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Abstract

After surpassing human performance in the fields of Computer Vision, Speech Recognition and NLP, deep
learning has been gaining scientific ground in IR. In spite of the sheer amount of publications that have
proposed so-called neural IR approaches over the past decade, the field has not achieved the kind of progress
seen in related fields. Over the past year or so, works have begun to solve the issues that complicate the
progress of neural applications in IR. Among those issues we can find the lack of approaches to interpret and
analyze neural IR models, which is addressed in this thesis.

We propose a novel approach to diagnose retrieval models that is rooted in the axiomatic approach to
IR. Axioms encapsulate search heuristics that are expressed as constraints on retrieval functions. Existing ax-
iomatic approaches have provided fruitful analyses of traditional IR models but are no longer viable to study
neural IR models. Building forth on these approaches, we propose a novel approach to empirically analyze
retrieval functions, suitable for neural models. Based on inspirations from the NLP and Computer Vision
communities, we use model-agnostic diagnostic datasets in order to determine what kind of search heuris-
tics models are able to learn. Since the creation of diagnostic datasets does not require a labeled dataset, we
can apply the proposed pipeline to almost any dataset containing queries and documents.

We have shown for four specific axioms how to extend and relax them, in order to make them fit for obtain-
ing diagnostic datasets. We have applied our diagnostic dataset creation pipeline to the WikiPassageQA and
MSMarco corpora and evaluated three traditional baselines and six neural models. Our experiments on the
WikiPassageQA dataset show that the proposed approach can indeed diagnose strengths and weaknesses of
neural models. However, our experiments on the MSMarco dataset show that an axiomatic analysis based on
the four axioms does not always diagnose factors that incur retrieval effectiveness. An interesting direction
for future work is therefore to include more axioms in the diagnostic approach.

As possible extensions of the work carried out in this thesis, several roads of future work have been
proposed. Among them, we can find reproducing experiments on other neural toolkits and employing the
methodology on different IR tasks, but also researching the validity of axioms and adopting a specialized met-
ric for axiomatic performance. We furthermore identified various opportunities to use diagnostic datasets
beyond diagnosing neural models.

Concluding, we believe that the axiomatic approach to diagnosing neural IR models presented in this
work is a step forward to gaining valuable insights into the black boxes that deep models are generally con-
sidered to be. We hope our work may prove a fruitful resource for analysis in the field of neural IR on the road
towards achieving superior performance without losing sight of a better fundamental understanding of IR.
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Symbols

Axiom original axiom
Axiom extended, relaxed axiom
C collection language model
d document
D set of documents
q query
Q set of queries
w word
y relevance label
Y set of relevance labels
δ parameter for document length difference (real value)
δ∗ relative parameter for document length difference (real value)
N number set of natural numbers, (0,1,2,...)

abs(a) absolute value of a real number a
avdl average amount of words per document
c(w, q) count of word w in query q
d f (w) number of documents containing word w
i d f (w) inverse document frequency of word w

(here calculated as ln(1/(d f (w)+1)))
g ((ψ,φ),η) evaluation function which computes the relevance score based on

the feature representations
L(S,d , q , y) loss for the score that scoring function S assigned to document d with relevance label y

with respect to query q
p(c|C ) probability of word w given by the collection language model C
S(d , q) score assigned to document d with respect to query q as given by retrieval scoring function S
S? optimal retrieval scoring function S
η(d , q) interaction function that extracts features from d and q
φ(d ) representation function that extracts features from document d
ψ(q) representation function that extracts features from query q
|d | number of words in document d
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1
Introduction

Although the early works on deep learning date back to decades ago (e.g. [45, 46] and [61–64], as listed by
Schmidhuber [113]), neither the term “deep learning” nor the approach was popular a decade ago [81]. Over
the past decade, deep learning has acquired a lot of interest in both research and practice as a result of its ex-
cellent performance in fields such as Computer Vision, Speech Recognition and Natural Language Processing
(NLP). Consequently, researchers have applied the technique to other fields with other types of data in the
hope of achieving comparable superior performance over existing methods [34]. Among them we can also
find the Information Retrieval (IR) community [85], whose work in this field has been termed as “neural IR”
or “Neu-IR”.

Long before the advent of neural IR, various approaches to retrieve information have been proposed. We
will briefly introduce such approaches before we introduce neural IR, which allows us to look at the novel
wave of deep approaches to IR from an abstract point of view.

Dating back to a century ago, researchers studied the physical process of retrieving books or papers, and
patented mechanical and electro-mechanical devices as solutions over searching documents by hand [111].
However, such devices became obsolete with the advent of computers that could digitize this process. These
early computer-based IR systems used so-called boolean retrieval in which a query (composed of search
terms) was seen as a logical combination of words. In this approach, retrieval systems returned a set of docu-
ments that exactly matched the query, providing a basic means to search a document collection. In turn, such
boolean models were surpassed by models that assigned a score to each document resembling its relevance
to a query, returning a ranking of documents in a collection, known as ranked retrieval [50].

Following these developments, various works have introduced notions such as relevance feedback, query
expansion, semantic matching, inverse document frequency and various vector space, probabilistic and lan-
guage models. Among the introduced models, we can find Okapi BM25: a probabilistic model that is still a
widely adopted baseline in today’s neural IR works. Okapi BM251 was developed by Robertson et al. [107],
who experimented with variations of the BIM (Binary Independence Model)2 on various test collections.
Their experiments first led to the BM11 and BM15 models that were ultimately combined in BM25.

As illustrated by the development of BM25, ranked retrieval functions were so far manually devised and
tuned by hand through experimentation [111]. The seminal work by Fuhr [44] described the idea to auto-
matically tune the ranking function for all queries for a particular document collection, the idea would be-
come known as learning to rank (LTR). This approach however only became effective with the availability of
more training data (e.g. web query logs) and methods that were able to handle a larger number of features
[111]. However, these typically hand-crafted features (e.g. the query term frequency or the inverse docu-
ment frequency of components of a document such as the title or body) were time-consuming to design and
over-specific in definition [98].

Finally, subsequent to the learning to rank paradigm, the IR community has seen the emergence of neu-
ral IR. Whereas learning to rank still required the manual creation of features, neural IR approaches auto-

1“Okapi” is the name of the experimental text retrieval system at Robertson et al. [107] used at City University London and “BM” stands
for Best Match, Okapi BM25 is often abbreviated as BM25.

2BIM, introduced in [106], was one of the first probabilistic models, to make estimations of probability feasible, it assumed that queries
and documents can be represented as binary term vectors and that terms are independent [80].
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4 1. Introduction

matically learn which features to use from raw input through employing neural networks of multiple layers.
Sometimes these approaches have achieved large improvements over previous state of the art, for example,
[94] outperformed previous best results on two corpora with a large margin (>7.5 in MRR@10 on MSMarco and
>18.5 in MAP on TREC-CAR). However, the neural approaches proposed so far suffer from a lack of model ro-
bustness to the corpus (i.e. performances are highly dependent upon the employed dataset). In addition, the
neural approaches—different from traditional models (for which we know the retrieval formula it employs)
and to a smaller extend learning to rank approaches (for which we know the features it employs and can ob-
tain how important each feature is)—have so far contributed little to a better understanding of IR concepts:
they have largely remained “black boxes” and have therefore received considerable criticism [49, 85]. Similar
to advancements made in previous retrieval paradigms, work has now begun in the IR community to further
research neural IR approaches, to possibly reap the benefits deep learning has offered in related fields.
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Figure 1.1: The percentage of papers related to neural IR at the ACM SIGIR3conference as determined by a manual inspection by Mitra
et al.: a clear trend of growing popularity of the field. Figure adapted from [86].

1.1. Research Objective
Despite academic excitement surrounding the field [29] and consistent yearly increases in publications re-
lated to neural IR (see Fig. 1.1), the IR community has not enjoyed the kind of progress seen in other research
areas such as NLP and Computer Vision. A number of issues that may have contributed to the slow progress
of neural IR have been identified [28, 29, 85]. Overall, our community lacks:

1. Adequately large-scale publicly available datasets for training neural IR models;

2. Shared, centralized, code repositories of neural IR models;

3. Proper tools to interpret and analyze neural IR models.

We can find that some progress on these issues has been made over the past few years. For example, re-
garding the first issue, with the release of the large-scale datasets encompassing not the traditional several
hundreds or a few thousands of instances with relevance labels (e.g. the TREC4 Robust [125] and QA [128]
datasets), but several thousands up to several hundreds of thousands (e.g. WikiPassageQA [22], MSMarco [92],
TREC-CAR [37]). Regarding the second issue, a few neural IR toolkits that bundle multiple neural IR models
have been established, such as (CO-)PACCR [60] and SERT [123] and the widely-used MatchZoo [38]. With re-
gard to the third issue, some progress has been made in works aimed at interpreting neural IR models through
studying components of trained deep neural networks [21, 98].

Building forth on multiple of these recent developments (i.e. by using large-scale public datasets and a
shared neural IR repository), this thesis progresses on the third issue by providing a novel approach to analyze
neural IR models. This approach aims to diagnose the strengths and weaknesses of neural IR models and is
based upon so-called axiomatic thinking. In short, axiomatic thinking strategies test to what extent retrieval
models adhere to retrieval heuristics. When applied to neural IR models, this may allow us to analyze their
strengths and weaknesses. Hence, we adopt the following research question:

Research Question: How can we diagnose the strengths and weaknesses of neural IR approaches
using axiomatic thinking?

3The Association for Computing Machinery (ACM) Special Interest Group for Information Retrieval (SIGIR), a leading conference in the
field of IR.

4The Text REtrieval Conference, an ongoing series of workshops focusing on a list of different IR research areas, or tracks.



1.2. Approach 5

1.2. Approach
Our approach to address the research question (posed in Section 1.1), is introduced in this section. Since this
approach is rooted in axiomatic thinking, we will first introduce this paradigm in Section 1.2.1. Subsequently,
in Section 1.2.2, we detail how the research question will be addressed in this thesis.

1.2.1. The axiomatic thinking paradigm
Before the prevalence of deep nets in IR, Fang et al. [43] have studied a research question close to our first
research question“how to design a new evaluation methodology to help identify the strengths and weaknesses
of retrieval functions”. In [42], they first pointed out that previous works had attempted to identify an effec-
tive retrieval formula through extensive empirical experiments, which achieved abstract results with some
retrieval formulas performing better under “some conditions”. Hence, they tried to shed light on what these
conditions might be. Motivated by the empirical observation that retrieval effectiveness is closely related to
the use of various retrieval heuristics [42], they first defined several retrieval heuristics in a formal way, result-
ing in constraints expressed in a language similar to retrieval formulas. They then analyzed whether retrieval
formulas fulfilled these constraints, which were later coined axioms [40]. Fang et al. [42] found that models’
retrieval effectiveness was closely related to their fulfillment of the axioms and hence, the axioms provided a
means to identify strengths and weaknesses of retrieval functions.

For example, Term Frequency Constraint 1 (known as TFC1) encapsulates the heuristic to favor a docu-
ment with more occurrences of a query term [42]. Formally, it can be expressed as: let q = {w} be a single-term
query and d1 and d2 be two documents of equal length, i.e. |d1| = |d2|. Further, let c(w,d ) be the count of
word w in document d and S(d , q) be the retrieval status value (score) a retrieval function S assigns to d
with respect to q . TFC1 then states that if c(w,d1) > c(w,d2) holds, S(d1, q) > S(d2, q) should also hold. The
latter formulation can be used to analyze under what conditions a retrieval formula (expressed in the same
language) adheres to the heuristic encapsulated in the axiom (as will be detailed in Section 2.5.1).

Next to the methodology for diagnosing IR models, Fang et al. [42] also proposed how, given the diagnosis,
retrieval models could be improved in terms of retrieval effectiveness. For example, a manual analysis showed
that the Okapi BM25 retrieval model fulfills TFC1 under a specific condition (the query term w should not be
present in more than half of the documents in the corpus), but can be modified to fulfill TFC1 under any
condition. As a result, the modified version of Okapi BM25 achieves higher retrieval effectiveness.

The adoption of such methods allowed the IR community to go from extensive empirical experiments that
exhibit a trial-and-error methodology of testing the retrieval effectiveness of a range of models with various
settings across different collections, to a search for strengths and weaknesses (and ways to fix weaknesses) of
retrieval functions as guided by IR heuristics. The difference in obtained results between both approaches is
illustrated in Table 1.1.

Collect i on 1 Collect i on 2 · · · Coll ect i on j
Model 1 0.36 0.38 . . . 0.56
Model 2 0.33 0.40 . . . 0.55

...
...

...
. . .

...
Model i 0.31 0.39 . . . 0.52

Conclusion: e.g., Model 1 performs best for Col lect i ons 1 and j ,
but Model 2 performs best for Collect i on 2.

Axi om 1 Axi om 2 · · · Axi om n
Model 1 Y es Y es . . . C3
Model 2 Y es Y es . . . Y es

...
...

...
. . .

...
Model m C6 C6 . . . C6

Conclusion: e.g., the retrieval effectiveness of Model m
may be improved if it can be adapted to fulfill Axi om 1.

Table 1.1: Illustration of results obtained in extensive experiments adopted in works prior to [42] and results obtained with the
axiomatic approach Fang et al. introduced. On the left, we display a subset of results presented in [110] and on the right, we display a
subset of results obtained in [42] (for a different set of models). “Yes” means the model always fulfills the axiom, whereas “Cx ” means

the model fulfills the axiom under certain conditions and therefore does not always adhere to the heuristic.

The so-called “axiomatic thinking” approach in IR has since then been further extended with more axioms
to further improve retrieval models and propose new models, as will be further discussed in Section 2.5.
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1.2.2. Axiomatic thinking in the neural IR era
Nearly all works on axiomatic thinking have considered non-neural models, such as Okapi BM25. Nowadays,
rather than being the model under study, traditional models have been adopted as baselines in papers that
instead focus on introducing a novel neural IR model. Although rich of this new branch of neural models that
sometimes achieve state of the art performance, the IR community is again facing difficulties in identifying a
model’s strengths and weaknesses (just like before the introduction of axiomatic thinking in IR [43]).

In this thesis, we propose to follow the axiomatic thinking methodology to establish a means to iden-
tify the strengths and weaknesses of neural IR models. Ideally, we would employ the traditional axiomatic
approach encompassing analytical validation and direct retrieval formula adaptation. However, since deep
learning models may contain millions (or billions) of parameters [85], analytical validation and manual re-
trieval formula adaptation are no longer feasible. As a solution, this work proposes the creation of so-called
“diagnostic datasets” to mimic the axiomatic analysis process in an empirical setting. Each of the diagnostic
datasets created in this work, can be used to diagnose the fulfillment of one axiom.

The use of diagnostic datasets was inspired by the fields of NLP and Computer Vision, where dataset
creation for diagnostic purposes is an established approach [65, 66, 129], as will be further detailed in Sec-
tion 2.4.2. In contrast to the de facto performance validation through standard test collections and evalu-
ation metrics—which offers little insight into why one model achieves a better performance compared to
another—the diagnostic methods allow one to obtain such knowledge at the granularity of the diagnostic
dataset (individual axioms in our case).

Moving on from diagnosing to improving neural IR approaches, the diagnostic datasets may also be used
to improve the retrieval effectiveness of neural models. In this work we have specifically proposed to utilize
the fact that each diagnostic instance from a diagnostic dataset can directly be used as a training instance for
neural IR models.

1.3. Scientific Contributions
With this work, we make several scientific contributions to the the field of IR by bringing the axiomatic think-
ing paradigm to the neural IR era. The main contribution of our work is to showcase that a transformation
from an analytical axiom to a diagnostic dataset is possible and offers us a new tool to diagnose retrieval
models that are too complex to be analyzed theoretically. On a more specific level, our contributions are as
follows:

• We have presented a novel methodology for identifying strengths and weaknesses of IR models, specif-
ically designed for neural IR models. As a basis for this diagnostic approach, we have proposed how
one can convert established axioms to versions that can be used to obtain diagnostic datasets.

• Using the proposed diagnostic methodology, we have identified the strengths and weaknesses of sev-
eral state-of-the-art neural IR models at the level of individual axioms.

In addition to the contributions encapsulated in this thesis, we have released all code that has been used
in this work5. Finally, we note to the reader that part of this thesis has been featured in the 41st European Con-
ference on Information Retrieval (ECIR 2019), under the title “An Axiomatic Approach to Diagnosing Neural
IR Models” [104].

1.4. Thesis Outline
The remainder of this thesis is organized as follows. We start by providing readers with a background of IR
and discuss related works in Chapter 2. Subsequently, in Chapter 3, we discuss our approach to obtaining di-
agnostic datasets. In Chapter 4, we then discuss experiments conducted to analyze neural IR models.Finally,
in Chapter 5, we summarize and conclude our work and introduce a starting point for several roads of future
work.

5See https://github.com/drennings/ADIR/.

https://github.com/drennings/ADIR/


2
Related Works

This chapter serves two purposes. First, it provides a background to make readers familiar with Information
Retrieval (Section 2.1), learning to rank (Section 2.2) and neural IR (Section 2.3). Although we study neural
IR models in this work, a brief introduction to learning to rank approaches allows us to nicely introduce the
neural IR approaches and is therefore included in this chapter. Since good knowledge sources exist for both
IR and neural IR1, we here stay at a level of abstraction sufficient to comprehend the remainder of this thesis.

As a second purpose, this chapter provides as an overview of works that are related to this thesis, in the
sense that they have researched topics close to ours. We elaborate upon two strands of such related works:
the current adopted means for evaluating deep learning approaches (Section 2.4) and works on axiomatic
thinking in IR (Section 2.5).Towards the end of each of these sections, we elaborate upon how our research
relates to the discussed works.

2.1. Information Retrieval
IR typically involves a user that has a certain information need which (s)he translates into a query. Generally,
this query serves as input for a retrieval engine that returns ranked documents to the user. Traditionally,
ranked retrieval systems have employed an index of a document collection and assigned a relevance score
(with regard to the query) to each of the documents in the collection. A graphical overview of this general
process is depicted in Fig 2.1. A common example of this process is the classical use of a commercial web
search engine (e.g. Google, Bing, Yahoo, Baidu) in which a user types in a query which is executed on a
retrieval system that—from an index of webpages on the World Wide Web—returns ranked webpages (the
documents in this example) to the user.

1We recommend the works of Manning et al. [80] and Baeza-Yates et al. [9] for an introduction to IR and the comprehensive materials of
Mitra and Craswell [85, 86] and Guo et al. [49] on neural models for IR, as well as a full day tutorial at WSDM and a keynote at Microsoft
Research on neural IR.

7

http://nn4ir.com/wsdm2018/
https://www.microsoft.com/en-us/research/video/neural-models-information-retrieval-video/
https://www.microsoft.com/en-us/research/video/neural-models-information-retrieval-video/
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Figure 2.1: Graphical overview of the typical IR process, inspired by [50].

2.1.1. IR types and tasks
Over time, the retrieval of information has taken various forms. For example, in the past few decades, image
and video retrieval - the retrieval of images or videos from a collection of images or videos - have come to
life [32]. In more recent years, voice search - in which users speak their queries rather than type them - has
gained attention [51]. In this thesis we however only consider text retrieval: a central form of retrieval in IR
[49], in which both the input and output of information retrieval process consists of natural language.

Next to these types of retrieval, the field of information retrieval can be categorized into different tasks
or subtopics, such as ad-hoc retrieval, text summarization, question answering and more novel tasks such as
complex answer retrieval [91]. In this thesis, we focus on the ad-hoc retrieval and question answering tasks,
which are further detailed next.

Ad-hoc retrieval typically considers the task of finding those documents from a large document collection
that are relevant to a user’s query [122]. Originally, ad-hoc retrieval considered searching news reports and
government documents [86], but the most popular example nowadays is web search [9]. The term ad-hoc
refers to the scenario where the documents in the collection remain relatively static [49]. In ad-hoc retrieval,
a user’s query can consist of a set of only a few keywords up to several, whereas search engine queries tend
to be at the shorter end of the range [86]. These queries may specify an ill-defined information need. For
instance, users that pose the query "BBC" are probably looking for the home page of the corporation, yet they
expect the search engine to infer that specific information request from the three letters they entered [112].
Moreover, the documents that a user is looking for typically differ from the search terms in length while they
also come from a different author. Such heterogeneity can lead to critical vocabulary mismatch problems
(i.e. not all query terms can be found in a relevant document and vice-versa), that have been addressed with
semantic matching (i.e. matching words and sentences with similar meanings), although exact matching is
indispensable especially with rare query terms [49].

Question answering (QA) is the IR task of returning a piece of text as an answer to a natural language
question based on some information resources [49]. In question answering, the user is interested in a con-
cise, comprehensible and correct answer, which may refer to a word, sentence, paragraph, or an entire docu-
ment [69]. In contrast to ad-hoc retrieval, questions typically specify a well-defined information need and can
carry more information than a few search keywords, as they represent syntactic and semantic relationships
between the search terms [69]. For example, consider how the question “Who is the architect of the Hancock
building in Boston” [69] differs from the aforementioned query “BBC”. Moreover, compared to the query and
documents considered in ad-hoc retrieval, questions and answers considered in QA show reduced hetero-
geneity in terms of e.g. length [49]. Hence, QA typically requires less semantic matching, although vocabulary
mismatch remains a basic problem in QA [49].
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2.1.2. Traditional IR models
A distinction can be made between IR models that rank documents based on their relevance to a query,
known as query-dependent models, and models that rank documents based on their own importance, known
as query-independent models [76]. As hinted by the previous paragraphs, we only study the first category of
models in this thesis.

Moreover, at the beginning of Chapter 1, we already briefly introduced several categories of retrieval ap-
proaches, among which boolean retrieval. Models that fall under this category are however, among other
early models such as vector space models, hardly found in today’s IR papers. Hence, we will in this section
focus on traditional models that are included in papers within the field of neural IR.We will thereby focus on
presenting their intuition, rather than their mathematical deduction. We will later introduce the learning to
rank and neural IR approaches respectively in Section 2.2 and Section 2.3.

Probabilistic models
Responding to a call to a firmer theoretical footing (rather than empirical evidence) of and more explicit as-
sumptions in IR models [80], the probabilistic approach was proposed. Models under this approach specif-
ically modeled that a retrieval system must necessarily be dealing with probabilities, as no retrieval system
can be expected to predict with certainty which documents are relevant (to a user) [82, 105]. However, prob-
abilistic approaches did not consistently outperform other approaches until the BM25 model was proposed
[80], already several decades ago. BM25 is displayed in Eq. 2.1.

Although the model was the result of empirical experiments, it is grounded in probabilistic arguments.
For example, it follows the statistical query term weighting scheme of Robertson and Jones [106], that would
become known as inverse document frequency (IDF). This IDF component is the leftmost component of
the product in BM25 (as displayed in Eq. 2.1). It valuates the informativeness of a term by weighting it on
the amount of documents in a document corpus of size N that contain the term (known as the document
frequency of a term, d f (w)). Moreover, BM25 accounts for the count of each query term in a document
(c(w,d )), known as term frequency or TF). This TF is normalized by the length of the document (|d |) divided
by the average document length (avdl ) and regulated by parameters k1 and b as displayed in the middle of
the product. Finally, the rightmost component of the product in BM25 accounts for how often a query term is
present in a query (c(w, q)), know as the query term frequency, which is regulated by the k3 parameter. Note
that the parameters k1, b and k3 need to be set manually (for which ranges in which the model typically works
well are known), whereas the values for statistics such as the document frequency of a word are obtained from
the index employed by the model.

B M25(d , q) =
∑

w∈q∩d

(
ln

N −d f (w)+0.5

d f (w)+0.5
× (k1 +1)c(w,d )

k1(1−b +b |d |
avdl )+ c(w,d )

× (k3 +1)× c(w, q)

k3 + c(w, q)

)
(2.1)

Equation 2.1: Retrieval formula of BM25 [43].

Languagemodelling
BM25 uses query terms as inputs to heuristic components to directly estimate the probability of relevance of
a document with respect to the query. The intuition behind language modelling, on the other hand, is to first
estimates the likelihood of generating each query term by randomly sampling terms from document [86],
hence it is generally referred to as query likelihood (QL). Secondly, the model employs the product of these
likelihood estimates to estimate the probability of relevance of a document with respect to the query (under
Bayes theorem, and the assumption that all documents have equal prior probabilities [86]). Most formula-
tions of language modelling also employ some form of smoothing by sampling not only from the considered
document but also from the complete document collection. Hence, they also model the likelihood of sam-
pling a query term from the document collection (to avoid the issue of assigning probability 0 to documents
that do not contain all query terms). Omitting a mathematical deduction, we here simply show the eventual
retrieval formula for the query likelihood model with Dirichlet smoothing [79], in which µ is the smoothing
parameter and p(w |D) is the probability of sampling w from the document collection D .

QL(d , q) =
∑

w∈q∩d

(
c(w, q) · ln(1+ c(w,d )

µ ·p(w |D)
)+|q | · ln

µ

|d |+µ
)

(2.2)

Equation 2.2: Retrieval formula of QL with Dirichlet Prior Smoothing [43].
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Pseudo-relevance feedback
Pseudo-relevance feedback (PRF) methods, such as the Relevance Models (RM) proposed by Lavrenko and
Croft [70], typically outperform the aforementioned models at the cost of executing an additional round of
retrieval [86]. The models are based on the language modelling approach, but conduct two rounds of retrieval
instead of one. The set of ranked document from the first round of retrieval is used to select query expansion
terms to augment the original query, which is subsequently used to retrieve the final set of documents that
is presented to the user. In this work we employ the RM3 model, which, different from the initial Relevance
Models (RM1 and RM2) combines both the original and the expanded query2 [1]. RM3 is often referred to as
one of the most effective methods for automatic query expansion [23]

The query expansion component in RM3 allows it to deal with a vocabulary mismatch between a query
and a document, which is plaguing the BM25 and QL models [86]. However, the RM3 model contains six
parameters (e.g. for the amount of documents and terms to use for the pseudo-relevance feedback), whereas
BM25 and QL respectively only have 3 and 1 parameter(s). These parameters can be tuned (i.e. optimized
within a specific range of values to test) to specific tasks by running a model and evaluating it (which will be
detailed in Section 2.4.1), which is thus a more tedious task for RM3.

2.1.3. Evaluations in IR
In IR, evaluation considers the process of assessing how well a system meets the information needs of its
users [124]. Two broad classes of such assessments consider user-based and system evaluation. Looking at
the purpose of evaluation, user-based evaluations—that measure the user’s satisfaction with the system—
are preferred over system evaluations—that focus on how well a system can rank documents according to
some relevance judgments [124]. However, the expense and difficulty (consider e.g. reproducibility and re-
usability) of obtaining user assessments of a system have led IR researchers to primarily rely on the less ex-
pensive system evaluation3. These system evaluations, also known as offline- or batch evaluations, simulate
a user-based evaluation through employing a test collection [112]. A classical test collection consists of [112]:

• a collection of documents with unique identifiers (docids);

• a set of topics (to which we will refer as queries4), also with unique identifiers (qids);

• a set of relevance judgments (qrels - query relevance set) typically obtained from human assessors that
judge which documents are relevant to a given query.

This test-collection based approach is also known as the Cranfield paradigm, named after a seminal
work by Cleverdon [17] at the Cranfield Aeronautical College. In this work, all documents in a collection were
labeled, meaning that for each document it was specified whether it was relevant or not to every query. Since
such labeling is typically done by human assessors, the costs of labeling all documents in a large collection
for every query have led IR researchers to primarily rely on a different approach, known as pooling [118], as
is done in for example TREC and NTCIR5 [115].

If we use a test collection in conjunction with an evaluation measure (metric), we can compare the effec-
tiveness of different approaches for the retrieval task at hand, and subsequently, employ a statistical test to
obtain whether an approach is significantly better than another approach.We will now briefly introduce the
evaluation measures employed in the experiments in this thesis, an explanation of the employed statistical
tests is beyond the scope of this background section.

2The eventual retrieval formula of RM3 is not easily represented without presenting a mathematical background of the QL and PRF
approach, as can be seen in e.g. [55, 77]. As we merely employ RM3 as a (strong) baseline while our focus is on studying neural
approaches, we do not present the retrieval formula of RM3.

3Approaches that go beyond offline evaluation have gained more attention recently (think of e.g. the real-time Live QA and Summariza-
tion Tracks of TREC 2017), but are beyond the scope of this thesis.

4For completeness we note that topics are converted into queries by a retrieval system [115], so for example a topic “BBC” could be typed
in by a user so that the retrieval system sees the three typed letters from the user (instead of e.g. a voice query in which a user speaks
these characters). We do not make a distinction between the two here since the topics considered in this work are always equal to the
queries.

5The NII Testbeds and Community for Information access Research, an ongoing series of evaluation workshops, a Japanese counterpart
of TREC.
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Metrics
A metric should reflect the users’ satisfaction with the system, which largely depends upon the IR task. Hence,
tens of metrics6 have been proposed of which 3 have been employed in the experiments in this thesis. We will
first introduce metrics at the level of a single test collection instance and then introduce metrics at the level
of a complete test collection, which have been employed in this work.

Precision is a set-based metric: it is computed without taking a ranking into account. It simply equates to
the fraction of relevant documents (abbreviated as docs) out of all documents returned by a retrieval model
(see Eq. 2.3). The P@k (precision at k) metric is similar to the precision metric but only considers the top
k documents that are returned by a ranking model. Note that this metric still does not take the order of
(relevant and non-relevant) documents into account. A metric that does take this order into account, is the
AveP (average precision) metric. This metric also takes the number of relevant documents R into account
and contains an indicator function r el (k) which is set to 1 if the document at position k is relevant and set
to 0 otherwise. It is the average of the precision values obtained after each relevant document is retrieved in
the n retrieved documents - if a relevant document is not retrieved, its precision is valuated as 0 (see Eq. 2.4).
Another metric, the reciprocal rank (RR) metric, only considers the rank of the first relevant document (see
Eq. 2.6).

pr eci si on = num. of relevant docs retrieved

num. docs retrieved
(2.3) P @k = num. of relevant docs retrieved

num. docs retrieved
(2.4)

AveP =
∑n

k=1 P@k · r el (k)

R
(2.5) RR = 1

rank of first relevant doc
(2.6)

Now, the metrics at the level of a whole test collection are defined by simply averaging the measures
obtained per query, as displayed in Eq. 2.7 and Eq. 2.8. Note that P@K , when used as an evaluation metric in
experiments typically refers to a metric at the collection level that similarly averages the scores of the metric
(by taking the sum of the result per query and dividing it by |Q|).

M AP = 1

|Q|
∑

q∈Q

∑n
k=1 P@k · r el (k)

R
(2.7) MRR = 1

|Q|
∑

q∈Q

1

rank of first relevant doc for q
(2.8)

6See e.g. https://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/trec_eval_video/A.README.

https://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/trec_eval_video/A.README
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2.2. Learning to Rank
Both neural IR and LTR approaches can be formulated under the same, LTR, framework and have consid-
erable similarities. We hence introduce the LTR paradigm in this section on the road to introducing neural
IR approaches (which will be done in Section 2.3). We first discuss how LTR relate to the traditional ranking
approaches (Section 2.2.1), then elaborate upon how LTR approaches are trained (Section 2.2.2).

2.2.1. From ranking to learning to rank
The previously discussed traditional (vector space and probabilistic) models employed an index of a docu-
ment collection to rank documents in this collection and obtain a ranked result set per query. Learning to
rank approaches can be used to subsequently re-rank the result set obtained with a traditional approach and
can therefore be viewed as an extension of the original ranking process. LTR can thus be viewed as a two-step
process (as displayed in Fig. 2.2):

Step 1 an initial round of retrieval, also known as top-k retrieval, in which a candidate set of (k) doc-
uments is obtained from the large document collection, for example using a simple but efficient tradi-
tional model (e.g. BM25);

Step 2 a final round of retrieval, in which the ranked result set of documents is obtained by feeding
the candidate set and query to a computationally more expensive machine learning model to re-rank
the documents, as displayed in the dashed box in Fig. 2.2.

Figure 2.2: Graphical overview of the typical LTR process: different from the regular IR process, LTR approaches re-rank a subset of
candidate documents.

Although most LTR systems follow the two-step process detailed above [53], we note that the candidate
set of documents can also be obtained through other means, beyond the use of a different model for the
initial round [12]. For example, it could be that a candidate set of documents is inherent in the dataset (e.g.
all passages of Wikipedia page in a dataset that consists of questions on Wikipedia pages [22]).
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2.2.2. Model learning
So far, we have assumed that an LTR approach has been trained, i.e. that the model has learned how to com-
bine predefined features for ranking through its parameters that have been tuned. For the traditional models,
we could tune their parameters by hand by testing a set of parameter configurations. For LTR approaches, on
the other hand, different strategies for automatically tuning parameters have been proposed, as the com-
plexity (i.e. the amount of possible ways to combine the predefined features) of these models may make it
infeasible to tune the parameters by hand as we did for the traditional models [57]. These strategies, which
can also be found in neural IR approaches, will be discussed in this section, after we first introduce a formal
notation of LTR.

A formal notation of LTR
Recently, Guo et al. [49] have proposed a unified formal notation of document ranking based on the LTR
framework. In this section, we will introduce a slightly modified version of their unified model formulation
in the notation adopted throughout this thesis.

Suppose that Q is a set of queries and D is a set of documents in a corpus. Furthermore, suppose Y is
a set of relevance labels, for which a total order exists (i.e. each relevance label in this set denotes a higher
or lower relevance compared to every other relevance label in this set). Let qi ∈ Q be the i -th query (with
i ∈ {1, . . . , |Q|}) and Di = {di ,1,di ,2, ...,di ,|Di |} ⊆ D the set of documents associated with query qi . Moreover, let
Y i = {yi ,1, yi ,2, ..., yi ,|Y i |} be the relevance labels with respect to query qi for each of the documents in the set
Di , i.e. yi , j is the relevance label for document di , j with respect to query qi .

A ranking function S(di , j , qi ) then returns a relevance score for the query-document pair qi ,di , j . The
general problem of document ranking is to minimize the difference between the relevance labels and the
ranking resulting from the predicted relevance scores obtained with the scoring function S. In the learning
to rank framework, this is expressed in a loss function. The loss function L can be expressed as the loss
of retrieval function S over all queries Q and their associated documents out of D , so the loss of retrieval
function S for a document di , j with respect to query i is defined as L(S; qi ,di , j , yi , j ). In an LTR-formulation of
a document ranking problem, we try to obtain the optimal ranking function S? so that this loss is minimized,
or formally:

S? = argmin
∑

i

∑
j

L(S;di , j , qi , yi , j ) (2.9)

Learning objectives
Various learning objectives have been adopted for LTR models, three popular learning objectives are the
pointwise, pairwise and listwise objectives. Hagen et al. [53] distinguishes them as follows:

• In the pointwise approach, machine learning methods are used for each document (di , j ) to predict the
rank based on document-individual;

• In the pairwise approach pairs of documents (di , j ,di ,k ) are used to conclude rank preferences for each
pair;

• In the listwise approach a ranking function does not learn for individual documents or pairs, but pro-
cesses entire result lists (Di ).

In the experiments in this thesis, we adopt a pairwise training approach. A pairwise loss function can
generally be formalized as [49]:

L(S;D ,Q ,Y ) =∑
i

∑
( j ,k),yi , j Âyi ,k

L(S(di , j , qi )−S(di ,k , qi )) (2.10)

where di , j and di ,k are two documents for query qi and di , j is preferred over di ,k (i.e. yi , j Â yi ,k ). More
specifically, we employ the well-known hinge loss function in our experiments, which is defined as [49]:

L(S;D ,Q ,Y ) =∑
i

∑
( j ,k),yi , j Âyi ,k

max(0,1− (S(di , j , qi )−S(di ,k , qi ))) (2.11)

As can be seen, the hinge loss not only requires a model to score di , j higher than di ,k for qi , but also
penalizes a retrieval function S if the difference between both scores (the margin) is smaller than 1.
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2.3. Neural IR
Whereas LTR methods employ handcrafted features to represent input, neural IR models automatically learn
which features should be employed to represent input. Neural IR approaches do so by employing deep learn-
ing techniques, which are also called representation learning techniques [71]. As a result of these techniques,
deep learning approaches are capable of detecting hidden and complex data patterns, that are difficult to
capture with shallow neural networks or approaches based on hand-crafted features, that are thereby some-
times outperformed [34]. In the remainder of this section, we provide a holistic view of neural IR models
(Section 2.3.1), followed by various categorizations of neural IR models (Section 2.3.2) and finally introduce
the neural IR models studied in this thesis (Section 2.3.3)

2.3.1. A holistic view
Document ranking can be defined as a matching problem, that consist of three primary steps: generating
a representation of the query, generating a representation of the considered document and matching both
representations to estimate the relevance of the document to the query [86]. As displayed in Fig. 2.3, neural
models can be used to generate both representations, but also to estimate relevance.

Figure 2.3: Graphical overview of neural models (right in color) within the LTR framework (left in grayscale), inspired by [85]: neural
models can be useful either for generating good representations or in matching a query and a document representation, or both.

We can include such components in our formal notation of the ranking function S introduced in Section
2.2.2, by adopting the formulation proposed in [49]:

S(d , q) = g (ψ(q),φ(d ),η(d , q)) (2.12)

in which:
• q and d are respectively the input query and document;
• ψ and φ are the respective representation functions that extract features from q and d ;
• η is the interaction function that extracts features from the query-document pair (q ,d );
• g is the evaluation function which computes the relevance score based on the feature representations.

Note that ψ and φ are evidently found in the bottom two rectangular boxes in Fig. 2.3, whereas η and g —
which require input on the query and document—both preside in the top rectangular box in Fig. 2.3.

This formulation allows us to clearly distinguish learning to rank approaches from neural IR approaches.
Traditional LTR approaches adopt fixed functions for ψ,φ and η (i.e. manually defined feature functions)
and a machine learning model for g (e.g. logistic regression), whereas neural IR approaches typically encode
these functions in network structures so that all of them can be learned from the data. Moreover, the inputs
q and d are in the LTR case usually raw texts, whereas in neural approaches these inputs could either be
raw texts or word embeddings. Such embeddings can be used to obtain vector representations of words and
are often pre-trained in an unsupervised manner [86]. Many neural approaches, including the approaches
studied in this work, employ word embeddings. However, embedding mapping is not considered as part of
ψ,φ or η, but as a basic input layer. A reason to exclude this embedding process from the representation and
interaction functions is that different embeddings can be employed with the same neural model. Hence, as
we want to introduce the differences between models, we exclude this component from our comparison and
focus on the neural ranking models that may use such embeddings and are trained in a supervised fashion.
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2.3.2. Categories of neural IR models
The large number of proposed neural models for IR can be categorized in various ways, which have been
enumerated by [49] and will be detailed in this section. The most widely used categorization (in e.g. [48,
49, 87, 97, 131]) distinguishes interaction-based, representation-based and hybrid approaches, based on
the manner they model the query and document. Representation-based approaches strive to create good
representations of the query and the document through ψ and φ respectively, which both typically consist
of several hidden layers. Representation-based models ultimately combine the output signals of ψ and φ

by applying a simple similarity function on the last level. On the other hand, interaction-based approaches
directly model the local interactions between the query and document through an interaction matrix (η).
Afterwards, interaction-based approaches fed this matching matrix into a deep neural network to obtain the
document relevance score [120]. Hybrid approaches incorporate both interaction- and representation-based
input and employ ψ, φ and η, either separately [87] or subsequently [126] before obtaining the relevance
score with g . Figure 2.4 displays a graphical representation of the three categories of neural IR models.

Since representation-based approaches evaluate relevance based on high-level (semantic) representa-
tions of inputs, they better fit short input texts (for which it is easier to obtain good high-level representations
compared to long texts). Interaction-based approaches on the other hand, employ detailed interaction sig-
nals and better fit tasks that ask for specific matching patterns such as exact word matching. They are also
considered more suitable for processing heterogeneous inputs (i.e. documents that are much longer than
queries), as they avoid the issue of encoding long texts.

Despite the clear motivation for representation-based approaches and the need for semantics over syntax
matching, a recent comparative study by Nie et al. [93] has shown the deep interaction-based approaches to
clearly outperform the representation-based approaches in terms of retrieval effectiveness, albeit at the cost
of some efficiency [83]. Moreover, Pang et al. [98] states that interaction-based approaches are more popular
because they stand closer to the also popular (original) LTR methodology and benefit from the interaction-
matrix’s ability to reveal relevance signals in a visual manner.

Another categorization, used in e.g. Guo et al. [49], distinguishes symmetric and asymmetric approaches.
Symmetric approaches assume inputs q and d to be homogeneous, i.e. q and d can be interchanged in the in-
put layer, without affecting the final output. Hence, models that fall under this category take two “sentences”
or “texts” as input, rather than a discriminative query and document. The representation-based approaches
that are symmetric are also known as siamese networks [136]: in these networks there exist no separate ψ and
φ, or if you want, ψ=φ. On the other hand, interaction-based approaches that are symmetric employ com-
ponents that are symmetric by definition for η, such as operations on pairs of n-grams of terms in q and d
[58]. The other category (of asymmetric approaches) assume inputs q and d to be heterogeneous, i.e. inputs
q and d follow a different path within the deep network until they are finally combined to estimate relevance
in the final layer. Such architectures have mainly been introduced for the ad-hoc task, due to the inherent
heterogeneity between the query and document as discussed in Section 2.1.1.

Finally, a third categorization distinguishes single-granularity and multi-granularity approaches [49].
In single-granularity approaches, g only takes the final outputs of functions ψ and φ and/or η for relevance
computations. In multi-granularity approaches, g employs intermediary outputs of functionsψ andφ so that
it can estimate relevance based upon multiple granularities. Hence, multi-granularity approaches can benefit
from using different levels of feature extractions (as is done in e.g. [137]) or different units of language (e.g.
words, phrases and sentences) as is done in [31]. However, all models covered in the experiments conducted
in this thesis are single-granularity models.
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(a) The representation-based architecture (b) The interaction-based architecture

(c) The hybrid Duet architecture [87] (d) The hybrid MV-LSTM architecture [126]

Figure 2.4: Abstract overviews of the architecture of neural IR models, which can be categorized on the manner they model the query
and document: focusing on representations (displayed in 2.4a), interactions (displayed in 2.4b) or both (displayed in 2.4c,2.4d). The

latter—hybrid—approach can take various forms of which we here display two.
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2.3.3. Covered neural models
We will now discuss each of the six neural IR models studied in this work. For each model we will elaborate
upon the intuition behind it and classify it according to the introduced categorizations in Section 2.3.2.

ARC-I [58] (ARChitecture-I), displayed in Fig. 2.5, was proposed in 2014 among the earlier neural IR mod-
els. In essence, it considers a matching algorithm that adopts a convolutional strategy (proven successful
in computer vision image and speech recognition) to obtain representations of natural language. ARC-I is a
symmetric, representation-based approach, i.e. a siamese network. It separately summarizes the meaning
of two sentences (or more concretely, the embedding of words in both sentences) through one dimensional
(1D) layers of convolution and pooling (φ) and finally compares the representation of two sentences with a
multilayer perceptron (MLP) (g ). The model evidently suffers from a drawback inherited from the siamese
architecture: it defers the interaction between two sentences to until their individual representation matures
(in the convolutional model), and runs at the risk of losing details (e.g. a city name) important for the match-
ing task at hand.

Figure 2.5: Overview of the ARC-I architecture, copied from [58].

MatchPyramid [96], displayed in Fig. 2.6, also adopts a convolutional strategy to obtain representations
of natural language in a symmetric manner. However, different from ARC-I, MatchPyramid is an interaction-
based approach: instead of first obtaining separate representations of two sentences, MatchPyramid directly
employs a 2D matching matrix to capture interactions through the dot product of embedded words originat-
ing from the sentences (η). This approach was motivated by the intuition that a good matching model should
account for matching various patterns beyond exact positional matches. Subsequently, similar to ARC-I, the
model employs several convolutional neural networks (CNNs) and pooling, although in a two-dimensional
manner instead of one-dimensional manner, and finally an MLP to compute the matching score (g ). The
name “MatchPyramid” stems from the matching problem for which is was created and the matching matrix
(i.e. the bottom of a pyramid) that is transformed into smaller and smaller 2D layers that ultimately provide a
single matching scores (i.e. the top of a pyramid).

Figure 2.6: Overview of the MatchPyramid architecture, copied from [97].



18 2. Related Works

MV-LSTM [126] (Multiple-Views Long Short-Term Memory), displayed in Fig. 2.7, is another symmetric
approach, that aims to capture a representation of context rather than separate words, by employing multiple
representations (views) of sentences that each focus on different parts of local information. Some consider
MV-LSTM to be a representation-based approach (e.g. in [49]), but we here view it as a hybrid approach
as it both obtains a separate representation of two sentences and then captures their interactions with an
interaction matrix, before transforming the representations into a final matching score. More specifically,
MV-LSTM first generates positional representations for each sentence using a bi-directional LSTM (φ = ψ),
i.e. it concatenates a representation of the whole sentence from a forward and backward direction up to
the position of a word (displayed as a dashed orange box in Fig. 2.7: the orange-filled boxes represent the
forward and backward representation for one word in Sx ). Subsequently, an interaction tensor is employed
to model interactions between any two positional representations in a two-dimensional manner (η), after
which, k-max pooling and an MLP are used to obtain a final score (g ). We however do not view MV-LSTM
as a multi-granularity approach (following [49]), as it does not consider multiple granularities (e.g. charac-
ters/words/sentences) but multiple positions (e.g. all words before and after a word).

Figure 2.7: Overview of the MV-LSTM architecture, copied from [126].

Duet, displayed in Fig. 2.8, is an asymmetric, hybrid approach. It owes its name to employing two sub-
networks in parallel: a lexical matching or local model and a semantic matching or distributed model. The
lexical matching sub-network first fills a 2D binary matching matrix with exact positional matches of words of
a query and a document (η) and then employs a 2D CNN and several fully connected-layers to obtain a local
score (as part of g ). The semantic matching sub-network learns representations of query (φ) and document
(ψ) and then computes the positional similarity of query and document terms using n-graphs, followed by a
matching through the Hadamard product and fully connected-layers to obtain a distributed score (as part of
g ). Finally, the sum is taken over the output of both sub-networks (as the final part of g ).

Figure 2.8: Overview of the Duet architecture, copied from [87].
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DRMM [48], displayed in Fig. 2.9, an interaction-based model that employs a matching histogram map-
ping of the similarity between each query term and the document (η). Specifically, DRMM first obtains sim-
ilarity scores between a query term and document terms with a cosine similarity function. Subsequently, it
uses these similarity scores to fill fixed-length matching histograms (by discretizing the similarity scores into
equal-sized bins and assigning the resulting scores to corresponding bins [13]). Subsequently, DRMM feeds
each query term matching histogram to a feed-forward network to compute relevance at the term-level and
employs a term gating network (i.e. an aggregation based on query term importance) before aggregating the
obtained scores into a final score (g ).

Figure 2.9: Overview of the DRMM architecture, copied from [48].

aNMM [133] (attention-based Neural Matching Model) was specifically designed for ranking short text
in an interaction-based fashion. Yang et al. [133] actually proposed two aNMM architectures: aNMM-1 and
aNMM-2, of which we have employed aNMM-1 to which we will simply refer as aNMM. Similar as DRMM,
aNMM consists of three steps: a matching matrix (η), a deep neural network with value-shared weighting
scheme in the first layer and fully connected layers in the rest (as part of g ) and finally a question attention
network to learn question term importance and produce a final score (final part of g ). The value-shared
weighting scheme, different from the position-shared weighting employed in e.g. MatchPyramid, was de-
signed to capture the importance of different levels of (semantic) matching signals. The question attention
network is similar to the query term gating network in DRMM. Since only an overview of the aNMM-2 archi-
tecture is made available, we present an overview of this architecture in Fig. 2.10. Different from the displayed
figure of aNMM-2, aNMM-1 only adopts a single set of value-shared weights (i.e. instead of weights per node
as displayed for the yellow nodes in the figure, we only have one set of weights).

Figure 2.10: Overview of the aNMM-2 architecture, copied from [133].
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2.4. Evaluating Deep Learning Approaches
In the following, we will first discuss how deep learning models have been evaluated in IR in Section 2.4.1 and
then introduce means for evaluation as proposed in related fields beyond IR in Section 2.4.2.

2.4.1. Evaluations in neural IR
Today’s de facto methodology for evaluation is to test a model on benchmark collections, following the tradi-
tional Cranfield Paradigm, introduced in Section 2.1.3. In the following we will first introduce shortcomings
in this approach as employed in neural IR research. Subsequently, we will discuss works that have tried to go
from a focus on evaluation (knowing which model is better) to analysis (understanding why a model works
better).

Problems in widely adopted evaluationmethods
Among benchmark collections employed in neural IR, we can find datasets from the TREC Robust [48, 83,
138] Web [59, 60] and QA [133] tracks, but also e.g. a Yahoo! QA dataset [126, 127]—for which all relevance
judgments are publicly available. Evaluations on these collections can show us, for a given dataset, whether a
model (significantly) outperforms another model. A separate error analysis is then required to try to identify
where a performance increase (or loss) comes from.

However, many works that have employed such benchmarks, justify their model by outperforming other
neural approaches and decades-old baselines such as BM25 [48, 59, 60, 138], instead of typically stronger
baselines such as RM3 or Rocchio’s classifier or the best known performance on a specific task (as is only
done by a few works, such as [120] and [47]). For example, a state-of-the-art neural model achieves a MAP of
0.28 on the Robust 2004 dataset and therefore beats both BM25 and QL as well as other neural approaches
[48], but the best submission to the original track already achieved a MAP of 0.32 [125]. Moreover, [60] and [59]
proposed neural models (resp., CO-PACRR and PACRR - in the IR community considered to be state-of-the-
art models) and report positive improvements on ERR@207 across the TREC Web Tracks 2010-14 compared to
other state-of-the-art neural approaches. However, if we compare their best runs in to the best submissions
to the original track [16, 24, 25, 27, 116], we find that they only achieve gains on 3/6 years and even losses on
2/6 years. These skewed images of retrieval effectiveness are neither limited to these examples [73] nor lim-
ited to neural approaches proposed over the last decade [7]. Hence, we conclude that benchmark evaluations
against weak baselines can give a too positive image of retrieval models [7, 73].

Year Best ERR@20 (CO-)PACRR ERR@20 Increase of (Co-)PACRR over best
2010 0.166 0.160 -0.006
2011 0.157 0.167 +0.010
2012 0.313 0.363 +0.050
2013 0.184 0.189 +0.005
2014 0.233 0.232 -0.001

Table 2.1: Difference in performance between the best known performance [16, 24, 25, 27, 116] and the best performance obtained with
(Co-)PACRR [59, 60] as measured in ERR@20 per year for the TREC Web tracks 2010-2014.

Recently, the IR community has seen the rise of some leaderboards with held-out relevance judgments,
such as MSMarco [92]. Evidently, such leaderboards do not allow to justify models by outperforming weak
baselines. However, they suffer from the lack of testing statistical significance and do not allow researchers to
conduct error analyses. Specifically with regard to deep learning approaches which have an opaque nature,
it is difficult to comprehend their inner workings and confidently point to sources for performance devia-
tions. Deviations may possibly come from the intuition researchers have proposed with their model, but
with leaderboards there is no way to validate this with an error analysis. We conclude that this standard may
give rise to a disproportional focus on maximizing quantitative improvements, while neglecting theoretical
understanding and qualitative insights in the process, as expressed by Mitra and Craswell [85].

From evaluation towards analysis
Over the past year, some methods to move beyond Cranfield experiments for analyzing neural approaches,
have been proposed. Nie et al. [93] conducted a comparison of representation- and interaction-based IR

7ERR@20 considers the Expected Reciprocal Rank metric designed for multi-graded relevance. It specifically models how long it will take
for a user to find a relevant document [14].



2.4. Evaluating Deep Learning Approaches 21

models (which typically have been trained and tested on different datasets), on the same training and testing
collection. While such work enables us to empirically determine which type of approach performs better,
they can only provide insights at a level of high abstractness (that was criticized by Fang et al. [42], as we in-
troduced in Section 1.2.1). For example, knowing that interaction-based models outperform representation-
based models [93] does neither shed much light on why this is the case nor whether combining models would
make sense. Along a different line, Cohen et al. [21] recently proposed to probe neural retrieval models by
training them, and then using each layer’s weights as input to a classifier for different types of NLP tasks (sen-
timent analysis, part-of-speech tagging, etc.). The motivation behind this approach is that the performance
on those tasks by each network layer provides insights into the kind of information that each layer captures.
While this is indeed useful to realize, it does not provide an immediate insight into how to improve an exist-
ing neural approach, as we do not how the NLP task relates to a considered IR task.Moreover, the approach
is not model-agnostic and hence requires a different implementation per model. In a similar fashion, some
works like [60, 83] have conducted an ablation study in which the influence of various model components
was researched. Although this can provide a reason to include or exclude components (e.g. context-sensitive
term encoding [83] and a disambiguation, a cascade k-max pooling or a shuffling combination layer [60]), it
does not shed much light on why inclusion or exclusion of a component improves retrieval effectiveness.

The mainstream approach for evaluating neural IR models suffers from a limited scope of evaluation and
proposed solutions offer little insight and/or are labor-intensive since they require a different implementa-
tion per model. In contrast, we propose a model-agnostic method that is less restricted in scope compared to
existing solutions, as its scope is determined by the included axioms that cover many IR components (such
as term frequency, inverse document frequency, length normalization, semantics, regularization, proximity).

2.4.2. Evaluation in other research fields
Looking at the NLP community that is strongly related to our IR community, we can obtain that it faces hun-
dreds of works that vy for leaderboard dominance while basic questions remain unanswered [68, 73]. Among
the few works that have addressed basic questions, we can find the work of Kaushik and Lipton [68], which
addresses the question of identifying the difficulty of several popular reading comprehension benchmarks
in NLP. They, identified surprising unwanted characteristics in some datasets. For example, they found that
the Children’s Books Test (CBT) can be gamed. CBT was designed to capture how well language mod-
els, that get a passage from a children’s book, a question and a set of candidate answers as input, are able to
capture the meaning of the passage so that they can answer the question [56]. Kaushik and Lipton [68] found
that the test could be gamed (a performance increase could be obtained) by only looking at the last sentence.
Such findings justify the critique on solely employing benchmarks for evaluating a new model, introduced in
Section 1.2.

However, whereas evaluation methodologies of deep nets beyond benchmark datasets are in their infancy
in the IR community, the NLP and Computer Vision communities have proposed a number of them. Weston
et al. created a set of 20 so-called bAbI tasks: each task consisting of several QA instances, aimed at diagnos-
ing some form of text understanding and reasoning [129]. Two examples of such tasks are displayed in Fig.
2.11. Within the field of Visual Question Answering (VQA), Johnson et al. [66] developed CLEVR, a dataset for
language and visual reasoning, consisting of a large number of rendered images (constructed from a limited
universe of objects and relationships) and automatically generated questions [66], as displayed in Fig. 2.12.
Along a different line, Jia and Liang [65] proposed an adversarial evaluation scheme of the SQUAD dataset by
inserting distracting sentences into text passages, resulting in a sharp drop in accuracy across all evaluated
models. An example of

Although they can provide more insights into why and when certain approaches work better than others,
the proposed solutions also have shortcomings. For example, the bAbI tasks have been criticized, since some
of the tasks can be solved (almost) as good by only looking at the passages (and not at the question!), which
is also the case for Task 13 displayed in Fig. 2.11 [68]. Next to this error in the construction of the diagnostic
instances, a shortcoming of the listed diagnostic approaches is that they have come up with their own features
for diagnosis. In the publications introducing bAbI and CLEVR, the authors do not state why the respective
20 tasks and 90 question templates were selected.

In spite of these shortcomings, we propose to bring the approach of diagnostic dataset creation into the
neural IR community with this thesis. Different from the proposed solutions, we base our diagnostics upon
well-established heuristics in the field of IR, known as axioms. Before discussing the creation of diagnostic
datasets in Chapter 4, we will first introduce the paradigm of axiomatic thinking in IR.
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Figure 2.11: Examples for two of the bAbI tasks, adapted from [129]. Task 13 tests coreference in the case where the pronoun can refer
to multiple actors, task 14 tests the understanding of time expressions within statements.

Q: What size is the cylinder that is left of the brown
metal thing that is left of the big sphere?
Q: There is a sphere with the same size as the metal
cube; is it made of the same material as the small
red sphere?
Q: Are there an equal number of large things and
metal spheres?
Q: How many objects are either small cylinders or
red things?

Figure 2.12: A sample image and associated questions from the CLEVR dataset, adapted from [66]. The questions test aspects of visual
reasoning, such as attribute identification, counting, comparison, multiple attention, and logical operations. Both the images and

questions were automatically created based upon question templates and input on e.g. the universe of objects that can be present in
images. Hence, there is no shortage of diagnostic data per capability to diagnose.

Figure 2.13: Example from the SQuAD dataset [102] including an adverserial distracting sentence added in [65]. A BiDAF ensemble
model originally returns the correct answer, but is fooled by the adverserial approach.
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2.5. Axiomatic Thinking in IR
In this section we introduce the paradigm of axiomatic thinking in IR. Starting with a paper by Fang et al. [42]
considering a manual analysis of six axioms on two existing retrieval functions—discussed in Section 2.5.1—
subsequent works on axiomatic thinking have considered more axioms and another diagnosis strategy and
have resulted in novel retrieval functions and metrics and a novel re-ranking approach—discussed in Section
2.5.2.

2.5.1. A manual analysis of six axioms
Hui Fang, Tao Tao and ChengXiang Zhai can be considered the founding fathers for the adoption of axiomatic
thinking in IR. In their seminal work, [42], they introduced six retrieval constraints that any reasonable re-
trieval function should satisfy. Formalizing retrieval heuristics into constraintsenabled the authors to ana-
lytically evaluate a number of existing retrieval functions. This analytical approach consisted of looking at a
retrieval formula and an axiom to conclude under which conditions (if any) the retrieval formula would fulfill
the axiom.

For example, we can obtain that Okapi BM25 (displayed in Eq. 2.13), in case query q = {w}, will assign a
higher score to a document that contains more occurrences of the query term (i.e. has a larger c(w,d )) under
the condition that the query term w occurs in no more than half of the documents (d f (w) ≤ N /2): we have
to avoid the case in which a query the highlighted part of the BM25 retrieval formula becomes negative and
hence assigns a lower score to a document that has a higher count of the query term. From this, Fang et al. [42]
could conclude that Okapi BM25 fulfills TFC1, displayed in Eq. 2.14, under the condition that d f (w) ≤ N /2.

B M25(d , q) =
∑

w∈q∩d

(
ln

N −d f (w)+0.5

d f (w)+0.5
× (k1 +1)c(w,d )

k1(1−b +b |d |
avdl )+ c(w,d )

× (k3 +1)× c(w, q)

k3 + c(w, q)

)
(2.13)

Equation 2.13: Retrieval formula of Okapi BM25. The IDF part of the formula is highlighted.

Let q = {w} and assume |d1| = |d2|. If c(w,d1) > c(w,d2), then S(d1, q) > S(d2, q). (2.14)

Equation 2.14: A formal expression of the TFC1 axiom [42]. Okapi BM25 does not fulfill this axiom if d f (w) > N /2.

The main assumption of this approach—retrieval effectiveness is closely related to the fulfillment of re-
trieval constraints—was empirically validated. Fang et al. [42] adapted the retrieval formula of Okapi BM25 so
that it fulfilled the TFC1 constraint (among other constraints) and obtained an increase in average precision
on various TREC test collections (0.04-0.27 for verbose and 0-0.01 for non-verbose queries) with the modified
version of BM25, displayed in Eq. 2.15.

B M25(d , q) =
∑

w∈q∩d

(
ln

N +1

d f (w)
× (k1 +1)c(w,d )

k1(1−b +b |d |
avdl )+ c(w,d )

× (k3 +1)× c(w, q)

k3 + c(w, q)

)
(2.15)

Equation 2.5: Adapted version of the retrieval formula of Okapi BM25: the highlighted IDF part of the equation can no longer be
negative and hence this formula fulfills TFC1 unconditionally.

2.5.2. Rise of the axiomatic thinking paradigm
Following the seminal work by Fang et al. [42], various works have contributed to the field of axiomatic think-
ing, which we can by now define as a paradigm on its own. In the following we will subsequently discuss
various developments within this paradigm.

Novel retrieval functions andmore axioms
In follow-up works, Fang and Zhai [40] also derived novel retrieval functions such as F1-LOG and F2-EXP,
based on their initial set of constraints. Later, they extended their list of axioms from exact (syntactical) term-
matching to semantic-matching based constraints [39, 41]. Others have contributed query term proxim-
ity [53, 121], document length normalization [78] and query term discrimination [6] constraints, again con-
sistently showing that traditional retrieval models improve when slightly altered to satisfy those constraints.
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While most of the more than twenty existing axioms have been designed for standard retrieval models, a
number of axioms have also been proposed for the more specialized cases, such as statistical translation
models [67] and pseudo-relevance feedback [18, 19, 89].

Diagnosis through collection perturbations
Apart from the manual inspection of axiom fulfillment, discussed in Section 2.5.1, Fang et al. [43] also re-
searched a second strategy: the use of collection perturbations. The original documents in the document
collection were thereby adapted with relevance preserving perturbations (their relevance labels would re-
main the same and so would the queries). With these perturbations, Fang et al. [43] created documents for
a specific test scenario, which could be related to a specific axiom. For example, length variance amplifica-
tion was realized by appending documents to themselves (linear to their original length, so larger documents
grow faster) to test whether a model is robust to larger document length variance (related to the document
length normalization constraint, which will be discussed in Section 3.3). These tests provided findings con-
sistent with the first strategy of analytical validation, but can also be used if manual analysis is challenging
and provide further insights on retrieval functions fulfilling the same set of axioms.

Nevertheless, this strategy has, different from the first, not been employed in subsequent works other than
[90]. One reason for this may be that the first approach could predict the performance of a retrieval function
(a longstanding challenge in IR [30]), whereas the second approach requires additional experiments.

Diagnosing evaluationmetrics
Next to the line of research that focuses on the diagnosis of models, the axiomatic thinking paradigm has been
used to diagnose evaluation metrics. In general, constraints or axioms were used to formally specify how met-
rics should behave in particular situations [5]. For example, the priority constraint states that swapping items
in concordance with their relevance should increase the ranking quality score [5]. Such formalized heuristics
again allowed researchers to identify strengths and weaknesses but now in (widely adopted) metrics [88, 117]
and resulted in the proposal of new metrics such as reliability and sensitivity [4].

Towardsmulti-term queries
Lastly, we point to a work closest to ours. Hagen et al. [53] explored the re-ranking of a given result list based
on the aggregated re-ranking preferences of twenty-three axioms. They found that axiom-based re-ranking
could improve retrieval performance for almost all 16 basic retrieval models. Similar to our work, this appli-
cation of axioms to an actual result list (instead of artificial documents with one or two terms as in the analytic
evaluation of retrieval functions) requires the extension and relaxation of axioms. On a higher level, our work
is different to all those introduced above in the sense that we create datasets (one per axiom), in order to
determine empirically to what extent neural IR approaches satisfy the individual axiomatic constraints.

Hagen et al. [53] could not include the document length axiom QN LC and ST MC 3 constraints proposed
by Fang and Zhai [40, 41] and proposed six new proximity axioms. Our axiom conversion (extension and
relaxation) scheme does not have issue with the aforementioned constraints and can be used to convert an
axiom and subsequently create a diagnostic dataset (through artificial data creation, if needed) for any axiom
on retrieval status scores if it can be expressed in measurable information retrieval statistics (including the
newly proposed axioms). For example, the proximity constraints proposed by Fang and Zhai [40] prescribe
a relation on measures of proximity rather than retrieval status values and can not be used to diagnose IR
models with our approach. Similarly the term semantic similarity constraints proposed by Fang and Zhai
[41] prescribe a similarity between a query and terms and can also not be used in our method.

Along a different line, focusing on augmenting the training regime of neural models with axiomatic knowl-
edge, Rosset et al. [108] have recently considered the direct incorporation of axioms in the loss function. After
training a deep net using this loss function, they achieved significant improvements in retrieval effectiveness
over a default training regime. To obtain instances that match the conditions of axioms, they propose to per-
turb documents in the document collection to make them fulfill the conditions of an axiom and subsequently
use a pair of a regular and a perturbed version of a documents (that together fulfill the conditions of an axiom)
to augment the training scheme of a deep net.
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Creating Diagnostic Datasets

In Section 1.2 we argued our choice for diagnosing neural models through an axiomatic approach. In this
chapter we discuss how we have created the resources for such a diagnosis: the diagnostic datasets. First, in
Section 3.1, we introduce the motivation for creating diagnostic dataset, followed by the proposed method-
ology for creating diagnostic instances in Section 3.2. This methodology consists of two steps: 1) axiom con-
version and 2) diagnostic dataset creation. We have executed this methodology on four established axioms
and two original datasets. In Section 3.3, we discuss the conversion of the four axioms, resulting in four ax-
ioms that are suitable for obtaining diagnostic datasets from existing corpora. Then, after we introduce the
employed original datasets in Section 3.4, we elaborate upon the obtained diagnostic dataset in Section 3.5.

3.1. Motivation
As introduced in Section 2.5, Fang et al. [42, 43] have proposed two strategies for validating whether models
fulfilled axioms: a theoretical validation of axiom fulfillment done by hand and an empirical validation with
perturbed collections. In Section 3.1.1 we will detail that both of these approaches have become unfeasible
in the neural IR era. Subsequently, in Section 3.1.2, we propose a third approach that employs diagnostic
datasets, making it suitable for neural models.

3.1.1. Problems in existing methods
The theoretical approach to diagnosing non-neural IR models considered a formally expressed axiom and
a formally expressed retrieval model [42], as introduced in Section 2.5.1. This approach has proven fruitful
for analyzing traditional models such as BM25 and QL in a predictive manner by analyzing their retrieval
formulas (without the need to actually conduct empirical experiments) [41–43, 78]. However, looking at the
neural IR models we study in this work, we can find that this analysis becomes unfeasible for this type of
models as they typically encompass more than a hundred up to millions of parameters, as can be seen in
Table 3.1.

Model Amount of parameters
QL 1

BM25 3
RM3 5

DRMM 161
CDSSM 10,877,657
K-NRM 49,763,110

MP-HCNN ∼ 71,000,000

Table 3.1: The amount of parameters in traditional and neural IR models: a difference in multiple orders of magnitude. Note that the
amount of parameters in neural IR models may vary depending upon the specific architecture. We here show the numbers from

[103, 131].
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As a second approach, Fang et al. [43] proposed the empirical collection perturbation approach. Look-
ing at our research objective, this second strategy can in the neural IR era, no longer “be applied to any re-
trieval function” as was said in [43]. Collection perturbation operations like word removal may break the
syntax and/or semantics of natural language data and hence influence the neural, non-bag-of-words, mod-
els [141], which we aim to diagnose. For example, consider how the syntax and/or semantics change if we
remove a word from a clause: “why you can not use perturbations”. Whereas a bag-of-words model by defini-
tion can not pick up that the semantics change or syntax is incorrect, a neural model may be able to. To avoid
this potential problem, we will introduce a novel, third method for axiomatic diagnosis.

3.1.2. Axiomatic analysis through diagnostic datasets
Knowing the limitations of existing approaches for axiomatic diagnosis with regard to neural IR, we here
propose the use of diagnostic datasets. Different from the analytical and collection perturbation approaches,
this approach is 1) feasible for analyzing neural models in an axiomatic manner and 2) does not require
relevance-labeled data (of which there is a shortage in neural IR as introduced in Section 1.1).

In short, diagnostic datasets comprise of instances that test whether a model fulfills an axiom or not.
We therefore define an axiomatic diagnosis as an empirical evaluation of IR models on a whole dataset of
such instances. Using a diagnostic dataset of sufficient size, an axiomatic diagnosis can capture potentially
significant differences between IR models in terms of axiom fulfillment. To create diagnostic datasets, we
will—different from the collection perturbation approach—typically not engineer artificial dataset instances
so that documents fulfill certain conditions posed by an axiom. Instead, we focus on adapting axioms and
keep the queries and documents of each instance as is. We can then obtain diagnostic instances by searching
for existing queries and pairs or triplets of documents that already fulfill conditions posed by the adapted
axioms, as will be discussed next.

The need for axiom conversion
Due to the simple (e.g. one-term queries), though strict (e.g. exact document length equality) definition of
axioms, a typical instance in a benchmark dataset (generally consisting of a multi-term query, and a set of
typically a multitude of documents) does not meet the conditions imposed by an axiom. In fact, as will be
seen in Section 3.3.1, the conditions in the original axioms considered in this work are fulfilled by hardly any
instances in the employed datasets. Hence, we can not obtain diagnostic datasets of sufficient size from the
considered original datasets using these axioms. To solve this problem, we propose a conversion of strict
axioms to a version that poses conditions more likely to be found in existing corpora, as was also found
necessary in [53]. We will further discuss this procedure of axiom conversion (and subsequently how to obtain
diagnostic datasets) in Section 3.2.
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3.2. Creating Diagnostic Datasets
Here we introduce the procedure to create diagnostic datasets. This methodology requires an axiom and an
original dataset (i.e. an existing test collection) as input, and then consists of several consecutive steps to
come to a diagnostic dataset. In Section 3.2.1, we discuss the conversion of axioms and in Section 3.2.2, we
elaborate upon the subsequent creation of a diagnostic dataset.

3.2.1. Converting axiom representations
As introduced in the previous section, each of the established axioms needs to be converted into a form that
is suitable for identifying to what extent a dataset instance represents the axiom. We propose two steps:

Step 1 an extension of each axiom in order to use realistic query and document sizes;

Step 2 a relaxation of extended axioms such that the strictly defined query and document relations
are relaxed to enable selection and generation of sufficient amounts of data.

Step 1 allows us to move from one- or two-term queries to arbitrary query lengths and from two- or three-
document instances to any number of documents. Formally, we go from e.g. a single-term query q = {w} to a
multi-term query q = {w1, w2, ..., w|q |} and from e.g. two documents d1,d2 to any pair of documents di ,d j .

Step 2 allows us to make use of query/document pairings that approximately fulfill a particular relation-
ship. For example we would go from strict document length equality to a parameterized version, or formally:
from |di | = |d j | to abs(|di |− |d j |) ≤ δ. Moreover, in our relaxation, we often make use of the fact that we now
can have more than one or two query terms. For instance, we can relax conditions such as the count of a term
in a document (c(w,d )) that should hold for each term (e.g. ∀w ∈ q ,c(w,di ) > c(w,d j )) to hold for at least one
term (e.g.

∑
w∈q c(w,di ) >∑

w∈q c(w,d j )). However, such relaxations come at the risk of the axiom no longer
representing the idea behind the original axiom. Hence, subsequent modifications (which we here also view
as part of the relaxation) are sometimes required to retain the original axiom’s intuition in its extended and
relaxed version. A graphical overview of the conversion of axiom representations is displayed in Fig. 3.1.

Figure 3.1: Graphical representation of axiom extension and relaxation with part of the TFC1 conversion shown as an example.
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3.2.2. Obtaining diagnostic instances
After the steps for obtaining an extended, relaxed variant of an axiom, we now describe how to obtain a
diagnostic dataset for it. Given a corpus with standard pre-processing applied, we determine the number of
instances the (i) original axiom, (ii) extended axiom and (iii) relaxed & extended axiom can be found in it.
As the axioms are defined over retrieval status value scores (instead of relevance labels), we do not require
relevance judgments and, almost any dataset is suitable as source dataset. We can then sample queries and
document pairs/triplets at will and keep those in our diagnostic datasets that satisfy our axioms. A graphical
overview of the extraction of diagnostic datasets is displayed in Fig. 3.2.

Figure 3.2: Graphical representation of obtaining a diagnostic datasetfrom a pre-processed dataset through checking if instances fulfill
conditions raised in an (extended, relaxed) axiom. We show an example for the TFC1 axiom: D283-21 should, for query Q1317, be

ranked higher than D283-20.

Next to extracting diagnostic instances from original datasets, we also propose a second approach for ob-
taining diagnostic instances. This approach enables diagnosis of axioms for which the conditions are fulfilled
by too few instances in the original dataset. We thereby turn to adapting documents just like the collection
perturbation approach as proposed by Fang et al. [43]. However, we only use this approach as a last resort and
use no more operations than strictly necessary to resemble the setting as prescribed by the axiom. We thereby
aim to minimize the impact of changes that may influence the deep models, as discussed in Section 3.1.1.
Figure 3.3 displays the complete pipeline for creating a diagnostic dataset from an original dataset including
both approaches employed in this thesis (diagnostic instance extraction and artificial instance generation).

Figure 3.3: Overview of the diagnostic dataset creation pipeline. In italics, we show an example for the TFC2 axiom from
WikiPassageQA, and refer to appended documents as an example of artifical data (for LNC2).
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3.3. Axioms Covered in Our Experiments
More than twenty IR axioms1 have been proposed by now. We have selected four among those, and con-
verted them for our purpose of diagnostic dataset creation. In the following, we will first explain why these
axioms were selected in Section 3.3.1. Then, for each axiom, we provide an extension and relaxation in the
subsequent sections (Section 3.3.2, 3.3.3, 3.3.4, 3.3.5 resp.).

3.3.1. Axiom selection
We have selected four axioms among those in [42, 43, 114]. Two of the axioms (TFC1 and TDC) were selected
as they are expected to capture a fair amount of relevance signals, while intuitively being present in existing
datasets. Whereas the intuition behind TFC1 is that models should favour documents with larger query term
counts, the intuition behind the M-TDC axiom is that the document frequency of query terms should also be
accounted for. Hence, the two axioms combined, essentially represent the TF-IDF statistic. Although the
limitations of TF-IDF are well known (e.g. ignoring word orders which may carry syntactic and semantic
relationships [72]), the statistic has been a pervasive heuristic in a range of IR models developed over time:
TF-IDF is a standard part of pervasive traditional models such as BM25 and language modelling approaches
(e.g. QL with Dirichlet Prior smoothing as an IDF-like component [140]) and can provide a strong baseline
when combined with n-grams [141]. Some more novel, deep, retrieval approaches have also included explicit
TF and/or IDF like characteristics. For example, [22]—which employs siamese convolutional neural networks
to learn representations of questions and candidate answer passages—concatenates TF information to QA
pairs before feeding them to a feedforward network to produce a relevance score. In [33], IDF information is
used in training a neural word embedding. Hence, we expect the two selected axioms provide a good starting
point for diagnosing adherence to heuristics that incur retrieval effectiveness.

We have selected a third axiom (TFC2) that does not—like most of the proposed axioms—prescribe that
one document should receive a higher score than another, but rather constraints that the difference in scores
between a pair of documents should be larger than the difference between another pair of documents. Specif-
ically, the intuition behind the axiom is that the (positive) impact of an increase in TF (on the retrieval status
value) should decrease with increasing TF. We include this axiom to show our methodology can handle such
axioms as well.

Finally, we selected a fourth axiom (LNC2) to showcase how we can generate a diagnostic dataset from
an existing corpus through creating artificial data, rather than using existing data (in which we expect the
specific axiom to not (or hardly) be present. Specifically, the intuition behind the axiom is that models should
avoid over-penalizing a long document.

An overview of the selected axioms and our motivation to include them is given in Table 3.2.

Axiom Intuition Reason for inclusion

TFC1
favour a document with a larger count of
a query term

encapsulates part of a pervasive statistic

TFC2
to ensure the impact of an increase in
query term count decreases as the count
increases

describes a different relationship than
most axioms

M-TDC
to assign higher weights to
discriminative terms

encapsulates part of a pervasive statistic

LNC2
to avoid over-penalizing a long
document

has conditions that are typically not
fulfilled by instances in an IR collection

Table 3.2: The intuition behind and the reason for inclusion per axiom covered in this thesis.

1An overview of these axioms can be found at https://www.eecis.udel.edu/~hfang/AX.html.

https://www.eecis.udel.edu/~hfang/AX.html
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3.3.2. TFC1: extension and relaxation
The TFC1 axiom [42] favours documents with more occurrences of a query term and is formally defined as
expressed in Eq. 3.1.

Assume q = {w} and |d1| = |d2|,
If c(w,d1) > c(w,d2), (3.1)

Then S(d1, q) > S(d2, q)

We now extend this axiom to multi-term queries and multiple documents, resulting in Eq. 3.2.

Assume q = {w1, w2, ..., w|q |} and |di | = |d j |,
If c(w,di ) > c(w,d j ) for all w ∈ q , (3.2)

Then S(di , q) > S(d j , q)

Subsequently, we relax it to incorporate documents of approximately the same length, as defined with
a parameter δTFC1. This parameter should be set depending on the original document corpus and retrieval
task. Additionally, we relax the constraint that di must have a larger count than d j for every query term.
Instead, we now require that there is at least one query term with a higher term count in di and that there is
no query term for which d j has a higher count than di . Incorporating these relaxations brings us to Eq. 3.3,
or as will refer to it now: TFC1.

Assume q = {w1, w2, ..., w|q |} and abs(|di |− |d j |) ≤ δTFC1,

If c(w,di ) ≥ c(w,d j ) for all w ∈ q and
∑

w∈q c(w,di ) >∑
w∈q c(w,d j ), (3.3)

Then S(di , q) > S(d j , q)

3.3.3. TFC2: extension and relaxation
Axiom TFC2 [42] encapsulates the intuition that an increase in retrieval status value due to an increase in
term count becomes smaller as the absolute term count increases. Eq. 3.4 contains a formal expression of
the axiom in which the absolute term count of w in d1 is smallest and in d3 is largest.

Assume q = {w} and |d1| = |d2| = |d3|,
If c(w,d1) > 0, c(w,d2)− c(w,d1) = 1 and c(w,d3)− c(w,d2) = 1, (3.4)

Then S(d2, q)−S(d1, q) > S(d3, q)−S(d2, q)

Again, we first define an extended variant of TFC2 that considers multi-term queries and, in this case, any
triplet of documents. Formally this results in:

Assume q = {w1, w2, ..., w|q |} and |di | = |d j | = |dk |,
If c(w,di ) > 0, c(w,d j )−c(w,di ) = 1 and c(w,dk )−c(w,d j ) = 1 for all w ∈ q , (3.5)

Then S(d j , q)−S(di , q) > S(dk , q)−S(d j , q)

For our relaxed version of the axiom, we consider q = {w1, w2, . . . , w|q |} and |di | ≈ |d j | ≈ |dk |, i.e.
maxd1,d2∈{di ,d j ,dk }(|d1|− |d2|) ≤ |δTFC2|. Furthermore, we now constrain that every document has to contain
at least one query term (instead of all query terms) and no longer restrict the differences in term count to
be exactly 1. This leads to the constraints

∑
w∈q c(w,dk ) > ∑

w∈q c(w,d j ) > ∑
w∈q c(w,di ) > 0 and c(w,d j )−

c(w,di ) = c(w,dk )− c(w,d j ) for all w ∈ q . The latter constraint does not mean that the difference has to be
the same for every query term, instead we enforce this equality in term count difference on a term level. If
these constraints hold, then according to TFC2, S(d j , q)−S(di , q) > S(dk , q)−S(d j , q).
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Assume q = {w1, w2, ..., w|q |} and maxd1,d2∈{di ,d j ,dk }(|d1|− |d2|) ≤ |δTFC2|,
If

∑
w∈q c(w,dk ) >∑

w∈q c(w,d j ) >∑
w∈q c(w,di ) > 0 (3.6)

and c(w,d j )− c(w,di ) = c(w,dk )− c(w,d j ) for all w ∈ q ,

Then S(d j , q)−S(di , q) > S(dk , q)−S(d j , q)

3.3.4. M-TDC: extension and relaxation
The TDC axiom was originally proposed by Fang et al. [42] to favour documents with more occurrences of less
popular query terms in the collection. Shi et al. modified the TDC axiom to M-TDC [114] to fix2 some undesired
behaviour. Formally, M-TDC is defined as displayed in Eq. 3.7. Note that w1 is rarer in the corpus than w2.

Assume q = {w1, w2}, |d1| = |d2|, c(w1,d1) = c(w2,d2) and c(w2,d1) = c(w1,d2),

If i d f (w1) ≥ i d f (w2) and c(w1,d1) ≥ c(w1,d2), (3.7)

Then S(d1, q) ≥ S(d2, q)

We then define M-TDC for multi-term queries and any pair of documents, resulting in Eq. 3.8.

Assume q = {w1, w2, ..., w|q |}, |di | = |d j |, c(wa ,di ) = c(wb ,d j ) and

c(wb ,di ) = c(wa ,d j ) for all wa , wb ∈ q with wa 6= wb ,

If i d f (wa) ≥ i d f (wb) and c(wa ,di ) ≥ c(wa ,d j ) for all wa , wb ∈ q with (3.8)

wa 6= wb ,

Then S(di , q) ≥ S(d j , q)

Now we turn to the relaxation of our extended version of M-TDC. Note that all conditions in Eq. 3.8 hold
if (and only if) c(w,di ) = c(w,d j ) for all w ∈ q , due to the “Assume” conditions. Evidently instances that
fulfill this condition do not allow to diagnose if models do favour documents with more occurrences of less
popular query terms as the intuition behind M-TDC encompasses. Hence, we relax this strict condition and
only constrain that the total sum of query terms should be equal, but also constrain di and d j to differ in at
least one query term count, resulting in the “Assume” conditions in the first two lines of Eq. 3.9.

Now we have to make sure that di , compared to d j , will always have a larger (or equal) count of query
terms that are less popular in the collection - just like the original axiom regarding two terms prescribed that
d1, compared to d2, had a larger count of the less popular query term. So, if i d f (wa) ≥ i d f (wb) (subcondition
1 in Eq. 3.9) then c(wa ,di ) > c(wa ,d j ) should hold as well (subcondition 2). However, since we are now
considering queries that can consist of multiple terms, we have to avoid an issue. If a word wa that is less
popular in the collection than a word wb , but a query q contains the word wb more often than wa , we may
not be sure whether it is more important to have a higher count of wa or wb - should we focus on the idf
value or on the frequency of the term in the query? Hence, we also constrain that c(wa , q) ≥ c(wb , q) to avoid
running into this issue (subcondition 3).

Now, we have to avoid a second issue. For example, consider a three term query q = {w1, w2, w3} with
i d f (w1) < i d f (w2) < i d f (w3), if c(w1,di ) = 10, c(w2,di ) = c(w3,di ) = 0 and c(w1,d j ) = 0, c(w2,d j ) =
c(w3,d j ) = 5, we can obtain that all conditions we had so far are fulfilled. However, this contradicts the
TFC3 axiom that states that a document that contains more distinct query terms (in our case d j ) should be
ranked above a document containing less distinct query terms (in our case di ) [42, 43]. Hence, we need to
constrain that the count of both terms wa and wb are swapped across documents di and d j (subcondition
4). The latter is in essence the fix of M-TDC over TDC as presented in [114].

Finally, as a relaxation, we only enforce these conditions to hold for query terms for which di and d j have
a different count and ignore terms for which they have an equal count. Note that we know that di and d j

differ in at least one query term count (as enforced in the second line of Eq. 3.9). Ultimately, the formal
definition of M-TDC becomes:

2Specifically, the fix was to avoid the issue that the original TDC axiom contradicts TFC1 and TFC3 (the latter is wrongly listed as TFC2 in
[114]).
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Assume q = {w1, w2, ..., w|q |}, abs(|di |− |d j |) ≤ δM-TDC,∑
w∈q c(w,di ) =∑

w∈q c(w,d j ) and ∃w ∈ q so that c(w,di ) 6= c(w,d j ),

If for all w ∈ q for which c(w,di ) 6= c(w,d j ), w = wa or w = wb

with wa , wb ∈ q and wa 6= wb such that:

1) i d f (wa) ≥ i d f (wb), (3.9)

2) c(wa ,di ) > c(wa ,d j ),

3) c(wa , q) ≥ c(wb , q),

4) c(wa ,di ) = c(wb ,d j ) and c(wb ,di ) = c(wa ,d j ),

Then S(di , q) ≥ S(d j , q)

3.3.5. LNC2: extension and relaxation
The LNC2 [43] axiom prescribes that over-penalizing long documents should be avoided: if a document is
replicated k times, its retrieval status score should not be lower than that of its un-replicated variant. It should
be noted that the axiom was defined under the assumption that redundancy is not an issue, which we also
follow here. Formally the axiom is defined as follows3:

Assume q = {w}, k ∈N, k > 1, |d1| = k ×|d2| and c(w,d1) > 0,

If c(w,d1) = k × c(w,d2) for all w ∈ d1, (3.10)

Then S(d1, q) ≥ S(d2, q)

We then define LNC2 by defining q for multi-term queries and documents di and d j , resulting in Eq. 3.11.

Assume q = {w1, w2, ..., w|q |}, k ∈N, k > 1, |di | = k ×|d j | and

c(w,di ) > 0 for all w ∈ q ,

If c(w,di ) = k × c(w,d j ) for all w ∈ d j , (3.11)

Then S(di , q) ≥ S(d j , q)

Now, we only relax the condition that document di should contain every query term: we only enforce it to
contain one query term. Note that we do not relax d j to contain any words that are not present in di , to avoid
the potential impact if such words are semantically similar to query terms4. Hence, the formal definition of
LNC2 becomes:

Assume q = {w1, w2, ..., w|q |}, k ∈N, k > 1, |di | = k ×|d j | and
∑

w∈q c(w,di ) > 0,

If c(w,di ) = k × c(w,d j ) for all w ∈ d j , (3.12)

Then S(di , q) ≥ S(d j , q)

3 Note that the original LNC2 axiom as defined in [42, 43] does not explicitly enforce c(w,d1) > 0 in the formula. However, from the
analyses conducted in the paper, we conclude that this requirements was meant to be part of the axiom. For example, it was found that
BM25 fulfills the LNC2 axiom conditionally, whereas if q = {w} and c(w,d1) = 0, i.e. d 1 and therefore d2 does not contain any query
terms, holds, BM25 would always fulfill the axiom (since S(d1, q) = S(d2, q) = 0). A similar argument can be made to add the c(w,d1) > 0
constraint to the M-TDC axiom, however for simplicity we have not included this constraint in the initial formula, as it is enforced in the
relaxation (through the “Assume” conditions in Eq. 3.9).

4For completeness, we note that this would then contradict the semantic term matching constraints (the STMC axioms) proposed in
[41].
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3.4. Employed Datasets
As previously mentioned, the field of neural IR faces a lack of large scale public datasets [29] required for
training neural IR models. Recently, some datasets have been released that address this issue. In this work
we have employed two of such large scale datasets: WikiPassageQA (released in early Autumn 2018) and
MSMarco (released in October 2018). We will subsequently discuss each of them in the following sections
3.4.1 and 3.4.2 and finally compare them in Section 3.4.3.

3.4.1. WikiPassageQA
The WikiPassageQA corpus has been developed for the answer passage retrieval task: given a query (a ques-
tion) and a Wikipedia document (more concretely, all passages making up that document), rank the passages
such that those containing the answer to the question are ranked on top. It can thus be seen as a variant of
the QA task. WikiPassageQA contains over 4,000 queries on the top 800 Wikipedia documents from the Open
Wikipedia Ranking5, making it the “only large data set with long passages as answers for thousands of non-
factoid questions in the open domain” at release time as stated by Cohen et al. [22]. The dataset consists of
labeled non-factoid answer passage retrieval tasks, of which two examples are provided in Table 3.3. Cohen
et al. [22] also provide the results obtained with two baselines, three traditional IR models and five neural IR
models on the corpus. In the following, we elaborate upon how we filtered and pre-processed the dataset, dis-
cuss how the dataset was created as well as its characteristics and finally discuss adopted evaluation metrics.

Query 4114:

Question: Why is Japan so densely populated?
Document ID: 496
Document Name: Japan.html
Answer Passage(s):
Passage 17 The main islands, from north to south, are Hokkaido, Honshu, Shikoku and Kyushu. The Ryukyu Islands,
which include Okinawa, are a chain to the south of Kyushu. Together they are often known as the Japanese archipelago.
About 73% of Japan is forested, mountainous, and unsuitable for agricultural, industrial, or residential use. As a result,
the habitable zones, mainly located in coastal areas, have extremely high population densities. Japan is one of the most
densely populated countries in the world.
Passage 41 Japan is the second-largest agricultural product importer in the world. Rice, the most protected crop, is
subject to tariffs of 777.7%. In 1996, Japan ranked fourth in the world in tonnage of fish caught. Japan captured 4,074,580
metric tons of fish in 2005, down from 4,987,703 tons in 2000, 9,558,615 tons in 1990, 9,864,422 tons in 1980, 8,520,397
tons in 1970, 5,583,796 tons in 1960 and 2,881,855 tons in 1950. In 2003, the total aquaculture production was predicted
at 1,301,437 tonnes. In 2010, Japan’s total fisheries production was 4,762,469 fish.
Query 2402:

Question: What is the structure of Australia’s members of parliament?
Document ID: 400
Document Name: Member_of_parliament.html
Answer Passage(s):
Passage 0 A Member of Parliament is the representative of the voters to a parliament. In many countries with bicameral
parliaments, this category includes specifically members of the lower house, as upper houses often have a different title.
Members of parliament tend to form parliamentary groups with members of the same political party. The Westminster
system is a democratic parliamentary system of government modelled after the politics of the United Kingdom. This
term comes from the Palace of Westminster, the seat of the Parliament of the United Kingdom. A member of parliament
is a member of the House of Representatives, the lower house of the Commonwealth parliament. Members may use
“MP” after their names; “MHR” is not used, although it was used as a post-nominal in the past.
Passage 1 A member of the upper house of the Commonwealth parliament, the Senate, is known as a “Senator”. In the
Australian states of New South Wales, Victoria and South Australia, a Member of the Legislative Assembly or “lower
house”, may also use the post-nominal “MP.” Members of the Legislative Council use the post-nominal “MLC.” Members
of the Jatiyo Sangshad, or National Assembly, are elected every five years and are referred to in English as members of
Parliament. The assembly has directly elected 300 seats, and further 50 reserved selected seats for women. The
Parliament of Canada consists of the monarch, the Senate, and the House of Commons.

Table 3.3: Sample questions and a subset of the associated passages in the non pre-processed WikiPassageQA dataset, annotated

answer passages are marked green , non-answer passages are marked red . Models are given a question and the set of all passages

that make up the Wikipedia page related to the question and have to rank answer passages above non-answer passages in their result
list. Figure adapted from [22].

5See http://wikirank.di.unimi.it/.

http://wikirank.di.unimi.it/
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Filtering & Pre-processing
WikiPassageQA has been released with a pre-defined train/dev/test split that we maintain in our work [22].
In terms of pre-processing, we apply stemming6 but not stopword removal, as the latter may actually remove
informative terms from the text such as the question words what and why. To be able to use the dataset in
the Indri retrieval toolkit, we only maintain alphanumeric characters (and single spaces). Furthermore, we
have identified various special cases in the WikiPassageQA dataset and list below how we handled each of
them:

• We note that there are no questions related to the document with docid 188, but keep it in the corpus,
as was done in the benchmark experiments;

• We note that there is an extremely large document in the corpus (the passage with pid 18 in the docu-
ment with docid 403 contains 1332 words)7, but keep it in the corpus, as was done in the benchmark
experiments;

• The questions with qid 4149 (dev), 4148 and 1315 (both in train) only contain the symbols "{}" and no
actual question and hence we remove these questions from our dataset;

• The question "How does the WTO function?" is part of both the training (qid 3731) and test set (qid
3732) but has different answers in both cases. We have removed this ambiguous instance from both the
train and test dataset splits;

• We do not remove any special instances that only have passages that are answers (qid 903, 3993, 3727,
3728, 3729).

From here on we refer to WikiPassageQA as being the filtered, pre-processed version of the dataset that was
obtained after applying the enlisted filtering and pre-processing steps (unless explicitly stated otherwise).

Creation & Characteristics
WikiPassageQA consists of 861 Wikipedia documents, split into passages of six sentences. For splitting the
documents into passages, a strided window was employed (returning subsequent passages of six sentences) .
Hence, the last passage of the splitted Wikipedia document may contain less than six sentences. This process
yield 50,477 unique passages in total—each containing 135.2 words on average (minimum 11, maximum
1332). The 4,186 questions in the dataset were created by crowd-workers employed through Amazon Me-
chanical Turk8. The created questions contain 9.5 terms on average (minimum 2, maximum 39)9.

The binary passage-level relevance judgments were also sourced from the same crowd-workers that posed
the questions and were later validated by a subsequent mechanical turk verification poll. These relevance
judgments encompass each passage (of a Wikipedia document) per query (on that Wikipedia document). On
average, there are 1.7 relevant passages per question.

EvaluationMetrics
As in [22], we employ mean average precision (MAP), mean reciprocal rank (MRR) and precision at k doc-
uments (P@k) to report retrieval effectiveness. In terms of axiomatic performance, we report the fraction of
diagnostic instances each model satisfies per axiom.

6We employed the nltk.stem.SnowballStemmer for the English language.
7This passage originates from the Wikipedia page on “The Allies of World War I”, containing a large list (without periods that mark the

end of sentences), as, at the time of writing, can still be found at https://en.wikipedia.org/wiki/Allies_of_World_War_I#
Leaders.

8See https://www.mturk.com/.
9Before pre-processing, the shortest query reads: “define Hydroelectricity”, the longest query reads: “Once elected on his right in 1904

to a full term, how could it be argued that the major splits inside President Roosevelt’s republican party probably led to the Democrats
return to power 1912 following W. H. Taft Presidency?”.

https://en.wikipedia.org/wiki/Allies_of_World_War_I#Leaders
https://en.wikipedia.org/wiki/Allies_of_World_War_I#Leaders
https://www.mturk.com/
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3.4.2. MS MARCO
MSMarco (MicroSoft MAchine Reading COmprehension) is a large scale dataset focused on machine reading
comprehension, question answering, and passage ranking [92]. In this work, we employ the dataset that was
prepared for the passage (re)ranking task: given a query (a question) and a set of passages, rank the passages
such that those that are labeled as relevant are ranked on top. It can hence be seen as a variant of the ad-hoc
retrieval task. It contains over 5,000,000 queries users typed into the Bing search engine10 and the passages
are snippets that were extracted from real web documents through Bing11. It was created to facilitate the
“benchmarking of ML based retrieval models” [92]. A variant of the benchmark will be part of TREC 2019 as
an ad-hoc task called the “Deep Learning Track”12. Two example queries and two associated passages from
the dataset are displayed in Table 3.4.

Query 538699 :

Question: wadesboro population
Candidate Passage(s):
Passage 4882673 Wadesboro, NC Population and Races. As of 2010-2014, the total population of Wadesboro is 5,711,
which is 60.78% more than it was in 2000. The population growth rate is much higher than the state average rate of
21.13% and is much higher than the national average rate of 11.61%.
Passage 1709414 Population of the 100 Largest Urban Places: 1840 (6k) 8. Population of the 100 Largest Urban Places:
1850 (7k) 9. Population of the 100 Largest Urban Places: 1860 (6k) 10. Population of the 100 Largest Urban Places: 1870
(6k) 11. Population of the 100 Largest Urban Places: 1880 (6k) 12. Population of the 100 Largest Urban Places: 1890 (6k)
13. Population of the 100 Largest Urban Places: 1900 (6k) 14. Population of the 100 Largest Urban Places: 1910 (7k) 15.
Population of the 100 Largest Urban Places: 1920 (7k) 16. Population of the 100 Largest Urban Places: 1930 (7k
Query 215307:

Question: how did the missouri compromise affect massachusetts
Candidate Passage(s):
Passage 5241523 The Missouri Compromise of 1820 admitted Missouri as a slave state, and Maine as a free state, to keep
the balance of slave/non-slave states equal in Congress. It also established the 36-30 line, and said that slaveery would
not be allowed above that line except for in Missouri. So the Compromise set a bunch of rules about slavery, but the big
thing it did was it separated Maine from Massachusetts and allowed it to become a free state. Missouri was allowed to
become a slave state.
Passage 5241524 The Missouri Compromise of 1820 admitted Missouri as a slave state, and Maine as a free state, to keep
the balance of slave/non-slave states equal in Congress. It also established the 36-30 line, and said that slaveery would
not be allowed above that line except for in Missouri.he Missouri Compromise created the 36th parallel in the United
States, the Mason Dixon Line. The Mason Dixon line was an imaginary line that divided the North and South.

Table 3.4: Sample queries and passages in the non pre-processed MSMarco dataset, annotated answer passages are marked green ,

non-answer passages are marked red . overview inspired by [22]. Retrieval models are given a question and set of passages and have to
rank relevant passages above non-relevant passages in their result list. Figure inspired by [22].

Filtering & Pre-processing
For each question, Nguyen et al. [92] have by now made a set of 1000 associated passages available (a shuffled
version of the top 1000 passages obtained through running a standard BM25 on the complete MSMarco doc-
ument collection). Since such data was not properly available before the start of our experiments (only a top
1000 for the dev set was made available), and the authors encourage the use your own top-k retrieval model
to obtain a set of passages associated to a question13, we have not used these published sets of passages. In-
stead, we have run a standard QL as was done in [59, 60]14, and obtain a top 50 of passages per question. As
will be explained in Section 4.1.2, we obtain 50 rather than 1000 passages per question to avoid experimental
issues. We furthermore do not maintain the original train/dev/test split, since we do not have answer labels
for the test split. Although these labels are not needed for obtaining diagnostic datasets, we here need them
to be able to obtain retrieval effectiveness of models, which we will compare with their axiomatic scores. We
extract our own test set from the training set (and remove it from the training set), hence we only employ
queries in the train and dev set of the original dataset in this thesis.

For this corpus we have also identified and handled various issues (most of them resulting from our top-k
retrieval approach):

10See https://www.bing.com.
11No further details have been made available on how this was specifically done.
12See https://trec.nist.gov/pubs/call2019.html.
13See https://github.com/dfcf93/MSMARCO/issues/21.
14Although BM25 has been more widely adopted in top-k retrieval, we here follow [59, 60] and employ QL, which is also the default

model in the employed Indri toolkit and fulfills more of the original axioms than BM25.

https://www.bing.com
https://trec.nist.gov/pubs/call2019.html
https://github.com/dfcf93/MSMARCO/issues/21
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• More than one-third of the questions (38.61 %) did not have any passage that was annotated as relevant
in the document collection and hence, these questions have been removed;

• In case QL did not return any of the annotated answer passages for a question in its top 50 of passages
for that question, we added this passage to the 50 retrieved passages;

• Our QL ranking did not return a ranking for 3 questions, for which no query term was present in any
document in the corpus.15 We have removed these three questions from our dataset;

• For another 25 questions, our QL pre-ranker returned less than 50 documents (min. 7, max. 47, average
21.6), all of these concerned two-term queries of which more than half concerned first- and surnames
of persons. We have kept such questions in our dataset (as was also done by [101] for different datasets);

• 333 out of the nearly 9 million documents are duplicated versions of other documents in the collection
(e.g. the document with docid 1017066 is equal to the document with docid 496964 appended to itself
and is hence twice as long as the document with docid 496964), we keep such documents in our corpus.

Creation & Characteristics
The MSMarco dataset provides us with 558,517 queries that were posed by Bing users—each containing 5.99
words on average (minimum 1, maximum 40)16. Passages in the set of 8.8 million contain 63.05 words on
average (minimum 2, maximum 289)17.

All relevance judgments come from human judges that, for each query, have only annotated the top 10
passages as retrieved by the Bing stack. Hence, other documents among the 8.8 million passages can also
be relevant, i.e. the dataset may very well contain false negatives, albeit is said to have no false positives. On
average we have 1.06 answers per question.

EvaluationMetrics
The creators of the MSMarco dataset have held out the test set to evaluate models for which they maintain a
leaderboard18. Since this leaderboard for the passage re-ranking task is based upon the the mean reciprocal
rank (MRR) metric, we also use it in our work to report retrieval effectiveness. To obtain more knowledge
on differences in models’ retrieval effectiveness we also employ MAP and P@k. As stated before, in terms of
axiomatic performance, we report the fraction of diagnostic instances each model satisfies per axiom.

3.4.3. Comparison
A side-by-side overview of the characteristics of both the WikiPassageQA and the MSMarco dataset is dis-
played in Table 3.5. Following [22], the displayed statistics are defined on a per-question basis, e.g. we have
taken the sum of all candidate passages per question to obtain the total amount of candidate passages.

As can be seen in the table, the characteristics of the WikiPassageQA dataset are similar to the character-
istics of the MSMarco (albeit, about two orders of magnitude smaller in the absolute values). However, strong
differences arise in the length of questions, answers and documents. The average length of a question or an
answer or non-answer passage is nearly twice as long and the average length of an answer passage is nearly
thrice as long in WikiPassageQA compared to MSMarco. Additionally, we can find for both datasets that the
average length of a (answer or non-answer) passage differs from the average length of an answer passage
(See Fig. 3.4). Considering WikiPassageQA, we note that the difference in the average length of all passages
(135.46) compared to the average length of answer passages (146.87) can relate to the fact that the answer
passages are hardly ever the last passage in a Wikipedia document (See Fig. 3.5) which are the only passages
that can contain less than six sentences due to how the dataset was created as discussed in Section 3.4.2.

15Specifically, (before and) after pre-processing, they read “tootlesdefinit(ion)” (qid 522517), “hopefullymeaning” (qid 205266) and
“standingdefinit(ion)” (qid 502557).

16The one-term queries were discussed in the previous paragraph, the queries that contain 40 terms are “the average concentration
of a chemical in the air to which a worker can be exposed over a particular period of time (usually eight hours) if referred to as a”
(qid 514265) and “’which canadian province has a strong french identity and takes a leading role in developing a new global french
technical language? a. ontario b. new brunswick c. manitoba d. quebec” (qid 1006451).

17The two shortest documents contain many special characters from languages with a different alphabet (respectively Bulgarian and
Malayalam) that have been removed in our pre-processing (pid 5465355, 8550000), the longest document contains the lyrics and a
URL to the video of the song “What do you mean” by Justin Bieber (pid 1814137).

18See http://www.msmarco.org/leaders.aspx.

http://www.msmarco.org/leaders.aspx
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Collection WikiPassageQA MSMarco
Questions 4,154 558,514
CandidateP 243,489 28,209,143
PosCandidateP 6,947 592,031
NegCandidateP 236,542 27,617,112
PositiveP/CandidateP 0.03 0.02
CandidateP/Query 58.62 50.51
PosCandidateP/Query 1.67 1.06
AvgLenOfQuestion 9.52 5.99
AvgLenOfAnswerP 146.87 59.47
AvgLenOfP 135.46 79.17

Table 3.5: Collection statistics for our pre-processed versions of the WikiPassageQA and MSMarco datasets. “P” in the first column
denotes “Passages”. Statistics refer to numbers on a per-question basis (e.g. the CandidateP contains duplicates as we sum all candidate

passages per question which may be about the same Wikipedia document), overview inspired by [22].

(a) Distribution of document length in non-answer
passages (left) and answer passages (right) in the

WikiPassageQA dataset.

(b) Distribution of document length in non-answer
passages (left) and answer passages (right) in the MSMarco

dataset.

Figure 3.4: Distribution of document length in non-answer passages and answer passages in WikiPassageQA and MSMarco.

Figure 3.5: Amount of answers (y-axis) per relative position of answer passages (x-axis) among Wikipedia pages split into passages of six
sentences: 0-0.10 means the passage was among the first 10% of passages in the document, 0.9-1.0 means the passage was among the

last 10% of passages in the document.
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3.5. Diagnostic Datasets
In this section we elaborate upon the obtained diagnostic datasets after employing our diagnostic dataset
creation pipeline (Figure 3.3) on the passage re-ranking datasets WikiPassageQA [22] and MSMarco [92]. We
first show that an axiom conversion was indeed needed to obtain diagnostic datasets across the employed
corpora (Section 3.5.1) and then discuss characteristics of the diagnostic datasetswe use in the remainder of
this work—specifically the dataset size (3.5.2) and presence of answers (3.5.3).

3.5.1. Are axiom extensions and relaxations necessary for obtaining diagnostic datasets?
For each of the included axioms, we validate that a conversion is indeed required to obtain diagnostic in-
stances across the employed datasets. Considering the original axioms, none of the instances in the WikiPas-
sageQA and only some instances in the MSMarco dataset fulfill their conditions, as can be seen in Table 3.8.

Since WikiPassageQA contains no single-term or two-term queries, we can not find any diagnostic in-
stances for TFC1, TFC2 and M-TDC. Since the dataset also does not contain appended versions of documents
also contained in the collection, we can also not find any diagnostic instances for LNC2.

On the other hand, the MSMarco dataset— that is more than two orders of magnitude larger in questions
and documents—contains at least one diagnostic instance for three out of the four axioms. However, for TFC1
and TFC2 we can only find a few diagnostic instances, due to the very small amount of one-term queries
(3 in the whole dataset) and differences in the length of documents (on average 25.17% of the documents
associated with a question are of equal length) in the corpus. For the M-TDC axiom we can however obtain
thousands of instances of a query and associated documents. This can partially be explained by the fact that
MSMarco contains 1,602 two-term queries.

TFC1 TFC2 M-TDC LNC2

WikiPassageQA 0 / 19,044,804 0 / 1,811,123,580 0 / 19,044,804 0 / 19,044,804

MSMarco 32 / 1,396,767,220 1 / 67,773,222,252 7,232 / 1,396,767,220 0 / 1,396,767,220

Table 3.6: Number of instances in the WikiPassageQA and MSMarco corpora that fulfill all conditions per axiom (TFC1, TFC2, M-TDC,
LNC2). To put these numbers in perspective, we report the fraction of instances—consisting of a query q and a set of documents d1, d2(,

d3 in case of TFC2)—that fulfill all conditions over the total amount of instances (a q with any of such a set of two or three associated
documents) present in the pre-processed corpora.

However, one may still question the need for the introduced relaxations that go beyond document length
relaxation (subsequent to extension). We incorporated those, as document length relaxation alone was gen-
erally insufficient to obtain more than a few diagnostic instances as displayed in Table 3.7. For example, for
TFC1 (after extension and only document length relaxation), we only found six instances that could be ex-
tracted from WikiPassageQA. This may be explained by the fact that the axiom requires d i to contain every
query term at least once. Similarly, for TFC2, we could only extract 41 instances from MSMarco, which may be
due to the precise difference in count for each query term among document triplets as constrained by TFC2.
Moreover, the large amount (> 21M) of diagnostic instances we can obtain for M-TDC from MSMarco is mis-
leading since all of these instances (minus the 7K we already obtained as displayed in Table 3.8) consider two
documents that contain an equal count for each query term and hence do not allow us to diagnose whether
a model adheres to M-TDC (as discussed in Section 3.3.4). Furthermore, note that despite the fact that there
exist hundreds of documents that are duplicates of each other in MSMarco (as discussed in Section 3.4.2),
we can only obtain one instance that fulfills the conditions of extended version of LNC2 (i.e. a document for
which a duplicate exists, while both contain every query term at least once). Concluding, we can only obtain
a large amount of instances for the TFC1 axiom after extension and document relaxation.

TFC1 TFC2 M-TDC LNC2

WikiPassageQA 6 / 19,044,804 0 / 1,811,123,580 1 / 19,044,804 0 / 19,044,804

MSMarco 2,245,323 / 1,396,767,220 41 / 67,773,222,252 21,625,566 / 1,396,767,220 1 / 1,396,767,220

Table 3.7: Number of instances in the WikiPassageQA and MSMarco corpora that fulfill all conditions per axiom (TFC1, TFC2, M-TDC,
LNC2) after extending the axiom and applying document length relaxation. Similar as before, we report the fraction of instances that

fulfill all conditions over the total amount of instances present in the pre-processed corpora.

On a more general level, we conclude that axiom conversions are indeed required to 1) obtain a sufficient
amount of diagnostic instances across axioms and datasets and 2) allow to widen the scope of axiomatic
analyses to include a range of queries (i.e. not only one- or two-term queries).
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3.5.2. How does the size of diagnostic datasets differ across axioms and corpora?
Respectively in Table 3.8 and Table 3.9 we present the number of diagnostic instances we have obtained
for the WikiPassageQA and MSMarco datasets per extended, relaxed axiom, following the methodology de-
scribed in Section 3.2.

Let us first consider the three axioms (TFC1, TFC2 and M-TDC) based on data extraction. Depending on the
axiom, we have extracted between 42K (M-TDC) and 3.5M (TFC1) instances for WikiPassageQA and between
25K (TFC2) and 152M (TFC1) instances for MSMarco. From the MSMarco dataset—that is two orders of magni-
tude larger in questions and documents—we have extracted diagnostic datasets that are roughly two orders
of magnitude larger, except for TFC2. From the large difference in diagnostic instances extracted for TFC2
from WikiPassageQA (1M) and MSMarco (2.6K), it becomes clear that the amount of diagnostic instances
that can be extracted from different corpora for one axiom can differ significantly. They also significantly
differ per axiom, as across the datasets we obtain a large amount (millions) of diagnostic instances for TFC1,
whereas for TFC2 we obtain a large amount (over a million) diagnostic instances from WikiPassageQA but a
very small amount (a few thousand) diagnostic instances from MSMarco.

Let us now consider LNC2, whose instances are not extracted from the corpus, but instead were generated
based on the original corpus. We created instances with k = 2,3,4 times the original content and maintain the
original labels (e.g. a passage that was labeled relevant in its original form is labeled relevant in its artificial
form as well, as supported by the LNC2 axiom). We only considered passages up to 240 words in eventual
length (in both corpora), due to experimental constraints19, leading to a total of 100K instances for the two
variants of LNC2 in WikiPassageQA and 50M in MSMarco. The reason for this difference (that is larger than the
two order of magnitude difference in the amount of questions in both datasets) lies in the fact that MSMarco
contains relatively more documents that are shorter than 240 words (recall Fig. 3.4).

Finally, we note that there is no overlap between the obtained diagnostic instances for our TFC1, TFC2,
M-TDC and LNC2 axioms due to how the axioms are defined: similar as for the original axioms TFC1, TFC2,
M-TDC and LNC2, there is no instance of a query and documents so that the conditions of multiple axioms
hold.

TFC1 TFC2 M-TDC LNC2

Parameters k = {2,3,4}, doc_lenmax = 240

Train 2,758,223 837,838 32,830 82,785
Dev 376,902 50,772 3,837 10,485
Test 353,621 183,898 4,391 10,074

Total 3,488,746 1,072,508 41,058 103,344

Table 3.8: Number of instances per axiom (TFC1, TFC2, M-TDC, LNC2) per split (train/dev/test) in the WikiPassageQA corpus.

TFC1 TFC2 M-TDC LNC2

Parameters k = {2,3,4}, doc_lenmax = 240

Train 120,900,840 20,204 3,512,195 40,021,304
Dev 15,525,229 3,013 455,276 5,149,832
Test 15,078,668 2,530 437,225 4,971,208

Total 151,504,737 25,747 4,404,696 50,142,344

Table 3.9: Number of instances per axiom (TFC1, TFC2, M-TDC, LNC2) per split (train/dev/test) in the MSMarco corpus.

19Concretely, when using the MatchZoo toolkit for our neural models we ran into issues when the maximum document length was set
to include longer passages, see also https://github.com/faneshion/MatchZoo/issues/264.

https://github.com/faneshion/MatchZoo/issues/264
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3.5.3. To what extent do axioms rank relevant documents above non-relevant documents?
Axioms typically prescribe that a certain document di should have an RSV larger than (or equal to) the RSV
of another document d j (for the axioms considered in this work, only TFC2 does not follow this typical form).
In Section 2.5 it was introduced that, according to the axiomatic thinking approach to IR, a model that fulfills
more axioms tends to achieve a higher retrieval effectiveness. Hence, given these two statements, we would
intuitively expect that documents di would more often happen to be relevant than documents d j . However,
whether or not this holds for a diagnostic instance may differ per dataset. For example, consider a dataset
that comprises of queries with many verbose query terms. In that case, the TFC1 axiom—that prescribes that
a document that has a larger absolute total count of query terms than another document should have a larger
RSV—may very well prescribe to rank a non-relevant document (that contains more of verbose query terms)
above a relevant document (that contains less of verbose query terms). Instead, the M-TDC axiom—that pre-
scribes that a model should account for how popular a term is in the corpus—may in that case very well
more often rank a relevant document (that contains many non-verbose query terms) above a non-relevant
document (that contains just as much verbose query terms) than the other way around.

Note that in this example, we only consider the cases where only one document (di or d j ) is relevant.
However, axiomatic instances can actually consist of four different type of pairs of documents:

• two relevant documents di ,d j ;

• a relevant document di and a non-relevant document d j ;

• a non-relevant document di and a relevant document d j ;

• two non-relevant documents di ,d j ;

Hence, due to the small amount of relevant documents (3% of the candidate passages in WikiPassageQA
and 2% of the candidate passages in MSMarco), we can expect that a large amount of the diagnostic instances
considers pairs of two non-relevant passages and a very small amount considers two relevant passages.

In Table 3.10 and Table 3.11, we display how often each combination of pairs of di and d j is found among
the obtained diagnostic instances for respectively the WikiPassageQA and MSMarco dataset. With di Â d j ,
we denote that di should be ranked higher than d j (which evidently holds if di should receive a higher score
than d j ). With di º d j we denote that di should not be ranked lower than d j .

Let us first discuss WikiPassageQA. From these numbers, we can conclude that the sheer amount of
diagnostic instances indeed considers two non-relevant passages, as expected. We furthermore can obtain
that for both the TFC1 and M-TDC axiom, the instances more often consider a relevant passage di and a non-
relevant passage d j than the other way around (3.19% vs 0.44% in TFC1 and 1.21% versus 0.85% in M-TDC).
We also see that for TFC1 the difference between both type of pairs di ,d j is more than a factor seven, whereas
for M-TDC the difference is less than a factor 2. From this, we may hypothesize that the diagnostic instances
for the TFC1 axiom would be a better indicator of retrieval effectiveness than the diagnostic instances for
M-TDC (for WikiPassageQA). Under that hypothesis, a model that has a better axiomatic performance on
TFC1 more likely to have a better retrieval effectiveness for WikiPassageQA than a model that has a better
axiomatic performance on M-TDC. We will further discuss this hypothesis in Section 4.2.1.

Now let us discuss the obtained numbers for MSMarco. We again find that the sheer amount of diagnostic
instances indeed considers two non-relevant passages. However, we obtain that a significant larger part of the
LNC2 instances consider two relevant documents di ,d j (7.16%) compared to WikiPassageQA (1.58%). This
can be explained by the fact that MSMarco contains relatively more answer passages than non-answer pas-
sages that are shorter than the adopted maximum length of 240 words compared to WikiPassageQA(recall
Fig. 3.4). Moreover, for TFC1 and TFC2 we obtain very different results compared to WikiPassageQA. For
MSMarco, for both TFC1 and TFC2 we can find more instances that consider a non-relevant document di and
a relevant document d j than the other way around. From this, we may hypothesize that both axioms may
not give be good indicators of retrieval performance. We will further research this hypothesis in Section 4.2.2.

Furthermore, in addition to an explanation for the experienced retrieval effectiveness, these numbers
may provide us with directions on how we can improve the performance of a model. For instance, we may
hypothesize that improving the performance of a model on TFC1 in the WikiPassageQA dataset is more likely
to have a positive effect than fixing M-TDC. We will further research this in Chapter 4.4.
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di Â d j TFC1 M-TDC LNC2
relevant Â relevant 803 0.02% 6 0.01% 1,685 1,58%
relevant Â non-relevant 111,372 3.19% 526 1.25% 0 0.00%
non-relevant Â relevant 15,336 0.44% 374 0.89% 0 0.00%
non-relevant Â non-relevant 3,362,038 96.37% 41,058 97.84% 104,957 98.42%
total 3,488,746 100.00% 41,964 100.00% 106,642 100.00%

Table 3.10: Presence of relationships as prescribed per axiom for the diagnostic datasetsobtained from the WikiPassageQA dataset.
Percentages have been rounded to two decimals. Note that for M-TDC, Â should be replaced with º.

di Â d j TFC1 M-TDC LNC2
relevant Â relevant 15,557 0.01% 602 0.01% 1,442,332 7.16%
relevant Â non-relevant 2,880,652 1.90% 58,648 1.33% 0 0%
non-relevant Â relevant 5,348,529 3.53% 99,825 2.27% 0 0%
non-relevant Â non-relevant 143,259,999 94.56% 4,245,621 96.39% 18,700,012 92.84%
total 151,504,737 100.00% 4,404,696 100.00% 20,142,2344 100.00%

Table 3.11: Presence of relationships as prescribed per axiom for the diagnostic datasets obtained from the MSMarco dataset.
Percentages have been rounded to two decimals. Note that for M-TDC, Â should be replaced with º.





4
Diagnosing Neural IR Models

In this chapter we elaborate upon how we have used the previously created diagnostic datasets for diagnosing
neural IR models. We discuss the experimental setup that was adopted in this work in Section 4.1, followed
by the results of the conducted diagnostic experiments in Section 4.2. Finally, we research the impact of
document length differences within diagnostic instances in Section 4.3 and briefly research a methodology
aimed at fixing neural IR models in Section 4.4.

4.1. Experimental Setup
We have diagnosed 3 traditional and 6 neural IR models with 9 diagnostic datasets for 4 axioms obtained
from 2 original datasets following the methodology discussed in Chapter 3. In Section 4.1.1, we first provide
an overview of our methodology of diagnosing retrieval models. Then, in Section 4.1.2, we discuss the models
we have selected to diagnose in our experiments and to what extent we have tuned their parameters. Finally,
in Section 4.1.3, we discuss the sanity checks we executed to validate the proper functioning of the employed
models on benchmarks.

4.1.1. Methodology
An overview of how we obtain the axiomatic performance and retrieval effectiveness of models is depicted as
a pipeline in Fig. 4.1, which is further explained in this section. After pre-processing the queries and docu-
ments in an original dataset, like WikiPassageQA and MSMarco, we feed instances of a query and associated
documents to (trained Neural) IR models for scoring. Each model then outputs a list of ranked documents for
each query. We can evaluate the output of a model based upon the ranked documents and relevance labels
per query, resulting in a measure of retrieval effectiveness. Next to this evaluation, we also conduct a diagno-
sis of a model based upon the ranked documents per query and diagnostic instances for that query, resulting
in a measure of axiomatic performance.

Figure 4.1: Overview of using a diagnostic dataset to diagnose IR models: given a pre-processed dataset (including artificial data, in our
case required for LNC2) and a diagnostic dataset, we can obtain the axiomatic performance and retrieval effectiveness of a model 1.

1For completeness, we note that we have not modelled model-specific components such as pseudo-relevance feedback and query ex-
pansion (employed in RM3) and matching histograms (employed in DRMM) in this figure.

43
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While the majority of this pipeline follows the traditional Cranfield methodology (introduced in Section
2.1.3), it differs in two parts. First of all, we introduce the component that employs diagnostic datasets to
obtain axiomatic performances (the “diagnose” part in the top right in Fig. 4.1), whereas the Cranfield-style
experiments only consider evaluation (the “evaluate” part in the bottom right in Fig. 4.1). Secondly, we some-
times enrich original datasets with artificial documents (bottom left in Fig. 4.1) so that we can obtain the
axiomatic performance for axioms for which there are little to no diagnostic instances, as discussed in Sec-
tion 3.5.1. We note that the evaluations on such artificial data require extra effort: regarding the neural models
we propose to enrich the input data with the artificial data and regarding the traditional models we propose
to rank artificial documents on a per-document basis. Both approaches are not displayed in the abstract
overview displayed in Fig. 4.1, but are further detailed in the next paragraph.

Diagnosis on artificial data
Neural models are trained on a split of a dataset, validated on another and subsequently tested on a final
split. To obtain decent performance on this test, the models typically need to be trained (and validated)
on instances that come from the same distribution as the test split. We therefore propose two strategies
for diagnosing neural models on artificial data: 1) we only add artificial data to the test split and 2) we add
artificial data to all splits.

Recall that the artificial datasets on which we diagnose neural models were added to the original datasets
because the original datasets did not have sufficient instances that fulfill the conditions of an axiom. Hence,
if we only add artificial documents to the test set (under the first strategy), this is likely to impact the per-
formance of neural models on this test set as the test split including artificial documents follows a different
distribution than the train and dev split that only include documents in the original corpus. Hence, it may be
more “fair” to also incorporate the artificial documents in the training and development splits of the dataset
(the second strategy). In our experiments we have researched the results of both strategies, to which we re-

spectively refer as AXIOMTest
and AXIOMAll

.

Traditional models maintain an index of documents in the document collection and utilize index-based
statistics to rank documents according to their retrieval formula. The addition of artificial documents to this
index impacts such statistics (such as document frequency), and can therefore impact the document ranking
returned by retrieval models. To minimize such potential impact, we propose to rank artificial documents on
a per-document basis: we first add one document to the corpus, then let a model rank all queries to which
this document is associated and after storing the resulting ranking, we remove the document from the index,
so that we once again obtain the original index.

For these models, we hence obtain the same result for AXIOMTest
as AXIOMAll

, since the traditional models
are now—unlike the neural models that are trained—not influenced by the presence or absence of artificial
documents in the train and dev split.
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4.1.2. Retrieval model selection and configuration
In the following, we subsequently introduce the traditional and neural IR models we have employed in this
work, we elaborate upon why they were included as well as their tuning process and adopted configura-
tions. Due to experimental issues that rise when running neural retrieval models on the whole MSMarco
dataset—containing over 500K queries and over 5 million documents after pre-processing as discussed in
Section 3.4.2)—we use a random2 10% subset of the questions in the MSMarco dataset in the experiments
discussed throughout this chapter. We have only kept the documents associated with these questions (i.e.
the documents that have been returned by our QL pre-ranker for these questions) in our corpus. We will
henceforth in this chapter refer to this subset when stating “MSMarco” unless explicitly stated otherwise.

Traditional IRmodels
For our experiments we employed the open-source search engine Indri, available with the Lemur toolkit3

[119]. Indri has been used by IR researchers for over a decade (e.g. [36, 109, 132] and neural IR papers such as
[3, 60, 87]) and is compatible with various operating systems. We included the widely adopted traditional re-
trieval baselines Okapi BM25 and query likelihood with Dirichlet smoothing, but also included the generally
stronger [75, 84, 100] RM3 model which encompasses a query expansion component.

We tuned the parameters of BM25, QL and RM3 on the combined train and development parts of
WikiPassageQA, optimizing for MAP, and on the train and development parts of MSMarco, optimizing for
MRR. An overview of the tested parameters can be found in Appendix A. The best-performing parameter
settings have been adopted in the experiments in this work and can be found in Table 4.1.

Model Parameter
Adopted value per dataset

WikiPassageQA MSMarco

BM25
k1 0.4 0.6
b 0.1 1.25

k3 1.0 1.0
QL µ 750.0 10.0

RM3

µ 750.0 10.0
f bDocs 5.0 20.0

f bTer ms 500.0 100.0
f bMu 3000.0 3000.0

f bOr i gW ei g ht 0.6 0.6

Table 4.1: Adopted values per parameter per traditional model employed in this work for the test splits of the WikiPassageQA and
MSMarco datasets after tuning on the train and dev splits.

As introduced, we adopted a per-document scoring scheme for diagnosing traditional models on the LNC2
axiom. This has resulted in large computational requirements, especially for obtaining the per-document
scores for the LNC2 axiom per traditional model on the MSMarco dataset (for which we have nearly 500K
appended versions of documents smaller than the limit of 240 words in the test split of the subset). Hence,
we have tested the traditional models on a random4 subset of 5% of the diagnostic instances in the test split of
MSMarco, i.e. 0.5% of the original MSMarco dataset. We hence consider 24,583 diagnostic instances obtained
from 277 questions and their associated 12,420 documents.

2We employ random.seed(2018).
3See https://www.lemurproject.org/indri.php, we have employed Indri 5.13.
4Since we have obtained a large amount of diagnostic instances for LNC2 for nearly all questions in MSMarco we do not need to consider

a specific subset to maintain sufficient diagnostic instances and hence take a random subset, see also 2.

https://www.lemurproject.org/indri.php
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Neural IRmodels
For our neural models, we employed the MatchZoo neural retrieval toolkit5 [38]. The toolkit consists of more
than 10 (representation-based, interaction-based and hybrid) neural model implementations and has been
employed in a number of prior studies, including [15, 103, 135]6.

Initially, we considered all neural models implemented in MatchZoo; however, for a number of models we
observed a significant drop in retrieval effectiveness when compared with published benchmarks, as will be
further discussed in Section 4.1.3. We have therefore turned our attention to the 6 best-performing models,
most of which are interaction-based (in line with the findings reported in [93]). Since all models have been
detailed in Section 2.3.3, we here only provide a brief recap of each:

• Arc-I [58], a siamese network that separately summarizes the meaning of two sentences through one-
dimensional layers of convolution and pooling and finally matches them with an MLP;

• MatchPyramid [96], a symmetric, interaction-based model that employs convolutional neural net-
works in a two-dimensional manner, mimicking image recognition in its text matching;

• MV-LSTM [126], a symmetric, interaction-based model that generates an interaction matrix using a
bi-directional LSTM that aims to capture a representation of the context rather than separate words;

• Duet [87], a hybrid of an interaction-based and representation-based model: it combines two separate
deep nets, one aimed at semantic matching, and another aimed at positional matching;

• DRMM [48], an asymmetric, interaction-based model that employs a histogram representation and a
term gating network to determine the similarity between a query and a document;

• aNMM [133], an asymmetric, interaction-based model that employs a value-shared weighting scheme
and a question attention network.

MatchZoo contains architecture configurations7 that have been optimized for the WikiQA dataset [134],
an open-domain question answering dataset, similar in spirit to WikiPassageQA, though defined on the doc-
ument, not passage level. Since neural architecture search [143] is beyond the scope of this work, we main-
tained the default MatchZoo configurations, including random seeds8 as well as learning rates and optimizers
as optimized for the WikiQA dataset. More details on the configuration of the individual models can be found
in the configuration files9. Due to the computational requirements of neural model training, we limited the
maximum query length and passage length for both datasets. For WikiPassageQA we limit them to 20 and
240 terms respectively and for MSMarco we limit them to 30 and 289—these settings meant that in more than
99% of all instances per dataset the entire question and entire passage was considered. All neural models
were trained for 400 iterations.

As introduced, we adopted two strategies for diagnosis with regard to the LNC2 axiom: 1) we simply
tested a model trained on the regular corpus on our diagnostic dataset for LNC2 including artificial instances
(LNC2Test ) and 2) we trained a model on the regular corpus combined with artificial instances (maintaining a
training scheme of 400 iterations - hence these models have been trained on less instances from the regular
corpus) and tested it on our diagnostic dataset (LNC2All ).

5See https://github.com/NTMC-Community/MatchZoo, we have employed MatchZoo as obtained from commit e564565.
6At the time of writing the repository has over 2000 stars and nearly 600 forks.
7See https://github.com/faneshion/MatchZoo/tree/e564565/examples/wikiqa/config for the configurations (e.g. learning

rate, optimizer, layers) per model.
8MatchZoo employs random.seed(49999), numpy.random.seed(49999) and tensorflow.set_random_seed(49999).
9See https://github.com/NTMC-Community/MatchZoo/tree/e564565/examples/wikiqa/config.

https://github.com/NTMC-Community/MatchZoo
https://github.com/NTMC-Community/MatchZoo/tree/e564565
https://github.com/faneshion/MatchZoo/tree/e564565/examples/wikiqa/config
https://github.com/NTMC-Community/MatchZoo/tree/e564565/examples/wikiqa/config
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4.1.3. Sanity checks
We adopted sanity checks to validate whether the models we would like to employ in this research, work as
expected. We compare the results we obtain with traditional models (BM25 and QL10) and 11 neural models
with benchmark scores on 2 datasets (WikiQA and WikiPassageQA11). As a result of these sanity checks we
have filtered out 5 of the 11 neural models in the other experiments conducted in this thesis.

Validation of neural models on the WikiQA dataset
We have run 11 neural models in MatchZoo on the WikiQA dataset [134] for which all required code is pro-
vided in the MatchZoo repository. Table 4.2 displays the results as provided by [38] (left) and the results of
our run on MatchZoo (right). We obtain deviations ranging from 0.0021 to 0.3448 per metric. These devia-
tions may for example originate from a difference in the use of different hardware and threading (and their
interactions) [26]. However, we consider the scores that deviate more than 0.1 from the reported benchmark
values to be indicators that the models may not work properly. Accordingly, we consider scores that deviate
less than 0.1 to be well within expected differences and indicators that the models are working properly.

Validation of BM25 andQL on the WikiPassageQA dataset
We have run 2 traditional retrieval models (BM25 and QL) in Indri on the WikiPassageQA dataset [22], pre-
processed as discussed in Section 3.4.1. Table 4.3 displays the reported retrieval effectiveness in the bench-
mark (upper rows) and the retrieval effectiveness we achieved with our BM25 and QL (lower rows). We can
see minor deviations ranging from 0.0004 up to 0.0368 in BM25 and from 0.0025 up to 0.0192 in QL across the
four metrics. These differences may be the result of different pre-processing (e.g. we have not removed any
stop words). All in all, we conclude that the traditional IR models perform as expected.

Validation of neural models on the WikiPassageQA dataset
We have run 11 neural models in MatchZoo on the WikiPassageQA dataset [22], pre-processed as discussed
in Section 3.4.1. Table 4.4 displays the reported retrieval effectiveness in the benchmark (which includes
different models) and the retrieval effectiveness of our employed neural models. As in [22], only a few neural
models outperform the baselines (presented in Table 4.3). Moreover, we can find that the interaction-based
models (with the exception of ARC-II) outperform the representation-based models.

For a number of models (especially the representation-based models such as CDSSM) we observe a sig-
nificant drop in retrieval effectiveness in the WikiPassageQA dataset compared to WikiQA. This lack of model
robustness to the corpus is a well-known problem for neural models. Due to both their large deviation
from the benchmark (as obtained in the validation of neural models on the WikiQA dataset and their low-
performance across two datasets (WikiQA and WikiPassageQA), we exclude the K-NRM, CDSSM and ARC-II
models in the remainder of our research. We however keep the ARC-I, MV-LSTM and Duet models that per-
form well below (i.e. lower than 0.25 in MAP) other neural models in the benchmark (that score higher than
0.33 in MAP) and the adopted baselines (that score higher than 0.53 in MAP) as they did achieve reasonable
performance on the WikiQA dataset with a small deviation from the provided benchmark.

10We do not include the RM3 retrieval model which we employ in this work in these sanity checks as we have not found reported retrieval
effectiveness of this model on any of the employed datasets.

11For the MSMarco dataset there are only leaderboard scores available which were obtained with an held-out test set and under different
experimental setups compared to our setup (e.g. answer passages are not added to the candidate documents if they are missing in the
benchmark). Hence, we do not report a side by side comparison of the scores of our neural and traditional retrieval models and the
reported values in the leaderboard.
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Benchmark MatchZoo
nDCG@5 MAP nDCG@5 (deviation) MAP (deviation)

ARC-I 0.6317 0.5870 0.6356 (+0.0039) 0.5849 (+0.0021)
DSSM 0.6134 0.5647 0.6088 (−0.0046) 0.5681 (+0.0034)

MatchPyramid 0.6913 0.6434 0.6816 (−0.0097) 0.6404 (−0.0030)
DUET 0.6722 0.6301 0.6609 (+0.0113) 0.6236 (−0.0065)

MV-LSTM 0.6452 0.5988 0.6593 (−0.0141) 0.6217 (+0.0229)
DRMM-TKS 0.6956 0.6586 0.6801 (−0.0155) 0.6364 (−0.0222)

aNMM 0.6696 0.6297 0.6435 (−0.0261) 0.6063 (−0.0234)
DRMM 0.6621 0.6195 0.6103 (−0.0518) 0.6498 (+0.0510)
K-NRM 0.6693 0.6256 0.5341 (−0.1352) 0.4929 (−0.1327)
CDSSM 0.6084 0.5593 0.4398 (−0.1686) 0.4045 (−0.1548)

ARC-II 0.6176 0.5845 0.2728 (−0.3448) 0.2628 (−0.3217)

Table 4.2: Reproduction of the benchmark on the WikiQA dataset provided by [38] (left) with our run of MatchZoo (right) sorted on their
difference on both metrics (deviation) which is considerably large (>0.1) for K-NRM, CDSSM and Arc-II.

MAP (deviation) MRR (deviation) P@5 (deviation) P@10 (deviation)

Benchmark
BM25 0.5373 0.6258 0.1947 0.1151
QL 0.5436 0.6338 0.1947 0.1151

Indri
BM25 0.5199 (−0.0174) 0.5983 (−0.0275) 0.1821 (−0.0126) 0.1155 (+0.0004)
QL 0.5355 (−0.0081) 0.6209 (−0.0129) 0.1913 (−0.0034) 0.1176 (+0.0025)

nDCG (deviation) Rec.@5 (deviation) Rec.@10 (deviation) Rec.@20 (deviation)

Benchmark
BM25 0.6659 0.6334 0.7311 0.8309
QL 0.6715 0.6353 0.7275 0.8426

Indri
BM25 0.6513 (−0.0146) 0.5966 (−0.0368) 0.7343 (+0.0032) 0.8262 (−0.0047)
QL 0.6653 (−0.0062) 0.6227 (−0.0126) 0.7467 (+0.0192) 0.8396 (−0.0030)

Table 4.3: Reproduction of the benchmark on the WikiPassageQA dataset as provided by [22] (upper rows) with our run in Indri
(lower rows) per metric. We consider these deviations (<0.04) to be small.

MAP MRR P@5 P@10 nDCG Recall@5 Recall@10 Recall@20

B
en

ch
m

ar
k LSTM 0.3352 0.3947 0.1197 0.0780 0.4912 0.3915 0.5894 0.7169

CNN+TF 0.4009 0.4581 0.1572 0.1099 0.5577 0.5212 0.7024 0.8412
LSTM-CNN+TF 0.3577 0.4156 0.1351 0.0942 0.5196 0.4538 0.6187 0.7608

C+WCNN-LSTM 0.4385 0.5534 0.1728 0.1104 0.5837 0.5709 0.6931 0.8326
M-CNN-LSTM+TF 0.5608 0.6792 0.2083 0.1228 0.6791 0.6522 0.7329 0.8592

Ma
tc

hZ
oo

CDSSM 0.1801 0.2088 0.0633 0.0546 0.3642 0.2137 0.3524 0.5635
ARC-I 0.1950 0.2226 0.0739 0.0621 0.3800 0.2533 0.4099 0.6378

ARC-II 0.1986 0.2239 0.0700 0.063 0.3828 0.2424 0.4288 0.6529
K-NRM 0.2255 0.2661 0.0918 0.0742 0.4103 0.3040 0.4776 0.6813

MV-LSTM 0.2337 0.2678 0.0903 0.0790 0.4171 0.3090 0.5085 0.7496
Duet 0.2472 0.2877 0.0971 0.0780 0.4277 0.3219 0.4981 0.7039

MatchPyramid 0.4388 0.5088 0.1807 0.1147 0.5908 0.5917 0.7233 0.8539
DRMM-TKS 0.5398 0.6183 0.1966 0.1229 0.6697 0.6484 0.7779 0.8657

DRMM 0.5597 0.6393 0.2024 0.1213 0.6841 0.6554 0.7674 0.8642
aNMM 0.5734 0.6579 0.2087 0.1263 0.6974 0.6781 0.7963 0.8857

Table 4.4: Comparison of deep nets adopted in the WikiPassageQA benchmark as provided by [22] (top) and the deep nets we ran in
MatchZoo (bottom). In both sets only few models outperform the baselines (presented in Table 4.3) as represented by the dashed line.
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4.2. Results
In this section we will discuss the results of our experiments. In Section 4.2.1 we discuss the results of our
experiments on WikiPassageQA, followed by the results of our experiments on MSMarco in Section 4.2.2. All
measures of retrieval effectiveness have been obtained using trec_eval12. Moreover, all statistical signifi-
cance measurements on retrieval effectiveness have been conducted with the Wilcoxon test while discarding
all values in which there is no difference between two samples13, whereas significance measurements on
axiomatic performance have been conducted with the McNemar test14.

4.2.1. Diagnostic experiments on WikiPassageQA
Table 4.6 displays both the retrieval effectiveness measured on the original corpora, as well as the axiomatic
performance measured on our diagnostic datasets for WikiPassageQA. An overview with more detailed num-
bers can be found in Appendix B.1.1.

Retrieval effectiveness Performance per axiom
MAP MRR P@5 TFC1 TFC2 M-TDC LNC2Test LNC2All

Random 0.50 0.50 0.50 0.50
1 BM25 0.524,5,6,7 0.604,5,6,7 0.184,5,6 0.73 0.98 1.00 0.80 0.80
2 RM3 0.531,4,5,6,7 0.621,4,5,6,7 0.191,4,5,6 0.88 0.63 0.94 0.72 0.72
3 QL 0.541,4,5,6,7 0.621,4,5,6,7 0.191,4,5,6 0.87 0.63 0.94 0.68 0.68

4 Arc-I 0.20 0.22 0.07 0.68 0.55 0.50 0.13 0.39
5 MV-LSTM 0.234 0.274 0.094 0.68 0.56 0.51 0.16 0.71
6 Duet 0.254 0.294 0.104 0.69 0.56 0.48 0.19 0.47
7 MatchP. 0.444,5,6 0.514,5,6 0.184,5,6 0.79 0.58 0.63 0.00 0.19
8 DRMM 0.561,2,4,5,6 0.641,2,3,4,5,6 0.201,2,3,4,5,6 0.84 0.60 0.76 0.05 0.12
9 aNMM 0.571,2,3,4,5,6,7 0.661,2,3,4,5,6,7 0.211,2,3,4,5,6,7 0.85 0.56 0.69 0.38 0.47

Best in [22] 0.56 0.68 0.21 ? ? ? ? ?

Table 4.5: Overview of models’ retrieval effectiveness and fraction of fulfilled axiom instances. For measuring statistical significance, we
employed the Wilcoxon test and McNemar test with p < 0.05 on respectively measures for retrieval effectiveness and axiomatic

performance (regarding the latter all scores are significantly different in TFC1, all excluding RM3 and QL as well as ARC-I and MV-LSTM
in M-TDC and all excluding MV-LSTM and aNMM in TFC2).

Retrieval effectiveness
Let us first consider the retrieval effectiveness of our models. As found in several prior studies [48, 97, 99],
and as already indicated in [22] with regard to the WikiPassageQA dataset, neural models struggle to outper-
form traditional retrieval baselines that contain just a handful of hyper-parameters. Only DRMM and aNMM
are able to significantly outperform the traditional models, with an increase in MAP from 0.54 (QL) to 0.55
(DRMM) and 0.57 (aNMM) respectively. These results are not unexpected, as DRMM is considered to be one
of the most competitive neural IR models to date [95], and DRMM and aNMM are similar in the sense that
they both employ a specific component to valuate the importance of query terms. Furthermore, similar to
[99] we find that DRMM outperforms MatchPyramid, and similar to [60] we observe that MatchPyramid in
turn outperforms Duet. Moreover, similar to [126] we find that MV-LSTM outperforms ARC-I and similar
to [97, 98] we find that ARC-I shows inferior performance to all other neural and non-neural models under
study. Regarding the baselines, we however find that the typically stronger RM3 baseline [100] that employs
relevance feedback does not outperform the QL model (although their difference is not significant). One rea-
son for this may be query drift, i.e. a change in the underlying “intent” between the original query and its
expanded form [142]15.

12See https://trec.nist.gov/trec_eval/, we employed version 8.1.
13We have used scipy.stats.wilcoxon.
14We have used statsmodels.stats.contingency_tables.mcnemar.
15For completeness we note that the RM3 model (MAP=0.5455) does outperform the QL model (MAP=0.5432) on the training and devel-

opment set under the obtained tuned parameter settings, although not significantly.

https://trec.nist.gov/trec_eval/
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Axiomatic performance
Moving on to the axiomatic performance of our models, we find all non-neural models to satisfy the prece-
dence constraints of the vast majority of instances across all four axioms: BM25, RM3 and QL satisfy more
than 90% of the M-TDC instances and more than 70% of the TFC1 instances. The largest difference in percent-
age of satisfied axiomatic instances can be found in TFC2 (BM25 satisfies 98% of instances, QL only 63%),
which can explained by the fact that QL with Dirichlet smoothing employs a document length dependent
smoothing component (i.e. longer documents receive less smoothing). Overall, the results are in line with
our expectations: as QL and BM25 (sometimes conditionally) satisfy all axioms according to their analytical
analyses [42, 43] they should satisfy a large percentage of our extended and relaxed axiomatic instances as
well. However, these numbers do not reflect the (un)conditional fulfillment of BM25 and QL per original ax-
iom on a one-to-one basis, for which at least a partial explanation is our relaxation of the document length
difference δ, as will further researched in Section 4.3.1.

When we consider the axiomatic scores of our evaluated neural models we observe a clear gap: while
for TFC1 (i.e., documents with more query terms should have higher retrieval scores) between 69-85% in-
stances are satisfied, for TFC2 (i.e., the increase in retrieval score becomes smaller as the absolute term count
increases) and M-TDC (i.e., documents with more occurrences of rare query terms are favoured) this drops
to at most 76%. We can furthermore find that DRMM and aNMM outperform the other neural models by a
margin for the TFC1 and especially the M-TDC axiom. Comparing their architectures to the other neural mod-
els we study here, we can find that they represent query terms in a more separate manner throughout their
architecture (i.e. through separate histogram mappings per query term and separate value-shared weights
per query term respectively), which may enable models to better match and aggregate scores from individual
query terms (i.e. perform better at TFC1). Moreover, both models employ a specific component to valuate
the importance of query terms (a term-gating network and a question attention network resp.), which may
have resulted in a better performance on M-TDC. Moving on to the LNC2 axiom, we find that only aNMM is
able to learn the underlying pattern to some degree (38% of satisfied instances) without observing instances
of duplicated documents in training (LNC2Test); the remaining neural models correctly rank between 0 and
19% of instances. Once we include the diagnostic dataset instances in the training regime (LNC2All) all mod-
els have learned to some degree that duplicated document content should not be penalized, but still, none
of the models is able to satisfy even half of the diagnostic instances. Finally, we note that aNMM achieves a
higher retrieval effectiveness than QL and RM3, while QL and RM3 outperform aNMM across all four diag-
nostic datasets. This is an indication that fulfillment of those four axioms alone is not a perfect indicator of
retrieval effectiveness—after all, more than twenty have been proposed in the literature. We leave the evalu-
ation of additional axioms to future work as will be further discussed in Section 5.2.

Now let us consider the correlation between retrieval effectiveness and axiomatic performances. Overall,
the correlation between retrieval effectiveness in MAP and the average axiomatic score across all axioms is
0.48 (N = 9 retrieval models); this is a positive trend, but not a significant one due to the overall low number of
models compared. However, whether axiomatic performance does or does not provide a good diagnosis for
retrieval effectiveness, differs per axiom. In Fig. 4.2 we display, for each axiom, the axiomatic performances
and retrieval effectiveness (in MAP) per model as obtained from Table 4.5 (note that we could employ a dif-
ferent metric than MAP, such as MRR or P5, but the results would not differ much as can be obtained from
Table 4.5). We can see that the diagnostic instances for TFC1 and M-TDC seem to be proper diagnostics: they
show a positive relation between axiomatic performance and retrieval effectiveness and all models are rela-
tively close to the trendline that displays this relation (i.e. the Euclidean distance measured as the shortest
line perpendicular to the trendline that goes through a point (a model in our figures) [10] is relatively small for
each point). TFC2 also shows a positive relation between axiomatic performance and retrieval effectiveness,
but if we would exclude the measurement for BM25, this trend would hardly be positive. For the LNC2 axioms
we obtain that the points are very spread, which we interpret as an indication that these axioms are not a
good diagnostic for retrieval effectiveness in the case of WikiPassageQA. This becomes even more clear if we
exclude the traditional models, in that case we would not obtain a very positive relation for LNC2T EST and
even a negative relation for LNC2ALL .
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(a) TFC1 (b) TFC2 (c) M-TDC

(d) LNC2T EST (e) LNC2ALL

Figure 4.2: Axiomatic performance (fraction of fulfilled diagnostic instances) versus retrieval effectiveness (MAP) of traditional ( ) and
neural (•) IR models per axiom for the WikiPassageQA dataset. Figures also include a trendline16. Note that when QL (displayed in

orange) is not clearly visible due to occlusion, it is located behind RM3 (displayed in green).

16Obtained with numpy.polyfit.
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4.2.2. Diagnostic experiments on MSMarco
Table 4.6 displays both the retrieval effectiveness measured on the original corpora, as well as the axiomatic
performance measured on our diagnostic datasets for MSMarco17. An overview with more detailed numbers
can be found in Appendix B.1.2.

Retrieval effectiveness Performance per axiom
MAP MRR P@5 TFC1 TFC2 M-TDC LNC2Test

Random 0.50 0.50 0.50

1 BM25 0.20 0.20 0.06 0.54 0.50 0.69 0.00*
2 QL 0.211 0.211 0.061 0.68 0.43 0.61 0.06*
3 RM3 0.211,2 0.221,2 0.061,2 0.66 0.42 0.59 0.00*

4 MV-LSTM 0.251,2,3 0.251,2,3 0.071,2,3 0.29 0.56 0.46 0.31
5 Arc-I 0.261,2,3,4 0.261,2,3,4 0.071,2,3 0.29 0.47 0.46 0.00
6 Duet 0.281,2,3,4,5 0.291,2,3,4,5 0.081,2,3,4,5 0.33 0.42 0.45 0.00
7 DRMM 0.321,2,3,4,5,6 0.321,2,3,4,5,6 0.091,2,3,4,5 0.20 0.47 0.38 0.00
8 aNMM 0.321,2,3,4,5,6,7 0.321,2,3,4,5,6 0.091,2,3,4,5,6 0.20 0.56 0.39 0.00
9 MatchPyramid 0.331,2,3,4,5,6,7,8 0.341,2,3,4,5,6,7,8 0.091,2,3,4,5,6,7,8 0.35 0.47 0.46 0.00

Table 4.6: Overview of models’ retrieval effectiveness and fraction of fulfilled axiom instances for the MSMarco dataset. For measuring
statistical significance, we employed the Wilcoxon test and McNemar test with p < 0.05 on respectively measures for retrieval

effectiveness and axiomatic performance. Regarding the latter all scores are significantly different in TFC1 and M-TDC except for Duet
and MatchPyramid in M-TDC and only 12/36 performances were significant for TFC2: BM25 and aNMM are significantly better than QL,

RM3 and Duet, aNMM is also significantly better than DRMM and MV-LSTM is significantly better than QL, RM3, ARCI, Duet and
DRMM.

Retrieval effectiveness
Considering the retrieval effectiveness of the models on MSMarco, we obtain very different findings than for
WikiPassageQA. We here find that most of the neural models outperform the baselines for the MSMarco
dataset: only Arc-I and MV-LSTM do not beat all non-neural baselines (they score up to 0.04 lower in MAP).
However, if we only consider the weaker BM25 and QL baselines, we find that all neural models except ARC-I
outperform the weak baselines - a finding that has not been obtained in many related works. We conclude
that for the MSMarco dataset the traditional IR models struggle, whereas the neural models flourish.

Different from the WikiPassageQA dataset, we now also find that MatchPyramid outperforms all other
models, and the non-neural baselines even by a large margin (> 0.10 in MAP). Some other works have found
that MatchPyramid outperformed other neural approaches [96, 98] and weak baselines (i.e. a model always
returning true or the TF-IDF model) [96], but to the best of our knowledge, we are the first to find that Match-
Pyramid outperforms strong baselines. This can however be explained by the fact that MSMarco may require
to use both exact (i.e. it considers questions) and similarity matching signals (i.e. it considers ad-hoc re-
trieval), while MatchPyramid was designed to capture both signals and treat them as equally important.

Apart from the shift of MatchPyramid, the relative order of neural models based upon their retrieval ef-
fectiveness has remained the same as we found for WikiPassageQA - and as discussed in Section 4.2.1, com-
parable results have been obtained in related works. We furthermore find that the RM3 model now, as we
expected, outperforms the QL model by a small, but significant, margin.

17Due to experimental limitations, we have not been able to run the LNC2 experiments for MSMarco, see also 19.
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Axiomatic performance
Moving on to the axiomatic performance of our models, we again obtain very different results from our exper-
iments on WikiPassageQA. In our experiment on MSMarco, all non-neural models do satisfy the precedence
constraints of the majority of instances across three out of four axioms, although to a lesser extent than in
the previous experiment: BM25, RM3 and QL satisfy more than 58% of the M-TDC instances and more than
54% of the TFC1 instances (versus more than 90% of the M-TDC instances and 73% of the TFC1 instances in
WikiPassageQA). This difference may stem from the fact that the instances we obtained from MSMarco more
often have conditions under which these models do not fulfill the axioms, as well as a different distribution
of document length differences δ among documents in a diagnostic instance. We assume this to especially
be the case for the LNC2 axiom for which all traditional models fulfill hardly any diagnostic instances.

When we consider the axiomatic scores of our evaluated neural models we observe clear differences,
most notably for TFC1 between 20-35% instances are satisfied and for LNC2 we obtain that nearly all models
fulfill hardly any (roughly 0%). Moreover, the aNMM model that satisfied 38% of the LNC2Test instances for
WikiPassageQA, now satisfies a rounded 0% of these instances obtained with MSMarco. However, the one
model that does fulfill nearly one third (31%) of the instances for LNC2Test—MV-LSTM—also outperformed
all other neural models (and performed on par with traditional models) on LNC2All for WikiPassageQA. One
possible explanation for this is that the positional representation of MV-LSTM, which is very different from
other neural approaches, positively influences the score of the longer, appended versions of documents in-
stead of over-penalizing them.

Now let us consider the correlation between retrieval effectiveness and axiomatic performances. Overall,
the correlation between retrieval effectiveness in MAP and the average axiomatic score across all axioms is
−0.36 (N = 9 retrieval models); this is a negative trend, but not a significant one due to the overall low number
of models compared. However, it evidently shows that the overall axiomatic performance of the considered
axioms is not an indicator of retrieval effectiveness. One reason for this may be that the shorter queries in the
MSMarco dataset (5.99 on average) may not be long enough to avoid inherent ambiguity of language (polyse-
mous words, synonyms and so on) [23], making the TFC and M-TDC axioms less important in the sense that
their heuristics are less important compared to their importance for properly finding a relevant document
in WikiPassageQA. This possible explanation is supported by the RM3 model, which employs query expan-
sion using pseudo-relevance feedback to tackle such problems, outperforming the other baselines, albeit by
a short margin. Hence, it would be interesting to see, how axiomatic performances on diagnostic datasets for
semantic axioms compare to the retrieval effectiveness of models that we obtained for MSMarco. However,
we leave this here as future work.

When we look at the relation between retrieval effectiveness and axiomatic performance per axiom, we
obtain that none of the axioms seems to be a proper diagnostic for retrieval effectiveness as displayed in Fig.
4.3: for each of the plots there seems to be either a negative trend (TFC1, M-TDC) or no trend at all (TFC2,
LNC2Test). However, these findings do match our expectations discussed in Section 3.5.3: the TFC1 and M-TDC
axioms encapsulate heuristics that do not seem to be important in MSMarco.
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(a) TFC1 (b) TFC2 (c) M-TDC

(d) LNC2T EST

Figure 4.3: Axiomatic performance (fraction of fulfilled diagnostic instances) versus retrieval effectiveness (MAP) of traditional ( ) and
neural (•) IR models per axiom for the MSMarco dataset. Figures also include a (dashed gray) trendline18.

18Obtained with numpy.polyfit.
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4.3. The Impact of Document Length Differences
The original axioms TFC1, TFC2 and TDC (but not LNC2) require strict document length equality (|di |− |d j | =
0). In our axiom conversion (detailed in Section 3.3) we adopted a parameter in TFC1, TFC2 and TDC to regu-
late this difference (|di |− |d j | ≤ δ). Instead of 0, this parameter was not constrained to a specific value (since
this comes at the risk of obtaining less diagnostic instances). Hence the documents di ,d j in our diagnostic
instances may have significant differences in length. In this section we research the impact of such document
length differences on axiomatic performance and answer presence.

4.3.1. Impact on axiomatic performance
In this section we elaborate upon the sensitivity of models (based upon their axiomatic performance) to
length differences in diagnostic instances.

Methodology
Fig. 4.4 displays the fraction of diagnostic instances fulfilled by BM25 and QL for the TFC2 axiom obtained
from the WikiPassageQA dataset versus the maximum document length difference δ in documents di ,d j ,dk

in the diagnostic instances on a logarithmic scale. This simple plot already reveals that the axiomatic perfor-
mance of these traditional IR models can be (very) sensitive to document length differences: whereas both
models fulfill all diagnostic instances when δ= 0, QL fulfills close to 40% less diagnostic instances than BM25
if δ= 10,000.

Figure 4.4: Fraction of fulfilled TDC instances obtained from WikiPassageQA per maximum document length difference (expressed in
an absolute value for δ): document length differences can impact axiomatic performance.

In the next section, we will provide a closer look at the impact of axiomatic performance across our di-
agnostic datasets for different axioms. Since the WikiPassageQA and MSMarco dataset consist of documents
that follow a different length distribution (recall Fig. 3.4), we do not choose δ to be an absolute value (e.g.
0, 1, 10, 100, 1000 word(s)) as was done in Fig. 4.4. Instead, we adopt a relative parameter δ∗, in similar
spirit as Hagen et al. [53], as expressed in Eq. 4.1. Note that the parameter δ∗ we adopt here is equal to the δ
parameter introduced in our axioms multiplied by the maximum document length in a diagnostic instance:
δ∗ = δ∗max{|di |, |d j |}. Moreover, for TFC2 we also incorporate |dk | by adopting |di | = min{|di |, |d j |, |dk |} and
|d j | = max{|di |, |d j |, |dk |}.

abs(|di |− |d j |)
max{|di |, |d j |}

≤ δ∗ (4.1)

We will adopt two sets of values for δ∗. We will consider a low range: 0− 0.1 with steps of 0.01 (i.e. no
document length difference up to a difference of 10% of the largest document with steps of 1%), and a high
range: 0.1− 1.0 with steps of 0.1 (i.e. 10% up to a difference of 100% of the largest document with steps of
10%). By doing so, we can obtain what happens if we stay closest to the axioms without document relaxation
(δ∗ = 0), as well as what happens in the long run if we allow one document to be twice as long as the other
document (δ∗ = 1.0). In fact, all relative differences in document length in our diagnostic instances across
both datasets are below 1.0, hence at δ∗ = 1.0 we will find the axiomatic performances as displayed in Table
4.5 and 4.6 respectively.

Additionally, we note that we should keep track of the amount of diagnostic instances per value for δ∗,
since we need diagnostic instances to be able to diagnose anything at all.
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Results
Figures 4.5 and 4.6 respectively display the fraction of fulfilled instances per value forδ∗ for theWikiPassageQA
and MSMarco datasets per axiom (excluding LNC2 which does not require a strict document length equality).
These figures also display the amount of diagnostic instances for the displayed values for δ∗ (at the top of
each plot). From these figures we observe three patterns:

1. The axiomatic performance of traditional models seems to decrease when document length differences
increase;
We can clearly observe this pattern for the TFC1 instances on the MSMarco dataset (Fig. 4.6a). To a lesser
extent, we can also observe this pattern on the TFC1 and TFC2 instances from WikiPassageQA (resp.
Fig. 4.5a and 4.5b, excluding BM25) as well as the M-TDC instances from MSMarco (Fig. 4.6c, excluding
RM3).

2. The axiomatic performance of neural models seems to be less impacted by document length differences;
We can find some small deviations in axiomatic performance of some neural models: for example, the
axiomatic performance of DRMM and MV-LSTM on TFC1 and TFC2 in WikiPassageQA (resp. Fig 4.5a
and 4.5b) increases when δ∗ increases, but their axiomatic performance on M-TDC in WikiPassageQA
and on TFC1 in MSMarco (resp. Fig 4.5c and 4.6a) decreases when δ∗ increases. However, overall, the
performance of the neural models seems to be less impacted by document length difference, compared
to the impact it has on the axiomatic performance of traditional models.

3. The axiomatic performance of all models seems to converge when document length differences (δ∗) in-
crease;
In other words, the difference between the axiomatic performance of most models decreases over the
coarse of increasing δ∗ = 0 to δ∗ = 1.0. We can clearly see this pattern for the TFC2 axiom instances
obtained from MSMarco (Fig. 4.6b), but also in the TFC1 instances in both datasets (Fig. 4.5a and 4.6a,
resp.) and the M-TDC instances in MSMarco (Fig. 4.5c). However this pattern is not obtained for the
M-TDC instances in the WikiPassageQA dataset (Fig. 4.5c);

We note that the third observation also relates to the first two observations: when δ∗ increases, the tradi-
tional models generally achieve lower axiomatic performance while the neural models generally are not im-
pacted much. Hence, since the traditional models typically achieved higher axiomatic performance–which
now decreases and therefore comes closer to the axiomatic performance of neural models—the axiomatic
performances of all models show a converging pattern.

From these plots it is however difficult to obtain what a reasonable value for δ∗ — i.e. a value that allows
to obtain a proper amount instances while staying properly close to δ∗ = 0—would be. Whereas putting δ∗ to
0 can result in having no diagnostic instances (e.g. for TFC2 instances from MSMarco), putting δ∗ to 0.2 swaps
the order of the axiomatic performance of some models (compared to δ∗ = 0) across all considered axioms.

We therefore provide a closer look at the deviations from the “golden” δ∗ = 0 values. Figures 4.7 and
4.8 respectively display the absolute difference in the fraction of fulfilled instances per value for δ∗ for the
WikiPassageQA and MSMarco datasets per axiom. We again exclude LNC2 which does not require a strict
document length equality, but now also exclude TFC2 for MSMarco since we have not obtained diagnostic
instances for TFC2 from MSMarco for which δ∗ ≤ 0.01 (hence we can not obtain the deviation from δ∗ = 0).
From these figures we can however also not directly obtain a proper value for δ∗19. Neither do these images
provide reason to consider the δ∗ = 0.10 adopted in [52] to be improper. Nevertheless, we can from these
images observe that the larger the document length difference δ∗, the larger the deviation in axiomatic
performance compared to the golden values obtained at δ∗ = 0.

19For completeness we note that it may seem like δ∗ = 0.10 is a proper value as the absolute differences in axiomatic performance in the
right hand of the plots are larger than those of the left hand. However, whereas the left hand of the plots considers steps of 0.01, the
right hand of the plots considers steps of 0.10. Hence, knowing that the deviations in the right hand of the plot are expected to be an
order of magnitude larger, we do not observe δ∗ = 0.10 to specifically be a suitable value for δ∗.
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(a) TFC1

(b) TFC2

(c) M-TDC

Figure 4.5: Impact of document length differences on axiomatic performance of traditional ( ) and neural (•) IR models per axiom:
measured in the fraction of fulfilled diagnostic instances (vertical axis) per value of δ∗ (horizontal axis) for the WikiPassageQA dataset.

Figures also display the amount of diagnostic instances per value of δ∗ (horizontally in the top of the figures).
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(a) TFC1

(b) TFC2

(c) M-TDC

Figure 4.6: Impact of document length differences on axiomatic performance of traditional ( ) and neural (•) IR models per axiom:
measured in the fraction of fulfilled diagnostic instances (vertical axis) per value of δ∗ (horizontal axis) for the MSMarco dataset. Figures

also display the amount of diagnostic instances per value of δ∗ (horizontally in the top of the figures).
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(a) TFC1

(b) TFC2

(c) M-TDC

Figure 4.7: Impact of document length differences on axiomatic performance of traditional ( ) and neural (•) IR models per axiom:
measured in the absolute difference in fraction of fulfilled diagnostic instances compared to δ∗ = 0 (vertical axis) per value of δ∗

(horizontal axis) for the WikiPassageQA dataset. Figures also display the amount of diagnostic instances per value of δ∗ (horizontally
in the top of the figures).



60 4. Diagnosing Neural IR Models

(a) TFC1

(b) M-TDC

Figure 4.8: Impact of document length differences on axiomatic performance of traditional ( ) and neural (•) IR models per axiom
(excluding TFC2): measured in the absolute difference in fraction of fulfilled diagnostic instances compared to δ∗ = 0 (vertical axis) per

value of δ∗ (horizontal axis) for the MSMarco dataset. Figures also display the amount of diagnostic instances per value of δ∗
(horizontally in the top of the figures)
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Impact on answer presence
We further research the impact of document length difference on the presence of relevant documents among
the documents di , d j (,dk ) in the diagnostic instances. Tables 4.7 and 4.8 respectively present the presence of
the various combinations of documents per value for δ∗ = [0,0.01,0.10,1.0] for diagnostic instances obtained
from the test splits of the WikiPassageQA and MSMarco datasets.

Overall, we view that the relation between the “relevant ≥ non-relevant” pairs and the “non-relevant ≥
relevant” pairs stays the same over the various values for δ∗, across axioms and datasets. The only large devi-
ation is obtained for the TFC1 instances in the MSMarco dataset (see the first few rows of Table 4.8): whereas
both type of pairs are equally found among the lower δ∗ values (0, 0.01, 0.1), a large deviation is found in the
step from δ∗ = 0.1 (5,050 pairs versus 5,391 pairs) to δ∗ = 1.0 (28,968 pairs versus 52,472 pairs). Hence, this
may give reason to put δ∗ lower than 0.1.

TF
C1

di Â d j δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0
relevant Â relevant 0 0.0% 3 0.0% 22 0.0% 96 0.0%
relevant Â non-relevant 80 2.6% 230 3.0% 2,322 3.3% 10,937 3.1%
non-relevant Â relevant 20 0.7% 53 0.7% 412 0.6% 1,809 0.5%
non-relevant Â non-relevant 2,919 96.7% 7,463 96.3% 68,376 96.1% 340,779 96.4%
total 3,019 100.0% 7,749 100.0% 71,132 100.0% 353,621 100.0%

TF
C2 S(q ,d j )−S(q ,di ) > S(q ,dk )−S(q ,d j ) δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0

total 21 100.0% 135 100.0% 10,085 100.0% 183,898 100.0%

M-
TD

C

di º d j δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0
relevant º relevant 0 0.0% 0 0.0% 0 0.0% 0 0.0%
relevant º non-relevant 0 0.0% 3 2.0% 17 1.5% 50 1.1%
non-relevant º relevant 1 1.1% 2 1.4% 11 1.0% 56 1.2%
non-relevant º non-relevant 93 98.9% 142 96.6% 1,109 97.5% 4,391 97.6%
total 94 100.0% 147 100.0% 1,137 100.0% 4,497 100.0%

Table 4.7: Presence of relationships as prescribed per axiom for the diagnostic datasets obtained from the test split of the
WikiPassageQA dataset.

TF
C1

di Â d j δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0
relevant Â relevant 2 0.0% 2 0.0% 32 0.0% 160 0.0%
relevant Â non-relevant 485 2.5% 513 2.2% 5,050 2.0% 28,968 1.9%
non-relevant Â relevant 466 2.4% 510 2.2% 5,391 2.1% 52,472 3.5%
non-relevant Â non-relevant 18,307 95.1% 22,324 95.6% 244,688 95.9% 1,416,083 94.6%
total 19,260 100.0% 23,349 100.0% 255,161 100.0% 1,497,683 100.0%

TF
C2 S(q ,d j )−S(q ,di ) > S(q ,dk )−S(q ,d j ) δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0

total 0 0.0% 0 0.0% 33 100.0% 236 100.0%

M-
TD

C

di º d j δ∗ = 0 δ∗ = 0.01 δ∗ = 0.10 δ∗ = 1.0
relevant º relevant 1 0.1% 1 0.1% 1 0.0% 2 0.0%
relevant º non-relevant 15 1.8% 16 1.7% 127 1.3% 611 1.4%
non-relevant º relevant 28 3.3% 28 3.0% 254 2.7% 1,116 2.5%
non-relevant º non-relevant 802 94.8% 879 95.1% 9,103 96.0% 42,111 96.1%
total 846 100.0% 924 100.0% 9,485 100.0% 43,840 100.0%

Table 4.8: Presence of relationships as prescribed per axiom for the diagnostic datasets obtained from the test split of the
MSMarco dataset.
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4.4. Fixing Neural IR Models
Given a diagnosis of a deep model, one can try to “fix” it, analogous to how traditional IR models have been
fixed based upon their axiomatic performance by adapting their retrieval function (as was discussed in Sec-
tion 2.5). When considering neural approaches, we can however no longer adapt the retrieval function as this
retrieval function is now spread over the deep architecture. Nevertheless, we can adapt parts of the process
that eventually make up the deep model. We here specifically propose to augment the training data of a deep
net with previously created diagnostic instances. Hence, we propose a novel methodology for improving the
axiomatic performance and retrieval effectiveness of neural models and briefly research it in this section. In
the remainder of this section, we first introduce a background of our approach (Section 4.4.1), followed by an
introduction of our methodology (Section 4.4.2) and a brief experiment we have conducted (Section 4.4.3)

4.4.1. Background
Despite the proposal of numerous novel neural IR models, little attention has been given to addressing the
shortcomings of existing neural models (other than by proposing a novel model). The lack of approaches to
improve a neural model may very well stem from the shortage of means to analyze neural IR models (as dis-
cussed in Section 2.4.1): researchers may have been inclined to propose complete new architectures, rather
than tackling (largely unknown) issues of existing models.

To address issues of individual retrieval models we here propose a novel method based on training data
augmentation. As the name indicates, training data augmentation considers enriching a regular training data
set with additional instances, with the aim of improving the models performance. Our employment of train-
ing data augmentation in essence combines ideas from two branches of related works, respectively on weak
supervision in neural IR and axiomatic re-ranking. In one of the few works that has explored weak supervision
in neural IR, Dehghani et al. [35] showed that neural models that are trained on weak supervision signals can
achieve impressive performance improvements over a weak supervisor (BM25). Moreover, they also showed
that pre-training a neural IR model on large amounts of weak supervision signals (and a small amount of su-
pervised signals), can achieve performance improvements over training under only weak supervision or full
supervision. Note that in the latter experiment the training data is thus augmented with instances that are
labeled by a weak supervisor. In a different study (on axiomatic re-ranking), Hagen et al. [53], showed that
the retrieval effectiveness of traditional IR models could be improved through re-ranking their ranked output
in an axiomatic manner post retrieval (as discussed in Section 2.5). Combining both works in our approach,
we do not use axiomatic re-ranking as a separate final component. Instead, we propose to utilize axioms as
a tool to augment the input of a model: we employ axioms as weak labelers to obtain instances for training
data augmentation.

Recently, Rosset et al. [108] have considered the direct incorporation of axioms in the loss function as
discussed in Section 2.5.2. Whereas their method encompasses a general approach to augment the training
scheme of any neural model, we here focus on addressing the specific individual shortcomings of neural
models through including diagnostic instances (we already obtained) in the training set while maintaining
the same loss function.

Training data augmentation is typically employed to obtain more training data (e.g. when there is little
training data available) [35, 108]. A model is then trained on both the original and the newly obtained data.
However, due to issues in implementing this approach in MatchZoo20, we do not follow this approach. In-
stead, we replace random instances in the regular training data of the model with weakly labeled instances,
so that the total amount of instances on which a model is trained stays the same.

We nevertheless hypothesize that the adoption of augmented instances in the training set can improve
a model’s performance on the axiom used as a weak labeler. We furthermore hypothesize that this also im-
proves the retrieval effectiveness of the model.

20Although we can not refer to an issue, it is to the best of our knowledge not possible to resume training in MatchZoo (e.g. to first train
a model on regular data and then continue training the model on data labeled by a weak supervisor or the other way around), neither
is it trivial to program which training data is used at which iteration.
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4.4.2. Methodology
We can use an axiom as a weak labeler that assigns labels to dataset instances based upon the heuristic the
axiom encapsulates. Recall that an axiom typically (TFC2 is an exception here) prescribes that a document di

should receive a higher score than a document d j . We can extract weak labels from such relationships: e.g.,
we can give di label 1 and give d j label 0 - we could then label relevant passages with e.g. a label 2. Intuitively it
makes sense to adopt these multi-graded relevance labels: a strong label 2 indicates that a document is more
relevant than any other non-relevant document d j , whereas a weak label 1 only represents a relationship of
a document and one or more (relevant or non-relevant) documents.

The adoption of such labels, allows us to augment the regular training data. Similar as before, we train a
model with a query and a pair of documents following the pair-wise training regime. Now, let us consider a
simple example in which we have one query and four documents that are to be ranked for this query. Under
the regular training scheme, we would train on a query and pairs of a relevant and non-relevant document,
which are graphically displayed left in Fig. 4.9. We now augments these pairs with pairs in which one docu-
ment should be scored above (i.e. is deemed more relevant) another document based upon a certain axiom.
Let us assume that d2 should be scored higher than d3 according to some axiom. In the simplest case, strictly
following the adopted multi-graded labels, we would train on a query and all regular pairs of a relevant and
non-relevant documents (note that these instances can have labels 2 and 1 as well as 2 and 0) and augmented
pairs of documents (e.g. with labels 1 and 0), as displayed in the middle in Fig. 4.9. This strategy is similar to
how BM25 was used as a weak supervisor by Dehghani et al. [35]. However, different from BM25, our weak
supervisor provides us with pairwise labels, rather than listwise labels or scores. Hence, in the example dis-
played in this figure, we actually do not know if we would want a model to score d2 above d4: we only know
that some axiom prescribed that d2 should be scored higher than d3. Therefore, it would make more sense to
only include d2, d3, as displayed right in Fig. 4.9.

(a) Regular training (b) Multi-graded augmentation (c) Paired augmentation

Figure 4.9: Regular training instances (4.10a) can be augmented (as displayed in a dotted box) by including instances obtained with a
weak supervisor (4.10b), which, when obtained from axioms, intuitively should be paired (4.10c). Relevant documents are displayed in

green, non-relevant documents in red and document d2 that should be ranked above document d3 according to some axiom is
displayed in yellow. For simplicity we have omitted queries in the training instances.

However, we note that we have to avoid two issues that are not visible in the carefully chosen example we
have discussed. Specifically, following our methodology, we can obtain two types of instances that we should
filter out. Firstly, we exclude instances where a non-relevant document di (labeled 1) should be scored higher
than a relevant document d j (labeled 2) according to some axiom, as this is counter-intuitive to the strong
relevance label. We also exclude instances in which a relevant document di (labeled 2) should be scored
higher than another relevant document d j (also labeled 2), as this is counter-intuitive to the multi-graded
labels: both documents have a label 2 and are therefore considered equally relevant21.

Distribution
Next to the creation of instances to augment the training data, we have to decide upon the distribution in the
training data. More specifically said, we need to decide upon the distribution of original training pairs (of a
relevant and non-relevant document) and our novel axiomatic training pairs (of one document that should

21One could argue that for our purpose of fixing a model, we actually could use such instances for training. However, this may actually
drift a model away from recognizing d j as relevant, since such instances inversely also tell that a relevant document d j should receive
a lower score than another document.
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be scored higher than the other document according to a specific axiom). We namely have to keep in mind
that a model can become overfit when trained on augmented data. For example, if we only train a model
on triplets q , di , d j with TFC1 prescribing that S(di , q) > S(d j , q), the trained model may very well become
overfit with regard to the weak supervisor [35] and learn to simply mimic a TF formula. However, it is difficult
to determine what a suitable distribution of such instances would be. Dehghani et al. [35] employ weak
supervision in all instances in either the full training or the pre-training set (which considers the predominant
part of the complete training) of their models (as was also done in [139] for neural approaches on the query
performance prediction task and [20] for improving LTR approaches)22. However, since our weak supervisor
is a single axiom rather than a whole model, we expect that training on only weak supervision signals will not
improve the performance of a model over the performance obtained after regular training, we here adopt a
1:1 ratio as a starting point (but also experiment with a unconstrained ratio).

Development and test sets
Since we are ultimately still interested in the effectiveness of the model to retrieve an answer, we revert to
the two label (2 = relevant, 0 = non-relevant) setting in the dev and test set, as we only have answers and
non-answers in the “real-world” setting.

4.4.3. Experiment: improving Duet on TFC1
Given the (relative) poor performance of Duet on the TFC1 axiom in WikiPassageQA (it fulfilled 69% of the
instances) and the fact that this axiom relatively often leads to an answer (in a 7:1 ratio, as discussed in Section
3.5.3), we train this model on a training set that is augmented with instances obtained with the TFC1 axiom
as a weak labeler.

The default training dataset with the regular relevance labels consist of 156M instances, among which we
can only find 82K pairs of a relevant and non-relevant document in which the TFC1 axiom holds. Through
adopting the proposed multi-graded labels, we can obtain 2.6M pairs of non-relevant documents that fulfill
the conditions of TFC1. Hence, we can sample from this vast amount of instances to augment the original
training set.

In the following paragraphs we discuss which of these pairs were included. The results of the various ex-
periments are displayed in Table 4.923. An overview with more detailed numbers can be found in Appendix
B.2. Per experiment, we discuss the adopted training scheme, the results and (possible) explanation in sub-
sequent paragraphs.

Retrieval effectiveness Performance per axiom
Training data MAP MRR P@5 TFC1 TFC2 M-TDC
1 answers 0.252 0.292 0.102 0.69 0.562,3,4 0.48
2 answers + TFC1mul ti -g r aded 0.20 0.22 0.07 0.751,4 0.504 0.49
3 answers + TFC1pai r ed ,1:1 0.272 0.312 0.102 0.811,2,4 0.542,4 0.511,2

4 answers + TFC1pai r ed ,1:1,δ∗≤0.1 0.262 0.312 0.102 0.701 0.49 0.511

Table 4.9: Overview of retrieval effectiveness and fraction of fulfilled axiom instances for the Duet model trained on the original and
augmented versions of the WikiPassageQA dataset. For measuring statistical significance, we employed the Wilcoxon test and

McNemar test with p < 0.05 on respectively measures for retrieval effectiveness and axiomatic performance.

22It is unclear which ratio is employed in [108].
23Note that we have not included the LNC2 axiom in our diagnosis per axiom. Next to the fact that we obtained that a model’s adher-

ence to this axiom has not shown to be a good indicator for retrieval effectiveness for the WikiPassageQA dataset (as discussed in
Section 4.2.1), inclusion of the axiom would require separate runs that include artificial data, while our focus here is on improving the
performance of a model with respect to another axiom and regarding retrieval effectiveness.
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Multi-graded augmentation
As a first experiment, we simply follow the multi-graded augmentation displayed in the middle of Figure 4.9:
we consider relevant documents labeled 2 to be more relevant than documents labeled 1 which we consider
more relevant than documents labeled 0. The results of this experiment are displayed in the second row of Ta-
ble 4.9. We see that the performance for the TFC1 axiom indeed increases, but the training data augmentation
has actually been detrimental to the model’s retrieval effectiveness.

This problem may stem from two issues. First, there are many more documents with label 1 than docu-
ments with either label 2 or 0. Hence, a model gets trained on many more pairs (1,0) than (2,0), while there
are also not that many instances (2,1) (see Table 3.10). In addition, the model may not learn much from a
pair (di , d j ) labeled (1,0) in case di was assigned a label 1 since TFC1 states it should be ranked higher than
another document dk with d j 6= dk . Hence, we investigate approaches beyond this facile approach.

Paired augmentationwith equal distributions
Now let us consider a more reasonable approach, in which we augment the training data only with document
pairs (di , d j ) labeled (1,0) in case TFC1 prescribes di should retrieve a higher score than d j . Additionally, we
make sure that we train on pairs (1,0) in an equal amount as (2,1) and (2,0). Note that in the non-augmented
training scheme we would train on (2,1) and (2,0) instances. Hence, we now train on the default instances
and axiomatic instances in a 1:1 ratio.

The results of this experiment are displayed in the third row of Table 4.9. We see that the performance for
the TFC1 axiom now increases even more than in the previous experiment, while not lowering performance
on the other axioms. Moreover the Duet model now achieves even higher performance than e.g. BM25 on
the diagnostic instances for this axiom (0.81 versus 0.73). Looking at the retrieval effectiveness, we find that
although the training data augmentation has been beneficial to the model’s retrieval effectiveness, with an
increase in both MAP and MRR (0.02 in both), but not in an significant manner.

Paired augmentationwith equal distributions and constrained length differences
Now let us further develop our approach by also accounting for the difference in document length within
instances by filtering out any diagnostic instance for which the document length difference expressed in δ∗
(introduced in Section 4.3) is larger than 0.1. We choose this value as it provides us with instances that are
closer to the original axiom definition (in the sense that they deviate less from the original constraint that
|di | = |d j |), while we can still sample from a large enough set of instances to maintain a 1:1 ratio of regular
and axiomatic instances in the training set.

We now find that the axiomatic performance has increased compared to the default setting, but only by
0.01, while lowering the performance on TFC2 by 0.07 and increasing the performance on M-TDC by 0.03.
Moreover, we find that the MAP and MRR respectively increase by 0.01 and 0.02, although again, not in a
significant manner. One may think that the lower increase in TFC1 can be explained by the fact that we are
actually testing the model on instances for which we did not care about δ∗—in fact, for roughly 80% of the
instances δ∗ > 0.1—but only train a model on instances for which δ∗ ≤ 0.1. Looking at the axiomatic perfor-
mance on diagnostic instances for TFC1 so that δ∗ ≤ 0.1, we however obtain similar numbers as presented in
Table 4.9: 0.60 (regular training), 0.72 (multi-graded augmentation), 0.79 (paired augmentation), 0.71 (paired
augmentation with constrained δ∗) - all significantly different. However, the strategy the includes a con-
strained δ∗ is the only strategy under which the performance for these instances increased compared to the
original instances considered for diagnosis, although marginally.

Concluding, we note that more research is needed into ways to address the issues of retrieval models
obtained via an axiomatic diagnosis. Nevertheless, the proposed methodology in this chapter may provide a
basis and the discussed experiments some preliminary results for such future work.





5
Conclusions and Future Work

In this chapter we conclude our work and elaborate upon various directions for future work, respectively in
Section 5.1 and Section 5.2.

5.1. Conclusion
Over the past decade, the application of deep learning techniques has come to the forefront of Information
Retrieval. Despite the large research efforts that have focused on proposing novel neural models, a number of
issues have hindered the progress of neural IR. Among those issues, we have specifically addressed the issue
of a lack of approaches to interpret and analyze neural IR models and posed the following research question:
How can we diagnose the strengths and weaknesses of neural IR approaches using axiomatic thinking?

Knowing that the traditional axiomatic approaches are no longer viable to study neural IR models, we have
taken inspirations from the NLP and Computer Vision communities to create so-called diagnostic datasets.
These datasets can be used to determine what kind of search heuristics (encapsulated in axioms) neural mod-
els are able to learn. The creation of such diagnostic datasets, however, demanded the extension and subse-
quent relaxation of existing axioms to match instances we can find in realistic datasets. Since the creation
of diagnostic datasets does not require a labeled dataset, we can apply the proposed pipeline to almost any
dataset containing queries and documents. As the diagnostic datasets can be used to diagnose models based
on their output, we can diagnose basically any IR model with them.

Using the proposed methodology, we have applied our diagnostic dataset creation pipeline to the
WikiPassageQA and MSMarco corpora and evaluated three traditional baselines and six neural models on
four established axioms for which we have proposed an extension and relaxation. From our experiments
on WikiPassageQA we have learned that the proposed diagnostic approach can indeed identify strengths
and weaknesses of neural models. From our experiments on MSMarco we have, on the other hand, learned
that an axiomatic analysis based on the four axioms included in this work can not always capture factors
that incur retrieval effectiveness. An interesting direction for future work is therefore to include other axioms
encompassing heuristics on e.g. semantic matching which may be important for the MSMarco dataset.

Next to conducting diagnosis, we have researched the impact of allowing document length differences
within diagnostic instances. We have studied how the axiomatic performance of neural models differs for
various values of a parameter on the maximum allowed document length differences. As expected, we found
that this deviation grows as the allowed difference in document length difference increases, although the
performance of the studied neural models seem to generally be less impacted by document length differences
than the studied traditional models.

Finally, we have also briefly researched how, given an axiomatic diagnosis, we can address weaknesses of
neural models. We have proposed to augment training data with weakly supervised diagnostic instances that
encapsulate a heuristic which a neural model has not learned under the regular training regime. As evaluated
on the WikiPassageQA dataset by adding diagnostic instances for TFC1 to the training scheme of the Duet
model, this can lead to improvements in retrieval effectiveness, although our unsophisticated approach has
not achieved significant improvements.

Concluding, we believe that the axiomatic approach to diagnosing neural IR models presented in this
work is a step forward to gaining valuable insights into the black boxes that deep models are generally con-
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sidered to be. We hope our work may prove a fruitful resource for evaluation in the field of neural IR on the
road towards achieving superior performance without losing sight of a better fundamental understanding of
IR.

5.2. Future Work
We are one of the first (among [98, 108]) to consider axiomatic thinking within the field of neural IR. More-
over, we have used axiomatic thinking to address a problem that so far has remained largely unexplored: the
diagnosis of neural IR approaches [49]. Hence, there are many ways to build forth on the research conducted
in this thesis, either improving the conducted research or extending it, as we will subsequently discuss in
Section 5.2.1 and 5.2.2.

5.2.1. Improvements
We consider improvements as being ways to address limitations of this work within its considered ranges (of
e.g. axioms, tasks and models). We discuss several of such improvements in the following paragraphs.

A different toolkit
All neural IR models considered in this work have been employed using the MatchZoo retrieval toolkit.
MatchZoo—specifically, the MatchZoo version 1.0 used in this work—is however known to have several is-
sues1. A multitude of these issues have been closed without being addressed, since they were raised with
regard to version 1.0, which is no longer supported as version 2.0 has recently been released. It would there-
fore be interesting to see if the reported results can be reproduced with a different deep net toolkit (or sep-
arate implementations of neural models. Beyond a reproduction of results through MatchZoo 2.0, it would
be interesting to test the proposed methodology on the same models beyond the MatchZoo toolkit, for ex-
ample by employing the baseline implementations used in [2]2. This would allow one to strengthen or refute
conclusions drawn in this work based upon experiments in which we have relied on MatchZoo.

Constraining document length differences
In the main results of the axiomatic diagnoses conducted in this work (i.e. Table 4.5 and Table 4.6), we have
not taken into account the differences in length of documents within diagnostic instances. As a result, we
deviate from the original axioms that assumed documents to be of exact equal length. Instead of not con-
straining document length differences at all, we have researched a parametric relaxation (i.e. constraining
document length differences in included diagnostic instances to be no larger than a certain (relative) param-
eter value). However, we have not been able to identify a value that is specifically suitable for this parameter.
Future work may further research methods for constraining document length differences, for example by
considering different parametric constraints (e.g. a parametric relaxation with axiom-dependent values).

Validity of axioms
We have also briefly researched to what extent axioms are valid heuristics in the employed corpora. We found
that diagnostic instances sometimes test whether a model has (according to some axiom) “correctly” ranked a
non-relevant documents above a relevant document, especially if unconstrained document length relaxation
is applied. We also studied the ratio of such diagnostic instances compared to diagnostic instances that do
test whether a model ranked a relevant document above a non-relevant document instances. This ratio seems
to be a related3 to the extent to which diagnostic instances can predict/explain the retrieval effectiveness of a
model. Future work can propose more sophisticated approaches to determine to what extent axioms describe
valid heuristics in (modern) corpora. For example, beyond looking at how often the axioms rank a relevant
answer above a non-relevant answer and vice-versa as done in our work, one could investigate upper bounds
on axiomatic performance. For instance, one could employ an omniscient oracle ranking (i.e. a ranking that
puts all relevant documents on top) and obtain the maximum axiomatic performance for each axiom (and
the axioms combined). If this upper bound is low, it could indicate that the axiom does not indicate a relevant
heuristic for the considered dataset. This is in similar spirit as a strategy designed by Aslam and Montague [8]
for obtaining upper bounds on the performance of metasearch models. They researched various models that
combine ranked lists of documents returned by multiple search engines in response to a given query, so that

1See https://github.com/NTMC-Community/MatchZoo/issues.
2See https://github.com/wasiahmad/mnsrf_ranking_suggestion.
3We carefully adopt the word “seems to be related” as the majority of diagnostic instances we use in our diagnoses consider two non-

relevant documents and we only looked at the results for three axioms on two datasets.

https://github.com/NTMC-Community/MatchZoo/issues
https://github.com/wasiahmad/mnsrf_ranking_suggestion
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the performance of the combination is optimized. For obtaining upper bounds on axioms one could then
use axioms (instead of search engines) to obtain individual (partial) ranked results to combine in the final
ranking, e.g. under the axiomatic re-ranking strategy proposed by Hagen et al. [53] (taking a random ranking
of the candidate documents for a query as input to re-rank).

A discriminativemetric
Another improvement to our work could be the inclusion of a specific metric for axiomatic performance.
In this work, we simply considered the fraction of fulfilled instances per axiom. Such a simple metric how-
ever has limitations. For instance, it does not incorporate how far a model is off, whereas it is desired that
larger errors should be penalized more than smaller errors [74]. For example, if an axiom prescribes that
S(q ,di ) > S(q ,d j ), while for a certain model di is assigned a slightly lower score than d j for a query q this
should be penalized less than when the difference is (much) larger). Moreover, the metric adopted in this
work does not allow us to incorporate how important we deem a certain diagnostic instance. A weight of
importance could for instance be assigned based on the relevance labels of documents or length differences
between them. For example, “wrongly” ranking a relevant document d j above a non-relevant document di

should intuitively be penalized less than wrongly ranking a non-relevant document d j above a relevant doc-
ument di ). Incorporating such desiderata in a metric for axiomatic performance would be an interesting
direction for future work.

Improving retrieval effectiveness
In this work we have enriched training data of a neural model with diagnostic instances with the aim of im-
proving its axiomatic performance and retrieval effectiveness. We have however only briefly researched this
strategy, which has not lead to significant improvements in retrieval effectiveness. Future work may further
develop approaches that can improve the retrieval effectiveness of deep nets based on axiomatic thinking.
This can be done through conducting more experiments on the proposed training data augmentation with
diagnostic instances (e.g. considering pre-training (like [35]) or various distributions of training instances
and diagnostic instances). Future work can also move towards the work of Rosset et al. [108] by directly in-
corporating axiomatic knowledge in the loss function. For instance, we can transform the regular ranked
hinge loss function to incorporate a regularization term for each axiom. These terms are then activated if the
considered instance fulfills the conditions of an axiom and can for instance be weighted (e.g. based upon
the document length difference between the two documents in the instance or to what extent the axiom is
a valid heuristic in a dataset). Although this approach generally follows the methodology proposed in [108],
it differs from that approach as it would not require the perturbation of documents, as it employs diagnostic
instances that have been obtained with converted axioms (assuming we would consider axioms for which
this is possible, e.g. not LNC2).

5.2.2. Extensions
We consider extensions to be continuations of this work beyond the studied ranges. We discuss several of
such extensions in the following paragraphs.

More axioms
The first extension that comes to mind is the inclusion of additional axioms for diagnosis. We have included
axioms on the notions of term frequency (TFC1, TFC2), inverse document frequency (M-TDC) and document
length normalization (LNC2). To obtain a more complete diagnosis of these notions, one could evidently
include the TFC3, LNC1 and TF-LNC axioms, that were proposed together with the axioms covered in this work
in [42, 43]. However, these works diagnosed traditional bag-of-words models such as BM25 and QL, that do
not consider notions such as semantic similarity or proximity in their retrieval formula. Hence, a diagnosis
that includes these seven axioms, can never diagnose the effectiveness of models on e.g. documents that
contain no query term (to give a concrete example, 5-12% of the relevant documents contained in TREC-2,
TREC-6, TREC-7 and TREC-2005 do not contain a single query term [130]). Moreover, novel axioms can be
proposed to test even more aspects of IR models through axiomatic diagnoses.

The inclusion of additional axioms may however result in contradicting axioms, for instance, TFC1 may
prescribe to rank d1 above d2 since d1 has a (slightly) larger count of query terms compared to d2, whereas d2

may very well have (much) larger count of terms that are semantically similar to the query terms and therefore
a semantic axiom may prescribe to rank d2 above d1. Solutions that could be researched in future work
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include removing contradicting instances from diagnostic datasets or adapting axioms (e.g. by additional
constraints, like we did for M-TDC in Section 3.3.4) so that contradictions do not occur. The inclusion of
more existing axioms and newly created axioms can enrich the axiomatic diagnosis and provide a better
explanation for the performance of IR models.

More tasks, datasets andmodels
The second extension that comes to mind is the inclusion of additional tasks, datasets and models. Such an
extension can test the generalizability of the methodologies proposed in this work. Whereas the traditional
axiomatic approaches were mostly validated on ad-hoc retrieval tasks [39, 41–43, 78], we have researched two
re-ranking datasets one of which encompasses a QA task and the other an ad-hoc retrieval task. Many other
IR tasks such as collaborative filtering, key term extraction and definition finding, can also be defined as a
ranking problem [76] and may hence be studied using axioms on ranking like our work (although the validity
of the heuristics encapsulated in axioms may differ across different tasks, as discussed in Section 5.2.1). Next
to employing different datasets and tasks, one may also consider studying more retrieval models. As was
also discusses in Section 5.2.1, different repositories may be used to this end, but another approach is to use
available model outputs for a diagnosis instead of re-running models to obtain this output, for example by
using past TREC results4. However, the use of such outputs does not guarantee that the models that produced
the results have received the same input nor that the pre-processing can be reproduced. The diagnostic
dataset creation pipeline proposed in this work required the pre-processing of the data from which we sample
instances must be the same. A problem that evidently can also be studied. One solution would be to instead
feed diagnostic instances to a (trained) model to diagnose its the fulfillment of diagnostic instances. Although
the model may have been trained on data that has been pre-processed differently, this approach does allow us
to ensure that the conditions of the proposed axioms hold in the instances upon which we base our diagnosis.

Improvements beyond retrieval effectiveness
Another direction for future studies is to try to obtain improvements of neural models based on axiomatic
thinking that go beyond retrieval effectiveness. The focus of this work has been to study neural IR models
by measuring the axiomatic performance as a potential indicator for performance as measured in retrieval
effectiveness. However, improvements of neural IR models may provide improvements that go beyond re-
trieval effectiveness, such as training time as obtained in e.g. [108]. This may be realized, for example, in
similar spirit as the pre-training conducted in [35], following the curriculum learning approach [11, 54]: first
training models on diagnostic instances (i.e. to learn basic retrieval heuristics) and subsequently fine tuning
them on instances from a regular corpus.

Diagnosing datasets
An axiomatic analysis of answers in a dataset, may be used as a tool to reveal “issues” in existing datasets, by
diagnosing the difficulty of novel and existing datasets. For example, if we consider instances from an existing
dataset and can find that one axiom (nearly) always ranks a relevant document above a non-relevant, it may
identify a heuristic that can obtain optimal performance on this dataset - although this is a very extreme
example and more sophisticated methods may be created to identify more subtle patterns. This is in similar
spirit as the results [68] achieved on the bAbI tasks [129] (which we introduced in Section 2.4.2). Such biases
have also been found in other datasets not studied by Kaushik and Lipton [68] from the NLP and Computer
Vision communities [68]. Note that such findings may also be obtained from diagnoses, i.e. if a neural model
mimics the one axiom in the previous example and precisely follows its heuristic after training. Identifying
such issues is especially important in the neural domain, as issues may go unnoticed in neural models that
have inner-workings that are difficult to interpret.

4See https://trec.nist.gov/results.html.

https://trec.nist.gov/results.html


Bibliography

[1] N. Abdul-jaleel, J. Allan, W.B. Croft, O. Diaz, L. Larkey, Xiaoyan Li, M Smucker, and C. Wade. Umass at
trec 2004: Novelty and hard. In In Proceedings of TREC-13, 2004.

[2] W.U. Ahmad, K.-W Chang, and H. Wang. Multi-task learning for document ranking and query sugges-
tion. In The International Conference on Machine Learning, 2018.

[3] M. Almasri, C. Berrut, and J.-P. Chevallet. A comparison of deep learning based query expansion with
pseudo-relevance feedback and mutual information. In European conference on information retrieval,
pages 709–715. Springer, 2016.

[4] E. Amigó, J. Gonzalo, and F. Verdejo. A general evaluation measure for document organization tasks. In
Proceedings of the 36th international ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 643–652. ACM, 2013.

[5] E. Amigo, H. Fang, S. Mizzaro, and C. Zhai. Axiomatic Thinking for Information Retrieval: And Related
Tasks. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1419–1420, 2017.

[6] M. Ariannezhad, A. Montazeralghaem, H. Zamani, and A. Shakery. Improving Retrieval Performance
for Verbose Queries via Axiomatic Analysis of Term Discrimination Heuristic. In Proceedings of the
40th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages
1201–1204, 2017.

[7] T. G. Armstrong, A. Moffat, W. Webber, and J. Zobel. Improvements that don’t add up: ad-hoc retrieval
results since 1998. In Proceedings of the 18th ACM conference on Information and knowledge manage-
ment, pages 601–610, 2009.

[8] J. A. Aslam and M. Montague. Models for metasearch. In Proceedings of the 24th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval, pages 276–284.
ACM, 2001.

[9] R. Baeza-Yates, B.A.N. Ribeiro, et al. Modern information retrieval. New York: ACM Press; Harlow,
England: Addison-Wesley„ 2011.

[10] J.P. Ballantine and A.R. Jerbert. Distance from a line, or plane, to a poin. The American Mathematical
Monthly, 59(4):242–243, 1952.

[11] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of the 26th
annual international conference on machine learning, pages 41–48. ACM, 2009.

[12] F. Borisyuk, K. Kenthapadi, D. Stein, and B. Zhao. Casmos: A framework for learning candidate selection
models over structured queries and documents. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 441–450. ACM, 2016.

[13] G.-I. Brokos. Document reranking with deep learning in information retrieval. Master’s thesis, Athens
University of Economics and Business, 2018.

[14] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for graded relevance. In
Proceedings of the 18th ACM conference on Information and knowledge management, CIKM ’09, pages
621–630, New York, NY, USA, 2009. ACM.

[15] H. Chen, F. X. Han, D. Niu, D. Liu, K. Lai, C. Wu, and Y. Xu. MIX: Multi-Channel Information Crossing
for Text Matching. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 110–119, 2018.

71



72 Bibliography

[16] C.L. Clarke, N. Craswell, and E.M. Voorhees. Overview of the trec 2012 web track. Technical report,
National Institute of Standards and Technology, Gaithersburg MD, 2012.

[17] C. Cleverdon. The cranfield tests on index language devices. In Aslib proceedings, volume 19, pages
173–194. MCB UP Ltd, 1967.

[18] S. Clinchant and E. Gaussier. Is document frequency important for PRF? In Conference on the Theory
of Information Retrieval, pages 89–100. Springer, 2011.

[19] S. Clinchant and E. Gaussier. A theoretical analysis of pseudo-relevance feedback models. In Proceed-
ings of the 2013 Conference on the Theory of Information Retrieval, page 6, 2013.

[20] D. Cohen, J. Foley, H. Zamani, J. Allan, and W.B. Croft. Universal approximation functions for fast
learning to rank: Replacing expensive regression forests with simple feed-forward networks. In The
41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pages
1017–1020. ACM, 2018.

[21] D. Cohen, B. O’Connor, and W. B. Croft. Understanding the Representational Power of Neural Retrieval
Models Using NLP Tasks. In Proceedings of the 2018 ACM SIGIR International Conference on Theory of
Information Retrieval, ICTIR ’18, pages 67–74, 2018.

[22] D. Cohen, L. Yang, and W.B. Croft. WikiPassageQA: A Benchmark Collection for Research on Non-
factoid Answer Passage Retrieval. In The 41st International ACM SIGIR Conference on Research & De-
velopment in Information Retrieval, SIGIR ’18, pages 1165–1168, 2018.

[23] F. Colace, M. De Santo, L. Greco, and P. Napoletano. Improving relevance feedback-based query expan-
sion by the use of a weighted word pairs approach. Journal of the Association for Information Science
and Technology, 66(11):2223–2234, 2015.

[24] K. Collins-Thompson, P. Bennett, F. Diaz, C.L. Clarke, and E.M. Voorhees. Trec 2013 web track overview.
2014.

[25] K. Collins-Thompson, C. Macdonald, P. Bennett, F. Diaz, and E.M. Voorhees. Trec 2014 web track
overview. Technical report, Michigan University, Ann Arbor, 2015.

[26] M. Crane. Questionable answers in question answering research: Reproducibility and variability of
published results. Transactions of the Association of Computational Linguistics, 6:241–252, 2018.

[27] N. Craswell, D. Fetterly, and M. Najork. Microsoft research at trec 2010 web track. In TREC, 2010.

[28] N. Craswell, W.B. Croft, M. de Rijke, J. Guo, and B. Mitra. SIGIR 2017 Workshop on Neural Information
Retrieval (Neu-IR’17). In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1431–1432, 2017.

[29] N. Craswell, W.B Croft, M. de Rijke, J. Guo, and B. Mitra. Report on the Second SIGIR Workshop on
Neural Information Retrieval (Neu-IR’17). In ACM SIGIR Forum, volume 51, pages 152–158, 2018.

[30] J.S. Culpepper, F. Diaz, and M.D. Smucker. Research frontiers in information retrieval: Report from the
third strategic workshop on information retrieval in lorne (swirl 2018). In ACM SIGIR Forum, volume 52,
pages 34–90. ACM, 2018.

[31] Z. Dai, C. Xiong, J. Callan, and Z. Liu. Convolutional neural networks for soft-matching n-grams in
ad-hoc search. In Proceedings of the eleventh ACM international conference on web search and data
mining, pages 126–134. ACM, 2018.

[32] R. Datta, D. Joshi, J. Li, and J.Z. Wang. Image retrieval: Ideas, influences, and trends of the new age.
ACM Computing Surveys (Csur), 40(2):5, 2008.

[33] C. De Boom, S. Van Canneyt, T. Demeester, and B. Dhoedt. Representation learning for very short texts
using weighted word embedding aggregation. Pattern Recognition Letters, 80:150–156, 2016.

[34] S. De Cnudde, D. Martens, F. Provost, et al. An exploratory study towards applying and demystifying
deep learning classification on behavioral big data. Technical report, 2018.



Bibliography 73

[35] M. Dehghani, H. Zamani, A. Severyn, J. Kamps, and W.B. Croft. Neural ranking models with weak super-
vision. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 65–74. ACM, 2017.

[36] F. Diaz and D. Metzler. Improving the estimation of relevance models using large external corpora. In
Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 154–161. ACM, 2006.

[37] L. Dietz, M. Verma, F. Radlinski, and N. Craswell. Trec complex answer retrieval overview. In Proceedings
of TREC, 2017.

[38] Y. Fan, L. Pang, J. Hou, J. Guo, Y. Lan, and X. Cheng. MatchZoo: A Toolkit for Deep Text Matching. arXiv
preprint arXiv:1707.07270, 2017.

[39] H. Fang. A re-examination of query expansion using lexical resources. proceedings of ACL-08: HLT,
pages 139–147, 2008.

[40] H. Fang and C. Zhai. An exploration of axiomatic approaches to information retrieval. In Proceedings
of the 28th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 480–487, 2005.

[41] H. Fang and C. Zhai. Semantic term matching in axiomatic approaches to information retrieval. In
Proceedings of the 29th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 115–122, 2006.

[42] H. Fang, T. Tao, and C. Zhai. A formal study of information retrieval heuristics. In Proceedings of the
27th annual international ACM SIGIR conference on Research and development in information retrieval,
pages 49–56, 2004.

[43] H. Fang, T. Tao, and C. Zhai. Diagnostic evaluation of information retrieval models. ACM Transactions
on Information Systems (TOIS), 29(2):7, 2011.

[44] N. Fuhr. Optimum polynomial retrieval functions based on the probability ranking principle. ACM
Transactions on Information Systems (TOIS), 7(3):183–204, 1989.

[45] K. Fukushima. Neural network model for a mechanism of pattern recognition unaffected by shift in
position-neocognitron. IEICE Technical Report, A, 62(10):658–665, 1979.

[46] K. Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.

[47] A. Gonzalez, I. Augenstein, and A. Søgaard. A strong baseline for question relevancy ranking. In Pro-
ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4810–
4815, 2018.

[48] J. Guo, Y. Fan, Q. Ai, and W.B. Croft. A deep relevance matching model for ad-hoc retrieval. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowledge Management, pages
55–64, 2016.

[49] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W.B. Croft, and X. Cheng. A deep look into
neural ranking models for information retrieval. arXiv preprint arXiv:1903.06902, 2019.

[50] Y. Gupta, A. Saini, and A.K. Saxena. A review on important aspects of information retrieval.

[51] I. Guy. Searching by talking: Analysis of voice queries on mobile web search. In Proceedings of the
39th International ACM SIGIR conference on Research and Development in Information Retrieval, pages
35–44. ACM, 2016.

[52] M. Hagen. Axiomatic result re-ranking. 2017.

[53] M. Hagen, M. Völske, S. Göring, and B. Stein. Axiomatic result re-ranking. In Proceedings of the 25th
ACM International on Conference on Information and Knowledge Management, pages 721–730, 2016.



74 Bibliography

[54] C. Hauff. Neural ir. Delft University of Technology, Information Retrieval, IN4325, 2018.

[55] H. Hazimeh and C. Zhai. Axiomatic analysis of smoothing methods in language models for pseudo-
relevance feedback. In Proceedings of the 2015 international conference on the theory of information
retrieval, pages 141–150. ACM, 2015.

[56] F. Hill, A. Bordes, S. Chopra, and J. Weston. The goldilocks principle: Reading children’s books with
explicit memory representations. arXiv preprint arXiv:1511.02301, 2015.

[57] K. Hofmann et al. Fast and reliable online learning to rank for information retrieval. In SIGIR Forum,
volume 47, page 140, 2013.

[58] B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural
language sentences. In Advances in neural information processing systems, pages 2042–2050, 2014.

[59] K. Hui, A. Yates, K. Berberich, and G. de Melo. Pacrr: A position-aware neural ir model for relevance
matching. arXiv preprint arXiv:1704.03940, 2017.

[60] K. Hui, A. Yates, K. Berberich, and G. de Melo. Co-PACRR: A Context-Aware Neural IR Model for Ad-hoc
Retrieval. In Proceedings of the 11th ACM International Conference on Web Search and Data Mining.
WSDM, volume 18, page 2, 2018.

[61] A.G. Ivakhnenko. The group method of data of handling; a rival of the method of stochastic approxi-
mation. Soviet Automatic Control, 13:43–55, 1968.

[62] A.G. Ivakhnenko. Polynomial theory of complex systems. IEEE transactions on Systems, Man, and
Cybernetics, (4):364–378, 1971.

[63] A.G. Ivakhnenko and V.G. Lapa. Cybernetic predicting devices. CCM Information Corporation, 1965.

[64] A.G. Ivakhnenko and V.G. Lapa. Cybernetics and Forecasting Techniques Modern Analytic and Compu-
tational Method in Science and Mathematics. New York: American Elsevier Publishing Company, Inc,
1967.

[65] R. Jia and P. Liang. Adversarial Examples for Evaluating Reading Comprehension Systems. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2021–2031,
2017.

[66] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C.L. Zitnick, and R. Girshick. CLEVR: A diagnostic
dataset for compositional language and elementary visual reasoning. In Computer Vision and Pattern
Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.

[67] M. Karimzadehgan and C. Zhai. Axiomatic analysis of translation language model for information re-
trieval. In European Conference on Information Retrieval, pages 268–280. Springer, 2012.

[68] D. Kaushik and Z. C. Lipton. How much reading does reading comprehension require? a critical inves-
tigation of popular benchmarks. arXiv preprint arXiv:1808.04926, 2018.

[69] O. Kolomiyets and M.-F. Moens. A survey on question answering technology from an information re-
trieval perspective. Information Sciences, 181(24):5412–5434, 2011.

[70] V. Lavrenko and W.B. Croft. Relevance-based language models. 2001.

[71] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

[72] W. Li, B. Kan, and W. C. Mak. Recurrent neural network language model adaptation derived document
vector. CoRR, abs/1611.00196, 2016.

[73] J. Lin. The neural hype and comparisons against weak baselines. In ACM SIGIR Forum, volume 52,
pages 40–51. ACM, 2019.

[74] C. Lioma, J. Simonsen, and B. Larsen. Evaluation measures for relevance and credibility in ranked lists.
In Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, pages
91–98. ACM, 2017.



Bibliography 75

[75] B. Liu, X. Lu, O. Kurland, and J.S. Culpepper. Improving search effectiveness with field-based relevance
modeling. In Proceedings of the 23rd Australasian Document Computing Symposium, page 11. ACM,
2018.

[76] T.-Y. Liu. Learning to rank for information retrieval. Springer Science & Business Media, 2011.

[77] Y. Lv and C. Zhai. A comparative study of methods for estimating query language models with pseudo
feedback. In Proceedings of the 18th ACM conference on Information and knowledge management,
pages 1895–1898. ACM, 2009.

[78] Y. Lv and C. Zhai. Lower-bounding term frequency normalization. In Proceedings of the 20th ACM
international conference on Information and knowledge management, pages 7–16, 2011.

[79] D.J.C. MacKay and L.C.B. Peto. A hierarchical dirichlet language model. Natural language engineering,
1(3):289–308, 1995.

[80] C. Manning, P. Raghavan, and H. Schütze. Classical and web information retrieval systems: algorithms,
mathematical foundations and practical issues in. Introduction to information retrieval, Cambridge,
2008.

[81] G. Marcus. Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631, 2018.

[82] M.E. Maron and J.L. Kuhns. On relevance, probabilistic indexing and information retrieval. Journal of
the ACM (JACM), 7(3):216–244, 1960.

[83] R. McDonald, G.-I. Brokos, and I. Androutsopoulos. Deep relevance ranking using enhanced
document-query interactions. arXiv preprint arXiv:1809.01682, 2018.

[84] J. Miao, J.X. Huang, and Z. Ye. Proximity-based rocchio’s model for pseudo relevance. In Proceedings
of the 35th international ACM SIGIR conference on Research and development in information retrieval,
pages 535–544. ACM, 2012.

[85] B. Mitra and N. Craswell. Neural Models for Information Retrieval. arXiv preprint arXiv:1705.01509,
2017.

[86] B. Mitra and N. Craswell. An introduction to neural information retrieval. Foundations and Trends in
Information Retrieval (to appear), 2018.

[87] B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed representations of
text for web search. In Proceedings of the 26th International Conference on World Wide Web, pages
1291–1299. International World Wide Web Conferences Steering Committee, 2017.

[88] A. Moffat. Seven numeric properties of effectiveness metrics. In Asia Information Retrieval Symposium,
pages 1–12. Springer, 2013.

[89] A. Montazeralghaem, H. Zamani, and A. Shakery. Axiomatic analysis for improving the log-logistic
feedback model. In Proceedings of the 39th International ACM SIGIR conference on Research and Devel-
opment in Information Retrieval, pages 765–768, 2016.

[90] S.-H. Na. Two-stage document length normalization for information retrieval. ACM Transactions on
Information Systems (TOIS), 33(2):8, 2015.

[91] F. Nanni, B. Mitra, M. Magnusson, and L. Dietz. Benchmark for complex answer retrieval. In Proceedings
of the ACM SIGIR international conference on theory of information retrieval, pages 293–296. ACM, 2017.

[92] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng. Ms marco: A human
generated machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

[93] Y. Nie, Y. Li, and J.-Y. Nie. Empirical Study of Multi-level Convolution Models for IR Based on Represen-
tations and Interactions. In Proceedings of the 2018 ACM SIGIR International Conference on Theory of
Information Retrieval, ICTIR ’18, pages 59–66, 2018.

[94] R. Nogueira and K. Cho. Passage re-ranking with bert. arXiv preprint arXiv:1901.04085, 2019.



76 Bibliography

[95] K.D. Onal, Y. Zhang, I.S. Altingovde, M.M. Rahman, P. Karagoz, A. Braylan, B. Dang, H.-L. Chang, H. Kim,
Q. McNamara, et al. Neural information retrieval: At the end of the early years. Information Retrieval
Journal, 21(2-3):111–182, 2018.

[96] L. Pang, Y. Lan, J. Guo, J. Xu, S. Wan, and X. Cheng. Text Matching as Image Recognition. In AAAI, pages
2793–2799, 2016.

[97] L. Pang, Y. Lan, J. Guo, Jun Xu, and X. Cheng. A study of matchpyramid models on ad-hoc retrieval.
arXiv preprint arXiv:1606.04648, 2016.

[98] L. Pang, Y. Lan, J. Guo, J. Xu, and X. Cheng. A deep investigation of deep ir models. arXiv preprint
arXiv:1707.07700, 2017.

[99] L. Pang, Y. Lan, J. Guo, J. Xu, J. Xu, and X. Cheng. Deeprank: A new deep architecture for relevance
ranking in information retrieval. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 257–266, 2017.

[100] J. Parapar and A. Barreiro. Promoting divergent terms in the estimation of relevance models. In Con-
ference on the Theory of Information Retrieval, pages 77–88. Springer, 2011.

[101] T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research on learning to rank for
information retrieval. Information Retrieval, 13(4):346–374, 2010.

[102] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad: 100,000+ questions for machine comprehension
of text. arXiv preprint arXiv:1606.05250, 2016.

[103] J. Rao, W. Yang, Y. Zhang, F. Ture, and J. Lin. Multi-Perspective Relevance Matching with Hierarchical
ConvNets for Social Media Search. arXiv preprint arXiv:1805.08159, 2018.

[104] D. Rennings, F. Moraes, and C. Hauff. An axiomatic approach to diagnosing neural ir models. In Ad-
vances in Information Retrieval, pages 489–503. Springer International Publishing, 2019. ISBN 978-3-
030-15712-8.

[105] S.E. Robertson. The probability ranking principle in ir. Journal of documentation, 33(4):294–304, 1977.

[106] S.E. Robertson and K.S. Jones. Relevance weighting of search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976.

[107] S.E. Robertson, S. Walker, S. Jones, M.M. Hancock-Beaulieu, M. Gatford, et al. Okapi at trec-3. Nist
Special Publication Sp, 109:109, 1995.

[108] C. Rosset, B. Mitra, C. Xiong, N. Craswell, X. Song, and S. Tiwary. An axiomatic approach to regularizing
neural ranking models. In Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval (to appear). ACM, April 2019.

[109] R.K. Saha, M. Lease, S. Khurshid, and D.E. Perry. Improving bug localization using structured infor-
mation retrieval. In 2013 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 345–355. IEEE, 2013.

[110] G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information process-
ing & management, 24(5):513–523, 1988.

[111] M. Sanderson and W.B. Croft. The history of information retrieval research. Proceedings of the IEEE,
100(Special Centennial Issue):1444–1451, 2012.

[112] M. Sanderson et al. Test collection based evaluation of information retrieval systems. Foundations and
Trends® in Information Retrieval, 4(4):247–375, 2010.

[113] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117, 2015.

[114] S. Shi, J.-R. Wen, Q. Yu, R. Song, and W.-Y. Ma. Gravitation-based model for information retrieval. In
Proceedings of the 28th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 488–495, 2005.



Bibliography 77

[115] I. Soboroff. A comparison of pooled and sampled relevance judgments in the trec 2006 terabyte track.
In EVIA@ NTCIR, 2007.

[116] I. Soboroff, N. Craswell, C. L. Clarke, and G. Cormack. Overview of the trec 2011 web track. Technical
report, 2011.

[117] M. Sokolova. Assessing invariance properties of evaluation measures. In Proceedings of the Workshop
on Testing of Deployable Learning and Decision Systems, the 19th Neural Information Processing Systems
Conference (NIPS 2006), 2006.

[118] K. Spark-Jones. Report on the need for and provision of an’ideal’information retrieval test collection.
Computer Laboratory, 1975.

[119] T. Strohman, D. Metzler, H. Turtle, and W.B. Croft. Indri: A language model-based search engine for
complex queries. In Proceedings of the International Conference on Intelligent Analysis, volume 2, pages
2–6, 2005.

[120] Z. Tang and G.H. Yang. Deeptilebars: Visualizing term distribution for neural information retrieval.
arXiv preprint arXiv:1811.00606, 2018.

[121] T. Tao and C. Zhai. An exploration of proximity measures in information retrieval. In Proceedings of the
30th annual international ACM SIGIR conference on Research and development in information retrieval,
pages 295–302, 2007.

[122] S. Teufel. An overview of evaluation methods in trec ad hoc information retrieval and trec question
answering. In Evaluation of text and speech systems, pages 163–186. Springer, 2007.

[123] C. Van Gysel, M. de Rijke, and E. Kanoulas. Semantic entity retrieval toolkit. arXiv preprint
arXiv:1706.03757, 2017.

[124] E.M. Voorhees. The philosophy of information retrieval evaluation. In Workshop of the cross-language
evaluation forum for european languages, pages 355–370. Springer, 2001.

[125] E.M. Voorhees. The trec robust retrieval track. In ACM SIGIR Forum, volume 39, pages 11–20. ACM,
2005.

[126] S. Wan, Y. Lan, J. Guo, J. Xu, L. Pang, and X. Cheng. A Deep Architecture for Semantic Matching with
Multiple Positional Sentence Representations. In AAAI, volume 16, pages 2835–2841, 2016.

[127] S. Wan, Y. Lan, J. Xu, J. Guo, L. Pang, and X. Cheng. Match-srnn: Modeling the recursive matching
structure with spatial rnn. arXiv preprint arXiv:1604.04378, 2016.

[128] M. Wang, N.A. Smith, and T. Mitamura. What is the jeopardy model? a quasi-synchronous grammar for
qa. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (EMNLP-CoNLL), 2007.

[129] J. Weston, A. Bordes, S. Chopra, A.M. Rush, B. van Merriënboer, A. Joulin, and T. Mikolov. Towards
ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

[130] H.C. Wu, R.W.P. Luk, K.-F. Wong, and K.L. Kwok. A retrospective study of a hybrid document-context
based retrieval model. Information processing & management, 43(5):1308–1331, 2007.

[131] C. Xiong, Z. Dai, J. Callan, Z. Liu, and R. Power. End-to-end neural ad-hoc ranking with kernel pool-
ing. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 55–64. ACM, 2017.

[132] B. Xu, H. Lin, Y. Lin, L. Yang, and K. Xu. Improving pseudo-relevance feedback with neural network-
based word representations. IEEE Access, 6:62152–62165, 2018.

[133] L. Yang, Q. Ai, J. Guo, and W.B. Croft. aNMM: Ranking short answer texts with attention-based neu-
ral matching model. In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pages 287–296, 2016.



78 Bibliography

[134] Y. Yang, W.-T. Yih, and C. Meek. WikiQA: A challenge dataset for open-domain question answering. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 2013–
2018, 2015.

[135] Z. Yang, Q. Lan, J. Guo, Y. Fan, X. Zhu, Y. Lan, Y. Wang, and X. Cheng. A Deep Top-K Relevance Matching
Model for Ad-hoc Retrieval. In China Conference on Information Retrieval, pages 16–27, 2018.

[136] W.-T. Yih, K. Toutanova, J.C. Platt, and C. Meek. Learning discriminative projections for text similarity
measures. In Proceedings of the fifteenth conference on computational natural language learning, pages
247–256. Association for Computational Linguistics, 2011.

[137] W. Yin and H. Schütze. Multigrancnn: An architecture for general matching of text chunks on multiple
levels of granularity. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), volume 1, pages 63–73, 2015.

[138] H. Zamani and W.B. Croft. On the theory of weak supervision for information retrieval. In Proceedings of
the 2018 ACM SIGIR International Conference on Theory of Information Retrieval, pages 147–154. ACM,
2018.

[139] H. Zamani, W.B. Croft, and J.S. Culpepper. Neural query performance prediction using weak supervi-
sion from multiple signals. In The 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 105–114. ACM, 2018.

[140] C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to ad hoc informa-
tion retrieval. In Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, pages 334–342, New York, NY, USA, 2001. ACM. ISBN
1-58113-331-6.

[141] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification. In
Advances in neural information processing systems, pages 649–657, 2015.

[142] L. Zighelnic and O. Kurland. Query-drift prevention for robust query expansion. In Proceedings of the
31st annual international ACM SIGIR conference on Research and development in information retrieval,
pages 825–826. ACM, 2008.

[143] B. Zoph and Q.V. Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.



A
Hyper-parameter Tuning

A.1. Traditional Models on WikiPassageQA
An overview of the tested parameters per model employed in the tuning process conducted for the WikiPassageQA
dataset is displayed in Table A.1.

model parameter tested values

BM25
k1 {0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0}
b {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0}
k3 {1,2,3,4,5,6,7,8,9,10,20}

QL µ {1,2,3,4,5,6,7,8,9,10,25,50,75,100,250,500,750,1000,2000,3000,4000,5000}

RM3

µ {100,750,3000}
f bDocs {5,10,25,50}
f bTer ms {50,100,500}
f bMu {100,750,3000}
f bOr i gW ei g ht {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

Table A.1: Parameter values per model as adopted in the parameter tuning process, all combinations of the listed parameter values were
tested on the train and dev splits of the WikiPassageQA dataset.

A.2. Traditional Models on MSMarco
An overview of the tested parameters per model employed in the tuning process conducted for the MSMarco
dataset is displayed in Table A.2.

model parameter tested values

BM25
k1 {0.6,0.9,1.2,1.5,1.8}
b {0.25,0.50,0.75,1.00,1.25}
k3 {1,3,7,10}

QL µ {1,2,3,4,5,6,7,8,9,10,25,50,75,100,250,500,750,1000,2000,3000,4000,5000}

RM3

µ {10,1000,2500,3000}
f bDocs {5,10,20}
f bTer ms {50,100,500}
f bMu {10,100,2500,3000}
f bOr i gW ei g ht {0.3,0.6,0.9}

Table A.2: Parameter values per model as adopted in the parameter tuning process, all combinations of the listed parameter values were
tested on the train and dev splits of the (subset of the) MSMarco dataset.
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B
Detailed Results

B.1. Retrieval Models on WikiPassageQA and MSMarco
B.1.1. WikiPassageQA
An overview of the obtained retrieval effectiveness and axiomatic performances for theWikiPassageQAdataset
rounded to four decimals of both the traditional and neural IR models employed in this work is displayed in
Table B.1.

B.1.2. MSMarco
An overview of the obtained retrieval effectiveness and axiomatic performances for the MSMarco dataset
rounded to four decimals of both the traditional and neural IR models employed in this work is displayed
in Table B.2.

B.2. Duet with Training Data Augmentation on WikiPassageQA
An overview of the obtained retrieval effectiveness and axiomatic performances for the various training data
augmentation strategies for Duet on the WikiPassageQA dataset rounded to four decimals is displayed in
Table B.3.
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84 B. Detailed Results

Retrieval effectiveness Performance per axiom
Training data MAP MRR P@5 TFC1 TFC2 M-TDC
1 answers 0.24722 0.28772 0.09712 0.6949 0.55512,3,4 0.4757
2 answers + TFC1mul ti -g r aded 0.1989 0.2244 0.0705 0.75501,4 0.49864 0.4941
3 answers + TFC1pai r ed ,1:1 0.26902 0.30882 0.10052 0.81081,2,4 0.54392,4 0.51431,2

4 answers + TFC1pai r ed ,1:1,δ∗≤0.1 0.26152 0.31092 0.10392 0.70321 0.4929 0.50921

Table B.3: Overview of retrieval effectiveness and fraction of fulfilled axiom instances for the Duet model trained on the original and
augmented versions of the WikiPassageQA dataset. For measuring statistical significance, we employed the Wilcoxon test and

McNemar test with p < 0.05 on respectively measures for retrieval effectiveness and axiomatic performance.
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