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Abstract
The heart is one of our vital organs. It functions by periodically contracting in a characteristic rhythmic
way. It can occur, that this rhythmic behaviour is distorted, disrupted or otherwise affected by abnor-
malities in the tissue. These conditions are consequently referred to as cardiac arrhythmias. One kind
is of specific interest, called atrial fibrillation (AF). Cardiac arrhythmias are often harmless, but can
potentially be fatal. To further study AF, methods have been developed to estimate the conductivity
of cardiac cells based on the measured electrical signals. These problems are said to be ill-posed. In
addition, other parameters besides the conductivity are involved which have to be estimated jointly
or assumed to be known otherwise. The goal of this project was to consider in particular one of the
parameters in the electrogram (EGM) model: the sensor-to-cell height. The foremost effect of this
height is the spatial low-pass filtering effect it applies on data received by the sensors.

First, we studied the effect of the height as a parameter in the model when used for conductivity
estimation. To that end, a detector was built with which we can explain the effect of all involved
parameters on the ability to accurately estimate any parameters of interest. From the results, it can be
concluded that as the height decreases, decisions made using the detector become more accurate.

In addition, we considered the case where the height is unknown and is estimated, thus possibly
including estimation errors. The focus was on the consequences of making errors in the estimation
of the height with respect to conduction block detection and conductivity estimation. Specifically, an
underestimate of the height will increase the threshold in the conduction block detector, making it easier
to detect conduction blocks, and low conductivity values are drawn to the sensor. For overestimation of
the height, the opposite holds true, as well as high conductivity values are drawn to the sensor, resulting
in the suppression of blocks in the vicinity of sensor locations.

Lastly, the effort was made to estimate the height. Here, the optimisation problem of height esti-
mation was formalised and derived as its implementable form. Important to note is that in this case,
a simplified EGM model was assumed in order to mimic and estimate cell-specific effects, i.e. the cell
conductivities. Then, the height was estimated in various situations to study its behaviour and perfor-
mance under different conditions. It was seen that as the average height increases, it becomes harder
to obtain good estimates of the height map and the diffusive current weights. If we instead increase
the maximum amplitude of the height, the error gets larger as well. We also tested for different spatial
frequencies of the height map, with higher spatial frequencies resulting in larger errors. The error also
seems to depend on how much variations in the height coincide with conductivity blocks. Lastly, the
height was constrained using the average estimated height in a certain area. It was seen that the error
decreases slightly with the increase of the area size.
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1
Introduction

The heart is one of our vital organs, with pumping blood through the body as its main function.
Specifically, it pumps oxygenated blood from the lungs to the rest of the body and deoxygenated blood
the other way around. The heart functions by periodically contracting in a specific pattern, giving rise
to a characteristic rhythmic behaviour. A single contraction is called a heartbeat, with the amount of
contractions per time unit being the heart rate, often measured in beats per minute (bpm). Depending
on the person and context, this heart rate can be fast or slow, but generally, all hearts show a likewise
periodic and rhythmic behaviour.

It can occur, however, that this rhythmic behaviour is distorted, disrupted or otherwise affected.
Abnormalities in the heart tissue can cause the heart to behave irregularly. This is because the rhythmic
behaviour is governed by electrical signals, which are generated by the heart itself. The electrical signals
propagate across the heart in a certain fixed manner, specifically from the top-right to the bottom-left
of the heart. As these signals propagate across the heart, they activate the cardiac muscle tissue, which
contracts as a consequence.

Abnormalities in the tissue might present themselves as areas of reduced conductivity. A reduction
in the tissue conductivity can alter the electrical pathways of the tissue, which causes changes in the
rhythmic behaviour of the heart. These conditions are consequently referred to as cardiac arrhythmias.

Cardiac arrhythmias can be caused by several means, including viral infections and hormonal in-
stabilities like thyroitoxycosis [1]. Arrhythmias can be classified based on how regularly they occur,
how they affect the heart rate, and their origin. Of the several types of cardiac arrhythmia, one will
be of specific interest in this thesis, which is atrial fibrillation (AF). As the name suggests, this set of
arrhythmias originates from disruptions of the electrical activity located in the atrial tissue of the heart.

AF can be categorised by its duration [2]. The first category is paroxysmal, in which the AF
terminates on its own within seven days. The second is persistent, in which the AF terminates after
seven days or has to be terminated by means of pharmacological or direct current cardioversion, meaning
an electrical reset of the heart. The third is long-standing persistent, similar to persistent with a duration
of more than twelve months. Lastly, there is permanent AF, which remains indefinitely.

Cardiac arrhythmias, like AF, can potentially be fatal. Specifically, AF can result a five-fold risk of
a stroke [3], making it the most common cause of embolisms or blood clots [2], of which around 75%
end up in the brain area. It is also the most common cardiovascular disease and age-related arrhythmia,
presenting itself in 1-3% of the world population [2]. AF is mostly seen in elderly people and is found
to be a major cause of morbidity and mortality in this group. This fact that it presents itself in 15% of
the people with an age above 70, an amount expected to double with each passing decade [4].

To further study AF, methods have been developed to estimate the conductivity of cardiac cells
using epicardial electrograms, or EGMs in short. These inverse problems are generally ill-posed due to
the low amount of measurements with respect to the large amount of cells. In addition, other parameters
besides the conductivity are involved which have to be estimated jointly or assumed otherwise.

The goal of this project is to consider one of these parameters in the EGM model: the sensor-to-cell
height. This height is defined as the distance of sensors to the cells with respect to the cellular and
sensory grids. Specifically, the goals of this project are to investigate the following questions:
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2 Chapter 1. Introduction

1. What is the effect of the sensor-to-cell height on the EGM measurements, conduction block de-
tection and conductivity estimation?

2. What is the effect of sensor-to-cell height estimation errors on the EGM, conduction block detec-
tion and conductivity estimation?

3. How and to what extend can the sensor-to-cell height be estimated?

The structure of the rest of the report is as follows. In Chapter 2, more in-depth background
information is provided. The context of the project is more thoroughly explained and related previous
research is summarised. Chapter 3 is composed of an analytical study of the effect of the sensor-to-cell
height on the EGM model and conductivity estimation within the context of the environment that is
generally assumed in prior research. In Chapter 4, the effect of making estimation errors in the height
will be analysed and tried to be confirmed by means of experimental data based on simulations. Then,
an attempt is made in Chapter 5 to design and implement an algorithm which estimates the sensor-to-
cell height in cases where the height is unknown. Finally, the report is finished with some concluding
thoughts in Chapter 6.



2
Background information

2.1. Physiology
2.1.1. Structural overview
The heart is one of a person’s vital organs. It can be described as a piece of muscular tissue about the
size of a person’s fist, located slightly to the left of the centre within the upper torso or chest area. The
function of the heart is to pump the blood from a person’s body through their circulatory systems: the
deoxygenated blood from our body to the lungs and the oxygenated blood the other way. The heart
therefore plays a key role in supplying a person’s body with oxygen.

The heart is, among other kinds, made up of cardiac muscle tissue, which is a kind of muscle unique
to the heart. The heart furthermore consists of two upper chambers, the atria, and two two lower
chambers, the ventricles. A schematic representation of the heart is given in Fig. 2.1. The atria and
ventricles are pockets made out of cardiac muscle tissue that fill up with blood after which they eject
it into the circulatory systems. The atria and ventricles can functionally be divided into two disjoint
sets of one atrium and ventricle each. One of the sets pumps blood from the body to the lungs and the
other does so the other way around.

2.1.2. The cardiac cycle
During the circulatory process, both atria are filled up with blood, with either oxygenated blood from
the lungs or deoxygenated blood from the body. The atria then contract and pump the blood into their
respective ventricles, which then contract shortly hereafter to pump the blood out of the heart into the
body, followed by a short resting period. This set of actions is repeated periodically and is referred to as
a single cardiac cycle or heartbeat. The amount of heartbeats within a certain time frame is regarded
as a person’s heart rate, which is often measured in cycles per minute or beats per minute (bpm). Adult
humans are said to have an average cardiac cycle length of around 0.8 s, corresponding with heart rate
of 75 bpm [2].

2.1.3. Electrical activity of the heart
The heart is a large muscle, parts of which are activated and contract periodically. The underlying
mechanism that ‘powers’ the heart is a system of cells with a relatively high conductivity that are able
to generate and conduct electrical signals, similar to the way neurons propagate neural signals. Special
cells on the heart generate electrical pulses, which then spread out to the various regions of the heart
over time. As soon as this signal reaches a cell, the cell is activated and contracts. In order to enable
for the periodic behaviour of the heart, the electric signals have to follow a certain specifically timed
path across the heart.

At the start of each cardiac cycle, an electrical pulse is generated in the sinoatrial (SA) node, which
is located on top of the right atrium. The signal then propagates to the left atrium through Bachmann’s
bundle, and to the atrioventricular (AV) node, located between the atria and ventricles. There, the
electric pulse experiences a brief delay, after which it is propagated further down to the ventricles. The
delay imposed by the AV node causes the ventricles to contract slightly after the atria. Important to
note is that, due to the high conductivity of the cells it consists of, the delay imposed by Bachmann’s
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4 Chapter 2. Background information

Figure 2.1: Schematic of the structure of the human heart [5].

bundle can be neglected, meaning that both atria effectively contract at the same time. A schematic
overview of the heart’s main conductive systems is given in Fig. 2.2.

The electrical pulse that propagates across the heart can do so due to the changes in the transmem-
brane voltages of the cardiac cells. The transmembrane voltage of a single cell over time is referred to
as the action potential (AP) of each cell, which has a particularly recognisable shape. The signal starts
at its resting potential, followed by a depolarisation of the signal. The depolarisation is followed by a
plateau, after which the signal repolarises to the resting potential. An example is shown in Fig. 2.3.
After a cell is activated, it takes some time for a cell to be able to activate again. This is called the
refractory period. This way of propagation is similar to how signals propagate in and between neural
cells. Also, APs measured at different locations on the heart can have different shapes.

2.1.4. Measuring the electrical activity of the heart
There lies a lot of interest in understanding the electrical activity of the heart. Fortunately, there
are some ways, one more conventional than the other, to measure and study the electric signals that
originate from the heart. Either this is done in a non-invasive way with electrocardiography, or an
invasive one called epicardial electrography.

Electrocardiography
Electrocardiography is probably the most popular way to study the electrical activity of the heart. It
is a relatively simple method, non-invasive and has no necessary need for expensive equipment.

This method calls for a set of electrodes to be placed upon a person’s body surface. These electrodes
then measure the electrical signals generated by the heart. The received electrical signal over time is
then called an electrocardiogram (ECG or EKG). For official diagnoses, a special configuration is often
used called the 12-lead ECG, for which 12 electrodes are placed on the body such that the signals they
receive have less correlation, thus yielding a wider range of information on the condition of the heart
[1].

The signals received by electrodes often exhibit similar features for each different person, giving the
waveform a characteristic shape.

Electrography
Another way of measuring electric signals from the heart is through the use of sensor arrays with high
spatial and temporal resolutions, which are placed directly on the surface of the heart during open heart
surgery [8]. This method called electrography, exceeds conventional electrocardiography in the sense
that the received data, called the electrogram (EGM), provides more detailed information on the more
local features of the electrical activity. Due to the high spatio-temporal resolution of the EGM, more



2.1. Physiology 5

Figure 2.2: Schematic of the electrical conduction system of the human heart [6].

Figure 2.3: Example of a standard atrial AP (top) and ECG (bottom) [7].
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information is gathered on particular parts of the heart, as opposed to an ECG, which mostly provides
information on the heart as a whole. The process of acquiring EGMs specifically of the atria of the
heart is often referred to as atrial mapping.

Although EGMs grant us the possibility of a more in-depth study of the heart, it remains hard to
conduct thorough research related to the subject. This is because there is a lack of reference data, due
to the fact that EGMs can only be measured under certain conditions during open heart surgery, which
is a highly invasive kind of surgery.

The sinus rhythm
As mentioned before, the ECG signals received by electrodes have a certain characteristic behaviour.
This is the consequence of each ECG being a sum of the activity of the whole heart over time, thus
combining the activity of several regions of the heart. An example of a single cardiac cycle is shown
in Fig. 2.3. It is seen that the wave consists of the P-wave, representing the activity in the atria; the
QRS-complex, representing the activity during the depolarisation of the ventricles, and the T-wave,
representing the repolarisation of the ventricles [2]. This characteristic waveform is referred to as the
sinus rhythm of the human heart. Comparing it to the AP of a cardiac cell, see Fig. 2.3, it can be
seen how some features of both signals coincide with each other. Deviations from the characteristic
waveform often provide important diagnostic information in the detection of heart disorders.

Electrode configurations
With an EGM, more localised information of the electrical activity of the heart is obtained, thus allowing
the identification and distinction between signals originating from specific regions of the heart. EGM
signals also have a certain shape, represented by a flat line, followed by a sharp peak, a sharp deflection
and followed again by a flat line. This is explained by how for a single or unipolar electrode, the
potential rises as an electrical pulse or wave approaches an electrode. As the pulse or wave passes the
electrode, the polarity of the measured potential flips and the signal decays back to the reference level.
A schematic representation of this process is shown in Fig. 2.4a.

As opposed to unipolar measurements, where each measurement site consists of a single electrode,
there is also a second configuration referred to as bipolar measurements, which is more commonly used.
With this setup, two electrodes are used to measure the potential at a single location. The resulting
signal is then taken as the difference between the measurements of the two electrodes, which, if located
close enough to each other, can be seen as a high-pass filter or differential operator acting on what
would have been the unipolar signal received at the measurement site. The difference between the
unipolar signal and its bipolar counterpart is shown in Fig. 2.4b. An advantage of this setup is that
the measurements are affected less by any far-field activity, often in the context of far-field ventricular
activity affecting local atrial activity. A disadvantage is that the setup is highly dependent on the
direction and speed of the incident wavefront. For example, in the case the wavefront propagates in a
direction perpendicular to the line of electrodes, no potential would be measured. The distance between
the electrodes and the strength distribution of the potential in space can also affect the measurements
[2].

2.1.5. Atrial fibrillation
ECGs and EGMs can provide plenty of information on the electrical activity of the heart. This is
particularly useful for studying the general behaviour of the heart, as well as for providing information
that can be used to identify faults or disorders of the heart related to its electrical activity. These
disorders, which are the result of abnormalities in the conductive system of the heart, disrupt the
signals that propagate across the heart, causing deviations from its standard rhythmic behaviour. These
disorders are referred to as cardiac arrhythmia. These arrhythmias can differ in severity, ranging from
totally harmless to outright fatal, the latter case often resulting in things like a blood clot, stroke or
cardiac arrest. Cardiac arrhythmias can be caused by several means, including viral infections and
hormonal instabilities like thyroitoxycosis [1]. Arrhythmias can also be classified based on how they
regularly they occur, how they affect the heart rate, and their origin. Of the several types of cardiac
arrhythmia, one kind will be of interest, called atrial fibrillation (AF). As the name would suggest, this
set of arrhythmias finds it origin in disruptions of the electrical activity located near the atria.
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(a) Example of an EGM waveform generated by an
electrical pulse passing a unipolar electrode [9].

(b) Schematic example of the difference between unipolar
and bipolar measurements [10].

Figure 2.4: Schematic representations of (a) how unipolar electrograms are measured and (b) the difference between
unipolar and bipolar measurements.

Categories
AF is often categorised based on how long it persists within a patient. Herein, there are four categories:
paroxysmal, in which the AF terminates on its own within seven days; persistent, in which the AF
terminates after seven days or has to be terminated by means of pharmacological or direct current
cardioversion, meaning an electrical reset of the heart; long-standing persistent, similar to persistent
with a duration of more than twelve months, and permanent AF [2].

Causes and underlying mechanisms
In the past, people have tried to identify the underlying mechanisms which initiate and maintain AF in
the heart. These mechanisms can be seen at different scales. On a larger scale, AF seems to be correlated
with the rapid firing of electrical pulses from the pulmanory veins of the heart, as well as with increased
amounts of fibrous tissue and enlarged atria. On a much smaller scale, the mechanisms are related to
the way the electrical signals are propagated through tissue. Due to the spatial organisation of the
tissue, abnormalities in the signal propagation are introduced in the form of ectopic foci, rotors, reentry
of signals, breakthrough from neighbouring tissue layers and the maintenance of multiple short-lived
wavelets [2].

Ectopic foci are points in the tissue which spontaneously fire electric signals, which interfere with
the sinus rhythm. Reentry is when an electric signal follows a circular path in the tissue in which it
fails to die out. Rotors are similar to this as regions of functional reentry, but these are active drivers
of AF. Breakthroughs happen when a signal from one tissue layer propagates to another, introducing
an aberrant electrical source. As the electrical signals move across the heart, they can break up due
to inconsistencies in the tissue. This causes for wavefronts to break up. These wavefronts can interact
with each other, and potentially interfere with the electrical pathways of the heart [2].

Development and progression
AF is often associated with cases of fibrosis or abnormal growth of the cardiac muscle tissue. Structural
changes in or damage to the cardiac tissue are pointed out to be the initial cause of AF and are
represented by areas of slow conductivity or conductivity blocks, or more generally as the impairment
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of electrical conduction. These structural changes in the heart are referred to as the electropathology
of the heart. AF itself also affects the electropathology of the heart, i.e., resulting in a shortening of
the refractory period of cardiac cells. This means that the more time spent in fibrillation, the higher
the pulse frequency becomes [2].

All in all it seems that the answer to the problem that is AF lies in analysing the condition of
the hearts of people suffering from AF. More specifically, in that of the cells, as well as the electrical
properties of those cells. It gives rise to the need of determining the hidden underlying parameters
governing the electrical behaviour of these cells, such as the conductivity, anisotropy and heterogeneity
of the tissue.

The conductivity of cells is related to their ability to transport charge across the membrane of the
cells and can be derived from how an electric potential propagates across the membrane, which in its
turn is related to the flow of ions through the cell membrane. The problem of finding the cell parameters
is therefore presented as an inverse problem using the data acquired with atrial mapping and is regarded
as highly ill-posed, due to the difference between the amount of cells and sensors [2]. This the reason
why, up until recently, no suitable methods of solving this problem have been presented yet.

Treatment
There are currently no permanent solutions and cure for AF. The most common way to deal with AF
is through the use of medication. In more serious cases, non-surgical methods are used to influence the
heart, such as the aforementioned cardioversion, which can be seen as a ’reset’ of the heart. Cardiover-
sion has proved to be effective, although it loses its effect over time. Another way, which maintains its
effect for a longer time, is through ablation. With ablation, cardiac cells which are thought to be the
cause of the AF are burned away, creating scar tissue. Ablation is not a very exact way of dealing with
AF, since it is often not clear which cells play a role in AF. Therefore, general ablation techniques have
been agreed on to treat the heart like pulmanory veins isolation, AV node ablation, linear ablation and
electrogram-guided ablation [2]. Ablation is still not very effective, with the AF returning within five
years in around 50% of the cases. More surefire ways of dealing with AF are through surgical means
like the use of a pacemaker or through open-heart surgery, although this is generally not preferred due
to it being invasive and very intrusive treatments, only to be used in the most severe cases.

2.1.6. Electrogram analysis
ECGs and EGMs both provide a way to obtain information on the electrical activity on the heart,
the first giving a more general impression of the heart, whereas the second can provide more local
information with a higher resolution. The data acquired from atrial mapping is used to solve for the
hidden tissue parameters of the heart.

Atrial mapping
As mentioned before, atrial mapping is described as the use of high resolution sensor arrays to record
EGMs on different sites of the heart. These measurements are obtained epicardially e.g. on the outside
of the heart, as opposed to measurements performed endocardially, meaning on the inside of the heart.
Although these measurements provide high resolution data of the atria, a direct drawback is that the
atria can not be measured all at once. Measurements of different sites of the atria have to be obtained
sequentially.

However, the measured data needs pre-processing to remove unwanted features that are not of
interest and/or distort the desired signal. In previous studies, the raw data was filtered before being
used. First, a band-pass filter filters the signal from 0.5Hz to 400Hz, and a notch filter was used at
50Hz to cancel out power-line interference. After that, the data needs to be low-pass filtered to remove
baseline wandering and high-pass filtered to remove noise, as well as strong far-field ventricular signals
need to be removed [2].

Morphology
A lot of information can be gathered from the EGM data and its morphology i.e. the beat-to-beat
interval of signals, the number of deflections present in the signal, the amount of symmetry and the
amplitude distribution of the wave.

The beat-to-beat interval of waves is dependent on the presence of AF, as AF increases the heart
rate and decreases the refractory period. The number of deflections increases due to heterogeneities
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in the tissue, possibly indicating slow conduction zones or conduction blocks. Asymmetry of a wave
can give an indication of how different wavefronts interfere and interact with each other at a certain
location [2], [11]. The wave amplitude varies overall, depending on the complexity of the tissue [2].

Measures
To provide clearer information on the electrical activity measured by the sensor array during atrial
mapping, different measures have been defined for the EGM signals. Firstly, the activation time (AT)
or local activation time (LAT) of a cell is the instant at which the wavefront reaches a cell, defined as
the steepest deflection in the EGM. This gives us an estimate of the LAT of cells directly underneath
the sensors, with other ATs being estimated through interpolation. Often, the ATs of all cells in a
certain area are presented as an image of the area, providing an activation map (AM) of that area.
Secondly, using the ATs of the cells, a measure of the speed with which the wavefront propagates
across the tissue can be approximated by taking the difference of the ATs of neighbouring cells and the
intercellular distance and dividing them with each other. This measure is called the conduction velocity
(CV). Other measures of EGMs include the number of deflections or amount of fractionisation and the
peak-to-peak amplitude of the wave [2].

These measures are nowadays primarily used to identify the electropathology of the heart. The CV
map is used to identify slow conduction areas and conduction blocks. The CVs however do not give a
clear representation of the conductivity of the underlying cells. This is because the CV does not solely
depend on the cell conductivity, but on the curvature of the wavefront as well. Specifically, a concave
wavefronts propagates faster than convex wavefronts. In addition, the CV map is derived directly from
the AM of the cells in a certain area, which is already derived as an interpolated approximation of the
true AM. This non-proportionality of the conductivity with respect to the CV requires the intervention
of specialists, mainly cardiologists, in order to derive any conclusions from the data. This raises the
desire to develop methods to find the underlying parameters of the individual cells directly, as opposed
to using the previously mentioned measures derived from the measured data.

2.2. Models
The EGM gives us a lot of information on the electrical activity of the heart, however most of the
conclusions are drawn based on derived measures of the measured data. The desire arises to acquire
the hidden underlying parameters of the tissue, in order to give direct knowledge of the tissue. These
parameters include, but are not limited to, the conductivities and conductivity anisotropy ratios of
cells, and their ATs for a set of measurements. It is herein important to analyse what parameters are
of importance to the electrical activity of the heart and how they relate to the data that we measure,
the EGMs. Since there is a lack of clinical reference, suitable testing environments need to be used as
well, which require tissue models that are able to represent real data.

2.2.1. Cell behaviour and models
Developing a realistic model of cells of interest is of great importance in finding the underlying param-
eters thereof, as there is a lack of labelled clinical data to test new solutions. In the past, a lot of
research has been done into the behaviour of the cells of different kinds, among which cardiac cells, and
the underlying mechanisms responsible for its behaviour [12]. Most of these models are based on the
research done by Hodgkin and Huxley, who studied the propagation of electric potentials in the axons of
a giant squid [13], [14], [15], [16]. Through this, they gained important insight into the electrodynamic
behaviour of the axon, and also found that the propagation of a potential across cells depends on how
different kinds of ions move through the cell membrane over time. Inferring the individual contribution
of each ion current to the propagation of an electric pulse where it is given that there is a larger amount
of sources than receivers, which is the case for atrial mapping, is an undetermined and ill-posed prob-
lem, which also affects the accuracy of the estimation of any other hidden parameters. By studying
the relationship between the ion currents and the transmembrane voltage of the neural cells, they were
able to describe them using different sets of differential equations for both the transmembrane voltage
of a cell and the individual ionic currents. Using this knowledge, different models were designed. Over
time, the knowledge on the electrical behaviour of cells was expanded with the identification of more
and more different machinations that define the dynamic behaviour of cells, resulting in more complex
models, such as the Courtemanche model for the single atrial cell [17].
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To study the propagation of signals across cells, studies have been performed in different contexts
in terms of dimensionality. At first, the behaviour of cells in 1D was considered by studying electrical
propagation in terms of the CV in strands of cardiac tissue [18]. This was then extended to the 2D case,
where anisotropy and curvature of the wavefront started to play a role and complicate the relationship
between the conductivity and CV [19]. Recently, the 3D AP propagation case has been considered,
in which the structure of the tissue becomes more important. The heart tissue is then said to have a
fibre-sheet structure in which different layers can influence the neighbouring ones [20], [21], [22].

For simulations of cell models, 2D models are used to represent 3D tissue. 1D models lack the diffu-
sive spatial component, whereas 3D models are too involved in terms of analytical and computational
complexity. The use of 2D models provides a good compromise, its only drawback being that it can
not represent 3D tissue in the sense that it does not take the interactions between multiple tissue layers
into account, which is the case in real-life [20], [22].

For models of biological tissue, some important statements can be made. It is important to note
that models are often very limited in the kind of data that they can process and produce. This arises a
necessity for separate models to be developed for different kinds of cells and tissue to maintain accuracy.
It is also good to consider how the model represents reality and in what ways it might be possible to
fix any degrees of freedom. For example, it is often assumed that the type of cells is known, as well
as the heart being homogeneous in the type of cells. Whatever assumptions are made when making a
model, it is good to consider what kind of effect certain assumptions can have on its output. Within
the context of creating a model representing biological tissue, of which certain parameters are to be
studied, it is necessary to include them in the model as well as parameters to have a direct reference.
It is advised to well take any natural tendencies of a model into mind. An example of this is that for
heart tissue models, there exists the diffusive current, which removes energy from the modelled system.
If by chance the input energy is too small, the model might not work. In practice, this means that a
minimal part of the model needs to be exited for the model to show any output. This is referred to as
the liminal length, area or volume for 1D, 2D and 3D models respectively [20].

2.2.2. Action potential model
Over time, different models for different kinds of cells were introduced, with making the models more
realistic and able to simulate real-life data as their goal. The models of cardiac cells are largely based on
the equations describing the propagation of an AP across the cell membrane as described by Hodgkin
and Huxley, who used in their experiments the axon of a neuron in a giant squid. In their experiments,
they did not only manage to give descriptions of and relations between the transmembrane voltage
and the underlying ionic currents using differential equations, but also showed the behaviour of the
transmembrane conductances for each type of current over time.

Hodgkin and Huxley found that the transmembrane voltage depends on the ionic currents that flow
through the membrane, which again depend on the concentrations of ions inside and outside of the cell
[13], [14], [15], [16]. Aside from these concentration-dependent ionic currents, there flows a capacitive
current due to the difference in amount of charge on both sides of the cell membrane. Potentially, a cell
can be stimulated with a current source from the outside. A circuit model representation of the cell
membrane is given in Fig. 2.5.

The behaviour of the transmembrane voltage over time is then given as a differential equation by

Cm
∂V (t)

∂t
= Ist(t)− Iion(t, V ), (2.1)

where Cm is the transmembrane capacitance, V is the transmembrane voltage, Ist and Iion are the
stimulation and total ionic current densities, respectively, and t denotes the time. For modelling multiple
cells, a term is added to (2.1) to describe the current caused by spatial voltage differences, turning it
into

C
∂V (r, t)

∂t
= Itm(r, t) + Ist(r, t)− Iion(r, t, V ), (2.2)

where Itm represents the so-called transmembrane or diffusive current and r is the location on the
membrane. Using the monodomain approach, this transmembrane current is given as
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Figure 2.5: Circuit model of a cell membrane [2].

Itm(r, t) = S−1
v ∇ · (Σ(r)∇V (r, t)), (2.3)

where Sv = 0.24µm−1 is the surface-to-volume ratio of the cell and Σ(r) is a conductivity tensor defined
in the 2D case as

Σ(r) =
[
σxx σxy

σxy σyy

]
, (2.4)

where each conductivity σij describes the propagation into the main directions of the spatial grid. For
simplicity, a cell is often described as it having a longitudinal or main direction and an orthogonal or
transverse direction, and having a certain orientation. The ratio between the conductivity in the main
direction and the transverse direction is then called the anisotropy.

2.2.3. Monodomain and bidomain
The term monodomain describes the relation between the inside and outside of the cell. When prepared
to activate, cardiac cells show cable-like properties [21]. Heart tissue can therefore be modelled as an
extracellular and intracellular domain, divided by the cell membrane. In general, these two domains
have a different structure and electric signals propagate differently within the two domains with respect
to each other. This can be modelled by using different conductivity sensors for both domains. The
relationship between the two domains through the transmembrane current is then described as

∇ · (Σi(r)∇ϕi(r, t)) = SvIm(r, t) (2.5)
∇ · (Σe(r)∇ϕe(r, t)) = −SvIm(r, t), (2.6)

where ϕi and ϕe denote the intracellular and extracellular potentials. The cell membrane model is in
this case described by
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Cm
∂V (r, t)

∂t
= S−1

v ∇ · (Σi(r)∇(V (r, t)) + ϕe(r, t))) + Ist(r, t)− Iion(r, t, V ) (2.7)

∇ · (Σi(r)∇ϕi(r, t)) = −∇ · (Σe(r)∇ϕe(r, t)). (2.8)

This is called the bidomain approach [23], [24], [25]. The equations can be solved for the trans-
membrane voltage using methods such as Euler’s method with boundary constraints. The drawback
of the bidomain approach is that the extracellular potential has to be solved implicitly. To simplify
the model, it can be assumed that the intracellular and extracellular domain have the same anisotropy,
which is the ratio between the conductivity in the main direction and the transverse direction of a cell,
and consequently that they are related as

Σi(r) = cΣe(r), c > 0, (2.9)

which is substituted into the bidomain model [24]. By also grounding the extracellular potential, this
results in the monodomain model as described by (2.2) and (2.3). An advantage of using the mon-
odomain approach is that it can be solved explicitly and uses less parameters. Disadvantages are that
it ignores the fact that some currents can only be described in the bidomain model and that influences
from the outside, like defribillation or pacing, are not taken into account. It is still argued that the
monodomain provides an accurate enough model if used in a less complex context.

2.2.4. Electrogram model
Heart cells can be modelled as a conductive surface across which electrical pulses propagate through
changes in the transmembrane voltage of cells and the electrodynamic interactions between them. These
signals can be measured as they propagate across a certain surface as EGMs with atrial mapping. A
sensor at a certain point in space measures the signals originating from nearby cells, weighted depending
on how far they are removed from the sensor.

Continuous model
The electrical potential measured by a sensor m positioned at location rm ∈ R2 at time t can be
modelled as [1], [2], [26], [27].

ϕm(rm, t) =
1

4πσe

∫
A

Itm(r, t)
||rm − r||dA(r), (2.10)

where A represents the region of interest, σe is the extracellular conductivity, which is assumed to be
constant and known, Itm is the transmembrane current as given in (2.3), r ∈ R3 denotes a location
on the tissue surface and || · || represents the Euclidean norm. An interesting observation here is that
the model resembles a 2D spatial convolution, with the signals coming from the cells going through a
spatial low-pass filter.

Discrete model
In practice, a finite space-discretised version of this model is used. Consider a set of M sensors positioned
at locations rm ∈ R3,m ∈ [1, 2, ...,M ]. The region of interest is then divided into N discrete cells or
cell groups with location rn ∈ R3, n ∈ [1, 2, ..., N ], with each cell or cell group having an surface area a.
The 2D space-discretised version of (2.10) can then be written as

ϕm(rm, t) =
a

4πσe

N∑
n=1

Itm(rn, t)
rm,n

, (2.11)

The above model holds for, but is not restricted to, the 2D case, as a similar mathematical model
can also be derived for the 3D case. In the 2D case, the sensors and cells are assumed to be situated on
two parallel planes, therefore fixing the orthogonal distance, or height, z0 between them. The distance
between a sensor m and cell n is then calculated as



2.3. Ventricular activity removal 13

rm,n =
√
||rm − rn||+ z20 . (2.12)

The transmembrane current is also discretised and consequently given as

Itm(r, t) = S−1
v ∇ · (Σ(rn)∇V (rn, t)) (2.13)

= S−1
v

(
d

dx

(
σxx,n

dV (rn, t)
dx

)
+

d

dx

(
σxy,n

dV (rn, t)
dy

)
+

d

dy

(
σyx,n

dV (rn, t)
dx

)
+

d

dy

(
σyy,n

dV (rn, t)
dy

)) (2.14)

Action potential template
To simplify the model further, it is often assumed that when a cell is activated, the transmembrane
voltage has the same waveform for each cell [2], [26]. This means that the transmembrane voltages
V (rn, t) for each cell can be modelled as a template waveform V0(t) that is delayed by the activation
time τn of each cell as

V (rn, t) = V0(t− τn) (2.15)

Electrode size
What is not yet included in the model, is the effect of the electrode. Previously, the electrode or
measurement location was considered to be a single point. In reality, this is not the case, and at a
certain point, the diameter of the electrode has to be taken into account. In general, the potential
measured at a sensor m can be modelled as the convolution of the signals that originate from the cells
with a spatial low pass filter multiplied by a constant, and is given as

ϕm(r, t) = cItm(r, t) ∗R0(r, t) (2.16)

where c = a
4πσe

is the constant term from (2.11), Itm represents the transmembrame current signals of
the cells, R0 is the spatial low-pass filter and ∗ represents a 2D spatial convolution. The spatial low-pass
filter for a given constant height z0 is given as

R0(r, t) =
1√

r2 + z20
(2.17)

where r =
√
x2 + y2 is the distance between the cell and the electrode, with the electrode being located

at the origin. It is stated that, once an electrode has a diameter d0 larger than the size of one cell, the
electrode can no longer be considered as a single point and therefore has to be taken into account in
the transfer function, which then takes the form as seen in [2], [28]

Rd0
= 2 arcsin d0√

(r − d0/2)2 + z20 +
√
(r + d0/2)2 + z20

(2.18)

2.3. Ventricular activity removal
As mentioned before, the data recorded by the sensor array needs to be pre-processed before it can
be used. Part of this included applying several filters to remove unwanted signal features like baseline
wandering and noise. The second part includes removing components resulting from far-field ventricular
activity (VA) that interferes with the local atrial activity (AA) in the case for performing measurements
of the atria [2], [29], [30]. The presence of these far-field components is seen as a liability since the ven-
tricular activity is much stronger and more present than the atrial activity. For a normally functioning
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heart, the ventricles and atria are active at different points in time, with the ventricles always contract-
ing slightly after the atria. This means that normally, the interference is not a big problem. The need
to remove any ventricular activity arises more often in cases of atrial fibrillation. Atrial fibrillation
describes irregular atrial electrical activity. This can lead to situations where atrial activity coincides
with ventricular activity. Not only do the AA and VA overlap in time, but in frequency as well. Also,
the AA and VA are depend on and are correlated with each other, since they both originate from the
rhythmic behaviour of the heart. Since it is still desired to study the atrial activity on its own, the local
and far-field activities need to be separated.

2.3.1. Categories
There are a number of base categories of methods that have been identified in the past, all of which
will be discussed next.

Template Matching and Subtraction
One of the most simple methods is that of Template Matching and Subtraction (TMS) [2], [3], [4].
TMS makes use of the spatio-temporal alignment of the QRS complex of separate heartbeats. For this
method, a large amount of data is used to compute a template for the average heartbeat signal, similar to
the to-be-processed signal. This template is then subtracted from the signal, leaving only the irregular
atrial activity. This method works with the assumption that AA and VA have no fixed correlation
and that VA has no fixed morphology. This implies that this method achieves a high performance on
average, which is seen in the fact that it achieves the highest performance for disorganised AA.

Adaptive Ventricular Cancellation
Adaptive Ventricular Cancellation (AVC) tries to estimate the underlying VA from the data using a
template VA signal [2], [3], [4]. By iterating over an adaptive filter based on the difference between the
template and estimate signals, an estimate for the VA is constructed and subtracted from the signal of
interest. Although AVC tries to confront the signal with an estimate, previous works state that AVC
has the worst performance of all base categories of methods.

Independent Component Analysis
Independent Component Analysis (ICA) is based on performing Blind Signal Separation (BSS) on the
data to separate the AA and VA [2], [3], [4]. From all base categories, this method achieves the highest
performance for organised AA.

2.3.2. State of the art
Extending from the above categories, recently, new methods have been introduced to remove VA.

Low-rank Sparse Decomposition
Abdi [2], [29] proposed a method called Low-Rank Sparse Decomposition (LRSD). With this method,
first the VA containing segments of the measured data are put into a matrix. This method optimises for
the AA and VA under the assumption that VA activity has a low rank in the time domain, due to having
a similar morphology at different locations, is sparse in the frequency domain, as it is often represented
by a smooth and slow signal, and that AA is random and sparse in time. An optimisation problem is
solved accordingly using the Alternating Descent Method of Multipliers (ADMM), resulting in estimates
for the separated AA and VA. The advantages of this method present itself in its low complexity, the
fact that it requires no form of calibration and that it outperforms all previously mentioned methods.
A disadvantage that is pointed out is that, as a smaller amount of VA segments becomes available,
the Singular Eigenvalue Decomposition used to separate the AA from the VA becomes less accurate,
resulting in AA activity being removed as well. Another limitation of this method is found in the fact
that it uses only a single recording at a time, therefore using no spatial information.

Graph-based Atrial Activity Extraction
Later on, Sun [30] proposed a method called Graph-based Atrial Activity Extraction (GAE). This
method includes the spatial information that was missing from the aforementioned methods, by mod-
elling the tissue as a graph, as opposed to a grid. It was found that VA resides in the lower spatial
frequencies of the graph. By using this information in addition to the time-frequency analysis, The VA
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was estimated by minimizing the distortion of the VA with the measured EGM and by reconstructing
the VA as a smooth graph signal.

2.4. Conductivity estimation
Cardiac arrhythmia are disorders affecting the rhythmic behaviour of the heart. One of those disorders
is called atrial fibrillation or AF in short, which finds its cause specifically in the upper chambers, the
atria, of the heart. The cause of AF is thought to be abnormalities in the conductivity of the heart
tissue. In other words, the manner in which it propagates the electrical pulses that drive the heart’s
function. The need arises to think of solutions for estimating the hidden tissue parameters of the heart.
Recently, some works were published which address the conductivity estimation problem and introduced
some methods to do as such.

2.4.1. Compact matrix model
Abdi [2], [31] presented a method called the compact matrix model (CMM). The desire was to derive
a model for the measured data which was linearly dependent on the parameters of interest i.e. the
conductivities of the individual heart cells. In this work, such an expression was derived and given by

ϕ = Mτσ, (2.19)

where ϕ is a vector containing all measurements in space and time, Mτ is the derived linear transforma-
tion matrix model and σ is a vector containing the conductivities of all cells. Since Mτ is non-invertible,
the problem was solved as an optimisation problem. To combat the ill-posed nature of the problem,
regularisation terms were added, resulting in the optimisation problem given as

min
σ

J(σ) = ||ϕ− Mτσ||22 + λ1||σ − µσ1||1 + λ2||Σ− µσ11T ||∗ (2.20)

where µσ is the expected average value of the tissue conductivity, Σ is a matrix containing all cell
conductivities, λ1 and λ2 denote penalisation parameters, and || · ||∗ denotes the nuclear norm. the
L1-norm is used to promote the sparsity in the conduction map as an aid to the detection of conduction
blocks. The nuclear norm is there to do the opposite and try to make the conductivity values vary
smoothly around an expected average value. This is done based on the assumption that for normal
tissue, the conductivity map exhibits this smooth behaviour. The proposed optimisation problem was
then solved using an algorithm called the Split-Bregman algorithm.

In order to estimate the conductivity in this way, it is assumed that the ATs of the cells or estimated
or otherwise known. The ATs of cells directly below the EGM sensors are estimated by taking the time
of the steepest descent in the EGM signal. The ATs of other cells are then derived through interpolation.
However, in the case of less smooth wavefronts, more heterogeneous tissue and the presence of blocks,
EGM might also record local deflections. This raises the chance of making errors in the LAT estimation.
To overcome this, Abdi [2], [11], [32] also proposed an optimisation problem that optimises for the
diffusion current signals from the individual cells. This should remove any local deflections and give
more accurate LAT estimations. To estimate the diffusion currents, the optimisation problem is given
by

min
i

||Dti||1 + λ||ϕ− SRi||22 (2.21)

where Dt denotes the time differentiation operator, ϕ is the vector holding all measurements, S is a
masking matrix selecting the locations of the sensors, R is the convolution matrix of the spatial low-
pass filter and i is a vector holding all the diffusion current values for all cells. The LAT was then to
be estimated as the time of the steepest descent in each diffusion current signal. It was shown that
by using this method, there was a significant decrease in LAT estimation errors, and tests showed it
outperformed all other LAT estimation methods as well. This new method of LAT estimation is also
said to be more computationally efficient, has less of a performance decrease due to boundary effects
and can operate with incomplete measurements data.
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There are a few disadvantages to this method. The first is that it assumes a constant sensor-to-cell
height. The second is that it does not take into account the thickness of the tissue and the shape of the
wavefront. All of the above assumptions have an impact on the shape of the wave and therefore on the
LAT estimation as well.

As far as the CMM goes, a few recommendations were made. For one, the CMM depends on good
estimation of the ATs of the cells and on the validity of the measured data. It also has a decrease in
performance in the case of a non-smooth wavefront, in which case a better LAT estimation is desired.
The method is also based on the 2D convolution model and can therefore not be used in a 3D context. In
that case, the method would require a 3D activation map, for which there are no methods of constructing
one as of yet. In her work, Abdi also did not focus entirely on choosing the most optimal parameters
in the optimisation problem, which leaves room for improvement. Then, an important disadvantage, is
that the CMM method only works with one heartbeat, whereas more information can be acquired by
including the possibility of multiple heartbeats per EGM measurement.

2.4.2. Simultaneous Confirmatory Factor Analysis
Shortly after the introduction of the CMM method, Sun [26] introduced a different method for con-
ductivity estimation called simultaneous confirmatory factor analysis (SCFA). This method is based
on estimation the hidden parameters of interest from the correlations and cross-power spectral density
matrices (CPDSMs) between signals recorded at different locations. To this end, the estimation of the
hidden parameters was related to a type of signal modelling called confirmatory factor analysis (CFA),
which focusses on finding the values of variance-covariance structures, which then can be related to
estimating the power spectral densities of the signals.

CFA has some prerequisites for it to be able to work properly, regarded as the identifiability condi-
tions.

The first identifiability conditions states that there should be more known than unknown parameters.
Known parameters include the sensor measurements. Unknown parameters include the conductivities,
anisotropy ratios, sensor-to-cell height, fiber directions and ATs of the cells. To simplify the problem,
some of the unknowns are assumed to be known and/or estimated through other means. In general, the
conductivities are seen as the parameters of interest. The tissue is also either assumed to be isotropic
or have some approximate real-life value. The fiber direction is assumed to be constant and directed
into one of the grid main dimensions. The ATs are assumed to be known as well.

The second indentifiability condition states that there should be a minimal amount of known pa-
rameters. This prevents the system to have an infinitude of solutions. This problem was solved by
assuming the same waveform for the transmembrane voltage for every cell.

As said before, the number of knowns is determined by the amount of measured data. This can be
increased by both increasing the number of electrodes and the spatial resolution. Increasing the resolu-
tion results in a higher accuracy and decreases the model mismatch, but can increase any optimization
errors.

After setup, the CFA problem is solved using the interior-point algorithm. It can be seen from
earlier work that the performance of this method depends on the ratio between knowns and unknowns.
Sun noted that the tissue parameters stay the same at different frequencies. It was then proposed to
split the standard CFA problem into multiple sub-problems considering different frequency bands being
solved simultaneously. This resulted in the SCFA method as presented at last.

The SCFA method was then compared to the CMM method in their ability to estimate the hidden
parameters, which showed that the SCFA shows a significant increase in performance over the CMM
method.

As the signals are spatially low-pass filtered due to the distance to the sensors, it was suggested to
use the lower frequency bands over higher ones in order to improve performance, since they would hold
more information. Naturally, increasing the number of frequency bands also improves the performance,
but loses its impact with the amount of used frequency bands. Also, by using more frequency bands,
more parameters can be estimated on the same performance levels. This gives the option to include
other parameters into the optimisation framework which were assumed to be known before, like the
anisotropy ratios and the ATs of the cells. Included in her work, Sun tested this as well, seeing a slight
decrease of performance when estimating a larger amount of parameters.

Lastly, the main limitations of the SCFA method still lie in the fact that it only works for a single
fiber direction of the tissue and that the method assumes a 2D environment and would possibly lose a
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great deal of performance for 3D applications.
In her further work, Sun extended on the SCFA method to include multiple heartbeats per measure-

ment. The idea herein was that the direction of the wavefront changes slightly with every heartbeat,
which might give more information on the underlying tissue. The use of multiple heartbeats in this
way helps to better estimate the conductivity of the tissue in different directions, which is related to
the anisotropy ratio of each cell. Furthermore, the consequences of using multiple heartbeats include
the need to estimate the ATs of every cell once for every heartbeat. Despite the follow-up method
making less assumptions about the tissue, it still assumes a single fiber direction and a 2D single-layer
environment.





3
The effects of the sensor-to-cell height on the

electrogram, block detection and
conductivity estimation

As mentioned in Chapter 2, the key to understanding the underlying causes and mechanics of AF is to
study the cardiac tissue and its properties. The focus is on the cell conductivities, but also can include
the orientation and anisotropy of the tissue. In the previously mentioned methods for conductivity
estimation, the CMM and SCFA, it is primarily assumed that the tissue consists of a single layer. The
individual cells are herein located on a plane, with the sensors being located on a different plane parallel
to the cells. A schematic representation of this situation is seen in Fig. 3.1. In the following chapter,
the effect of the height as a parameter in the model used for conductivity estimation will be studied. To
that end, not only do we take a look at the EGM model itself, but we will also develop a detector with
which we will try to explain the effect of all involved parameters on the ability to accurately estimate
any parameters of interest.

3.1. Effect on the electrogram model
To start off in a simple way, the effect of changing the distance between the sensors, denoted in Fig. 3.1
as z0, will be studied to see what kind of effect such changes have on the measured data, the EGMs,
and consequently the information about the tissue which can be inferred from it. For this, we will
consider again the space-discrete EGM model and the definition of the sensor-to-cell distance from
Chapter 3. It can then easily be seen that one simple consequence of increasing the height is a decrease
in signal intensity. This will naturally lower the signal-to-noise ratio (SNR) of the EGM with respect

Figure 3.1: Schematic of the single layer tissue model (adapted from [2]).
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to any noise added within the measurement system, for example the self-noise of the EGM sensor array.
This makes it harder to derive information about the tissue based on the characteristics of the received
signal. In addition, a non-zero height also acts as a spatial low-pass filter which smooths and dampens
the received signals in space.

3.2. Effect on conduction block detection
3.2.1. Deriving a conduction block detector
To further investigate the effect of a varying height, we will try to approach the problem from a different
direction. In general, the inference of information on the cardiac tissue is desired to study AF and its
possible causes. Assuming that the AF is mainly caused by conduction blocks and slow conduction
zones in the tissue, which disrupt the electropathology of the heart, it is desired to know where those
conduction blocks occur in order to treat and deal with them in a correct manner. In short, from
measured data, we want to be able to say something about whether certain parts of the cardiac tissue
are parts of a block or not.

The idea is to approach this in a stochastic way by building a detector which can decide for any
cell whether it belongs to a conduction block or not, given the EGM measurements. For this, some
prior information has to be assumed. First, the distributions of the cell conductivities are assumed to
be known for both normal tissue and slow conduction zones and blocks. An obvious way to classify
the cells into blocks and normal tissue is to to determine from which distributions their conductivity
values were drawn. A hypothesis test for determining whether a certain cell of interest c belongs to a
conduction block or not can be described as

H1 : σc ∼ N (σfg, v)

H0 : σc ∼ N (σbg, v)
(3.1)

where σc denotes the conductivity of a cell of interest c, σfg and σbg denote the expected values for the
conductivity of blocks and normal tissue respectively, v denotes the variance of the cell conductivities,
which is assumed to be the same for normal tissue and conduction blocks, and N (µ, σ2) denotes a normal
distribution with expectation µ and variance σ2. Also important to define are the prior probabilities of
a cell belonging to a block or not. These are denoted as Pfg and Pbg respectively, which are defined as

Pfg = P (H1) (3.2)
Pbg = 1− Pfg = P (H0) (3.3)

where the subscripts fg and bg of the conductivities in (3.1) and the prior probabilities in (3.2) and
(3.3) stand for the foreground or conduction blocks, and the background or normal tissue, respectively.

From one of the aforementioned conductivity estimation methods, the CMM [2], [31], it can be seen
that the EGM measurements at all times and locations can be modelled as a linear combination of the
cell conductivities of the cardiac tissue as

ϕ = Mτσ (3.4)

where ϕ is the vector containing all measurements in space and time, σ the vector of all cell conductiv-
ities, and Mτ is the mixing matrix from [2], [31], defined as

Mτ = (VT
τ ⊗ (kR))Γ (3.5)

where Vτ is the matric holding the transmembrane voltages for all cell, k is the constant term of the EGM
model from 2, R is the matrix holding the inverse sensor-to-cell distances, and Γ is a matrix holding
the conductivities and the spatial derivatives of the conductivity map. The sensor-to-cell diatances are
then proportional to the height parameters z, which is of interest to us. The measurement with index
i can then be modelled as
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ϕi =

N∑
n=1

[Mτ ]i,nσn (3.6)

In (3.1), normal distributions were assigned to the cell conductivities. It then follows that the EGM
measurements can be described with a normal distribution as well and that the test can be rewritten
in terms of the measurements ϕi as

H1 : ϕi ∼ N (µϕ,1, vϕ)

H0 : ϕi ∼ N (µϕ,0, vϕ)
(3.7)

with the distribution parameters being defined as

µϕ,1 = E[ϕi|H1] = [Mτ ]i,cσfg +

N∑
n=1,n ̸=c

[Mτ ]i,n(Pfgσfg + Pbgσbg) (3.8)

µϕ,0 = E[ϕi|H0] = [Mτ ]i,cσbg +

N∑
n=1,n ̸=c

[Mτ ]i,n(Pfgσfg + Pbgσbg) (3.9)

vϕ = Var(ϕi|H1) = Var(ϕi|H0) = v
N∑

n=1

N∑
p=1

ρn,p[Mτ ]i,n[Mτ ]i,p (3.10)

where ρn,p ∈ [−1, 1] denotes the correlation coefficient between cells n and p, which is assumed to be
known, and the fact is used that

E[σc|H1] = σfg (3.11)
E[σc|H0] = σbg (3.12)
E[σn|H1] = E[σn|H0] = Pfgσfg + Pbgσbg, n ̸= c (3.13)

Var(σn|H1) = Var(σn|H0) = v, ∀n (3.14)

The pdfs of ϕi under H0 and H1 can now be given as

p(ϕi|H1) =
1√
2πvϕ

exp
(
− 1

2vϕ
(ϕi − µϕ,1)

2

)
(3.15)

p(ϕi|H0) =
1√
2πvϕ

exp
(
− 1

2vϕ
(ϕi − µϕ,0)

2

)
(3.16)

with which a generalised likelihood ratio test (GLRT) can be defined as

LG(ϕi) =
p(ϕi;H1)

p(ϕi;H0)
> γ (3.17)

where γ is a threshold chosen based on the type II or false alarm probability.
If for a certain value for ϕm the expression in (3.17) is true, then hypothesis 1 is chosen. Otherwise,

the zero hypothesis is chosen. The test giving a minimum probability of error (MPE) results from
setting γ = 1 and, with the use of Bayesian theory, the test can be rewritten as

LG(ϕi) =
p(ϕi;H1)

p(ϕi;H1)
=

p(ϕi|H1)P (H1)

p(ϕi|H0)P (H0)
> 1 (3.18)

p(ϕi|H1)

p(ϕi|H0)
>

P (H0)

P (H1)
(3.19)
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By combining (3.15), (3.16), (3.17), (3.18) and (3.19), an expression for the detector can be derived
as

p(ϕi|H1)

p(ϕi|H0)
>

P (H0)

P (H1)
(3.20)

1√
2πvϕ

exp (− 1
2vϕ

(ϕi − µϕ,1)
2)

1√
2πvϕ

exp (− 1
2vϕ

(ϕi − µϕ,0)2)
>

Pbg

Pfg
(3.21)

exp (− 1
2vϕ

(ϕi − µϕ,1)
2)

exp (− 1
2vϕ

(ϕi − µϕ,0)2)
>

Pbg

Pfg
(3.22)

exp
(

1

2vϕ
((ϕi − µϕ,0)

2 − (ϕi − µϕ,1)
2)

)
>

Pbg

Pfg
(3.23)

1

2vϕ
((ϕi − µϕ,0)

2 − (ϕi − µϕ,1)
2) > lnPbg − lnPfg (3.24)

(ϕi − µϕ,0)
2 − (ϕi − µϕ,1)

2 > 2vϕ(lnPbg − lnPfg) (3.25)
2ϕi(µϕ,1 − µϕ,0) + µ2

ϕ,0 − µ2
ϕ,1 > 2vϕ(lnPbg − lnPfg) (3.26)

ϕi <
vϕ(lnPbg − lnPfg)

(µϕ,1 − µϕ,0)
+

µ2
ϕ,1 − µ2

ϕ,0

2(µϕ,1 − µϕ,0)
, σfg < σbg (3.27)

If we then substitute (3.8), (3.9) and (3.10) into the expression above, then we arrive at the final
expression for the block detector given by

ϕi <
v(lnPbg − lnPfg)

∑N
n=1

∑N
p=1[Mτ ]i,n[Mτ ]i,pρn,p

[Mτ ]i,c(σfg − σbg)
+

[Mτ ]i,c(σ
2
fg − σ2

bg)

2(σfg − σbg)

+ (Pfgσfg + Pbgσbg)

N∑
n=1,n ̸=c

[Mτ ]i,n, σfg < σbg

(3.28)

From this expression, several observations can be made on the performance of the detector. First of
all, the performance of the detector depends a great deal on the prior assumptions that have to be made,
e.g., the prior chance of a cell belonging to a block or not, the distributions of the conductivity for both
blocks and normal tissue, and the correlation between the conductivities of cells are all assumed to be
known. Any differences with reality can obviously lead to a sub-optimal performance.

Secondly, it is also assumed that the sensor-to-cell distance is known, as well as the transmembrane
voltages of each cell over time.

By deriving the expression in (3.28), a clear relationship is derived between how easy blocks are
detected and the values of the parameters. For example, as a cell c is taken further away from the
sensor, prior knowledge dominates the detection process. Decreasing the sensor-to-cell distance and/or
testing closer to the AT of the cell, which means increasing the corresponding entry of Mτ since

[Mτ ]i,n ∝ 1

rm,n
(3.29)

where rm,n is the euclidean distance between sensor m and cell n, and sensor m is the sensor corre-
sponding to measurement i. This makes it easier to detect blocks, because the prior information needs
to be less relied upon, thus resulting in more reliable decisions. An increased or decreased conductivity
variance and/or correlation between conductivity values of any to cells can either lead to easier or more
difficult detection, depending on the assumed prior distribution of blocks and normal tissue.

As mentioned before, prior knowledge plays an important role in the detection process, even more
so as the height increases. For example, expecting a larger part of the tissue to consist of blocks can
lead to a harder detection of those blocks and vice versa.

In the light of the development of aforementioned conductivity estimation methods, the question
arises whether any other inferred information, such as the conductivity estimates, can be used to adjust



3.3. Effect on conductivity estimation for varying block size and block strength 23

the detector for specific cases. This can be done by assuming the received EGM measurement ϕi is
constructed in the same way as how it is modelled. Then, if we use the estimated conductivities instead
of the EGM measurements by substituting the left hand side of (3.28) with

ϕi =

N∑
n=1

[Mτ ]i,nσ̂n, (3.30)

the detector can be rewritten as

σ̂c <
v(lnPbg − lnPfg)

∑N
n=1

∑N
p=1[Mτ ]i,n[Mτ ]i,pρn,p

[Mτ ]2i,c(σfg − σbg)
+

σ2
fg − σ2

bg

2(σfg − σbg)

+

N∑
n=1,n ̸=c

[Mτ ]i,n
[Mτ ]i,c

(Pfgσfg + Pbgσbg − σ̂n), σfg < σbg

(3.31)

Note that the accuracy of the used conductivity estimation techniques is relied upon and that
obtained estimates will adjust the detector for better or worse depending on whether they are more
and less accurate representations of the real conductivities. Also, since we substitute the left hand
side of (3.28) by (3.30), the cell conductivity estimates are tested rather than the EGM measurements
themselves, therefore not requiring the cell conductivity estimates to be true to the EGM measurements
given the matrix Mτ .

3.2.2. Performance of the block detector
In the previous section, a detector was derived to decide between two proposed hypotheses, whether a
certain cell of interest is part of a conduction block or not using any EGM measurement, given the cell
of interest lies within range of the sensor from which the measurement is taken. The next step is to
study the performance of this detector in (3.28), in particular comparing its performance in different
situations i.e. for different values of the height, which is the parameter of interest. A straightforward
way of doing so is to plot its region of convergence (ROC) curve, which compares its probability of
detection PD with its false alarm or type I error probability PFA. The ROC curves for different values
of the height of the cell of interest located directly underneath one of the sensors, were constructed in
this way for a certain set of prior assumptions and values for the other involved parameters as shown
in Fig. 3.2.

From the figure, it can be seen that, as the height decreases, the curve bends more and more to the
upper-left of the graph. This represents the decrease of the MPE, which in turn suggests that decisions
made using the detector become more accurate. Intuitively, this can also be seen as the spatial low-pass
filter in the EGM model making it harder to distinguish conduction blocks from background as the
height increases.

3.3. Effect on conductivity estimation for varying block size and
block strength

Experimentally, the ability to detect conductivity blocks in different environments as described by the
conduction block detector can be tested by studying the performance of any conductivity estimation
algorithm of choice. Using such a method to estimate a conductivity map given a set of measurements
from 2D simulated cardiac tissue, it is possible to study the effect of the height on its ability to estimate
a conduction block of certain size and strength. In the first experiment, EGMs were simulated using the
Courtemanche model for an atrial cell [17], from which a single conductivity map was estimated using
the SCFA method [26] at different constant heights, which were assumed to be known. The results of
this are shown in Fig. 3.3.

In this figure, the low-pass filtering effect of the height on the perceived conductivities is clearly
seen. In the second experiment, blocks of different size were estimated at the same height. The results
of this are shown in Fig. 3.4. Lastly, the conductivity maps were estimated for blocks of constant size
and varying strength at a certain height. These results are shown in Fig. 3.5.
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Figure 3.2: ROC curves of the block detector in (3.28) for different values of the height.

(a) Estimated conductivity map for a height of
z = 0.5 mm.

(b) Estimated conductivity map for a height of
z = 1.0 mm.

(c) Estimated conductivity map for a height of
z = 2.0 mm.

Figure 3.3: Estimated conductivity maps for conductivity blocks of fixed size and strength for various values of the
height on a cell grid of 45× 45 cells. The normal tissue conductivity and block conductivity were set at z = 1.0mm,
σbg = 1.1 nS µm−1 pF−1 and σfg = 0.1 nS µm−1 pF−1 respectively. The red crossmarks denote the locations of the

sensors.
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(a) Estimated conductivity map for a block with a size of
5 × 5 cells.

(b) Estimated conductivity map for a block with a size of
10 × 10 cells.

(c) Estimated conductivity map for a block with a size of
15 × 15 cells.

Figure 3.4: Estimated conductivity maps for conductivity blocks of varying size on a cell grid of 45× 45 cells. The
height, normal tissue conductivity and block conductivity were set at z = 0.25mm, σbg = 1.1 nS µm−1 pF−1 and

σfg = 0.1 nS µm−1 pF−1 respectively. The red crossmarks denote the locations of the sensors.

(a) Estimated conductivity map for a block with a
strength of σbg = 0.1 nS µm−1 pF−1.

(b) Estimated conductivity map for a block with a
strength of σbg = 0.2 nS µm−1 pF−1.

(c) Estimated conductivity map for a block with a
strength of σbg = 0.4 nS µm−1 pF−1.

Figure 3.5: Estimated conductivity maps for conductivity blocks of varying strength on a cell grid of 45× 45 cells. The
height, normal tissue conductivity and block size were set at z = 0.25mm, σbg = 1.1 nS µm−1 pF−1 and 15× 15 cells

respectively. The red crossmarks denote the locations of the sensors.
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Figure 3.6: Maximum visible height versus block size, with σbg = 1.1 nS µm−1 pF−1 and σfg = 0.1 nS µm−1 pF−1.

Figure 3.7: Maximum visible height versus the block conductivity σfg , with σbg = 1.1 nS µm−1 pF−1 and
Wblock ×Hblock = 15× 15 cells.

From the figures, it can indeed be seen that for smaller blocks, conductivities are spread out and
the blocks lose contrast with the background. This is explained by the effect of the low-pass filter in
the EGM model. Also, as blocks become less strong and cells belonging to a block take on values closer
to normal tissue, detection and localisation of blocks becomes harder. By repeating the procedure and
noting down at which height the blocks disappear from the map altogether, a graph can be constructed
showing the relation between the block size and maximum visible height. As a measure of the height,
the full width at half maximum (FWHM) is used, which is measured in numbers of modelled cells and
defined as

FWHM =
2
√
3z

d
(3.32)

where z is the height and d = 0.04 cm is the simulated width and height of a cell. These results are
shown in Fig. 3.6. The same can also be done for blocks with the same size, but varying conductivities.
The results of this are shown in Fig. 3.7.

The results show that there is an approximately linear correlation between the maximum visible
height of a block and both its size and block strength. Just like the decrease of block visibility for
smaller block sizes is explained by the low-pass spatial filter effect of the sensor-to-cell distance, the
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decrease of visibility in terms of the block conductivity values can be explained with the block detector
model in (3.28). Looking closely, it can be seen that as the contrast between the background and
the blocks decreases, the prior information takes on a larger role in the decision-making and the actual
conductivity values matter less, meaning that for optimal performance, the measured data is relied upon
less. These insights can be taken into account when studying and drawing conclusions from conductivity
maps estimated by the SCFA and other similar conductivity estimation methods, specifically within
the context of medical diagnostics.





4
The effects of sensor-to-cell height estimation

errors on the electrogram, block detection
and conductivity estimation

In the previous chapter, the effect of the height on block detection and conductivity estimation was
explored. At the time, the height was still considered to be known. In this chapter, the case will
be considered where the height is unknown and is estimated in some way, where the focus will be on
the consequences of making errors on the estimation of the height with respect to block detection and
conductivity estimation.

It is important to understand what the wrong approximations of certain parameters does. This is
because it makes it easier to recognise faulty behaviour of an algorithm used to estimate the parameters
of interest. To fully try to grasp the impact of errors in the height estimation, we will approach the
problem in two different ways using the electrogram model and the derived block detector. We will
assume that the cells are located on the xy-plane, with the sensors located a certain distance away from
the tissue. However in this case, the sensors do not have to be assumed to lie on a plane parallel to the
tissue themselves, as will be explained.

4.1. Effect on the electrogram model
First, we recall the expressions for the discrete EGM model and the sensor-to-cell distance from Chapter
3. If we now assume a constant height of the cells with respect to a certain sensor positioned at the origin,
the transfer function hi(r) describing the low-pass filter effect for a certain value of the sensor-to-cell
height zi from any location to that sensor can be written as

hi(r) =
1√

||r||22 + z2i
(4.1)

where r ∈ R2 is the two-dimensional location vector of the modelled cells in the xy-plane. It is obvious
that for two different values for zi, the transfer function takes a different shape. This happens for
example in the case of an height estimation mismatch. A wrong estimate of the height can be interpreted
as assuming a different transfer function than the true one. If we now consider the case where EGM
measurements are taken of a single 2D layer of tissue at a height z0 and an estimate of that height
z1 is made. The true transfer function and the estimated transfer function can then be compared to
each other. For the case of z1 > z0 and z1 < z0, the results for are shown in Fig. 4.1 and Fig. 4.2
respectively, as a function of the magnitude x = ||r||2 on the horizontal axis.

What can be seen from the figures is the following. If we take the case where z1 > z0, it can be seen
that the transfer function is estimated to be smaller than it should be in the vicinity of the sensor. This
means that higher signal values will be mapped near the sensor, which implies a higher conductivity.
This can also be seen as conductivities being overestimated in the vicinity of the sensor, which means
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Figure 4.1: Ratio of the estimated and the true transfer function h1/h0 for z1 > z0.

Figure 4.2: Ratio of the estimated and the true transfer function h1/h0 for z1 < z0.
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Figure 4.3: The threshold on the right-hand side of (3.28), plotted as a function of the height, z.

blocks are mapped further away from the sensor and become harder to detect. The opposite is also
true. In the case where z1 < z0, the higher signal values are mapped further away, implying lower
conductivities near the sensor. This can be seen as blocks being drawn towards the sensor.

4.2. Effect on the performance of the block detector
The aforementioned effect of low and high conductivities being drawn to and pushed away from the
sensor locations can also be explained by taking a look at the block detector model from the previous
chapter. In particular, the threshold against which the EGM measurements are compared can be plotted
as a function of the height, which is done in Fig. 4.3.

In the figure it can be seen that for a certain height z0 the threshold will take on a specific value and
that the threshold decreases as the height increases. A wrong estimate z1 of the height can then alter
the threshold, which results in a sub-optimal performance of the detector. Specifically, a too low height
estimate will increase the threshold, making it easier to detect blocks. The opposite case is also true
for too high estimates. This can be seen as following the ROC-curve of the block detector to the left
and right for the former and latter case, respectively. If we then look back at Fig. 4.4, it can indeed be
seen that in general, a higher amount of normal tissue has a higher probability to be detected as blocks
for a too low height estimate, and that again the opposite holds for too high estimates of the height.

4.3. Effect on conductivity estimation
The effects described by the changing transfer function and the performance of the block detector can
be shown experimentally as well. An example is given in Fig. 4.4.

In the figure can also be seen what is explained before. If the height is estimated too low, low
conductivity values are drawn to the sensor, creating fake conduction blocks near the sensor locations.
In the opposite case, which is when it is estimated too high, high conductivity values are drawn to the
sensor, resulting in the suppression of blocks in the vicinity of sensor locations.
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(a) Estimated conductivity map for z1 = 0.5 mm (b) Estimated conductivity map for z1 = 1.0 mm

(c) Estimated conductivity map for z1 = 2.0 mm

Figure 4.4: Estimated conductivity map for different estimates z1 of the true height z0 = 1.0mm. The locations of the
sensors are denoted by red crossmarks.



5
Sensor-to-cell height estimation

In the previous chapters, we looked at the effect of the sensor-to-cell height on the measured EGMs, the
model and conductivity estimation. To this end, a block detector was derived to show the effect of the
involved parameters on the ability to accurately detect blocks, as well as experiments were performed
to show the behaviour predicted by the detector. Also, the effect of making estimation errors in the
height was shown using the block detector and experimental data as well.

In the following chapter, the focus will lie on trying to estimate the height in cases where it is
unknown and discussing how to deal with the various problems that might arise while doing so. First,
the height optimisation problem is formalised and derived as its implementable form. Then, the height
is estimated in different situations to study its behaviour and performance under different conditions,
such as different averages and variations. Finally, since a simplified electrode model is used to model
cell-specific activities other than the height, the height estimation is combined with existing conductivity
estimation methods to jointly estimate the conductivity and height.

5.1. Problem analysis
First, we revisit the 2D EGM model in (2.11). By including the height as a free parameter for both
the cells and the sensors, the number of dimensions of the problem changes from 2D to 3D. The 3D
spatially discrete EGM model is then written as

ϕm(xm, ym, zm, t) =
aS−1

v

4πσe

N∑
n=1

∇ · σ(xn, yn, zn)∇V (xn, yn, zn, t)

rm,n
(5.1)

where

rm,n =
√
(xm − xn)2 + (ym − yn)2 + (zm − zn)2 (5.2)

In the scope of the project we are only interested in estimating the height and not so much in any
other parameters. However, assuming all parameters aside the sensor and cell locations to be known
removes the necessity for any optimisation, since the EGM measurements are a linear combination
of the inverse distances. This means that if the matrix holding the diffusive currents is known and
invertible, the values for the height can explicitly be solved as long as the amount of measurements is
equal or greater than the amount of cells. To implement some unknowns in the equation, the model in
(5.1) is simplified into the form

ϕ(xm, ym, zm, t) =
aS−1

v

4πσe

N∑
n=1

cnIn(t)

rm,n
(5.3)

where In(t) = I(xn, yn, zn, t) stands for the diffusive current of a cell n and the current weights cn
mimic the cell-specific time-independent effects of the cell on the model. Intuitively, this can be seen as
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assuming the conductivity has no effect on the shape of the diffusive current apart from its amplitude.
The problem can then initially be formalised as

min
zn,cn

||ϕ− ϕ̂||22

ϕm(t) = ϕ(xm, ym, zm, t) =
a

4πσe

N∑
n=1

cnIn(t)√
(xm − xn)2 + (ym − yn)2 + z2m

In(t) = I0(t− τn)

τn = τ(xn, yn)

(5.4)

A quick observation can be made in the EGM model. It can be observed that changes in the height
zn of a cell can also be modelled as changes of equal effect in the weights cn. This ambiguity is also
present in the original EGM model. To bypass this ambiguity somewhat, it will be assumed that all
cells are located on the xy-plane i.e. it is assumed that zn = 0, ∀n. Consequently, only the sensor
heights zm need to be estimated still. This can intuitively be understood as assuming a single layer 2D
tissue model where the sensors are now not located on a plane but on a separate surface away from the
tissue. From another perspective, this assumption can also imply that the height does not vary in the
vicinity of a sensor. The problem in (5.4) can then be rewritten as

min
zm,cn

||ϕ− ϕ̂||22

ϕm(t) = ϕ(xm, ym, zm, t) =
a

4πσe

N∑
n=1

cnIn(t)√
(xm − xn)2 + (ym − yn)2 + z2m

In(t) = I0(t− τn)

τn = τ(xn, yn)

(5.5)

To make sure that the adoption of the simplified EGM model does not affect the height estimation
and produces any artefacts which would not be present when we use the original model, all simulated
data is made to abide by the simplified model. This is clearly a step back from reality, since in reality
the derivatives of the conductivity certainly do have an effect on the received measurements. However,
as stated before, the emphasis of this project lies on height estimation. The idea is to develop the right
approach for height estimation, so that this can be incorporated into existing conductivity estimation
methods, which are able to deal with the differential operators in the original EGM model.

However, the program as described in (5.5) does not fully solve the height estimation problem. This
is because the ambiguity between the cell-specific effects and the height can not be fully solved by
estimating the height per sensor instead of per cell, specifically in the case when a block is spread
out over the majority of cells beneath a sensor and cells underneath other sensors. An example of this
ambiguity is shown in Fig. 5.1. The cell-specific current weights cn were put at 1.1 with ’blocks’ of value
0.1 placed on the map. The height was simulated as sinusoidal function in space with an amplitude of
0.1mm and an average value of 1.0mm. As can be seen, a higher amount of sensors is used to show
the effects of the height estimation more clearly with a higher resolution, which will be done for the
remainder of this section.

As can be seen in the figure, the blocks are partially estimated, but a lot of their weights are carried
over to the height estimates, resulting in huge outliers. This shows the aforementioned ambiguity. In
the regions where there are no blocks, the program seems to solve the height very well. This brings us
to the next step.

The goal now is to find a way to suppress the ambiguity, while keeping the rest of the estimates
unaffected as much as possible. To do so, a way must be found to differentiate between the areas with
blocks from those without. For this, we take a look at the activation times of the cells. For the remainder
of the report, these are assumed to be known or approximated at least. For now, the true activation
times will be used. What is important to keep in mind is that in real life, changes in conductivity not
only have an effect on the amplitude of the recieved signals, but also on the stretching of a signal i.e.
the upstroke time becomes longer when the wavefront goes from an area of high conductivity to an
area of low conductivity and vice versa. This means the difference between the ATs of two adjacent
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Figure 5.1: Estimated height map per cell, interpolated from the height map estimates per sensor. Blue colours denote
low values and yellow colours denote high values. The red crossmarks denote the locations of the sensors.

cells becomes larger. This implies that there is information on the locations of blocks hidden in the
spatial derivatives of the activation map of the simulated tissue. Therefore, we will study the ATs of
the cells. The activation time of a cell n can be denoted as τn = τ(xn, yn), where τ(x, y) is the function
describing the activation map. In Fig. 5.2, the activation map can be seen, as well as the magnitude of
its gradient and that of the vector with the diagonal entries of its Hessian i.e.

|| diag(H(τ(x, y)))||22 =

√(
∂2τ(x, y)

∂x2

)2

+

(
∂2τ(x, y)

∂y2

)2

(5.6)

where diag(A) is used as the vector of the diagonal entries of a matrix A, and H(f(x)) denotes the
N ×N Hessian matrix of a scalar function f(x), x ∈ RN . This expression can also be described as the
magnitude of the vector holding the second derivatives of the activation map.

In Fig. 5.2 can be seen that the spatial derivatives of the activation map show high values near the
edges of the blocks, specifically there where the wavefront enters it. However, the second derivatives
show a similar kind of activity over a bigger area which encompasses the blocks more, whereas the
first derivatives only show activity directly at the edges of the blocks. This implies that to have more
information on the size of conduction blocks, information from higher derivatives should be used. In
this case, the second derivatives will be used.

To summarise, the second derivatives will be used to determine the amount with which we must
suppress interference from conduction blocks with the height map. The suppression is done by draw-
ing the height to a certain average value by minimising the error between the height and that value.
Combining this with the expression (5.5), the program can be rewritten as
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(a) The activation map for a certain set of simulated
data. (b) The magnitude of the gradient of the activation map.

(c) The magnitude of the vector with the second order
derivatives of the activation map.

Figure 5.2: Images of the activation map and the magnitude of its first and second order derivatives.



5.1. Problem analysis 37

min
zm,cn

||ϕ− ϕ̂||22 + λ1

M∑
m=1

wm|zm − µz|

wm =
1

|Nm|
∑

n∈Nm

wn

wn = sigm

√(
∂2τ(x, y)

∂x2

)2

+

(
∂2τ(x, y)

∂y2

)2

, â, b̂


ϕm(t) = ϕ(xm, ym, zm, t) =

a

4πσe

N∑
n=1

cnIn(t)√
(xm − xn)2 + (ym − yn)2 + z2m

In(t) = I0(t− τn)

τn = τ(xn, yn)

(5.7)

where Nm is the set of cells underneath sensor m and sigm(x, a, b) is a sigmoid activation function
defined as

sigm(x, a, b) =
1

1 + exp(−a(x− b))
. (5.8)

The parameters a and b in the sigmoid function determine the softness of its activation and the
activation threshold. For this project, these parameters were determined heuristically and denoted as
â and b̂. In (5.7) can be seen that while the activation function is determined per cell, the height is
still only estimated per sensor. In practice this means that the suppression weights wn are summed for
each sensor, with the sum determining the penalty on the height for that sensor.

To further promote smoothness of the height map in order to deal with residual outliers, another
term is added to the objective function. This time, as opposed to being drawn to a global average,
local averages are calculated for groups of sensors, to which the height estimates are drawn. This
means that the focus lies more on smoothing than constraining the height map. The calculated average
is also calculated as a weighted average, with the weights wm indicating the reliability of the height
estimate under sensor m. By adding this to the expression in (5.7), the height estimation program for
the simplified EGM model can be written as

min
zm,cn

||ϕ− ϕ̂||22 + λ1

M∑
m=1

wm|zm − µz|+ λ2

G∑
g=1

∑
m∈Mg

(zm − z̄g)
2

wm =
1

|Nm|
∑

n∈Nm

wn

wn = sigm

√(
∂2τ(x, y)

∂x2

)2

+

(
∂2τ(x, y)

∂y2

)2

, â, b̂


z̄g =

∑
m∈Mg

(1− wm)zm∑
m∈Mg

(1− wm)

ϕm(t) = ϕ(xm, ym, zm, t) =
a

4πσe

N∑
n=1

cnIn(t)√
(xm − xn)2 + (ym − yn)2 + z2m

In(t) = I0(t− τn)

τn = τ(xn, yn)

(5.9)

where Nm is the set of cells in the neighbourhood of sensor m and Mg is the set of sensors belonging
to group g.
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Figure 5.3: Estimated height map per cell using the simplified EGM model, for sensors groups of size 3× 3, with
λ1 = 1 · 105 and λ2 = 1 · 106, interpolated from the height map estimates per sensor. Blue colours denote low values and

yellow colours denote high values. The red crossmarks denote the locations of the sensors.

5.2. Results
5.2.1. Height estimation
The problem in (5.9) was implemented in Matlab and solved with an interior point strategy using
a native solver. The solver was set up to iterate until an optimum or a predetermined maximum
amount of iterations is reached. The performance of the height estimation algorithm was checked by
changing the parameters of the height map of the simulated tissue. For these tests, there were assumed
a number of M = 15 × 15 sensors placed in a grid of N = 45 × 45 cells, an intercellular distance of
Dx = Dy = 400 µm, normal current weight cbg = 1.1 and conductivity block current weight cfg = 0.1
respectively. The penalisation parameters were determined heuristically and set at λ1 = 1 · 105 and
λ2 = 1 · 106 respectively. The weights cn were initialised at cn,0 = 1 and the sensor-to-cell heights were
initialised at the average height value of each test. The algorithm was run for 15 iterations.

First of all, by changing the problem to its form in (5.9), the results were improved drastically. The
ambiguity, as much as it was present previously, could almost be completely resolved, as is shown in
Fig. 5.3.

Secondly, During follow-up tests, different parameters of the problem were varied separately to study
their effects on the performance of the the height estimation, which is measured in the form of the mean
square error (MSE) of the true height map with the estimated height map. These parameters included
the average height, the maximum amplitude of the height, the maximum spatial frequency of the height
and the size of the sensor groups. The results of the tests are shown in Fig. 5.4.

From the figures, a clear relationship can be seen between the observed parameters and the perfor-
mance of the algorithm. In Fig. 5.4a can be seen that as the average height increases, it becomes harder
to make good estimates of the height map and the diffusive current weights, which is to be expected.
A larger height on average means in general a bigger loss of information. If we instead increase the
maximum amplitude of the height as shown in Fig. 5.4b, the error gets larger as well, which could either
be caused by a wrong estimate of the current weights, or because of a too low number of iterations. In
5.4c can be seen that the error increases gradually as the variations in the height increase. The graph
shows some deviations from its trend, which can be explained by the coincidental overlap of current
weight structures and structures created by the high variations in the height map.

Lastly, different group sizes were also tested for their effect on the height estimation. Sensor grouping
was supposed to smooth the map, therefore getting rid of any outliers caused by the residual blocks. It
can be seen in 5.4d that the error decreases slightly with the increase of the group size, but the yield is
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(a) The error of the estimated height map for different
values of average value of the height map.

(b) The error of the estimated height map for different
values of the maximum amplitude of the height map.

(c) The error of the estimated height map for different
spatial frequencies present in the height map.

(d) The error of the estimated height map for different
sensor group sizes.

Figure 5.4: The error of the estimated height map for different values of several parameters of the height map.
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very small.

5.2.2. Joint conductivity and height estimation
Before, the height was estimated from data assuming a simplified model for the EGM. However, this
is not consistent with reality, since the signals coming from the tissue generally have a more complex
morphology. This requires that in general, the standard EGM model needs to be used as given by (5.1)
and (5.2). The problem as given in (5.9) can then be written as

min
zm,σn
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∂y2
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τn = τ(xn, yn)

(5.10)

Similarly as what was done using the simplified model, the algorithm was performed on the same
data. This time, with the values for the current weight used as the cell conductivity values in the
appropriate units. The penalisation parameters were increased somewhat to values of λ1 = 1 · 109 and
λ2 = 1 · 1010, due to the fact that the initial value of the first term was increased by some orders of
magnitude as well. The results are shown in Fig. 5.5. Comparing it to Fig. 5.3, it is obvious that
the performance is worse. Although there is little interference from conductivity blocks, the height
is estimated have a much lower amplitude than is the case. Despite that, the general features of the
height map can still be distinguished, albeit that they are less prominent. This can be the result of
convergence to a local minimum. Further testing with adjusted tolerances and parameters and more
iterations of the algorithm showed no significant improvements to the visual aspects of the height map.

5.2.3. Performance with estimated height versus assumed height
In the aforementioned method, joint conductivity and height estimation is attempted with the designed
algorithm. However, as seen before, methods exist which are undoubtedly better at estimating the
conductivities than the simple solution in the previous section. The question therefore arises whether,
while ignoring the conductivity estimates, the height estimates would be able to increase the performance
of the existing methods. To answer this question, the following procedure is applied. First, for a certain
conductivity map and a constant height, the height and conductivities are estimated using the designed
algorithm. Then, the initial conductivity estimates are discarded, whereas the height estimates are fed
to an existing conductivity estimation algorithm, which in this case will be the SCFA algorithm. This
algorithm then uses the estimated height map to estimate the conductivities. The results of this are
compared to the several situations where the height map is not estimated, but randomly assumed or
guessed. All the same settings are used to simulate data and estimate parameters as before.

For the first test, a true height map of z0 = 0.1 cm is chosen. Then, the height is estimated and
stored in zest. To compare, the conductivities were also estimated for assumed values of the height,
labelled zasd, near the true value. The error ϵσ was than plotted against the assumed height. The same
procedure was followed with z0(x, y) = 0.05 cm. The results are shown in Fig. 5.6.

What can be seen from the results is that first of all, the error in the conductivities is lowest when
assuming the correct height, as is expected. Then, as the assumed height is taken further from the true
height, the error increases. At some point, the error with the assumed height exceeds the error with the
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Figure 5.5: Estimated height map per cell using the standard EGM model, for sensors groups of size 3× 3, with
λ1 = 1 · 109 and λ2 = 1 · 1010, interpolated from the height map estimates per sensor. Blue colours denote low values

and yellow colours denote high values. The red crossmarks denote the locations of the sensors.

estimated height. This means that at that point, the performance using the estimated height from the
designed algorithm is better than any guess that is made at that point. Depending on how well people
are able to take a guess at the true height, our algorithm should be able to provide a good baseline in
terms of maximally possible errors. If we also look more closely to Fig. 5.6b, it can be seen that the
lowest error of the conductivity map did not result from the assumed height equal to the true height
and even that the estimated height gives better results than the true height. This can be explained by
the fact that the SCFA method solves a non-convex problem, which means that it is not guaranteed to
reach a global optimum. It is safe to say that there is a high probability that in reality the performance
for z0 = 0.05 cm is more akin to the case of z0 = 0.1 cm, with the estimated height having a range of
confidence of ca. 0.01− 0.02 cm.



42 Chapter 5. Sensor-to-cell height estimation

(a) Error ϵσ of the estimated conductivity map with the true conductivity map for
z0 = 0.1 cm.

(b) Error ϵσ of the estimated conductivity map with the true conductivity map for
z0 = 0.05 cm.

Figure 5.6: Error ϵσ of the estimated conductivity map with the true conductivity map using the SCFA algorithm
using assumed values for the height zasd near different values of the true height z0. As a comparison, the error using the

estimated height zest from the designed algorithm is shown with the dashed lines.



6
Conclusion

The goal of the project was to investigate the height between the sensors of the sensor array used for
atrial mapping and the cardiac cells, which is one of the many parameters involved in recording and
extracting information from EGMs, and its role in the inference of information about the cardiac tissue.
Specifically, the effect of the height on the measured data, the effect of estimation errors of the height
on the inference of information from the measured data and the ways of estimating the height from the
measured data were investigated.

Several steps were taken in order to understand how the height influences the measured data. First,
the height parameter was considered as a parameter in the standard model for the EGM to show its
effects on the received data. This showed that the height acts as a spatial low-pass filter or blurring
on the electrical signals from the heart received by the sensors. Secondly, a detector was derived for
determining whether a certain cell of interest belongs to conduction block or not by assigning prior
distributions of the conductivity and utilising the linear relationship between the cell conductivities
and the EGM. By examining the behaviour and performance of this detector in different circumstances,
the effect of the height was found, as well as that of other parameters. Thirdly, the observations done
with use of both the EGM model and the block detector were then confirmed by the experimental data.

In order to understand the severity of a lack of information on the height in the context of estimation
of the tissue parameters, the effect of estimation errors was shown by observing how measured data
is affected differently by different heights and how this might warp our vision of the underlying tissue.
Experimentally, this was shown as specific changes in the spatial distribution of the cell conductivities.
In addition, this effect could be explained using the previously derived block detector.

Ultimately, the goal of the project was finding a way of estimating the height. From early obser-
vations was seen how hard it is to distinguish between the effects of the cell conductivity strengths
and the sensor-to-cell height on the data due to their ambiguous interactions. To increase feasibility, a
simplified EGM model was considered, which exchanged a great deal of the range of applications for a
better overall performance. Starting with the minimisation of a standard objective function describing
the mean-squared error between the measured and estimated EGM data, other constraints were intro-
duced to the objective function in order to constrain the solution space of the optimisation problem. It
was shown that the height could be estimated to a certain extend and how the performance is affected
by the layout of the height map and choice of parameters in the optimisation problem. The fact that
the simplified EGM model provides better results suggests that more similarity in morphology of the
signals from each cell results in better results.

After that, a follow-up implementation was tested using the standard EGM model. From the results
was seen how the algorithm was able to provide a plausible height map, albeit that convergence ceased
rather quickly after running the algorithm, which could not simply be fixed by running the algorithm
for a longer time. However, the general features of the true height map could still be distinguished.

Then, instead of estimating the height and conductivity simultaneously, the height was estimated
on its own and subsequently fed to the SCFA algorithm in order to estimate the conductivities. The
results where compared to different assumptions for the value of the height near the true height. It was
then seen that our algorithm showed an increase in performance when the assumed height went beyond
a certain range around the true height. This means that our algorithm increases the reliability of the
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conductivity estimation depending on how prone people are to take guesses at the value for the height
further away from the true height.

This project has been able to provide insight in the effect of the sensor-to-cell height on measured
data and the effect of estimation errors in the height, as well as it showed ways to approach the height
estimation problem. Despite the effects of the height and differences therein being reasonably clear,
there is still much to be gained with regard to the height estimation. The difficulty of estimating the
height is mostly because of the ambiguity between the effects of the height and the cell conductivities
on the measured data. This becomes evident from the fact that the height and the cell conductivities
overlap in space and the frequency domain. This makes it hard to separate their separate contributions
to the measured data. Further research could therefore also include methods of separating the activity
of the two.
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