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Summary

Noise requirements will be key design drivers in the development of the new gener-

ations of propeller-driven aircraft, helicopters and ships. Therefore aeroacoustics and

hydroacoustics become increasingly important scientific branches since accurate acous-

tic predictions are an essential tool for the required Design for Reduced Noise Gen-

eration. Generally speaking, the prediction of aerodynamically and hydrodynamically

generated noise can be considered as an aerodynamic/hydrodynamic analysis followed

by an acoustic one.

The present thesis focuses on the development of acoustic formulations based on the

Ffowcs Williams and Hawkings equation (FWHE), to describe the structure of the noise

field induced by propeller driven aeronautical and naval craft, both in the unbounded

space and in the presence of scattering bodies, like a fuselage or hull. The reason why

the FWHE is at the basis of the developed acoustic formulations is its proven capability

of providing physically consistent aeroacoustic predictions. Literature shows that, in

the aeronautical context, the FWHE is a very efficient aeroacoustic tool allowing the

prediction of the fluctuating pressure field induced by rotors and propellers, both for

subsonic and transonic flight conditions. Although the modelling of noise generation

and propagation in the naval context is as complicated as in aeronautics, most of the

hydroacoustics analysis of non-cavitating and cavitating propellers is based on the un-

steady Bernoulli equation. For this thesis, therefore, it was decided to first apply the

FWHE for the prediction of noise generated by naval propellers in unbounded space. A

comparison between the FWH-based and the Bernoulli-based approach has been carried

out using potential flow assumptions. A novel formulation based on the porous form of

the FWHE has been developed to predict the sound radiated by a cavitating propeller

subjected to non-uniform inflow. The comparison has been performed both theoreti-

cally and numerically. A non-cavitating naval propeller, subjected to a uniform onset

flow, has been analyzed. Observing that typical naval operating conditions are such that

non-linear terms may be coherently neglected in both formulations, no hydrodynamic

input concerning the flow-field around the propeller is required. The Laplace equation

for the velocity potential has been solved through a boundary integral formulation and

a zero-order boundary integral method (BEM) has been applied as discretization strat-

egy. Using the velocity potential and pressure field on the propeller surface, numerical

hydroacoustics investigations showed that the assumed shape of the potential wake has

a large influence on the pressure disturbance evaluated by means of the Bernoulli equa-

tion. The results obtained with the FWHE, however, are not affected by the assumed

wake because here the wake contributes to the noise field only through its indirect ef-



fects on the loading noise term. The introduction of free wake modelling resolves the

discrepancies in the hydroacoustics results from a theoretical point of view, but intro-

duces numerical problems because the introduction of a free wake leads to a very low

rate of convergence in the evaluation of the velocity field compared to the analysis with

a prescribed wake model. Because of the apparent high potential of the FWHE a novel

formulation of this FWHE was developed aiming at the evaluation of noise generated by

cavitation, especially sheet cavitation. This specific type occurs in real operating con-

ditions with a propeller working in the wake of the hull, and governs the low-frequency

range of the spectrum of cavitation noise. In this range, a significant contribution to the

far field noise is associated with frequencies proportional to the blade passage frequency

(the tonal spectrum). The evaluation of the noise due to the cyclic growth and collapse

of the cavity on the surface of the propeller in a non-uniform onset flow has been per-

formed through a coupled approach involving the permeable form of the FWHE and a

suitable hydrodynamic model describing the unsteady cavitation pattern. This model,

called Transpiration Velocity Model (TVM) simulates the presence and the acoustic

behaviour of the bubble through the difference between the normal component of the

body velocity and the fluid velocity wherever cavitation occurs. This way of treating

the impulsive noise radiation far away from cavitating propellers is consistent with the

physics of the phenomenon and does not introduce approximations incompatible with a

formulation derived under the assumption of rigid surfaces. Numerical results provided

by the TVM compared satisfactorily with those provided by the Equivalent Blade Mod-

eling (EBM) which is also based on the FWHE written for impermeable surfaces and

that, nowadays, represents the single application, presented in literature, of the acoustic

analogy to cavitation noise. The discrepancies in noise prediction arise from the differ-

ent sensibility of the two approaches to the hydrodynamic data describing the cavitation

pattern. Numerical investigations outline that the TVM is more sensitive to the accu-

racy of the hydrodynamic input because of the need to compute time derivatives of the

function describing the cavity thickness distribution on the blade surface. For highly im-

pulsive signals, the computation of time derivatives up to the second order may become

a very difficult task. Contrarily, the EBM approach based on a step-by step strategy in

computing the acoustic effect associated with the vapour cavity dynamics needs only the

knowledge of the time-history of the cavity volume on the blade, but exhibits a limited

capability to correctly describe rapidly changing flow conditions.

In this context, it is worth noting that both TVM and EBM model have been used

here with hydrodynamic input from a surface tracking approach to describe the liquid–

vapour interface as a regular surface defined over cavitating propeller blades. However,

from a general standpoint, the FWHE may be coupled to more general two-phase flow

solvers through a different use of the porous formulation. In fact, by coupling the hydro-

dynamics input on a suitable surface, enclosing the two-phase region, with the FWHE

used as a Kirchoff formulation , it is possible to model noise sources located in the flow–

field and associated with distributed vapour pockets. This fact highlights the generality

of the FWHE approach.

In the described hydroacoustics investigations dealing with noise radiation from an

acoustic source (the propeller) the boundary integral solution of the FWHE has always

been used as an integral representation, exploiting the knowledge of the hydrodynamic

quantities appearing in the kernel of the thickness noise and loading noise terms. The



nature of the integral solution of the FWHE changes when the emphasis is on the scat-

tering effects caused by the presence of bodies in the path of the travelling acoustic

waves emitted from the propeller or rotor. In order to appreciate the sound field change

when solid surfaces are present in the flow field and to allow the prediction of the noise

produced by those aeronautical and naval configurations where one single body may

be identified as the main noise source (assuming the pressure on the body independent

of the presence of the other bodies), the problem of scattering has been investigated

through a novel integral formulation based on the FWHE.

A scattering model allows studying the acoustic behaviour of configurations like

fuselage–propeller (aircraft), fuselage–main/tail–rotor (helicopters) and hull–propeller

(ships), without invoking the interactive aero–hydro–dynamics to calculate the scattered

pressure field on the boundary of the scatterer. Differently from noise radiation prob-

lems where the FWHE is used as an integral representation, in this problem the integral

solution of the FWHE is used as an integral equation to determine the scattered pressure

distribution upon the scattering body. The proposed FWH formulation may be applied

to those aeronautical or naval multi–body configurations where the sources of noise

may be considered aerodynamically or hydrodynamically independent on the presence

of the rest of the configuration. For some operating conditions, propeller–driven air-

craft, rotorcrafts and ships fall in this category. The evaluation of the sound field pro-

duced by the impingement of the pressure disturbance(s) on the scatterer(s) requires a

prior analysis of the isolated source(s), to identify the incident pressure field(s). The

formulation herein proposed is flexible in that it allows to study scattering problems

concerning rigid as well as elastic bodies both moving and at rest. Numerical results

show that, for stationary rigid or vibrating scattering bodies, the proposed methodol-

ogy yields excellent results when simple configurations (for which analytical solutions

exist) are investigated. Dealing with moving scatterers, the problem of the quadrupole

term must be pointed out because the assumption to ignore the quadrupole term in the

FWHE may become too restrictive. Permission to neglect the quadrupole term depends

on the advance speed of the scatterer and on its shape. Hence, the analysis of moving

scatterers has to be addressed carefully because the Lighthill tensor could give rise to

perturbation terms which might become relevant when the integral formulation is used

as an integral equation. The importance of the quadrupole contribution in the FWHE

must be stressed also for the previous described radiation cases. It should be noted

that numerical investigations performed throughout the thesis have been carried out ne-

glecting the quadrupole contribution in the FWHE. The quadrupole contribution is, in

principle, important for several reasons. First, it fully describes the acoustic effect of

the potential wake. In order to compare the FWHE and the Bernoulli approach exactly,

non-linear terms should be included in both formulations. The non-linearities in both

methods are not equivalent , that is, some non-linear effects described by the Lighthill

tensor in the FWHE are not accounted for by the non-linear terms in the Bernoulli

method. Furthermore, the inclusion of the quadrupole term would account for acous-

tic effects related to cavitating phenomena occurring in the flow–field, like cavitating

tip vortices and hub vortices, and bubble cavitation. However, even with neglecting

quadrupole terms, numerical results show that the FWHE is an efficient mathematical

model for the study of acoustic problems concerning acoustic radiation and scattering

for a wide range of applications. A conjecture has been made and motivated that some



of the discrepancies between FWHE and other formulations may be justified invoking

the presence of the quadrupole term. Hence, for further development and improvement

of the present work, a careful investigation of mathematical and computational aspects

related to evaluating quadrupole contributions should be considered. In addition, the

application of the present methodology to more realistic configurations could require

the use of aero/hydrodynamic solvers able to take into account viscous–flow effects.
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Chapter 1

Introduction

A brief introduction to the problem of the aerodynamically or hydrodynamically gener-

ated noise by rotating propulsive systems, as aeronautical or marine propellers or he-

licopter rotors, moving (throughout the fluid medium) in arbitrary motion is presented.

The most common types of sources of noise are presented and the problem of radiated

noise both in free field and in the presence of moving solid boundaries is addressed.

The state of the art on the theoretical approaches used for modelling sound radiation is

also given. The motivation of the present work is presented and the chapter ends with

an outline of the current thesis.

1.1 Main Sources of Noise for Rotorcraft

In the last 80 years, the scientific community has devoted considerable effort toward the

understanding of the physical mechanisms governing the noise generation in rotating

propulsive systems and toward the development of computational methods able to pre-

dict the acoustic field. An accurate prediction of the noise field is essential to control

or modify noise features so as to achieve noise reduction and comply with noise reg-

ulations. Propeller and helicopter rotor noise theory has been developed starting from

1940’s; the importance of the role of unsteady loading in acoustics of moving bodies

was recognized in the 1960’s, and this yielded a great deal of progress in the develop-

ment of theoretical modeling and noise prediction codes. In this context, a milestone is

undoubtedly represented by the publication, in 1969, of the Ffowcs Williams and Hawk-

ings (FWH) equation [1] representing the governing equation to describe the sound gen-

erated and propagated by a body moving in a fluid; however, the lack of computational

power and difficulties in the prediction of unsteady loads have strongly limited the ca-

pability of supplying good qualitative and quantitative results up to 1980. In the last

twenty years, with the increase of available computational power and the higher accu-

racy of aerodynamics prediction tools, numerical techniques for the aerodynamically

generated noise evaluation have become more and more appealing; nowadays, differ-

ent solvers, based on efficient and robust prediction tools, allow to solve efficiently a

lot of problems related to noise emission and propagation. In spite of this scenario,

the maturity level in rotating blades noise prediction is deeply different between the
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aeronautical and naval context; to distinguish the two fields, terms aeroacoustics and

hydroacoustics are used throughout the present thesis to refer, respectively, to aeronau-

tical and marine applications. Those theoretical approaches that may be considered as

standard techniques for aeronautical applications are quite unconventional for the naval

community that widely addresses hydroacoustics studies using pseudo-acoustic mod-

els often provided in the frequency domain. Despite the outstanding importance that

propeller–induced noise analysis has for a wide class of naval applications, the lack of

theoretical models addressing the problem under a rigorous approach is widely recog-

nized, as mentioned, for instance, in many reports of the 23rd International Towing Tank

Conference. Thus, challenges for present and future research are completely different

for aeroacoustics and hydroacoustics; in the first case an accurate noise prediction for

whole rotorcraft configurations and advanced–designed proprotor vehicles (including

scattering effects) is of increasing importance, whereas the use of effective prediction

models is one of the main goal for a physically-consistent computation of the hydroa-

coustic field induced by surface and underwater seacraft propellers. By keeping in mind

the above considerations, in the following, for helicopters, propelled-aircraft and ves-

sels, the most important (and common) sources of noise are outlined. The aim is to

describe briefly the main aspects of noise generation and emission by rotating blades to

identify those physical mechanisms governing the fluid–dynamically generated noise.

1.1.1 Helicopter Rotor Noise

For helicopter configurations, several distinct mechanisms are involved into the sound

field generation; nowadays, they are object of extensive theoretical and experimental

research because of the extremely annoying and undesired effects leading to a strong

resistance to the widespread operation of helicopters in densely populated areas. Gener-

ally speaking, helicopter rotor noise tends to be concentrated at harmonics of the blade

passage frequency (BPF) because of the periodic nature of the rotor loads as seen in

the nonrotating frame. Thus, the acoustic pressure signal is basically periodic in time,

with sharp impulses due to localized aerodynamic phenomena such as compressibility

effects and vortex–induced loads. For the sake of clarity, the contributions to helicopter

rotor noise may be conventionally split into broadband noise, rotational noise and blade

slap noise, in order to focus, separately, on different aspects.

Broadband noise

Known earlier as vortex noise, it is a high frequency swishing sound produced by the

rotor and modulated in frequency and amplitude at the BPF. Broadband noise is prin-

cipally produced by the random lift fluctuations (especially by random blade loads in-

duced by tip vortices) resulting from operation of the blade in the turbulent wake. The

resulting sound is a random signal whose energy is distributed over a wide portion of the

spectrum, in the audible range. Typically, for main rotors, it is extended from about 150

Hz to 1000 Hz, with a peak around 300-400 Hz. Other sources of broadband noise are

the forces acting upon the blade due to vortex shedding from trailing edge, turbulence

in free stream and boundary layer turbulence and separation. A complete definition of

the origin of helicopter rotor broadband noise, as well as the development of efficient

2



Introduction

tools to predict it, are still subjects of extensive research.

Rotational noise

Rotational noise is related to the body’s geometry and motion and the pressure loads

acting upon the blade surface. The first contribution, due to the displacement of the

fluid particles in the flow–field, is known as thickness noise term whereas the second

one, caused by the loads experienced by the blade during a revolution, is known as

loading noise term. Rotational noise is a thumping sound at the BPF (or at multiples

of it if the fundamental is inaudible); as the higher harmonic content increases, the

thumps sharpen into bangs, and eventually into blade slap. Being a purely periodic

noise signal, its spectrum consists of discrete lines at harmonics of the BPF, deeply

affected by rotor geometry and operating condition. Rotational noise dominates the

helicopter rotor sound spectrum from below audible frequencies to about 150 Hz. The

fundamental frequency is typically 10 to 20 Hz for a main rotor, so the fundamental and

perhaps also the first or second harmonic will be below the threshold of hearing. For

propellers or a tail rotor the fundamental frequency is much higher, typically around

100 Hz, thus increasing the importance of the rotational noise.

Blade slap

Blade slap is a periodic, impulsive sound pressure disturbance that may be reasonably

considered as an extreme case of rotational noise; it occurs in such manoeuvres as flare

to landing, shallow descents, decelerating steep turns and at high forward flight speeds.

In these conditions, it represents undoubtedly the dominant rotor noise source. In fact,

its impulsive character results in a substantial increase of the sound level over the entire

spectrum (covering a range of about 20 to 1000 Hz for a main rotor). Its feature is a

sharp cracking, popping or slapping sound occurring at the BPF and its annoying effect

is so much high that the rotorcraft community has devoted considerable efforts towards

alleviating it. Its genesis depends on any aerodynamic phenomenon causing rapidly

changing loading on the blade, such as compressibility and thickness effects at the tip,

blade–vortex interactions and probably also blade stall. Such phenomena induce large,

localized transient loads upon the blade, which result into impulsive sound radiation.

When the cause of the noise is the interaction of the shed tip vortex with the following

blade, blade slap noise is well known as blade–vortex interaction (BVI) noise; in this

case, strong tip vortices dominating the rotor wake, impinge or pass closely to the rotor

blades resulting in impulsive changes of the blade loads that produce, in turn, high noise

and vibration level. It is well documented that BVI concerns mainly the descent flight at

relatively low–speed. On the other hand, when the cause of noise is the high–speed for-

ward flight, blade slap is known as high–speed impulsive (HSI) noise closely associated

with the appearance of shocks and transonic flow around the advancing rotor blades.

The most annoying contribution in terms of main rotor noise is due to blade slap

(when occurs), broadband noise and rotational noise, respectively. Rotational noise,

containing the deterministic components of thickness and loading noise, is most in-

tensive at very low frequency even if the first few harmonics may even be below the

3



Introduction

threshold of hearing. Thus, although rotational noise is the primary determinant of the

overall sound pressure level, it is not the most important source of noise in terms of

subjective annoyance. In fact, by accounting for frequency content, broadband noise

dominates. Only when the level of the rotational noise increases at high frequencies,

i.e, in cases approaching blade slap, rotational noise may become important. It is worth

noting that the acoustic fatigue and vibration of helicopter structures may be deeply af-

fected by rotational noise; moreover, by observing that low frequencies propagate best

in air, the high frequencies being attenuated most with distance, at very large distance

from helicopter the blade slap and rotational noise of the main rotor are most impor-

tant. Whatever said about the main rotor noise may be applied to the tail rotor unit that,

however, has a higher fundamental frequency (40 to 120 Hz).

1.1.2 Aeronautical and Naval Propellers as Sources of Noise

Propeller noise consists of two dominant components: 1) thickness noise and 2) loading

noise. As previously described, the thickness term is governed by the blade geometry

and kinematics whereas the loading noise contribution depends on the blade pressure

distribution. Akin to helicopter rotor blades, the thickness noise component may be

computed accurately while the loading noise computation strongly depends on the aero-

dynamic or hydrodynamic modeling used for the loads prediction. In the aeronautical

context, computation of advanced propeller noise may be regarded as challenging; in

fact, advanced high–speed propellers have many features that are quite different from

those of conventional low–speed propellers. For instance, advanced propellers employ

eight or ten highly loaded, low-aspect-ratio, thin and highly swept blades, producing

significantly more noise than low–speed propellers. Indeed, being characterized by

transonic tip Mach, significant sources of noise are present in the flow–field and, as

a consequence, the prediction of the aerodynamic loads upon the blade surface is not

more sufficient to account for the emitted noise because the flow–field conditions around

the blade become determinant; as matter of fact, high–speed propellers noise prediction

require an accurate estimation of the aerodynamic field around the blade.

Propellers used for marine applications may be classified as low–speed propellers be-

cause of the fully subsonic operating conditions. Nonetheless, the hydroacoustic pre-

diction of marine propellers is, nowadays, a challenging issue. This is due to the fact

that a hydroacoustic analysis of realistic configurations does not only concern the kine-

matic and dynamic behaviour of the rotating blades but involves a lot of different and

very complex phenomena. A marine propeller typically operates in the wake of a hull;

thus, the incoming flow is spatially non–uniform and characterized by an enormous tur-

bulence and vorticity content which largely affects both propeller–induced noise and

the propagation phenomena. Furthermore, the closeness of the hull and, eventually, of

the free surface to the propeller disk may cause notable scattering effects, with a di-

rect influence on noise spectra and directivity. Furthermore, the possible occurrence of

cavitation phenomena deeply affects the hydroacoustic field; the formation, growth and

collapse of vapor bubbles may provide large pressure peaks propagating away from the

blades and may increase the noise level up to two orders of magnitude with respect to

the same propulsor operating in non–cavitating conditions. Moreover, for an accurate

hydroacoustic prediction of cavitating propellers, advanced hydrodynamic modeling ac-
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counting for transient cavitation phenomena have to be used to provide the time depend-

ing pressure distribution upon the blades. Thus, for different reasons, the computation

of noise generated both by aeronautical or marine propellers is not an easy task.

1.2 Acoustic Scattering From Aircraft and Vessels

A pressure wave generated by a source of noise in presence of other bodies may be sub-

ject to scattering effects deeply modifying both the noise spectra and directivity. The

effect of the scattering phenomenon on the noise field features depends on the ratio

between the wavelength of the impinging wave and the physical dimensions of the scat-

terer. Only if comparable, acoustic scattering may modify the noise field with respect

to a free-field computation. The evaluation of the scattered acoustic field is of interest

both for the evaluation of the overall noise emitted by moving air/sea–craft and for the

prediction of the fuselage and hull vibrations that, in turn, are a source of interior noise.

The division of the noise field into incident and scattered components is physically con-

sistent when, within the limits of the required accuracy, the source of the incident field

may be considered fluid–dynamically independent of the presence of the scattering sur-

faces. Under such an assumption the incident pressure field may be determined through

an aerodynamic–aeroacoustic analysis of the single main sources of noise, whereas the

rest of the configuration may be included in the second step of the process, dealing

with the scattering analysis. Such a way to face the problem is straightforward, not

accounting for interactional aerodynamical effects between the noise source(s) and the

scatterer. For aeronautical application, the prediction (and control) of interior noise is a

crucial issue in providing a comfortable environment for aircraft passengers; although

cabin noise sources include not only propellers, but also exhaust from turbofan engines,

fuselage boundary layer, engine vibrations, etc., an accurate prediction of the interior

noise level has to take into account aeroacoustoelasticity. For helicopter configurations,

usually fuselage scattering effects are not taken into account for the evaluation of the

acoustic field because the rotor blade passage frequency is generally low; hence, the

wavelength of the noise signal is quite large compared to the physical dimensions of the

fuselage cross-section and the influence of the body is minimal. Anyway, fuselage be-

comes a much more efficient scatterer when the spectra of the impinged acoustic noise

exhibits a much higher frequency content, as in BVI or HSI conditions, or when the tail

rotor, operating with BPF significantly higher than the main one, is included into the

analysis. In these cases, the evaluation of the scattered acoustic field is of interest for

the reasons above explained. For marine applications, realistic vessel configurations are

such that the hull may be considered as a scattering body, deeply affecting the pressure

distribution upon the surface. When the wavelength of the underwater sound is compa-

rable to hull dimensions, estimation of the distribution of fluctuating pressure over the

whole hull surface is fundamental for a near–far field noise evaluation and to evaluate

the fluctuating forces acting on the hull.
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1.3 An Overview of Computational Methods for
Aeroacoustics and Hydroacoustics

A brief discussion on computational methods currently used for the prediction of the

acoustic field induced by moving bodies, is here addressed. The aim is to provide an

overview on the capabilities and drawbacks of these approaches with respect to the prob-

lem to be faced, that is here recognized to be the noise generated by rotating blades; as a

matter of fact, being the analysis of the radiated noise much more mature in the aeronau-

tical field with respect to the naval context, the emphasis is here on the aeroacoustics.

The need to provide an efficient manner for computing aerodynamic noise has led to the

emergence of a relatively new field: Computational AeroAcoustics (CAA).

CAA, as defined by Allan D. Pierce [2] ”implies the direct simulation of acoustic fields

generated by flows and the direct simulation of the interaction of acoustic fields with

flows starting from the time–dependent governing equations, without reliance on empir-

ical results or heuristic conjectures”; the full, time–dependent, compressible Navier–

Stokes equations describe these phenomena. The development of CAA techniques is

dependent largely upon the utilization of relatively mature Computational Fluid Dy-

namics (CFD); anyway, the direct extension of current CFD technology to CAA in not

so straightforward because of the differences in the physics of acoustic noise propa-

gation compared with aerodynamic flow field characteristics. In detail, for problems

concerning noise due to moving surfaces (i.e.,helicopter rotor noise, propeller noise, fan

noise, etc.), once the sound source is predicted through the use of Euler/Navier-Stokes

or full potential models an obvious strategy is to extend the computational domain far

enough to encompass the location where the sound is to be evaluated. Such a strat-

egy attempts to solve the aerodynamic and acoustic fields in one step, using the same

level of approximation, by unsteady methods such as DNS (Direct Numerical Simula-

tion) or LES (Large Eddy Simulation). However, the problem of numerical prediction

of the noise generated by realistic configurations (i.e.,wing section with deployed high

lift devices) is still beyond the field of application of direct noise computation strate-

gies. Furthermore, if the objective is to calculate the far–field noise, this direct approach

would require prohibitive computer storage and would lead to unrealistic computational

time. To overcome such limitations, hybrid CFD/CAA methods in which the near–field

turbulent flow and the mid/far–field noise are computed separately, have to be used.

The driving idea is to divide the physical space into several domains, in which spe-

cific physical mechanisms are simulated using the most efficient discretization strategy

[3]. CFD techniques are first used to calculate the near–field unsteady flow to get an

accurate prediction of the local unsteady noise sources. Available techniques include

steady Reynolds-Averaged Navier-Stokes (RANS) computations, in combination with

stochastic models of wavenumber–frequency spectrum of turbulence, unsteady RANS

methods, LES and emerging techniques based on Navier-Stokes equations for perturba-

tions over a mean flow (NLDE - Non Linear Disturbances Equations). This local flow

solution has then to be coupled with an acoustic numerical technique for the predic-

tion of mid–field and far–field noise. The most practical formulations are the integral

methods based on the use of a free field acoustic Green function such as the Lighthill’s

analogy, the Boundary Element Methods (BEM) and the Kirchhoff integral. However,

those integral methods assume that, beyond a given distance from the noise sources and
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body surface, the sound propagates in a medium at rest, or moving with uniform ve-

locity. This assumption may become a strong limitation, especially when the radiated

noise results from a surface integration on a control interface which is located near solid

walls, where velocity gradients are still significant. In that case, only the discretized

Euler equations governing the acoustic propagation may account for the propagation in

non–homogeneous flows. This is obtained at the price of a significant computational

efforts since the propagation domain must be meshed with an adequate resolution with

respect to the smallest acoustic wavelength, and also because finite difference high order

schemes are needed to ensure numerical accuracy and low dispersion of the propaga-

tion of acoustic waves. Note that practically, the domain in which Euler equations must

be used is strictly limited to regions where velocity gradients are significant; thus, an

external boundary can be found, beyond which the flow can be assumed uniform. In-

tegral methods can be so used for the noise prediction at very long distance from the

airframe. Other theoretical approaches able to provide the noise field produced by mov-

ing bodies are represented by volume integral methods and surface integral methods.

Undoubtedly, the first integral approach for acoustic propagation is the Lighthill Acous-

tic Analogy (1951) that solved the question of how to identify the real origins of sound

wave [4]. In this model, the governing Navier–Stokes equations are rearranged into a

wave equation that is exact in principle, and the far–field solution is given in terms of a

volume integral over the domain containing the sound source. It is worth noting that by

using the Lighthill’s equation, the aerodynamic problem may be completely separated

by the acoustic one. In fact, the aerodynamic analysis concerns only the identification

of the sound source representing the forcing term of the Lighthill’s equation. The exten-

sion of the Lighthill Acoustic Analogy is represented by the Ffowcs Williams Hawkings

equation (FWH) that was introduced in 1969 to account for moving solid surfaces. The

FWH equation allows to identify three source terms: two surface source terms and one

volume source term. Hence, a volume integration, computationally expensive and diffi-

cult to be implemented is yet required for the prediction of the noise field. Anyway, for

some operating conditions, the volume term source may be neglected. In these cases,

the solution of the acoustic problem through the FWH equation involves only surface

integrals instead of a volume integral as in the Lighthill Acoustic Analogy. This fact

represents the powerful of the FWH approach. Among surface methods, Kirchhoff ap-

proach [5] assumes that the sound propagation is governed by an inhomogeneous wave

equation in which the sources are distributed on a fictitious surface (Kirchhoff surface)

which encloses all the nonlinear flow effects and noise sources. This formulation is very

attractive because no volume integration is needed, allowing to overcome some of the

difficulties associated with the traditional acoustic analogy approach. A drawback in us-

ing the Kirchhoff method is that the Kirchhoff surface must be chosen in the linear flow

region such that the input surface pressure and its normal and time derivatives satisfy

the homogeneous wave equation. By observing that for the prediction of the aerody-

namic noise the knowledge of source strength information on the Kirchhoff surface is

required, mature CFD codes are necessary. Anyway the location of the linear region

is not well defined and is problem dependent; indeed, such a surface should be placed

well away from source region but CFD solutions typically are not as well resolved or

as accurate away from the body. Hence, the placement of the Kirchhoff surface is usu-

ally a compromise. To take advantages from an aeroacoustic formulation having the
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same flexibility of the Kirchoff approach, avoiding any problems due to the sensitivity

of the formulation to the placement of the integration surface, the permeable (porous)

FWH equation has to be used. In fact, because of the nature of the governing FWH

equation, any physical acoustic sources enclosed by the integration surface contribute

through surface–source terms whereas any physical sources of noise outside the surface

contribute through the volume source term. Hence, if all physical sources of noise may

be enclosed inside the integration surface, no contribution from volume source has to be

computed and the acoustic effects computed by volume integration can be legitimately

neglected. In other words, if the control porous surface (fictitious or physical) is suit-

ably placed away from the body in order to include all sound sources, the overall noise

prediction is achievable by the computation of surface integral only, in a similar fashion

as the Kirchhoff method. In this case the location of the integration surface is only a

matter of choice and convenience. Since the formulation combines aspect of both the

FWH and Kirchhoff approaches, it is referred as Kirchhoff-FWH formulation (KFWH).

Many other details are found in Ref. [6]. As an example, Fig. 1.1 illustrates the possi-

ble hybrid strategy that can be used for the numerical simulation of airfoil aerodynamic

noise.

Figure 1.1: Sketch of a possible strategies for noise computation in the near, mid and far field.

(from Ref. [3]).

Among surface methods for predicting the noise field produced by moving bodies,

the use of the Bernoulli equation–based approach and the Helmholtz equation are no-

table, in particular for naval applications [7], [8]. In fact, except for the CAA approach

that is widely used when realistic and complicated aeronautical or naval configurations

have to be investigated, the evaluation of the pressure disturbance through the acoustic

analogy–based methodologies (FWH, porous FWH, KFWH) is consolidated and mature

only for aeronautical applications involving helicopter rotors and propelled aircraft; it

remains unconventional, and nowadays, it is seen as too much complicated and chal-

lenging for the naval community that seems to be pervaded by a sort of reverential

fear with respect to such fundamental equation-based approaches. In the framework

of potential flows, the Bernoulli equation–based approach allows to calculate the noise

field once the velocity potential problem has been solved; in this case the definition of

the wake surface is required, affecting both the aero/hydro–dynamic and aero/hydro–
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acoustic solutions. About the Helmholtz equation, it represents the homogeneous wave

equation transformed into the frequency domain; in this case appropriate boundary con-

ditions must to be imposed (Dirichelet, Neumann or Robin boundary conditions in the

case of scattering surfaces involved into the problem, or Sommerfeld condition for ra-

diation problems) to close the problem.

1.4 Present Research

1.4.1 Motivation

Previous sections have shown that rotor noise prediction or propeller noise evaluation

involves complex aspects both from theoretical and numerical standpoints; many differ-

ent mechanisms are responsible of noise generation and radiation and separate treatment

is required for each. Making reference to the aeronautical field, several prediction meth-

ods are available: among them, acoustic formulations and algorithms based on integral

methods (Ffowcs Williams Hawkings equation, Kirchhoff formula) are widely used for

rotating blade noise prediction and potentially useful for airframe noise, engine noise

etc.; other approaches, whose feasibility is due to advances in CFD and computer tech-

nology allow direct computation of acoustics or the application of the KFWH approach.

As a matter of fact, for rotors and propellers, the knowledge of aeroacoustics phenomena

and their capability prediction is advanced; however, further efforts are required to im-

prove the analysis of particular problems as blade-vortex interaction noise, high–speed

impulsive noise and broadband noise. Nowadays, the main goal of the aeroacoustic

community is the prediction of noise generated by whole configurations as fuselage–

main rotor–tail rotor for helicopters and fuselage–propeller for airplanes, to achieve a

comprehensive aeroacoustic evaluation including aeroelastic couplings and scattering

effects. Undoubtedly, to satisfy these challenges for future represents the most urgent

need for aeroacousticians.

Unfortunately, the maturity level for marine propeller noise prediction is not advanced

enough since the hydroacoustic computations are often based on semi-empirical predic-

tions. The widely used hydroacoustic methodology consists of the Bernoulli equation

that is applied under the erroneous hypothesis of incompressibility that in principle vi-

olates the concept of travelling pressure disturbance at the basis of any sound radiation.

While some progress has been recently made in the noise prediction of non–cavitating

propellers through the application of efficient tools widely used the aeronautics [9], en-

hancements are still required for the numerical analysis of cavitation noise. Therefore,

the transfer of the aeroacoustics methodologies for rotors and propellers to the study of

the noise generated by marine propellers is one of the most urgent need to satisfy.

1.4.2 Objective

The goal of this thesis is to present non–standard applications of the Ffowcs Williams

and Hawkings equation for the evaluation of the far–field noise emitted by marine and

aeronautical rotorcraft. In detail, the objective is threefold:
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1) To provide a hydroacoustics methodology able to predict the hydrodynamically

generated noise and to show its superiority with respect to the Bernoulli–based ap-

proach, currently adopted by hydroacousticians;

2) To apply such a methodology, in a suitable manner, to predict the impulsive noise

caused by the dynamics of the vapor cavity occurring on the blade surface operating in

cavitating conditions;

3) To apply the Ffowcs Williams and Hawkings equation to face problems of noise

prediction in which the sound field is affected by the scattering of moving, deformable

bodies.

Hence, the Ffowcs Williams and Hawkings equation represents the keypoint of the

thesis; points 1) and 2) deal with the application of this fundamental equation to ma-

rine problems whereas point 3), dealing with scattering phenomenon, may be applied

both to aeronautical and naval configurations for which the presence of fuselages or

hulls may alter the noise prediction performed in free-field. Although it will be clari-

fied later, here it is worth mentioning that the Ffowcs Williams and Hawkings equation

is applied without including sound sources related to volume terms (quadrupole term);

such a choice has a threefold motivation: 1) marine propellers are low–speed propeller,

hence characterized by very low Mach tip number. In these conditions, previous studies

have shown that the contribution of the volume terms is negligible for aeroacoustics pre-

dictions; 2) the application of the Ffowcs Williams and Hawkings equation to the study

of cavitating propellers is non–conventional and innovative; hence, in the attempt to

assess the methodology and derive guidelines for future developments, the inclusion of

the non–linear terms is useless at this stage; 3) the application of Ffowcs Williams and

Hawkings equation to the study of scattering problems involves the solution of the in-

tegral solution of the acoustic analogy on the scatterer surface. The presence of volume

contributions in the structure of the solving integral equation requires the knowledge

of the interactional aerodynamic field around the scattering body. In this way, the ad-

vantages from availability of a scattering modeling disappear and the scattered pressure

field may be conveniently provided by the aerodynamic solver. Throughout the thesis,

the fluid-dynamic input for the acoustic solvers is based on subsonic compressible po-

tential flow theory, solved by the boundary element method (BEM); all aerodynamics

and hydrodynamics data are obtained by well assessed and validated codes developed

at the Italian Ship Model Basin (INSEAN) and University of ROMA TRE (Department

of Mechanical and Industrial Engineering).

1.4.3 Overview of Dissertation

The remaining chapters of this dissertation are organized as follows.

Chapter 2 presents a theoretical–numerical comparison between the Bernoulli–based

approach and the Ffowcs Williams and Hawkings equation for the prediction of noise

signature generated by marine skew propellers in steady, non–cavitating conditions.

Chapter 3 focus on the capability of the acoustic analogy in predicting cavitation noise

produced by sheet cavitation phenomenon for a marine propeller in hull-behind condi-

10



Introduction

tion. Chapter 4 presents the application of the Ffowcs Williams and Hawkings equation

for the evaluation of the scattered pressure fields by rigid or deformable moving bodies.

Finally, conclusions and recommendations for future work are given in chapter 5.
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Chapter 2

Models for Prediction of Noise

Generated

Aero–Hydrodynamically: The

Ffowcs Williams Hawkings

Equation and The Bernoulli Method

The aim of this chapter is to present two different acoustic formulations able to predict

the aerodynamically generated noise by moving bodies. These formulations, based on

the Ffowcs Williams Hawkings equation (FWHE) and the Bernoulli approach (BEA),

are here compared theoretically and numerically to show their potentialities and draw-

backs for solving sound radiation problems; rotating blade propulsors operating in

fully subsonic regime are considered as acoustic sources of noise, with emphasis on

ship/vessel propellers. Hence, the complex emission phenomena related to the high–

speed operating conditions are not faced. In the following, the main aspects concerning

FWHE and BEA approaches are shown; for the sake of clarity, mathematical manipu-

lations and details are reported in appendix A. Numerical results are shown at the end

of the chapter.

2.1 The Ffowcs Williams and Hawkings Equation

The Ffowcs Williams Hawkings equation [1] yields a physically-consistent wave prop-

agation model for the analysis of noise emission due to the interactions between fluid

and moving bodies. Derived from mass and momentum conservation principles, the

FWHE represents an extension of the Lighthill’s acoustic analogy to include the effects

of surfaces in arbitrary motions. After decades of applications to aircraft rotors and

propellers, the FWHE has been proven to be a very efficient acoustic solver for those

problems where sound generated by fluid/solid body interactions plays a primary role.

Let f(x, t) = 0 be a permeable surface moving with velocity v, enclosing both the

noise sources and solid surfaces such as the body surface; f = 0 is defined such that
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∇f = n, where n is the outward unit normal vector, and |∇f | = 1. Furthermore, let us

assume f > 0 outside the control surface and f < 0 inside.

Figure 2.1: Permeable control surface (from Ref. [10]).

The driving idea in deriving the FWHE is to embed the original bounded prob-

lem into unbounded space by extending the definition of the fluid properties (pressure,

velocity, density, etc.) such that, inside the moving surface, the flow parameters have

the same fluid state as the undisturbed medium; to this aim, the undisturbed medium

properties are denoted with the subscript 0. Embedding the original bounded problem

into unbounded space allows to derive a wave equation, valid everywhere in the field,

that may be conveniently solved by using the Green’s function of the wave equation in

unbounded space. However, such an extension implies that the flow parameters have ar-

tificial discontinuities across the moving surface and hence, all flow parameters must be

interpreted as generalized functions [11]. To our purposes, let us assume that the fluid

is compressible and undergoes transformations with negligible entropy changes; thus,

flow parameters have no discontinuities other than those across the moving surface.

As shown in appendix A.1 or, for instance, in Ref. [12], the FWHE may be obtained

through an elegant manipulation of the Navier-Stokes equations written in terms of gen-

eralized derivatives; this yields the following inhomogeneous wave equation governing

noise radiation phenomenon

2̄
2p′ =

∂

∂t
[ρ0 v ·∇f δ (f)] +

∂

∂t
[ρ (u − v) ·∇f δ (f)]

− ∇ · [P ∇f δ (f)] −∇ · [ρu ⊗ (u − v) ∇f δ (f)]

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (2.1)

At the left hand side, p′ is the acoustic disturbance defined by p′ = c0
2ρ̂ with ρ̂ =

(ρ− ρ0) representing the density perturbation (the jump in density at f = 0) and c0 and

ρ0 denoting, respectively, the speed of sound and the density of the undisturbed medium.

The bars denote generalized differential operators, 2
2 = (1/c20)(∂

2
/∂t2) −∇2

repre-

sents the generalized wave operator (D’Alembertian operator) whereas H(f) and δ(f)
are Heaviside and Dirac delta functions. In addition, v is the local velocity of the

surface f , u the local fluid velocity, P the compressive stress tensor defined by P =
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[(p− p0) I + V], with V representing the viscous stress tensor, and T = [ρ(u ⊗ u)+
(p− p0)I − c20(ρ− ρ0)I + V

]

the Lighthill tensor. If the control surface is assumed to

be impermeable and coincident with the body surface, the transpiration velocity term

(u − v) becomes zero and the classical form of the FWH equation is obtained

2
2p′ =

∂

∂t
[ρ0 v ·∇f δ (f)] −∇ · [P ∇f δ (f)]+

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (2.2)

A unified version of the FWH equation may be derived by following the notation of

Di Francescantonio [13]; by introducing the following variables

w = (1 − ρ

ρ0
)v +

ρ

ρ0
u

L = P + ρu ⊗ (u − v)

(2.3)

representing mass-like and momentum fluxes through f = 0, Eq. (2.1) may be conve-

niently re-written as

2
2p′ =

∂

∂t
[ρ0 w ·∇f δ (f)] −∇ · [L ∇f δ (f)]+

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (2.4)

Equation (2.4) is the general form of the FWHE governing the aerodynamic noise

propagation from bodies having general shapes and motions.

2.1.1 Interpretation

The presence of the Dirac and Heaviside functions points out the different nature of

the noise source terms at the right side of Eq. (2.4): those having f as support of the

Dirac function account for the contribution of the discontinuity surface f(x, t) = 0
in the flow–field while that having f as support of the Heaviside accounts for all the

sources outside the surface1. The first two terms at the right-side of Eq. (2.4) are called

pseudo–thickness and pseudo–loading terms whereas the last one is the quadrupole

source term. The pseudo–thickness term describes the contribution of the net mass

flux through the surface f , while the pseudo–loading distribution is related to net mo-

mentum flux. The mathematical structure of the sources implies that pseudo–thickness

and pseudo–loading terms correspond to monopole and dipole non–stationary surface

distributions, respectively (whereas the quadrupole term corresponds to a quadrupole

distribution). However, the directivity pattern, that is, the angular distribution of the

sound field radiated by the sources, is different from those characterizing stationary

monopole, dipole and quadrupole, because of the motion of the surface f .

When the surface f = 0 coincides with a solid surface (i.e., the body surface), the ap-

plication of the impermeability condition implies that the normal velocity of the fluid is

equal to the normal velocity of the surface (un = vn); in this case the monopole term

1By assumption, T = 0 inside the surface f(x, t) = 0

15



Chapter 2 Prediction of Aero–Hydrodynamic Noise: FWHE and Bernoulli Methods

∂ [ρ0 v ·∇f δ (f)]

∂t
accounts for the noise generated by the displacement of the fluid

forced by the body passage whereas the dipole term ∇ · [P ∇f δ (f)] describes noise

resulting from the pressure distribution upon the body surface. The sum of these two

contributions provide accurate noise prediction when transonic flow conditions do not

occur and the noise is not characterized by turbulence phenomena (see Refs. [14], [15]

and [16]). Indeed, when pressure, density and velocity fields surrounding the source of

noise are related to high–speed transonic operating conditions or to massive turbulence

flow, the inclusion of the non–linear quadrupole volume term is needed.2 For instance,

dealing with rotorcraft in forward flight, the importance of the quadrupole term is well

recognized to affect both the waveform shape and amplitude of high–speed impulsive

(HSI) noise where the occurrence of shock delocalization and the requirement of ac-

counting for multi–emissive supersonic sources make the noise computation a very dif-

ficult task [17], [18]. Now, some considerations on the choice of the more appropriate

formulation to be used (permeable or rigid surface one) are pointed out. Apparently,

there is no reason why a fictitious surface f = 0 not coincident with the boundary of the

moving body, should be used. The convenience of using a porous non–deformable sur-

face results by observing that the FWHE governs noise propagation phenomena outside

the surface f = 0. Any source enclosed by f = 0 affects the noise field only through

surface terms (thickness and loading) while sources of noise outside f = 0 are modeled

through volume terms (quadrupole). Hence, by moving the control surface outwards,

the effects coming from quadrupole sources surrounded by f = 0 can be accounted for

by surface source terms. For rotorcraft applications, it has been proven that the noise

generated by the volume quadrupole distribution is significant only in regions of tran-

sonic flow; it is generated mainly at the shock surfaces but also near the leading edge

toward the blade tip. Hence, if the control surface is placed to enclose the blade and

all transonic (non linear) regions of flow, the volume outside it is fully subsonic and

the noise contribution from quadrupole sources becomes negligible; thus, the perme-

able FWH formulation allows to not account for any volume contribution.3 A similar

result could be obtained by using the Kirchhoff method for moving bodies [5]; in fact,

as shown in Refs. [6] and [12], the FWH and the Kirchhoff formulation are equivalent

when the integration surface is place in the linear region of the flow (where the input data

are compatible with the wave equation). However, when the linear region is far from

the body, as for transonic helicopters rotor noise prediction, obtaining a CFD solution

at the control surface is computationally too time consuming and could be not enough

accurate. This problem may be overcame by noting that the most intense quadrupole

sources (responsible for noise generation and distortion of the acoustic waveform) are

in the vicinity of the blades; therefore, if the control surface is placed to enclose the

volume of intense quadrupoles in the FWHE, the level of acoustic pressure may be ac-

curately computed. The role of the weaker quadrupoles which are further away from the

body is primarily to provide a small distortion to the acoustic waveform. Hence, even

when the integration surface is fairly close to the noise generating surface, the external

2The nonlinearity is referred to the fact the knowledge of u ⊗ u is required.
3The permeable formulation based on the use of a porous control surface enclosing the fluid re-

gions where the Lighthill’s tensor is not negligible, is known as Kirchoff-Ffowcs Williams Hawk-

ings formulation (KFWH).
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quadrupoles may be neglected. In comparison, the prediction of the acoustic pressure

through the Kirchhoff formula might be substantially in error if the Kirchhoff surface is

placed inside the nonlinear region: the nature and the order of magnitude of this error

may be hard to estimate or even recognize [6].

On the contrary, for those problems dealing with fully subsonic flows where effects as

turbulence, vorticity, vapor bubbles, viscosity, variation in the local sound speed, scat-

tering effects etc., do not affect the noise the linear no porous FWH equation given by

Eq. (2.2) remains a useful tool for describing sound propagation.

2.1.2 Integral Solution

Different integral solutions, suitable for numerical implementation, may be considered

for the FWHE; among them, formulation 1A proposed by Farassat (see Refs. [19] and

[20]) represents the most widely used integral representation for the acoustic distur-

bance. An exhaustive and useful review of the alternative FWH–based integral formu-

lations is given in Ref. [21].

An equivalent integral formulation, proposed by Morino and Gennaretti for the com-

bined analysis of the aerodynamics and aeroacoustics [22], [23] is here applied for the

solution of the FWHE. The motivation in using this formulation is that it has been ap-

plied to the aerodynamic problem in order to obtain the aerodynamic input required by

the aeroacoustic problem. Specifically, for a moving permeable surface S enclosing the

noise sources (both on the body surface and, eventually, around it) in a volume V , Eq.

(2.1) or equivalently Eq. (A.19) governs the analysis of the aeroacoustic field in ℜ3 \ V
moving in arbitrary motion with respect to the air space. As shown in appendix A.3 the

solution of Eq. (2.1) is given by the following boundary integral formulation expressed

in the space rigidly moving with the domain V (body–space, SRC)

p′(x, t) =

∫ ∞

0

∫

ℜ3

Ǧ χdVdt−
∫

S

{

(Pn) · ∇Ĝ− (Ṗn) · ∇ϑ Ĝ
}

ϑ
dS

− ρ0

∫

S

{

v · n v · ∇Ĝ+ [v · n (1 − v · ∇θ)]˙Ĝ
}

ϑ
dS

−
∫

S

{

ρu− · n u+ · ∇Ĝ+
[

ρu− · n (1 − u+ · ∇ϑ)
]

˙Ĝ
}

ϑ
dS (2.5)

where the suffix y appearing in appendix A.3, and denoting the images of vectors and

tensors in SRC, has been omitted. In Eq. (2.5) ϑ represents the time delay required

by an acoustic disturbance released from a source in y to reach the observer point x at

current time t; thus, {...}ϑ denotes that the kernel of the integrals are evaluated at the

emission time τ = t− ϑ. The first integral at the right hand side of Eq. (2.5) accounts

for the noise contribution due to volume terms (see section A.3); n is the outward unit

normal vector on the permeable surface S. Furthermore, Ĝ indicates the retarded Green

function

Ĝ =

[

− 1

4π r

(

1

1 −Mr

)]

ϑ

(2.6)
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where r = |r|, with r = x(t) − y(τ), and Mr =
v

c0
· r̂ denotes the surface Mach num-

ber in the direction of radiation. In addition, the symbol ˙( ) denotes time derivation

whereas u− = (u − v) and u+ = (u + v).
Choosing the surface S to be coincident with the body surface, the impermeability con-

dition implies that u− = 0; in addition, neglecting the quadrupole contribution to the

radiated noise, the prediction of the noise field in may be expressed by the thickness and

loading noise terms

p′(x, t) ∼= pT
′(x, t) + pL

′(x, t) (2.7)

where

pT
′(x, t) = −ρ0

∫

S

{

v · n v · ∇Ĝ+ [v · n (1 − v · ∇ϑ)]˙Ĝ
}

ϑ
dS (2.8)

and

pL
′(x, t) = −

∫

S

{

(Pn) · ∇Ĝ− (Ṗn) · ∇ϑ Ĝ
}

ϑ
dS (2.9)

The integral solution given by Eq. (2.5) allows the prediction of the acoustic disturbance

outside the surface S by a linear superimposition of three noise contributions; they are

interdependent and their physical basis provides valuable guidance to design quieter

rotors and propellers. The separation of the source terms also is an advantage numeri-

cally because not all terms must be computed at all time if a particular source does not

contribute to the sound field. In Eqs. (2.8), (2.9) the kernels of the solving integrals

depend on geometry and kinematics of the moving surface S, as well as on the pressure

distribution and velocity field upon it. It is notable that the proposed solving formu-

lation is completely equivalent to the formulation 1A by Farassat; such equivalence is

shown in appendix A.4. These aerodynamics quantities are assumed to be known, either

from experimental data or from computational results. In the second case, the output

of an aerodynamic code is the input for the aeroacoustic one. This provides a strong

motivation for attempting an integration of aerodynamics and aeroacoustics.
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2.2 The Bernoulli Equation–based Approach

The prediction of the pressure disturbance generated by moving bodies may be also

achieved through a unified aerodynamic and aeroacoustic formulation. For aeronautical

applications it has been introduced by Morino and Gennaretti [23] and is based on the

assumption of compressible, potential flows. When flow separation phenomena do not

occur, the influence of viscous effects on the pressure distribution upon the body sur-

face may be neglected and hence the assumption of potential flow allows an accurate

aerodynamic description.4 Furthermore, the assumption of (compressible) inviscid flow

is appropriate for aeroacoustics; in fact, it is well known that viscous effects are usually

negligible in a sound field because the pressure represents a far greater stress field than

that induced by viscosity at frequencies of most practical interest [24].

The first step of the unified aerodynamic-aeroacoustic solution procedure consists in de-

termining the velocity potential on the body, by a boundary integral equation approach.

Then, the integral representation for the potential yields the potential distribution in the

field and the Bernoulli theorem gives the corresponding acoustic pressure. This method-

ology is here applied for the aerodynamic and aeroacoustic analysis of propellers; math-

ematical details are extensively outlined in appendix A.2.

2.2.1 Differential Formulation

In the absence of shock waves, an inviscid nonconducting fluid that is initially at rest

remains isentropic and irrotational at all times (except for wake points). Under these

assumptions, the velocity field u may be expressed in terms of a scalar potential φ, as

u = ∇φ. It may be shown (see, for instance, Ref. [23]) that in a frame of reference

connected to the undisturbed medium the velocity potential is governed by the following

differential equation

∇2φ− 1

c20

∂2φ

∂t2
= σ (2.10)

where σ accounts for all the non–linear terms that in aerodynamic applications are im-

portant in the transonic regime. The differential problem is closed by suitable boundary

conditions. Three surfaces has to be considered: the surface at infinity, the body sur-

face and the potential wake surface. At infinite distance from the body, the perturbation

velocity is zero, hence u = 0, i.e., φ = 0; then assuming that the body surface S is

impermeable, it results that
∂φ

∂n
= v · n where v is the local velocity of a point on the

body surface and n the local outward unit normal vector. For lifting bodies, the vortic-

ity generated on the body forms a surface on both sides of which the flow is necessarily

potential; this surface represents the potential wake surface SW . The boundary condi-

tions on the wake state the absence of penetration (the wake cannot be crossed by fluid

particles) and of pressure discontinuity. These, in terms of velocity potential, yield (see

4Note that the aerodynamic loads may be accurately described only by including friction ef-

fects.
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appendix A.2)

∆

(

∂φ

∂n

)

= 0 (2.11)

DW (∆φ)

Dt
= 0 (2.12)

where
DW (∆φ)

Dt
=

∂

∂t
+ uW · ∇, with uW being the velocity of a point of a wake xW

(i.e., the average of the velocity on the two side of the wake). Equation (2.12) is the

evolution equation for ∆φ and states that it is constant in time following a wake point

and equal to the value it had when xW left the trailing edge. The value of ∆φ at the

trailing edge is obtained by using the Kutta condition hypothesis that no vortex filament

exists at the trailing edge [25]; this implies that the value of ∆φ on the wake and on the

body are equal at the trailing edge, that is

lim
xW →x

T E

∆φ(x
W
, t) = φu (t) − φl (t) (2.13)

and

∆φ(xW , t) = ∆φ(xTE , t− τw) (2.14)

where φu and φl are the potential at the upper and lower side of the wake, xTE denotes

a wake point located at the blade trailing edge and τw the convection time between wake

points xW and xTE .

2.2.2 Boundary Integral Solution

In order to solve the potential problem it is convenient to recast Eq. (2.10) into the

following equivalent infinite–space differential equation (see appendix A.2)

− 2
2φ̂ = σ H(f) + ∇φ · n δ(f) + ∇ · [φ n δ(f)] +

− 1

c20

{

−φ̇ v · n δ(f) + [−φ v · n δ(f)]˙
}

∀x ∈ ℜ3 (2.15)

where φ̂(x, t) = H(f)φ(x, t), and σ = [(c2 − c20)∇2φ+ 2u · u̇ + u · ∇u
2

2
]/c2. Then,

integrating Eq. (2.15) through the formulation proposed by Morino and Gennaretti and

shown in appendix A.3, yields the following boundary integral representation for the

potential φ

φ(x, t) =

∫

V

Ĝ [σ]ϑdV +

∫

S

[

∂φ

∂ñ
Ĝ− φ

∂Ĝ

∂ñ

]

ϑ

dS +

+

∫

S

[

Ĝ
∂φ

∂t

(

∂ϑ

∂ñ
+ 2

v · n
c20

)]

ϑ

dS

+
1

c20

∫

S

[

φ Ĝ
∂

∂t
[v·n (1−v·∇ϑ)]

]

ϑ

dS (2.16)
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where the integrals are expressed in a frame of reference fixed to the body.

In the equation above the symbols maintain the same meaning as in Eq. (2.5), and in

addition
∂

∂ñ
=

∂

∂n
− 1

c20
(v · n) (v · ∇). For bodies without wake (non-lifting), Eq.

(2.16) is an integral representation of φ anywhere in the field, in terms of the values of

φ,
∂φ

∂ñ
and

∂φ

∂t
on S, and of σ in V . If y∗ approaches S, one obtains a compatibility

condition between the above quantities. If σ = 0 this compatibility condition is an

integral equation for the unknown φ, as
∂φ

∂n
is known from the boundary condition.

The extension of the formulation to lifting bodies requires to account for the presence of

the potential wake surface; in the following, propellers are considered as lifting bodies.

In this case, let us consider the presence of N disjoint, closed rigid surfaces Si and

SW
i surrounding, respectively, the volume occupied by the i-th propeller blade and the

volume occupied by a thin fluid region containing the corresponding i-th wake surface.

It may be shown [22] that the integral representation for the solution of Eq. (2.10)) has

the form

φ(x, t) =

N
∑

i

(

IS
i + IW

i

)

(2.17)

Each integral contribution appearing in equation (2.17) may be evaluated in a differ-

ent frame of reference. In the case of rigid surfaces, the most suitable frame of ref-

erence is attached to the surface where the integral is evaluated (i.e., the frame where

the integration domain does not depend on time). Thus, under the assumption of a pre-

scribed, non–deforming wake shape and a propeller in axial flow, it is convenient to

use a propeller-fixed frame of reference to evaluate both the blade and wake contribu-

tions to the velocity potential field.5 In this frame, the most general expression for the

blade surface contributions IS
i is given by Eq. (2.16). The wake contribution IW may

be obtained by coupling Eq. (2.16) with the wake boundary conditions (note we have

assumed the wake to be rigidly connected with the propeller blades). In steady-flow

conditions, it has the form

IW (x, t) = −
∫

SW

[

∆φ
∂Ĝ

∂ñ

]

ϑ

dS (2.18)

By positioning point y on the body surface, Eq. (2.17) is used as a boundary integral

equation for φ. This step enables the evaluation of the velocity potential on the inte-

gration domain itself. Once φ is known on S, the same equation appears as an integral

representation of the potential and can be used to determine such a variable at any point

in the field. At this stage the pressure p can be determined through the Bernoulli theorem

(written for compressible, isentropic flows)

∂φ

∂t
+

1

2
|u|2 +

κ

γ̂
pγ̂ =

1

γ̂

p0

ρ0
where: γ̂ =

γ − 1

γ
; κ =

p
1/γ
0

ρ0
(2.19)

5The same arguments are valid for a helicopter rotors in hovering. In forward flight condition,

the formulation is more complicated because in the body space the wake surface is not time

independent. However, in this case, the wake may be assumed to be time independent in the air

space.
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where γ denotes the specific heat ratio.

2.3 Comparison Between the two Aeroacoustics
Methodologies

In this section some commonalities and differences between the acoustic formulation

based on the Ffowcs Williams Hawkings equation and the unified aerodynamic-aero-

acoustic methodology, are outlined from a theoretical standpoint. Their potentialities

and drawbacks are further shown by means of numerical results. Within the context of

potential compressible aerodynamics and basing on sections 2.1 and 2.2, it comes out

that there exists a symmetry in the way of computing the noise field through the FWHE

and BEA. Both methods are governed by the same differential operator, that is an inho-

mogeneous wave equation, describing the propagation of the pressure disturbance and

velocity potential in the flow–field, respectively. This implies that the corresponding in-

tegral solutions have the same mathematical structure. The FWHE directly computes the

noise field by using the integral formulation as a representation for p′ once the required

aerodynamics input are provided, whereas BEA first requires the solution of an integral

equation to determine φ on the body; then the Bernoulli equation allows the computa-

tion of the sound once the potential is evaluated everywhere in the field. To this aim, Eq.

(2.17) is used as integral representation for φ. Hence, in the solution procedure of the

unified aerodynamic-aeroacoustic approach, the step involving the use of the Bernoulli

theorem represents the acoustic solver of the method; for the sake of clarity, Fig. 2.2

emphasizes the main aspects of the methodologies. As a matter of fact, both acoustic

Figure 2.2: Comparison between the FWHE and the Bernoulli methods: flow-chart.

solvers are based on the same conservation laws and represents two fully equivalent
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approaches for dealing with aeroacoustics phenomena; as a consequence the same pre-

diction of propeller noise is expected. The main difference between the two approaches

is that the BEA is formulated in terms of velocity potential whereas the FWHE directly

involves the main variable of the aeroacoustic problem, that is the acoustic disturbance

p′. From a mathematical point of view, such a circumstance implies the introduction

in the BEA of a discontinuity surface for φ represented by the wake surface that af-

fects both steps of the solution procedure through the term (2.18). The FWHE has the

advantage of not requiring information on the presence of the wake because the only

discontinuity surface for the pressure is the boundary of the body, being the potential

wake a zero–thickness surface across which the pressure is continuous; thus, it does not

exist a noise contribution from the wake. It is worth noting that the loading noise term

given by Eq. (2.9) indirectly accounts for the presence of the potential wake through its

influence on the evaluation of the blade pressure distribution (i.e., the computation of

P). Although the potential wake does not affect the thickness and loading noise con-

tributions, its presence, in terms of noise, may be accounted for through the non–linear

term (ρu⊗u) in the quadrupole contribution. Akin to the quadrupole noise contribution

due to the body motion, the noise related to the presence of the potential wake may be

reasonably neglected when the sources of noise are not related to high–speed operating

conditions or massive turbulence flow, since (ρu ⊗ u) is negligible respect to the per-

turbation velocity field u. Note that the KFWH formulation directly accounts for the

presence of the potential wake through the velocity and pressure fields on the control

surface. On the other hand, differently from the Bernoulli approach, the KFWH formu-

lation could be used to predict the noise field induced by aerodynamic configurations

where non–linear phenomena as turbulence, massive flow separation, non–homogeneity

in the local sound speed, etc., are at the basis of the noise generation; in these cases, the

potential flow theory falls and the required data input on the permeable surface of the

KFWH method may be provided by CFD solvers (for instance, full-potential, RANSE).

In any case, in the frame of aeroacoustics, these are aerodynamic issues rather than

aeroacoustic one.
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2.4 Underwater Propeller Noise: Marine Scenario

Despite the outstanding importance that propeller-induced noise analysis has for a wide

class of marine applications, the lack of theoretical models addressing the problem un-

der a rigorous, physically-consistent approach is widely recognized. Undoubtedly, the

propulsor represents one of the main sources of noise generated both by surface and

underwater seacraft. A hydroacoustic analysis of realistic configurations does not only

concern the kinematic and dynamic behaviour of the rotating blades but involves a lot

of different and very complex phenomena. A marine propeller operates in the wake of a

hull: the incoming flow is characterized by an enormous turbulence and vorticity which

largely affect both the propeller-induced noise and the propagation phenomena. The

proximity of the hull and, eventually, of the free surface to the propeller can cause some

notable scattering effects, with a direct influence on noise spectra and directivity. More-

over the possible occurrence of cavitation (i.e., vaporization occurring in fluid regions

where pressure drops below vapor pressure value) completely changes the hydroacous-

tic behaviour of the body. The formation, growth and collapse of vapor bubbles can

provide large pressure peaks propagating from the blades and increase the noise level of

two orders of magnitude with respect to the same propulsor operating in non-cavitating

conditions.

In spite of this very complex scenario, the numerical models presently used for the

hydroacoustic analysis of marine propellers are rather poor. The propeller is often con-

sidered as a pointwise source with given intensity and the numerical solutions are often

provided in the filtering frequency domain, where the acoustic pressure time history

is usually reduced to a single, representative value. The physically–consistent hydroa-

coustic modelling widely used by the naval community is based on the unified approach

previously considered; in fact, although conventional in the aeronautical context, the

FWH equation represents a no standard solving approach for naval applications. In a re-

cent paper [26] the authors cite the FWH equation as a not easy method and erroneously

declare that the noise integrals must be determined on a retarded surface. Dealing with

the Helmholtz equation and hull scattering effects, Spivack et al. [8] recognize in the

FWH approach a complete solution to the combined hydrodynamic-acoustic analysis,

but define the numerical problems difficult and challenging. Compared with the ex-

tensive amount of literature concerning the application of the FWHE to the prediction

of aeronautical propeller noise, works concerning marine propellers noise are hard to

find; among them, Seol et al. [9], investigate the non-cavitation noise of underwater

propeller by coupling potential–based panel method with time–domain acoustic anal-

ogy to predict the noise generated by single and duct propellers in a non–uniform flow

condition. As a matter of fact, the integration of the FWH equation yields to simple and

powerful computing tools, which make the evaluation of the acoustic pressure in the far

field a pure post-processing of the hydrodynamic data. Looking at the wide literature

available for aeroacoustics, it is clear that the actual problems concerning the numerical

solutions are mainly related to the quadrupole source terms whose contribution, how-

ever, becomes relevant only at a high blade rotational speed. In that case, the singular

behaviour of sources rotating at transonic speed makes the evaluation of the acoustic

pressure field a very complex problem [27]. Such operating conditions, however, never

occur for a marine propeller. Differently from aeronautical propellers that usually op-
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erate in unperturbed incoming flow, marine propellers are subjected to an onset flow

represented by the wake hull; therefore, it is non–uniform and characterized by turbu-

lence and vorticity. These flow conditions largely affect the propeller-induced noise and

propagation phenomena. Apart from the frame–noise associated to the development of

the boundary layer around the hull surface and not accounting for the acoustic scattering

effect given by the hull-plate, the presence of the hull may be modeled in the prediction

of the propeller-induced noise, indirectly, by considering the propeller as an isolated

body subjected to a spatially non-uniform onset flow [28].

Although the Bernoulli equation is at length used by the hydroacousticians to predict

underwater propellers noise, it is worth observing that the incompressible flow assump-

tion is generally adopted, thus neglecting a priori any propagation phenomena taking

place in the flow field. At this stage, a fundamental aspect of the problem should be

pointed out. Due to the nature of what we call sound, an actual noise prediction could

not be performed by assuming a constant density field. Sound is a pressure disturbance

which propagates at a finite speed in the flow field, and the propagation velocity (the

speed of sound) is just given by c2 = dp/dρ. This implies that the pressure disturbances

and the corresponding propagation phenomena are necessarily related to a density vari-

ation. Therefore, the use of a solver based on the incompressibility assumption violates

the theoretical basis of any (hydro)acoustic analysis providing an evaluation of an in-

stantaneous (c → ∞) pressure field which, theoretically speaking, should not be in

any case identified as an acoustic pressure. This is especially true in a naval context

where, as previously noted, the noise propagation mechanisms can be heavily affected

by the hull and/or free surface scattering and the presence of a non homogeneous flow.

Fortunately, the requirement of a variable density for hydroacoustic purposes may be

suitably combined with the incompressibility assumption adopted within any naval hy-

drodynamic code. In fact, in the so-called acoustic hybrid approaches the evaluation of

the noise “source” terms and their subsequent “propagation” in the (acoustic) far field

represent two distinct steps of the computing strategy. If no compressibility effect rep-

resents a source of sound on its own (like, for instance, the shock waves occurring on

a high speed aeronautical propeller), this separate evaluation of the hydrodynamic and

hydroacoustic aspects of the problem enables the achievement of a very accurate noise

prediction despite the use of a constant density in the hydrodynamic solver. Thus, due to

the low rotational Mach number at which a marine propeller usually operates, the noise

generation is only related to the blade geometry/kinematics and to a hydrodynamic load

which can be suitably determined through an incompressible solver. The subsequent

noise propagation, however, should include the effects of the compressibility delays

although in practice these values could be even negligible (depending on the relative

source-observer distance). In detail, a correct estimation of the pressure disturbance

should account for the following steps: i) Evaluation of the velocity potential φ upon

the blade under the incompressibility assumption. In this case, the retarded time ϑ and

Mr are zero, and Eq. (2.17) becomes

φ(x, t) =

∫

S

(

∂φ

∂n
G− φ

∂G

∂n

)

dS −
∫

SW

∆φ
∂G

∂n
dS (2.20)

where G = −1/4πr, thus yielding the potential field as induced by a superposition

of sources over the body surface and of doublets over the body and wake surfaces. In
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addition, the Bernoulli theorem reads

∂φ

∂t
+

1

2
|u|2 +

p

ρ0
=
p0

ρ0
(2.21)

Due to the low rotational speed, Eq. (2.20), used as integral equation, and Eq. (2.21)

may be applied to determine the hydrodynamic load of a marine propeller. ii) Compu-

tation of the acoustic pressure field. At this stage, the velocity potential and consequen-

tially, the pressure disturbance, have to be propagated into the field. To accomplish this,

a theoretically correct estimation of the acoustic disturbance must necessarily account

for Eqs. (2.16), (2.17) and (2.18) to determine φ in the far field, disregarding the incom-

pressibility assumption. Then, the use of Eq. (2.19) close the hydroacoustic problem.

Unfortunately, in naval applications the hydrodynamic and hydroacoustic problems are

usually not treated in a separate way, and the incompressibility assumption is erro-

neously applied to both the solutions without exception. In this thesis, an alternative

strategy to compute marine propellers noise is proposed: it consists in using the FWHE

as hydroacoustic solver once the step i) of the unified approach has been performed.

In this way the incompressible potential flow theory, correctly governs the evaluation

of the hydrodynamic loads on propeller blades whereas the hydroacoustic problem is

directly modeled through the wave equation for the pressure disturbance. In order to

show capabilities and drawbacks of the proposed approach respect to the widely used

Bernoulli method, the two solving strategies are compared numerically in the following

section.
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2.5 Numerical Results

In view of the suggested application of the FWHE to marine propellers noise, here

it is presented a numerical comparison of noise predictions provided by the FWHE

and the unified, Bernoulli–based methodology, concerning both an aeronautical and a

marine propeller. Keeping in mind the theoretical basis of a hydroacoustic analysis, the

unified approach outlined in the previous section will be used under the assumption of

an incompressible flow. Such choice seems to be inconsistent with the considerations

given in section 2.4; however it has a triple justification. First, the use of Eqs. (2.20)

and (2.21) is much simpler with respect to the compressible potential formulation and

allows a notable reduction of the computational effort. In this way, an analysis on the

influence of different numerical parameters can be reasonably carried out. Second, the

acoustic pressure determined through the incompressible Bernoulli theorem should not

exhibit any appreciable discrepancy with respect to the FWH solutions, provided that

the compressibility delays are limited to some negligible value. Hence, by accounting

for observers very close to the propeller disc such a numerical comparison does make

sense. Third, it will be shown that the numerical differences between the hydroacoustic

formulations are primarily related to the wake modeling; thus, they concern both the

compressible and incompressible flow analysis. For this reason, it is somehow useless

at this stage to focus the attention on the complex Eqs. (2.16), (2.17) and (2.18) since

the differences between the two approaches can be conveniently pointed out by limiting

the analysis to the incompressible formulation. In the following, a validation analysis

of the (impermeable) FWH prediction tool used in this work is presented; the emphasis

is on the acoustic analogy approach because an extensive validation of the combined

methodology used to provide BEA numerical predictions is presented, for instance, in

Refs. [29], [30], [31]. Then, after the analysis of the influence of the wake model on

the aero–hydroacoustic prediction, the approximations related to the incompressibility

assumption for the evaluation of the far field pressure will be investigated through the

use of the FWH formulation, re-written in an incompressible form. First, the numerical

algorithm applied to obtain the discrete form of the integral formulations is present.

Discretization Strategy

The numerical investigation is performed by applying a zero-th order boundary ele-

ment method (BEM) for the discretization of the boundary integral formulation given

by Eq. (2.7), for the FWHE, and Eq. (2.17) for the unified approach. First, let us

consider the FWHE; the discretization is obtained by dividing the moving body surface

S into quadrilateral panels and assuming p′ to be piecewise constant. Then, the inte-

gral equation is solved by requiring that the equation be satisfied at the center of each

body element (collocation method). Specifically, discretizing S into M panels Sj , at

the center of k-th element Eq. (2.7) yields

p′k(t) =

M
∑

j=1

Ckj p
′
j(t− ϑkj) +

M
∑

j=1

Dkj ṗ
′
j(t− ϑkj) +

M
∑

j=1

Tkj +

M
∑

j=1

Rkj (2.22)
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The function f(t− ϑkj) indicates that f must be evaluated at the emission time (t− ϑ)
whereas the coefficients are defined in the following way

Ckj = −
∫

Sj

{

∇Ĝkj · n
}

ϑkj

dS

Dkj =

∫

Sj

{

∇ϑ̂ · n Ĝkj

}

ϑkj

dS

Tkj = −ρ0

∫

Sj

{

v · nv · ∇Ĝkj

}

ϑkj

dS (2.23)

Rkj = −ρ0

∫

Sj

{

[v · n(1 − v · ∇θ)]˙Ĝkj

}

ϑkj

dS

where Ĝkj = Ĝ(xk,x). The core of the algorithm is the evaluation of the emission

time that represents a typical root-finding problem for equation

|x(t) − y(t− ϑ)|
c0

− ϑ = 0 (2.24)

Because of the blade rotational motion, an iterative procedure must be used. Starting

from the initial delay ϑ = 0 and the corresponding positive root |r|/c0, the search for

the root proceeds backwards with a prescribed time step up to the first sign inversion.

Thus, the emission time is captured through the usual bisection method, until a specified

error condition is satisfied. The subsonic speed of the source point assures the existence

of a single root for Eq. (2.24).

Similarly, the discretization of Eq. (2.17) is obtained by dividing into M panels

the body surface S and into N panels the potential wake SW . This operation yields the

following discretized integral representation

φk(t) =

M
∑

j=1

Bkj ψj(t− ϑkj) +

M
∑

j=1

Ckj φ
′
j(t− ϑkj)

+

M
∑

j=1

Dkj φ̇
′
j(t− ϑkj) +

N
∑

l=1

Fkl ∆φTE
l (t− πkl) (2.25)

where ψj denotes
∂φ

∂ñ

∣

∣

∣

yj

and ∆φTE
l represents the value of ∆φTE at the trailing edge

point from which xW left the trailing edge; in addition, πkl is the time delay given by

the sum of compressibility effects and the time of convection of wake points.
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The coefficients are indeed defined as

Bkj =

∫

Sj

{

Ĝkj

}

ϑkj

dS

Ckj =

∫

Sj

{

−∂Ĝkj

∂ñ
+

1

c20
Ĝkj

∂

∂t
[v·n(1−v·∇ϑ)

}

ϑkj

dS

Dkj =

∫

Sj

{

Ĝkj

(

∂ϑ

∂ñ
+ 2

v · n
c20

)}

ϑkj

dS

Fkl = −
∫

Sl

{

∂Ĝkj

∂ñ

}

ϑkj

dS (2.26)

Validation Results

Four test cases have been considered and the aeroacoustic predictions (in terms of pres-

sure disturbance) have been compared with the numerical results provided by the vali-

dated and well-assessed FWH HERNOP code [32]. Test cases herein considered make

reference to helicopter rotor noise; they are well known in literature and they are suitable

for the validation of numerical codes. In particular, test cases consider a 1/4 − scale
UH-1 baseline main rotor having two rectangular blades 1.83m long, with linear twist

distribution and NACA 0012 airfoil sections. Geometrical details of the main rotor,

blade controls for the trimmed flight condition and the observers location, can be found

in Ref. [33]. Test case 1 considers a helicopter in forward flight with an advance speed

of 100 Knots, a shaft angle6 of 8.85◦, a rotational speed of 1296RPM and the co–

moving observer position, with respect to the observer coordinate system 7 [33], given

by (3.21m,−2.16m,−0.3m); test case 2 considers a forward flight condition with an

advance speed of 60 Knots, a shaft angle of 8◦ and co–moving observer position, given

by (0.41m,−0.68m,−0.72m); test case 3 differs from test case 2 only for the co–

moving observer position given by (0,−3m, 0); finally test case 4 deals with a BVI

condition for a main rotor whose geometry and flight conditions are documented in-

side the 1333 case of the Helinoise european project [34]; in this case the noise signals

are evaluated for a co–moving observer position, given by (0, 3m, 0). The aerody-

namic loads for all test–cases are obtained through a BEM compressible analysis; as

expected, Fig. 2.3 and Fig. 2.4 show that thickness and loading noise dominate the

overall noise, respectively. Numerical results show that the agreement with the predic-

tions by HERNOP code is very good. The prediction capabilities of the implemented

code are confirmed also by Figs. 2.5 and 2.6.

6It describes the angle between the rotor shaft and the vertical.
7It is defined as follows: the x,y plane is parallel to the ground and the z–axis points upward,

forming a right–hand coordinate system. The x–axis points in the direction of the wind. The

origin of this coordinate system is the center of the rotor hub at time equal to zero, then this frame

moves with the helicopter but retains its original attitude, without rotation, with its origin fixed to

the center of the rotor hub.
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Figure 2.3: Test case 1 – Comparison between literature data (HERNOP, red line with points +)

and implemented FWH code (blue dotted line). Thickness noise signature (left) and loading noise

signature (right).

Figure 2.4: Test case 2 – Comparison between literature data (HERNOP, red line with points

+) and implemented FWH code (green dotted line). Thickness noise signature (left) and loading

noise signature (right).

The Influence of Wake Model

As shown in section 2.2, in the frame of potential flows for lifting bodies, the pres-

ence of the potential wake affects the evaluation of the potential φ, on the body and

in the field. In the following, the influence of the potential wake modelling on the

aeroacoustic prediction performed through BEA and FWHE is investigated through nu-

merical comparisons. In particular, the numerical study concerns a comparison between
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Figure 2.5: Test case 3 – Comparison between literature data (HERNOP, green points) and

implemented FWH code (red points). Thickness noise signature (top) and loading noise signature

(bottom).

a high aspect ratio blade (rather typical for helicopter rotors) and a highly twisted and

skewed blade with a very small span to chord ratio (usual for vessels). A low-order

boundary element method is used to determine the blade hydrodynamic solution to be

applied in both hydroacoustic formulations. Body and wake surfaces are discretized into

hyperboloidal quadrilateral elements and flow quantities are supposed to be piecewise

constant on each element. Thus, Eq. (2.20) gives rise to a linear system of equations

where the unknowns represent the velocity potential at the panels centroids. The com-

putational grids are characterized by the number of blade elements along chord (MB)

and along span (NB), and the number of elements along each wake turn, both stream-

wise (MW ) and in radial direction (NW ). A preliminary analysis (not reported) has

been performed to evaluate the effect of these parameters on the numerical solution of

Eq. (2.20). Among the many grids considered, the values which seem to minimize the

discretization uncertainty areMB=NB=20 andMW =90. Moreover, the valueNW =NB

has been adopted. All the calculations refer to a single-bladed propeller in a uniform

flow.

The first configuration concerns a non-lifting blade having a uniform spanwise dis-

tribution of a NACA 0012 profile, with diameter D = 2m, constant chord c = 0.1m
and a root cut-off equal to 0.2m. Both the advance velocity U∞ and the local an-
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Figure 2.6: Test case 4 – Comparison between validated data (HERNOP) and implemented FWH

code. Thickness noise signature (left), loading noise signature (right) and overall noise (bottom).

gle of attack are equal to zero (hovering condition), while the rotational speed is set

to Ω = 286RPM (n = 4.77rev/s), corresponding to a tip rotational Mach number

M = 0.02. The noise prediction refers to an observer placed in the rotor disk plane, at

a distance of only 2m from the blade tip. Despite the aeronautical blade configuration,

the computations are performed in water, where the speed of sound is c0 = 1520m/s.
This way, the closeness of the observer to the rotating blade should reasonably give

rise to negligible compressibility delays. A sketch of the discretized blade and relative

blade-observer position is reported in Fig. 2.7 while Fig. 2.8 shows the comparison

between the noise predictions provided by the two hydroacoustic solving approaches.

At the proposed operating conditions, the excellent agreement of these two signatures

confirms the numerical equivalence of the pseudo-acoustic pressure provided by the

incompressible Bernoulli–based approach and the noise signal determined through the

FWH equation.

Such a satisfactory comparison deteriorates by accounting for the presence of the

wake (lifting configuration). For the same observer position, first, let us focus our atten-

tion on a moderately loaded blade, by imposing a linear twist of ∆θ=33.6◦ between the

blade root and tip (see Fig. 2.10) and considering two different values for the advance
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Figure 2.7: A sketch of the NACA 0012 blade (top) and the rotor disk observer location (bottom)

used for the non–lifting test case.
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Figure 2.8: Noise signals under non–lifting operating condition.

ratio J = U∞/nD (namely J=0.75 and J=0.5), corresponding to thrust coefficient
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KT = 2T/ρn2D4 values equal to 0.02653 and 0.04484, respectively. In the unified ap-

proach, both the velocity potential and the pressure on the body and in the field depend

on the wake considered in the numerical solution of Eq. (2.20). Thus it is necessary a

preliminary assessment of the wake length by checking the numerical solutions while

truncating the wake to different numbers of spirals. Generally speaking, a limited wake

portion attached to the body affects the numerical results upon the body (hydrodynamic

solution), whereas a very long wake must be taken into account to correctly capture its

effects in the field, far from the body (hydroacoustic solution). For instance, for J=0.75

and by considering a prescribed helical–shape wake, three wake turns (corresponding to

a wake length LW =2.3D) yield a converged blade pressure distribution. Nevertheless, a

higher number of wake spirals (at least LW =20D) are necessary to achieve a converged

acoustic pressure in the far field. This result is clearly shown in Fig. 2.9, where the

Figure 2.9: Assessment of the wake surface length for the NACA 0012 blade in lifting conditions

at J=0.75. On the left the peak-to-peak pressure intensity is reported as a function of LW /D
ratio, while the right figure shows the corresponding noise predictions achieved by the Bernoulli–

based approach.

convergence of the numerical solution for p is reported through a peak-to-peak pressure

intensity versus wake length curve (on the left) and the noise signatures determined

by increasing the value of the LW /D ratio (right figure). The notable increase of the

wake length needed to get a converged potential and/or pressure evaluation in the field

depends on the fact that the wake doublet influence (related to the solid angle through

which it is seen by the observer) slowly tend to zero for observers placed far from the

blade.

Previous considerations on the unified approach outline that, for a given observer

position, the presence of the potential wake requires an initial assessment on the wake

length needed to get a converged solution. In the following, the hydroacoustic analysis

of the NACA 0012 lifting blade shown in Fig. 2.10 is performed by taking into account

three different observer locations as shown in Fig. 2.11. Still, observer 1 is located in

the propeller plane while observers named 2 and 3 are placed downstream and upstream

(with respect to the disk plane) for both values of the advance ratio, J . The observer co-
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Figure 2.10: 3D pre–twisted blade. Figure 2.11: Microphones locations.

Figure 2.12: Sketch of prescribed wake modeling for the NACA0012 helicopter blade.

ordinates, non dimensional with respect to the propeller diameter, are: MIC1→(x̂=0.0,

ŷ=1.0, ẑ=0.0), MIC2→(x̂=1.0, ŷ=0.75, ẑ=0.0), MIC3→(x̂=-1.0, ŷ=0.75, ẑ=0.0), with

x̂i=xi/D. The hydrodynamic input data is determined by means of Eq. (2.20) with a

prescribed wake model. In particular, the wake shed at the blade trailing edge is sup-

posed to be a simple helical surface with a fixed pitch equal to the distance travelled by

the rotor during one revolution (see Fig. 2.12). A preliminary analysis outlines that a

converged hydrodynamic solution is obtained using three wake spirals, whereas a wake

length of LW = 30D ensures a converged hydroacoustic solution for the above ob-

server positions. Figures 2.13, 2.14, 2.15 show comparisons between the pressure time

histories determined through the FWH and the Bernoulli equations at the two aforemen-

tioned advance ratios. The two pressure signature predictions are very similar, although
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Figure 2.13: NACA 0012 lifting blade at J=0.75 (KT =0.026-left figure) and at J=0.5

(KT =0.045-right figure). MIC1: x̂=0.0, ŷ=1.0, ẑ=0.0
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Figure 2.14: NACA 0012 lifting blade at J=0.75 (left figure) and at J=0.5 (right figure). MIC2:

x̂=1.0, ŷ=0.75, ẑ=0.0
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Figure 2.15: NACA 0012 lifting blade at J=0.75 (left figure) and at J=0.5 (right figure). MIC3:

x̂=-1.0, ŷ=0.75, ẑ=0.0
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slight differences appear at all the observer locations. Furthermore, the discrepancies

increase at the lower advance ratio, which corresponds to a wake closer to the propeller

and a higher blade hydrodynamic load. In order to better understand the role played

by the wake modeling, let us move the attention to a marine propeller. In this case,

the more complex geometry (the blades are usually characterized by large values of the

skew and twist angles) and the heavier loading conditions suggest a notable wake–shape

influence. The analysis will be focused on the INSEAN E779A scaled model. A sketch

of such a four-bladed hubbed-propeller, with diameter D = 22.727cm, is reported in

Fig. 2.16, although the computations always refer to a single blade. On the right picture

of Fig. 2.16 the four different observer locations, placed in the XY-plane used in noise

predictions, are depicted. The operating conditions still refer to a rotational velocity

Figure 2.16: A 3D view of INSEAN E779A propeller model is depicted on the left. The right

figure shows the four observers placed in the XY-plane and used for noise predictions.

of Ω = 286RPM and an advance speed U∞ = 8.395m/s, so that J is now equal to

0.88 and the blade is heavily loaded (KT =0.16). A parametric analysis is performed in

order to assess the wake influence on noise prediction without applying any wake radial

contraction. Then, a variation of the wake surface can be carried out by changing the

pitch distribution of the prescribed model. To this aim, the wake surface appearing into

the integral equation for the velocity potential is divided into two subsequent patches: a

near wake extending for a prescribed number Λ of revolutions (starting from the blade

trailing edge) and a far wake extended further downstream. The far wake pitch is defined

as

βFW = αβI + (1 − α)βB

where βB represents the blade mean pitch, βI denotes the inflow pitch and α is a weight

factor which can be set between 0 and 1. Similarly, for the near wake

βNW = ξβFW + (1 − ξ)βTE

where βTE is the blade pitch at trailing edge and ξ indicates a nondimensional stream-

wise arclength (with ξ=0 at trailing edge and ξ=1 at the downstream end of the near

wake). Note that the βTE value is selected in order to have a wake tangent to the section
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mean lines at the blade trailing edge. The pitch wake distribution can be modified by

acting on both Λ and α parameters. Figure 2.17 depicts a 3D sketch of the two separate

wake–patches, while Fig. 2.18 shows the noise signatures at the observer 4 correspond-

ing to different values of the Λ and α parameters. It is rather clear that the adopted

Figure 2.17: Three–dimensional sketch of the near and far wake patches.

Figure 2.18: Effect of the wake shape on the waveform of the overall signal.

wake model plays a significant role in the Bernoulli–based noise evaluation. Despite a

general similarity of all waveforms, the discrepancies of the acoustic pressure absolute

values can be relevant. Many tests have been performed by using other values for Λ and

α, substantially obtaining very similar results. In practice, in the Bernoulli approach an

ad hoc choice of the wake shape is essential to approach the numerical solution provided

by the FWH equation. On the other hand, the shape of SW has a very weak influence

on the blade hydrodynamic loads (as well as on the computed thrust coefficient), so that

the noise prediction provided by the FWH equation does not change with it. Looking
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at Fig. 2.18, the couple of values Λ=0 and α=0.5 seems to be the best choice for the

wake shape in terms of similarity with FWH results. Then, Figs. 2.19 and 2.20 show

the comparison between the FWH and Bernoulli acoustic pressure time histories at the

four aforementioned observer locations, corresponding to such optimized wake model.
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Figure 2.19: Comparison between the pressure time histories provided by the FWHE and BEA.

Obs 1:x̂=0.0, ŷ=0.75, ẑ=0.0 (left), Obs 2: x̂=-1.0, ŷ=2.0, ẑ=0.0 (right).
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Figure 2.20: Comparison between the pressure time histories provided by the FWHE and BEA.

Obs 3: x̂=0.0, ŷ=2.0, ẑ=0.0 (left), Obs 4: x̂=1.0, ŷ=2.0, ẑ=0.0 (right).

Actually, the differences are rather small and a satisfactory agreement is achieved from

both a qualitative and a quantitative point of view. Nevertheless, it can not be assured

that changing, for instance, the blade loading conditions, the adopted wake remains the

best choice. A possible explanation of the observed wake influence on noise predictions

could concern the not respected continuity condition for pressure on the wake panels.

In fact, a prescribed surface is a simple approximation of an actual potential wake and,

in general, does not match the theoretical boundary condition ∆p equals zero across
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the wake.8 Then, the wake behaves as a sort of an additional, zero-thickness source,

generating a fictitious loading noise component of numerical nature. This conjecture

has been numerically investigated by taking into account a free–wake model, where the

field velocity is determined through a boundary integral representation of the potential

gradient and the wake points are moved in order to be aligned to the local flowfield

(wake alignment technique). Hydrodynamic numerical results provided by such a free–

wake algorithm have been validated by comparison with experimental data concerning

the E779A propeller model [35]. Unfortunately, the use of this more sophisticated wake

model has not provided the expected improvements on noise predictions. Figures 2.21

and 2.22 show a comparison of the acoustic pressure time histories obtained through

the prescribed and free wake models depicted in Fig. 2.23. At observer 1 (placed very

close to the propeller) the noise signature computed by the free–wake model seems to

be closer to the FWH solution with respect to the prescribed wake surface (left picture

in Fig. 2.21). However as the observer moves far away from the blade, this tendency is

inverted. For instance, at observer location 4 the agreement between the FWH and the

free–wake model becomes notably worse (right picture in Fig. 2.22). Such negative be-

haviour involves all the observers placed far from the body and even seems to generate

a higher level of uncertainty with respect to the results of the right Fig. 2.18.

The numerical solution of the non–linear potential flow problem with free–wake al-

gorithm is inherently affected by inaccuracies; in particular, a ∆p not equal to zero still

affects the wake at the blade trailing edge and can occur at some critical regions such as

in the wake tip region where the vortical surface tends to roll-up under the effect of the

induced velocity, as shown at the right side of Fig. 2.23. Furthermore, as shown in Ref.

[35], the grid refinement deeply affects the flow–aligned wake shape and a large number

of discretization elements in the spanwise direction is required to capture the wake roll-

up at tip, where most of the trailing vorticity concentrates. Hence, wake discretization

plays a fundamental role in determining both the magnitude and position of the wake

singularities. This fact implies that the rate of convergence in the evaluation of the flow–

field velocity through the free-wake modeling is expected to be significantly slower with

respect to that obtained through a prescribed wake model in which the shape of the wake

is fixed and does not depend on the flow–field solution. Therefore, in order to achieve

the same converged solution provided by a prescribed wake a too much fine grid should

be used, with a not acceptable requirement of CPU time and storage capacity. This is

especially true by increasing the blade-observer distance since the larger this distance is,

the greater is the wake portion affecting the far field pressure estimation. At this stage,

whatever the numerical reasons for the free–wake model failure could be, a fundamen-

tal result is carried out. The proven influence of the wake modeling on the acoustic

pressure demonstrates that the reliability and the robustness of the acoustic analogy

approach is unquestionably superior with respect to the Bernoulli–based methodology.

Since the requirement for the wake modeling concerns both the simpler (and, hydroa-

coustically speaking, erroneous) incompressible form of the Bernoulli theorem and the

more complex and CPU demanding compressible formulation, the advantages offered

by the FWH equation are evident. This equation by–passes the insidious influence of

8This condition is intimately related to the fact that the wake surface is a material surface, and

hence it is aligned to the local flowfield.
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Figure 2.21: Comparison between the noise predictions provided by the FWH-based solver and

the Bernoulli approach through the best prescribed–wake and the free–wake model, at the ob-

servers 1 (left) and 2 (right).
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Figure 2.22: Comparison between the noise predictions provided by the FWH-based solver and

the Bernoulli approach through the best prescribed–wake and the free–wake model, at the ob-

servers 3 (left) and 4 (right).

Figure 2.23: Trailing wake behind the INSEAN E779A marine propeller, J = 0.88. Prescribed

wake model (left) and flow–aligned wake (right).
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the wake on noise prediction by only using the pressure distribution upon the blade as

the source term in the loading noise component. At this stage, it is also worth noting

that the computational effort associated to the FWHE is very limited and the evaluation

of thickness and loading terms usually requires a handful of CPU seconds (depending

on the mesh resolution).

Sound Propagation Effects

This section examines the effects of the compressibility delays when the distance be-

tween the source and the observer increases, in order to assess the inaccuracies in the

evaluation of the acoustic pressure far field due to the the assumption of incompressible

flow. In order not to ascribe the influence of the compressibility delays to any other

collateral numerical effect (such as the wake model influence discussed in the previous

section for the BEA methodology), the investigation will be carried out by comparing

the numerical solutions of the FWHE given by Eq. (2.2) with those obtained from a

simplified form of the FWHE, derived under the incompressibility assumption. Figure

2.24 shows the contour plots of noise level in dB, determined on a squared area with

the center at the propulsor hub, having side equal to 5D. The map is plotted by ac-

counting for 100 microphones, moving with the advancing propeller and located on the

XY–plane depicted in the right Fig. 2.16. The footprint on the left refers to the noise pre-

dictions provided by the incompressible FWH formulation while the right one concerns

those given by Eq. (2.2). As expected, the noise maps are almost identical. However,

widening the microphone map this qualitative equivalence tends to disappear. Figure

2.25 shows a map with a side length of 50D (where, for the sake of clarity, the previ-

ous smaller propulsor–centered map is also reported) traced on a mesh of 900 different

microphones. Although an overall similarity of the directivity patterns is shown, the

compressible solution (on the right hand side) exhibits a rather higher noise level with

respect to the numerical results achieved under the incompressibility assumption (left

hand side figure). Furthermore, the two main noise lobes seem to be larger thus provid-

ing a more uniform distribution of the dB level around the propeller. These qualitative

differences are highlighted by looking at the acoustic pressure time histories reported

in Figs. 2.26, 2.27, 2.28 and corresponding to the six microphones selected on the map

(see Fig. 2.25). At locations quite close to the propulsor (observers 435 and 466) the

discrepancies between the two noise predictions are negligible. On the contrary, by

moving far away from the propeller, the effect of the compressibility delays becomes

relevant and the noise signatures notably differ each other, both in the acoustic pressure

amplitude and phase. These results confirm that the propagation effects are essential to

predict accurately the acoustic pressure in the far field and the use of an incompressible

hydroacoustic solver would provide significant inaccuracies in noise predictions.
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Figure 2.24: Noise dB level contour plot determined through the incompressible (left figure) and

compressible (right figure) FWH equation, up to 10R.

Figure 2.25: Noise dB level contour plot for a map side up to 100R.

43



Chapter 2 Prediction of Aero–Hydrodynamic Noise: FWHE and Bernoulli Methods

-0.43

-0.42

-0.41

-0.4

-0.39

-0.38

-0.37

-0.36

-0.35

-0.34

-0.33

 0  0.2  0.4  0.6  0.8  1

P
re

s
s
u
re

 (
m

P
a
)

t/T

FWH-Unc
FWH-Com

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

 0  0.2  0.4  0.6  0.8  1

P
re

s
s
u
re

 (
m

P
a
)

t/T

FWH-Unc
FWH-Com

Figure 2.26: Comparison between the pressure time histories provided by the incompressible

(Unc) and compressible (Com) FWH formulations. Obs. No.15 and Obs. No.225.
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(Unc) and compressible (Com) FWH formulations. Obs. No.435 and Obs. No.466.
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Figure 2.28: Comparison between the pressure time histories provided by the incompressible

(Unc) and compressible (Com) FWH formulations. Obs. No.473 and Obs. No.480.
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Chapter 3

Hydroacoustics of Cavitating

Propellers

The emphasis of chapter 2 has concerned the noise field radiated by non–cavitating

propellers; it has been proven that the rotational noise may be successfully predicted by

Ffowcs Williams and Hawkings equation or, in the framework of potential flow theory,

by the Bernoulli method after a preliminary assessment of the wake contribution. How-

ever, the main source of noise generated by marine propellers in realistic operating con-

ditions is due to cavitation. It affects underwater communications, sonar systems and

acoustic signature. Therefore, for military applications, low radiated noise levels are a

crucial requirement for a good propeller design; for passenger ship, low inboard noise

level are desirable for the passengers comfort. Undoubtedly, cavitation occurrence is a

source of undesirable effects as radiated noise, structural vibrations, erosion and loss of

efficiency. Propeller–induced noise and vibrations are primarily related to the fluctuat-

ing volume of the cavity; the growth and implosion of the cavity deeply modifies the fre-

quency content of the noise signal with respect to the non–cavitating case. Typically, the

spectrum of the radiated pressure disturbance exhibits a much higher frequency content

and the first harmonics amplitude may be up to ten times greater (or more) than in the

non–cavitating case [36]. Through the impinging pressure on the hull–plate, the cavi-

tation affects also the structural response of the hull that, in turn, is a source of interior

noise. All these reasons make accurate cavitation effects predictions essential in order

to give designers tools to make them satisfy strict noise and vibration requirements. To

this purpose, the development of numerical tools able to predict the cavitation pattern

and the emitted noise is fundamental. The aim of this chapter is to present a method

for evaluating the noise induced by cavitating marine screw propellers. Specifically a

coupled hydrodynamic-hydroacoustic modeling based on potential flow hydrodynamics

and the Ffowcs Williams and Hawkings equation able to predict the noise generated

by a propeller when cavitation occurs, is presented. The main goal is to investigate

the (spatial and temporal) correlations between the cavitation pattern and the radiated

noise of a propeller in a non–uniform flowfield. Transient sheet cavitation is taken into

account and the problem of cavitation noise is faced through a suitable application of

the FWHE. In view of the fact that nowadays the use of the acoustic analogy in the

naval context is seen as challenging and the few applications to hydroacoustic purposes
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are limited to non–cavitating blades, the proposed modeling is quite innovative in the

framework of propeller cavitation acoustics. The results obtained by this approach are

compared with those predicted by using the FWHE as suggested by Salvatore and Ian-

niello [37], that first applied the acoustic analogy to the naval context.

3.1 General Aspects on Cavitation

Cavitation is a very complicated phenomenon involving phase change, surface tension,

turbulence, non–equilibrium thermodynamic effects, etc.; it is unsteady in nature and

occurs over a wide range of time and length scales. Quoting Franc and Michel from

their recent book on Fundamentals of Cavitation [38], ”Cavitation can be defined as the

breakdown of a liquid medium under very low pressure ”.

In hydrodynamics of propellers are of interest high–speed flow phenomena where va-

porization is associated to regions where pressure drops below vapor pressure; in this

condition, liquid changes phase to vapor, resulting in a visible vapor region called bub-

ble or cavity . This change occurs approximately at constant temperature, which dis-

tinguishes cavitation from boiling.1 On a lifting hydrofoil cavitation can take a variety

of forms as discussed in the following; growth of a cavity occurs at a slow rate when

dissolved gas diffuses into the cavity or when the liquid temperature rises or drops. On

the contrary, the growth of the cavity is explosive if it is primarily the result of vapor-

ization into the cavity [39]. Whenever cavitation induced by high–speed flows occurs,

the bubbles or cavities grow and travel until a high pressure region is reached; the vapor

condense into liquid at a very high rate, higher than the growing rate, and ultimately

collapses and disappears. Such implosive reverse process, can be very violent, which

results into many detrimental effects in marine systems. In particular when the implo-

sion takes place near a solid surface, being it a propeller, hydrofoil, strut, rudder, hub

or hull, erosion may occur. In some cases, this can be catastrophic even after a short

operation time. The sudden collapse of the cavities also radiates noise which is highly

undesirable for naval applications; the emitted noise is a consequence of the momentary

large pressure that is generated when the content of the bubbles is highly compressed,

and affects underwater communications, sonar systems and acoustic signature. Also

associated to the occurrence of cavitation on propellers is the increase in hull pressure

fluctuations; these may cause severe vibrations of the ship hull resulting in discomfort

for passengers situated near the stern of the ship. Furthermore the performance of the

propeller may also be affected when cavitation occurs; large cavitation zones may lead

to thrust breakdown and consequent loss of efficiency.

There are three basic conditions for cavitation occurrence (see Ref, [40]):

The presence of a Low Pressure

Pressure should be lower than a critical value given by the vapor pressure pv . The non–

dimensional parameter to scale this low pressure is represented by the cavitation number

1Boiling also involves phase change when the liquid temperature is raised to the boiling–point

at constant pressure conditions.

46



Chapter 3 Hydroacoustics of Cavitating Propellers

σ defined as

σ =
p∞ − pv
1
2ρu

2
∞

(3.1)

where p∞ is the static pressure of the inflow, pv is the vapor pressure, ρ the fluid density

and u∞ is a reference flow velocity. The cavitation number measures the vulnerability

of the flow to cavitation. The higher the cavitation number, the less likely cavitation

occurs.

The presence of Nuclei

Water is typically characterized by the presence of tiny bubbles of microscopic size

filled with vapor or gases from microorganisms or some other sources from the nature.

Nuclei are measured in nuclei population spectrum (N/cm3) or by nuclei number den-

sity spectrum [41] based on nuclei sizes. Nuclei are always needed for cavitation since

”pure water” can withstand very high tension, representing a macroscopic manifestation

of the intermolecular forces that tend to hold molecules together [42]; cavitation never

occurs in this kind of water. Gaseous nuclei form the impurity in the liquid that reduce

the tensile strength of the liquid. Different tensile strengths in different cavitation test

facilities gives different cavitation inception results for the same test.

Duration of Exposure to Low Pressure

The duration of time during which the nuclei are exposed to the low pressure is an im-

portant factor to be considered; enough duration of exposure to low pressure enables the

nuclei to grow up to visible sizes.

The typology of cavitation phenomenon strongly depends on the three conditions

mentioned above. This is one of the essences of ”scale effects”. Other influences are

turbulence, viscous effects diffusion, etc. Cavitation occurs in a broad variety of forms.

It can be fixed to body or fixed to the fluid; it occurs in the fluid or at the surface of

immersed bodies; it can shape as a group of perfect spheres (bubbles) or as a single

sheet. The surface of a sheet cavity can be very smooth and transparent, or very frothy

and opaque.

According to Carlton [43], the cavitation patterns which most commonly occur on

marine propellers are referred to as sheet cavitation, bubble cavitation, cloud cavitation,

tip and hub vortex cavitation. Some features are hereafter outlined (see Ref, [44]):

• Bubble cavitation

It occurs when low pressure areas are present in the mid–chord region of the blade

section. Usually, the pressure gradient is not large in these areas and therefore bub-

ble cavitation tends to occur in non–separated flows. It appears as individual bubbles,

growing sometimes to large sizes and contracting rapidly when moving over the blade

surface, travelling into high–pressure region. This kind of cavitation has a relatively

less influence on hydrodynamic forces and efficiency of propellers, but generates strong

noise emission and erosion when it is close to the surface of the propeller blades.
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Figure 3.1: Photo of a lifting surface that exhibits a fairly clean ”sheet” cavity; near the end of

the cavity bubble cavitation occurs. Photograph courtesy of S.A Kinnas, MIT’s Variable Pressure

Water Tunnel (1996).

• Sheet cavitation

Sheet (fixed or attached) cavitation is fixed to the body; it starts close to the leading

edge of propeller blades on the suction surface and appears when large suction peaks

build up near the leading edge of the blades. With the increase of the angle of inci-

Figure 3.2: Sheet cavitation on a lifting surface. Photograph courtesy of S.A Kinnas, MIT’s

Variable Pressure Water Tunnel (1996).

dence or the decrease of ambient pressure, the extent of the cavity over the blade grows

usually in chordwise and spanwise directions. It normally has the appearance of a thin

and smooth transparent film as long as laminar flow exists. Over the entire length of

the sheet cavity, the pocket of vapor is always concave towards the blade surface [45].

Because of this, the cavity must close on the blade surface (partial cavity) or close some-

where downstream with other cavity surfaces (super cavity). The end of the sheet cavity

is normally unsteady. It either breaks into a lot of small bubbles, which is very local

and non–periodic, or it induces large–scale cavity shedding periodically. Both of these
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different processes eventually form cloud cavitation further downstream (see below). It

is worthwhile noting that sheet cavity closure controls the behavior of the sheet cavita-

tion; the sheet remains smooth and transparent if the flow reattaches the blade surface as

laminar reattachment. It becomes frothy if the cavity surface flow becomes turbulent.

This is called turbulent reattachment .

• Cloud cavitation

Often, sheet cavitation seems steady at first sight; however, observations by De

Lange [46] show that the complex behaviour of the flow in the vicinity of the cavity

closure may produce the shedding of a major part of the cavity. Such phenomenon is

mainly due to the appearance of a reentrant jet that flows into the cavity from the closure

region. In fact, because of the high pressure level at the end of the cavity, the flow moves

Figure 3.3: Photograph of a hydrofoil exhibiting cloud cavitation. Photograph courtesy of S.A

Kinnas, MIT’s Variable Pressure Water Tunnel (1996).

upstream as a reverse flow (with a speed as high as the free stream velocity at the cavity

surface [47]) between the underside of the cavity and the blade surface. The presence of

this reentrant jet causes the detachment of the sheet cavity; as a consequence, it breaks

and large portion of it is shed and forms a large–scale cloud cavity. This cavitation is

highly periodic as shown by De Lange [46].

• Tip and hub vortex cavitation

Vortex cavitation often occurs in the low–pressure core of the vortices trailing from

the propeller hub and blade tips. It happens when nuclei are trapped into the core of

the vortex and grow into longitudinal bubbles. When these bubbles merge with each

other, they form a hollow long spiral tube, which can extend stably over a considerable

distance downstream. A vortex cavity finally collapses when the vortex is diffused by

viscosity and therefore the pressure in the core is no longer low enough. This collapse

could be also violent and generate very strong noise emission, but not erosive because

it normally occurs far downstream of the propeller blades. However it is possible that

erosion damage occurs on rudders. In detail, the hub vortex results from the vortices

shed from the blade roots which give rise to a strong axial vortex under the influence

49



Chapter 3 Hydroacoustics of Cavitating Propellers

Figure 3.4: Photograph of a cavitating propeller in presence of tip-vortex cavities and hub-vortex

originating from the tip and the hub of the propulsor. Photograph courtesy of S.A Kinnas, MIT’s

Variable Pressure Water Tunnel (1996).

of the converging hub cone. Cavitation may occur in the core of such strong vortex.

Tip vortex cavitation is either observed at some distance behind the tips of the propeller

blades or attached to the blade. Also the coexistence of tip vortex and sheet cavitation

is common, leading to the usual situation for propellers: a partial sheet cavity growing

into a tip vortex cavity. For high skew propellers, the detachment point of the tip vortex

may move along the leading edge to smaller radii, leading to the formation of leading

edge vortex cavitation.

Figure 3.5: Supercavitating hydrofoil. Photograph courtesy of S.A Kinnas, MIT’s Variable Pres-

sure Water Tunnel (1996).

Marine screw propellers operate in a flow perturbated by the presence of the hull,

which generally causes the upstream flow to decelerate in a limited region of the hull

wake where the levels of turbulence are also significantly increased. The non–uniformity

of the incoming flow into the propeller disc causes a periodic variation of the blade

loading and of the hydrostatic pressure. Apart from the varying thrust developed by

the propeller, this situation creates the necessary set of conditions for the occurrence
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of unsteady cavitation on the propeller blades for some time during a propeller blade

revolution. Unsteady cavitation generates strong pressure fluctuations radiating to the

far–field or to the submerged part of the hull structure through the water medium; the

broadband frequency content of the noise generated by cavitation makes it the major

source of noise and vibrations on a ship, hence contributing to crew discomfort on a

passenger vessel, interfering with onboard instrumentation, etc..

Modern ships and vessels have cruise speed such that cavitation occurrence can not

be avoided during the operating conditions; in these cases the capability to control the

detrimental induced–noise effects due to the dynamics of the cavity represents a crucial

point for the design of the propulsors. Therefore, the availability of effective, fast and

reliable computational tools for the analysis of cavitation noise is nowadays one of the

most urgent designer’s needs.

Figure 3.6: Naval propeller under cavitating conditions. Photograph courtesy of S.A Kinnas,

MIT’s Variable Pressure Water Tunnel (1996).

For these reasons, the following sections are devoted to the analysis of cavitation

noise induced by unsteady cavitation; in particular, the emphasis is on the noise radiated

by the occurrence of transient sheet cavitation that is very common in practice.
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3.2 Cavitation Noise

The growth and violent catastrophic collapse of large transient vapor cavities on ship

propeller blades occurring as they pass in the region of low inflow in the wake abaft the

hull, result in the generation of noise and material damage to nearby solid surfaces. As

a prelude to the mathematical model proposed in section 3.2.1 for the prediction of the

cavitation noise and in order to identify the relationships between noise and dynamics

of bubble growth and collapse, the behaviour of a single bubble in an infinite domain

of liquid at rest with uniform temperature far from the bubble, is first examined. This

is a simple case that, however, reveals some important correlations useful for further

analysis. Let us consider a spherical bubble of radiusR(t) (t is time) located in a infinite

Figure 3.7: Pulsating spherical bubble in an infinite liquid.

domain of liquid having temperature and pressure far from the bubble T∞ and p∞(t)2

respectively; furthermore let the temperature and pressure TB(t) and pB(t) within the

bubble be always uniform. Denoting with r the radial position from the center of the

bubble within the liquid, the conservation of mass requires that

u(r, t) =
F (t)

r2
(3.2)

where u(r, t) is the radial outward fluid velocity and the function F (t) is related toR(t)
by a kinematic boundary condition at the bubble surface. In the idealized case of zero

mass transport across this interface

u(R, t) =
dR

dt
(3.3)

and hence

F (t) = R2 dR

dt
(3.4)

2The pressure is assumed to be a known–controlled input which regulates the growth and

collapse of the bubble.
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This is often a good approximation even when evaporization or condensation is occur-

ring at the interface [48]. The Euler equation in r direction, using Eq. (3.2) yields

− 1

ρ0

∂p

∂r
=

1

r2
dF

dt
− 2F 2

r5
(3.5)

that once integrated gives

p− p∞
ρ0

=
1

r

dF

dt
− 1

2

F 2

r4
(3.6)

after application of the condition p→ p∞ as r → ∞.

Although compressibility of the liquid can be important in the context of bubble col-

lapse, here it is assumed that the fluid density ρ0 is constant: hence, Eq. (3.6) may yield

information only on the pseudo–acoustic disturbance caused by the dynamic behavior

of the bubble.

Considering the flow in the liquid caused by the volume displacement of a growing

or collapsing cavity, it results that in the far–field the flow approaches that of a sim-

ple source and the term O(
1

r
) decays more slowly with r than the term O(

1

r4
). If the

time–varying volume of the cavity is denoted by V (t), one obtains that the time-varying

component of the pseudo–acoustic pressure is given by:

p− p∞ =
ρ0

4π r

d2V

dt2
(3.7)

Hence, far–field noise generated by a pulsating spherical cavity is directly proportional

to the second derivative of the volume with respect to time and the crackling noise that

is related to cavitation is due to the (very large and) positive values of
d2V

dt2
when the

bubble is close to its minimum size.

Obviously, on propeller blades, the cavities are far from being spherical. However,

such a model gives a useful link between the incremental pressure at a given distance

from the expanding cavity and the acceleration of the cavity volume. Previous work

by Pereira et al. [49] shows that on bidimensional hydrofoils the height of the leading

edge cavity is linearly related to its length; these authors also show experimentally that

the vapor structures generated by unsteady sheet cavitation may be represented by a

characteristic length lc =
√
Ec where Ec indicates the cavity extension. More recently,

experimental observations and calculations of cavitating propeller flows performed in

Ref. [50] have brought new evidence that the cavity thickness on a propeller blade have

a similar behavior. Therefore, by making the hypothesis that the cavity volume Vc is

proportional to lc, Eq. (3.7) can be also written using the expression:

d2V

dt2
=

[

6lc(
dlc
dt

)2 + 3l2c
d2lc
dt2

]

(3.8)

that allows the calculation of the volume acceleration once the cavity extension is known,

numerically or experimentally.

For marine screw propellers, the prediction of the pressure fluctuations due to un-

steady cavitation requires a comprehensive insight into the correlations between the
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cavitation pattern and the radiated noise; to this aim, the hydrodynamic solver has to

provide a detailed prediction of the cavitation pattern on the propeller surface whereas

the hydroacoustic tool has to be able of accounting for the source of noise due to the

growth or collapse of the cavity. In principle, the hydroacoustic analysis might be per-

formed through the Bernoulli equation. However, as shown in chapter 2, this kind of

approach is inherently affected by the problem of the potential wake modeling because

of its sensitivity to the shape of the wake that affects the hydroacoustics of rotors and

propellers. Hence, in the attempt to describe the behaviour of cavitating propellers, and

assuming the occurrence of the sheet cavitation phenomenon, the Ffowcs Williams and

Hawkings equation is proposed and applied to include the dynamics of the fluctuating

vapor cavity occurring during the blade revolution. In the framework of cavitation noise,

this methodology is an extension of that proposed by Salvatore and Ianniello [37] that

represents an early attempt to apply the FWH concept to the analysis of the hydroa-

coustics of cavitating propellers in non–uniform flow. This novel formulation, hereafter

presented, is referred as Transpiration Velocity Modeling (TVM) to emphasize the pres-

ence of a flow velocity due to the dynamics of the cavity; indeed, the approach suggested

in Ref. [37] is referred to as Equivalent Blade Modeling (EBM) to emphasize that the

key point of that methodology is the definition of an equivalent blade. All these concepts

are explained and discussed in the following. In particular, section 3.2.1 deals with the

TVM that is discussed by emphasizing the way to include the unsteady behaviour of the

cavity as source of noise; in order to highlight the differences with the model proposed

in Ref. [37], section 3.2.2 outlines the main features of the latter. Finally, in section

3.3 the numerical predictions given by these two methodologies are compared. At this

stage it is worth observing that the TVM and EBM differ only in the computation of

cavitation noise; in the absence of cavity, the two methodologies yield the same results

because the governing equations become the FWH equation for impermeable surfaces.

3.2.1 Approach 1: The Transpiration Velocity Modeling
(TVM)

Let us consider the occurrence of transient sheet cavitation on marine propeller blades.

Let θ represent the angular position of the reference blade, with θ = 0 corresponding

to the blade in the twelve o’clock position. For an azimuthal position θ = θ̂, Fig. 3.8

depicts a section of the cavitating blade; in particular, the boundary of the cavity, its

thickness and the projection S
CB

onto the blade surface are shown.

Figure 3.8: Sketch of a cavitating foil at θ = θ̂.

Dealing with sheet cavitation, let us assume the cavity thickness hc is very thin

compared to the hydrofoil chord such that the cavity outer edge S
C

may be assumed to

be coincident with the cavitating portion of the body surface, i.e.,with its projection S
CB
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(see Fig. 3.8). Then, for f = 0 identifying the points of a porous surface S enclosing

the propeller blade and rigidly moving with it, the permeable FWHE, Eq. (2.1), reads

2
2p′ =

∂

∂t
[ρ0 v ·∇f δ (f)] +

∂

∂t
[ρ (u − v) ·∇f δ (f)]

− ∇ · [P ∇f δ (f)] −∇ · [ρu ⊗ (u − v) ∇f δ (f)]

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (3.9)

and, following the integral formulation in appendix A.3 the corresponding boundary

integral representation of the acoustic field may be written as the superposition of the

following three terms

p′(x, t) ∼= I1 + I2 + I3 (3.10)

with

I1 = −
∫

S

ρ0

[

v·n v·∇Ĝ+
[

v·n (1 − v·∇ϑ)
]

˙ Ĝ
]

ϑ
dS

I2 = −
∫

S

[

(Pn) · ∇Ĝ− (Ṗ n) · ∇ϑ Ĝ
]

ϑ
dS

I3 = −
∫

S

[

ρu− ·n u+ ·∇Ĝ+
[

ρu− ·n (1 − u+ ·∇ϑ)
]

˙ Ĝ
]

ϑ
dS

The quantities above are expressed in a frame of reference rigidly connected to the

non–deformable, permeable, emitting surface S moving through the fluid with velocity

v. Moreover, u denotes the fluid velocity, u− = (u − v), u+ = (u + v) whereas

the symbol ˙( ) denotes time derivation and subscript ϑ indicates that quantities must

be evaluated at the emission time, (t − ϑ). The term I1 describes the contribution to

the overall pressure disturbance due to the kinematics of the moving surface S whereas

I2 accounts for the pressure distribution p and ṗ on S; they would coincide with the

thickness and loading noise terms if S were impermeable. Indeed, I3 is related to the

porosity of S and accounts for the velocity field distribution upon S; it would be equal

to zero if S were impermeable.

Cavitation noise generated by unsteady sheet cavitation may be predicted through

the integral representation (3.10) by assuming the surface S to be coincident with the

blade surface S
B

with porosity contributions from those blade regions, S
CB

, where

transient sheet cavitation occurs, in order to take into account for the presence of the

cavity (as source of noise). Indeed, the fluctuating cavity volume produces a difference

between the normal components of the rigid–body velocity, v, and of the fluid velocity,

u, that, in the body frame of reference, corresponds to

(u − v) · n =
dhc

dt
(3.11)

Such term, defined as cavitating transpiration velocity , is the term through which, in

Eq. (3.10), the effect of the dynamics of the bubble is included without arbitrarily intro-

ducing effects related to (not compatible, in the integral formulation for rigid surfaces
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applied) surface deformations due to the growth and collapse of the cavity. Decompos-

ing the fluid density as

ρ = ρ0 + ρ′ (3.12)

where ρ′ indicates the (small) density perturbation with respect the density of the undis-

turbed medium, and assuming ρ′ << ρ0, the I3 term may be re-written as

I3 = −ρ0

∫

SCB

[dhc

dt
u+ ·∇Ĝ+

d2hc

dt2
(1 − u+ ·∇ϑ)Ĝ− dhc

dt
˙(u+) · ∇ϑ

]

ϑ
dS

Cavitation noise is described by the porous term I3 and is due to the mass and mo-

mentum flux through the cavitating region of the blade surface S
CB

while on the non–

cavitating portion of the blade, S
W B

, u−·n = 0 and its contribution to noise is associated

to the thickness and loading terms I1 and I2, respectively.

Thus, the terms appearing in Eq. (3.10) may be re-written as

I1 = −ρ0

∫

SW B

⋃

SCB

[

v·n v·∇Ĝ+
[

v·n (1 − v·∇ϑ)
]

˙ Ĝ
]

ϑ
dS

I2 = −
∫

SW B

⋃

SCB

[

(Pn) · ∇Ĝ− (Ṗ n) · ∇ϑ Ĝ
]

ϑ
dS (3.13)

I3 = −ρ0

∫

SCB

[dhc

dt
u+ ·∇Ĝ

]

ϑ
dS − ρ0

∫

SCB

{

[dhc

dt
(1 − u+ ·∇ϑ)

]

˙ Ĝ

}

ϑ

dS

where, the porous term

I3v
= −ρ0

∫

SCB

[dhc

dt
u+ ·∇Ĝ

]

ϑ
dS (3.14)

is defined as velocity term and that

I3a
= −ρ0

∫

SCB

{

[dhc

dt
(1 − u+ ·∇ϑ)

]

˙ Ĝ

}

ϑ

dS (3.15)

is defined as acceleration term. Note that this physically consistent way of predicting

noise from cavitating blades is obtained at the price of a significant computational ef-

forts because of the need to compute first and second order time derivatives of the cavity

thickness combined with the high impulsive character of the cavitation. From the above

discussion it comes out that the TVM accounts for cavitation noise induced by the dy-

namics of the sheet cavity through the term I3. Such a way to apply the FWHE is based

on the main assumption that cavity thickness may be thought thin with respect to a char-

acteristic length of the blade section, as reasonable when dealing with sheet cavitation

phenomenon. Hence, the TVM fails when noise is generated by other types of cavitat-

ing phenomena. Akin to the problem of non–cavitating propellers, the quadrupole term

has been neglected in Eq. (3.10) since the presence of the small thickness, attached

cavity does not induce perturbations velocity in the flow field such that the quadrupole
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noise term may be relevant. It is important to highlight that the occurrence of cavita-

tion causes the presence of two–phase flow in flow field such that the speed of sound

and density are characterized by local spatial gradients; within the limit of the accuracy

required, perturbations with respect to the values of the undisturbed medium may be

considered negligible. Obviously, this approximation in the noise evaluation might be

overcome through the Kirchhoff-Ffowcs Williams Hawkings approach. Indeed, placing

the control porous surface S suitably away from the cavitating blades such to include all

sound sources, a two–phase CFD code might provide the pressure and velocity distri-

bution on the surface S accounting for the aforementioned spatial gradients. However,

this requires the knowledge of CFD solution in the field and is beyond the scope of the

present work.

3.2.2 Approach 2: The Equivalent Blade Modeling (EBM)

This approach has been suggested by Salvatore and Ianniello [37] to study the hydroa-

coustics of cavitating propellers in non–uniform flow by using the Eq. (3.9) for a non–

permeable surface S. Specifically, an equivalent blade shape SB

⋃

SC surrounding the

blade surface and the fluctuating cavity surface is considered as the emitting surface.

Figure 3.9: Sketch of an equivalent blade section.

During the blade revolution, thickness noise contribution may be computed by a

step-by-step procedure where the equivalent blade surface SB

⋃

SC is updated at each

azimuthal position to account for the transient cavitation phenomenon, whereas the

loading noise term may be evaluated once the pressure load fluctuations, due to the

growth and collapse of the bubbles, are known on SB

⋃

SC .

This way of computing the effect of cavity dynamics is motivated from a numerical

standpoint to avoid those theoretical and numerical problems related to the need of in-

troducing a boundary integral formulation for deformable surfaces. Indeed, under cav-

itating conditions the time-varying shape of the cavity makes SB

⋃

SC a deformable

surface, and hence a suitable formulation should be used for solving the FWH equation.

As a matter of fact, the above step-by-step approach attempts to solve the far–field noise

prediction through a sequence of quasi–steady states characterized by a certain cavity

shape and blade pressure distribution.
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3.3 Numerical Results

The approaches 1 and 2 previously described are here applied to study the hydroacous-

tics of an isolated cavitating propeller in non–uniform onset flow. The aim is to inves-

tigate the capability of the TVM to describe propellers induced noise with emphasis on

unsteady cavitation as the primary source of noise. The INSEAN E779A four–bladed

model is considered; propeller diameter, advance speed and rotational speed are, respec-

tively, Dp = 22.727cm, U∞ = 6.24m/s, n = 30.5 rps and hence the corresponding

advance coefficient is J = U∞/(nDP ) = 0.9. In order to simulate the presence of a

hull, an onset flow with given velocity distribution representative of the boundary layer

of a single–screw ship is considered. The velocity distribution is depicted in Fig. 3.10,

taken from Ref. [51].

Figure 3.10: Non uniform inflow to propeller: axial velocity distribution ua on a transversal

plane upstream a representative single screw configuration.

The numerical hydrodynamic formulation, outlined in appendix B.1, is used here to

study the isolated propeller operating in an unbounded fluid with spatially varying flow

field generated by the ship, having the axial velocity distribution ua = u/U∞ shown

in Fig. 3.10. The numerical investigations are performed by discretizing each blade

surface in 36 elements in chordwise direction (from leading edge to trailing edge) and

18 elements in spanwise direction, whereas 140 elements are used in the streamwise di-

rection on each wake turn, and 1000 elements are used on the hub surface. A prescribed

wake modeling is used; wake and blade spanwise discretizations are identical. The trail-

ing wake surface is approximately extended three diameters downstream the propeller.

Discretization node are not uniformly distributed on the blade in order to cluster ele-

ments in those regions where strongest gradients of flow quantities are expected, i.e.,

leading and trailing edge, blade tip. The resulting computational grid on propeller and

wake surfaces is depicted in Fig. 3.11. As shown in Ref. [31] such a spatial discretiza-

tion is a good compromise between the need to obtain negligible discretization errors

and reasonable computational efforts. Time discretization is related to spatial discretiza-

tion of the propeller wake: the number of time steps dividing the propeller revolution

period equals the number of wake elements per turn. This allows to prevent numeri-
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Figure 3.11: Computational grid used to discretize propeller and trailing wake surfaces. For

clarity, a helicoidal wake emanating from only one blade is represented.

cal instabilities while computing potential discontinuity convection along the wake [see

Eq. (B.47)]. In the present hydrodynamic calculations, the unsteady flow under non–

uniform inflow conditions is analyzed by discretizing each propeller revolution into 140

time steps. Although a larger number of time steps might provide a more detailed de-

scription of the bubble as a function of the time, the number of time steps is the result of

a compromise between accuracy of hydrodynamic data and the need to prevent numer-

ical instabilities. Details of these hydrodynamic aspects related to numerical scheme

verification are given in Refs. [31] and [52]. In order to correlate propeller noise to

blade loads fluctuations and cavitation pattern, first some significant results performed

by the hydrodynamic modeling are shown, starting with the numerical predictions of

propeller loads in terms of thrust and torque coefficients, respectively KT = T/ρn2D4
P

andKQ = Q/ρn2D5
P . Figures 3.12, 3.13, 3.14 show the propeller thrust and torque co-

efficient over a blade revolution period when the propulsor is operating in non–uniform

wake (behind–hull condition). As an example, the non–cavitating condition is compared

with three cavitating cases characterized by σ = 2(p∞ − pv)/ρ n D2
P equal to 2.835,

3.240, 4.455. The abscissa θ represents the angular position of the reference blade, with

θ = 0◦ corresponding to the blade in the twelve o’clock position. When θ ∼= −45◦ the

reference blade enters into the hull wake and, as a consequence, blade loads increase

and cavitation areas extend. The blade experiences this hydrodynamic environment up

to θ ∼= 30◦ when the blade exits form the wake hull. For the same flow conditions, Fig.

3.15 shows time history of the cavity in terms of dimensionless volume and area; cavity

area is presented as a fraction of a blade reference area A0 defined as the area of blade

face portion for r/Dp > 0.18 (A0 = 1.115 D2
P ). As expected, cavity inception and

collapse, as well as the increase of the cavity, are largely influenced by flow pressure;

the common trend at different σn values is that the cavity collapse phase, concentrated

in a limited azimuthal range (approximately, 15◦ < θ < 40◦ at σn = 2.835), is gener-

ally faster than the growth phase (approximately, −50◦ < θ < 0◦ at σn = 2.835) and

that the maximum values of the volume cavity occurs at positive θ. In these conditions

an increase of both thrust and torque, due to a blade thickening effect related to sheet

cavitation, is observed.
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Figure 3.12: Thrust and torque coefficient in cavitating and non cavitating conditions: σn =

2.835
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Figure 3.13: Thrust and torque coefficient in cavitating and non cavitating conditions:σn = 3.240
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Figure 3.14: Thrust and torque coefficient in cavitating and non cavitating conditions:σn = 4.455
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Figure 3.15: Time histories of cavity area Ac (left) and volume Vc (right), as a function of blade

angular position θ.

Figures 3.16 and 3.17 show the cavity pattern during the growing phase (θ < 0◦),

at the maximal extension (θ = 0) and in the successive collapsing phase (θ > 0◦).

Hydroph x/Dp y/DP z/DP

P2 0.0 0.0 1.32

H4 0.5 0.0 -0.88

H5 -0.5 0.0 -0.88

Figure 3.16: Cavity pattern at different blade angular positions:σn = 2.835. From left to right:

θ=−22◦, 0◦, 11◦, approximately.

The hydrodynamic solution described above yields the input for the hydroacous-

tic analysis discussed hereafter. Three hydrophones are considered in and out of the

propeller plane, to analyze some features of noise predictions by EBM and TVM. The

hydrophone P2 is located in the propeller plane whereas hydrophones H4 and H5 are

positioned downstream and upstream the propeller disc plane, respectively. Coordinates
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Figure 3.17: Cavity pattern at different blade angular positions:σn = 4.455. From left to right:

θ = −22◦, 0◦, 11◦, approximately.

Figure 3.18: A 3D view of the propeller model (left) and hydrophones location (right).

of the three observer locations are given in the previous table while propeller and hy-

drophones location are depicted in Fig.3.18. To better understand the influence of sheet

cavitation on the resulting noise waveform and to highlight the main differences between

the two strategies in the prediction of the cavitation noise, the acoustic pressure signa-

tures are first computed by considering perturbation only from one single blade. Figures

3.19, 3.20, 3.21 show noise time history predicted by the Equivalent Blade modeling at

the three hydrophones, for σn = 3.240. Noise amplitude is plotted as a function of θ;

at each location, the comparison between cavitating and non–cavitating flow condition

is presented. For the non–cavitating conditions, at hydrophone P2, very close to the

propeller blade tip, the thickness noise component is dominant whereas at hydrophones

H4 and H5, the loading noise term is predominant with respect to the thickness noise

contribution. Due to the symmetrical location of these hydrophones with respect to the

propeller plane, the loading noise term rightly exhibits the sign inversion due to pres-

sure values on face and back sides of the thrusting blade. The most relevant differences

at cavitating conditions arise from the monopole (thickness) term that exhibits a more
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Figure 3.19: Equivalent Blade Approach: acoustic pressure signatures at hydrophone P2. Non

cavitating condition (top–left). Comparison between cavitating and non–cavitating conditions

for thickness (top–right), loading (bottom–left) and overall (bottom–right) noise predictions.

impulsive character in the waveform, governing the overall pressure signature. On the

contrary the dipole (loading) term is not much altered by vaporization although a lit-

tle increase in the pressure disturbance, at the angular positions affected by cavitation,

appears. Such a behaviour is common for all the observers (P2, H4, H5) and may be

explained by observing that the Equivalent Blade Approach accounts for the growth and

collapse of the cavity by a step-by-step procedure where the blade shape is updated at

each angular position. As a consequence, the equivalent body, composed of the blade

plus the vapor sheet, is characterized by a geometry and (in particular) a normal velocity

distribution v · n to the body surface that rapidly change during the revolution period,

thus explaining the impulsive character of the resulting noise signatures [see Eq. (3.10),

term I1]. On the contrary, the influence of the sheet bubble on the loading noise compo-

nent I2 is negligible since the blade pressure time histories is not heavily affected by the

presence of the cavity. As an example, sectional pressure distribution corresponding to
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Figure 3.20: Equivalent Blade Approach: acoustic pressure signatures at hydrophone H4. Non

cavitating condition (top–left). Comparison between cavitating and non–cavitating conditions

for thickness (top–right), loading (bottom–left) and overall (bottom–right) noise predictions.

the case σn = 4.455 is shown in Fig. 3.22 and Fig. 3.23 at two representative radial

section, r/R = 0.70 and r/R = 0.90, and compared with the non–cavitating conditions

at different time step. Major differences appear at the leading edge suction side region

while the presence of the cavity slightly modifies the solution anywhere else. This be-

haviour is responsible for the global hydrodynamic loads (thrust–torque) shown in Figs.

3.12, 3.13, 3.14 and induces small variations in the loading noise signal. Note that at

hydrophones H4 and H5, the resulting cavitating thickness noise waveforms are very

similar eventhough the presence of the vapor sheet is limited to the upper side of the

blade surface (suction side). Such a circumstance points out the monopole behaviour of

the bubble which acts as a pulsating sphere with a 3D homogeneous influence around

the body.

For the same observer positions and operating conditions, Figs. 3.24, 3.25, 3.26 show

noise time histories predicted by the Transpiration Velocity Modeling. In this approach

the dynamics of the sheet cavity is described by the porous term I3 of Eq. (3.10),
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Figure 3.21: Equivalent Blade Approach: acoustic pressure signatures at hydrophone H5. Non

cavitating condition (top–left). Comparison between cavitating and non–cavitating conditions

for thickness (top–right), loading (bottom–left) and overall (bottom–right) noise predictions.

which requires the knowledge of the flow–velocity distribution, u, upon the basic blade

and the values of velocity and acceleration at each point of the cavitating region during

the blade revolution. At each hydrophone location, the thickness noise term I1 does

not change from non–cavitating to cavitating condition because the integration surface

does not change during the revolution period. Similarly to what observed in the load-

ing noise prediction by the Equivalent Blade Approach, numerical results show that the

dipole term I2 is slightly affected by the transient cavity because of the negligible de-

pendence of the blade loads on the cavitation occurrence. The evaluation of cavitation

noise computed by the proposed model depends on the velocity term I3v
and the accel-

eration term I3a
defined in section 3.2.1: in agreement with Eq. (3.7), numerical results

show that the major contribution to the impulsive noise comes from the term containing

the acceleration time history of the vapor pocket attached to the blade surface, while the

velocity term noise component is negligible.
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Figure 3.22: Pressure coefficient distribution at blade section r/RP = 0.7 and σn = 4.455.

Blade angular position between θ=−39.6◦ and θ = 18◦.

Specifically, observing that observers P2, H4 and H5 are fully within the range of 5
diameters from the propeller plane and recalling that this value is a limit up to which the

compressibility delays effects, and hence ∇ϑ, may be neglected (see section 2.5), the

major noise contribution derives from the pseudo–thickness term
[

ρ0
d2hc

dt2
Ĝ

]

ϑ
. For

distances from the disc greater than 5 diameters, the terms containing ∇ϑ in the accel-

eration term are in general not negligible, affecting the acoustic pressure amplitude and

phase. However, when the aim of the analysis is to evaluate the effect of the impulsive

cavitation noise on the hull–plate3, the distances involved in the hydroacoustic compu-

tation are fully within the range of 5 diameters and hence, the dominant noise effect is

mainly due to the inertial term
d2hc

dt2
.

The comparison between the acoustic predictions obtained by the Equivalent Blade

Model and the Transpiration Velocity Model is shown in Figs. 3.27, 3.28, 3.29 and 3.30

for a four–bladed propeller and for the hydrophones P2, H4, H5 at different cavitation

3Civil ships configuration fall within this case.
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Figure 3.23: Pressure coefficient distribution at blade section r/RP = 0.9 and σn = 4.455.

Blade angular position between θ=−39.6◦ and θ = 18◦.

numbers. Numerical results point out that the agreement between the two hydroacous-

tic models is good: the resulting noise signatures, induced by the four–bladed propeller

model, are very similar in shape and order of magnitude at any observer and for any

cavitating condition, thus providing substantially the same evaluation of the sheet cavi-

tation influence on the overall noise. However, discrepancies between the two numerical

results are present in the peak values and become more evident by decreasing the cavi-

tation number. The reasons of such a behaviour are in the different way to account for

the dynamics of the vapor cavity. Peak–values are principally related to the time history

of the bubble; in the Transpiration Velocity Model, the accuracy in computing both the

velocity and the acceleration of the cavity (at the cavitating panels) strongly depends

on the quality of the hydrodynamic data. Dealing with impulsive functions, the higher

is the time resolution, the more is the accuracy of computing the time derivatives. In

the present calculations, the time steps used to discretize each propeller revolution are

equal to 140, representing a compromise between the need of a detailed description of

the growth and implosion of the cavity and reduced computational efforts. On the con-

trary, the Equivalent Blade Approach does not involves explicitly the time derivatives

67



Chapter 3 Hydroacoustics of Cavitating Propellers

-60

-40

-20

 0

 20

 40

 60

 80

 100

-150 -100 -50  0  50  100  150

P
re

s
s
u

re
 [

P
a

]

θ [deg]

Loading Noise

Non Cav.
Cavitating

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

-150 -100 -50  0  50  100  150

P
re

s
s
u

re
 [

P
a

]

θ [deg]

Velocity Term

-1500

-1000

-500

 0

 500

 1000

-150 -100 -50  0  50  100  150

P
re

s
s
u

re
 [

P
a

]

θ [deg]

Acceleration Term

-1500

-1000

-500

 0

 500

 1000

-150 -100 -50  0  50  100  150

P
re

s
s
u

re
 [

P
a

]

θ [deg]

Overall

Cavitating
Non Cav.

Figure 3.24: Transpiration Velocity Modeling: acoustic pressure signatures at hydrophone P2.

Comparison between cavitating and non–cavitating conditions for loading (top–left) and overall

(bottom–right) noise predictions. Pressure disturbance due to the velocity term (top–right) and

acceleration term (bottom–left).

of the cavity, hence is less accurate in describing the shape of the bubble during the

propeller revolution does not affect the hydroacoustic prediction as in the Transpiration

Velocity Model. Such a behaviour in the noise prediction is well shown in Fig. 3.31: it

is evident that both models have the same sensibility with respect to the cavitation num-

ber but the decrease of the peak value by increasing σn is more evident in the signals

predicted by the Equivalent Blade Approach. The capabilities of the two approaches

in describing the field-noise radiation at different observer locations is shown in Figure

3.32 which reveals that the two models have the same sensibility with respect to the

noise directivity.

The comparison in the frequency domain is shown in Figs. 3.33, 3.34, 3.35 and 3.36

where the noise components are plotted as a function of the Fourier harmonics. The

intensity of the components is given as Ak =
√

c2k + s2k where ck and sk are, respec-
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Figure 3.25: Transpiration Velocity Modeling: acoustic pressure signatures at hydrophone H4.

Comparison between cavitating and non–cavitating conditions for loading (top–left) and overall

(bottom–right) noise predictions. Pressure disturbance due to the velocity term (top–right) and

acceleration term (bottom–left).

tively, cosine and sine terms of the Fourier series. The pressure spectra show that the

differences in the noise signatures are spread over the examined frequency range; more

discrepancies appear at harmonics greater than 8, corresponding to multiples of blade

passing frequency (BPF) greater than 2, although the good agreement at the first two

BPF worsens at low cavitation number (see Fig. 3.36). Finally, Fig. 3.37 shows the

difference in the pressure spectra computed by the Transpiration Velocity Modeling for

σ = 3.240 between cavitating and the non–cavitating condition. In the cavitating case

the amplitude of the pressure disturbance at the fundamental frequency (1 BPF) is 5

or 6 times greater than that related to the non–cavitating case while, as expected, at

higher frequencies the frequency content of the rotational noise (the only existing for

non–cavitating propellers) is negligible.
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Figure 3.26: Transpiration Velocity Modeling: acoustic pressure signatures at hydrophone H5.

Comparison between cavitating and non–cavitating conditions for loading (top–left) and overall

(bottom–right) noise predictions. Pressure disturbance due to the velocity term (top–right) and

acceleration term (bottom–left).

Summary and Discussion

The two methodologies aimed at the prediction of the noise induced by sheet–cavitation

phenomenon on propeller blades examined here, are based on different strategies to

compute the effects of growth and implosion of the cavity. The Transpiration Velocity

Modeling includes the presence of the fluctuating cavity into the hydroacoustic solver

through porosity terms directly associated to the velocity and acceleration of the cavity.

No further assumption is made except that concerning the small thickness of the cav-

ity, enabling to identify the cavity with its projection S
CB

onto the body surface. On

the contrary, in the algorithm proposed by Salvatore and Ianniello (EBM), no poros-

ity terms are introduced and the dynamics of the cavity is modelled by a step-by-step

procedure where the blade surface is updated at each azimuthal position to account for

the cavity shape, as it were an equivalent rigid blade; hence, the lower the frequency
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Figure 3.27: Comparison between the Equiv. blade model and the Trans. velocity model at

observer P2 (top-left), H4 (top–right) and H5 (bottom) at σn = 3.240

of the cavitating phenomenon, the better the noise prediction is. Numerical comparison

between approaches 1 and 2 confirms their capabilities to capture the main influence

of the sheet cavitation dynamics on the overall noise signature. The different strategies

in computing the acoustic effects of the time evolution of the cavity does not affect the

the waveform of the overall noise signal but rather the higher frequency content of its

spectrum. From a computational point of view, an advantage in using the Transpira-

tion Velocity Modeling is that the integration surface does not change during the blade

revolution, while the Equivalent Blade Approach requires an integration process over

a time–depending surface. Nonetheless, a drawback of the proposed methodology is

its sensitivity with respect to the accuracy of the evaluation of the time–history of the

bubble shape.
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Figure 3.28: Comparison between the Equiv. blade model and the Trans. velocity model at

observer P2 (top-left), H4 (top–right) and H5 (bottom) at σn = 3.645
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Figure 3.29: Comparison between the Equiv. blade model and the Trans. velocity model at

observer P2 (top-left), H4 (top–right) and H5 (bottom) at σn = 4.455
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Figure 3.30: Comparison between the Equiv. blade model and the Trans. velocity model at

observer P2 (top-left), H4 (top–right) and H5 (bottom) at σn = 2.835
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Figure 3.31: Noise signature predicted by the Equiv. blade model (left) and the Trans. velocity

model (right) at P2 for different cavitation numbers.
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Figure 3.32: Noise signature predicted by the Equiv. blade model (left) and the Trans. velocity

model (right) at P2, H4 and H5. Cavitation number: σn = 3.240
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Figure 3.33: Acoustic pressure spectra as a function of blade passing frequency multiplies. Com-

parison between the Equiv. blade model and the Trans. velocity model at observer P2 (top-left),

H4 (top–right) and H5 (bottom) at σn = 3.240
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Figure 3.34: Acoustic pressure spectra as a function of blade passing frequency multiplies. Com-

parison between the Equiv. blade model and the Trans. velocity model at observer P2 (top-left),

H4 (top–right) and H5 (bottom) at σn = 3.645
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Figure 3.35: Acoustic pressure spectra as a function of blade passing frequency multiplies. Com-

parison between the Equiv. blade model and the Trans. velocity model at observer P2 (top-left),

H4 (top–right) and H5 (bottom) at σn = 4.455
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Figure 3.36: Acoustic pressure spectra as a function of blade passing frequency multiplies. Com-

parison between the Equiv. blade model and the Trans. velocity model at observer P2 (top-left),

H4 (top–right) and H5 (bottom) at σn = 2.835
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Figure 3.37: Acoustic pressure spectra as a function of blade passing frequency multiplies. Com-

parison between non cavitating and cavitating conditions at σn = 3.240, performed by TVM.
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Concluding Remarks

An important aspect must be pointed out about the numerical investigation that has

been performed. The numerical results concern the INSEAN E779A propeller sub-

ject to a non–uniform onset flow. Cavitating propeller flow reference data are obtained

Figure 3.38: Tunnel flow visualization of the INSEAN E779A propeller model during experi-

mental investigation.

from measurements performed at the Italian Navy Cavitation Tunnel (CEIMM) (see Fig.

3.39); a detailed description of the experimental investigation and of the techniques used

is presented in Ref. [31], for the propeller operating in uniform flow condition, and in

Ref. [51] for the extension to non uniform inflow condition; further details are found

also in Ref. [53]. As a matter of fact, the two–phase data described in Refs. [31], [51]

and [53] represent part of an experimental dataset collecting propeller hydrodynamics

and hydroacoustics investigations performed at INSEAN during the last decade. The

locations of hydrophones P2 and H4 used for the numerical analysis correspond exactly

two of the pressure measurement points used in the experimental campaign; in detail P2

corresponds to the pressure transducers located in the propeller disk plane on the tun-

nel wall, whereas H4 corresponds to the hydrophone located in the radial plane at dis-

tance of about one radius downstream of the propeller plane at about 200mm far from

the propeller axis. The availability of experimental data would suggest a numerical–

experimental comparison to test the capabilities of the TVM modeling with respect to

the prediction of the cavitation noise. Unfortunately, this necessary comparison has not

been addressed for the following reasons:

1) The experiment has been performed in a cavitation tunnel and hence the presence of

the walls is important and affects the noise signatures for both hydrophones P2 and H4.

This problem is amplified by the dimensions of the test section: the propeller model,

having a diameter Dp = 22.727cm long, is installed inside the 200cm long tunnel with

a 60X60cm test section. No noise data related to free-field noise are available.

2) Even if experimental data of the isolated propeller in unbounded space were avail-

81



Chapter 3 Hydroacoustics of Cavitating Propellers

Figure 3.39: INSEAN E779A propeller model inside the cavitation tunnel.

able, the flow reference data are such that sheet cavitation is not the unique cavitation

phenomenon appearing on the blades, as well shown in Fig. 3.38 other complex cavi-

tation structures appear. In particular, it is worth noting the presence of the tip–vortex

and presence of a separated cavity region composed of many bubbles. Such structures

of vapor can not be modelled through the coupled hydrodynamic–hydroacoustic algo-

rithm herein presented. Their implosion induce further noise that in any case can not

be modeled through the TVM or EBM approach. There is no possibility of quantifying

the sheet cavitation noise contribution with respect to those induced by other type of

cavitation.

3) To the author’s knowledge there are no other test-cases for cavitating propeller avail-

able in literature to address a comparison between numerical results (TVM or EBM) and

experimental data; this assertion is supported by the fact that the experimental dataset

indicated as INSEAN E779A Dataset and partially described in Refs. [31], [51] and [53],

has been recognized as benchmark by partners of the FP6 Project Virtue ”The Virtual

Tank Utility in Europe”.
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Sound Scattering from Moving

Vibrating Surfaces

In this chapter a nonstandard application of the Ffowcs Williams and Hawkings equa-

tion is presented. A novel integral formulation devoted to the study of the noise signal

scattered by moving vibrating bodies impinged by acoustic waves is proposed, and its

potentialities are discussed. Capabilities and drawbacks of the proposed sound scatter-

ing methodology are proven through the analysis of different test cases. In aeronautical

or marine rotorcraft, a scattering formulation allows both the analysis of the effects of

fuselage or hull on the sound radiated by the rotor (the main source of noise), and the

corresponding vibrating loads acting on their surfaces. Here, the scattering formulation

is applied to the analysis of noise emitted by a helicopter in descent flight.

4.1 The Problem

An obstacle or inhomogeneity in the path of a sound wave causes scattering if secondary

sound spreads out from it in a variety of directions. This phenomenon may be relevant

when the wavelength of the impinging acoustic wave is comparable with a character-

istic dimension of the scatterer (solid bodies, interfaces among different media, etc.);

as a consequence of the wave-scatterer interaction, the features of the resulting pres-

sure field (in terms of magnitude, waveform, directivity and frequency content) may be

very different from the structure of the noise field in unbounded space. The problem

of sound scattering is present in a wide range of engineering applications dealing with

steady and moving objects; the presence of solid boundaries, as fuselage or hull, may

cause the sound field emitted by rotors to change greatly. In aeronautics, for instance,

the evaluation of scattered acoustic fields is of interest both for the evaluation of overall

noise emitted by moving aircraft and for the prediction of fuselage wall vibrations that,

in turn, are a source of cabin noise (aeroacoustoelastic application). The same phenom-

ena are of interests for marine applications; increasing emphasis on prediction of hull

vibration due to propeller sources stems from the need to meet demanding requirements

for passenger comfort. Broadband random vibration can be particularly obtrusive as

well as single frequency components at multiples of propeller blade passing frequency.
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Satisfactory vibration prediction requires estimation of the distribution of fluctuating

pressure over the whole hull surface.

The decomposition of the noise field into incident and scattered components is use-

ful when, within the limits of the required accuracy, the source of the incident field may

be considered independent of the presence of the scattering surface. Indeed, in aero-

nautical applications where the main source of noise is an aircraft component that may

be assumed to be aerodynamically independent, first the incident pressure field may

be determined through an aerodynamic/aeroacoustic analysis of it, and then the rest of

the aircraft configuration (the scattering portion) may be taken into account in the sec-

ond step of the process dealing with the scattered field. For instance, this approach is

applicable in the analysis of propeller-driven aircraft where the noise emitted by the pro-

pellers is scattered by the fuselage (see Refs. [54], [55]). However, a similar acoustic

analysis may be applied also to those rotorcraft configurations where the rotating blades

are the main source of noise, with the major contribution of the fuselage to the noise

field being represented by its scattering effect (some helicopter flight configurations fall

within this category). For ships and vessels, the main source of noise is undoubtedly

the (cavitating) propeller operating in hull–behind condition; the coupling between the

propeller and the hull flow is generally considered sufficiently weak to permit separation

of the two problems [28]. In particular, this configuration may be successfully studied

through a simplified model where hull–propeller hydrodynamic interactions are limited

to consider the hull wake flow incoming to an isolated propeller in unbounded fluid do-

main. Therefore, once the spatially non–uniform onset flow due to the wake of the ship

is known numerically or experimentally, the assumption of hydrodynamic independence

of the hull is applicable.

The analysis of noise scattering involves pressure waves impinging both on non-moving

and on moving surfaces. A wide literature is available on this subject (see, for instance,

Refs. [56], [57]). Here, a boundary integral formulation based on the Ffowcs Williams

and Hawkings (FWH) equation [58] for the analysis of the pressure field scattered by

an elastic moving body is presented. This formulation yields a unified solver that is not

only able to radiate the sound, but can also be used to evaluate the acoustic disturbance

over moving, vibrating surfaces. It may be conveniently applied to acoustoelastic prob-

lems where body elastic vibrations interact with the exterior pressure field and generate

noise within its cavity (if any). Although sound radiation prediction tools derived from

the FWH equation have been proven to be very efficient, the analysis of wave scatter-

ing is not a standard field of application of the FWH equation and its potentiality is

investigated in the following.

4.2 Theoretical Modeling for Sound Scattering
Analysis

The FWH equation is applied for the development of a methodology aimed at the analy-

sis of sound scattered by elastic moving surfaces; such approach is based on the bound-

ary integral formulation solver described in appendix A.3.
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4.2.1 Background

In this section, for the sake of completeness, the FWHE and some main aspects con-

cerning its integral solution are re–called; it may be useful in deriving the governing

equations at the basis of the scattering formulation.

Let us assume that the fluid is compressible and undergoes transformations with

negligible entropy changes. If N bodies move in the fluid, each having velocity vj and

surface Sj defined by those points that satisfy fj(x, t) = 0, and if the boundary surfaces

are assumed to be permeable (porous), the following form of the FWH equation can be

written (see also Eq. (2.1))

2
2p′ =

∑N

j

∂

∂t
[ρ0 vj ·∇fj δ (fj)] +

∂

∂t
[ρ (u − vj) ·∇fj δ (fj)]

−
∑N

j
∇ · [P ∇fj δ (fj)] −

∑N

j
∇ · [ρu (u − vj) · ∇fj δ (fj)]

+ ∇ ·
{

∇ ·
[

T
∏N

j
H(fj)

]}

∀x ∈ ℜ3 (4.1)

where p′ = c0
2ρ̂ is the acoustic disturbance, with ρ̂ = (ρ − ρ0) representing the den-

sity perturbation and c and ρ0 denote, respectively, the speed of sound and the den-

sity of the undisturbed medium. The bars denote generalized differential operators and

2
2 = (1/c20)(∂

2
/∂t2) −∇2

is the generalized wave operator (D’Alembertian operator)

whereas H(f) and δ(f) are Heaviside and Dirac delta functions. In addition, v is the

local velocity of the surface f , u the local fluid velocity, P the compressive stress ten-

sor defined by P = [(p− p0) I + V], with V representing the viscous stress tensor,

and T =
[

ρ(u ⊗ u) + (p− p0)I − c20(ρ− ρ0)I + V
]

the Lighthill tensor. Assuming

the nonlinear perturbation field terms to be negligible and the body surfaces to be un-

deformable, for fj such that |∇fj | = 1, the boundary integral representation of the

acoustic field governed by Eq. (4.1) is given by (see Eq. (2.5))

p′(x, t) = −
∑N

j

∫

Sj

ρ0

[

v·n v·∇Ĝ+
[

v·n (1 − v·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

−
∑N

j

∫

Sj

[

(Pn) · ∇Ĝ− (Ṗ n) · ∇ϑ Ĝ
]

ϑ
dS(y) (4.2)

−
∑N

j

∫

Sj

[

ρu− ·n u+ ·∇Ĝ+
[

ρu− ·n (1 − u+ ·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

where each moving surface is defined in a Lagrangean frame fixed to the surface (i.e., the

integrations are performed over time-independent surfaces).

In the equation above, u− = (u − v), u+ = (u + v), n denotes the outward unit

normal on Sj , whereas

Ĝ(x,y, t) =
−1

4π

[

1

r (1 −Mr)

]

ϑ

where, for x(t) representing the observer position at the observer time, t, and y(τ) rep-

resenting the source position at the emission time, τ , r = |r| with r = x(t) − y(τ),
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while (1 −Mr) is the Doppler factor, with Mr = v · (r/r)/c denoting the surface ve-

locity Mach number in the direction of radiation. In addition, the symbol ˙( ) denotes the

time derivative, whereas the symbol [ ]ϑ indicates that the quantities must be evaluated

at the retarded emission time, τ = t − ϑ, where ϑ is the time taken by an acoustic

disturbance released from y to reach the observer location, x, at current time, t. The

time delay, ϑ, is evaluated as root of the equation |x(t) − y(t − ϑ)|/c − ϑ = 0. Note

that the integrands appearing in Eq. (4.2) have to be interpreted carefully. In particular,

attention has to be paid on the identification of the variables Ĝ and θ depend on when

carrying out their analytical gradients for computational purposes.

4.2.2 Acoustic Disturbance in the Presence of Impinging
Pressure Waves

The analysis of the noise radiated by bodies that are impinged by pressure waves con-

cerns acoustic configurations where a noise source distribution radiates a pressure dis-

turbance (incident) field that, interacting with moving or stationary bodies, is subject to

modifications in directivity and intensity (scattering effects). An essential feature of this

kind of problems is that the noise source is assumed to be independent from the presence

of the scatterers. In order to analyze the problem through the FWH formulation, let us

assume that two surfaces are present in the domain of interest: one, S
B

, is the boundary

of an arbitrarily moving scattering body, whereas the second, S
I

, is a closed surface that

surrounds the sources of an incident acoustic disturbance. The limitation of the analysis

to one single body is for the sake of simplicity, and does not affect the generality of

the formulation that will be developed. The surface S
I

is a virtual, arbitrarily shaped

surface, that is perfectly permeable and does not alter the flow field. The only constraint

in its choice is that it must be close enough to the source of the pressure disturbances

(moving with them, if necessary) in such a way that the flow field over it is unaffected

by the presence of the scattering body.

Under these assumptions, noting that acoustic disturbance and pressure perturbation

coincide under the hypothesis of small perturbation fields, the incident pressure distri-

bution, p′
I

, may be expressed by the following integral representation for x outside S
I

(Eq. (4.2) written for “frozen” noise sources)

p′
I
(x, t) = −

∫

S
I

ρ0

[

v·n v·∇Ĝ+
[

v·n (1 − v·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

−
∫

S
I

[

p′
I
n · ∇Ĝ− ṗ′

I
n · ∇ϑ Ĝ

]

ϑ
dS(y) (4.3)

−
∫

S
I

[

ρu−

I
·n u+

I
·∇Ĝ+

[

ρu−

I
·n (1 − u+

I
·∇ϑ)

]

˙ Ĝ
]

ϑ
dS(y)

where u−

I
and u+

I
are porosity effects due to the velocity field related to the incident

pressure. The total acoustic disturbance field may be decomposed into an incident com-

ponent and a component, p′
B

due to the body presence

p′ = p′
B

+ p′
I

(4.4)
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From the above pressure field decomposition, considering Eq. (4.3) for the incident

pressure field, and by applying Eq. (4.2) for x ∈ S
B

, a boundary integral equation for

the acoustic disturbance generated by the body impinged by the incident pressure wave

may be derived. Taking into account the singularities of the kernel functions Ĝ and ∇Ĝ
arising when x, approach the surface, S

B
, the boundary integral equation for p′

B
reads

(see Ref. [59] for details and Ref. [60] for an alternative derivation of the regularized

integrals)

[1 − λ(x, t)] p′
B

(x, t) = λ(x, t) [ρ0v
2
n(x, t) + p′

I
(x, t) + ρ u−n (x, t)u+

n (x, t)]

−
∫

S
B

ρ0

[

v · nv · ∇Ĝ+
[

v · n (1 − v · ∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

−
∫

S
B

[

p′
B

n · ∇Ĝ− ṗ′
B

n · ∇ϑ Ĝ
]

ϑ
dS(y) (4.5)

−
∫

S
B

[

p′
I
n · ∇Ĝ− ṗ′

I
n · ∇ϑ Ĝ

]

ϑ
dS(y)

−
∫

S
B

[

ρu− ·n u+ ·∇Ĝ+
[

ρu− ·n (1 − u+ ·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

where λ = 0.5/(1−M2
n), with Mn = vn/c0, vn = v ·n, u−n = u−·n, u+

n = u+·n and

the kernel singularity have to be assumed removed from the integral terms [59]. The

boundary integral equation given by Eq. (4.5) allows the computation of p′
B

on S
B

from

the knowledge of incident pressure field, motion of the body and porosity effects. Once

p′
B

is evaluated over the body surface, the following boundary integral representation

(obtained combining Eq. (4.2) with Eq. (4.3) for x outside S
B

), may be applied to

determine the noise radiated by the body

p′
B

(x, t) = −
∫

S
B

ρ0

[

v · nv · ∇Ĝ+
[

v · n (1 − v · ∇ϑ)
]

˙Ĝ
]

ϑ
dS(y)

−
∫

S
B

[

p′
B

n · ∇Ĝ− ṗ′
B

n · ∇ϑ Ĝ
]

ϑ
dS(y)

−
∫

S
B

[

p′
I
n · ∇Ĝ− ṗ′

I
n · ∇ϑ Ĝ

]

ϑ
dS(y) (4.6)

−
∫

S
B

[

ρu− ·n u+ ·∇Ĝ+
[

ρu− ·n (1 − u+ ·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

The sum of Eqs. (4.6) and (4.3) yields the total acoustic field. In standard acoustics

applications, Eq. (4.6) is used to obtain the sound radiated by the body once a prior

aerodynamic analysis has solved the flow field around the body and has made the to-

tal pressure, p′, available over its surface. On the other hand, the acoustic formulation

represented by Eqs. (4.5) and (4.6) yields the sound radiated by the body with the only

requirement of knowing the incident pressure field and the nature of porosity contribu-

tions (usually of small-perturbation type and related to body surface characteristics). In

the presence of multiple bodies, this formulation extended to the whole set of bodies is
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able to capture also the interactional effects. An acoustics approach of this type could

be of interest, for instance, in the prediction of the noise produced by those multibody

configurations where, within the limits of the required accuracy, it is possible to identify

one single body as the main noise source, with the pressure on it approximately inde-

pendent on the presence of the other bodies. Indeed, in this case, the only fluid-dynamic

input required would be that related to the pressure solution on the isolated noise source

body to be used in Eq. (4.3) for the determination of the incident pressure field.

Observing Eqs. (4.5) and (4.6), it is evident that the pressure field over an arbitrarily

moving body, along with the noise it radiates, is the result of the action of three forcing

terms: one is related to the rigid-body motion, one is related to the impinging pressure

wave and one is related to the surface porosity. The formulation presented above is

not intended for the prediction of pressure perturbation generated by rigid-body mo-

tion (neither for lifting nor for non-lifting configurations). Indeed, it is usually related

to the arise of regions where velocity perturbation are not small, and thus an accurate

evaluation of the corresponding surface pressure would require the inclusion of the con-

tribution from the Lighthill tensor in Eq. (4.1) (see, for instance, Refs. [61] and [62]

for the inclusion of the quadrupole terms). This problem does not occur in the standard

aeroacoustics since the pressure over the surface is obtained from an aerodynamic solver

and the inaccuracy mentioned above vanishes when the acoustic disturbance is evalu-

ated at points that are far from the emitting surface (see the quadrupole expression in

Refs. [61] and [62]). In addition, note that in many applications of interest for scattering

problems, the rigid-body motion is a uniform translation that yields a constant pressure

field over the body surface that, in turn, does not produce any noise disturbance at points

located in a frame of reference fixed with it.

4.2.3 Wall Vibration Effects: Sound Radiated by Scattering
Elastic Surfaces

The formulation derived in section 4.2.2 is aimed at the prediction of the acoustic dis-

turbances generated by elastic shells when impinged by pressure waves, i.e., due to

pressure perturbations from scattering and surface vibration effects. Surface vibration

effects may be simulated as surface porosity contributions. Indeed, surface vibrations

produce a difference between the normal component of the rigid-body velocity and that

of the fluid flow, and it corresponds exactly to the “elastic transpiration velocity” term

χ = u− · n ≡ (u − v) · n which represents surface porosity effects in Eqs. (4.1),

(4.5) and (4.6). Note that this is the only way to include theoretically the influence of

wall vibrations in an integral formulation that has been derived under the assumption of

undeformable surfaces, without arbitrarily introducing approximated effects related to

(not compatible) surface deformations.

Then, let us decompose the pressure field perturbation into a component due to the

rigid-body motion, p′
R

, and a scattering component, p′
S

, due to incident pressure and

surface vibrations, such that

p′
B

= p′
R

+ p′
S

(4.7)

Under the assumption of small perturbations, the fluid velocity u may be decomposed

into a component over the unperturbed body due to the rigid-body translation and into
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a perturbation u′ due to wall vibrations

u = u0 + u′ (4.8)

where in the unperturbed, nonvibrating, impermeable body configuration, u0 · n =
v ·n. By introducing the normal and tangential component of the perturbation term, the

porosity contribution ρu− ·n u+ may be re-written as

ρu− ·n u+ = ρχ (u0 + u′nn + u′tt + v) (4.9)

where t indicates the local unit vector tangential to S
B

and u′nn coincides with χn. In

addition expressing air density as ρ = ρ0 + ρ̂, where ρ̂ indicates the (small) density

perturbation with respect the density of the undisturbed medium, and assuming that the

elastic transpiration velocity term is a small-perturbation term, discarding the second

order perturbation terms yields the following first–order surface porosity contribution

ρu− ·n u+ ∼= ρ0 χ (u0 + v) (4.10)

Following the same procedure, the linearization of the other porosity terms gives

ρu− ·n (1 − u+ ·∇ϑ) ∼= ρ0 χ [1 − (u0 + v)·∇ϑ] (4.11)

and

ρ u−n u
+
n
∼= 2 ρ0 vn χ (4.12)

Therefore, recalling the linearity of the integral operator, the boundary integral

equation in Eq. (4.5) yields the following linearised boundary integral equation for

the sound scattered by a moving, vibrating surface

[1 − λ(x, t)] p′
S

(x, t) = λ(x, t) [p′
I
(x, t) + 2 ρ0 vn χ(x, t)]

−
∫

S
B

[

p′
S

n · ∇Ĝ− ṗ′
S

n · ∇ϑ Ĝ
]

ϑ
dS(y)

−
∫

S
B

[

p′
I
n · ∇Ĝ− ṗ′

I
n · ∇ϑ Ĝ

]

ϑ
dS(y) (4.13)

−
∫

S
B

ρ0

[

χ(u0 + v)·∇Ĝ+
[

χ(1 − (u0 + v)·∇ϑ)
]

˙ Ĝ
]

ϑ
dS(y)

This boundary integral equation yields the scattered pressure from the knowledge of

the incident pressure over the surface and of the surface elastic vibrations. Note that,

although the rigid-body motion pressure term, p′
R

, is not present in this formulation (as

motivated above), the effects of rigid-body small oscillations (if any) can always be

taken into account through the transpiration velocity term.

The inclusion of the vibrational effects allows the application of the acoustic formulation

presented in acoustoelastic problems where wall vibrations transmit exterior pressure

disturbances within the cavity bounded by the deforming wall (typical aircraft cabin

noise production mechanism). The acoustic formulation presented is a simplification
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with respect to the widely-used scattering formulations based on the Kirchhoff integral

operator that require the knowledge of the normal derivative of the incident pressure

over the scattering surface. Indeed, whenever the incident pressure field is the result

of complex acoustic radiation processes (like, for instance, those occurring in aeronau-

tical problems involving helicopter rotors and propellers), the numerical evaluation of

the pressure gradient may become computationally expensive in terms of run time and

memory use and introduce further approximation in the algorithm of solution. Recently,

some authors have developed a boundary integral formulation for the evaluation of the

pressure gradient to be used in such kind of problems, starting from Farassat’s Formu-

lation 1A [63].

Scattering, vibroacoustic problems are usually analysed in the frequency domain,

where the acoustic field is evaluated for each harmonic of the incident wave pressure

and of the vibrating motion. Because of the linearity of Eq. (4.13), if the body velocity

has constant components in a body-fixed frame of reference so that all terms are time in-

dependent (of course, with the exception of p′
I
, p′

S
and χ), then it is possible to transform

it in the frequency domain. For p′(x, t) = p̃′(x, ω) ei ω t and χ(x, t) = χ̃(x, ω) ei ω t

this yields

[1 − λ(x)] p̃′
S

(x, k) = λ(x) [p̃′
I
(x, k) + 2 ρ0 cMn χ̃(x, k)]

−
∫

S
B

[

n · ∇Ĝ− i k n · ∇σ Ĝ
]

p̃′
S
(y, k) e−i k σdS(y)

−
∫

S
B

[

n · ∇Ĝ− i k n · ∇σ Ĝ
]

p̃′
I
(y, k) e−i k σdS(y) (4.14)

−
∫

S
B

ρ0 c
[

M̂·∇Ĝ+ i k (1 − M̂·∇σ) Ĝ
]

χ̃(y, k) e−i k σdS(y)

where k = ω/c is the wave number, σ = c ϑ, Mn = vn/c, and M̂ = (u0 + v)/c.
Once the pressure over the scattering, vibrating surface has been evaluated by Eq.

(4.14), the following boundary integral representation gives the corresponding acoustic

disturbance it radiates in the field

p̃′
S
(x, k) = −

∫

S
B

[

n · ∇Ĝ− i k n · ∇σ Ĝ
]

p̃′
S
(y, k) e−i k σdS(y)

−
∫

S
B

[

n · ∇Ĝ− i k n · ∇σ Ĝ
]

p̃′
I
(y, k) e−i k σdS(y) (4.15)

−
∫

S
B

ρ0 c
[

M̂·∇Ĝ+ i k (1 − M̂·∇σ) Ĝ
]

χ̃(y, k) e−i k σdS(y)

Hence, the procedure proposed in this work to determine the frequency-domain acoustic

field generated by a scattering, vibrating surface consists of the following three steps:

first, the incident pressure is evaluated over the surface, then the integral equation Eq.

(4.14) is applied to determine the pressure perturbation over the surface, and finally the

integral representation Eq. (4.15) is used to evaluate the acoustic disturbance in the

field.
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A different way to account for the vibration of the scatterer(s) surface(s), without

invoking porosity terms in the FWHE, is that to include the velocity vibration into the

thickness noise term of the impermeable FWHE. In fact, under the small-perturbation

assumption, the term v · n in Eq. (4.2) written for N = 1 without porosity terms may

be expressed as the sum of the normal velocity of mean surface (due to the rigid transla-

tion) and the normal velocity of surface point vibration (see Ref. [64] for details). This

approach leads to a boundary integral equation for the scattered pressure p′
S

where the

thickness noise term accounts for the elastic vibration. Strictly speaking, the introduc-

tion of the elastic vibration effect into the rigid body translation velocity may be not

justifiable form a physical point of view but it is convenient from a numerical stand-

point avoiding a prior aerodynamic analysis to determine the steady solution u0 over

the undeformable body.

4.3 A Remark on the Scattering Formulation
Presented

Let us consider a stationary virtual closed surface S within a fluid region where an

arbitrary unsteady pressure field, p′, is present without being perturbed by any physical

surface (the stationarity of the surface is invoked for the sake of simplicity, but does not

alter the generality of the results).

For a point x in the field and neglecting second order terms, Eq. (4.6) yields

0 =

∫

S

[

ρ u̇ · n Ĝ
]

ϑ
dS(y) +

∫

S

[

p′ n · ∇Ĝ− ṗ′ n · ∇ϑ Ĝ
]

ϑ
dS(y) (4.16)

where u is the fluid velocity related to p′ through the momentum equation. Equation

(4.16) is the compatibility condition on a closed surface between the pressure field and

the corresponding velocity field, in an unbounded fluid medium. Then, if p′ ≡ p′
I

,

u ≡ u
I

and the shape of S coincides with that of S
B

, the combination of Eq. (4.16) with

Eq. (4.6) written for an impermeable surface yields the following alternative boundary

integral representation for the pressure scattered by a stationary surface

4π p′
S
(x, t) = −

∫

S
B

[

ρu̇
I
· n
r

]

ϑ

dS(y) +

∫

S
B

[

p′
S

n · r
r3

+ ṗ′
S

n · r
c r2

]

ϑ
dS(y) (4.17)

(note that, for the stationary surface, Ĝ = −1/4π r). Observing that the linearized

momentum equation gives ρ u̇
I
· n = −∂p′

I
/∂n, and using this expression in the equa-

tion above, one obtains that Eq. (4.17) is similar to with the formulations based on

the Kirchhoff approach where the incident pressure forces the scattered one through a

term depending on its normal derivative on the scattering surface. This demonstrates

the equivalence between the formulation presented here and the Kirchhoff ones, the dif-

ference lying on the way in which the incident field is related to the scattered field (in

the present approach the scattered pressure is forced by the distribution of the incident

pressure and its time derivative on the same surface. Incidentally, note that Eq. (4.17)

coincides with Eq. (3) in Ref. [65] where cosα = n · r/r). Finally, Eq. (4.16) shows

also that the term forcing the scattered pressure in the formulation examined here is
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closely related to the forcing term in the scattering formulations based on the velocity

potential, which is given by the velocity flow of the incident perturbation field.

4.4 Numerical Results

In order to validate the acoustic formulation presented, first, results concerning the pres-

sure field generated by a plane wave impinging on a stationary rigid sphere are presented

and compared with available analytical solutions. The problem of the appearance of

spurious frequencies is examined, along with acoustically small sphere configurations.

Then, the surface deformation effects on sound scattered are analysed by assuming that

the sphere is a thin elastic shell subject to vibrations because of the impinging plane

pressure wave. Also in this case, the numerical predictions are validated by comparison

with analytical solutions. Next, the acoustic analysis of scattering and vibrating surfaces

is performed also for bodies in uniform rectilinear motion, and the results are compared

with those given by a formulation based on the velocity potential. Finally, the scatter-

ing formulation is applied in the analysis of fuselage effects in the sound emitted by a

helicopter in descent flight. First, the numerical algorithm applied to obtain the discrete

form of the integral formulation is presented.

Discretization Procedure

The numerical investigation is performed by applying a zero-th order boundary element

method for the discretization of the boundary integral formulation. It consists of divid-

ing the scattering and vibrating surface, S
B

, into quadrilateral panels and assuming p̃′
S

,

p̃′
I

and χ̃ to be piecewise constant. Then, the integral equation is solved by requiring

that the equation be satisfied at the center of each body element (collocation method,

see also Ref. [22]). Specifically, discretizing S
B

into M panels S
B

m, at the center of j-th
element Eq. (4.14) yields, for a given value of k,

(1 − λj) p̃
′

Sj

(k) =

M
∑

m=1

(Bjm + i k Cjm) p̃
S

m(k)

+

M
∑

m=1

(λj δjm +Bjm + i k Cjm) p̃
I

m(k)

+

M
∑

m=1

(2Mn
j λj δjm +Djm + i k Fjm) χ̃m(k) (4.18)

where, for xm denoting the center of the m-th panel, p̃
S

m(k) = p̃′
S
(xm, k), p̃

I

m(k) =

p̃′
I
(xm, k), χ̃m(k) = χ̃(xm, k)/ρ0 c, M

n
j = Mn(xj) and λj = λ(xj). In addition, δjm
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is the Kronecker delta function, while the coefficients are defined in the following way

Bjm(k) = −e−i k σjm

∫

SB
m

n · ∇Ĝ dS

Cjm(k) = e−i k σjm

∫

SB
m

n · ∇σ Ĝ dS

Djm(k) = −e−i k σjm

∫

SB
m

M̂·∇Ĝ dS

Fjm(k) = −e−i k σjm

∫

SB
m

(1 − M̂·∇σ) Ĝ dS

with σjm denoting the time delay of the propagation of signals between the source point

at xm and the observer point at xj . Collecting scattered pressure, incident pressures and

elastic transpiration velocities at the M panels respectively in the vectors p
S

, p
I

and x,

and collecting the coefficients in the matrices B,C,D and F, the solution of Eq. (4.18)

may be written in the following matrix form

p̃
S

= E
I
(k) p̃

I
+ Eχ(k) x̃ (4.19)

where, for I denoting the unit matrix and Λ denoting the diagonal matrix collecting the

λj’s,

E
I
(k) = [I − Λ − B(k) − i k C(k)]−1[Λ + B(k) + i k C(k)] (4.20)

is the matrix of the transfer functions between incident and scattered pressures at panel

centers while

Eχ(k) = [I − Λ − B(k) − i k C(k)]−1[2M Λ + D(k) + i k F(k)] (4.21)

is the matrix of the transfer functions between elastic vibrations and pressure perturba-

tions, with M denoting the vector of the normal Mach numbersMn
m at the panel centers.

4.4.1 Plane Wave Scattered by a Stationary Rigid Sphere

The solution of the problem of a plane wave impinging on a stationary rigid sphere

is obtained through the application of the boundary integral equation in Eq. (4.14),

with v = 0, χ̃ = 0, and p̃′
I
(x, k) = e−i k x (the wave is assumed to propagate along

the x−axis, see Fig. 4.1). As shown in section 4.3, the present boundary integral

formulation for the scattered pressure becomes perfectly equivalent to that discussed in

Ref. [65] for the same kind of problem. The formulation in Ref. [65] has been obtained

starting from the FWH equation for the scattered pressure.

For a sphere of radius R, and an impinging wave with wave number such that

kR = 1, Fig. 4.2 depicts the comparison between the analytical scattered pressure

solution [66] and those obtained numerically using an increasing number of panels to

discretize the sphere surface. The scattered signal is evaluated on a circle of radius

d/R = 5 centered at the center of the sphere, Nm denotes the number of elements of
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Figure 4.1: Sketch of a plane wave impinging a stationary rigid sphere.

discretization along its meridians and Np denotes the number of elements of discretiza-

tion along the parallel circles (the x−axis coincides with the polar axis). The result is

given in terms of the angular dependence of the ratio |p̃′
S
|/|p̃′

I
|, for the impinging wave

travelling from left to right, and sphere located at the origin of the coordinate system.

The same will be done for all of the following figures, unless different definitions are

specifically indicated. For Nm = Np = 32 the numerical result may be assumed to

be the converged one, and perfectly matches the analytical solution. However, the pre-

diction appears to be quite accurate even for a coarse discretization (for instance, for

Nm = Np = 16 the numerical solution is fairly close to the analytical one).

Further comparisons between analytical solutions and converged numerical ones

are given in Figs. 4.3 and 4.4, respectively for kR = 2 and kR = 4. In both cases

the observers are placed at a distance d/R = 5, and the agreement between the two

solutions is excellent. The numerical results show a similar level of accuracy also in

predicting the far field scattered pressure. This is demonstrated in Figs. 4.5, 4.6 and 4.7

where, respectively for kR = 1, kR = 2 and kR = 4, the directivity patterns of the

intensity of scattered pressure predicted by the formulation presented here are compared

with those obtained analytically [66].
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Figure 4.2: Angular dependence of scattering for a plane wave impinging on a stationary sphere.

Convergence analysis and comparison with the analytical solution for kR = 1 and d/R = 5. —

analytical solution; + Nm = Np = 8; × Nm = Np = 16; ∗ Nm = Np = 24; • Nm = Np =
32.

Elimination of Spurious Frequencies

A drawback in using a boundary integral method in this type of analysis arises from the

so-called “fictitious eigenvalues”. These are non-physical resonances appearing in the

numerical method that can completely destroy the integral operator [56],[67]. Spurious

frequencies appear also in the formulation applied in this paper and correspond to the

frequencies at which the matrix to be inverted in the numerical solution of the integral

equation becomes singular [see Eqs. (4.20) and (4.21)]. In order to overcome this

problem, here the CHIEF regularization technique introduced in Ref. [68] has been

applied. This technique consists of augmenting the set of equations of the discrete

form of the boundary-integral operator with homogeneous-condition equations at some

points within the volume bounded by the scattering surface, followed by the application

of a least-square technique for the computation of unknowns. For a spherical stationary

scattering surface, the first fictitious eigenvalue appears at kR = π. For this wave

number, at d/R = 5, Fig. 4.8 shows the comparison between the analytical solution,

the non-regularized numerical one and the numerical one obtained through application

of the regularization technique. This result demonstrates that also for the formulation

proposed here, the effects of the spurious frequencies can be efficiently eliminated by

application of the CHIEF approach.

95



Chapter 4 Sound Scattering from Moving Vibrating Surfaces

 0.1

 0.05

 0

 0.05

 0.1

 0.1  0.05  0  0.05  0.1  0.15

|P
s
|/
|P

i|

|Ps|/|Pi|

Figure 4.3: Angular dependence of scattering for a plane wave impinging on a stationary sphere.

kR = 2 and d/R = 5. — analytical solution; • numerical solution.

Acoustically Small Spheres

Next, we examine the sound scattered by an acoustically small sphere. This case is

characterized by the condition kR << 1 or, in other words, by an impinging wave

length much longer than the sphere radius. The analytical solution of the scattered

field is given in Ref. [69] and has been used in Refs. [65] and [70] to discuss the

applicability of the FWH equation in scattering problems. In Ref. [65] it is shown

that the far-field solution given by a boundary integral formulation based on the FWH

equation coincides with the analytical one. This is confirmed by Fig. 4.9 where, for

kR = 0.15 and d/R = 300, the solution obtained through the approach presented here

is in excellent agreement with the analytical one. Figure 4.10 depicts the comparison

between the solution from the present approach and the analytical one for kR = 0.015
and d/R = 1.4. In contrast to what is claimed in Refs. [71] and [70], this near-field

prediction, using the formulation based on the FWH equation, perfectly matches the

analytical solution. However, it is apparent that the solution obtained in Ref. [70]

from the Curle equation is incorrect. Indeed, it would predict a non-zero scattered field

even at k = 0, while it is easy to show that in this case the Curle equation reduces

to a distribution of stationary, uniform dipoles and that the signal emitted by such a

distribution is equal to zero.
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Figure 4.4: Angular dependence of scattering for a plane wave impinging on a stationary sphere.

kR = 4 and d/R = 5. — analytical solution; • numerical solution.

4.4.2 Plane Wave Scattered by a Stationary Elastic Sphere

When a pressure wave impinges a thin elastic shell, the corresponding acoustic distur-

bance field is the result of an aeroelastic phenomenon where incident and scattered pres-

sure produce wall vibrations that, in turn, modify the scattered pressure field. Here, this

closed-loop aeroelastic mechanism is analysed for a plane wave impinging a spherical

shell by coupling the sphere structural dynamics equations with the acoustics equations.

The discrete form of the equations of the shell structural dynamics are obtained by

a modal approach based on the description of elastic deformations in terms of a linear

combination of the modes of vibration given in Ref. [72]. For q denoting the vector of

the corresponding Lagrangean variables, it yields the following form of the dynamics

equations in the frequency domain

[−k2Ms + Ks] q̃ = f̃ (4.22)

where Ms and Ks are, respectively, mass and stiffness matrices which depend on the ge-

ometrical (thickness, radius) and material (mass distribution, Young’s modulus) prop-

erties of the shell, while f is the vector of the generalized loads that force the elastic

degrees of freedom (projection of pressure onto the modes of vibration). From the

knowledge of the modes used in the discretization of the structural dynamics equations,

it is possible to relate the elastic deformation velocity to the shell Lagrangean variables

through the expression x̃ = Ed(k) q̃, where the deformation matrix Ed depends on vi-

bration frequency and shape of modes. Using this deformation matrix in Eq. (4.19), the
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sphere

Figure 4.5: Directivity patterns of scattered pressure intensity for a plane wave impinging on a

stationary sphere. Far-field solution for kR = 1. — analytical solution; • numerical solution.

acoustic formulation provides

p̃
S

= E
I
(k) p̃

I
+ Eq(k) q̃ (4.23)

where Eq = Eχ Ed is the matrix that takes into account the influence of wall vibrations

on the scattered pressure over the surface. Then, defining the (projection) matrix, Ep,

relating the shell surface pressure with the corresponding generalized forces [i.e., such

that f̃ = Ep (p̃
S

+ p̃
I
)], the following acoustoelastic operator is obtained by coupling Eq.

(4.23) with Eq. (4.22)

q̃ = [−k2 Ms + Ks − EpEq(k)]
−1[Ep + EpE

I
(k)] p̃

I
(4.24)

Equation (4.24) yields the shell elastic deformation from the knowledge of the imping-

ing pressure, and takes into account both its direct action (through the matrix Ep) and

also its indirect effects from the scattered pressure (through the matrix E
I

). Once the La-

grangean variables of the elastic deformation are known from Eq. (4.24), the scattered

pressure over the shell surface is obtained by Eq. (4.23) and then, the scattered pressure

radiated in the field is obtained through the integral representation in Eq. (4.15). Note

that the acoustoelastic procedure outlined above has a general validity, in that may be

applied to elastic scatterers of arbitrary material and shape. Scatterers having different

material and geometrical properties yield different mass and stiffness matrices in Eq.

(4.22), while the shape of modes affects both matrix Ed and matrix Ep.

For an aluminium spherical shell having thickness T = (3/1000)R, Fig. 4.11

depicts the distribution of the amplitude of the radial elastic displacement, w, along a
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sphere

Figure 4.6: Directivity patterns of scattered pressure intensity for a plane wave impinging on a

stationary sphere. Far-field solution for kR = 2. — analytical solution; • numerical solution.

meridian circle induced by a unit impinging plane wave with wave number kR = 11.16,

that coincides with the first natural frequency of vibration of the structure (note that the

impinging wave travels along the sphere polar axis and, therefore, the solution is con-

stant along parallel circles). Figure 4.11 presents three numerical results obtained using

30 modes for the description of the radial displacement: one is related to a surface

discretization with Nm = Np = 40, one is related to a surface discretization with

Nm = 40 and Np = 72, whereas the third one is the result provided by an extrap-

olation procedure based on numerical predictions with increasing number of elements

of discretization. The numerical result obtained with the finer grid is in good agree-

ment with the analytical solution [73], while the extrapolated result perfectly matches

it. The angular dependence of the scattered acoustic disturbance that corresponds to

the elastic deformation in Fig. 10 is shown in Fig. 4.12. It is evaluated at a distance

d/R = 5, where the present numerical prediction using Nm = 40 and Np = 72 is in

very good agreement with the analytical solution [73]. This figure demonstrates also

that the acoustic scattering of the elastic sphere significantly differs from that produced

by the rigid body. Next, Fig. 4.13 depicts the pressure scattered at d/R = 5 by the elas-

tic shell impinged by the plane wave with wave number kR = 13.214, that corresponds

to the second natural frequency of vibration of the shell. Also in this case the numerical

prediction obtained using Nm = 40 and Np = 72 is in very good agreement with the

analytical solution.
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sphere

Figure 4.7: Directivity patterns of scattered pressure intensity for a plane wave impinging on a

stationary sphere. Far-field solution for kR = 4. — analytical solution; • numerical solution.

4.4.3 Scattering and Vibrating Moving Bodies

In the following, the effect of motion on the pressure perturbation field generated by

scattering and vibrating surfaces is examined.

First, consider the rigid wing scattering problem analysed in Ref. [74]. It consists

of a rectangular wing in uniform rectilinear translation at zero angle of attack, with the

incident pressure field generated by a co-moving harmonic potential point source, lo-

cated in its mid-span plane. The span of the wing is three times the chord length,

cw, while the cross sections have symmetric biconvex parabolic shape with thickness

ratio tw/cw = 0.1. For (x0, x, y, z) denoting a wing-fixed coordinate system (see Fig.

4.14 and 4.15), having chordwise x-axis, spanwise y-axis and origin, x0, at the center

of the mid-span cross section, Figs. 4.16 and 4.17 depict directivity patterns of pres-

sure scattered in the mid-span plane at radial distance d/cw = 52.5 from x0 by the

wing moving at M = 0.5 in the negative x-axis direction (from right to left in the

picture). Specifically, for wave number kcw = 6, Fig. 4.16 concerns the source point

located above the leading edge at xLE
s = (−5cw, 0, 5cw), while Fig. 4.17 concerns

the source point located above the trailing edge at xTE
s = (5cw, 0, 5cw). These fig-

ures compare the results given by the present formulation with those obtained through a

linear velocity-potential approach based on the integral formulation described in Refs.

[75] and [22], which is equivalent to that used in Ref. [74]. The results are presented

in terms of the ratio between the scattered pressure and a reference pressure defined as

pref = 2 d |p̃′
I
(x0, k)|/cw [74]. As expected, the results obtained from the potential ap-

proach are in perfect agreement with those presented in Ref. [74], but show significant
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Figure 4.8: Angular dependence of scattering for a plane wave impinging on a stationary sphere

at the first spurious frequency. Non-regularized and regularized numerical predictions compared

with the analytical solution for kR = π and d/R = 5. — analytical solution; ∗ numerical

solution without CHIEF regularization; • numerical solution with CHIEF regularization.

discrepancies with respect to the prediction obtained through the formulation based on

the FWH equation, especially in the region closer to the source (i.e., in front of the lead-

ing edge in Fig. 13 and in front of the trailing edge in Fig. 4.17). Such disagreement

is quite unexpected and should be due to the different effect that the elimination of the

nonlinear terms has on the two solutions. In the present approach, when subsonic con-

figurations are examined, the quadrupole term vanishes in sound radiation (observer far

from the body), but might become relevant when the integral formulation is used as an

integral equation (observer on the body), unless the Lighthill tensor is very small. Note

that the perturbed Lighthill tensor would give rise to linear perturbation terms which

could become important as the body Mach number increases, in that proportional to

the local unperturbed flow velocity on the body surface. Indeed, the scattered fields

predicted by potential and FWH formulations are quite similar as the Mach number de-

creases to M = 0.1 (see Fig. 4.18, for xLE
s = (−5cw, 0, 5cw)), while become almost

identical in the steady-wing case (see Fig. 4.19, for xLE
s = (−5cw, 0, 5cw)). The impor-

tance of the nonlinear terms is analysed also in Fig. 4.20 that shows the steady pressure

perturbation at distance d/cw = 5 due to the wing uniform motion at M = 0.5. In this

case the predictions from the two formulations are in good agreement for tw/cw ≤ 0.1,

while significant discrepancies start arising for tw/cw = 0.2, particularly at observer

locations in front of the wing regions where the highest values of fluid flow velocity
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Figure 4.9: Angular dependence of scattering for a plane wave impinging on a stationary acous-

tically small sphere. kR = 0.15 and d/R = 300. — analytical solution; • numerical

solution.

occur and the Lighthill tensor is greater (note that in this case pref = 0.5 ρ0 c
2M2).

Finally, a rigid vibrating sphere is examined. It is considered in uniform rectilinear

translation, while oscillating back and forth along the direction of motion, with kR = 1.

The results from the present formulation are compared with those from a linearized

velocity potential approach in terms of the ratio |p̃′|/pref , where pref = ρ0 cU with U
denoting the magnitude of sphere oscillations. Figures 4.21 and 4.22 depict the acoustic

disturbance distribution on a surface meridian circle parallel to the direction of motion,

respectively for M = 0.1 and M = 0.2, in addition to that for M = 0. Akin to the

wing scattering problem, the agreement between the two formulations is excellent for

M = 0, but worsen as the Mach number increases, although remaining quite similar

up to M = 0.2. The two approaches predict that, at both Mach numbers, the sphere

motion induces an increase of the pressure disturbance in the front region, while in the

rear part the pressure disturbance is slightly reduced at M = 0.1 and slightly increased

at M = 0.2. Note that these results differ from those presented in Ref. [76] where the

same problem has been analysed using a formulation very close to that presented here.

In particular, the results presented in Ref. [76] are in worse agreement with respect to the

results based on the potential formulation, in that overestimate the pressure perturbation

in the front region, while underestimate it in the rear part.
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Figure 4.10: Angular dependence of scattering for a plane wave impinging on a stationary acous-

tically small sphere. kR = 0.015 and d/R = 1.4. — analytical solution; • numerical solution.

4.4.4 A Case of Aeronautical Interest: the Effect of Fuselage
on Noise Emitted by a Helicopter in Descent Flight

The extremely annoying noise generated by helicopters in many flight conditions is a

critical issue for helicopters certification that deeply limits its widespread operation in

populated areas. Typically, the evaluation of the acoustic field in forward flight con-

ditions deals with the noise generated aerodynamically by the main rotor without in-

cluding fuselage scattering effects. This is motivated by the fact that since the rotor

blade passage frequency (BPF) is generally low, the wavelength of the noise signal is

quite large compared to the physical dimensions of the fuselage cross-section and thus

the acoustic influence of the body turns out to be minimal. However, in many cases

the acoustically critical environment is caused by Blade Vortex Interactions (BVI) that

occur at those helicopter flight conditions such that strong tip vortices impinge or pass

closely to the following rotor blade (slow descent is a typical example of them). The

spectrum of resulting noise signal has a much higher frequency content and the fuselage

may affect the distribution of the acoustic field in a significant way. Note that the fuse-

lage turns out to be an efficient scatterer also for High-Speed Impulsive (HSI) noise and

for the acoustic signal emitted by the tail rotor, that usually operates at BPF’s higher

than those of the main rotor.

In several aeronautical configurations and flight conditions it is possible to assume

that some aerodynamic interactional effects are negligible and hence that the contribu-
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Figure 4.11: Angular dependence of radial elastic displacement on the meridian circle of a sphere

impinged by a plane wave with kR = 11.16. — analytical solution; × Nm = 40, Np = 40;

∗ Nm = 40, Np = 72; • extrapolated numerical solution.

tion from a subset of surfaces is unaffected by the presence of the other bodies. This

is, for instance, the case examined here that concerns a helicopter descent flight such

that the wake shed by the main rotor does not impinge the fuselage. In this way, the

source of the incident field (the main and tail rotor) may be considered aerodynami-

cally independent on the presence of the scattering surfaces; thus, the incident pressure

field may be determined through a prior combined aerodynamic-aeroacoustic analysis

of main and tail rotors, whereas the rest of the configuration (the fuselage) is included

only in the second step of the process, dealing with the scattering analysis.

Under these basic assumptions, the scattering effects induced by a realistic helicopter

fuselage during a low-speed descent, are examined through the theoretical model pre-

sented in section 4.2.2. An alternative way to compute the fuselage influence on the

helicopter noise consists of using an interactional aerodynamics solver applied to the

main-rotor/tail unit–fuselage configuration, followed by the application of a conven-

tional aeroacoustic tool for the radiation of the acoustic disturbance; however, this ap-

proach is more computationally expensive than the FWH-based scattering approach, in

that requires the aerodynamic solution of a multibody configuration, instead of a se-

quence of single body solutions.

Limiting the analysis to a main-rotor/fuselage configuration for the sake of concise-
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Figure 4.12: Angular dependence of scattering for a plane wave impinging on a stationary elastic

sphere. kR = 11.16 and d/R = 5. — analytical solution; • numerical solution; - - -

analytical solution (rigid sphere).

ness (the extension to a complete helicopter is straightforward), for S
F

and S
R

denot-

ing fuselage and main rotor surface, respectively, Eq. (4.2) yields the overall acoustic

disturbance. Assuming main rotor aerodynamics weakly influenced by the rest of the

rotorcraft, Eq. (4.3) yields the (incident) acoustic disturbance p′
M

generated by the main

rotor once the blade pressure on S
R

is evaluated by the isolated-body prior aerodynamic

analysis.

Then, decomposing the total pressure disturbance field into a fuselage component, p′
F

,

and a main-rotor component, i.e., p′ = p′
F

+ p′
M

, and following the procedure presented

in section 4.2.2, Eq. (4.5) with u− · n = 0, p′
I

= p′
M

and p′
B

= p′
F

governs the scat-

tered pressure field on S
F

. Considering observers fixed with the helicopter fuselage

and discarding the stationary contribution generated aerodynamically by the motion of

the fuselage surface [55], [77], Eq. (4.15) yields the scattered noise in the frequency

domain. For the sake of simplicity, the tail unit is not considered as source of imping-

ing pressure field. Note that the aerodynamic formulation used to examine the fluid

flow around the isolated main rotor and to evaluate main-rotor/fuselage interactional

aerodynamics (thus including fuselage scattering effects) is suited for the analysis of

flight configurations where strong blade/wake interactions occur. It has been presented
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Figure 4.13: Angular dependence of scattering for a plane wave impinging on a stationary elastic

sphere. kR = 13.214 and d/R = 5. — analytical solution; • numerical solution.

in Refs. [78] and [79] as a development of the boundary integral formulation for the

velocity potential introduced in Ref. [80] and further extended in Ref. [22]. Such a

formulation for BVI analysis has been validated through correlation with experimental

data [78],[79].

The helicopter considered in this investigation has a four-bladed model main rotor

of radiusR = 5m, constant chord c = 0.32m, NACA 23012 airfoil sections and angular

velocity Ω = 390RPM. The fuselage is about 12m long and the characteristic dimension

of the cabin cross section is equal to 1.8m. The descent flight path is such that the shaft

angle is equal to 4◦, while the advance ratio is µ = 0.15. All the results that will be

presented concern the SPL (dB) of the noise calculated on a plane parallel to the ground,

located 33m below the helicopter and travelling with it.

Before examining the results of the scattering analysis of the noise emitted by the

rotor experiencing BVI, a preliminary conceptual study concerning the sound radiated

by the fuselage with the main rotor in nonlifting conditions is presented. In particular,

the noise predicted by the scattering formulation and that predicted by the aerodynamic

solver in which the full aerodynamic coupling between rotor and fuselage is taken into

account are compared. Being the fuselage in uniform translation, the sound it radiates

comes from the interaction with the unsteady pressure field generated by the main ro-

tor: the scattering formulation evaluates the effects of the fuselage on the noise radiated

by the main rotor considered as an isolated body, while the aerodynamic formulation
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Figure 4.14: Geometry of the translating wing used to analyze the scattering from moving rigid

bodies. (Adapted from Ref. [74]).

Figure 4.15: Mid–plane of the scattering wing. Wing velocity and location of point sources.

takes into account also the effects of the fuselage on the rotor blade pressure distribu-

tion. Fig. 4.24 (left) shows the total noise contour levels predicted by the interactional

aerodynamics, whereas Fig. 4.24 (right) shows the results from the application of the

scattering formulation (the helicopter travels from the right to the left). Both concern the

1st BPF of the signal which, in this simple case, is the only one to be not negligible. The

two predictions are in good agreement, with a small discrepancy appearing in the rear

region at the right hand side, as seen from the helicopter. This confirms the capabilities
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Figure 4.16: Pressure scattered in mid-span plane by a wing in uniform rectilinear translation.

x
LE
s = (−5cw, 0, 5cw), kcw = 6, d/cw = 52.5, M = 0.5. + potential solution; • FWH

solution.

of the present scattering approach to capture with satisfactory accuracy the effects of the

fuselage presence on the noise field emitted by the fuselage/main-rotor configuration.

Next, we examine the prediction of fuselage scattering effects in the realistic descent

flight condition described above. In this case, the noise emitted by the fuselage/main-

rotor configuration has a much higher harmonics frequency content because of the im-

pulsive loads produced on the rotor blades by BVI occurrence. Considering the 1st

BPF, Fig. 4.25 shows the SPL contour levels of the noise scattered by the fuselage. This

figure reveals that the scattered noise rapidly decreases moving far from the fuselage

and has a quite uniform distribution around the helicopter, with three directions where

it is prominent and one (the rear region at the right hand side of the rotorcraft) where

it is attenuated. The corresponding total noise field is depicted in Fig. 4.26, while

Fig. 4.27 shows the acoustic field radiated by the isolated rotor for comparison. These

results demonstrate that the presence of the fuselage seems to yield a shielding effect in

the rear part of the area examined, particularly at the left hand side of the rotorcraft. In

addition, it attenuates the very-near field noise and re-distributes it in left-hand-side and

front right-hand-side regions. A close view of the noise levels in the near field is given

in Fig. 4.28, respectively for the total noise (left) and for the noise from the isolated

rotor (right). They show that the highest noise levels are uniformly attenuated by the

fuselage presence and that an increase of noise at the left hand side of the rotorcraft is
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Figure 4.17: Pressure scattered in mid-span plane by a wing in uniform rectilinear translation.

x
TE
s = (5cw, 0, 5cw), kcw = 6, d/cw = 52.5, M = 0.5. + potential solution; • FWH

solution.

present starting from the region 40m distant from the rotor.

In order to correlate Fig. 4.25 with Figs. 4.26–4.28, it is worth noting that a high

level noise region in the scattering field not necessarily implies that there the total noise

is higher than the noise field not affected by scattering. Indeed, a high level of scattering

means that its effect is significant, but it may cause an increase or a decrease of noise

depending on the phase shift that the scattered signal has with respect to the incident

field.

Note that the 1st BPF that has been examined in Figs. 4.25–4.28 corresponds to a

wavelength of about 13.5m, which is comparable with the length of the fuselage, but

is much higher than the characteristic dimension of its cross section (about 1.8m). A

different pattern of the scattered noise contour levels is predicted when higher harmonics

of the noise are examined, such that their wavelengths are comparable with or smaller

than the characteristic dimension of fuselage cross section. This particularly occurs

starting from the 5th BPF of the signal (λ ≈ 2.2m). For instance, Fig. 4.29 shows the

SPL contour levels of the 6th BPF of the noise scattered by the fuselage. Differently

from what observed for the 1st BPF, this scattering field shows a clear directivity in the

direction normal to the longitudinal axis of the fuselage. Moreover, in this direction

it slowly decreases, thus remaining significant also in the far field. Concerning the

effects of the scattering field on the total noise, these are observed by comparing Fig.
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Figure 4.18: Pressure scattered in mid-span plane by a wing in uniform rectilinear translation.

x
LE
s = (−5cw, 0, 5cw), kcw = 6, d/cw = 52.5, M = 0.1. + potential solution; • FWH

solution.

4.30 and Fig. 4.31 that depict the contour plots of the SPL related to the total noise

and to the noise from the isolated main rotor, respectively. Also in this case the effect

of the scattering field seems to attenuate the very-near field noise, while the acoustic

disturbance is increased along the direction orthogonal to the fuselage, especially at the

right hand side of it. Furthermore, it is notable the shielding effect at the rear part,

particularly at the left side of the cabin. Close views of the near field 6th BPF noise

levels are given in Fig. 4.32, respectively for the total noise (left) and the isolated-rotor

field (right). In this case, the local slight noise alleviation due to the fuselage is not

uniformly distributed around the rotorcraft, but is rather focused at its right-hand-side

and left-hand-side regions.

A similar behaviour is observed at higher BPF: Fig. 4.33 shows the scattered field of

the 8th BPF whereas Fig. 4.34 and 4.35 depict the contour plots of the SPL related to

the total noise and to the noise from the isolated main rotor, respectively. Note that a

particular increase of noise at the right hand side of the helicopter has been observed for

all the higher BPF’s examined: this could be explained by the fact that strongest BVI

occurs at the advancing side of the blade that, in this case, corresponds to the right hand

side of the rotorcraft.

The shielding effect caused by the presence of the cabin is shown in Fig. 4.36; here,

the difference between the SPL due to main rotor noise–cabin scattering effect and the
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Figure 4.19: Pressure scattered in mid-span plane by a wing in uniform rectilinear translation.

x
LE
s = (−5cw, 0, 5cw), kcw = 6, d/cw = 52.5, M = 0. + potential solution; • FWH

solution.

SPL due to the isolated rotor is plotted. The zones where the difference is negative

indicate the noise shield effect induced by the fuselage.

In conclusion, the results have demonstrated that the impact of the fuselage strongly

depends on the noise harmonic examined. Indeed, the lowest BPF’s of the acoustic

signal show an influence of the fuselage that is localized around the helicopter and has

moderate azimuthal differences. For higher harmonics such that their wavelengths are

comparable with or smaller than the characteristic dimension of fuselage cross section,

the scattered field is characterized by a strong directivity in the direction orthogonal to

the fuselage longitudinal axis and a slow decrease moving far from the rotorcraft. In

both cases, the effect of the scatterer is to alleviate the noise in the very-near field and to

increase it in the far-field regions at the left-hand-side and at the right-hand-side of the

rotorcraft.
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Figure 4.20: Pressure steady perturbation in mid-span plane due a wing in uniform rectilinear

translation at M = 0.5. d/cw = 5. + potential solution, t/cw = 0.05; ◦ FWH solution,

t/cw = 0.05; × potential solution, t/cw = 0.1; △ FWH solution, t/cw = 0.1; ∗ potential

solution, t/cw = 0.2; • FWH solution, t/cw = 0.2.

4.4.5 Concluding Remarks

The formulation presented yields a unified approach for the prediction of surface pres-

sure perturbations and sound radiation generated by pressure waves impinging moving,

elastic bodies. The proposed formulation is able to include surface vibration effects, and

thus can be applied to vibroacoustic/acoustoelastic problems. The numerical investiga-

tion demonstrates that it gives very accurate predictions of near-field and far-field pres-

sure scattered by stationary rigid spheres, both for low-frequency and mid-frequency

incident waves. Very accurate numerical predictions are obtained also for scattering

problems concerning stationary elastic surfaces, both in terms of resulting elastic de-

formations and in terms of radiated sound. Note that the problem of the presence of

spurious frequency in the integral operator is successfully solved by the widely-used

CHIEF regularization technique.

When the present integral formulation is applied to scattering and vibrating sur-

faces in uniform motion, the assumption of neglecting the nonlinear terms related to

the quadrupole contribution may be not reasonable as the Mach number increases. As

a matter of fact, the comparison with the results given by a linearized velocity poten-

tial formulation shows that discrepancies grow together with the body Mach number.
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Figure 4.21: Angular dependence of pressure perturbation on the surface of a rigid sphere in

uniform rectilinear translation and oscillating back and forth along the direction of motion. kR =
1. + potential solution, M = 0; ◦ FWH solution, M = 0; × potential solution, M = 0.1;

• FWH solution, M = 0.1.

An explanation of this behaviour is that the nonlinear terms (not included in both ap-

proaches) yield a quantitative different influence in the two formulations. In particular,

in the present approach the quadrupole term might become relevant when the observer

is on the body, unless the Lighthill tensor is very small. This is an open problem whose

investigation is beyond the scope of the present thesis.
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Figure 4.22: Angular dependence of pressure perturbation on the surface of a rigid sphere in

uniform rectilinear translation and oscillating back and forth along the direction of motion. kR =
1. + potential solution, M = 0; ◦ FWH solution, M = 0; × potential solution, M = 0.2;

• FWH solution, M = 0.2.

Figure 4.23: Sketch of the paneled fuselage–main rotor configuration.
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Figure 4.24: SPL from aerodynamic formulation (left); SPL from scattering formulation (right).

Figure 4.25: 1st BPF scattered field.
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Figure 4.26: 1st BPF total field. Figure 4.27: 1st BPF isolated rotor field.

Figure 4.28: Left: 1st BPF total field (close view); right: 1st BPF isolated rotor field (close

view).
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Figure 4.29: 6th BPF scattered field.

Figure 4.30: 6th BPF total field. Figure 4.31: 6th BPF isolated rotor field.
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Figure 4.32: Left: 6th BPF total field (close view); right: 6th BPF isolated rotor field (close

view).

Figure 4.33: 8st BPF scattered field.
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Figure 4.34: 8th BPF total field. Figure 4.35: 8th BPF isolated rotor field.

Figure 4.36: ∆ SPL between main rotor in the presence of the cabin and isolated main rotor.
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Chapter 5

Conclusions and

Recommendations

5.1 Conclusions

The present work has dealt with the prediction of the noise field emitted by propeller and

helicopter rotors in unbounded space, or in the presence of solids boundaries, for aero-

nautical and marine applications based on the Ffowcs Williams and Hawkings equation

(FWHE). The attention has been focused on those problems where transonic effects may

be neglected, along with the quadrupole term in the noise prediction.

Noise Radiation

Noise radiation from marine propeller blades, operating in non–cavitating condition, has

been first addressed. The interest in doing such investigation arises from the fact that

the hydroacoustic community typically performs noise calculations using the Bernoulli

equation. Taking into account that, after 40 years of applications, the FWHE has been

proven to be a very efficient aeroacoustic solver for aeronautical subsonic and super-

sonic configurations where the sound generated aerodynamically plays a significant

role, and considering that air and water propeller have much in common from the theo-

retical modeling point of view1, such behaviour is quite surprising. Hence, in order to

highlight the capabilities of the FWHE in studying marine propeller, a comparison with

the Bernoulli-based methodology has been here proposed. As shown in chapter 2, the

most important remark arising from this comparison is that:

• The Ffowcs Williams and Hawkings equation has been shown to be notably more

robust for noise prediction respect to the Bernoulli–based method. In the frame-

work of potential flows, it yields noise signature predictions not directly affected

by the presence of the potential wake. In fact the presence of the wake influences

the pressure distribution on the blade(s), hence the noise related to the blade;

1Particularly if one’s attention is restricted to air propellers operating at low Mach numbers

and to water propellers operating without cavitation.
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however, for a given operating condition, the noise signature predicted by the

FWH approach does not exhibit a strong sensitivity to the shape of the wake used

in the hydrodynamic analysis, apart from slight differences due to the differences

in the blade loads. On the contrary, in the Bernoulli approach, noise predictions

deeply depend on the wake modeling adopted; by considering a prescribed-wake

modeling, different wakes (in terms of pitch) produce notable differences in the

waveform of the resulting noise signal. The reasons for this behaviour of the nu-

merical solution are twofolds: 1) the need of computing the velocity potential in

the flow–field by performing an integral on the wake surface; 2) any prescribed

wake modeling does not represent a material surface hence behaves as a numeri-

cal source of loading noise.

The use of the FWHE filters such problems because the potential wake contri-

bution to the noise signal (in terms of thickness and loading noise) is exactly

zero; the acoustics effects of the potential wake are modeled by the quadrupole

term and become relevant when the non linear terms associated to the the flow

velocity are not negligible. From a theoretical standpoint the use of a free-wake,

that is a wake locally aligned with the fluid velocity, should overcome this lim-

itation associated to the Bernoulli approach. However, the use of the free-wake

algorithm does not yield the expected improvement. The reason is more a hy-

drodynamic issue than a hydroacoustic one; in fact, the rate of convergence of

the computed flow velocities is significantly slower than the rate of convergence

associated with the prescribed wake. The same converged solution could be ob-

tained at price of unacceptable computational efforts because of the too much

fine grid to be used. Hence, the guideline derived from the numerical compari-

son between the FWHE and the Bernoulli method is that the physically consistent

approach for hydroacoustic purposes is the FWHE because of the proven influ-

ence of the wake modeling on acoustic pressure computed through the Bernoulli

equation. Apart from the problem of the shape of the potential wake, the eval-

uation of the pressure loads on the blade needs an amount of wake, in terms of

number of spirals, that is considerably less than the wake length ensuring a con-

verged aero/hydro–acoustic solution (for a given observer positions). Therefore,

the FWHE is more efficient in terms of computational effort with respect to the

Bernoulli solver.

Cavitating Propellers

After having applied the FWHE to predict the noise field radiated by non–cavitating

marine propellers, the study of cavitation noise has been addressed. Cavitation, i.e.,

vaporization occurring in high–speed flow regions, is a typical phenomenon affecting

marine propellers in many different operating conditions. The evaluation of the noise

due to the cyclic growth and collapse of the cavity on the surface of a propeller in a

non–uniform onset flow, has been performed through a novel application of the per-

meable FWHE combined with a suitable hydrodynamic model describing the unsteady

cavitation pattern (Transpiration Velocity Model, TVM). The main remarks can be sum-

marized as follows:

• The Transpiration Velocity Modeling, based on the permeable FWHE, simulates

122



Chapter 5 Conclusions and Recommendations

the presence of the transient sheet cavitation through the difference between the

normal component of the body velocity and the fluid velocity wherever cavitation

occurs. Noise produced by the cyclic growth and collapse of the cavity is mainly

due to the time history of the acceleration during a blade revolution. Akin to the

application of the FWHE to non–cavitating propellers, a hydrodynamic solver

has to provide the pressure distribution on the blade to compute the loading noise

term; however when cavitation occurs, further hydrodynamic data are needed:

velocity and acceleration distribution on the blade surface and thickness of the

cavity. The numerical results provided by the TVM model have been successfully

compared with those provided by the Equivalent Blade Modeling (EBM) based

on a different strategy to include the presence of the cavity inside the FWHE. Nu-

merical applications of the two methodologies reveal that noise prediction, using

TVM and EBM, are in agreement. Nevertheless, some discrepancies in noise

prediction arise from the different sensibility of the two FWH–based approaches

respect to the hydrodynamic data describing the cavitation pattern. As a matter

of fact, the TVM is more sensible to the accuracy of the hydrodynamic input be-

cause of the need to compute time derivatives of the function describing cavity

thickness distribution on the blade surface, whereas the EBM requires integration

over a variable shape blade to account for the presence of the unsteady pocket of

vapor. For both TVM and EBM, problems in describing unsteady sheet cavitation

noise arise when the frequency of the cavitation phenomenon increases; in fact

the TVM is affected by the inaccuracy due to the cavity thickness derivatives that,

for highly impulsive signals, may become very difficult to be computed whereas

the EBM is conditioned by the step-by step strategy in computing the presence

of the cavity that makes it a quasi–steady approach, with a limited capability to

correctly describe rapidly changing flow conditions.

Scattering

In order to appreciate the sound field change when solid surfaces are present in the flow

field and to allow the prediction of the noise produced by those aeronautical and marine

configurations where one single body may be identified as the main noise source (with

the pressure on it approximately independent on the presence of the other bodies), the

problem of the scattering has been investigated through a novel integral formulation

based on the FWHE. When applicable, a scattering model allows to study the acoustic

behaviour of whole configurations as fuselage–propeller, fuselage-main/tail–rotor and

hull-propeller, without invoking the interactional aero–hydro–dynamics to calculate the

scattered pressure field on the boundary of the scatterer. Differently from noise radiation

problems where the FWHE is used as an integral representation, in this problem the

integral solution of the FWHE is used as an integral equation to determine the scattered

pressure distribution upon the scattering body. The main remarks are drawn in the

following:

• The proposed FWH formulation yields a unified solver able to radiate sound and

to evaluate the acoustic disturbance over moving surfaces. It may be applied

to those aeronautical or naval multi–body configurations where the sources of
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noise may be considered aerodynamically or hydrodynamically independent on

the presence of the rest of the configuration. For some operating conditions,

propeller–driven aircraft, rotorcrafts and ships fall in this category. The eval-

uation of the sound field produced by the impingement of the pressure distur-

bance(s) on the scatterer(s) requires a prior analysis of the isolated source(s), to

identify the incident pressure field(s). The formulation herein proposed is flexi-

ble in that allows to study scattering problems concerning rigid as well as elastic

bodies, moving or at rest.

• Numerical results show that, for stationary rigid or vibrating scattering bodies,

the proposed methodology yields excellent results. Dealing with moving scat-

terers, the issue of the quadrupole term must be pointed out. In fact, when

the FWHE is applied to face problems where acoustic waves impinge on solid

boundaries (scattering problems), the assumption to ignore the quadrupole term

in the FWHE may become too much restrictive. The opportunity of neglecting

the quadrupole term depends on the advancing speed of the scatterer and on its

shape. For some configurations and advancing speed, the contribution arising

from the Lighthill tensor on the body surface might be comparable with the per-

turbation velocity itself and the inclusion of the quadrupole term in the FWHE

would be required.

Obviously, the inclusion of volume terms in the FWHE to determine the scat-

tered pressure on the scatterer would require the knowledge of the aerodynamic

field around the scatterer itself, in presence of the source of noise. Apart from the

complexity due to the inclusion of volume terms, any aerodynamic solver able to

furnish such an input is in principle able to calculate the pressure distribution on

the scatterer accounting also for the interactional effects; therefore, the scattering

modeling could be completely useless. Hence, the analysis of moving scatterers

has to be addressed carefully because the Lighthill tensor would give raise to

perturbation terms which might become relevant when the integral formulation

is used as an integral equation.

5.2 Recommendations

Basing on the above conclusions, the following recommendations are given for further

development and improvement of the present work.

• Investigation on the importance of the quadrupole term should be done in the

future. Emphasis should be put on the Lighthill tensor in order to include the

quadrupole term into the solution of the boundary integral equation aimed to

determine the scattered pressure field.

• The capability of the scattering formulation to solve acoustoelastic problems has

been analysed considering an elastic sphere impinged by a plane wave; validation

of numerical results addressing more complex configurations, in terms of geom-

etry and load, as real airplanes or helicopter fuselages or hull ships should be

considered. In particular the acoustoelastic behaviour of a real configuration im-

pinged by the acoustic disturbance generated by propeller or rotor blades should
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be investigated. In this case the aero(hydro)–acoustic methodology should be

coupled with a structural finite element analysis (FEM) to model the acoustoe-

lasticity of the scatterer.

• For scattering problems dealing with moving bodies, further careful analysis of

the theory is needed to well justify the disagreement of the results of the present

thesis with those shown in [76].

• For underwater cavitating propellers, validation of numerical noise predictions

(in unbounded space or in the presence of free-surface) against experimental

flow data, is not possible because of the lack of quantitative data covering a use-

ful spectrum of flow conditions. This point may be considered as one of the

most urgent hydroacousticians’s need. Hence, suitable experimental investiga-

tions should be carried out to assess a rich cavitating and non–cavitating flow

database.

• Further investigation on the numerical behaviour of the TVM, at high frequen-

cies, should be carried out. Furthermore, the use of two phase flow models com-

bined with the solution of the Navier-Stokes equations, in principle, allows the

description of the inhomogeneous cavitating flow around the propeller blades;

therefore, it is possible to model the spatial gradients of the speed of sound that

deeply affect the noise radiation when cavitation occurs. By using the permeable

KFWH formulation and providing the required hydrodynamic data on the control

surface by a viscous two-phase CFD code, the resulting noise signals should be

compared with experimental data or with those obtained by the use of CAA.

• Apart from cavitating propellers, different types of aero–hydrodynamic models

aimed to provide the required input to the KFWH formulation should be con-

sidered. In fact, the use of aero–hydrodynamic models based on the theory of

potential flows allows to well describe the interaction between solid bodies and

an onset flow characterized by negligible turbulence of the incoming flow, and is

physically consistent when the effects of viscosity are confined within the bound-

ary layer attached to the body surface and flow separation does not occur. Nev-

ertheless, in many operating conditions these assumptions do not hold. Hence,

the use of CFD data is suitable to analyse the behaviour of a rotating propulsive

systems in more realistic operating conditions.
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Appendix A

A Boundary Integral Formulation

for Aerodynamics and

Aeroacoustics of Moving Bodies

A.1 The Differential Aeroacoustic Problem

There, the general form of the Ffowcs Williams and Hawkings equation is derived.

For the sake of simplicity, it is convenient to introduce a set of orthogonal coordinates

(O, x1, x2, x3) related to an air frame of reference (frame fixed to the medium) denoted

by unit vectors i1 i2 i3. In the following, the indicial notation is adopted, for which

f,j =
∂f

∂xj
and fj = f · ij .

Let us assume that the fluid is compressible and undergoes transformations with neg-

ligible entropy changes; by combining the continuity equation and the Navier–Stokes

equations

ρ̇+ (ρuj),j = 0

˙(ρuj) + (ρujuk),k = −pj + Vjk,k (A.1)

the following equation, known as Lighthill’s equation, is easily obtained

2
2p′ =

1

c20

∂2p′

∂t2
−∇2p′ = Tjk,jk (A.2)

where c0 represents the sound speed in quiescent medium, p′ = c20(ρ − ρ0) denotes

the aeroacoustic pressure, Tjk =
{

[(p− p0) − c20(ρ− ρ0)]δjk + ρujuk − Vjk

}

are the

components of Lighthill stress tensor, Vjk are the viscous stress tensor components and

p0 the pressure field in the undisturbed medium.

Next, let us consider a moving permeable surface S enclosing both the noise sources

and solid surfaces (i.e. the bodies surfaces) in a volume V , and introduce the domain

function E(x, t)

E(x, t) =

{

1 if x ∈ ℜ3 \ V
0 if x ∈ V (A.3)
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such that

p̂′(x, t) = E(x, t)p′(x, t) (A.4)

Combining Eq. (A.2) with Eq. (A.4) the following infinite–space problem is obtained

2
2p̂′ = ETjk,jk − p′,jE,j − (p′Ej),j +

1

c20

[

ṗ′Ė + (p′Ė)
]˙

(A.5)

Noting that

(ETjk),jk = ETjk,jk + Tjk,kE,j + (TjkE,k),j (A.6)

recalling that p′ = c20(ρ−ρ0) and using the Navier–Stokes equations and the continuity

equation Eq. (A.5) becomes

2
2p̂′ = (ETjk),jk

− (PjkE,k),j + u̇jρE,j + 2ρ̇ujE,j +

− ρuj(ukE,k),j + 2ρ̇Ė + ρË − ρ0Ë (A.7)

where Pjk = [(p− p0)δjk − Vjk] is the compressive stress tensor.

Note that the material derivative
DE

Dt
, following a fluid point, is given by

DE

Dt
= Ė + ujE,j (A.8)

and therefore

˙
(
DE

Dt
) = Ë + u̇jE,j + ujĖ,j (A.9)

Hence the following relation is obtained

2ρ̇(Ė + ujE,j) + ρ[Ë + u̇jE,j − uj(ukE,k),j ] = 2
∂

∂t
(ρ
DE

Dt
) − ρ

D2E

Dt2
(A.10)

through which Eq. (A.7) is recast into the following form

2
2p̂′ = (ETjk),jk − ρ0Ë − (PjkE,k),j + 2

∂

∂t
(ρ
DE

Dt
) − ρ

D2E

Dt2
(A.11)

that represents the Ffowcs Williams and Hawkings equation for permeable surfaces,

governing the aeroacoustic field around a volume V moving in arbitrary motion with

respect to the air space.

In order to re-write the FWHE in a more suitable mathematical form, let the boundary of

S be mathematically defined by f(x, t) = 0, with f > 0 outside S and such that ∇f =
n, where n is the outward unit normal vector. Observing that E(x, t) = H[f(x, t)],
where H denotes the Heaviside function, the following relations hold

∇E =
dH

df
∇f = δ(f) n (A.12)
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DE

Dt
=
dH

df

Df

Dt
= δ(f)

Df

Dt
(A.13)

The material time derivative, following a fluid particle, is given by
Df

Dt
=
∂f

∂t
+ u · ∇f

where
∂f

∂t
indicates the eulerian derivative; furthermore, following a material point on

the surface S that moves with velocity v, the time derivative of f(x, t) is equal to
Df

Dt
=
∂f

∂t
+ v · ∇f = 0. It results that following a fluid particle, the material deriva-

tive may be written as

Df

Dt
= (u − v) · n (A.14)

Thus, accounting for Eqs. (A.12), (A.13) and (A.14), the material derivative
DE

Dt
may

be written as

DE

Dt
= (u − v) · ∇E (A.15)

from which the following equations may be obtained

−ρD
2E

Dt2
= − ∂

∂t
[ρ(uj − vj)E,j ] − [ρuj(uk − vk)E,k],j (A.16)

2
∂

∂t
(ρ
DE

Dt
) = 2

∂

∂t
[ρ(uj − vj)E,j ] (A.17)

Combining Eqs. (A.16), (A.17) with Eq. (A.11), the FWHE transforms into

2
2p̂′ = (ETjk),jk

− ρ0Ë − (PjkE,k),j +
∂

∂t
[ρ(uj − vj)E,j ] +

− [ρuj(uk − vk)E,k],j (A.18)

that, in terms of invariants becomes

2
2p̂′ = ∇ · ∇ · (ET) − ∂

∂t
(ρ0

∂E

∂t
) −∇ · (P∇E) +

∂

∂t
[ρ(u − v) · ∇E)]

− ∇ · [ρu ⊗ (u − v)∇E)] ∀x ∈ ℜ3 (A.19)

where P = [(p− p0)I + V] and T =
[

ρ(u ⊗ u) + (p− p0)I − c20(ρ− ρ0)I + V
]

.

Accounting for Eqs. (A.8), (A.12) and (A.15), it comes out that Ė = −v · n δ(f) and

hence

− ρ0Ë =
∂

∂t

[

−ρ0
∂E

∂t

]

=
∂

∂t
[ρ0 v · n δ(f)] (A.20)

Thus substituting Eq. (A.20) in Eq. (A.19) and accounting for Eq. (A.12) the following

form of the FWHE is obtained

2
2p′ =

∂

∂t
[ρ0 v ·∇f δ (f)] +

∂

∂t
[ρ (u − v) ·∇f δ (f)]

− ∇ · [P ∇f δ (f)] −∇ · [ρu ⊗ (u − v) ∇f δ (f)]

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (A.21)
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where the bar over the derivative symbol denotes generalized differentiation. Equation

(A.21) is written by using the typical notation for the FWHE.

If the surface S, moving with velocity v, is impermeable,
DE

Dt
= 0 and Eq. (A.18)

reduces to

2
2p̂′ = (ETjk),jk − ρ0Ë − (PjkE,k),j (A.22)

that in invariant form is

2
2p′ =

∂

∂t
[ρ0 v ·∇f δ (f)] −∇ · [P ∇f δ (f)]+

+ ∇ ·
{

∇ · [T H(f)]
}

∀x ∈ ℜ3 (A.23)

A.2 The Differential Aerodynamic Problem

For an inviscid, non–conducting, shock–free, initially isentropic and initially irrotational

(initially at rest and in thermodynamic equilibrium) flow, the velocity field may be de-

scribed by means of a velocity potential function φ(x, t) such that u = ∇φ.

Similarly to the pressure disturbance, the velocity potential is governed by the following

non–homogeneous wave equation [22]

−2
2φ = σ (A.24)

where σ =

[

(c2 − c20)∇2φ+ 2u · u̇ + u · ∇u
2

2

]

/c2 denotes all the non–linear terms.

The problem is completed by the boundary conditions. In the air frame of reference, the

boundary condition at infinity is given by φ = 0 (fluid at rest). Then, the surface S of

the body is assumed to impermeable; hence (u − v) · n = 0 yields
∂φ

∂n
= v · n, where

v is the velocity of the points of the surface. In addition for lifting flows the issue of

the wake has to be addressed. A detailed analysis is given in Ref. [22] and Ref. [81].

Here, it is sufficient to note that an inviscid isentropic initially–irrotational flow remains

irrotational at all times except for those points that come in contact with the surface of

the body, because Kelvin’s theorem is not applicable in this case. These points form a

surface on which the flow is not necessarily potential. This surface, called the wake, is

a surface of discontinuity for the potential. From the application of the conservation of

mass and linear momentum across a surface of discontinuity, it results that the fluid does

not penetrate it (the wake is a material surface) and hence ∆(
∂φ

∂n
) = 0, and in addition

the pressure is continuous across it. Furthermore, the Bernoulli theorem yields that the

potential jump across the wake, ∆φ, remains constant following a wake point and equal

to the value it had when it left the trailing edge.

Following the same procedure used in the previous section to extend to the whole space

the potential governing equation, here the domain function E(x, t) defined as

E(x, t) =

{

1 if x ∈ ℜ3 \ V
0 if x ∈ V (A.25)
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is introduced, and the extended function φ̂(x, t) = E(x, t) φ(x, t) is defined. Then us-

ing the mathematical relations

∇2 [Eφ] = E∇2φ+ ∇E · ∇φ+ ∇ · (φ∇E) (A.26)

and

∂2φ̂

∂t2
= (φĖ)

˙
+ φ̈E + φ̇Ė (A.27)

the equation governing the velocity potential is recast in the following form

− 2
2φ̂ = E σ + ∇E · ∇φ+ ∇ · (φ∇E) − 1

c20

[

φ̇Ė + (φĖ)̇
]

(A.28)

that is valid ∀x ∈ ℜ3.

Observing that E(x, t) = H[f(x, t)] and recalling Eq. (A.12), Eq. (A.28) may be

written as

− 2
2φ̂ = σ H(f) + ∇φ · n δ(f) + ∇ · [φ n δ(f)] +

− 1

c20

{

φ̇Ḣ(f) +
[

φḢ(f)
]˙
}

∀x ∈ ℜ3 (A.29)

Accounting that Ḣ(f) = −v · ∇H = −v · n δ(f) one obtains

− 2
2φ̂ = σ H(f) + ∇φ · n δ(f) + ∇ · [φ n δ(f)] +

− 1

c20

{

−φ̇ v · n δ(f) + [−φ v · n δ(f)]˙
}

∀x ∈ ℜ3 (A.30)

A.3 A General Form of Integral Solution

Dealing with compressible flows, sections A.1 and A.2 show that the structure of the

differential equation governing the propagation of the pressure disturbance or the prop-

agation of the velocity potential in the flow–field when a contour surface S moves re-

spect to the air space (SRA), is described by an inhomogeneous wave equation forced

by source terms distributed both over S in addition to those present in the fluid.

Here, in order to derive an integral solution that is applicable to both aeroacoustic and

aerodynamic problems, the following general inhomogeneous wave equation is consid-

ered

− 2
2û = χ+ z · ∇E + ∇ · (Z∇E) +

∂

∂t
(k2

∂E

∂t
) + k1

∂E

∂t
+

− ∂

∂t
(z1 · ∇E) + ∇ · (Z1∇E) (A.31)

from which Eqs. (A.19) and (A.28) may be derived as particular cases. In Eq. (A.31),

û represents the generic variable to be propagated, whereas the forcing terms at the

right–hand–side are expressed through generic vectorial and tensorial fields. In deriv-

ing a boundary integral solution for the above equation, for the sake of simplicity, the
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surface S is assumed to move in rigid–body motion so that E is time independent in the

frame fixed to the body. In addition boundary conditions at infinity, as well as the initial

conditions, are homogeneous for all the perturbative quantities involved.

The application of the Green function method that combines Eq. (A.31) with the funda-

mental wave equation problem

−2
2G = δ(x − x∗, t− t∗)

G = 0 ∀x ∈ ∞
G = 0 t = ∞

∂G

∂t
= 0 t = ∞ (A.32)

yields the following integral solution of the Eq. (A.31) in the SRA

E(x∗, t∗)u(x∗, t∗) =

∫ ∞

0

∫

ℜ3

G χdV dt+

∫ ∞

0

∫

ℜ3

∇ · (Z∇E) GdV dt +

+

∫ ∞

0

∫

ℜ3

∂

∂t
(k2

∂E

∂t
) GdV dt +

−
∫ ∞

0

∫

ℜ3

∂

∂t
(z1 · ∇E) GdV dt +

+

∫ ∞

0

∫

ℜ3

∇ · (Z1∇E) GdV dt +

+

∫ ∞

0

∫

ℜ3

k1
∂E

∂t
dV dt +

+

∫ ∞

0

∫

ℜ3

z · ∇E GdV dt (A.33)

where

G(x∗ − x, t− t∗) =
−1

4πr
δ(t− t∗ +

r

c0
) (A.34)

with r = |x∗ − x|, for x and x∗ representing the source and the observer positions in

the air frame of reference, respectively, while t∗ represents the time of observation and

t the time of emission of the signal. At this stage it is worthy noting that two Dirac delta

functions appear in the integrals in Eq. (A.33), one arising from the derivatives of E,

and the other from the Eq. (A.34).

As mentioned above, E is time–independent in the body space; hence it is convenient to

transform the air–space solution (A.33) into one expressed in the body space. In order to

distinguish the air–space and the body–space, in the following we use (x, t) to indicate

an event in the air space and (y, t̄) to indicate an event in the body space. To accomplish

this transformation, the following relation relating the two spaces is introduced

x(y, t̄) = x0(t̄) + R(t̄)y (A.35)

where x0 denotes the air–space image of the body point y = 0 and R is an orthogonal

tensor representing a rigid–body rotation around x0. The Jacobian of the rigid–body
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transformation is equal to one. In addition, by defining vy = RT ∂x

∂t̄
as the body–space

vector of the velocity of y relative to the air space, the time derivatives between the two

spaces are related by1

∂

∂t
=

∂

∂t̄
− vy · ∇y (A.36)

where ∇y denotes the body–space gradient operator given by ∇y = RT∇.

For the next mathematical manipulations it is useful to recall that for any function h(t̄)
and g(t̄),

∫ ∞

0

h(t̄)δ[g(t̄)]dt̄ =
∑

k

∫ ∞

0

h(t̄)

ġ(t̄)
δ(t̄− t̄k)dt̄ (A.37)

where t̄k are the roots of g(t̄) = 0. Making reference to the body–space, it results that

g = (t̄− t̄∗ +
|ry|
c0

) with ry = RT [x(y∗, t̄∗) − x(y, t̄)] and thus ġ = 1 − ry · vy

c0|ry|
.

Throughout the thesis, we limit ourselves to the case in which the local Mach number is

less than one; this implies that the equation g(t̄) = 0 has only a root, denoted with (t̄∗−
ϑ). By combining the above relations with Eq. (A.33) and performing an integration by

parts (with the condition u = 0 at infinity) on the right side of Eq. (A.33), one obtains

the following integral solution in the body–space

E(y∗)u(y∗, t∗) =

∫ ∞

0

∫

ℜ3

Ǧ χdV dt̄ +

−
∫ ∞

0

∫

ℜ3

(Zy∇yE) ∇yǦdV dt̄ +

−
∫ ∞

0

∫

ℜ3

k2
dBE

dt̄
(
dBǦ

dt̄
)dV dt̄ +

+

∫ ∞

0

∫

ℜ3

(z1y · ∇yE)
dBǦ

dt̄
dV dt̄ +

−
∫ ∞

0

∫

ℜ3

(Z1y∇yE) ǦdV dt̄ +

+

∫ ∞

0

∫

ℜ3

k1
dBE

dt̄
ǦdV dt̄ +

+

∫ ∞

0

∫

ℜ3

(zy · ∇yE) ǦdV dt̄ (A.38)

where the invariants and mathematical operators with the suffix y have their image in

the body–space; in particular, zy = RT z and Zy = RT ZR.

The eulerian time derivative
dB

dt̄
is expressed by

dB

dt̄
=

∂

∂t̄
− vy · ∇y (A.39)

1For the sake of clarity, in the following, the pedix y indicates tensorial and vectorial quantities

whose images are referred to the body–space.
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where
∂

∂t̄
denotes the material derivative (following a body point); accounting for

(A.37), it results that Ǧ(y − y∗, t̄− t̄∗) = Ĝ δ(t̄− t̄∗ + ϑ) with

Ĝ =

[

∣

∣

∣
1 − ry · vy

c0|ry|
∣

∣

∣

−1 −1

4π|ry|

]

ϑ

(A.40)

In order to transform the integral solution (A.38) into a more suitable expression, let us

note that ∇yE = δ(f)ny|∇yf |; hence, for any body–space vector a(y, t) we have

∫ ∞

0

∫

ℜ3

a · ∇yE δ(t̄− t̄∗ + ϑ)dV dt̄ =

∫

S

[a · ny]ϑ dS (A.41)

where [...]ϑ = [...]t̄∗−ϑ denotes that the kernel of the integral is evaluated at the emission

time. Moreover,
∂E

∂t̄
= 0 implies

dBE

dt̄
= −vy · ∇yE; hence, Eq. (A.41) yields, for

any f(y, t̄)

∫ ∞

0

∫

ℜ3

f
dBE

dt̄
δ(t̄− t̄∗ + ϑ)dV dt̄ = −

∫

S

[f vy · ny]ϑ dS (A.42)

Next, using the relation ∇yǦ = ∇yĜ δ + Ĝ ∇yδ and noting that ϑ = ϑ(y,y∗, t̄∗) we

have that

∇yǦ = ∇yĜ δ(t̄− t̄∗ + ϑ) + Ĝ δ̇(t̄− t̄∗ + ϑ)∇yϑ (A.43)

Furthermore,
dBǦ

dt̄
= Ĝ δ̇ − vy · ∇yǦ and hence recalling that

∫ ∞

−∞

f δ̇dt̄ = −ḟ(0)

we obtain the following expressions for the integrals appearing in Eq. (A.38)

I1 =

∫ ∞

0

∫

ℜ3

(Zy∇yE) ∇yǦdV dt̄ =

=

∫

S

[

(Zyny) · ∇yĜ− (Żyny) · ∇yϑ Ĝ
]

ϑ
dS

I2 =

∫ ∞

0

∫

ℜ3

k2
dBE

dt̄
(
dBǦ

dt̄
)dV dt̄ =

=

∫

S

{

k2 vy · nyvy · ∇yĜ+ [k2 vy · ny(1 − vy · ∇yϑ)]
˙
Ĝ

}

ϑ
dS

I3 =

∫ ∞

0

∫

ℜ3

(z1y · ∇yE)
dBǦ

dt̄
dV dt̄ =

= −
∫

S

{

[

z1y · ny(1 − vy · ∇yϑ)
]˙
Ĝ+ z1y · nyvy · ∇yĜ

}

ϑ
dS
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I4 =

∫ ∞

0

∫

ℜ3

(Z1y∇yE) ∇yǦdV dt̄ =

=

∫

S

[

(Z1yny) · ∇yĜ− (Ż1yny) · ∇yϑ Ĝ
]

ϑ
dS

I5 =

∫ ∞

0

∫

ℜ3

k1
dBE

dt̄
ǦdV dt̄ = −

∫

S

Ĝ [k1 vy · ny]ϑ dS

I6 =

∫ ∞

0

∫

ℜ3

(zy · ∇yE) ǦdV dt̄ =

∫

S

[

zy · nyĜ
]

ϑ
dS

where all the time derivatives are performed in the body–space. Finally, combining the

above equations, one obtains the desired boundary integral representation of the solution

of Eq. (A.31) for the field around a volume ℜ3 \ V moving in arbitrary rigid motion

E(y∗)u(y∗, t∗) =

∫ ∞

0

∫

ℜ3

Ǧ χdV dt̄− I1 − I2 + I3 − I4 + I5 + I6 (A.44)
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Application to Aeroacoustics

For aeroacoustics applications the variable to be propagated is the pressure disturbance

p′ governed by Eq. (A.21) which is represented by Eq. (A.31) for û = p̂′, Z = P,

χ = −∇ · ∇ · (ET), k2 = ρ0, z1 = ρ(u − v), Z1 = ρu ⊗ (u − v), k1 = 0 and

z = 0. Thus I5 = I6 = 0 and observing that (a⊗b)c = (b ·c)a and for u− = (u − v)
and u+ = (u + v) the integral solution for the permeable FWHE, written in the space

rigidly moving with the body, reads

E(y∗)p′(y∗, t∗) =

∫ ∞

0

∫

ℜ3

Ǧ χdV dt̄

−
∫

S

[

(Pyny) · ∇yĜ− (Ṗyny) · ∇yϑ Ĝ
]

ϑ
dS

− ρ0

∫

S

{

vy · nyvy · ∇yĜ+ [vy · ny(1 − vy · ∇yϑ)]
˙
Ĝ

}

ϑ
dS

−
∫

S

{

ρu− · ny u+ · ∇yĜ
}

ϑ
dS

+

∫

S

{

[

ρu− · ny(1 − u+ · ∇yϑ)
]˙
Ĝ

}

ϑ
dS (A.45)

In appendix A.4 it is shown that the above integral solution is fully equivalent to the

Farassat formulation 1A.

Application to Potential Aerodynamics

Concerning the aerodynamic problem, the velocity potential is governed by Eq. (A.28)

which is represented by Eq. (A.31) for û = φ̂, χ = Eσ, z = ∇φ, Z = Iφ, k1 = −φ̇/c2,

k2 = −φ/c2, z1 = 0 and Z1 = 0.

In this case it results that I3 = I4 = 0 and the following boundary integral representa-

tion in the body space is obtained for the velocity potential

E(y∗, t∗)φ(y∗, t∗) =

∫

V

Ĝ [σ]ϑdV +

∫

S

[

∂φ

∂ñ
Ĝ− φ

∂Ĝ

∂ñ

]

ϑ

dS +

+

∫

S

[

Ĝ
∂φ

∂t̄

(

∂ϑ

∂ñ
+ 2

vy · ny

c20

)]

ϑ

+
1

c20

∫

S

[

φ Ĝ
∂

∂t̄
[vy ·ny(1−vy ·∇yϑ)]

]

ϑ

dS (A.46)

where
∂

∂ñ
=

∂

∂n
− 1

c20
(vy · ny) (vy · ∇y).
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A.4 Equivalence with Farassat 1A Formulation for
Aeroacoustic Applications

Equation (A.45) is the integral solution of the permeable Ffowcs Williams and Hawk-

ings equation, written in the body space of reference; in this section, the equivalence

with the Farassat 1A formulation is demonstrated for impermeable body surfaces. Ac-

cording to Farassat 1A formulation the thickness noise and the loading noise contribu-

tions are, respectively, given by

4πpT
′(x∗, t∗) =

∫

S

[

ρ0(v̇n + vṅ)

r|1 −Mr|2
]

ϑ

dS(y)

+

∫

S

[

ρ0vn(rṀr + c0Mr − c0M
2)

r2|1 −Mr|3

]

ϑ

dS(y) (A.47)

4πpL
′(x∗, t∗) =

1

c0

∫

S=0

[

˙̂p cosθ + p̂ ṅj r̂j
r|1 −Mr|2

]

ϑ

dS(y)

+

∫

S

[

p̂ cosθ − p̂ Mn

r2|1 −Mr|2
]

ϑ

dS(y)

+
1

c0

∫

S

[

p̂ cosθ (rṀr + c0Mr − c0M
2)

r2|1 −Mr|3

]

ϑ

dS(y) (A.48)

where r = |x∗ − x| is the magnitude of the vector r representing the distance source–

observer, Mr represents the Mach number, at the x source point, computed along the

source–observer direction identified by r̂, vn = v·n, v̇n = v̇·n, vṅ = v·ṅ, Ṁr = Ṁ·r̂,

Mn = M · n and cosθ = n · r̂. The time derivatives ( )˙ are performed in the air-space.

In order to show the equivalence between the above formulation and that proposed

by Morino and Gennaretti, the first step is to express ∇yĜ and ∇yϑ. To this purpose, let

us first note that the time derivative of a retarded function fϑ = f(y, t̄∗ − ϑ(y,y∗, t∗))
may be expressed as

∂fϑ

∂y
=
∂f

∂y

∣

∣

∣

ret
+
∂f

∂t̄

∣

∣

∣

y

∂t̄

∂ϑ

∣

∣

∣

ret

∂ϑ

∂y
(A.49)

where t̄ = t̄∗ − ϑ. By exploiting the above relation and observing that the time delay

satisfies the following equation

c0ϑ = |x∗(y∗, t̄∗) − x(y, t̄∗ − ϑ)| (A.50)

∇yϑ may be written as

∇yϑ = − r̂y

c0 (1 −Mr)

∣

∣

∣

ϑ
(A.51)

where r̂y is the unit vector in the direction observer–source. Next, let us consider the

retarded Green function

Ĝ =

[

− 1

4π|ry|

(

1

1 −Mr

)]

ϑ

(A.52)
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where (Mr =
vy

c0
· r̂y) Thus, from (A.49) and (A.52) and observing that, for any vector

c, d, one has ∇(c · d) = [∇c]
T

d + [∇d]
T

c, it follows that

∇yĜϑ = ∇yĜ
∣

∣

∣

ϑ
− ˙̂
G

∣

∣

∣

ϑ
∇yϑ (A.53)

with

∇yĜ =
−1

4π
∇y

(

1

|ry|

) (

1

1 −Mr

)

− 1

4π|ry|
∇y

(

1

1 −Mr

)

(A.54)

and

∇y
1

|ry|
=

r̂y

|ry|2

∇y

(

1

1 −Mr

)

= − 1

c0 (1 −Mr)
2∇y (vy · r̂y) =

[∇yvy]
T

r̂y + [∇y r̂y]
T

vy

c0 (1 −Mr)
2

The tensor quantities ∇yvy and ∇y r̂y come from the relations describing the body

motion. To this aim, by denoting with ω the body angular velocity, we introduce an

skew tensor Ω such that, for any vector c, ω ∧ c = Ωc.

Thus, the air–space derivative of R is Ṙ = RΩy = ΩR. By recalling that the air–space

image of y is

x(y, t̄) = x0(t̄) + R(t̄)y (A.55)

the body–space image of the velocity of y (relative to the air–space) results

vy = RT v0 + RT Ṙy = RT v0 + Ωyy (A.56)

Thus, being

ry = RT [x(y∗, t̄∗) − x(y, t̄)] (A.57)

one obtains

∇yvy =Ωy

and

∇y r̂y = − I

|ry|
+

r̂y ⊗ r̂y

|ry|
The time derivative of Ĝ may be written as

˙̂
G = − Ṁr

4π|ry| (1 −Mr)
2 +

(|ry|)˙
4π (1 −Mr) |ry|2

(A.58)

The rate of change of the local velocity, as viewed by the body–space is

RT v̇ = v̇y + Ωyvy (A.59)

in which v̇ represents the air–space image of the time derivative of the velocity of y.

Furthermore, observing that ṙy = −Ωry − vy , the rate of change of the distance |ry| as
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viewed by the body–space is coincident with the component of the local velocity along

the direction observer–source, that is

(|ry|)˙ = ṙy · r̂y = −vr (A.60)

Basing on the above relations, some mathematical manipulations show the excepted

equivalence between formulations.

Thickness Noise Term

By combining the following expressions

[vy · ny(1 − vy · ∇yϑ)]
˙
Ĝ = − v̇n

4π|ry| (1 −Mr)
− v̇nvy · r̂y

4πc0|ry| (1 −Mr)
2

+ vn
Ωyvy · r̂y

4πc0|ry| (1 −Mr)
2

− vn
RT v̇ · r̂y

4πc0|ry| (1 −Mr)
2 (A.61)

vy · ny vy · ∇yG =
vn

4π

[

− r̂y · vy

|ry|2 (1 −Mr)
− Ωy r̂y · vy

c0|ry| (1 −Mr)
2

]

+
vn

4π

[

vy − vr r̂y

c0|ry|2 (1 −Mr)
2 · vy −

vr

|ry|
r̂y · vy

c0|ry| (1 −Mr)
2

]

− vn

4π





RT v̇ · r̂y − v2−v2
r

|ry|

c20|ry| (1 −Mr)
3 r̂y · vy



 (A.62)

in which v̇ is the air–space image of the time derivative of the air–space velocity of y,

v̇n = v̇y · ny , vr = vy · r̂y , v2 = v · v and by noting that (Ωyvy · r̂y) = −Ωy r̂y · vy ,

one obtains the following expression for the kernel of the thickness noise integral

−ρ0

{

vy · ny vy · ∇yG+ [vy · ny(1 − vy · ∇yϑ)]
˙
Ĝ

}

=

ρ0

{

−vn
c0 M

2 − c0 Mr − Ṁ · r
4π|ry|2 (1 −Mr)

3 +
v̇n

4π|ry| (1 −Mr)
2

}

(A.63)

where Ṁ denotes the air–space derivative of the local Mach number whereas r indicates

the air–space image of the distance between the observer position and the source point.

Let us note that [v · n]
˙
= [vy · ny]

˙
= v̇ ·n+v · ṅ = v̇y ·ny because, in the body–space,

ṅy = 0; hence, the equivalence with the kernel of the Eq. (A.47) is shown.
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Loading Noise Term

In order to show the equivalence between −
[

(Pyny) · ∇yĜ− (Ṗyny) · ∇yϑ Ĝ
]

and

the kernel of the Eq. (A.48), let us observe that (see equations above)

∇yG · n̂y =
1

4π

[

− cosθ

|ry|2 (1 −Mr)
+

Ωy r̂y · n̂y

c0|ry| (1 −Mr)
2

]

+
1

4π

[

vn − vr cosθ

c0|ry|2 (1 −Mr)
2 − vr cosθ

c0|ry|2 (1 −Mr)
2

]

− 1

4π





RT v̇ · r̂y +
v2−v2

r

|ry|

c20|ry| (1 −Mr)
3



 cosθ (A.64)

Furthermore

RT ˙̂n = ˙̂ny + Ωyn̂y (A.65)

Hence, since ˙̂ny = 0

˙̂n · r̂ = R Ωy ny · r̂ = Ωyny · r̂y (A.66)

Observing that (−Ωy r̂y · n̂y) = Ωyn̂y · r̂y , from the above relation one obtains

(−Ωy r̂y · n̂y) = ˙̂n · r̂ (A.67)

Similarly, RT Ṁ · r̂y = Ṁ · r̂; it results that

∇yG · n̂y =
1

4π

[

− cosθ

|ry|2 (1 −Mr)
2 − Mr cosθ

|ry|2 (1 −Mr)
3

]

+
1

4π

[

−
˙̂n · r̂

c0|ry| (1 −Mr)
2 +

Mn

|ry|2 (1 −Mr)
2

]

− 1

4π

[

Ṁ · r̂ cosθ
c0|ry| (1 −Mr)

3 − M2 cosθ

|ry|2 (1 −Mr)
3

]

(A.68)

Furthermore, relations (A.51) and (A.52) yield

∇yϑ · ny Ĝϑ =
cosθ

4π c0|ry| (1 −Mr)
2 (A.69)

Finally it results that

−Pyny · ∇yĜ =
p cosθ (c0 Mr + Ṁ · r − c0 M

2)

4π c0|ry|2 (1 −Mr)
3

−
[

−p cosθ + pMn

4π |ry|2 (1 −Mr)
2 − p ˙̂n · r̂

4π c0|ry| (1 −Mr)
2

]

(A.70)
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and

Ṗyny · ∇yϑ Ĝ =
ṗ cosθ

4π c0|ry| (1 −Mr)
2 (A.71)

Combining Eqs. (A.70) and (A.71) one obtains the following expression for the kernel

of the loading noise term

−
[

(Pyny) · ∇yĜ − (Ṗyny) · ∇yϑ Ĝ
]

=

=
p cosθ (c0 Mr + Ṁ · r − c0 M

2)

4π c0|ry|2 (1 −Mr)
3 +

−
[

−p cosθ + pMn

4π |ry|2 (1 −Mr)
2 − p ˙̂n · r̂

4π c0|ry| (1 −Mr)
2

]

+

+
ṗ cosθ

4π c0|ry| (1 −Mr)
2 (A.72)

that is equivalent to Eq. (A.48).
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Appendix B

Hydrodynamics of Cavitating

Propellers

B.1 Statement of the Problem

The hydrodynamic model discussed here is based on a potential flow formulation; this

approach combines a boundary integral formulation for the velocity potential with a

cavitation model aimed to study the time dependent sheet cavity, typically occurring on

propeller blades in the wake of the hull. Since the cavity surface is not known a priori

(its location is part of the solution to the boundary value problem) and the boundary

conditions on it are non linear, the resulting problem is fully non linear. The main

features of the cavitation model is that it does not describe the two-phase flow inside the

bubble but it considers the cavity as a homogeneous bubble bounded by an unknown

surface. Moreover, for the scope of the present work, the effects induced by the viscosity

on the detachment point are not considered; the cavity detachment point is assumed to

be located at the blade leading edge1.

The proposed model is valid to study a single propeller subject to a spatially non-

uniform onset flow (hereafter referred to as behind-hull condition). This configuration

is used to simulate a propeller in the wake of a ship hull through a simplified model

where hull-propeller interactions are limited to consider a prescribed hull wake flow

incoming to an isolated propeller in unbounded fluid domain. Such a configuration may

be conveniently studied introducing two Cartesian frames of reference. One is fixed

to the hull, (Oxy
F
z

F
) (fixed frame of reference, FFR), whereas the other is rigidly

connected to the rotating propeller, (Oxyz) (rotating frame of reference, RFR). The

two frames have common origin and x axis, parallel to the propeller axis and pointing

downstream (see Fig. B.1). Conversion of tensor quantities from FFR to RFR is obtained

through a rotation tensor A
RF

= A
RF

(θ), where θ = 2πnt is the angle spanned by the

z-axis of the RFR, t is time and n is the propeller rotational speed (rps). At time t = 0,

1Under the assumption that the viscosity effects are confined inside the boundary layer, the

present model might be coupled with the integral equation of the boundary layer to consider a

more realistic prevision of the cavity detachment point. Details on this aspect are shown in Ref.

[30]
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Figure B.1: Definition of rotating and fixed frames of reference: righthanded propeller observed

from front–side.

the two frames of reference coincide. The inflow v
A

to the propeller is written as the

sum of two contributions

v
A

= −v0 + vw (B.1)

where v0 denotes the ship speed2 and v
w

= v
w
(y

F
, z

F
) is the velocity defect due to

the hull boundary layer. In the present model, it is assumed that quantity v
w

is constant

along x- axis (frozen incoming wake assumption).

Denoting by u the propeller-induced perturbation velocity, the total velocity relative to

the body reads

q = q
0

+ q
w

+ u (B.2)

where

q
0

= −v
0
− Ωr (B.3)

and

q
w

= A
RF

v
w

(B.4)

The tensor Ω represents the rotation tensor associated to the propeller rotational speed.

It should be observed that quantity q
w

is time-dependent due to conversion from FFR

to RFR.

Basic assumption of the present formulation is that only the velocity perturbation asso-

ciated to inviscid, irrotational flow effects is considered. Thus, it is possible to recast

the perturbation velocity u in terms of the gradient of a scalar potential as u = ∇φ.

Being the incompressible flow assumption fully adequate to describe the hydrodynamic

behaviour of the blade, the Laplace equation

∇2φ = 0 (B.5)

2A ship advancing with a time independent forward speed v0 is considered.
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holds everywhere except for a zero thickness layer where the vorticity related to the

lift/thrust generation mechanism is shed downstream the body. This surface, labelled as

the trailing wake, represents a discontinuity surface for the velocity potential. Equation

(B.5) must be completed with suitable boundary conditions on the wetted body surface

S
W B

and on the hub surface S
H

, on the potential wake S
W

and on the cavity. To this

purpose, the following relations must be satisfied:

BCs on wetted area

q · n = 0 (B.6)

that, denoting with n the outward unit normal vector, transforms into

χ =
∂φ

∂n
= − (q

0
+ q

w
) · n ∀x ∈ S

W B
∪ S

H
(B.7)

BCs on the wake







∆

(

∂φ

∂n

)

= 0

∆p = 0

∀x ∈ S
W

(B.8)

In order to derive the boundary conditions on the cavity, the cavitation model is out-

lined in the following sections. More details are presented in Ref. [82]. The approach,

adapted from a formulation proposed by Kinnas and Fine [83], is limited to address

vaporization phenomena on lifting surfaces in which the cavity originates in the leading

edge region and is attached to the solid surface (partial cavitation) or extends down-

stream the lifting surface trailing edge (supercavitation). The resulting methodology is

valid to study sheet cavitation on propeller blades, whereas no attempt to model cav-

ity two-phase flow features like re-entrant jet, cloud formation and vortex cavitation

(at blade tip or at propeller hub) is done. In the cavitation model here presented, a

closed homogeneous surface S
C

enclosing the vapor region (the cavity) is introduced;

this surface represents a boundary surface of the computational domain and no attempt

to investigate the gaseous phase inside the volume surrounded by S
C

is done.

B.2 Sheet Cavitation Modeling

Metrics

Let us introduce a right–handed system of material coordinates, i.e.,a system of curvi-

linear coordinates that moves with the propeller blade; specifically, s ed u are chordwise

and spanwise curvilinear abscissae on propeller blade surface3, respectively, whereas n
is normal to the surface. Denoting with ξα, (α = 1, 2, 3) the material coordinates and

with x the location of a material particle identified by x = x̂(ξα, t), the definition of

3On the wake, s is in the flow direction and u is transversal.
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material covariant base vectors gα =
∂x

∂ξα
allows to identify the following unit vectors

tangent to the s, u and n line

ŝ =

(

∂x

∂s
i +

∂y

∂s
j +

∂z

∂s
k

)

/

√

(

∂x

∂s

)2

+

(

∂y

∂s

)2

+

(

∂z

∂s

)2

û =

(

∂x

∂u
i +

∂y

∂u
j +

∂z

∂u
k

)

/

√

(

∂x

∂u

)2

+

(

∂y

∂u

)2

+

(

∂z

∂u

)2

n = ŝ × û/‖ŝ × û‖

where i, j, k are the base vectors of a orthonormal Cartesian system and x, y, z repre-

sents the Cartesian components of the location of a material point ξα on the body surface

S
B

or on the wake. The surface of the cavity S
C

, introduced at the end of section (B.1),

may be conveniently expressed as

Ŝ
C

(s, u, n, t) = 0 (B.9)

or equivalently as

ζ − hc(s, u, t) = 0 (B.10)

where ζ represents the coordinate of a material particle on the cavity surface in the n
direction and hc denotes the thickness of the bubble. The normal vector at any point on

the cavity is defined by

nc = ∇S
C

(B.11)

By using Eq. (B.10), and the expression of the gradient in curvilinear coordinates

∇S
C

=
∂S

C

∂ξα
gα (B.12)

in which gα are the contravariant base vectors, the following relation may be derived

nc = −∂hc

∂s
š − ∂hc

∂u
ǔ + n (B.13)

where š and ǔ are the contravariant base vectors associated to the s and u directions.

By exploiting the following relations relating covariant and contravariant bases

š =
1

sin2θ
(ŝ − cosθ û)

ǔ =
1

sin2θ
(û − cosθ ŝ)

ň = n

where θ is the local angle between s and u lines, Eq. (B.13) may be written as

nc = − 1

sin2 θ

[(

∂hc

∂s
− ∂hc

∂u
cos θ

)

ŝ +

(

∂hc

∂u
− ∂hc

∂s
cos θ

)

û

]

+ n (B.14)
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stating that the for any point of the cavity, the difference between nc and the normal n to

the blade surface is related to contributions ofO(hc) in s and u directions. Furthermore,

one obtains that

‖nc‖2 =
1

sin2 θ

[

(

∂hc

∂s

)2

+

(

∂hc

∂u

)2

− 2
∂hc

∂s

∂hc

∂u
cos θ + sin2 θ

]

that is

‖nc‖ =
√

1 + O (h2
c) (B.15)

stating that the amplitude of the vector nc is different from unity because of quantities

O
(

h2
c

)

. Within the approximation of the proposed model, such differences may be

neglected.

Geometry of the Cavitation Bubble

Let V
C

be the region characterized by the cavitation bubble4, S
W B

the non–cavitating

portion of the blade surface, S
H

the hub surface5, S
W

the wake surface, S
CB

the cavi-

tating portion of the body surface and S
CW

the cavitating portion of the potential wake.

The cavity thickness hc is defined as the distance between surfaces S
C

and S
CB

. Re-

calling constant-pressure and impermeability conditions, S
C

is a material surface and

an evolution equation for hc may be derived. To this aim, the physical condition

D

Dt
Ŝ

C
(s, u, n, t) = 0 (B.16)

with D/Dt = ∂/∂t+q ·∇, may be suitable re–written by using Eq. (B.10); this yields

− ∂hc

∂t
+ q ·

(

n − ∂hc

∂s
š − ∂hc

∂u
ǔ

)

= 0 (B.17)

that is equal to

− ∂hc

∂t
+ q · nc = 0 (B.18)

or
∂φ

∂n
= −vI · n + χc ∀x ∈ S

CB
(B.19)

in terms of velocity potential, being χc = q · ∇shc +
∂hc

∂t
and vI = q

0
+ q

w
.

Note that ∇s is the gradient operator acting on the surface. Equation (B.19) yields a

condition for the normal derivative of the potential velocity at any point of S
CB

.

4Dealing with attached cavitation, it is reasonable to identify the cavity surface S
C

with its

projection S
CB

and S
CW

on the blade and wake surfaces.
5We assume that on the hub surface, cavitation does not occur.
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The governing equation for the dynamics of the cavity may be derived by combining

Eqs. (B.18) and (B.13) such to obtain

Cs (s, u)
∂hc

∂s
+ Cu (s, u)

∂hc

∂u
+

+ Ct (s, u)
∂hc

∂t
= −

(

v
In

+
∂φ

∂n

)

∀x ∈ S
CB

(B.20)

where the coefficients Cs, Cu e Ct are given by

Cs (s, u) =
1

sin2 θ

[(

v
Iu

+
∂φ

∂u

)

cos θ −
(

v
Is

+
∂φ

∂s

)]

Cu (s, u) =
1

sin2θ

[(

v
Is

+
∂φ

∂s

)

cos θ −
(

v
Iu

+
∂φ

∂u

)]

Ct (s, u) = −1

The solution of Eq. (B.20) provides the thickness of the bubble hc.

A similar equation may be obtained to describe cavities extending downstream the blade

trailing edge (supercavitating-flow conditions). Denoting with S+
C

e con S−
C

the upper

and lower sides of the supercavitation region, Eq. (B.16) yields

D+

Dt Ŝ+
C

(s, u, n, t) = 0 ⇔
(

∂
∂t + q+ · ∇

)

[ζ − h+
c (s, u, t)] = 0 ∀x ∈ S+

C

D−

Dt Ŝ−
C

(s, u, n, t) = 0 ⇔
(

∂
∂t + q− · ∇

)

[ζ − h−c (s, u, t)] = 0 ∀x ∈ S−
C

(B.21)

Manipulating one obtains

− ∂h+
c

∂t
+ q+ ·

(

n
W

− ∂h+
c

∂s
š − ∂h+

c

∂u
ǔ

)

= 0

− ∂h−c
∂t

+ q− ·
(

n
W

− ∂h−c
∂s

š − ∂h−c
∂u

ǔ

)

= 0 (B.22)

where n
W

= n indicates the normal vector to the wake surface S
W

oriented from the

lower side to the upper one. After algebraic manipulations, the following relation is

derived

− 2
∂hcw

∂t
+ (

∂φ+

∂n
− ∂φ−

∂n
) − 2(

∂hcw

∂s
q+ · š − ∂hcw

∂u
q+ · ǔ) +

− (q+ − q−) · (š∂h
−
c

∂s
+ ǔ

∂h−c
∂u

) = 0

where hcw and hcm, allowing to describe the shape of S+
C

and S−
C

, are defined by

hcw =
1

2

(

h+
c − h−c

)

hcm =
1

2

(

h+
c + h−c

)

(B.23)
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In particular hcm identifies the distance between the wake and the average surface of the

bubble while hcw is the semi–thickness of the supercavitating bubble measured from

the average surface. By assuming the supercavitating surface S
C

equal to its projection

S
CW

on the wake, without loss of generality we assume h−c = 0; thus, hcw coincides

with hcm and assumes the same role of hc on the blade where hc = 2hcw at the trailing

edge. Such assumption yields

2
∂hcw

∂t
+ 2

∂hcw

∂s
q+ · š + 2

∂hcw

∂u
q+ · ǔ = ∆(

∂φ

∂n
) (B.24)

that, once manipulated, provides the governing equation for the dynamic behaviour of

the cavity downstream the blade trailing edge. It results

C+
s (s, u)

∂2hcw

∂s
+ C+

u (s, u)
∂2hcw

∂u
+ C+

t (s, u)
∂2hcw

∂t
= −χw ∀x ∈ S

CW
(B.25)

where

C+
s (s, u) =

1

sin2 θ

[(

v
Iu

+
∂φ+

∂u

)

cos θ −
(

v
Is

+
∂φ+

∂s

)]

C+
u (s, u) =

1

sin2θ

[(

v
Is

+
∂φ+

∂s

)

cos θ −
(

v
Iu

+
∂φ+

∂u

)]

C+
t (s, u) = 1 (B.26)

and

χw = ∆

(

∂φ

∂n

)

(B.27)

More details may be found in Ref. [83].

B.3 Boundary Conditions on the Cavitation Bubble

A surface tracking approach is followed in which the vapor/water interface is deter-

mined as a physical boundary of the liquid domain. Basic assumptions are that the

cavity outer edge S
C

is characterized by a constant pressure condition p = pv , where

pv is the vapor pressure, whereas S
C

is impermeable. Imposing p = pv , the Bernoulli

theorem [23], referred to the RFR, reads

∂φ

∂t
+

1

2
q2 +

pv

ρ0
+ g z0 =

1

2
‖v

I
‖2 +

pa

ρ0
∀x ∈ S

C
(B.28)

where q = ‖q‖, v
I

= q
0

+ q
w

, whereas gz0 is the hydrostatic head term. The

Bernoulli equation yields a direct relationship between the cavitation number σn =
(pa − pv)/ 1

2ρ(nDP
)2 and the total velocity at an arbitrary point on the cavity surface,

that is

q =

√

(nD)
2
σ − 2

(

∂φ

∂t
+ gz0

)

+ ‖v
I
‖2 ∀x ∈ S

C
(B.29)
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Recalling Eq. (B.2) with u = ∇φ and separating ∇φ components, Eq. (B.29) can be

manipulated to obtain a Dirichlet-type condition; to this aim, the fluid velocity at any

point of the cavity may be written in terms of the local contravariant base vectors as

q = qsš + quǔ + qnn (B.30)

whose module is given by

q2 =
1

sin2 θ

(

q2s + q2u − 2 qsqu cos θ + sin2 θq2n
)

. (B.31)

The relation B.31 may be interpreted as an algebraic equation for qs

qs = qu cos θ ∓ | sin θ|
√

q2 − q2u − q2n. (B.32)

where the solution with the sign + is the only physically consistent one. By expressing

the inflow velocity on the cavity as

v
I

= v
Is

š + v
Iu

ǔ + v
In

n (B.33)

and by observing that

qs = v
Is

+
∂φ

∂s

qu = v
Iu

+
∂φ

∂u

qn = v
In

+
∂φ

∂n

(B.34)

the combination of Eqs. (B.29) and (B.31) yields a nonlinear partial differential equation

for the velocity potential on the cavity

∂φ

∂s
= −v

Is
+

(

v
Iu

+
∂φ

∂u

)

cos θ (B.35)

+ | sin θ|
√

Ξ ∀x ∈ S
CB

where,

Ξ = (nD)
2
σ − 2

(

∂φ

∂t
+ gz0

)

+ ‖v
I
‖2 −

(

v
Iu

+
∂φ

∂u

)2

−
(

v
In

+
∂φ

∂n

)2

that requires suitable boundary conditions and initial conditions to be solved. By inte-

grating Eq. (B.35) along s, one has

φ (s, u) = φ (s
CLE

, u) +

∫ s

s
CLE

[(

v
Iu

+
∂φ

∂u

)

cos θ − v
Is

(B.36)

+ | sin θ|
√

Ξ
]

dξ
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or, in compact form

φ (s, u) = φ (s
CLE

, u) +

∫ s

s
CLE

F dξ ∀x ∈ S
CB

(B.37)

where s
CLE

is the cavity leading edge abscissa in chordwise direction, whereas

F = −(q
0
+ q

w
) · ŝ + qu cos θ + | sin θ|

√

q2 − q2u − q2n

Equation (B.37) yields a nonlinear boundary condition on the cavitating portion of the

body surface. Such a condition is also known as Dynamic Boundary Condition (DBC).

The derivation of Eq. (B.37) differs from an approach proposed in Ref. [83] by includ-

ing quantity qn at the right hand side of Eq. (B.32).

Equation (B.37) is formally valid also to describe cavities extending downstream the

blade trailing edge (supercavitating-flow conditions). In this case, the cavity is assumed

to be the continuation of the cavity present on one side of the blade surface and the cav-

ity thickness is defined with respect to the wake surface. Making reference to the upper

side of the cavitating wake, the potential function may be written as

φ+ (s, u) = φ+ (s
T E
, u) +

+

∫ s

s
T E

[(

v
Iu

+
∂φ+

∂u

)

cos θ − vIs + | sin θ|
√

Π

]

dξ ∀x ∈ S
CW

where

Π = (nD)
2
σ − 2

(

∂φ+

∂t
+ gz0

)

+ ‖v
I
‖2 +

−
(

v
Iu

+
∂φ+

∂u

)2

−
(

v
In

+
∂φ+

∂n

)2

(B.38)

and s
T E

is the cavity trailing edge abscissa in chordwise direction. In compact form,

one obtains

φ+ (s, u) = φ+ (s
T E
, u) +

∫ s

s
T E

F̂ dξ ∀x ∈ S
CW

(B.39)

where

F̂ = q+u cos θ − (q
0
+ q

w
) · ŝ + | sin θ|

√
Π (B.40)

whereas

Π =

√

q+2 − q+
2

u − q+
2

n

The potential velocity φ− at the lower side of the cavitating wake is then easily derived

from the knowledge of φ+ and δφ.

Finally, a further condition is required to overcome a local singularity at the cav-

ity trailing edge, where both the Dirichlet–type condition given by Eq. (B.37) and the

Neumann–type condition q · nc = 0 should be imposed. The cavity closure region,

also called cavity wake, is the most difficult phenomenon to address within potential
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flow models because viscous effects dominate the flow in this area. Therefore, within

potential flows theory, some simplifications have to be introduced. Potential flow mod-

els for partial cavitation may be classified in two major categories [84]: open models

and closed models. In the former, the cavity surface is an open surface, that is, there

exists a prescribed non–zero thickness at the trailing edge of the bubble; in the latter

the cavity surface meets the blade surface. Here, a closed model has been adopted6

Therefore, it is numerically convenient to impose an automatic recovery law from the

constant pressure to the pressure downstream of the cavity [30]. Specifically, pressure

is forced to vary smoothly from p = pv at the cavity trailing edge to wetted flow con-

ditions downstream the cavity, by the Bernoulli theorem.7 The procedure is based on

modifying the cavitation number from σn to σ∗
n for the dynamic boundary conditions.

In detail, by allowing for 0th and 1st order continuity of the pressure between the cav-

ity and the downstream regions, the σn value in Eq. (B.29) may be replaced with a

third-order Hermitian polynomial

σ∗
n = σn h1(ξ) +

∂σn

∂ξ
h2(ξ) − cpl h3(ξ) −

∂cpl

∂ξ
h4(ξ) (B.41)

where hk(ξ) (k = 1, 2, 3, 4) are cubic interpolation polynomials, cp = −σn and the

abscissa ξ = (s− st)/(sl − st) varies from 0 to 1 in the transition zone. The curvilinear

abscissa st denotes the starting point of the transition region whereas sl identifies the

end–point of the cavity. Immediately after the end of the cavity, cpl and
∂cpl

∂ξ
are

determined through an iterative procedure using the values of downstream part of the

cavity. In case of supercavitation, since the pressure at the end of the super–cavity is

though not to influence the loading on the blade, no pressure recovery scheme is used.

B.4 Integral Solution

The flowfield around the propeller is determined here through a boundary integral for-

mulation for the velocity potential φ. As shown in Ref. [85], at any time t the following

integral representation yields the potential at any point x immersed into the fluid

E(x)φ(x) =

∫

S
B
∪S

H

(

G χ− φ
∂G

∂n

)

dS(y) −
∫

S
W

∆φ
∂G

∂n
dS(y) +

+

∫

S
CW

∆

(

∂φ

∂n

)

G dS(y) ∀x ∈ V (B.42)

where G =
−1

4 π|x − y| is the unit source in the unbounded three-dimensional space. A

boundary integral equation is obtained by taking the limit of the representation B.42 as

6Differently from 2D flows, in 3D flows the reattachment point of the cavity is not a stagnation

point because of the effects induced by the cross flow.
7This model only needs the size of the recovery zone to be prescribed and allows to avoid

instabilities of the numerical solution of the problem.
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x tends to S
B
∪ S

H
, and imposing the boundary conditions previously described. The

result of this operation is8

1

2
φ(x) =

∫

S
B
∪S

H

(

G χ− φ
∂G

∂n

)

dS(y) −
∫

S
W

∆φ
∂G

∂n
dS(y) +

+

∫

S
CW

∆

(

∂φ

∂n

)

G dS(y) ∀x ∈ SB ∪ SH (B.43)

A similar integral equation is obtained for the cavitating portion of the wake; by con-

sidering two points x+ and x− close to the upper and lower side of the cavitating wake

respectively and by taking the limit of Eq. (B.42) as x+ and x− tends to S+
CW

and S−
CW

one obtains

1

2

[

φ+(x) + φ−(x)
]

=
1

2
∆φ(x

W
) +

+

∫

S
B
∪S

H

(

G χ− φ
∂G

∂n

)

dS(y) +

−
∫

S
W

∆φ
∂G

∂n
dS(y) +

+

∫

S
CW

∆

(

∂φ

∂n

)

GdS(y) ∀x ∈ SCW (B.44)

where x
W

represents a generic point located on the wake.

Observing that φ+ + φ− = 2φ+ − ∆φ the above integral equation transforms into

φ+(x) =
1

2
∆φ(x

W
) +

∫

S
B
∪S

H

(

G χ− φ
∂G

∂n

)

dS(y) +

−
∫

S
W

∆φ
∂G

∂n
dS(y) +

∫

S
CW

∆

(

∂φ

∂n

)

G dS(y) ∀x ∈ SCW (B.45)

It is worthy observing that Eqs. (B.43), (B.45) yield a mixed Neumann-Dirichlet prob-

lem, where φ and φ+ on S
CB

and S
CW

are known from pressure-based conditions (B.37),

(B.39) and ∂φ/∂n as well as ∆(∂φ/∂n), are unknown on S
CB

and S
CW

, respectively.

On the wetted body portion S
W B

∪ S
H

, ∂φ/∂n is known from the impermeability con-

dition (B.7), and φ is unknown. The closure of the problem is obtained by observing

that

lim
x

W
→x

T E

∆φ(x
W
, t) = φu (t) − φl (t) (B.46)

and

∆φ(x
W
, t) = ∆φ(xTE , t− τ) (B.47)

where φu and φl are the potential at the upper and lower side of the wake, xTE denotes

a wake point located at the blade trailing edge and τ the convection time between wake

8Here, we assume that x is a regular point of S
B
∪ S

H
.
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points xw and xTE . The numerical solution of Eqs. (B.43), (B.45) and (B.46) is com-

plicated in that the location of the cavity surface S
CB

and S
CW

is unknown, and the

boundary condition (B.37) and eventually (B.39) is nonlinear with respect to φ.

Numerical solutions are determined through a boundary element method. Body and

wake surfaces are discretized into hyperboloidal quadrilateral elements and flow quan-

tities are kept piecewise constant on each surface element (zero-th order discretization).

Source G and dipole ∂G/∂n integral contributions are evaluated by general analytical

formulas derived in Ref. [25]. Details of the computational methodology may be found

in Ref. [85] for non-cavitating flow, and in Ref. [86] for cavitating flow applications.

For the sake of completeness, the computational algorithm to simulate cavitating

propeller flows is briefly reviewed.

B.5 Hydrodynamic Solution Procedure

After discretizing Eqs. (B.43), (B.45), (B.46) and corresponding boundary conditions,

an iterative procedure is used, at each time step, to reduce the problem to the solution of

a linear algebraic set of equations. First9, an initial guess of the cavity planform S(1)
C0

is

assigned, and zero cavity thickness is assumed. Solving discretized Eqs. (B.43), (B.45),

(B.46) a first guess of φ and ∂φ/∂n is obtained. The nonlinear boundary condition

given by Eq. (B.37) and Eq. (B.39) is linearized assuming flow quantities in the right-

hand side known from solution at the previous iterative step. A first guess of the cavity

thickness hc is then determined from Eq. (B.20) and Eq. (B.25). These partial differen-

tial equations for hc are numerically solved through a strip-wise approach from blade

root to blade tip and from leading edge to trailing edge. Spatial and time derivatives are

discretized by a upwind first-order scheme.

Once an estimate of the cavity thickness is determined, a zero thickness condition

is applied to determine the cavity trailing edge. An extrapolation procedure in case the

condition hc = 0 is not fulfilled within the guessed cavity planform S(1)
C0

is applied.

Then, an update of the cavity planform S(2)
C0

is obtained and discretized Eqs. (B.43),

(B.45) and (B.46) are solved again. This process is iterated at each time step until

convergence of the cavity planform and of the cavity volume are reached.

The thickness of the cavity is neglected when numerically solving the boundary

integral equations for φ and for ∇φ. Thus, source and dipole terms on the cavitating

surface are evaluated on S
C0

instead on S
C

. The approximation is justified in the limit

as the present formulation is valid only for thin cavities, and a robust computational

scheme that is solved at reduced computational burden is obtained.

Finally, hydrodynamic loads can be determined by integrating pressure and viscous

friction10 over the propeller surfaces. Pressure is then determined from the Bernoulli

theorem
∂φ

∂t
+

1

2
q2 +

p

ρ0
+ g z0 =

1

2
‖v

I
‖2 +

pa

ρ0
(B.48)

9For compactness, in the following S
C0

indicates S
CB

∪ S
CW

.
10An approximated estimation of the friction coefficient could be derived through semi-

empirical formulas for a flat plate in turbulent flow (see Ref. [87]).
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Samenvatting

Geluidseisen zullen in belangrijke mate richting geven aan de ontwikkeling van de

nieuwe generaties propeller aangedreven vliegtuigen, helikopters en schepen.

Aeroakoestiek en hydroakoestiek worden daardoor steeds belangrijkere wetenschaps-

gebieden aangezien nauwkeurige voorspellingen van akoestisch gedrag een onmisbaar

gereedschap vormen voor het zogeheten Design for Reduced Noise Generation. In het

algemeen kan dit voorspellen van arodynamisch en hydrodynamisch opgewekt geluid

beschouwd worden als een opvolging van een arodynamische/hydrodynamische anal-

yse en een akoestische analyse. Het in deze dissertatie gepresenteerde onderzoek con-

centreert zich op de afleiding van akoestische formuleringen gebaseerd op de Ffowcs,

Williams, Hawkings vergelijking (FWHE) om de structuur van het geluidsveld opgewekt

door propeller aangedreven vlieg- en vaartuigen te beschrijven, zowel in de vrije ruimte

als in het bijzijn van verstrooiende lichamen zoals rompen. De reden om de FWHE als

basis te kiezen is gelegen in de bewezen fysisch consistente äeroakoustische voorspellin-

gen die met de methode gedaan worden. De literatuur laat zien dat, in de aeronautische

wereld, de FWHE een zeer efficiënte äeroakoustisch gereedschap is dat gebruikt kan

worden voor de voorspelling van het fluctuerende drukveld opgewekt door rotors en

propellers in subsone en transsone vliegcondities. Hoewel het modelleren van geluid-

sopwekking en voortplanting voor toepassing in de maritieme wereld even complex is

als in de vliegtuigbouwwereld, wordt in de meeste gevallen de hydroakoestische analyse

van caviterende en niet caviterende propellers gebaseerd op de niet-stationaire Bernoulli

vergelijking. Daarom is besloten in het onderhavige onderzoek allereerst de FWHE toe

te passen voor het voorspellen van geluidsproductie van maritieme propellers in de vrije

ruimte. Er is een vergelijking gemaakt tussen de op FWH en Bernoulli gebaseerde

aanpak voor potentiaalstromingen. Een nieuwe formulering van de poreuze formuler-

ing van de FWHE is ontwikkeld om geluidsafstraling te voorspellen van caviterende

propellers onderhevig aan niet uniforme aanstroming. De vergelijking is zowel theo-

retisch als numeriek uitgevoerd. Een niet-caviterende scheepsschroef onderhavig aan

een uniforme aanstroming is geanalyseerd. In ogenschouw nemende dat typische mari-

tieme operationele omstandigheden zodanig zijn dat niet-lineaire termen in beide formu-

leringen verwaarloosd mogen worden, is er geen hydrodynamische input nodig omtrent

het stromingsveld rondom the propeller. De Laplace vergelijking voor de snelheid-

potentiaal is opgelost gebruikmakend van een boundary integral formulering en een

nulde orde boundary integral method voor de discretisatie. Met de snelheidspotenti-

aal en de drukverdeling op de propeller, numerieke hydroakoestische onderzoekingen

hebben laten zien dat de veronderstelde vorm van het zog een grote invloed hebben op

161



Samenvatting

de drukverdeling bepaald met de Bernoulli vergelijking. De resultaten verkregen met

de FWHE daarentegen, worden niet benvloed door de ligging van het zog omdat in

dit geval het zog alleen via indirecte effecten op de loading noise term bijdraagt aan

het geluidsveld. Theoretisch gesproken kunnen de verschillen tussen beide methoden

worden opgelost door de introductie van een vrij zog maar in de praktijk leidt dit tot nu-

merieke problemen omdat het gebruik van een vrij zog gepaard gaat met hele lage con-

vergentiesnelheden bij de bepaling van het snelheidsveld vergeleken met de analyse op

basis van een voorgeschreven zog. De potentie van de FWHE in ogenschouw genomen

hebbende is er een nieuwe formulering van de FWHE ontwikkeld gericht op het eval-

ueren van geluid veroorzaakt door cavitatie, specifiek sheet cavitatie. Dit type treedt

op in operationele omstandigheden bij propellers (schroeven) die draaien in het zog van

een romp en domineert het lage frequentiegebied van het cavitatie-geluidsspectrum. In

dit gebied is een belangrijk deel van het far field geluid gekoppeld aan de bladpasseer-

frequenties en hun boventonen. De berekening van het geluid bepaald door het cyclisch

groeien en ineenklappen van cavitatiebellen aan het oppervlak van de propeller in een

niet uniforme aanstroming is uitgevoerd met een gekoppelde aanpak gebruikmakend

van een transparante vorm van de FWHE en een geschikt hydrodynamisch model van

het niet-stationaire cavitatiepatroon. Dit model, genaamd Transpiration Velocity Model

(TVM) simuleert de aanwezigheid en het akoestische gedrag van de bel middels een

verschil in de normaalcomponent van de snelheid van het lichaam en de vloeistof op de

plaatsen waar cavitatie optreedt. Deze aanpak voor de impulsgeluidafstraling ver weg

van de caviterende propellers is consistent met de optredende fysische verschijnselen

en introduceert geen aannamen die strijdig zijn met een formulering uitgaande van een

star oppervlak. De numerieke resultaten verkregen met TVM komen goed overeen met

die verkregen met de Equivalent Blade Modeling methode die ook gebaseerd is op de

FWHE voor impermeabele oppervlakken en die, tot nu toe, de enige in de literatuur gep-

resenteerde toepassing van de akoestische analogie op cavitatie geluid is. De verschillen

in voorspelde geluidsniveaus komen voort uit de verschillen in gevoeligheid van beide

methoden voor de hydrodynamische data die het cavitatiepatroon beschrijft. Numerieke

onderzoekingen geven aan dat TVM gevoeliger is voor de nauwkeurigheid van de hy-

drodynamische input door de noodzaak tijdsafgeleiden te berekenen van de functie die

de cavitatie-dikteverdeling over het bladoppervlak beschrijft. Voor impulsieve signalen

wordt de berekening van de tijdsafgeleiden van de eerste en tweede orde erg moeilijk.

Daarentegen is de EBM benadering gebaseerd op een stapsgewijze berekening van het

akoestisch effect gerelateerd aan caviteitsdynamica en is daardoor alleen de tijdshisto-

rie van het cavitatievolume benodigd. Dit maakt EBM ongeschikt voor een correcte

beschrijving in het geval van snel wisselende stromingscondities.

In deze context is het goed om op te merken dat zowel het TVM als het EBM model is

gebruikt met hydrodynamische invoer, afkomstig van een oppervlakte traceer-benadering,

om de vloeistof damp overgang te beschrijven als een oppervlakte gedefinieerd voor

propeller bladen die bubbels veroorzaken in de vloeistof. In het algemeen kan door de

koppeling van de hydrodynamische gegevens op een geschikt oppervlak dat het gebied

met de twee fasen omsluit, aan de FWHE (gebruikt als Kirchoff formulering) het verre

veld geluid voorspelt worden veroorzaakt door geluidsbronnen gerelateerd aan gedis-

tribueerde dampinsluitsels in het stromingsveld. Dit illustreert het generieke karakter

van de FWHE benadering.
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In de hiervoor beschreven hydro-akoestische onderzoeken met betrekking tot de

geluidsverspreiding van een akoestische bron (de propeller), is de grens integraal oploss-

ing van de FWHE altijd gebruikt als een integrale representatie, gebruikmakend van

de kennis van de hydrodynamische getallen die verschijnen in de kernel van de dikte-

(thickness) en belastings- (loading) geluidstermen. De aard van de integrale oploss-

ing van de FWHE verandert wanneer de nadruk wordt gelegd op de verstrooiingsef-

fecten veroorzaakt door de aanwezigheid van lichamen in het pad van de geluidsgolven

afkomstig van de propeller of rotor. Het verstrooiingsprobleem is onderzocht met een

nieuwe integrale formulering, gebaseerd op de FWHE, met als doel om de verandering

van het geluidsveld als gevolg van de aanwezigheid van vaste lichamen te begrijpen en

om de voorspelling van geluid mogelijk te maken voor configuraties waarbij een enkel

lichaam gedentificeerd kan worden als de belangrijkste geluidsbron (aangenomen dat

de druk op een lichaam onafhankelijk is van de aanwezigheid van andere lichamen).

Een verstrooiingsmodel maakt het maakt het mogelijk om het akoestische gedrag van

configuraties zoals romppropeller (vliegtuig), romp-hoofdrotor/staartrotor (helikopters)

en rompschroef (schip) te analyseren zonder de interactieve aero-hydro-dynamica te

gebruiken om het verstrooide drukveld te berekenen op de grens van de verstrooier.

Anders dan bij geluidsverspreidingsproblemen waarbij het FWHE is gebruikt als een

integrale representatie, is hier de integrale oplossing van het FWHE gebruikt als in-

tegraal vergelijking om de verstrooide drukverdeling te bepalen op het verstrooiende

lichaam. De voorgestelde FWHE formulering mag worden toegepast op luchtvaartu-

igen en scheepsconfiguraties, bestaande uit meerdere lichamen, waarbij de geluidsbron-

nen arodynamisch of hydrodynamisch onafhankelijk mogen worden verondersteld van

de aanwezigheid van de andere onderdelen van de configuratie. Propeller vliegtuigen

en schepen vallen voor een aantal gebruikscondities in deze categorie. De evaluatie

van het geluidsveld, veroorzaakt door het in contact komen van de drukverstoring(en)

met de verstrooier(s) is alleen mogelijk wanneer vooraf een analyse wordt gemaakt van

de gesoleerde bron of bronnen om het resulterende drukveld te identificeren. De hier

voorgestelde formulering is flexibel omdat het mogelijk is om verstrooiingsproblemen

voor zowel rigide als elastische lichamen in beweging en in stilstand te analyseren.

Numerieke resultaten laten zien dat de voorgestelde methodologie zeer goede resul-

taten oplevert voor stationaire starre of trillende verstrooiingslichamen, wanneer een-

voudige configuraties (waarvoor analytische oplossingen bestaan) worden onderzocht.

Het probleem van de quadrupool term moet aangestipt worden wanneer bewegende ver-

strooiers worden geanalyseerd, omdat de veronderstelling om deze term te verwaar-

lozen in de FWHE te beperkend is. Of deze term verwaarloosd mag worden hangt

af van de voorwaartse snelheid van de verstrooier en zijn vorm. De analyse van be-

wegende verstrooiers moet dus met voorzichtigheid gedaan worden omdat de Lighthill

tensor verstoringstermen kan veroorzaken die relevant kunnen worden als de integraal

formulering wordt gebruikt als integraal vergelijking. Het is belangrijk de bijdrage van

de quadrupool in de FWHE te benadrukken voor de voornoemde geluidsafstralings-

gevallen. Hierbij moet aangetekend worden dat de numerieke simulaties in deze dis-

sertatie gedaan zijn met verwaarlozing van de quadrupool in de FWHE. In principe is

de bijdrage van de quadrupool belangrijk voor een aantal redenen. Allereerst beschrijft

deze volledig het akoestisch effect van het potentiaalzog. Om de FWHE en de Bernoulli

benadering goed te kunnen vergelijken zouden de niet lineaire termen in beide metho-
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den moeten worden meegenomen. De niet- lineariteiten in beide methoden zijn echter

niet equivalent. Sommige niet-lineaire effecten beschreven door de Lighthill tensor in

de FWHE worden niet afgedekt door de niet-lineaire termen in de Bernoulli methode.

Ten tweede dekt de quadrupool term akoestische effecten af die gerelateerd zijn aan

cavitatie verschijnselen die optreden in het stromingsveld zoals cavitatie in tipwervels,

spinner wervels en bellen-cavitatie. Echter, zelfs met verwaarlozing van de quadrupool

termen, geven de numerieke resultaten aan dat de FWHE een efficiënt mathematisch

model is voor het bestuderen van akoestische problemen in een breed spectrum van

toepassingen. Een bewering is gedaan en onderbouwd over de mogelijke verklaring van

de verschillen tussen de FWHE en andere formuleringen gebaseerd op de quadrupool

term. Hieruit volgt de aanbeveling dat voor verdere ontwikkeling en verbetering van het

huidige werk een diepgaand onderzoek naar de mathematische en numerieke aspecten

van de evaluatie van de quadrupool bijdragen overwogen zou moeten worden. Verder

zou het gebruik van de gepresenteerde methode op meer realistische configuraties de

toepassing van visceuze aero-/hydrodynamische solvers nodig maken.
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