
Analyzing Flow Rule Attacks and Policy Enforcement in Software Defined
Networking

Vlad Florea
Supervisors: Mauro Conti, Chhagan Lal

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Software Defined Networking (SDN) is a new paradigm

that allows for greater reliability and more efficient man-
agement compared to traditional networks. However,
SDN security is a developing field, and research towards
fixing significant security vulnerabilities is still ongoing.
One major threat to SDN security are attacks that seek
to exploit policy and flow rule enforcement. This paper
aims to summarise how these attacks are conducted and
the weaknesses they target. Then, state-of-the-art solu-
tions to these weaknesses will be presented, along with
their use cases, advantages and disadvantages. Finally, an
improvement on the state-of-the-art solutions will be pro-
posed, as well as a potential direction for future research..

1 Introduction
The field of networking has become increasingly stagnant as
the difficulty of managing traditional networks grows along-
side their complexity. The bundling of the control and data
planes results in a lack of flexibility when routing traffic un-
der unpredictable load changes. Moreover, network operators
have to deal with unexpected changes in topology due to units
failing or attacks, lack of proper documentation, and vendor-
specific commands. Enforcing the necessary policies in such
a volatile environment is a challenging task.[1]

SDN is a new paradigm that seeks to solve these issues by
separating the network’s control plane from the data plane.
This separation results in a system that makes use of a logi-
cally centralised controller, enabling more efficient manage-
ment and better scalability. The controller instates flow rules
and policies over the network elements using a southbound
API, the most common of which is OpenFlow.[2] However,
while the SDN architecture certainly offers security advan-
tages, such as easier transfer of feedback from threat detec-
tion, it also poses additional security risks in other areas.[3]
Mainly, there is not as much existing research on the topic of
security as with traditional networks, and successful attacks
on the control plane can result in the entire network being
compromised.

The aim of this paper is to find solutions to attacks that
affect flow rules and bypass or exploit network policies, anal-
yse the limitations of these solutions, and then attempt to find
a new solution to address these threats. This goal will be
accomplished by reviewing the existing state-of-the-art liter-
ature in the field of SDN security, specifically articles and
papers focusing on policy-based solutions.

The second section of the report will provide additional
background on the topic of the research and present the most
common types of attacks that seek to compromise the control
plane by exploiting vulnerabilities in the system’s policies.
The third section will detail the state-of-the-art solutions that
have been collected via literature review on the topic, and
provide additional information on the concepts involved. The
fourth section will discuss the weaknesses and limitations of
current solutions and propose a direction in which future re-
search on the topic could be conducted, in order to advance
the state-of-the-art. The fifth section will summarise the eth-
ical implications of this research, along with the steps taken

to prevent misconduct. The sixth section will present poten-
tial improvements on the state-of-the-art literature and future
research directions. The final section will offer a summary
of the findings resulting from the research and concludes the
paper.

2 Background and Related Work
Research in the domain of SDN security has progressed
rapidly over the past few years, and as such, there exist a num-
ber of papers that address the topic of threat detection and so-
lutions to security issues in Software Defined Networks. This
paper aims to provide a comprehensive overview of the dif-
ferent types of attacks that exploit policies in the SDN control
and data planes.

As part of the literature review phase of the project, papers
were sought out through the IEEEXplore database, specifi-
cally, papers that provide comprehensive overviews of secu-
rity issues in SDN, as well as others that focus on specific
attacks related to policy and flow rule exploitation and solu-
tions that counter them.

The paper [4] addresses policy-related vulnerabilities, dif-
ferent methods for policy conflict resolution and an overview
of all implementations and solutions currently in use for
countering policy attacks and network flow diversion. Net-
work policies are rules that govern the behaviour of a net-
work. They determine the level of access that different users
have within the network, which traffic should be prioritised,
and ensure quality of service for users and network secu-
rity. Flow rules reside within the flow tables of the net-
work switches and have the role of determining the manner
in which packets traverse the network. In the pro-active SDN
model, flow tables are populated ahead of time, and flow rules
in the table are checked against incoming packets. In the re-
active SDN model, each packet is extradited to the controller,
which instates a flow rule in the switch in response to the
packet. This model can adapt to new networking flows but is
significantly less scalable than the pro-active model.

[3] provides an overview of how policies are enforced in
SDN, compared to traditional networks, as well as a list of
the entities involved. Network policies are selected in the
controller based on the status of the network and whether in-
coming connections match their conditions. They are then
sent to the network switches via the OpenFlow API, where
they determine the application of flow rules on the incoming
packets. The paper also explains the impact of policy con-
flicts on the security of the network and details different types
of attacks that can exploit the SDN architecture. Moreover, it
lists a number of state-of-the-art solutions for policy conflict
resolution and real-time policy checking.

[5] offers a high-level view of numerous types of SDN at-
tacks, as well as an explanation of how the OpenFlow API
functions. The article outlines six main types of SDN attacks,
targeting either the controller, applications or network ele-
ments.

1. Spoofing attacks involve an attacker pretending to be an-
other host or using a fake address in order to fool the
system into enforcing the wrong policies.



2. Tampering attacks target existing packets entering the
network and involve the attacker modifying the header
or payload of a packet in order to perform malicious ac-
tions.

3. Repudiation attacks are executed by performing an ac-
tion on the network and, in the absence of appropriate
logging functionality, pretending that said action never
took place.

4. Denial of Service attacks are performed by overwhelm-
ing the system with a large number of packets or requests
or by disrupting the network flow such that packets are
directed through channels that lack the appropriate ca-
pacity to handle them. The resulting congestion prevents
legitimate packets from being handled by the network.

5. Information Disclosure attacks involve the attacker dis-
covering crucial information about the structure of the
network, the inner workings of the network components
or the contents of packets travelling through the net-
work. This goal is usually accomplished via side chan-
nels, through the use of certain scanning tools or by
eavesdropping on communication channels making use
of weak encryption or none at all.

6. Elevation of Privileges can be performed either by im-
personating another host after a successful spoofing at-
tack, by increasing privileges in a weakly secured con-
troller or by exploiting improper policy enforcement
protocols to create policy conflicts and bypass security
policies.

This paper differs from existing papers by providing an
overview of a number of different attacks that target policies
in SDN, as well as multiple solutions that specifically address
these attacks through policy enforcement, policy conflict res-
olution and policy verification between the control and data
planes.

3 Attacks and Solutions
This section will address several attacks that aim to exploit
or bypass policies in the SDN control plane, the way they are
performed and how they affect the functioning of the network.
Solutions for these attacks will also be listed, and their mech-
anism of action will be explained. A comparison between the
solutions can be found in Table 1.

3.1 Attacks
1. Priority-passing Attack

The priority-passing attack is a type of spoofing attack.
[6] It is performed by changing a host’s IP or MAC
address and impersonating another host to bypass the
high priority flow rules and cause the controller to in-
stall malicious lowest-priority flow rules in the forward-
ing device. This leads to the targeted switch forward-
ing packets from the host to a destination originally in-
tended for packets from another host. The attack can
allow the malicious actor to take advantage of the sys-
tem to accomplish different objectives - redirection to a
different network or packet drop between two hosts. To

accomplish the first objective, through IP/MAC passing,
the system assigns flow rules meant for another sender’s
packets to packets sent by the malicious actor. In case
the addresses are in different virtual local area networks
(VLAN), VLAN-crossing is performed and the packets
can enter a different, potentially sensitive VLAN. For
the second objective, priority-passing is used to create
Denial of Service (DoS) between two hosts, by chang-
ing the flow rule that is executed during packet egress
(packet processing before they leave the network). The
low-priority rule that is set instead will forward all pack-
ets to a different host, thus dropping all packets in the
connection with the intended receiving host.

2. Covert Channel Attack
A covert channel attack involves creating a means of
transferring data between two entities that are normally
not meant to communicate with each other. There are
two types of covert channels: storage and timing chan-
nels. [7] In storage channel attacks, one process writes
information directly or indirectly to a location. This in-
formation is then directly or indirectly read from said
location by another process. In timing channel attacks,
transmitted information is retrieved by interpreting the
arrival time of packets at the receiver. Messages can be
sent by the attacker by varying the time interval between
packets. While jitter can reduce the effectiveness of the
attack, simply increasing the time interval between at-
tack packets can render this effect moot.
Two examples of covert storage channel attacks that af-
fect policies are the host-based attack and the switch-
based attack. [8]
In the host-based attack, the attacker takes advantage
of the policies of a network by crafting a packet with
a header that does not match existing rules, triggering
the controller to apply new rules in the switches. The
resulting rule conflict at the level of the switches allows
the attacker to then create packets that can bypass filter
rules and travel between isolated networks. This is per-
formed via ICMP header modification, which exploits
ICMP rules inherent to SDN controllers that are used for
troubleshooting. Since these rules can not be excluded,
the attack can not be easily detected at the switches.
In the switch-based attack, a malicious rule that alters
the MAC address of packet headers is installed in one
of the switches. Then, once attack packets are sent to
the switch, the rule is applied and the packet headers are
modified. The original flow rule that would deny the
attack packets access to their destination is thus circum-
vented, since the MAC address specified in its condi-
tions no longer matches. This results in the attack pack-
ets bypassing filter rules and reaching their destination.

3.2 Solutions
1. Preacher

Preacher [9] is a probabilistic policy checker that de-
tects attacks stemming from compromised switches in
an adversarial data plane. Header or payload hashing is
utilised to sample a subset of packets travelling through



Table 1: Comparison between policy-related solutions

Solution Goal Method

Preacher [9] Detect adversarial switches and routers Probabilistic policy checking
Covert Channel Defender [8] Rule conflict resolution and prevention of

covert channel attacks
Classify rules into Equivalence Classes us-
ing VeriFlow

Policy Management and Enforce-
ment System [10]

Automatic attack mitigation in ISP net-
works

Monitor switches and paths to determine
network status and apply appropriate poli-
cies

Logical Security Architecture [2] Real-time policy enforcement and attack
mitigation

Priority-based policy conflict resolution
and detection of attacks at the level of the
switches using a modular approach

Switch-based Rule Verification [6] Efficiently counter priority-passing attacks Flow rule verification using HashMap

the network, and the policies associated with these sam-
ples are then identified and stored. Afterwards, all other
sampled packets are checked using the policies of pre-
viously stored packets in order to determine their legiti-
macy.
Preacher works to detect numerous types of attacks
since it can identify both injection attacks and Denial-
of-Service attacks (DoS). Sampled packets have their in-
formation, as well as a timestamp, added to the History.
An injection attack is detected when preceding packets
stored in the History do not match the policy of the cur-
rent sample, which specifies that certain packets must
have already been received. A packet drop/DoS attack
is detected when subsequent packets that are expected
according to the policy in the current sample are never
received.
Experiments have been performed in order to determine
mean detection time for different sampling ratios, de-
tection throughput, sampling overhead and the tradeoff
between resources used and detection time.
Detection time was measured for sampling ratios of
0.9% and 1.3%. It was found that doubling the sam-
pling ratio roughly halves the number of packets needed
to detect an attack and that having a higher number of
compromised switches working together increases the
number of packets needed to detect an attack. More-
over, detection time decreases linearly with the increase
in packet rate of the compromised switch.
Detection throughput is the number of samples the sys-
tem can analyse simultaneously, and it was tested by
scaling the number of threads and detector cores. The
increase in throughput is slower than linear; however,
there is a substantial increase in throughput with hyper-
threading and higher detection thread counts.
Overhead is not substantial when using Preacher, with
only a 1.5 MB increase in memory and CPU usage re-
maining within acceptable ranges at the level of the con-
troller. At the level of the switches, there is no impact
on throughput.
The size of a network affects detection time, and so does
the usage of independent hash assignment. For small

networks, only a few cores are needed to achieve detec-
tion times under 10 minutes, while for larger networks,
tens of cores are needed for a detection time of under an
hour. Independent hash assignment significantly slows
down detection, requiring hundreds of cores for similar
detection times, even in small networks.

2. Covert Channel Defender
The Covert Channel Defender [8] aims to detect and re-
solve rule conflicts that can facilitate covert channel at-
tacks in real time. It takes the form of an additional layer
that bridges the controller and network.
Conflict resolution is accomplished by categorising
types of packets handled under the same rules in Equiv-
alence Classes and storing these ECs in an efficient tree-
based data structure called an extended Trie. The trie
design is based on the one used by VeriFlow.
CCD conflict resolution is performed in three phases:
Constructing the extended trie, locating conflicting ECs
and merging found ECs. First, the extended trie is con-
structed based on new rules generated by the controller.
Then, when a new rule comes from an application, a
lookup is performed in the trie by analysing each indi-
vidual field of the rule. Finally, the leaves of the trie are
updated with newly generated ECs and correlated ECs
are linked using leaf pointers.
New rules generated by the controller can cause
rule conflicts, which are resolved by constructing bi-
directional forwarding graphs between their correlated
ECs. If the ECs overlap, the CCD generates new filter
rules associated with the conflicting ECs. Conflict-free
ECs are also merged in order to remove redundant rules
and reduce the complexity of the trie.
Several experiments were performed to determine rule
processing delays in the case of different numbers of
ECs, different field substitution rules and EC merg-
ing. CCD has been tested using an OpenFlow controller
called Floodlight, where it was found to perform simi-
larly to VeriFlow, CCD having a higher overhead with a
difference of around 19%. It was found that CCD in-
creases the packet forwarding delay by an average of
8.72% and boasts only a 0.16% reduction in throughput



compared to VeriFlow. Throughput is also reduced by
only around 15% when compared to the base Floodlight
controller.

3. Policy Management and Enforcement System
The Policy Management and Enforcement System
(PMES) [10] is a framework that can automatically con-
figure and enforce policies within a network, responding
to threats in real time. It is meant for use in Internet Ser-
vice Provider (ISP) networks. The system consists of a
monitoring plane, which contains the Monitoring Com-
ponent (MC), and a policy plane, which contains the
Policy Database (PD), Policy Decision Point (PDP) and
Policy Orchestrator and Implementer (POI). The MC re-
sides at the level of the switches in the network but is im-
plemented as a separate component. The POI is a com-
ponent that interfaces with the ISP controller, ensuring
consistent traffic flow between the customer controllers
and switches.

Figure 1: Structure of the PMES [10]

It aims to provide dynamic policy enforcement that
adapts to the requests of particular customers and to
mitigate Distributed Denial-of-Service (DDoS) attacks.
This is achieved by enforcing new policies based on se-
curity notifications and alerts received by its Monitor-
ing Component, which assesses the status of the net-
work and determines whether it is under attack or not.
When the Monitoring Component detects a congestion,
the flow information, impact severity, security class and
type of the attack are evaluated. This information is then
sent to the Policy Decision Point, where the context is
activated based on the event conditions. Afterwards, ap-
propriate high-level policies are selected by the PDP and
retrieved from the Policy Database. Then, these policies
are sent to the POI, which performs path computation
using source and destination IP addresses, policy action
and necessary bandwidth from the PDP as input. Finally,
the POI inserts Network Service Headers in the packets
containing the rules in order to streamline packet header
checking and distributes the flow rules to the appropriate
switches. This allows for real-time enforcement of high-
level policies in the controller and adjustment of network
flow in the switches to prevent network congestion.
The authors performed an experiment to demonstrate the
effectiveness of the Policy Management and Enforce-
ment System in an ISP network by simulating a DDoS

attack. PMES was implemented in Python and run as
an OpenFlow application on the Ryu SDN controller,
using Mininet. In order to determine the Quality of
Service (QoS) of the system, throughput and network
jitter of legitimate traffic were measured. Throughput
drops sharply as soon as the DDoS attack begins but
returns to normal levels in 10-20 seconds for all cus-
tomers once new flows are established in the network.
However, throughput dropped to zero for one of the cus-
tomers again due to a late alert redirecting traffic through
a high QoS path that was already in use. This experiment
was run a second time, with the traffic being redirected
through a lower bandwidth path after the late alert due to
QoS provisioning. In this scenario, throughput remained
at normal levels after the distribution of new flow rules.
Network Jitter follows the same pattern, increasing once
the attack takes place and taking a sharp decrease back to
the previous level once new flow rules are set, taking up
to 40 seconds in total and 20 seconds from the moment
the redirection request is sent.

4. Logical Security Architecture
The Logical Security Architecture [2] seeks to counter
flooding and injection attacks from end hosts by carry-
ing out dynamic management of security policies across
the entire network. This is accomplished using a sep-
arate Security Management Application (SMA), which
runs as an application in the SDN controller, and Switch
Security Components (SSC), which are found in each of
the switches.

Figure 2: Structure of the Logical Security Architecture [2]

SMA allows network administrators to specify policies
based on a number of parameters and conditions, such as
time, location, event, type of traffic, source address and
destination address. It also allows the triggering of poli-



cies during certain events, like increases or decreases in
traffic load. The SMA is comprised of the Policy Re-
solver, Contention Management, Access Manager, Key
Management, Enforcement Module and Activity Logs.
The Access Manager serves as the central control unit
for the SMA, Policy Resolver is used to determine the
appropriate policies, Contention Manager detects poten-
tial conflicts with policies already in the switches, En-
forcement Module determines the best mechanism for
enforcing new policies, Key Management is used for
generation of keys for secure communication, and Ac-
tivity Log keeps track of all messages exchanged with
the controller. Conflict resolution is performed in the
SMA by checking whether a new policy conflicts with
others being enforced in the switches and then applying
the policy with a higher priority in the case of a conflict.
The SSCs constantly monitor network flow from hosts
and drop malicious packets before they have to be pro-
cessed by switches. The main components of the SSCs
are the Flow Mapper (FM), Logical Store (LS), Valida-
tion Engine (VE) and Flow Encryption (FE). The FM
creates reports mapping the relation between flows and
the applications that generate them at the end hosts. The
LS stores these reports, which are then validated in the
VE component to identify malicious hosts. FE is used
to secure communication between end hosts using sym-
metric key encryption. The SMA can communicate di-
rectly with the SSCs through XML. It holds the policies
for all of the network devices within a given SDN do-
main and makes security decisions based on events in
the network, as well as information regarding the hosts
received from the SSCs.
Experiments have been performed using the ONOS
SDN controller and Mininet. A simulated attack using
malware in a virtual machine allowed attackers to alter
the process list in the compromised VM. However, the
attack was successfully detected, and the attacker could
not modify the report generated by the Flow Mapper.
Flow requests were subsequently dropped from the af-
fected VM, and an alert was raised. A simulated topol-
ogy poisoning attack was also detected in the Valida-
tion Engine at the level of the switches. A performance
analysis found that the primary source of overhead is the
policy enforcement at the level of the switches using the
SSCs. The process-level state validation delay scales
roughly in a linear fashion, with a delay of 0.052s for
one VM and up to 0.596s for 10 VMs. The traffic vali-
dation latency scales from 0.08s at 100 rules to 0.813s at
2000 rules. A Mininet simulation running on an Oracle
VM Box showed a 2-5% reduction in throughput when
running SMA over the ONOS controller.

5. Switch-Based Rule Verification Switch-Based Rule
Verification (SRV) [6] is a proposed flow rule verifica-
tion mechanism aiming to mitigate the priority-passing
attack’s effects by identifying malicious packets. The
system makes use of a HashMap table to store all flow
rules defined by the controller for incoming packets. The
HashMap uses a binary search tree structure for storage

in order to enable O(log(n)) time retrieval of data, and
flow rules are stored in buckets inside this structure.
SRV determines if a packet is malicious by checking if
the IP and MAC addresses of the packet’s source and
destination match the flow rule defined by the controller.
IP and MAC addresses of the packet are retrieved via
topology discovery and then concatenated. Afterwards,
they are hashed using the SHA1 hash function, which
enables fast hashing with a low risk of collision, and
checked against flow rules in the bucket correspond-
ing to the resulting hash key. In case of a mismatch
on both addresses, the packet is blocked. Otherwise,
if the packet matches, the defined rule is enforced. If
only one of the addresses matches, the packet’s priority
is checked against the defined rule’s priority, and if the
defined rule’s priority is higher, the packet is blocked.
Otherwise, the rule is enforced.

4 Benefits and Limitations of Existing
Solutions

4.1 Preacher
Benefits

• Preacher’s probabilistic policy checking allows it to
counter a wide range of attacks, including denial of
service, injections, reroutes, man-in-the-middle attacks,
and covert channel attacks. [9]

• It is lightweight, adding almost no overhead to networks
where it has been implemented since it is highly paral-
lelizable and uses an efficient data structure.

• Additionally, it takes the form of a separate component
that communicates with the controller via OpenFlow and
can therefore be implemented on a wide range of dif-
ferent network types, such as wide-area networks, ISP
networks, and Clos networks or datacenters.

Drawbacks
• The probabilistic nature of Preacher is also one of its

limitations, as the time required to detect attacks in
networks with low packet rates and limited processing
power can rise to over an hour, time during which a mali-
cious actor could take advantage of vulnerabilities. This
also means that low-volume injection attacks are more
unlikely to be detected, especially if the sample rate is
low.

• Preacher can deal with a large fraction of untrusted
switches in a network. However, detection could be
avoided if malicious switches were to modify traffic be-
fore it can be checked by trusted switches or if there are
no trusted switches at all.

• Covert timing channel attacks can slip undetected in the
scenario where there is no precise timestamping at the
level of the controller.

4.2 Covert Channel Defender
Benefits



• The main advantage of the Covert Channel Defender is
its real-time protection against covert channel attacks,
an attack type that is difficult to detect and one that other
state-of-the-art solutions based on VeriFlow can not con-
sistently defend against. [8]

• Additionally, CCD can perform policy conflict resolu-
tion, a phase which is very lightweight and does not af-
fect performance much relative to VeriFlow.

Drawbacks
• The computational complexity of the trie extension

phase is high, at O((mn)x), where m is the depth of each
dimension in the trie, and n is the number of matched trie
leaves in each dimension. This is partly counteracted by
the fact that only a limited number of fields from the flow
rules need to traverse the trie.

• The process of locating Equivalence Classes in the trie
is also slow relative to the actual conflict resolution and
causes most of the overhead.

4.3 Policy Management and Enforcement System
Benefits

• The Policy Management and Enforcement System al-
lows for dynamic policy instantiation of high-level se-
curity policies in order to combat DDoS attacks. [10]

• Policies can be instantiated based on changes in the net-
work, as well as security alerts sent by hosts.

• PMES also heavily reduces jitter in legitimate traffic
once the controller starts redirecting traffic, denoting its
ability to maintain Quality of Service for legitimate traf-
fic during a DDoS attack.

• Another advantage is the reduced need for network man-
agement since policies only need to be specified at a high
level by the network administrator.

Drawbacks
• The Policy Management and Enforcement System is

only designed for ISP networks and is therefore not suit-
able for smaller-scale networks.

• The tested version of PMES can not handle policy con-
flicts stemming from simultaneous policy enforcement
for different customers.

• PMES does not ensure protection against covert channel
attacks.

4.4 Logical Security Architecture
Benefits

• LSA is an effective framework for policy management
and countering attacks in the SDN domain. [2] Its com-
bined approach to using components for attack detection
at the level of both the controller and switches yields
markedly improved results compared to other proposed
solutions from recent years.

• It continuously monitors flow from the end hosts at the
level of the switches and dynamically modifies security
policies across the entire SDN domain at the controller
level.

• It can also deal with spoofing attacks, which are nor-
mally difficult to counter, directly at the source.

• Separating the policy decisions in the SMA and traffic
monitoring in the SSC results in lower delays in flow
application and minimal congestion.

• An extra layer of security is added by the fact that SSC
Monitoring components placed at compromised hosts
are not susceptible to attacks since they reside outside
the host that they are monitoring.

• The modular SSC design can also be adapted to different
switches, with the ability to use preferred modules in
the switches for network monitoring, depending on the
capabilities of the switch.

Drawbacks
• The current version of LSA can only be used in a single-

domain SDN.
• Does not offer protection against all covert channel at-

tacks.

4.5 Switch-Based Rule Verification
Benefits

• The main advantage of Switch-Based Rule Verification
is its improved computational complexity when com-
pared to the existing model for countering priority-
passing attacks, boasting a O(log(n)) time complexity
instead of O(n).

Drawbacks
• However, SRV only offers policy conflict detection and

blocking of malicious flow rules but no capacity for con-
flict resolution. This makes it less appealing when com-
pared to other solutions, which have a much wider scope
when it comes to attack prevention.

5 Responsible Research
This section deals with the ethical ramifications of the re-
search. Since our project mainly focuses on outlining the ad-
vantages and disadvantages of solutions to SDN attacks, no
experiments have been conducted as part of the research pro-
cess. Therefore, ethical considerations such as voluntary par-
ticipation, informed consent, confidentiality and anonymity
do not apply to this research project. The only ethical con-
cerns, in this case, are ensuring that the research has no po-
tential to cause harm, that the work is free of plagiarism, that
the results of the project are not biased and that the goals
of the project are communicated clearly and in a transparent
manner.

The aim of the research is to further understanding of se-
curity in Software Defined Networks, a fact that is clearly
conveyed in the introduction to this paper. Additionally,
the potential for harm and biased results is low, as care has
been taken to provide a review of the state-of-the-art solu-
tions that represents their advantages and disadvantages as
objectively as possible. Sources have been cited for relevant
passages in this paper, and all the relevant information has
been taken from relevant and trustworthy literature obtained
through IEEEXplore.



6 Discussion and Future Work
• Building on the solutions analysed in this paper, an in-

cremental improvement on the state-of-the-art could be
made by creating a hybrid system that incorporates the
functionality of the Logical Security Architecture and
that of Preacher. Both solutions are written in Java and
are developed for use with the ONOS controller, which
is among the best performing SDN controllers currently
on the market and supports both proactive and reactive
flow enforcement. Moreover, both solutions offer rela-
tively low overhead when implemented in single-domain
SDN. [9][2] LSA does not explicitly protect against
covert channel attacks, and Preacher can normally only
guard against covert storage channels. However, as long
as there exists accurate timestamping of packets trav-
elling through the network, Preacher can also counter
covert timing channel attacks. LSA provides accurate
logging functionality via its Activity Log module, mean-
ing that detection of all covert channel attacks should be
possible with this setup. Additionally, in LSA all packet
headers are validated against the source addresses at the
level of the SSC. Therefore, priority-passing attacks can
be prevented since spoofing is easily detectable.

• With recent advances in machine learning, another po-
tential way to advance the field of SDN security could
lie in the usage of machine learning algorithms for the
purpose of attack detection and policy enforcement. The
idea of enhancing SDN security via machine learning
has been proposed as early as 2018, in [11], in which an
intrusion detection framework that relies on deep learn-
ing was proposed. This concept has the potential to
be extended further into a framework that uses machine
learning to adapt to the network structure and create flow
rules that guide the traffic through the network as ef-
ficiently as possible and maximise QoS for all clients.
However, this might only be feasible on small scale net-
works due to the high processing power requirements
involved in training machine learning algorithms.

7 Conclusion
This paper has surveyed a number of attacks that exploit vul-
nerabilities related to policies and flow rules in the SDN do-
main. A summary of solutions targeting different policy-
related vulnerabilities has been provided, along with the ben-
efits and drawbacks of each solution. An incremental im-
provement on the state-of-the-art and a future research direc-
tion that could advance the state-of-the-art in the field of SDN
have also been suggested.

Using a logically centralised controller means that the con-
trol plane’s ability to enforce appropriate policies affects the
security and performance of the entire network. Therefore,
using attack mitigation tools and policy management frame-
works with comprehensive coverage and low overhead is nec-
essary. The solutions analysed in this paper aim to defend
against common attack types such as DoS, injection, and
man-in-the-middle but also attacks that are hard to detect and
specifically target the system’s policies, namely the covert
channel attack and the priority-passing attack. In conclusion,

further research into the field of policy management is essen-
tial towards improving SDN security. This can either be done
through iterative improvement on state-of-the-art solutions or
new research directions such as the use of machine learning
in policy enforcement and flow rule management.



References
[1] P. E. Verissimo C. E. Rothenberg S. Azodolmolkys

D. Kreutz, F. M. Ramos and S. Uhlig. Software-defined
networking: A comprehensive survey. Proc. IEEE, vol.
103(no. 1):14–76, Jan. 2015.

[2] V. Varadharajan and U. Tupakula. Counteracting At-
tacks From Malicious End Hosts in Software Defined
Networks. IEEE Transactions On Network And Service
Management, vol. 17(no. 1):160–175, March 2020.

[3] S. Natarajan S. Scott-Hayward and S. Sezer. A Survey
of Security in Software Defined Networks. IEEE Com-
munication Surveys and Tutorials, vol. 18(no. 1):623–
630, First Quarter 2016.

[4] Y. Xin S. K. Jagatheesaperumal M. Ayyash M. Shaheed
M. Rahouti, K. Xiong. SDN Security Review: Threat
Taxonomy, Implications, and Open Challenges. unpub-
lished, pages 15–27, 2022.

[5] S. Scott-Hayward H. Song M. Winandy A. Danping,
M. Pourzandi and D. Zhang. Threat Analysis for the
SDN Architecture. pages 6–19, 07 2016.

[6] P. Swain R. Kumar, S. Sahoo. An Improved Flow Rule
Verification Against the Priority-passing attack in SDN.
IEEE International Symposium on Sustainable Energy,
Signal Processing and Cyber Security, vol. 14(no. 4):1–
6, 2020.

[7] C. E. Brodley S. Cabuk and C. Shields. IP Covert Tim-
ing Channels: Design and Detection. Proceedings of
the 11th ACM Conference on Computer and Communi-
cations Security, page 178–187, 2004.

[8] P. P. C. Lee M. Xu Q. Li, Y. Chen and K. Ren. Secu-
rity Policy Violations in SDN Data Plane. IEEE/ACM
Transactions on Networking, vol. 26(no. 4):1715–1725,
August 2018.

[9] L. Schiff K. Thimmaraju and S. Schmid. Preacher:
Network Policy Checker for Adversarial Environments.
IEEE/ACM Transactions on Networking, vol. 29(no.
5):2087–2099, October 2021.

[10] Z. Zhang R. S. G. Blanc and K. T. H. Debar. Adaptive
Policy-driven Attack Mitigation in SDN. XDOMO’17:
Proceedings of the 1st International Workshop on Secu-
rity and Dependability of Multi-Domain Infrastructures,
(no. 4):1–6, April 2017.

[11] S. Shahristani A. Dawoud and C. Raun. A Deep Learn-
ing Framework to Enhance Software Defined Networks
Security. 32nd International Conference on Advanced
Information Networking and Applications Workshops,
pages 709–713, 2018.


	Introduction
	Background and Related Work
	Attacks and Solutions
	Attacks
	Solutions

	Benefits and Limitations of Existing Solutions
	Preacher
	Covert Channel Defender
	Policy Management and Enforcement System
	Logical Security Architecture
	Switch-Based Rule Verification

	Responsible Research
	Discussion and Future Work
	Conclusion

