performance of the diezDecomp
library was tested in the Leonardo supercomputer, achieving nearly
identical running times as the cuDecomp library.

Finally, it is important to highlight that the current distributed Pois

son/Helmholtz solver is able to work with various types of FFT libraries,
such as cuFFT [39], hipFFT [40], or even in-house FFT implementations.

Computer Physics Communications 316 (2025) 109811

6

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 4. Strong scalability chart for a wall-bounded flow with grid size
(
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)
= (7168 × 7168 × 1594), which roughly corresponds to a friction Reynolds

number of 𝑅𝑒𝜏 ≈ 5 000. The variable 𝑝𝑧 corresponds to the number of divisions along the 𝑧 direction for the pencil decomposition scheme. The abbreviation ``FTM''
refers to the original DNS solver, which was based on the full-transpose method. All simulations were performed in the Leonardo and LUMI supercomputers. Please
note that P-TDMA method with 1D slabs (filled black triangles) cannot be run with 1 024 GPUs/GCDs, due to an insufficient number of grid points in the 𝑧-direction:
𝑁𝑧∕𝑝𝑧 < 2.

In this context, our porting effort uses the hipFFT library for simulations
in AMD GPUs using the bindings provided by the hipFort project [41],
whereas cuFFT is enabled for NVIDIA GPUs via the CUDA toolkit [6].
Since both FFT libraries have similar APIs, our implementation uses CPP
macros to switch between libraries depending on the target platform.

3. Results

3.1. Strong and weak scalability

We consider a large-scale turbulent plane channel flow setup, which
exercises all important steps presented in this paper, including 𝑧-implicit
diffusion. Fig. 4 presents a strong scalability test for a 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 =
7168 × 7168 × 1594 grid, containing approximately 80 billion
grids points. This corresponds to a channel with a domain size of
𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 = 12.8 × 6.4 × 2, with a friction Reynolds number
𝑅𝑒𝜏 ≈ 5 000 [42]. Note that, in many GPU-resident workloads, a strong
scaling test likely shows performance deterioration, as the occupancy
of each GPU is being lowered [18]. The tests were performed on the
Leonardo and LUMI supercomputers, which again, feature NVIDIA A100
and AMD MI250X GPU cards, respectively. In the figure, we compare
the full transpose method (FTM) to the approach with the parallelized
tridiagonal matrix algorithm (P-TDMA), for both 1D (slab) decomposi

tions (as in Fig. 2 without decomposing along 𝑥, and in Fig. 3 without
decomposing along 𝑦) and for 2D pencil decomposition schemes with
different levels of process decomposition along 𝑧: 𝑝𝑧 = 2 and 128. The
number of partitions along the 𝑦-direction (𝑝𝑦) are set from the total
number of GPUs: 𝑛𝑔 = 𝑝𝑦 × 𝑝𝑧. These configurations are intended to
show how the solver scales in the two limits where the 2D pencil de

composition has either the least number of partitions along 𝑧, or very
high values. Clearly, the P-TDMA algorithm is far more efficient than
FTM when 2D pencil decompositions are considered. This is explained
by Figs. 2 and 3, because the P-TDMA algorithm transposes a signifi

cantly smaller amount of data than the FTM method. Focusing on the
performance of the Poisson solver (bottom panels of Fig. 4), there is a
consistent 1.5× improvement in wall-clock time per step. While strong

scaling deterioration is expected, it is interesting to note that some of the
curves show reasonably mild deviations from the ideal scaling curve.

The P-TDMA method shows great efficiency for 𝑝𝑧 = 2, and almost
matches the best-performing 1D slab configurations in the FTM case.
This is expected, as the P-TDMA method only transfers data along one
small boundary in the 𝑧-direction when 𝑝𝑧 = 2, with a computational
cost roughly similar to a halo exchange.

Let us now consider the difference between the wall-clock time of the
Poisson solver and the full time steps. The most important difference
here is the solution of three separate systems of 1D implicit diffusion
equations in the wall-clock time of the full time step. Therefore, config

urations that transfer more data when solving for 1D implicit diffusion
tend to have worse performance, such as the FTM approach with a 2D
pencil decomposition.

The wall-time per steps for the Poisson solver with 1 024 GPUs/GCDs
converge to a similar value for both the best FTM configurations and the
P-TDMA cases with 2D pencil decompositions, since their performance
is dominated by the transpose operations in the 𝑥-𝑦 directions. Interest

ingly, one can notice a major performance gain for the P-TDMA when
𝑝𝑧 = 128 on LUMI, which corresponds to a special case where 50% of
the required data after the 𝑥-𝑦 transpose is already present in the GPU,
requiring only a local copy.

In the case of the P-TDMA algorithm with 1D slabs, it can be ob

served in Fig. 4 that the running times remain nearly constant when the
number of GPUs/GCDs increases from 256 to 512. This is due to the P

TDMA method having boundaries with a fixed size of (𝑁𝑥 ×𝑁𝑧×2), and
thus, the data transferred per GPU/GCD remains equal as the number of
processes is increased. Despite this, the P-TDMA method with 1D slabs
still outperforms the FTM approach, when the number of grid points
along the z-direction is very large for every 1D slab. This is illustrated
in Fig. 5, where a strong scalability benchmark is presented for 1D slabs
for 𝑅𝑒𝜏 ≈ 2500 and a grid size of 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 = 3200 × 3456 × 900.
In this benchmark, the P-TDMA method outperforms the FTM approach
with 32 GPUs/GCDs, yet its performance decreases as the number of
processes grows. For cases at lower Reynolds numbers, the performance
improvements can be expected to grow in favor of the P-TDMA method,

Computer Physics Communications 316 (2025) 109811

7

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 5. Strong scalability chart for a wall-bounded flow with grid size
(
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)
= (3200 × 3456 × 900), which roughly corresponds to a friction Reynolds

number of 𝑅𝑒𝜏 ≈ 2,500. All runs correspond to 1D slab configurations, as in Fig. 2 without decomposing along 𝑥, and in Fig. 3 without decomposing along 𝑦.

Fig. 6. Weak scalability analysis for DNS cases with a fixed grid size
(
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)
= (3456 × 3072 × 30) per GPU device. For the P-TDMA method, the pencil

decomposition scheme only considers one partition along the y-direction (𝑝𝑦 = 1), and a number of z-partitions (𝑝𝑧) equal to the number of GPUs. The FTM approach
considers the 1D slab configuration as in Fig. 2 without decomposing along 𝑥.

since the number of grid points per GPU along 𝑧 increases for the 1D
slabs.

The results from the weak scaling tests are shown in Fig. 6. Weak
scaling is the most important scaling indicator in large-scale GPU

resident DNS, as optimal resource usage requires maximizing GPU occu

pancy, which is kept fixed in these tests. We fixed the local domain sizes
to about 318.5 million grid points per GPU, by considering a grid with
3456 × 3072 × 30 points per GPU, which saturates the GPUs (GCDs) on
Leonardo (LUMI). For the P-TDMA method, the number of partitions 𝑝𝑧
along the z-direction is equal to the number of GPUs/GCDs, since this
corresponds to the most challenging scenario for the weak scaling anal

ysis; for FTM, we use the optimal configuration for 1D slabs. Clearly,
the performance of the P-TDMA approach is superior, not only being
approximately 2× faster in wall-clock time per step, but also in terms
of weak scaling. An 8-fold increase in the GPUs/GCDs used results in

a 3% (13%) performance degradation on Leonardo (LUMI), while the
full transpose method shows a major weak scaling loss of 35% (52%) on
Leonardo (LUMI). This shows that, indeed, the proposed improvements
are important for efficient wall turbulence simulations at scale.

3.2. Breakdown of parallel performance

Let us now understand in more detail the results presented in the
previous sections. Fig. 7, compares the workload distribution of the cur

rent approach and the previous algorithm based on the full-transpose
method. The DNS cases chosen for comparison are simulations with
1 024 GPUs/GCDs, shown in the strong scalability chart (Fig. 4). Con

sistently with the previous observations, the performance differences in
the supercomputers we have tested show similar trends overall. The 2D
pencil decomposition considered for comparison is (𝑝𝑦 × 𝑝𝑧) = (512, 2),

Computer Physics Communications 316 (2025) 109811

8

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. 7. Comparison between the GPU timer profiles for the DNS solver with the P-TDMA and FTM methods on Leonardo and LUMI. For each profiled operation, the
left bars correspond to the average wall-time per step (mean), while the right bars are the aggregated results considering the best elapsed times per operation (min).
The data was extracted from the DNS runs with 1 024 GPUs (Leonardo) or GCDs (LUMI), which are presented in the strong scalability chart (Fig. 4) for a fixed grid
size

(
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)
= (7168 × 7168 × 1594). For the DNS solver with P-TDMA, the data further corresponds to the case with

(
𝑝𝑦 × 𝑝𝑧

)
= (512 × 2) partitions

along the 𝑦 and 𝑧 directions, which has the fastest running times in the strong scalability chart. Both GPU timer profiles correspond to the averaged results for a
single RK3 sub-step within the DNS solvers. Please note that the 𝑦 ↔ 𝑧 transposes for the P-TDMA algorithm transfer much less data, and thus their impact on the
plotted budgets is minor.

which has the lowest running times overall for the P-TDMA algorithm.
Not surprisingly, the P-TDMA approach is much faster than the full

transpose algorithm while solving for the pressure-Poisson equation.
However, the P-TDMA algorithm is slower when solving for 1D implicit
diffusion alongside each velocity component (𝑢, 𝑣,𝑤). This is also ex

pected, as again, the FTM uses an initial 𝑧-aligned decomposition, where
the full tridiagonal problems are local to each MPI task. Both algorithms
show similar overhead associated with halo exchanges, which is also ex

pected.

3.2.1. Average timings

When inspecting the contributions to the mean total wall-time per
step in Fig. 7, it becomes clear that all-to-all operations are the main per

formance bottleneck of the full-transpose method, whereas the P-TDMA
approach is far less communication-intensive. Interestingly, the Poisson
solver with the P-TDMA algorithm spends 81.7% (89.6%) of the time
on Leonardo (LUMI) performing local transposes along the 𝑥-𝑦 plane,
which are required between the Fourier-based transforms described in
Section 2.2. The all-to-all operations associated with the parallel tridiag

onal solver only require 0.2% (0.6%) of the computing time in Leonardo
(LUMI), as this collective operation only communicates boundary val

ues for each MPI task (recall the penultimate step in Fig. 2). Note that,
while the time spent performing 𝑥 → 𝑦 transposes can be (partially) re

duced by minimizing the 𝑝𝑦 divisions along the 𝑦-direction (e.g., 𝑝𝑦 = 2),
the overall performance degrades in Fig. 4 when the number of verti

cal partitions 𝑝𝑧 is increased for this case. This trend is valid for both
the FTM approach and the P-TDMA methods, since the cost of perform

ing 𝑦-𝑧 transposes increases as 𝑝𝑧 grows. Therefore, a careful trade-off

must be considered. Moreover, the optimal DNS domain decomposi

tion is not only problem-dependent but also hardware-dependent, which
makes runtime tuning of the computational setup very relevant [18].

Finally, in Fig. 7, it can be noticed that the P-TDMA approach also
performs 𝑥 → 𝑦 transposes when solving for implicit 1D diffusion, with
a small but noticeable communication footprint. This is not strictly nec

essary, since cyclic reduction can be directly performed using the initial
𝑥-aligned pencils (Fig. 3, left), and then a direct 𝑥 → 𝑧 transpose could
be used to obtain 𝑧-aligned pencils [15]. This direct transpose is less triv

ial to implement and is not featured in cuDecomp or 2DECOMP&FFT. Yet,
since the diezDecomp communication library supports 𝑥 → 𝑧 transposes
for any desired 2D decomposition, we tested the performance gains of
this direct transpose. The results of this additional benchmark are shown
in Appendix B for LUMI. While the computational overhead of the ad

ditional 𝑥 → 𝑦 transpose is small for the cases shown in Fig. 7 with the
decomposition (𝑝𝑦 × 𝑝𝑧) = (512 × 2), we identified that other pencil
decompositions suffered from higher performance losses. For instance,
the benchmark shows that the DNS case with (𝑝𝑦 × 𝑝𝑧) = (8 × 128)
is about 55% faster during the calculation of 𝑧-implicit diffusion when
using direct 𝑥 → 𝑧 transposes. This results in savings of about 18% in
the total wall-clock time per step.

3.2.2. Best elapsed times per operation

To better explain the differences between systems, we included in
Fig. 7 the aggregated best elapsed times per operation (right bars). Re

markably, the total running times for the FTM (P-TDMA) method are
decreased by about 28% (37%) for LUMI, and by 8% (9%) for Leonardo.

Computer Physics Communications 316 (2025) 109811

9

R. Diez Sanhueza, J. Peeters and P. Costa

It appears that the average wall-clock time per step on LUMI is signifi

cantly suboptimal compared to that on Leonardo.

Significant performance differences between these machines for all

to-all collective operations have been reported in De Sensi et al. [11],
where Leonardo outperformed LUMI by almost 50% in goodput bench

marks at scale. We argue that the analysis considering the best elapsed
times per operation resembles a goodput benchmark better, since these
results contain the smallest levels of network delays possible. Interest

ingly, when inspecting the aggregated best elapsed times (min) in Fig. 7,
it can be noticed that LUMI is only 31% (45%) slower than Leonardo for
the total running times of the FTM (P-TDMA) method, consistently with
the trends in De Sensi et al. [11]. We verified that this trend is robust
across other cases (not shown).

4. Conclusions

We have presented a numerical approach for GPU-based massively

parallel DNS of turbulent wall flows with one inhomogeneous direction.
Using the CaNS solver as base, we extended it with a parallel tridiago

nal algorithm for solving the pressure Poisson equation, and to handle
implicit integration of the wall-normal diffusion term. To achieve this,
we adopted a recently-proposed approach for solving distributed tridi

agonal systems [19,21], and implemented it in a pencil-decomposed
framework. Allowing for two-dimensional decompositions is key, as
slab-decomposed approaches are bound to breakdown for DNS at suffi

ciently high Reynolds number.

Carefully handling 𝑧-implicit diffusion was key to secure the im

proved parallel performance at scale. To this end, we have proposed
a re-worked flavor of the original parallel cyclic reduction -- TDMA
approach presented in László et al. [19]. We have shown that, by re

working the algorithm into a pre-processing and runtime step, one can
easily solve the three linear systems per time iteration associated with
this implicit discretization.

We have tested the different approaches at scale, using up to 1 024
GPUs/GCDs on the supercomputers Leonardo and LUMI. The results of
the scalability tests reveal that the new distributed Poisson solver shows
compelling performance gains for 2D pencil decompositions, being ap

proximately twice faster in the LUMI and Leonardo supercomputers than
the original CaNS version based on the full-transpose approach using
1 024 GPUs/GCDs. A detailed analysis of the GPU timer profiles reveals
that the performance improvements are largely due to the reduced size
of the global all-to-all transpose operations among MPI tasks. The scal

ability of the DNS solver was also tested in large-scale simulations of
wall-bounded flows, benchmarking the performance of entire physical
time steps. At scale, the new approach was found to be approximately
1.5× faster in the LUMI and Leonardo supercomputers with a 2D pencil
decomposition of

(
𝑝𝑦 × 𝑝𝑧

)
= (512 × 2) while completing entire phys

ical time steps. The observed performance differences between the two
machines were understood by inspecting the best recorded times per al

gorithm step, showing that LUMI runs experienced higher latency than
Leonardo. In general, we find that minimizing the number of 𝑝𝑧 par

titions in 2D pencil decompositions reduces the running times for the
DNS solver with either the full-transpose method or the parallel tridi

agonal algorithm. This is attributed to the reduced cost of performing
transposes in the 𝑦-𝑧 directions. Additionally, we highlight that the DNS
solver, coupled with the parallel tridiagonal algorithm, can be config

ured to work with 2D pencil decompositions achieving identical run

ning times as the most optimized 1D slab configurations available for
medium-scale systems.

Regarding implementation, while the underlying numerical solver
works on Leonardo out-of-the-box, some work was required to success

fully run it on LUMI. As a by-product of the present effort, a cross

platform communication library diezDecomp was developed for halo
exchanges and any-to-any transpose operations between MPI ranks with
mismatched local problem sizes. While we could have achieved the same

by modifying cuDecomp, we found some advantages in having a simpler
library in Modern Fortran as an alternative with fewer dependencies.

Overall, this approach will enable DNS of turbulent wall flows at un

precedented scales, helping to bridge the gap between current setups
that can be studied using first-principles simulations, and important ap

plications in environmental and engineering systems.

CRediT authorship contribution statement

Rafael Diez Sanhueza: Writing -- review & editing, Writing -- orig

inal draft, Visualization, Validation, Software, Methodology, Investi

gation, Formal analysis, Data curation, Conceptualization. Jurriaan
Peeters: Writing -- review & editing, Writing -- original draft, Validation,
Supervision, Software, Resources, Project administration, Investigation,
Conceptualization. Pedro Costa: Writing -- review & editing, Writing
– original draft, Validation, Supervision, Software, Resources, Project
administration, Methodology, Investigation, Data curation, Conceptual

ization.

Declaration of competing interest

The authors declare the following financial interests/personal rela

tionships which may be considered as potential competing interests: Pe

dro Costa reports financial support was provided by European High Per

formance Computing Joint Undertaking through the grants no. EHPC
EXT-2022E01-054 and no. EHPC-DEV-2024D04-039. If there are
other authors, they declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

The performance tests on the Leonardo supercomputer, based at
CINECA (Italy), were enabled by the EuroHPC grant no. EHPC-EXT
2022E01-054. Access to the LUMI supercomputer was granted through
the project no. EHPC-DEV-2024D04-039, and the NWO Large Com

pute Grant no. EINF-10608. We also acknowledge NWO for providing
access to the Snellius supercomputer, based at SURF (Netherlands). We
thank Josh Romero, Massimiliano Fatica, and Sergio Pirozzoli for the
insightful discussions. Finally, we would also like to thank the two
anonymous Reviewers for their careful review, which contributed to the
improvement of the manuscript.

Appendix A. GPU implementation of Fourier-based transform

While a real-to-complex Fourier transform of a signal 𝐱 with 𝑛 num

bers has 𝑛∕2 + 1 complex numbers, the imaginary parts of the first and
last elements (for even 𝑛) are zero. Let us consider the output of the
real-to-complex Fourier transform of

x =
[
𝑥0 𝑥1 … 𝑥𝑛−1

]
, (A.1)

given by

𝒙̃ =
[
𝑥̃𝑟0 𝑥̃

𝑖
0 𝑥̃

𝑟
1 𝑥̃

𝑖
1 … 𝑥̃𝑟⌊𝑛∕2+1⌋ 𝑥̃𝑖⌊𝑛∕2+1⌋

]
; (A.2)

𝒙̃ has ⌊𝑛∕2 + 1⌋ elements, with ⌊⌋ denoting the integer floor operation.
Since each complex number is represented by two real ones, 𝒙̃ is rep

resented by (2 ⌊𝑛∕2 + 1⌋) real numbers, with 𝑥̃𝑖0 = 0, and 𝑥̃𝑖⌊𝑛∕2+1⌋ = 0
for even 𝑛. Hence, the real-to-complex transform can be uniquely rep

resented by a set of 𝑛 numbers. This property is explored in several FFT
packages (e.g., FFTPACK, and the half-complex format of FFTW used
in the CaNS code for CPU-based runs). Unfortunately, popular GPU

based FFT libraries like cuFFT, hipFFT, or MKL do not support this format
[39,40,43].

Representing the output of the real-to-complex transforms in arrays
of size 𝑛 is desirable, as it allows us to handle the output of a real

to-complex transform in the same manner as a real-to-real transform,

Computer Physics Communications 316 (2025) 109811

10

R. Diez Sanhueza, J. Peeters and P. Costa

Fig. B.8. Comparison between the standard P-TDMA approach and the optimized version using direct 𝑥 → 𝑧 transpose operations for implicit 1D diffusion (subplot
a) using 8 × 128 GCDs and a grid size of

(
𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧

)
= (7168 × 7168 × 1594). The subplot (b) corresponds to a strong scalability test for the entire DNS

solver using the same grid size, but a different number of GCDs in the LUMI supercomputer.

greatly simplifying the implementation of different transform types in
the Poisson solver. Hence, since the first GPU version of the CaNS code
[17], 𝒙̃ is packed in the following format:

𝒙̃
′ =

⎧⎪⎪⎨⎪⎪⎩

𝑥̃𝑟0 𝑥̃𝑖0
… 𝑥̃𝑟⌊𝑛∕2+1⌋ 𝑥̃𝑖⌊𝑛∕2+1⌋ if 𝑛 is even,

𝑥̃𝑟0 𝑥̃𝑖0
… 𝑥̃𝑟⌊𝑛∕2+1⌋ 𝑥̃𝑖⌊𝑛∕2+1⌋ if 𝑛 is odd.

(A.3)

It is easily seen that both cases have 𝑛 real elements. This opera

tion has (1) time complexity, while re-arranging the signal such as
[𝑥̃𝑟0, … , 𝑥̃𝑖1, …], would have (𝑛) complexity. With this cheaper re

arrangement of the arrays, the Fourier eigenvalues 𝜆𝑖 and 𝜆𝑗 in eq. (12)

must be consistently re-ordered to comply with this format. This is an
inexpensive operation that is performed during the initialization of the
Poisson/Helmholtz solver.

Finally, the reciprocate unpacking operations are done for perform

ing the inverse complex-to-real transform to have an input array with ⌊𝑛∕2+1⌋ elements, resulting in an output signal with 𝑛-elements in the
correct order.

Appendix B. Performance gains from direct 𝒙 → 𝒛 transposes
with implicit 1D diffusion

When the GPU profiling results from Fig. 7 are analyzed, it can
be noticed that the implicit 1D diffusion solver performs two consec

utive transposes in the 𝑥-𝑦 and 𝑦-𝑧 directions, which will be denoted as
𝑥 → 𝑦 → 𝑧 in this section. This is suboptimal. Ideally, the cyclic re

duction process should be performed using the original 𝑥-aligned pencils
for the velocity components 𝑢∕𝑣∕𝑤, and then direct 𝑥 → 𝑧 transposes
should be used before solving the reduced systems of tridiagonal equa

tions.

To better understand the benefits of performing a direct 𝑥 → 𝑧
transpose instead of two consecutive transposes, we used the diezDe

comp library created for the LUMI porting effort. The implementation
intersects the 𝑥∕𝑦∕𝑧 bounds of different MPI tasks, with no strong re

strictions, and thus it is trivial to implement any variant of 𝑥 → 𝑧
transpose. This allowed for an implementation of this more complex
communication operation with minimal changes in the DNS code.

While avoiding 𝑥 → 𝑦 → 𝑧 transposes has a small impact in the
GPU profiling results shown in Fig. 7, we identified other DNS cases

where the impact of this transpose sequence was much higher. For in

stance, the DNS cases with (𝑝𝑦 × 𝑝𝑧) = (8 × 128) have a much higher
MPI workload for the parallel tridiagonal solver (due to the reduced
size of 𝑝𝑦), and thus they benefit more from removing 𝑥 → 𝑦 → 𝑧
transposes. In Fig. B.8, the results of the scalability tests using 𝑥 → 𝑧
transposes are presented for a 2D pencil decomposition with 𝑝𝑧 = 128
vertical partitions. The configuration 𝑝𝑧 = 128 was chosen, since its par

allel tridiagonal solver works with larger arrays and the unnecessary
𝑥 → 𝑦 transposes have a significant impact in the results previously
shown in Fig. 4. In the subplot (a), it can be seen that the running times
for the implicit 1D diffusion solver are 55% slower when successive 𝑥-𝑦

and 𝑦-𝑧 transposes are used. The scalability chart at the right reveals
that the system with 𝑥 → 𝑧 transposes is more efficient in large-scale
simulations, reducing the running times of the entire DNS solver by 18%
for the P-TDMA algorithm with 1 024 GCDs.

Data availability

Data will be made available on request.

References

[1] S.A. Orszag, G.S. Patterson, Numerical simulation of three-dimensional homoge

neous isotropic turbulence, Phys. Rev. Lett. 28 (1972) 76--79.

[2] P.K. Yeung, K. Ravikumar, Advancing understanding of turbulence through extreme

scale computation: intermittency and simulations at large problem sizes, Phys. Rev.
Fluids 5 (2020) 110517.

[3] T. Ishihara, T. Gotoh, Y. Kaneda, Study of high–Reynolds number isotropic turbu

lence by direct numerical simulation, Annu. Rev. Fluid Mech. 41 (2009) 165--180.

[4] D. Reed, D. Gannon, J. Dongarra, HPC forecast: cloudy and uncertain, Commun.
ACM 66 (2023) 82--90.

[5] J. Nickolls, W.J. Dally, The GPU computing era, IEEE MICRO 30 (2010) 56--69.

[6] CUDA Fortran for scientists and engineers, M. Fatica, G. Ruetsch (Eds.), CUDA For

tran for Scientists and Engineers, Morgan Kaufmann, Boston, 2014.

[7] F. Salvadore, M. Bernardini, M. Botti, GPU accelerated flow solver for direct numer

ical simulation of turbulent flows, J. Comput. Phys. 235 (2013) 129--142.

[8] Y. Kim, D. Ghosh, E.M. Constantinescu, R. Balakrishnan, GPU-accelerated DNS of
compressible turbulent flows, Comput. Fluids 251 (2023) 105744.

[9] AMD Instinct MI250X Accelerators, AMD, https://www.amd.com/en/products/

accelerators/instinct/mi200/mi250x.html, 2025.

[10] NVIDIA A100 Tensor Core GPU: Unprecedented acceleration at every scale, Nvidia,
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/

nvidia-a100-datasheet-nvidia-us-2188504-web.pdf, 2025.

[11] D. De Sensi, L. Pichetti, F. Vella, T. De Matteis, Z. Ren, L. Fusco, M. Turisini, D. Ce

sarini, K. Lust, A. Trivedi, D. Roweth, F. Spiga, S. Di Girolamo, T. Hoefler, Exploring

Computer Physics Communications 316 (2025) 109811

11

http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1188FC3576DE1FA1F82AF74E33775FCFs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1188FC3576DE1FA1F82AF74E33775FCFs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib68E37B8671F68BD2071FC09649412999s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib68E37B8671F68BD2071FC09649412999s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib68E37B8671F68BD2071FC09649412999s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib2D6608CA1EE6E6276E58969E9BD06255s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib2D6608CA1EE6E6276E58969E9BD06255s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib3CAE572752E403409B0C0C3F998BAF1Fs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib3CAE572752E403409B0C0C3F998BAF1Fs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1A83E92DE3A5071E3712EA9F33FEBC31s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib03B390A13F8B76DE3161BEF08C79D724s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib03B390A13F8B76DE3161BEF08C79D724s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibB06C6E40ED1A5D35BD5DE2D234DBFEFAs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibB06C6E40ED1A5D35BD5DE2D234DBFEFAs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib29E65F2D0E7A2B1EC846D329844010AEs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib29E65F2D0E7A2B1EC846D329844010AEs1
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.amd.com/en/products/accelerators/instinct/mi200/mi250x.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/nvidia-a100-datasheet-nvidia-us-2188504-web.pdf
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibBBC78429393BDE239F70DA24413CA391s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibBBC78429393BDE239F70DA24413CA391s1

R. Diez Sanhueza, J. Peeters and P. Costa

gpu-to-gpu communication: insights into supercomputer interconnects, in: SC24: In

ternational Conference for High Performance Computing, Networking, Storage and
Analysis, 2024, pp. 1--15.

[12] G. Schieffer, R. Shi, S. Markidis, A. Herten, J. Faj, I. Peng, Understanding data move

ment in amd multi-gpu systems with infinity fabric, in: Proceedings of the SC ’24
Workshops of the International Conference on High Performance Computing, Net

work, Storage, and Analysis, SC-W ’24, IEEE Press, 2025, pp. 567--576.

[13] M. Bernardini, D. Modesti, F. Salvadore, S. Pirozzoli, STREAmS: a highfidelity ac

celerated solver for direct numerical simulation of compressible turbulent flows,
Comput. Phys. Commun. 263 (2021) 107906.

[14] F. De Vanna, F. Avanzi, M. Cogo, S. Sandrin, M. Bettencourt, F. Picano, E. Benini,
URANOS: a GPU accelerated Navier-Stokes solver for compressible wall-bounded
flows, Comput. Phys. Commun. 287 (2023) 108717.

[15] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-Mónico,
Y. Yang, D. Lohse, R. Verzicco, M. Fatica, R.J. Stevens, AFiD-GPU: a versatile Navier--

Stokes solver for wall-bounded turbulent flows on GPU clusters, Comput. Phys.
Commun. 229 (2018) 199--210.

[16] P. Costa, A FFT-based finite-difference solver for massively-parallel direct numerical
simulations of turbulent flows, Comput. Math. Appl. 76 (2018) 1853--1862.

[17] P. Costa, E. Phillips, L. Brandt, M. Fatica, GPU acceleration of CaNS for massively

parallel direct numerical simulations of canonical fluid flows, in: Development and
Application of Open-Source Software for Problems with Numerical PDEs, Comput.
Math. Appl. 81 (2021) 502--511.

[18] J. Romero, P. Costa, M. Fatica, Distributed-memory simulations of turbulent flows
on modern GPU systems using an adaptive pencil decomposition library, in: Pro

ceedings of the Platform for Advanced Scientific Computing Conference, PASC ’22,
Association for Computing Machinery, New York, NY, USA, 2022.

[19] E. László, M. Giles, J. Appleyard, Manycore algorithms for batch scalar and block
tridiagonal solvers, ACM Trans. Math. Softw. 42 (2016).

[20] M. Yang, J.-H. Kang, K.-H. Kim, O.-K. Kwon, J.-I. Choi, PaScaL_TDMA 2.0: a multi

GPU-based library for solving massive tridiagonal systems, Comput. Phys. Commun.
290 (2023) 108785.

[21] K.-H. Kim, J.-H. Kang, X. Pan, J.-I. Choi, PaScaL_TDMA: a library of parallel and
scalable solvers for massive tridiagonal systems, Comput. Phys. Commun. 260 (2021)
107722.

[22] Z. Gong, G. Deng, C. An, Z. Wu, X. Fu, A high order finite difference solver for
simulations of turbidity currents with high parallel efficiency, Comput. Math. Appl.
128 (2022) 21--33.

[23] M. Yang, G. Oh, T. Xu, J. Kim, J.-H. Kang, J.-I. Choi, Multi-GPU-based real-time
large-eddy simulations for urban microclimate, Build. Environ. 245 (2023) 110856.

[24] S. Pirozzoli, P. Orlandi, Natural grid stretching for DNS of wall-bounded flows, J.
Comput. Phys. 439 (2021) 110408.

[25] S.B. Pope, Turbulent flows, Meas. Sci. Technol. 12 (2001) 2020--2021.

[26] TOP500 list - November 2024, https://www.top500.org/lists/top500/list/2024/11,
2024.

[27] A.J. Chorin, A numerical method for solving incompressible viscous flow problems,
J. Comput. Phys. 2 (1967) 12--26.

[28] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier

Stokes equations, J. Comput. Phys. 59 (1985) 308--323.

[29] P. Moin, R. Verzicco, On the suitability of second-order accurate discretizations for
turbulent flow simulations, in: Vortical Structures and Wall Turbulence, Eur. J. Mech.
B, Fluids 55 (2016) 242--245.

[30] E. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersed-boundary
finite-difference methods for three-dimensional complex flow simulations, J. Com

put. Phys. 161 (2000) 35--60.

[31] W.P. Breugem, B.J. Boersma, Direct numerical simulations of turbulent flow over a
permeable wall using a direct and a continuum approach, Phys. Fluids 17 (2005)
025103.

[32] M. Uhlmann, An immersed boundary method with direct forcing for the simulation
of particulate flows, J. Comput. Phys. 209 (2005) 448--476.

[33] G. Tryggvason, R. Scardovelli, S. Zaleski, Direct Numerical Simulations of Gas–Liquid
Multiphase Flows, Cambridge University Press, 2011.

[34] A.A. Wray, Very low storage time-advancement schemes, Technical Report, Internal
Report, NASA-Ames Research Center, Moffett Field, CA, 1986.

[35] U. Schumann, R.A. Sweet, Fast Fourier transforms for direct solution of Poisson’s
equation with staggered boundary conditions, J. Comput. Phys. 75 (1988) 123--137.

[36] K.-H. Kim, J.-H. Kang, X. Pan, J.-I. Choi, PaScaL_TCS: a versatile solver for large

scale turbulent convective heat transfer problems with temperature-dependent fluid
properties, Comput. Phys. Commun. 290 (2023) 108779.

[37] S. Rolfo, C. Flageul, P. Bartholomew, F. Spiga, S. Laizet, The 2DECOMP&FFT library:
an update with new CPU/GPU capabilities, J. Open Source Softw. 8 (2023) 5813.

[38] R. Diez, diezDecomp: cross-platform library for transposes and halo exchanges in
extreme-scale simulations, https://github.com/Rafael10Diez/diezDecomp, 2025.

[39] cuFFT API reference, https://docs.nvidia.com/cuda/cufft, 2024.

[40] hipFFT documentation, https://rocm.docs.amd.com/projects/hipFFT/en/latest,
2024.

[41] ROCm Development Team, hipFort: Fortran interfaces for ROCm libraries, https://

github.com/ROCm/hipfort, 2025, Version 0.6.1 (latest release as of May 2025).

[42] M. Lee, R.D. Moser, Direct numerical simulation of turbulent channel flow up to
Re𝜏 ≈ 5200, J. Fluid Mech. 774 (2015) 395--415.

[43] Intel oneAPI Math Kernel Library (oneMKL), https://www.intel.com/content/www/

us/en/developer/tools/oneapi/onemkl.html, 2024.

Computer Physics Communications 316 (2025) 109811

12

http://refhub.elsevier.com/S0010-4655(25)00313-3/bibBBC78429393BDE239F70DA24413CA391s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibBBC78429393BDE239F70DA24413CA391s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibBBC78429393BDE239F70DA24413CA391s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1DC88F5586BBF3330EB9EC2450DD9580s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1DC88F5586BBF3330EB9EC2450DD9580s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1DC88F5586BBF3330EB9EC2450DD9580s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1DC88F5586BBF3330EB9EC2450DD9580s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib2F6F4768F1C2D7C8F1F54823723F1A70s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib2F6F4768F1C2D7C8F1F54823723F1A70s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib2F6F4768F1C2D7C8F1F54823723F1A70s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFB0B78D4780AC22930066BD80825EA21s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFB0B78D4780AC22930066BD80825EA21s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFB0B78D4780AC22930066BD80825EA21s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDECEC6AC46C31402B56A58CDE724DF30s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDECEC6AC46C31402B56A58CDE724DF30s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDECEC6AC46C31402B56A58CDE724DF30s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDECEC6AC46C31402B56A58CDE724DF30s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib30712E6BF6C0A5938137315B60A1BB5Bs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib30712E6BF6C0A5938137315B60A1BB5Bs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibEBD0DD826BBDE671EA77F5458FF027D3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibEBD0DD826BBDE671EA77F5458FF027D3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibEBD0DD826BBDE671EA77F5458FF027D3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibEBD0DD826BBDE671EA77F5458FF027D3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0761250D0B98C51F10AC7E1957F32996s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0761250D0B98C51F10AC7E1957F32996s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0761250D0B98C51F10AC7E1957F32996s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0761250D0B98C51F10AC7E1957F32996s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibAC050DC9BB51E8E38039C78A71610A08s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibAC050DC9BB51E8E38039C78A71610A08s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib5B898C835FAFC5743B83666781F227F9s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib5B898C835FAFC5743B83666781F227F9s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib5B898C835FAFC5743B83666781F227F9s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib44C253484139812B72C8C5739A490A51s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib44C253484139812B72C8C5739A490A51s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib44C253484139812B72C8C5739A490A51s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib9022B08BED2C687E2E670B11A5B5EAFCs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib9022B08BED2C687E2E670B11A5B5EAFCs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib9022B08BED2C687E2E670B11A5B5EAFCs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0F0B1A431BD806CEA58A7CE8C67CA0C3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib0F0B1A431BD806CEA58A7CE8C67CA0C3s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibF3434226117172E5B3081F34C84C58B8s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibF3434226117172E5B3081F34C84C58B8s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDF2D2468DDB061CBF57955750B9D5749s1
https://www.top500.org/lists/top500/list/2024/11
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibF5E0BC8956DD4143AD273DE5AABD0944s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibF5E0BC8956DD4143AD273DE5AABD0944s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibCE39AD3D6FAE9699328669A06693D743s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibCE39AD3D6FAE9699328669A06693D743s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDA633CA58A19C4F7F0E2EBB8864B50ACs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDA633CA58A19C4F7F0E2EBB8864B50ACs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibDA633CA58A19C4F7F0E2EBB8864B50ACs1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibA9CF3E2E1C0B83C854137E57D11B3906s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibA9CF3E2E1C0B83C854137E57D11B3906s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibA9CF3E2E1C0B83C854137E57D11B3906s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1D2237B95701C762A009C7CF70E18E6Ds1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1D2237B95701C762A009C7CF70E18E6Ds1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib1D2237B95701C762A009C7CF70E18E6Ds1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibAF6DDFBFEC39B7AD3796732C60FE4A56s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibAF6DDFBFEC39B7AD3796732C60FE4A56s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib6A28865B8B3115A107B2AB0FE737BC54s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib6A28865B8B3115A107B2AB0FE737BC54s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib80D53A7E9A58916722CE7E4924FE5817s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib80D53A7E9A58916722CE7E4924FE5817s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib561D85F5792FE4BEC95CF26045B4EE01s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bib561D85F5792FE4BEC95CF26045B4EE01s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFA97FD5D06F4449496E01A7B23B1CF2Es1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFA97FD5D06F4449496E01A7B23B1CF2Es1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibFA97FD5D06F4449496E01A7B23B1CF2Es1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibD01BBEE5F5D4DDD54E9A35EE99944429s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibD01BBEE5F5D4DDD54E9A35EE99944429s1
https://github.com/Rafael10Diez/diezDecomp
https://docs.nvidia.com/cuda/cufft
https://rocm.docs.amd.com/projects/hipFFT/en/latest
https://github.com/ROCm/hipfort
https://github.com/ROCm/hipfort
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibCB95F45D023DECF81EE769497819EF58s1
http://refhub.elsevier.com/S0010-4655(25)00313-3/bibCB95F45D023DECF81EE769497819EF58s1
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

	A pencil-distributed finite-difference solver for extreme-scale calculations of turbulent wall flows at high Reynolds number
	1 Introduction
	2 Methodology
	2.1 Governing equations and numerical discretization
	2.2 Numerical solution of the Poisson/Helmholtz equation
	2.2.1 Fourier-based synthesis
	2.2.2 Original distributed-memory solution
	2.2.3 Solution with parallel tridiagonal solver
	2.2.4 Parallel tridiagonal algorithm

	2.3 Implementation
	2.3.1 Many-GPU implementation on LUMI

	3 Results
	3.1 Strong and weak scalability
	3.2 Breakdown of parallel performance
	3.2.1 Average timings
	3.2.2 Best elapsed times per operation

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A GPU implementation of Fourier-based transform
	Appendix B Performance gains from direct x→z transposes with implicit 1D diffusion
	Data availability
	References

