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Abstract

The normal distribution is a very important distribution in probability theory and statis-
tics and has a lot of unique properties and characterizations. In this report we look at
the proof of two of these characterizations and create counterparts of a normal distribu-
tion on abstract spaces, such as vector spaces and groups, which we shall call Gaussians.
When we look at Rd, all these Gaussians coincide, along with a Gaussian vector in the
normal sense, called multivariate normal. Furthermore, for one Gaussian we prove that
it has exponential integrability properties.
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Introduction

When people think about the normal distribution a lot of interesting properties come
to mind; how its density looks like a bell, the easy way to determine the 95% interval
using the standard deviation, the central limit theorem, etc. There are however some
lesser known properties that can even define a normal distribution on R. These so-called
characterizations are at first glance not obviously linked to the normal distribution but
apparently have a very strong connection with it.

Once one has looked at these characterizations, a question that immediately emerges
from this is what happens when we make definitions of these characterizations and look
at them on different spaces than just R. This question is the central point of this report
and will be examined.

This research all started with an article by K. Oleszkiewicz [9] and a book by H. Bauer
[2], which both look at different characterizations that we will be discussing in this re-
port. W. Bryc has also examined these characterizations and wrote in his lecture notes
about the definitions that can be derived from them [5]. Since his notes go deeper than
the material in this report, they can be seen as an extension to be read after. A summary
of each chapter follows below.

Chapter one gives the basic knowledge of certain subjects that are needed in this report.
Most of the information in this chapter is being taught in many probability courses, and
otherwise we will take a deeper look at it in here. A basic understanding of probability
and analysis is needed for this chapter.

In chapter two we prove the characterizations that are central in this report. We will
also have to look at other theorems, propositions and lemmas needed for these proofs,
including Cramér’s theorem, which is also an interesting property of the normal distri-
bution.

Chapter three is all about the different types of a Gaussian that we define, using the
characterizations from chapter two. We will see on what kind of abstract spaces we can
define these Gaussians and when the definitions coincide with one another. Lastly, we
will prove the integrability of one of these Gaussians.
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Chapter 1

Prior Knowledge

Before we take a look at the characterizations, we will need some prior knowledge on
certain probability tools and the normal distribution. A lot of the propositions and theo-
rems in this section are proved in many probability courses, such as Advanced probability
(TW3560) [10] given at Delft University of Technology.

1.1 Expectation and moments

Definition 1.1.
Let X be a random variable on sample space Ω with probability measure P , then we
write the expectation as

E(X) =

∫
Ω
XdP.

This definition is very abstract, however we can write this in ways that are more useful.
For instance with the help of the cumulative distribution function F (x) = P(X ≤ x),

E(X) =

∫ ∞
−∞

xdF (x),

or even better, if X has density f(x), then

E(X) =

∫ ∞
−∞

xf(x)dx.

Some well known properties of the expectation are listed below

Proposition 1.1. (Basic properties of expectation)
Let X,Y be random variables, then

1. for a, b ∈ R, E(aX + bY ) = aE(X) + bE(Y ).

2. if Y ≤ X then E(Y ) ≤ E(X).

3. if X and Y are independent, then E(XY ) = E(X)E(Y ).

4. |E(X)| ≤ E(|X|).

2



1.1. EXPECTATION AND MOMENTS 3

Another great property is the inequality known as Jensen’s inequality.

Theorem 1.2. (Jensen’s inequality)
Let X be a random variable and g : R → R a convex function such that X and g(X)
are integrable, then

g (E(X)) ≤ E(g(X)).

The 4th statement of Proposition 1.1 is a special case of this inequality. Another very
common example where Jensen’s inequality can be used is to show that E(X)2 ≤ E(X2),
and therefore it is obvious that Var(X) = E(X2)− E(X)2 ≥ 0.

The following proposition will be very useful later.

Proposition 1.3.
If X is a non-negative random variable and h : R → R a function with h′(x) ≥ 0 for
x ≥ 0, such that E(h(X)) <∞, then

E(h(X)) =

∫ ∞
0

P(X > x)h′(x)dx+ h(0).

Proof. We can write P(X > x) = E (1X>x), thus∫ ∞
0

P(X > x)h′(x)dx =

∫ ∞
0

E (1X>x)h′(x)dx =

∫ ∞
0

∫
Ω
1X>xh

′(x)dPdx.

Since 1X>xh
′(x) is non-negative for x ≥ 0 and measurable, we are able to use Fubini’s

theorem [1, chapter 4] for changing the order of integration.∫
Ω

∫ ∞
0

1X>xh
′(x)dxdP =

∫
Ω

∫ X

0
h′(x)dxdP

=

∫
Ω

(h(X)− h(0))dP

= E(h(X))− h(0),

therefore ∫ ∞
0

P(X > x)h′(x)dx = E(h(X))− h(0).

Sending h(0) over to the other side gives us the needed result.

Now that we have talked about expectations we can also talk about moments. The
moment of order n = 0, 1, 2, . . . is defined by E(Xn) and the absolute moment of order
n ≥ 0 by E(|X|n). If the absolute moment of order n exists, i.e. E(|X|n) <∞, then the
moment of order k with 0 ≤ k ≤ n also exists. However, there is a way to find out if all
the moments of a random variable exist, using the moment-generating function given by

MX(t) = E
(
etX
)
.
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If the moment-generating function of a random variable exists, for at least an area around
zero, then so do all its moments. This has to do with the fact that if E

(
etX
)
< ∞ for

|t| < ε then E
(
et|X|

)
<∞ for the same t. To see this, we split the integral in two parts.

E
(
et|X|

)
=

∫
Ω
et|X|dP =

∫
X≥0

etXdP +

∫
X<0

e−tXdP.

Since E
(
etX
)

=
∫

Ω e
tXdP < ∞ for |t| < ε, and ex > 0 for all x ∈ R, the two smaller

integrals above have to be finite as well. Combining this with the fact that tn ≤ n!et for
all t ≥ 0 (this follows immediately after substituting et =

∑∞
k=0

tk

k! ), we see that

tnE(|X|n) ≤ n!E
(
et|X|

)
<∞,

therefore, X has finite (absolute) moments. The moment-generating function also gives
a new way to calculate these moments.

MX(t) = E

( ∞∑
n=0

tnXn

n!

)
=

∫
Ω

∞∑
n=0

tnXn

n!
.

Now suppose there is an ε > 0 such that if MX(t) is finite for |t| < ε, then Fubini’s
theorem tells us we can interchange the integral and infinite sum for these t , so

MX(t) =

∞∑
n=0

tn
∫

ΩX
n

n!
=

∞∑
n=0

tnE(Xn)

n!
.

If we now would take the k’th derivative of MX(t) and substitute t = 0, then this series
tells us that this would be equal to E(Xk).

1.2 Characteristic functions

The characteristic function of a random variable is defined as follows.

Definition 1.2.
The characteristic function of a real-valued random variable X is given by

ϕX(t) = E
(
eitX

)
.

For a continuous random variable with density f(x) this can also be seen as the Fourier-
transform of this density. As you can see it is almost the same as the moment-generating
function, however the beauty of the characteristic function of a random variable is that
it always exists, since

∣∣eitX ∣∣ = 1 for all t thus it is integrable, and comes with some very
useful properties that we will be discussing in this section. The most important one is
the uniqueness of the characteristic function.

Theorem 1.4. (Uniqueness theorem)

Let X and Y be two random variables, then ϕX = ϕY if and only if X
d
= Y .



1.2. CHARACTERISTIC FUNCTIONS 5

This uniqueness theorem tells us that the distribution of a random variable is determined
uniquely by its characteristic function. With this we will be able to make a more useful
definition of a normal random variable, as seen in the next section.

Some other, basic properties of a characteristic function that we will need are the fol-
lowing.

Proposition 1.5. (Basic properties of characteristic functions)
Let X be a random variable with characteristic function ϕX(t) and let t ∈ R, then

1. ϕX(t) = ϕX(−t).
2. |ϕX(t)| ≤ ϕX(0) = 1.

3. ϕX(t) is uniformly continuous.

Much like the moment generating function, we can find a connection with the moments
of X. If E(|X|k) <∞ then we can find that the k’th derivative of ϕX exists and is equal
to

ϕ
(k)
X (t) =

dk

dtk
E
(
eitX

)
= E

(
(iX)keitX

)
.

So we are able to switch the derivative and expectation. An interesting case is when we
substitute t = 0

ϕ
(k)
X (0) = ikE(Xk). (1.2.1)

This trick also works the other way around.

Proposition 1.6.
If for even k the k’th derivative of ϕX exists, then E(Xk) <∞ and (1.2.1) still applies

Harald Cramér has given a proof of this [6, chapter 10]. However, this only works for
even k. Antoni Zygmund has given an example of a characteristic function which has a
derivative, but the expected value of the random variable corresponding to it does not
exist [12].

Another great thing about the characteristic functions is what happens if independence
is given. Suppose X1, . . . , Xn are independent random variables and a1, . . . , an some
constants, then

ϕ n∑
k=1

akXk
(t) = E

(
e
it

n∑
k=1

akXk

)

=

n∏
k=1

E
(
eitakXk

)
=

n∏
k=1

ϕXk(akt).

(1.2.2)
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So if we are dealing with independent random variables, the characteristic function of
the sum is equal to the product of the characteristic functions. This is a lot easier than,
for example, density functions where we would have to use convolutions to determine
the new density.

The reverse however is not true; if ϕX+Y (t) = ϕX(t)ϕY (t), then X and Y don’t necessar-
ily have to be independent. To determine whether X and Y are independent, we could
have a look at the characteristic functions of random vectors. If we would have multiple
random variables X1, X2, ..., Xd and put them all in a vector X we would have what is
called a random vector in Rd. For X a d-dimensional random vector, the characteristic
function is defined as

ϕX(t) = E
(
eit

TX
)

with t ∈ Rd. This way we can give the following sufficient condition for independence.

Proposition 1.7.
The Rd valued random vectors X,Y are independent if and only if the equality

ϕ(X,Y)(s, t) = ϕX(s)ϕY(t). (1.2.3)

holds for all s, t ∈ Rd.
The proof of this proposition is almost trivial. If we would assume that (1.2.3) holds
then, due to the uniqueness theorem, the joint distribution function is equal to the
product of the marginal distribution functions, and therefore X and Y are independent.
Furthermore, if X and Y are independent, then we can show that (1.2.3) holds, much
like (1.2.2).

1.3 Normal distribution

Suppose X is a normally distributed random variable with mean m and variance σ2,
then we write this as X ∼ N(m,σ2). Usually an X like this is defined by its density

fX(x) =
1√

2σ2π
e−

(x−m)2

2σ2 .

This function gives us the well known, bell-shaped curve associated with the normal
distribution as seen in the figure below.

Figure 1.1: Density function of a standard normal variable.
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However we will be working a lot with independent sums of normal random variables,
and if we would then work with the density functions, we would have to calculate difficult
convolutions which would take a lot of time. As we have seen in the previous section,
these sums are easier to analyse with the help of the characteristic functions. Fortu-
nately, due to the uniqueness theorem, we are able to define a normal random variable
by its characteristic function.

So we need the characteristic function of a normal distribution. It has been proven
that the characteristic function of a standard normal random variable Z ∼ N(0, 1) is

equal to ϕZ(t) = e−
t2

2 (see [10, chapter 9]). From this we can calculate the characteristic
function of any normally distributed random variable.

Suppose X has a normal distribution with mean m and variance σ2, then we can write
X = σZ +m, Therefore

ϕX(t) = E
(
eiσtZ+tm

)
= eitmE

(
eiσtZ

)
= eitmϕZ(σt).

Since we know that characteristic function of Z, we end up with

ϕX(t) = eitm−
1
2
σ2t2 .

With this characteristic function in our mind, we can give the following definition of a
normal distribution.

Definition 1.3.
A real valued random variable X has the normal distribution N(m,σ2) if its charac-
teristic function has the form

ϕX(t) = eitm−
1
2
σ2t2 . (1.3.1)

This definition gives us the following proposition.

Proposition 1.8.
A characteristic function which can be expressed in the form

ϕX(t) = eat
2+bt+c

for some a, b, c ∈ C, corresponds to a normal distribution.

Proof. Suppose that the characteristic function of a random variable X is as in the
proposition above. Since ϕX is twice differentiable, Proposition 1.6 tells us that X has
an expectation and variance, which we will denote as m and σ2 respectively. First of all,
Proposition 1.5 tells us that ϕX(0) = 1, so we can conclude that c = 0. Furthermore,
the first and second derivative of ϕX are equal to

ϕ′X(t) = (2at+ b)eat
2+bt,

ϕ′′X(t) = (2at+ b)2eat
2+bt + 2aeat

2+bt.



8 CHAPTER 1. PRIOR KNOWLEDGE

Substituting t = 0 and using (1.2.1), we get

ϕ′X(0) = iE(X) = b,

ϕ′′X(0) = −E(X2) = b2 + 2a.

So b = im and thus

a =
1

2

(
m2 − E(X2)

)
= −1

2
σ2.

In conclusion,

ϕX(t) = e−
1
2
σ2t2+itm,

therefore X has a normal distribution.

1.4 Multivariate normal

If we would look at random vectors we also have a normal distribution, commonly known
as multivariate normal.

Definition 1.4.
An Rd-valued random vector X is multivariate normal if for every t ∈ Rd the real
valued random variable tTX is normal.

The favorable thing that this definition gives us is that we make a new, so-called uni-
variate normal random variable, namely tTX on R, about which we know a lot. Also,
when we take t such that ti = 1 and tj = 0 for j 6= i, then it is easy to see that all the
Xi have to be univariate normal.

Since tTX is a normal random variable it has a mean mt and variance σ2
t . Due to

the linearity of the expecation, we can deduce that mt = tTm, with m = E(X), the
vector where the i’th component equals E(Xi) for 1 ≤ i ≤ d. The variance however isn’t
that easy. We will first look at the situation where d = 2. If we would have two normally
distributed random variables X1 ∼ N(m1, σ

2
1) and X2 ∼ N(m2, σ

2
2), then the variance

of t1X1 + t2X2 would be equal to

σ2
t = t21σ

2
2 + t22σ

2
2 + 2t1t2Cov(X1, X2),

after using the properties of the variance and covariance. We can simplify this a bit by
writing it in matrix form

σ2
t = tTΣt, (1.4.1)

with

Σ =

[
σ2

1 Cov(X1, X2)
Cov(X2, X1) σ2

2

]
.

This Σ is commonly known as the covariance matrix, where the element on the i’th row of
the j’th collumn is Cov(Xi, Xj) (notice that when i = j this is equal to Cov(Xi, Xi) = σ2

i ).
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If we would look at the variance for general d we would again be able to write it as
(1.4.1), but with a d × d covariance matrix Σ. With this, we are able to determine the
characteristic function of tTX.

ϕtTX(s) = E
(
eit

TXs
)

= exp

(
−1

2
tTΣts2 + itTms

)
.

Taking s = 1 and turning t into a variable gives

ϕX(t) = E
(
eit

TX
)

= exp

(
−1

2
tTΣt + itTm

)
, (1.4.2)

which is the characteristic function of our random vector X. Therefore we now have the
characteristic function corresponding to the multivariate normal distribution. From now
on we will write X ∼ N (m,Σ) to say that X is multivariate normal with mean m and
covariance matrix Σ.

The last proposition has to do with independent multivariate normal random variables.

Proposition 1.9.
If X and Y are independent multivariate normal random variables, then X + Y is
still multivariate normal.

Proof. Assume X ∼ N (m1,Σ1) and X ∼ N (m2,Σ2) are independent, then we know
that

ϕX+Y(t) = ϕX(t)ϕY(t)

= exp

(
−1

2
tTΣ1t + itTm1

)
· exp

(
−1

2
tTΣ2t + itTm2

)
= exp

(
−1

2
tT (Σ1 + Σ2)t + itT (m1 + m2)

)
Therefore we can see that X + Y ∼ N (m1 + m2,Σ1 + Σ2), hence it is multivariate
normal.



Chapter 2

Characterizations of a normal
distribution on R

In this chapter we will take a deeper look at the normal distribution by proving certain
characterizations, which we will do in section 2.1 and 2.3. Section 2.2 is all about
Cramér’s theorem, which will be needed for proving the second characterization.

2.1 First characterization

In this section we will look at the first characterization. Although it has been proven in
different ways, one of which can be read in [5, section 5.1], the proof in this section is
derived from the one by H. Bauer [2, section 24] since it mainly focusses on characteristic
functions, about which we have learned a lot in the previous chapter.

Theorem 2.1. (First characterization)
If X and Y are two real valued independent random variables, the following statements
are equivalent:

1. X and Y are normally distributed with equal variance.

2. The random variables X + Y and X − Y are independent.

Since it is an equivalence, it will be necessary to prove both directions. Let’s start with
the easy one.

Proof of 1 ⇒ 2.
Assume that X ∼ N(α, σ2) and Y ∼ N(β, σ2) are independent. First of all,

X + Y ∼ N(α+ β, 2σ2)

X − Y ∼ N(α− β, 2σ2)

To prove the independence of X + Y and X − Y , it is possible to use proposition 1.7.
That way, all we have to show is that for all s, t ∈ R,

ϕ(X+Y,X−Y )(s, t) = ϕX+Y (s) · ϕX−Y (t).

10



2.1. FIRST CHARACTERIZATION 11

First of all,

ϕ(X+Y,X−Y )(s, t) = E
[
ei(s(X+Y )+t(X−Y ))

]
= E

[
ei(s+t)Xei(s−t)Y

]
,

and since X and Y are independent,

E
[
ei(s+t)Xei(s−t)Y

]
= E

[
ei(s+t)X

]
E
[
ei(s−t)Y

]
= ϕX(s+ t) · ϕY (s− t).

Luckily, the distributions of X and Y are given, and therefore also their characteristic
functions, so

ϕX(s+ t) · ϕY (s− t) = eiα(s+t)−σ
2(s+t)2

2 · eiβ(s−t)−σ
2(s−t)2

2

= ei(α+β)s−σ2s2 · ei(α−β)t−σ2t2

= ϕX+Y (s) · ϕX−Y (t),

which concludes the proof.

The other direction is going to require some more effort. We are first going to prove the
following lemma.

Lemma 2.2.
Let χ : R → T, with T = {z ∈ C : |z| = 1}, be a continuous function such that
χ(a+ b) = χ(a)χ(b) for all a, b ∈ R. Then

χ(x) = eiαx

for some α ∈ R

Proof. For all a ∈ R
χ(a) = χ(a+ 0) = χ(a)χ(0),

therefore χ(0) = 1. Take c ∈ R such that

b :=

∫ c

0
χ(t)dt 6= 0,

then for all x ∈ R,

b · χ(x) =

∫ c

0
χ(t)χ(x)dt =

∫ c

0
χ(t+ x)dt =

∫ x+c

x
χ(t)dt.

Taking the derivative to x on both sides gives

b · χ′(x) =
d

dx

(∫ x+c

x
χ(t)dt

)
.
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Define F (y) :=
∫ y
x0
χ(t)dt with x0, y ∈ [x, x+ c], then it follows that

b · χ′(x) =
d

dx

(∫ x+c

x0

χ(t)dt+

∫ x0

x
χ(t)dt

)
=

d

dx
(F (x+ c)− F (x))

= χ(x+ c)− χ(x)

= χ(x)χ(c)− χ(x)

=
(
χ(c)− 1

)
χ(x),

and so

χ′(x) =

(
χ(c)− 1

)
b

χ(x) = Cχ(x)

for some C ∈ C. The differential equation χ′(x) = Cχ(x) is a standard one which has
the general solution

χ(x) = AeCx,

and since χ(0) = 1,

1 = χ(0) = Ae0 = A.

Therefore the function equals χ(x) = eCx. Considering χ : R→ T it follows that eCx ∈ T
for all x ∈ R, so

∣∣eCx∣∣ = 1. C is a complex number so it can be written as C = iα+ β,
with α, β ∈ R, which means that for all x ∈ R,∣∣eCx∣∣ =

∣∣∣eiαx+βx
∣∣∣ =

∣∣eiαx∣∣ · |eβx| = ∣∣∣eβx∣∣∣ = 1.

This only holds for β = 0, therefore

χ(x) = eiαx,

which proves this lemma.

Continued proof of theorem 2.1.1, 2 ⇒ 1.
This proof will be given in three distinct parts followed up by the conclusion, in which
we will show that X and Y are normal distributions according to Definition 1.3. The
goal of the first part is to show that ϕX and ϕY are never zero, which will be needed for
the second and third part.

Part 1
Define U := X+Y

2 and V := X−Y
2 . Then the equalities X = U +V and Y = U −V hold.

Because of the independence of X and Y ,

ϕX(x)ϕY (y) = E
(
eixXeiyY

)
= E

(
eix(U+V )eiy(U−V )

)
= E

(
ei(x+y)Uei(x−y)V

)
.
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The assumption tells us that U and V are also independent, therefore

ϕX(x)ϕY (y) = E
(
ei(x+y)U

)
E
(
ei(x−y)V

)
= E

(
ei
x+y
2
Xei

x+y
2
Y
)
E
(
ei
x−y
2
Xe−i

x−y
2
Y
)

= ϕX

(
x+ y

2

)
ϕY

(
x+ y

2

)
ϕX

(
x− y

2

)
ϕY

(
x− y

2

)
.

(2.1.1)

Fill in y = 0 and you are left with

ϕX(x) = ϕX

(x
2

)2 ∣∣∣ϕY (x
2

)∣∣∣2 ,
which gives

|ϕX(x)| =
∣∣∣ϕX (x

2

)∣∣∣2 ∣∣∣ϕY (x
2

)∣∣∣2 .
Repeat this process for ϕY and you will find

|ϕY (x)| =
∣∣∣ϕY (x

2

)∣∣∣2 ∣∣∣ϕX (x
2

)∣∣∣2 = |ϕX(x)| , (2.1.2)

so

|ϕX(x)| =
∣∣∣ϕX (x

2

)∣∣∣2 ∣∣∣ϕY (x
2

)∣∣∣2 =
∣∣∣ϕX (x

2

)∣∣∣2 ∣∣∣ϕX (x
2

)∣∣∣2 =
∣∣∣ϕX (x

2

)∣∣∣4 .
From this, we can conclude that ϕX is never zero, because if we assume there exists an
x ∈ R such that ϕX(x) = 0, then

0 = |ϕX(x)| =
∣∣∣ϕX (x

2

)∣∣∣4 =
∣∣∣ϕX (x

4

)∣∣∣16
=
∣∣∣ϕX (x

8

)∣∣∣64
= . . . =

∣∣∣ϕX ( x
2n

)∣∣∣4n = . . . ,

so for all n ∈ N : ϕX
(
x
2n

)
= 0. But then, since ϕX is continuous,

ϕX(0) = ϕX

(
lim
n→∞

x

2n

)
= lim

n→∞
ϕX

( x
2n

)
= 0,

however, ϕX(0) = 1 according to Proposition 1.5, which gives a contradiction. In the
same way we can prove that ϕY is never zero, ending the first part of the proof.

Part 2
In this part we will be looking at the following functions,

ΦX :=
ϕX
|ϕX |

, ΦY :=
ϕY
|ϕY |

,

and derive their general form. Notice how, because |ϕX | and |ϕY | are never zero, these
functions are defined for all x ∈ R, and for the absolute value

|ΦX | =
∣∣∣∣ ϕX|ϕX |

∣∣∣∣ =
|ϕX |
|ϕX |

= 1, |ΦY | =
∣∣∣∣ ϕY|ϕY |

∣∣∣∣ =
|ϕY |
|ϕY |

= 1. (2.1.3)
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Therefore ΦX and ΦY are functions from R to T. From (2.1.1) can be concluded that

ΦX(x)ΦY (y) = ΦX

(
x+ y

2

)
ΦY

(
x+ y

2

)
ΦX

(
x− y

2

)
ΦY

(
x− y

2

)
, (2.1.4)

and when y is being substituted by −y (with the 1st statement of proposition 1.5 in
mind),

ΦX(x)ΦY (y) = ΦX

(
x− y

2

)
ΦY

(
x− y

2

)
ΦX

(
x+ y

2

)
ΦY

(
x+ y

2

)
. (2.1.5)

Multiplying (2.1.4) and (2.1.5) will give

ΦX(x)2 |ΦY (y)|2 = ΦX

(
x+ y

2

)2 ∣∣∣∣ΦY

(
x+ y

2

)∣∣∣∣2 ΦX

(
x− y

2

)2 ∣∣∣∣ΦY

(
x− y

2

)∣∣∣∣2 ,
and with (2.1.3) in mind we get

ΦX(x)2 = ΦX

(
x+ y

2

)2

ΦX

(
x− y

2

)2

.

Define the variables u := x+y
2 and v := x−y

2 , then u+ v = x and therefore

ΦX(u+ v)2 = ΦX(u)2ΦX(v)2.

So Φ2
X is a homomorphism defined from R to T. According to Lemma 2.2, this tells us

that
ΦX(x)2 = ei2αx

for some α ∈ R. This can be written as(
ΦX(x) + eiαx

) (
ΦX(x)− eiαx

)
= 0,

which is true for all x ∈ R. Therefore, when we define the following sets

F1 :=
{
x ∈ R : ΦX(x)− eiαx = 0

}
, F2 :=

{
x ∈ R : ΦX(x) + eiαx = 0

}
,

we know that F1 ∪ F2 = R. Since eiαx 6= −eiαx for all x ∈ R, F1 and F2 are disjoint.
Furthermore, ϕX is a uniformly continuous function that is never zero, so we can assume
that ΦX is at least continuous. This means that F1 and F2 are closed sets, however,
since they are disjoint and together they form R, they also both have to be open. This
is only possible if either F1 = R or F2 = R. We already know ΦX(0) = 1 so 0 ∈ F1,
which means F1 = R and

ΦX(x) = eiαx. (2.1.6)
Analogously,

ΦY (x) = eiβx (2.1.6′)

for some β ∈ R.
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Part 3
Now we are going to calculate |ϕX | and |ϕY |. To do this, we will define the function

f(x) := log |ϕX(x)| , (2.1.7)

for all x ∈ R. First of all, from (2.1.2) we know that

f(y) = log |ϕY (y)| , (2.1.8)

and
f(−x) = log |ϕX(−x)| = log

∣∣∣ϕX(x)
∣∣∣ = log |ϕX(x)| = f(x), (2.1.9)

so f(x) is symmetric. From (2.1.1) can be derived that

log |ϕX(x)ϕY (y)| = log

∣∣∣∣∣ϕX
(
x+ y

2

)
ϕY

(
x+ y

2

)
ϕX

(
x− y

2

)
ϕY

(
x− y

2

)∣∣∣∣∣ .
Using the product rule of the logarithm and (2.1.8) on this equation leads to

f(x) + f(y) = 2

[
f

(
x+ y

2

)
+ f

(
x− y

2

)]
,

or
f(2x) + f(2y) = 2 [f (x+ y) + f (x− y)] . (2.1.10)

When we fill in y = 0 we get
f(2x) = 4f(x). (2.1.11)

Now we will prove by induction that f(kx) = k2f(x) for all k ∈ N ∪ {0} and x ∈ R.
First we take k = 0,

f(0 · x) = f(0) = log |1| = 0 = 02f(x),

so that holds. For k = 1 it is trivial and (2.1.11) shows that it is true for k = 2. Now
we assume that it is true for k = 0, 1, . . . , n with n ≥ 2. When we fill in y = nx into
(2.1.10) we see that

f(2x) + f(2nx) = 2 [f((n+ 1)x) + f((n− 1)x)] .

Using our assumption and (2.1.11) gives us

4f(x) + 4f(nx) = 2f((n+ 1)x) + 2(n− 1)2f(x).

We take the f((n+ 1)x) apart and get

f((n+ 1)x) = 2f(x)− (n− 1)2f(x) + 2n2f(x)

=
(
2− (n− 1)2 + 2n2

)
f(x),

where

2− (n− 1)2 + 2n2 = 2− (n2 − 2n+ 1) + 2n2 = 1 + 2n+ n2 = (n+ 1)2,
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so
f((n+ 1)x) = (n+ 1)2f(x),

proving the property for all k ∈ N ∪ {0}. Since f(x) is symmetric,

f(−kx) = f(kx) = k2f(x) = (−k)2f(x),

therefore this property is also true for all k ∈ Z. And we can take it even further, take
k ∈ Z\{0}, then

f(x) = f
(
k
x

k

)
= k2f

(x
k

)
,

so

f
(x
k

)
=

1

k2
f(x).

Subsequently, when we take r ∈ Q, we can write this as r = m
k with m ∈ Z and k ∈ N,

f(r) = f
(m
k

)
= m2f

(
1

k

)
=
m2

k2
f(1) = r2f(1).

Since ϕX is uniformly continuous and never zero, we can again assume that f is at least
continuous, therefore we can extend this property to the whole of R, i.e. for all x ∈ R,

f(x) = x2f(1).

Going back to the definition of f gives us

log |ϕX(x)| = x2f(1),

which can be derived to
|ϕX(x)| = e−

1
2
σ2x2 , (2.1.12)

with 1
2σ

2 = −f(1) and due to Proposition 1.5 we see that

1

2
σ2 = −f(1) = − log |ϕX(1)| ≥ − log |1| = 0.

From (2.1.8) we can also conclude that

|ϕY (y)| = e−
1
2
σ2y2 . (2.1.12′)

Conclusion
From (2.1.6) we know that ϕX(x) = eiαx|ϕX(x)| and when we fill in (2.1.12) we get

ϕX(x) = eiαx−
1
2
σ2x2 .

Doing the same with (2.1.6′) and (2.1.12′) gives us

ϕY (y) = eiβx−
1
2
σ2x2

So according to our Definition 1.3, X ∼ N(α, σ2) and Y ∼ N(β, σ2) therefore they are
normally distributed, both with the same variance σ2.
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2.2 Cramér’s Theorem

In this section we will take a look at Cramér’s theorem. The manner of proving this
theorem comes from [5].

Theorem 2.3. (Cramér’s theorem)
If X1 and X2 are independent random variables such that X1 + X2 has a normal
distribution, then both X1 and X2 are normal.

To be able to prove this theorem, we will need to take a look at analytic characteristic
functions. An analytic function is, simply put, a function that is differentiable in the
complex plane. Since ϕX(t) is only defined for real t, it needs to be extended to (a
domain in) the complex plane. We shall call ϕX(t) analytic on domain D ⊆ C when
this extension is analytic on D. Theorem 2.4 will look at a sufficient property for a
characteristic function to be analytic.

Theorem 2.4.
If a random variable X has finite exponential moment E

(
ea|X|

)
< ∞ where a > 0,

then its characterstic function ϕX(t) is analytic in the strip −a < =t < a.

Proof. For the extension of ϕX(t) to the complex plane, we go back to the definition of a
characteristic function and extend it naturally as ϕX(t) = E

(
eitX

)
with t ∈ C. Writing

t = α+ iβ with α, β ∈ R, we see that

ϕX(t) = E
(
ei(α+iβ)X

)
= E

(
eiαXe−βX

)
,

therefore

|ϕX(t)| =
∣∣∣E(eiαXe−βX)∣∣∣

≤ E
(∣∣∣eiαXe−βX ∣∣∣)

= E
(∣∣∣e−βX ∣∣∣) .

Since ex is non-negative and increasing, |ex| ≤ e|x| for all x ∈ R, so

|ϕX(t)| ≤ E
(
e|βX|

)
,

which is finite as long as |β| ≤ a according to our assumption, so when −a ≤ =t ≤ a we
can be certain that our extension is well-defined.

Using the series expansion of the exponential function ez =
∑∞

n=0
zn

n! for our ϕX(t),
we will find that

ϕX(t) = E

( ∞∑
n=0

intnXn

n!

)
=

∫
Ω

∞∑
n=0

intnXn

n!
dP.
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On the strip −a ≤ =t ≤ a we know that this is absolute convergent, so by Fubini’s
theorem we can interchange the integral and infinite sum to end up with

∞∑
n=0

intn
∫

ΩX
ndP

n!
=
∞∑
n=0

intnE(Xn)

n!
.

Notice how this series equals the Taylor series of ϕX around zero;
∑∞

n=0
tnϕ

(n)
X (0)
n! . If a

function equals its Taylors series in an open interval, than that function is analytic, so
since ϕX is defined for −a < =t < a, it is also analytic in this strip.

This theorem has a pretty straightforward corollary, namely

Corollary 2.5.
If X is such that E

(
ea|X|

)
for all a > 0, then its characteristic function ϕX(t) is

analytic in C.

Before we go to the next lemma needed to prove Cramér’s theorem, we will need a very
specific upper bound for analytic functions. The Borel-Carathéodory theorem gives an
upper bound that is dependent on the real part of the function and its value at zero,
but not on the imaginary part, which will be very helpful.

Theorem 2.6. (Borel-Carathéodory theorem)
If a function f is analytic on a closed disc of radius R centered at the origin, then for
r < R the inequality

sup
|t|=r
|f(t)| ≤ 2r

R− r
sup
|t|≤R

<f(t) +
R+ r

R− r
|f(0)|

holds.

Proof. If f is constant, this is trivial. Assume now that f is non-constant and f(0) = 0.
Define A(R) := sup|t|≤R <f(t). Since A(0) = 0 we know that A(R) > 0, because if there
exists an R > 0 such that A(R) = 0, then our function <f attains a local maximum
at 0 and must therefore be constant according to the maximum modulus principle, and
because f is analytic, it must therefore also be constant. Furthermore, <f(t) ≤ A(R)
for |t| ≤ R so on this closed disc, f sends every t to the half-plane P which is to the left
of the line x = A(R). In this proof we will make a function that maps P to a disc so we
can apply Schwarz’s Lemma [7, section III.3].

The function ω 7→ ω
A(R) − 1 sends P to the left half plane, since

<
(

ω

A(R)
− 1

)
=
<ω
A(R)

− 1 ≤ A(R)

A(R)
− 1 = 0,

and the function ω 7→ R · ω+1
ω−1 sends the left half plane to the disc of radius R, since it is

easy to see that if <ω ≤ 0 that |ω + 1| ≤ |ω − 1|. Combining these two functions gives
us

R ·
ω

A(R)
ω

A(R) − 2
=

Rω

ω − 2A(R)
,
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which apparently maps P to the disc of radius R. Since f(t) < 2A(R) for every |t| ≤ R,
it is easy to see that

Rf(t)

f(t)− 2A(R)

is an analytic function in this closed disc. Schwarz’s Lemma now states that for |t| ≤ R∣∣∣∣ Rf(t)

f(t)− 2A(R)

∣∣∣∣ ≤ |t|.
Take |t| = r < R, then

|Rf(t)| ≤ r |f(t)− 2A(R)| ,

so

|f(t)| ≤ 2r

R− r
A(R), (2.2.1)

which is the inequality from the theorem, given that f(0) = 0. If f(0) 6= 0, then we can
use (2.2.1) on f(t)− f(0)

|f(t)| − |f(0)| ≤ |f(t)− f(0)|

≤ 2r

R− r
sup
|t|≤R

<
(
f(t)− f(0)

)
≤ 2r

R− r

(
sup
|t|≤R

<f(t) + |f(0)|

)
.

So when we bring −|f(0)| to the other side we get

|f(t)| ≤ 2r

R− r
A(r) +

(
2r

R− r
+ 1

)
|f(0)| = 2r

R− r
A(R) +

R+ r

R− r
|f(0)|.

Our final step before proving Cramér’s theorem is the following lemma.

Lemma 2.7.
If X is a random variable such that E

(
eλX

2
)
< ∞ for some λ > 0 and the complex

extension of ϕX(t) is analytic and never zero for all t ∈ C, then X is normal.

Proof. Since our ϕX(t) is never zero and it is continuous we can conclude that ϕX is
positive, therefore we can define g(t) := log(ϕX(t)) which is analytic for all t ∈ C.
Therefore we can write

g(t) =

∞∑
n=0

ant
n,

where

an =
1

2πi

∮
Cr

g(z)

zn+1
dz,
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with Cr the circle about 0 with radius r > 0. We want to prove that g(t) is a quadratic
polynomial by showing that an = 0 for n > 2. We will do this using the Borel-
Carathéodory theorem. Since g(0) = 0 and g(t) is analytic for all t ∈ C, when we
put R = 2r we get that

sup
|t|=r
|g(t)| ≤ 2 sup

|t|≤2r
<g(t). (2.2.2)

So now we need an upper bound for <g(t). When we write t = a + bi and look at this
real part we can see that

<g(t) = log |ϕX(t)| = log
∣∣∣E(ei(a+bi)X

)∣∣∣ ≤ logE
∣∣∣ei(a+bi)X

∣∣∣ ≤ logEe|bX|.

We can prove that in general E
(
e|bX|

)
≤ Ce

b2

2λ for a constant C ∈ R, by verifying that

the inequality λX2 + b2

λ ≥ 2|bX| holds.

λX2 +
b2

λ
− 2|bX| = λ2X2 + b2 − 2λ|bX|

λ
=

(λ|X| − |b|)2

λ
,

so the inequality can be written as

(λ|X| − |b|)2

λ
≥ 0,

and since our λ > 0 this inequality holds for all X and b. Therefore

Ee|bX| ≤ E

(
e
λX2+ b

2

λ
2

)
= Ce

b2

2λ ,

with C = E
(
e
λX2

2

)
, which is finite according to our assumption. In conclusion

<g(t) ≤ logC +
b2

2λ
.

So according to (2.2.2) we find that

sup
|t|=r
|g(t)| ≤ 2 log(C) +

4r2

λ
= A+Br2.

With A,B ∈ R. So if n > 2 we have

|an| ≤
1

2π

∮
Cr

|g(z)|
|z|n+1

dz ≤ 1

2π

∮
Cr

A+Br2

rn+1
dz =

1

2π
· A+Br2

rn+1

∮
Cr

dz =
A+Br2

rn
,

which converges to zero as r →∞, so we find that

g(t) = a2t
2 + a1t+ a0

and since g(t) = log(ϕX(t)) it follows that

ϕX(t) = ea2t
2+a1t+a0

which, according to Proposition 1.8, corresponds to a normal distribution.



2.2. CRAMÉR’S THEOREM 21

Proof of Cramér’s theorem. Without loss of generality we can assume that the expec-
tations of X1 and X2 are zero. To be able to use Lemma 2.7, we would need that

E
(
eλX

2
j

)
< ∞ for j = 1, 2 and that the characteristic functions are analytic and never

zero. For the exponential moment, since X1 + X2 has a normal distribution, we know
that

E
(
eλ(X1+X2)2

)
<∞,

for all λ > 0. Without loss of genereality, assume X1 and X2 are random variables
on the probability triples (Ω1,F1, P1) and (Ω2,F2, P2) respectively. Now we define the
functions X̂1, X̂2 : Ω1 × Ω2 → R as follows

X̂1(ω1, ω2) = X(ω1),

X̂2(ω1, ω2) = X(ω2).

Define

Ei(X) =

∫
Ωi

XdPi

for i = 1, 2, then it follows that

Ei(Xj) =

{
0 if i = j

Xj if i 6= j

with i, j ∈ {1, 2}. So when we define g(X) := eλX
2
,

E
(
eλX

2
1

)
= E1 [g (X1)]

= E1 [g (X1 + E2(X2))]

= E1 [g (E2(X1 +X2))] ,

and since g(X) is a convex function for some λ > 0, by Jensen’s inequality we get

E
(
eλX

2
1

)
≤ E1E2 (g(X1 +X2)) = E

(
eλ(X1+X2)2

)
<∞.

In the same way can be shown that E
(
eλX

2
2

)
< ∞. Since x2 ≥ |x| for |x| ≥ 1, we can

conclude that E
(
eλ|Xj |

)
<∞ for all λ > 0 and therefore, by Corollary 2.5, we know that

the characteristic functions ϕX1(t) and ϕX2(t) are analytic in C. Since

ϕX1(t)ϕX2(t) = ϕX1+X2(t) = e−
σ2t
2

+iµt.

for some σ, µ ∈ R, neither characteristic functions can ever be zero. Therefore, Lemma
2.7 tells us that X1 and X2 are normal.
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2.3 Second characterization

In 1995, G. Bobkov and C. Houdré asked the question if a random variable X has a

normal distribution if P
(∣∣∣X+Y√

2

∣∣∣ > t
)
≤ P(|X| > t) for t > 0, where X and Y are i.i.d.

[4]. This statement has been proven by S. Kwapien, M. Pycia and W. Schachermayer in
[8], but we can look at a more general characterization.

Theorem 2.8. (Second characterization)
Let n ≥ 2 be a natural number. Let a1, a2, ..., an, with ai > 0 for all i, be such
that

∑n
i=1 a

2
i ≥ 1. If X, X1, X2, . . . , Xn are i.i.d. real random variables such that∑n

i=1 aiXi
d
= X then X is normal.

Before we prove this characterization, we take a look at the following lemma where we
also assume finite second moments.

Lemma 2.9.
Let a1, a2, ..., an, with ai > 0 for all i, be such that and

∑n
i=1 a

2
i = 1. If X,X1, X2, . . . , Xn

are i.i.d. real random variables with finite second moment and X
d
=
∑n

i=1 aiXi, then
X is normal.

Proof. Since X
d
=
∑n

i=1 aiXi we know that

E(X) = E

(
n∑
i=1

aiXi

)
=

n∑
i=1

aiE(X),

and because
∑n

i=1 ai > 1, it follows that E(X) = 0. For the characteristic function,
according to (1.2.2) and the uniqueness theorem, the equality

ϕX(t) =

n∏
i=1

ϕX(ait) (2.3.1)

holds for all t ∈ R. This ϕX is never zero, because if there exists an t ∈ R where it is
zero, then through (2.3.1) there has to be at least one ai such that ϕX(ait) = 0. We can
apply this multiple times and then we find that for general s ∈ N we have

ϕX(asi t) = 0.

Since ai ∈ (0, 1) and our ϕX is continuous we find

0 = lim
s→∞

ϕX(asi t) = ϕX(0),

which is in contradiction with Proposition 1.5. So our ϕX is never zero, and therefore we
can define g(t) := log(ϕX(t)) for all t ∈ R. Our goal is to prove that g(t) is a quadratic
function at2 +bt+c because Proposition 1.8 then tells us that X is normally distributed.
Because X

d
=
∑n

i=1 aiXi we know that

g(t) =

n∑
i1=1

g(ai1t).
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Applying the same property on g(ai1t) we see that

g(t) =
n∑

i1=1

n∑
i2=1

g(ai1ai2t),

and so for a general m ∈ N we find

g(t) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

im=1

g

 m∏
j=1

aij t

 .

The product within g can be written as ak11 a
k2
2 . . . aknn where all the ki are natural numbers

with k1 +k2 + . . .+kn = m. All the summations in front of g make sure that we see every
possibility for this product and a lot are being repeated multiple times. To understand
how many times they are repeated we are going to need some combinatorics. Suppose
all the ki are given, then

m∏
j=1

aij = ai1ai2 . . . aim

has k1 times an a1 in it, and we know that there are

(
m
k1

)
= m!

k1!(m−k1)! orders of the

aij where this happens. For a given order, there are still m − k1 spots left, and there

is k2 times an a2 in those empty spots, therefore there are

(
m− k1

k2

)
= (m−k1)!

k2!(m−k1−k2)!

different ways to do this. We can repeat this for all the ki and multiplying all these
binomial coëfficiënts gives us

m!

k1!(m− k1)!
· (m− k1)!

k2!(m− k1 − k2)!
· · · · · (kn−1 + kn)!

kn−1!kn!
· 1 =

m!

k1!k2! . . . kn−1!kn!
.

This is called the multinomial and is usually written as

(
m

k1, k2, . . . , kn

)
. With this in

our mind we can say that

g(t) =
∑

k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

)
g

(
n∏
i=1

akii t

)
. (2.3.2)

Now we will look at the second derivative of both sides

g′′(t) =
∑

k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

) n∏
i=1

a2ki
i g′′

(
n∏
i=1

akii t

)
.

We want to show that this equals g′′(0) for all t ∈ R and is therefore constant. To do so,
we will look at the difference of the two. But firstly, the multinomial theorem [3, p. 33]
gives us that ∑

k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

) n∏
i=1

a2ki
i =

(
n∑
i=1

a2
i

)m
= 1,
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therefore, when we choose an arbitrary t0 ∈ R,

∣∣g′′(t0)− g′′(0)
∣∣ =

∣∣∣∣∣∣
∑

k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

) n∏
i=1

a2ki
i

(
g′′

(
n∏
i=1

akii t0

)
− g′′(0)

)∣∣∣∣∣∣
≤

∑
k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

) n∏
i=1

a2ki
i

∣∣∣∣∣g′′
(

n∏
i=1

akii t0

)
− g′′(0)

∣∣∣∣∣ .
For every m ∈ N there is a combination of k∗i,m with k∗1,m + k∗2,m + . . .+ k∗n,m = m such

that
∣∣∣g′′ (∏n

i=1 a
k∗i,m
i t0

)
− g′′(0)

∣∣∣ ≥ ∣∣∣g′′ (∏n
i=1 a

ki
i t0

)
− g′′(0)

∣∣∣ for all other combinations

of ki. That way

∣∣g′′(t0)− g′′(0)
∣∣ ≤ ∑

k1+k2+...+kn=m

(
m

k1, k2, . . . , kn

) n∏
i=1

a2ki
i

∣∣∣∣∣g′′
(

n∏
i=1

a
k∗i,m
i t0

)
− g′′(0)

∣∣∣∣∣
=

∣∣∣∣∣g′′
(

n∏
i=1

a
k∗i,m
i t0

)
− g′′(0)

∣∣∣∣∣ .
We know

∏n
i=1 a

k∗i,m
i t ∈ (0, am1 t0) with am1 < 1. Now because g(t) = log(ϕX(t)) we have

g′(t) =
ϕ′X(t)

ϕX(t)
,

g′′(t) =
ϕ′′X(t)ϕX(t)− (ϕ′X(t))2

ϕX(t)2
.

Since X has a finite second moment, and ϕX(t) is never zero, it follows that g′′(t) is
continuous, and even uniformly continuous on the compact interval [0, t0]. Therefore,
because am1 t0 → 0 when m→∞, we have that for all ε > 0, there exists an m ∈ N such
that for all y ∈ (0, am1 t0) ∣∣g′′ (y)− g′′(0)

∣∣ < ε,

so we can conclude that

∣∣g′′(t0)− g′′(0)
∣∣ ≤ lim

m→∞

∣∣∣∣∣g′′
(

n∏
i=1

a
k∗i,m
i t0

)
− g′′(0)

∣∣∣∣∣ = 0

for all t0 ∈ R, therefore g′′(t) is a constant, so

g(t) = at2 + bt+ c

for some a, b, c ∈ C. Since g(t) = log |ϕX(t)| we get that

ϕX(t) = eat
2+bt+c

which corresponds to a normal distribution according to Proposition 1.8.
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Although Lemma 2.9 looks very similar to our second characterization, we still assumed
that all the random variables had finite second moments. This is a very strong condition
and not needed. K. Oleskiewicz has written in his article [4] a more general, sufficient
condition for X to be normally distributed as shown in the next theorem.

Theorem 2.10.
Let n ≥ 2 be a natural number. Let a1 ≥ a2 ≥ · · · ≥ an > 0 be such that

∑n
i=1 a

2
i ≥ 1.

If X, X1, X2, . . . , Xn are symmetric i.i.d. real random variables such that

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

)
≤ P (|X| > t) (2.3.3)

for any t > 0, then X has a normal distribution

Proof. First of all, when we put ai√∑n
i=1 a

2
i

in place of ai then (2.3.3) still holds. Therefore

we can reduce this problem to the case of
∑n

i=1 a
2
i = 1.

We define a function h : R→ [−1, 1] as follows:

h(x) =

{
cos(x) |x| < π,

−1 |x| ≥ π.

We are going to proof that the inequality

h(x+ y) + h(x− y)

2
≤ h(x)h(y) (2.3.4)

holds for all x, y ∈ R by looking at three different cases.

Case 1: |x|, |y| ≥ π
Since h(x) ≤ 1 for all x, we know that

h(x+ y) + h(x− y)

2
≤ 1 + 1

2
= 1 = −1 · −1 = h(x)h(y).

Case 2: |x|, |y| < π
In general h(x) ≤ cos(x) for all x, therefore

h(x+ y) + h(x− y)

2
≤ cos(x+ y) + cos(x− y)

2
.

Using the trigonometrical equality cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) we see that

cos(x+ y) + cos(x− y)

2
= cos(x) cos(y) = h(x)h(y).



26 CHAPTER 2. CHARACTERIZATIONS OF A NORMAL DISTRIBUTION ON R

Case 3: |x| < π and |y| ≥ π
Let’s assume that y > 0. In this case that means that x+y ∈ (0,∞) and x−y ∈ (−∞, 0).
Because h(x) is non-increasing on R+ and non-decreasing on R− we can conclude that
h(x + y) and h(x − y) are at their maximum when y = π (if y < 0, the same would be
true for y = −π). So

h(x+ y) + h(x− y)

2
≤ cos(x+ π) + cos(x− π)

2
= − cos(x) = h(x)h(y).

Notice that because of the symmetry of h(x) we know that h(x − y) = h(y − x) and
therefore the inequality is also true if |y| < π and |x| ≥ π.

We define another function fY (s) := E[h(sY )] for any random variable Y and s ∈ R,
however since fY (0) = 1 for any Y , there exists an s0 such that for all i, fXi(s) > 0 for
any s ∈ (0, s0]. From now on we will only look at s in this interval. If Y and Z are both
symmetric independent random variables, then (2.3.4) tells us that

fY (s)fZ(s) = E[h(sY )h(sZ)] ≥ E
[
h(s(Y + Z) + h(s(Y − Z))

2

]
= E[h(s(Y+Z))] = fY+Z(s),

and through basic induction,

f n∑
i=1

aiXi
(s) ≤

n∏
i=1

faiXi(s) =
n∏
i=1

fX(ais). (2.3.5)

Since h(x) is symmetric we know h(sX) = h(|sX|). Furthermore, since h′(x) = − sin(x)
for |x| < π and 0 everywhere else, −h′(x) ≥ 0 for x ≥ 0, therefore we can use Proposition
1.3 as follows,

fX(s) = E(h(sX)) = −E(−h(|sX|)) = −
∫ ∞

0
P
(
|X| > x

|s|

)
(−h′(x))dx+ h(0).

Through (2.3.3) we find that

−
∫ ∞

0
P
(
|X| > x

|s|

)
(−h′(x))dx+ h(0) ≤ −

∫ ∞
0

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > x

|s|

)
(−h′(x))dx+ h(0)

= f n∑
i=1

aiXi
(s),

so with (2.3.5) in our mind we get

fX(s) ≤ f n∑
i=1

aiXi
(s) ≤

n∏
i=1

fX(ais). (2.3.6)

Let g(s) = fX(s)
1
s2 , then through (2.3.6) we get

n∏
i=1

g(ais)
a2i =

n∏
i=1

fX(ais)
1
s2 =

(
n∏
i=1

fX(ais)

) 1
s2

≥ fX(s)
1
s2 = g(s),
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and so for s > 0,

g(s) ≤
n∏
i=1

g(ais)
a2i ≤ sup

r∈(0,a1s]

n∏
i=1

g(r)a
2
1 = sup

r∈(0,a1s]
g(r)

n∑
i=1

a2i
= sup

r∈(0,a1s]
g(r). (2.3.7)

Through induction we can then find that for general m ∈ N we have

g(s) ≤ sup
r∈(0,am1 s]

g(r),

and since a1 < 1 we know that am1 s goes to zero if m goes to infinity. Therefore, since
we can write g(s0) = e−2c > 0 with c ∈ R+, we see that

lim sup
r→0

g(r) ≥ g(s0) = e−2c.

Define a sequence as follows; we take r1 := s0 and then we choose our rk with k ≥ 2 such
that 0 < rk ≤ a1rk−1 and g(rk) ≥ g(a1rk−1), which exists according to (2.3.7). This
way, rk → 0 and g(rk) ≥ e−2c. Now

E(cos(rkX)) ≥ E(h(rkX)) = fX(rk) ≥ e−2cr2k ≥ 1− 2cr2
k,

or

c ≥ 1

r2
k

E
[

1− cos(rkX)

2

]
.

In general, the equality sin2
(
x
2

)
=

√
1−cos(2x)

2 holds, so in our case

c ≥ 1

r2
k

E
[
sin2

(
rkX

2

)]
,

and since sin(x) ≥ x
π for 0 ≤ x ≤ π we get that

c ≥ 1

r2
k

E

[(
rkX

π

)2
]
1|rkX|≤π = E

[(
X

π

)2
]
1|rkX|≤π.

Because rk → 0, we know that 1|rkX|≤π → 1, so

c ≥ 1

π2
E(X2).

In conclusion, X has a finite second moment. Now we will take a look at E (
∑n

i=1 aiXi)
2.

E

( n∑
i=1

aiXi

)2
 = E

 n∑
i=1

a2
iX

2
i +

∑
i 6=j

aiajXiXj

 =
n∑
i=1

a2
iE
(
X2
i

)
+
∑
i 6=j

aiajE(XiXj).
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Since all the Xi are independent, E(XiXj) = E(Xi)E(Xj), and they all are i.i.d. with
zero expectation, so

E

( n∑
i=1

aiXi

)2
 =

n∑
i=1

a2
iE(X2) = E(X2). (2.3.8)

With Proposition 1.3 and (2.3.3), it follows that

E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
2
 =

∫ ∞
0

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

)
2tdt ≤

∫ ∞
0

P(|X| > t)2tdt = E(|X|2),

so by combining this with (2.3.8) we can see that∫ ∞
0

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

)
2tdt =

∫ ∞
0

P(|X| > t)2tdt. (2.3.9)

Now, if there was a t0 > 0 such that P (|
∑n

i=1 aiXi| > t0) < P(|X| > t0) then, be-
cause of the right-continuity of the probabilities, there would exist an ε > 0 such that
P (|
∑n

i=1 aiXi| > t) < P(|X| > t) for t ∈ [t0, t0 + ε), and then∫ ∞
0

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ > t

)
2tdt <

∫ ∞
0

P(|X| > t)2tdt.

Which contradicts (2.3.9), so P (|
∑n

i=1 aiXi| > t) = P(|X| > t) for t > 0. Because X
and all the Xi are symmetric it follows that

P

(
n∑
i=1

aiXi > t

)
= P(X > t).

For general Y we have P(Y > t) = 1− P(Y ≤ t), therefore

P

(
n∑
i=1

aiXi ≤ t

)
= P(X ≤ t),

and by using symmetry again, we see that

P

(
n∑
i=1

aiXi ≥ −t

)
= P(X ≥ −t)

for all t > 0, and hence for all t ∈ R. Therefore
∑n

i=1 aiXi
d
= X, so by Lemma 2.9, X

has a normal distribution.
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With this theorem, the proof of the second characterization becomes fairly easy.

Proof of theorem 2.8. LetX ′ be an independent copy ofX, then there also existX ′1, X
′
2, ..., X

′
n

i.i.d. such that
∑n

i=1 aiX
′
i

d
= X ′, therefore

X −X ′ d
=

n∑
i=1

aiXi −
n∑
i=1

aiX
′
i =

n∑
i=1

ai(Xi −X ′i).

Since all the Xi−X ′i are symmetric, Theorem 2.10 now tells us that X−X ′ has a normal
distribution. By applying Cramér’s theorem we find that X has a normal distribution
as well.



Chapter 3

Gaussian measures on abstract
spaces
In the previous chapter we have seen certain characterizations of a normal distribution
on R. In this section we will turn some of these characterizations into definitions in
order to define them on different spaces than just R. The information in this chapter is
derived from the lecture notes of W. Bryc [5].

3.1 Definitions

A special case of our second characterization, which is often examined, is the case where
n = 2 and a1 = a2 = 1√

2
. In this case we define the Equidistributed-Gaussian, or

E-Gaussian, random variables. Since this theorem only uses addition and scalar multi-
plication, we won’t necessarily need the structure of Rd, but any vector space V would
do. But first we will need to give a definition of a random variable on such a vector space.

Suppose V is a vector space over the field R which has a σ-algebra F (if we are working
with a topological space, the obvious choice for F would be the Borel σ-algebra) such
that scalar multiplication (v, t) 7→ tv and vector addition (v,w) 7→ v + w are measur-
able transformations V × R → V and V × V → V with respect to the σ-fields F ⊗ BR
and F ⊗F respectively. If (Ω,M,P) is a probability space, then a measurable function
X : Ω→ V is called a V -valued random variable.

Definition 3.1.
Let V be a vector space. A V -valued random variable X is E-Gaussian if the distribu-
tion of

√
2X is equal to the distribution of X + X′, where X′ is an independent copy

of X.

One way to make an E-Gaussian random variable is to take the product of an R-valued
normal random variable X ∼ N(m,σ2) and a vector v ∈ V . This has to do with the

fact that
√

2X
d
= X +X ′, for X ′ an independent copy. Because of this,

P(
√

2Xv ∈ B) = P(
√

2X ∈ C) = P(X +X ′ ∈ C) = P((X +X ′)v ∈ B)

for all B ∈ F and C := {x ∈ R : xv ∈ B}, therefore
√

2Xv
d
= (X +X ′)v.

30
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The next definition is derived from Theorem 2.1. Since it determines whether a random
variable is normal by using independence, we will call them Independent-Gaussian, or
I-Gaussian. This theorem only uses the basic operations + and −, therefore we can
look at very basic structures that only use these operations, like an abelian group G.

Let G be an abelian group with σ-algebra F such that the group operation v,w 7→ v+w
is a measurable transformation G×G→ G. v−w is also measurable, as it is equal to
v + w†, where w† is the additive inverse of w which is also an element of the group G.
If (Ω,M,P) is a probability space, then a measurable function X : Ω→ G is a G-valued
random variable.

Definition 3.2.
Let G be an abelian group. A G-valued random variable X is I-Gaussian if the random
variables X+X′ and X−X′, where X′ is an independent copy of X, are independent.

An example of an I-Gaussian can be made with the help of a measurable homomorphism
φ : R→ G. Take a normal random variable X on R, then φ(X) is I-Gaussian. Namely,
since X is normally distributed we know that X+X ′ and X−X ′ are independent, where
X ′ is an independent copy. Since φ is a measurable function, it preserves independence,
so φ(X + X ′) and φ(X − X ′) are also independent. After using the property of ho-
momorphisms, the same applies to φ(X) + φ(X ′) and φ(X) − φ(X ′), therefore φ(X) is
I-Gaussian.

A multivariate normal random variable, as defined in Definition 1.4, can also be defined
on other spaces than just Rd. To do this, we will need to work with linear forms.

Definition 3.3.
A function f : V → F , with V a vector space and F a field, is called a linear form if

1. f(v + w) = f(v) + f(w) for all v,w ∈ V

2. f(av) = af(v) for all v ∈ V, a ∈ F

We will only be looking at the case where F = R. Now we are able to define multivariate
normal random variables on other spaces, which we will call Linear-Gaussian, or L-
Gaussian for short, since it uses linear forms to determine whether a random variable is
normal or not.

Definition 3.4.
Let V be a vector space with topology τ . A Vτ -valued random vector X is L-Gaussian
if for every continuous linear form f the real valued random variable f(X) is normal.

Note that if V = Rd, then this definition is equivalent with Definition 1.4, where the
linear forms are the inner products with a vector t ∈ Rd.
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3.2 Equivalence of the Gaussians

We now have defined three different types of a Gaussian. It isn’t surprising that a lot
of times these three definitions are equivalent, however there are times when they aren’t
([11] gives examples that are E-Gaussian without being I-Gaussian). One situation
where we are certain that they are equivalent is when we look at centered random
variables on R, since we have derived our definitions from characterizations of a normal
distribution in R. But there is still room for expansion.

Proposition 3.1.
If X is a symmetric random variable on Rd, then the following statements are equivalent:

• X is L-Gaussian.

• X is E-Gaussian.

• X is I-Gaussian.

Before we prove this we will first need the following lemma.

Lemma 3.2.
Let X,Y : Ω → Rd be random vectors, and f : Rd → R a borel-measurable function.
If X

d
= Y, then f(X)

d
= f(Y)

Proof. The proof of this is rather straightforward. Since X
d
= Y we know that

P(X ∈ A) = P(Y ∈ A)

for all A ∈ B(Rd). Now take B ∈ B(R), then

P(f(X) ∈ B) = P(X ∈ f−1(B)),

where f−1(B) = {x ∈ Rd : f(x) ∈ B}. Since f is borel-measurable, we know that
f−1(B) ∈ B(Rd), therefore

P(X ∈ f−1(B)) = P(Y ∈ f−1(B)) = P(f(Y) ∈ B),

so f(X)
d
= f(Y).

Proof of proposition 3.1. We will prove this by showing that if X is E-Gaussian or I-
Gaussian, then it is also L-Gaussian, and if it is L-Gaussian then it is E-Gaussian and
I-Gaussian.

E-Gaussian ⇒ L-Gaussian

If
√

2X
d
= X + X′, then Lemma 3.2 tells us that for an arbitrary t ∈ Rd

√
2tTX

d
= tTX + tTX

′
.

Using Theorem 2.8 on tTX tells us that it is normally distributed, and therefore X is
L-Gaussian. This proof also extends to general vector spaces V .
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I-Gaussian ⇒ L-Gaussian
If X+X′ and X−X′ are independent, then it follows that tTX+ tTX′ and tTX− tTX′

are also independent. So Theorem 2.1 now states that tTX is normal, therefore X is
L-Gaussian. Again, this proof extends to general vector spaces V .

L-Gaussian ⇒ E-Gaussian
Assume X is a centered L-Gaussian witch covariance matrix Σ, and X′ is an independent
copy. From Proposition 1.9 we know that X + X′ ∼ N (0, 2Σ). To find the distribution
of
√

2X we turn to the characteristic function.

ϕ√2X(t) = ϕX(
√

2t) = exp

(
−1

2

√
2tTΣ

√
2t

)
= exp

(
−tTΣt

)
.

From the characteristic function we can see that
√

2X ∼ N (0, 2Σ), hence
√

2X
d
= X+X′.

L-Gaussian ⇒ I-Gaussian
This proof will work similar as the proof of the first implication of theorem 2.1.1, but
now using the characteristic function of an L-Gaussian, given by (1.4.2). Assume X is a
centered L-Gaussian with covariance matrix Σ and let X′ be an independent copy. Still
due to the independence we can find that

ϕ(X+X′,X−X′)(s, t) = ϕX(s + t) · ϕX′(s− t),

and

ϕX(s + t) · ϕX′(s− t) = exp

(
−1

2
(s + t)TΣ(s + t)− 1

2
(s− t)TΣ(s− t)

)
.

After removing all the brackets and simplifying we are left with

ϕX(s + t) · ϕX′(s− t) = exp

(
−1

2

(
sTΣs + tTΣt + sTΣs + tTΣt

))
= exp

(
−sTΣs

)
· exp

(
−tTΣt

)
= ϕX+X′(s) · ϕX−X′(t).

So according to Proposition 1.7 we find that X + X′ and X − X′ are independent,
therefore X is I-Gaussian.

So Rd still has enough structure for these three definitions to be equivalent. But there
are other spaces with enough structure, for example C[0, 1]. The following theorem gives
us a sufficient condition for V to have this property.

Theorem 3.3.
If X is a symmetric random variable on V with V a separable Banach space, then the
statements from Proposition 3.1 are equivalent.

Here seperable means that it contains a countable, dense subset, and a Banach space is a
complete normed vector space. The proof of this theorem goes further into the material
than desired, and will therefore not be included in this report.
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3.3 Integrability of an I-Gaussian

Much like a normal random variable, all the moments of an I-Gaussian exist. We will
do this by proving that it has exponential integrability properties, which we can derive
from the following theorem.

Theorem 3.4.
Let X be I-Gaussian on a measurable Abelian group G. Let d : G → R+ be a
measurable function such that d(a + b) ≤ d(a) + d(b) and d(−a) = d(a) for every
a, b ∈ G. Suppose that for some δ ∈

(
0, 1

2

)
and η > 0

P(d(X) ≥ η) ≤ δ, (3.3.1)

then

P(d(X) ≥ t) ≤ exp

(
t2

144η2
log

δ

1− δ

)
(3.3.2)

for every t ≥ 3η.

Proof. Let Y be an independent copy of X. We shall first prove that the inequality

P(d(X) < η)3P(d(X) ≥ t) ≤ P
(
d(X) ≥ t− 3η

2

)4

(3.3.3)

holds. Since Y and X are i.i.d., we see that

P(d(X) < η)3P(d(X) ≥ t) = P(d(X) < η)P(d(Y) < η)P(d(X) ≥ t)P(d(Y) < η)

= P(d(X) < η, d(Y) < η)P(d(X) ≥ t, d(Y) < η).

Using the properties of d from our assumptions, it follows that d(X) < η and d(Y) < η
always implies the following,

d(X + Y) ≤ d(X) + d(Y) < 2η,

d(X−Y) ≤ d(X) + d(−Y) < 2η.

So since one event implies the other, the probability of that one event has to be smaller
than the other one, therefore

P(d(X) < η, d(Y) < η) ≤ P(d(X + Y) < 2η, d(X−Y) < 2η).

In the same way we can find that

P(d(X) ≥ t, d(Y) < η) ≤ P(d(X + Y) ≥ t− η, d(X−Y) ≥ t− η),

so

P(d(X) < η)3P(d(X) ≥ t)
≤ P(d(X + Y) < 2η, d(X−Y) < 2η)P(d(X + Y) ≥ t− η, d(X−Y) ≥ t− η)

= P(d(X + Y) < 2η)P(d(X−Y) < 2η)P(d(X + Y) ≥ t− η)P(d(X−Y) ≥ t− η)

= P(d(X + Y) < 2η, d(X−Y) ≥ t− η)P(d(X + Y) ≥ t− η, d(X−Y) < 2η),
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with the second and third row using the independence of X + Y and X−Y. Using the
fact that d(a) ≥ d(a+ b)− d(b) for a, b ∈ G, if we would write a = 2X and b = −X + Y,
we would find that d(2X) ≥ d(X + Y) − d(X − Y). So from d(X + Y) < 2η and
d(X−Y) ≥ t− η it follows that

d(2X) ≥ d(X + Y)− d(−X + Y) ≥ t− 3η,

and similarly

d(2Y) ≥ d(X + Y)− d(X−Y) ≥ t− 3η.

So using the same method as before, we find that

P(d(X + Y) < 2η, d(X−Y) ≥ t− η) ≤ P(d(2X) ≥ t− 3η, d(2Y) ≥ t− 3η),

and again, in the same way we can find that

P(d(X + Y) ≥ t− η, d(X−Y) < 2η) ≤ P(d(2X) ≥ t− 3η, d(2Y) ≥ t− 3η).

Therefore

P(d(X) < η)3P(d(X) ≥ t)
≤ P(d(2X) ≥ t− 3η, d(2Y) ≥ t− 3η)P(d(2X) ≥ t− 3η, d(2Y) ≥ t− 3η)

= P(d(2X) ≥ t− 3η)4

≤ P
(
d(X) ≥ t− 3η

2

)4

.

So we got our inequality (3.3.3), and by (3.3.1) we also know that P(d(X) < η) ≥ 1− δ,
therefore

(1− δ)3P(d(X) ≥ t) ≤ P
(
d(X) ≥ t− 3η

2

)4

.

When we define tn := (2n+1 − 1)3η for n ≥ 0, then

tn − 3η

2
=

2n+1 · 3η − 6η

2
= (2n − 1)3η = tn−1,

so we find that

P(d(X) ≥ tn) ≤ (1− δ)−3P (d(X) ≥ tn−1)4 .

Using the same inequality again on P (d(X) ≥ tn−1) gives us

P(d(X) ≥ tn) ≤ (1− δ)−3
(

(1− δ)−3P (d(X) ≥ tn−2)4
)4

= (1− δ)−3(1+4)P (d(X) ≥ tn−2)42
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and again on P (d(X) ≥ tn−2)

P(d(X) ≥ tn) ≤ (1− δ)−3(1+4)
(

(1− δ)−3P (d(X) ≥ tn−3)4
)42

= (1− δ)−3(1+4+42)P (d(X) ≥ tn−3)43 ,

and if we would do this another n− 3 times, we would find that

P(d(X) ≥ tn) ≤ (1− δ)−3(1+4+...+4n−1)P (d(X) ≥ t0)4n .

Since t0 = 3η, (3.3.1) tells us that we can be certain that P(d(X) ≥ t0) ≤ δ. Furthermore

−3(1 + 4 + . . .+ 4n−1) = −3
n−1∑
k=0

4k = −3
1− 4n

1− 4
= 1− 4n,

So because (1− δ) ∈
(

1
2 , 1
)
,

(1− δ)−3(1+4+...+4n−1) =
1

(1− δ)4n−1
≤ 1

(1− δ)4n
.

Put this all together and we find that

P(d(X) ≥ tn) ≤
(

δ

(1− δ)

)4n

= exp

(
4n log

δ

1− δ

)
.

To get to the inequality as given by (3.3.2) we take a look again at tn+1 = (2n+1 + 1)3η,
for some rewriting gives us

tn+1 + 3η

12η
= 2n.

After squaring both sides we get (
tn+1 + 3η

12η

)2

= 4n,

so if we take t such that tn ≤ t ≤ tn+1 we find that

4n ≥
(

t

12η

)2

=
t2

144η2
.

Because δ ∈
(
0, 1

2

)
it follows that log δ

1−δ ≤ 0, therefore

P(d(X) ≥ t) ≤ P(d(X) ≥ tn) ≤ exp

(
4n log

δ

1− δ

)
≤ exp

(
t2

144η2
log

δ

1− δ

)
.

This is true for every tn ≤ t ≤ tn+1, but we can do this for every n ≥ 0, so since
tn ≥ t0 = 3η and tn → ∞ as n → ∞, we have proven that inequality (3.3.2) holds for
every t ≥ 3η.



3.3. INTEGRABILITY OF AN I-GAUSSIAN 37

Corollary 3.5.
Let X be I-Gaussian on a measurable Abelian group G, then there is an ε > 0 such
that

E
(
eεd(X)2

)
<∞

Proof. According to Proposition 1.3, we have

E
(
eεd(X)2

)
=

∫ ∞
0

P(||X|| ≥ t)2εteεt2dt.

As long as the function d is not always equal to zero (if it is, then E
(
eεd(X)2

)
= 1 <∞),

there will always exist a δ ∈
(
0, 1

2

)
and η > 0 such that

P(d(X) ≥ η) ≤ δ.

Therefore, according to Theorem 3.4, we know that

P(d(X) ≥ t) ≤ eCη,δt2

for t ≥ 3η, with Cη,δ < 0.∫ ∞
0

P(d(X) ≥ t)2εteεt2dt =

∫ 3η

0
P(d(X) ≥ t)2εteεt2dt+

∫ ∞
3η

P(d(X) ≥ t)2εteεt2dt

≤
∫ 3η

0
2εteεt

2
dt+

∫ ∞
3η

2εte(Cη,δ+ε)t
2
dt

= eεt
2
∣∣∣3η
0

+
εe(Cη,δ+ε)t

2

Cη,δ + ε

∣∣∣∞
3η
.

It is easy to see that the first term equals e9εη2 − 1 which is finite. Now if we take
ε < |Cη,δ|, then Cη,δ + ε < 0, and we won’t be bothered by that infinity

εe(Cη,δ+ε)t
2

Cη,δ + ε

∣∣∣∞
3η

= −εe
9(Cη,δ+ε)η

2

Cη,δ + ε
,

which is again finite. Therefore

E
(
eεd(X)2

)
<∞.

Knowing that E
(
eεd(X)2

)
<∞ for an ε > 0, we can also conclude that the E

(
etd(X)

)
< ∞

for |t| < ε, since d(X)2 ≥ d(X) when d(X) ≥ 1. Therefore, with an argument similar as
the one for the moment-generating functions (see “Expectation and Moments”), we can
conclude that E(d(X)n) <∞ for every n and an I-Gaussian random variable has finite
moments.
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