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Abstract: Heating, ventilation and air-conditioning (HVAC) units in buildings form a
system-of-subsystems entity that must be accurately integrated and controlled by the building
automation system to ensure the occupants’ comfort with reduced energy consumption. As control
of HVACs involves a standardized hierarchy of high-level set-point control and low-level
Proportional-Integral-Derivative (PID) controls, there is a need for overcoming current control
fragmentation without disrupting the standard hierarchy. In this work, we propose a model-based
approach to achieve these goals. In particular: the set-point control is based on a predictive
HVAC thermal model, and aims at optimizing thermal comfort with reduced energy consumption;
the standard low-level PID controllers are auto-tuned based on simulations of the HVAC thermal
model, and aims at good tracking of the set points. One benefit of such control structure is that the
PID dynamics are included in the predictive optimization: in this way, we are able to account for
tracking transients, which are particularly useful if the HVAC is switched on and off depending
on occupancy patterns. Experimental and simulation validation via a three-room test case at the
Delft University of Technology shows the potential for a high degree of comfort while also reducing
energy consumption.

Keywords: heating ventilation and air-conditioning (HVAC); demand side management;
occupancy-based control; predicted mean vote (PMV); optimization

1. Introduction

Heating, Ventilation and Air-Conditioning (HVAC) systems, widely used in residential and
commercial buildings, are responsible for a large part of the global energy consumption [1].
According to the European Commission’s Joint Research Center, Institute for Energy (2009), HVAC
systems in the European Union member states were estimated to account for approximately 313 TWh
of electricity use in 2007, about 11% of the total 2800 TWh consumed in Europe that year [2]. Energy
savings in HVAC systems were therefore identified as a key element to fulfill the target of reducing
energy consumption by 20% by 2020. Increased attention has been focused on the reduction of HVAC
energy consumption (without violating comfort requirements) [3], via more efficient equipment [4–6],
novel approaches to HVAC energy storage [7] or supervisory control techniques [8–10]. A recent
literature review of control methods, with an emphasis on the theory and applications of model
predictive control for HVAC systems can be found in [11].

Typical HVAC systems are comprised of boilers, air handling units (AHUs), Variable Air Volume
(VAV) boxes, radiators, thermal zones, valves, dampers, fans, pumps, pipes and ducts. The primary
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drawback with the current state of the art is that separate control systems are designed for each
HVAC component, where the design is carried out to ensure that a certain constant reference set
point is maintained. Integrating all of these single components require a tedious manual effort by
HVAC system installers to tune all these set points: apart from the enormous tuning effort [12], it is
difficult to explicitly account for changing conditions, e.g., individual comfort of occupants or their
occupancy patterns. Very often, thermal discomfort often leads to constant correction of temperature
set-points by the users, causing increased energy consumption [13,14]. Thus, it is necessary to develop
a model-based approach with the ability to integrate the human thermal comfort along with various
HVAC components. However, as thermal comfort of the users is season-dependent and highly
subjective, there exist various attempts to quantify it according to the physical characteristics of both
the occupants and their surroundings. Widely-used thermal comfort models are the Adaptive Comfort
Model [15] and the Predicted Mean Vote (PMV) [16], where the latter is considered in this work because
it is most suited in the absence of natural ventilation. Recent works on occupancy-based building
indoor climate control, also touching upon thermal comfort topics, can be found in [17,18].

While there exist many intelligent HVAC control algorithms, they often require the deployment of
a completely new control architecture. On the other hand, control architecture for building automation
is quite standardized: in particular, most HVAC low-level controllers commissioned in the field today
are of Proportional-Integral (PI) or Proportional-Integral-Derivative (PID) type. Therefore, there exists
a need to integrate modern controllers with existing PID controllers to ensure that the control objectives
are met. Furthermore, current research in Building Management Systems (BMSs) has turned towards
Model Predictive Controllers (MPC) for optimal control of building systems, thanks to its capability
of handling external disturbances [19], linear and nonlinear models with multiple constraints [20,21].
In view of this situation, in this work, we propose an integrated control structure using an upper MPC
layer and lower PID layer. The MPC is based on an integrated HVAC model and generates set-points
for the lower layer based on energy and comfort optimization, while the lower level controllers
is composed of PI controllers auto-tuned so as to track the reference set-points. One of the main
benefits of the integrated control structure is that the PID dynamics can be easily included in the MPC
optimization [22]: in this way, we are able to account for tracking transients, which are particularly
useful if the HVAC has to be switched on and off depending on occupancy patterns [23]. By doing
this, we are able to achieve integration of HVAC and occupants via a PMV index. To the best of our
knowledge, the studies available in literature about MPC for office buildings, e.g., [24,25] and references
therein, typically neglect such transients. In recent years, there has been a considerable effort in using
building energy performance models such as EnergyPlus and TRNSYS [26] not only for simulation
and energy consumption purposes, but also for assisting in evaluation of controller design [27,28].
In this work, the proposed control strategy is experimentally validated via an EnergyPlus building
energy performance model of a three-room test case at the Delft University of Technology.

This paper will be organized as follows. Section 2 introduces the HVAC test case we consider.
Section 3 outlines the optimization problem for both control layers. Section 4 validates the model with
real-life data and with EnergyPlus simulations. Section 5 deals with the simulation and results and
conclusions are drawn in Section 6. All symbols introduced in the text can be found in Appendix A.

2. Modelling of HVAC Dynamics

We will focus on the cooling test case shown in Figure 1, which models the dynamical interactions
between three rooms and one corridor in the Mechanical Engineering faculty of Delft University of
Technology (TU Delft). Figure 1 highlights the multi-component interacting structure of the HVAC
system, with a chiller driving a cooling coil of an AHU, with the AHU being further connected to a
VAV system which supplies fresh air into the rooms and the corridor. Cold water is supplied with
a variable-speed pump to the cooling coil, and the fan in the AHU is a variable-speed fan as well.
The three rooms have dimensions 16 m2, 16 m2 and 20 m2, with a corridor of 26 m2. The chiller has
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capacity of 2 m3 and maximum energy of 2 kW. The three rooms are subject to a variable occupancy
schedule.
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Figure 1. Scheme of the test case Heating, Ventilation and Air-Conditioning system.

The overall integrated model of the HVAC system is a simplified version of the model developed
in [29]. The corresponding dynamics are:

[Chiller] dTc
dt = Qc

cwρwVc
+ uw

ρwVc
(Tcrw − Tc),

[Cooling coil] dTcc
dt = uw

ρwVp
(Tc − Tcc) +

hcc Acc
cwρwVp

(Ts − Tc),

[AHU] dTs
dt = ua

ρaVd
(udTrm + (1− ud)Tout − Tma)

+ hcc Acc
caρaVd

(Ts − Tcc).

(1)
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At the room level, we quantify the sources and sinks that affect the temperature change in a room,
as shown in Figure 2. The balance in room #i can be defined via

dTrmi

dt
=

urmi

ρaVrmi

(Ts − Trmi )︸ ︷︷ ︸
cooling load due to HVAC

+
hwai Awai

caρaVrmi

(Twai − Trmi )︸ ︷︷ ︸
conduction through walls

+
hwdi

Awdi

caρaVrmi

(Twdi
− Trmi )︸ ︷︷ ︸

conduction through windows

+
qs

caρaVrmi︸ ︷︷ ︸
solar radiation

+ qint.︸︷︷︸
occupants and equipment

(2)

In Equation (2), Twa and Twd constitute unmeasurable variables. Therefore, the wall and window
temperatures are expressed as an affine function of the room and outside air temperature, in line
with [30]

Twai = Trmi +
Tout − Trmi

Rwai Awai hrmi

, (3)

where Rwa =
1

hrm1 Awa
+ l

kwa Awa
+ 1

hout1 Awa
is the combination of conductive and conductive heat transfer

coefficients in [K/W]. Similarly, for the window temperature Twd, we have

Twdi
= Trmi +

Tout − Trmi

Rwdi
Awdi

hwdi

, (4)

where Rwd = 1
hrm2 Awd

+ l
kwd Awd

+ 1
hout2 Awd

is the thermal resistance in [K/W].
A few standard assumptions have been made to develop Equations (1) and (2): air and water

are well-mixed and have the same temperature; there is no heat loss through ducts and pipes in the
system; thermal conductivity of walls is constant and the heat transfer through it is one-dimensional.

Figure 2. Scheme of the Heating, Ventilation and Air-Conditioning room test case.

In Equations (1) and (2), the multiplication of the control input (flow) by the state (temperature)
results in a bilinear system. This continuous-time bilinear model is discretized with ∆t = 10 min
using a backward Euler approach, which is well suited for systems with low sampling rates, such
as BMSs [31]. The discretized (bilinear) model is then linearized around the point of 24 ◦C for the
room temperature: since the temperature and input range is quite small, this is sufficient for control
purposes [32,33]. The resulting discrete-time linear model can be represented in the state-space
structure

x(k + 1) = Ax(k) + Bu(k) + Bdd(k),
y(k) = Cx(k) + Du(k),

(5)
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where x =
[

Trm1 Trm2 Trm3 Trm4

]T
∈ R4 is the state (comprising the four zone temperatures),

u =
[
urm1 urm2 urm3 urm4

]T
∈ R4 is the input (comprising the four air flow rates),

and d =
[

Tout qs qint

]T
∈ R3 is the disturbance (comprising external temperature, solar radiation

and internal gains).

3. Optimization Problem Formulation

The optimization involves: optimization of the low-level PI controls (in order to achieve acceptable
tracking of the set points); optimization of the set-points (in order to minimize energy consumption
and thermal discomfort). A schematic of the overall control strategy is represented in Figure 3.

Figure 3. Scheme of proposed control strategy. Note that the feedback of the Proportional-Integral (PI)
controllers creates a nested loop with the Model Predictive Control (MPC) layer.

3.1. Optimization for Low-Level Controllers

Four PI controllers, one for each VAV box, are considered: as the purpose of PI control is to achieve
tracking with limited energy, we need to quantify the energy consumption of the fan, pump and chiller.
With a common duct distributing airflow to all three rooms and the corridor, the total mass airflow ua

blown by the fan is the sum of the individual inlet airflow rates. Therefore, the fan power consumption
is [29]

Q f = ua∆P, (6)

where ∆P is the total pressure increase in the fan in Pa. The power by the pump is [29]

Qp =
uwρwgh
3.6 · 106 , (7)

where uw is the pump flow capacity, ρw the density of water, g is gravity acceleration and h is the
differential head (the term 3.6 · 106 is for the conversion from J to kWh). Finally, the chiller power Qc is
obtained in (1) by calculating the water temperature drop in the cooling coil. All powers are converted
into energies after integration over time.
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Eight PI gains (four proportional Kp, four integral Ki) are be designed through an offline
simulation-based optimization via the MATLAB (Matlab R2016b, The MathWorks, Inc., Natick,
Massachusetts, USA) command ‘fmincon’, to minimize the following cost function:

J =
τf

∑
k=0

(
4

∑
i=1

(Trmi (k)− Tset(k))2

)
+ 10−2(Q2

f + Q2
p + Q2

c ),

where Tset is the desired zone temperature and τf represents the total duration of the simulation (in this
case, 24 h). The cost J formalizes the objective to track the desired set points while minimizing energy
consumption: the weight 10−2 was chosen as a trade-off between these goals. The optimized PI gains
for each VAV box are given in Table 1. It must be noted that, because rooms 1 and 2 have identical size
and layout, we have imposed the same PI gains: however, even without such imposition, the result of
the optimization was having such gains very close to each other.

Table 1. Auto-tuned PI gains after optimization.

VAV VAV VAV VAV
Gain Room 1 Room 2 Room 3 Corridor

Kp 7.63 7.63 8.10 6.92
Ki 0.66 0.66 0.70 0.65

3.2. Optimization for Set-Point Control

3.2.1. Thermal Comfort

The sense of thermal comfort of a human is a highly subjective sensation which could be attributed
to various factors such as general health, geographical upbringing and general physical composition.
Fanger proposed to quantify such factors and created a predictive model for whole body thermal
comfort via the PMV index [34]. The PMV index is now standardized in the American Society
of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) thermal sensation scale [16]:
this thermal scale runs from Cold (−3) to Hot (+3) where 0 indicates maximum user comfort.

The equation for Predicted Mean Vote (PMV) index is

PMV = [0.303e−0.036M + 0.028]L, (8)

where L is the thermal load, defined as the difference of metabolic heat generation and the calculated
heat loss from the body to the actual environmental conditions, assuming optimal comfort conditions:

L = M−W − 3.96× 10−8 fcl [(tcl + 273)4 − (tr + 273)4]

− fclhc(tcl − Trm)− 3.05[5.73− 0.007(M−W)− ρa]

+ 0.42[(M−W)− 58.15]− 0.0173M(5.87− ρa)

− 0.0014M(34− Trm),

(9)

where fcl is the clothing factor, hc is the convective heat transfer coefficient, M is the metabolic rate
[W/m2], ρa is the vapor pressure of air [kPa], trm is the room air temperature, tcl is the temperature of
the clothing surface [◦C], tr is the mean radiant temperature [◦C], and W is the external work (taken as
0 for office conditions).

The mean radiant temperature is a difficult quantity to measure, since it involves measurement
of the wall envelope and window temperature [35]. It is also a highly nonlinear function, which can
be computationally expensive when included in the cost of the optimization. To overcome this,
Rohles [36] proposed an adapted model of the PMV which expresses the thermal sensation as a
function of parameters easily sampled in an office environment, such as air temperature and relative
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humidity. The boundary conditions of the modified PMV index were: clothing insulation level
Icl = 0.6 clo, metabolic rate M = 70 W/m2, and air velocity va = 0.2 m/s. With these approximations,
the PMV equation from (8) can be expressed as a function of Temperature Trm and water vapour
pressure ρa, and given by

PMVrm = aTrm + bρa − c, (10)

where a, b and c are Rohles’ experimental coefficients, and are dependent on the gender of the
occupants. For a male occupant, a = 0.212, b = 0.293, c = 5.949 and for a female it is a = 0.275,
b = 0.255, c = 8.62. The simplified PMV index (10) is used in the predictive optimization.

3.2.2. Model Predictive Controller

To account for tracking transients, we augment the system state x with x̄ =
[

xT xT
c

]T
,

where xc(k) ∈ R4 represents the PI controller states. Substituting for input uc(k) in (5), we have

x̄(k + 1) = Ain x̄(k) + Bine(k),

uc(k) = Cinu x̄(k) + Dinu e(k),

y(k) = Ciny x̄(k) + Diny e(k),

(11)

with uc(k) ∈ R4 being the PI controller inputs and e(k) ∈ R4 being the error vector

Ain =

[
BCc A
Ac 0

]
Bin =

[
BDc

Bc

]
,

Cinu =
[
0 Cc

]
Dinu = Dc,

Ciny =
[
C DCc

]
Diny = DDc.

Substituting back for e(k), we get the overall closed-loop equations with PI controllers

Aout = Ain − Bin(I + Diny)
−1Ciny ,

Bout = Bin − Bin(I + Diny)
−1Diny ,

Coutu = Cinu − Diny(I + Diny)
−1Cinu ,

Doutu = Dinu − Dinu(I + Diny)
−1Dinu ,

Couty = (I + Diny)
−1Ciny ,

Douty = (I + Diny)
−1Diny ,

(12)

which finally gives us the complete state space dynamics of the closed-loop system (the blue dashed
box in Figure 3)

x̄(k + 1) = Aout x̄(k) + Boutw(k) + Bdd(k),

uc(k) = Coutu x̄(k) + Doutu w(k),

y(k) = Couty x̄(k) + Douty w(k),

(13)

where w(k) is a vector of set-point temperatures with w = [Tset1 Tset2 Tset3 Tset4 ]
T .
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Using (10) and the closed loop state space derived in (11), we formulate the optimization for the
MPC as follows:

minimize
w̃(k)

Np−1

∑
k=0

(
||Ku∆u||1︸ ︷︷ ︸

energy minimization

+

||Kpmv(PMVrm(k)− s(k))||1︸ ︷︷ ︸
comfort maximization

)
,

subject to: (11)

−0.2 ≤s ≤ 0.2, 0.01 ≤ u ≤ 2,

18 ≤y ≤ 26, −0.5 ≤ ∆u ≤ 0.5,

where w̃ indicates the sequence of set points w along the prediction horizon, and s is a vector of slack
variables for the PMV. We set a prediction horizon of Np = 10 for the optimization problem.

4. Validation

To test the real-world feasibility of this approach, we model the building facility at TU Delft using
EnergyPlus (EnergyPlus 7.0.0, Department of Energy’s (DOE) Building Technologies Office (BTO),
Washington, DC, USA) [26], as shown in Figure 4. EnergyPlus is a simulation program that allows
simulation the energy consumption for HVAC loads as well as water usage within buildings. Upon
constructing an EnergyPlus model of the building, this model was compared with the actual energy
usage collected by the Building Management System of the faculty, which is MetaSys (Metasys 9.0,
Johnson Controls Inc., Cork, Ireland) by Johnson Controls (a sample interface is shown in Figure 5).
Figure 6 shows the experimental simulation of the EnergyPlus model to compare the daily heating
demand of the actual and EnergyPlus building.

For the validation, the following simplifications were made. The chiller power was approximated
by the electricity consumption of the entire building by scaling it proportionally to the ratio between
the volume of the building and the volume of the test rooms and corridor; the damper proportion
was kept constant according to information received from the facility management (70:30% mixing of
fresh and return air). Finally, together with the EnergyPlus model, a MATLAB model of the building
was constructed from (1) and (2) taking into account interactions among rooms (the equations for the
entire model cannot be shown due to limited space): all the parameters in the MATLAB model have
been derived based on physical properties (density, thermal capacitance, convective heat coefficients).
The temperature for the chiller and the cooling coil have been selected as suggested by the facility
management. The parameters were further tuned using a system identification procedure, as proposed
by [30].

Figure 4. Model of Tower C at TU Delft developed using DesignBuilder and simulated in EnergyPlus.
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Figure 5. Screenshot of the Building Management System interface of Tower C.

Figure 6. Validation of daily heating demand in EnergyPlus.

5. Simulations

The proposed MPC + Autotuned PI strategy is simulated in MATLAB and interfaced with
EnergyPlus. To highlight energy savings, this strategy is compared with a baseline control that
tracks a constant set point of 24 ◦C. Simulations are run for a span of 24 h, with weather profile taken
from 19 June 2017, as shown in Figure 7. Please note that the strategy we used has been taken from the
actual strategy used in the University building (constant set point and constant 70:30% mixing of fresh
and return air). We agree that smarter strategies are in general possible and would lead to different
numerical results.
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Figure 7. Ambient weather temperature for 19 June 2017.

Figures 8 and 9 show the temperature tracking and PMV profile for two rooms (the other room
and the corridor have a similar behavior to the one shown here). The error in set-point tracking is less
than ±0.5 ◦C, which is acceptable due to quantized measurements provided by the sensors simulated
in EnergyPlus. When occupants are present in a room, it can be seen that PMV is mostly maintained
within ±0.2, which is within the prescribed ASHRAE limits of 0.5. It can also be noted from Figure 10
that the effort is to maintain comfort while having minimal supply air whenever possible.

(a)

(b)

Figure 8. (a) temperature profile and set-point tracking, Room 1; (b) temperature profile and set-point
tracking, Room 2.
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(a)

(b)

Figure 9. (a) evolution of PMV vs. Occupancy, Room 1; (b) evolution of PMV vs. Occupancy, Room 3.

The most interesting behavior, which justifies the occupancy-based effort of this work occurs
when occupants are not present in a room: in this case, the PMV is allowed to increase (note that the
supply air is zero, as shown in Figure 10). Basically, when no people are inside a room, the temperature
evolution in the room/corridor is mainly due to conduction through the walls and windows.

In this work, it has been assumed that the occupancy schedule can be forecast. In principle, such
forecasting is possible based on the schedule of the lectures: in fact, at TU Delft, the lecture rooms
are open during lecture times and closed otherwise. We acknowledge that, in more general settings,
such forecasting may be not trivial, c.f. the excellent survey [37]. It can be noted that, because the
optimization is based on minimization of PMV, a pre-cooling action is automatically implemented to
allow people to find a good climate when they are back. In fact, Figure 10) reveals that around half an
hour before people arrive the air flow is turned on again (the other rooms exhibit a similar behavior).
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Figure 10. Input air flow, Room 1 (notice the pre-cooling action).

Table 2 shows the comparison of power consumption for the variable supply fan for the
baseline PI strategy with the PI with MPC. We notice that, while the optimization only accounted for
reduction in fan power, the pump at the chiller side also had a reduced load due to lowered cooling
demand. Therefore, there was a significant reduction in the power consumed by the pump as well.
Overall, almost 40% reduction in energy consumption of the fan is achieved. Please note that the
energy consumption of the fan can be derived from the mass flow rate trend, and it is therefore not
reported to avoid including extra figures. In addition, we noticed that the pump and chiller also had a
reduced energy consumption due to lowered cooling demand.

Table 2. Air pushed in the rooms in [kg] and total energy consumption in [kW] for a simulation of
one day.

Controller Total Airflow (kg) Consumption (kW)

Baseline PI 1877.1 12.77
MPC + optimized PI 1132.5 (−39.7%) 7.70 (−39.7%)

6. Conclusions and Future Work

This paper presented an integrated framework to model the set-point and low-level control of a
multi-component HVAC system. Starting from a physics-based modelling, a system-of-subsystems
dynamic model was used to design a set of strategies that integrate set-point predictive control and
low-level PI control. One of the advantages of the proposed control strategy is that, by embedding
the PI dynamics in the predictive structure, we are able to account for tracking transients, which are
particularly useful if the HVAC is switched on and off depending on occupancy patterns. In addition,
we do not disrupt the standard hierarchy of controllers typical of building automation systems.
The lower level controllers are auto-tuned so as to track the set points with limited energy consumption;
the set points generated by the higher level controller were generated in such a way that comfort was
maximized and overall system energy minimized. Energy savings of around 40% have been reported,
by using a three-room test case at the Delft University of Technology validated in EnergyPlus using
real-life data. Future work will include extension of this design principle so as to consider a stochastic
MPC with chance constraints to increase flexibility of the strategy to varying weather and heat load
conditions.
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Appendix A. Nomenclature

Table A1. List of symbols used.

Name Description

T Temperature (◦C)
Q Input Power (kW)
u Control input
c Specific heat capacity (kJ/kg·K)
ρ Density (kg/m3)
V Volume (m3)
h Heat transfer coefficient (W/m2·K)
A Area (m2)
q Load due to external sources
M Metabolic rate (W/m2)
W Rate of external work (=0 for office conditions)

Subscripts Description

c Chiller
cc Cooling coil
rm Room
s Supply air
a air
w water
cl clothing
r radiant surface
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