
Machine learning based aircraft arrival /
departure registrations

Version of June 4, 2017

Mike de Waard





Machine learning based aircraft arrival /
departure registrations

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Mike de Waard
born in Zwijndrecht, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl


c©2017 Mike de Waard. All rights reserved.



Machine learning based aircraft arrival /
departure registrations

Author: Mike de Waard
Student id: 4081064
Email: mikedewaard@gmail.com

Abstract

The aviation industry is vastly growing, as travelling by air is more common today
than it ever was. However due too inefficiency and lack of communication of accurate
flight information between airports, congestion and delays are occurring on a daily
basis. While Collaborative Decision Making (CDM) is developed by Euro control to
address this issue, the problem of transmitting accurate flight information near real
time is not yet solved. Adecs Airinfra did a first attempt at automatic landing and
departure registration by a fixed rule based algorithm to address this issue. However,
this algorithm has limitations that cannot be solved with tweaking and tuning. In this
work, we aim to create a replacement based on machine learning models. In this thesis
we present the complete process, starting from raw real world data, turning this into
labelled data up to the point where we define a validation method and present the final
results. We managed to create a machine learning landing / departure detection system
with up to 99% precision and recall for arrivals, and for departures we managed to get
a precision of 94% against 98% recall.

Thesis Committee:

Chair: Prof. Dr. E. Meijer, Faculty EEMCS, TU Delft
University supervisor: Dr. G. Gousios, Faculty EEMCS, TU Delft
Committee Member: Prof Dr. A van Deursen, Faculty EEMCS, TU Delft

mikedewaard@gmail.com




Preface

I’ve written this thesis as part of a research to support automation in the aviation industry.
This was a combined effort between TU Delft University of Technology, Adecs Airinfra
and me. I would like to thank everyone involved in this project for their support. First of all
Erik Meijer, my supervisor for supporting me throughout the thesis and keeping me on my
goal. Secondly, but not less important, Georgios Goussios for his guidance, time and effort
throughout the thesis. Finally from the Delft university I’d like to thank Arie van Deursen
for his time and effort while I was finalizing my work. From Adecs Airinfra, I want to thank
Andy van Helden, and Peter Frankena for making this research possible by providing data
sources and insights into the Airfee system. In addition I’d like to thank Zhi-Kang, Richard
and Lars for their feedback throughout this research. Finally I’d like to thank my mother
Marian, Jules and my friends for their support and patience.

Mike de Waard
Delft, the Netherlands

June 4, 2017

iii





Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related work 7
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Method 13
3.1 Problem identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Feature creation and selection . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Validation and evaluation methods . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Algorithm selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Results 25
4.1 Original Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Machine learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Results comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusions and Future Work 33
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



CONTENTS

5.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Bibliography 37

A Glossary 41

B Measurement results 43

C Visualisation of performance difference 45

vi



List of Figures

1.1 Radar vs ADS-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 CDM Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Ground truth labeling UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Plotted altitude and signal-strength per event type . . . . . . . . . . . . . . . . 17
3.3 Altitude vs signal strength for arrivals and departures . . . . . . . . . . . . . . 18
3.4 Window size scores for arrivals and departures . . . . . . . . . . . . . . . . . . 21

4.1 Precision and recall for arrivals of original algorithm plotted against τ . . . . . 25
4.2 Precision and recall for departures of original algorithm plotted against τ . . . . 26
4.3 Precision and recall for arrivals of model plotted against τ . . . . . . . . . . . . 28
4.4 Precision and recall for departures of model plotted against τ . . . . . . . . . . 29
4.5 Precision and recall for arrivals of model and algorithm plotted against τ . . . . 30
4.6 Precision and recall for departures of model and algorithm plotted against τ . . 31

C.1 Visualisation tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vii





Chapter 1

Introduction

With the globalization of the world comes that the amount of aircraft traffic is vastly in-
creasing. While in 2016, 3.8 billion people travelled by air, International Air Transport
Association (IATA) expects the passenger demand will double in the upcoming 20 years
up to 7.2 billion[1]. To support these vast amounts of passengers, the current network, as
well as airport processes themselves have to be optimized. To allow for this optimization,
accurate information has to be exchanged in a rapid manner. To solve the issue of standard-
ization and communication, IATA and the International Civil Aviation Organization (ICAO)
created standards to allow for exchanging information between airports. In addition, Euro-
control introduced Collaborative Decision Making (CDM) 1.2.3 with co-financing of the
European Union. CDM is a protocol for airport collaborative decision making which de-
scribes what information should be communicated at which times, and how accurate this
information has to be. While this addresses the problem of communication, the challenge
of acquiring this accurate information in a fast manner still exists up to today.

Currently, flight information is being tracked manually by ground handling service providers
and air traffic control staff. This information is digitalized and ready to be sent to the next
airport in the chain only 15 to 30 minutes later, as the staff also has to take care of handling
the aircraft, and keeping the airspace safe. This delay in information sharing has a great
impact on the decision making process of the following airports. While CDM aims at shar-
ing accurate information fast, this cannot be done in the current setting without hiring more
people to manually record and directly transmit this information to other airports. However,
due to the growing market, and pricing pressure from airlines, this is infeasible. Another
solution would be to automatically detect information, which then can be verified and sent
to other airports by the press of a button. This significantly reduces the workload, while
providing accurate flight information in a fast manner. The company Adecs Airinfra made a
first attempt to automatically detect arrival and departures for aircrafts based on Automatic
Dependent Surveillance-Broadcast (ADS-B) 1.2.2 data. This system consists of a fixed
set of rules, taking 13 parameters and is currently operational at two Dutch Airports. The
performance of this algorithm however fluctuates heavily due to its nature. To improve this
algorithm, it would have to be redesigned from scratch based on practical experience gained
over the last 4 years. However, coming up with a fixed set of rules that define an arrival or

1



1. INTRODUCTION

departure given the ADS-B data feed is hard. In addition, these rules requires parameters
that have to be tuned for every location. In contrast to a fixed algorithm, machine learning
is known to extract its own rules from the dataset based on statistics. Model improvement
is done by adding more/cleaner data to the dataset. This makes machine learning an inter-
esting alternative to the rule based flight landing predictor.

In this work we aim at completely replacing the current algorithm with machine learning
models that perform significantly better in not only precision and recall but also response
time, while being based on statistics in comparison to some hand crafted fixed rules with
parameters that need to be tuned manually.

1.1 Research Questions

In order to reach our goal of detecting arrivals and departures with machine learning, we
define the following research question:

Can machine learning be used for detecting aircraft arrivals and departures based on ADS-
B data and how does it compare to an existing fixed rule based system?

This main research question is broken into the following three sub-questions:

1. How can machine learning be applied for detecting of arrivals and departures of air-
crafts using ADS-B data?
Going from a real-world ADS-B data stream to a machine learning model brings
challenges that have to be dealt with. For example, a machine learning model takes a
fixed set of features, while our data feed puts out one point of data at a time. In addi-
tion, applying machine learning requires choices to be made for algorithms, features,
and validation methods. By answering this research question we will identify which
algorithm(s), features and validation method(s) to use for creating a time series based
machine learning model for the prediction of arrivals/departures.

2. How can the performance of the fixed rule based algorithm be measured and com-
pared to a machine learning model?
While various validation methods exist for machine learning models, each method
has their own benefits and risks. However, most of these validation methods do not
take into account the aspect of time. In addition, not all of these methods can be used
to compare a model to a fixed algorithm. By answering this question we define how
to evaluate the performance of our time series machine learning model, and how to
compare it to the original algorithm.

3. How does the machine learning model perform in comparison to the fixed rule sys-
tem?
Given the machine learning models, and a validation method, we can answer this
question by evaluating the models and algorithm, which allows us to answer the main
research question.

2



1.2. Context

1.2 Context

Since this work combines aviation with machine learning, we use this section to clarify
some core principles of aviation that we lean on in this work. Possibly unknown terms and
definitions used throughout this work are explained in appendix A.

1.2.1 Turn-around

In the field of aviation, air traffic control, ground handling, airlines and various other stake-
holders are involved in making travelling by air possible. There are many different processes
involved, but in this work we are looking in particular at the process of landing and depart-
ing, which are the first and last step in the process of making a turn-around. A turn-around
is the process that an aircraft goes through from the moment of landing, up until the mo-
ment of departing. The turn-around time is the time it takes for the process to be completed,
and is widely used by airlines to measure the performance of an airport. Depending on the
airline, turn-around times can range from 45 down to even 20 minutes. This means that in
the lower case, an aircraft has a total of 20 minutes to have all service done, passengers and
baggage unloaded, new passengers and baggage loaded and is ready for take off. To meet
these times, receiving accurate flight information is key, as preparations for the services take
time.

1.2.2 Automatic Dependent Surveillance-Broadcast system

The Automatic Dependent Surveillance-Broadcast (ADS-B) system is an alternative on the
traditional radar system for determining the position of an aircraft in the air. Figure 1.1
shows how a radar communicates with an aircraft by sending out a signal, at which the
aircraft then responds. In europe, the ADS-B transponders, also referred to as mode-S
transponders are mandatory for new aircrafts since 2015. In addition, all registered air-
crafts have to be equipped with these transponders by 2020. In contrast to radar, ADS-B
transponders transmit their information every second, and can be freely picked up by any
ADS-B receiver antenna. These receivers operate on 1090MHZ and people even succeeded
in building these antennas with a raspberry pi for under 100 dollar [2]. This is a phenomenal
difference in price when compared to radar systems which start at 350k.

The information ADS-B transponders broadcast consist of an aircraft identifier and altitude.
In addition, the ADS-B transponders can be linked to GPS receivers with a cable to send
out their location in GPS coordinates. However, this link between GPS and the transponder
is not mandatory for most aircrafts, causing this information to only be sporadically avail-
able. In addition, the precision of ADS-B transponder altitudes depend on the manufacturer.
While some transponders are precise up to 33 feet (10.06 meter), others are precise up to
100 feet (30.48 meter). These step sizes can cause the signal to toggle constantly between
two altitudes, while the aircraft is flying level.

3



1. INTRODUCTION

Figure 1.1: Radar vs ADS-B ([3])

1.2.3 Collaborative Decision Making (CDM)

Currently, airports have limited cooperation. In addition even at airports themselves, co-
operation between the individual parties such as the Air Traffic Control (ATC) tower and
ground handling is limited. Airport CDM is a Eurocontrol initiative to improve the over-
all efficiency of airport operations by optimizing the use of resources and improving the
predictability of events [4]. This initiative is co-founded by the European union. Part of
this initiative, is to use standardized definitions for information sharing such as milestones.
Figure 1.2 displays these milestones in order from 1 up to 16. In this work we use landing
(milestone 6) as the definition for an arrival. The time corresponding to this milestone is
called the ALDT (Actual Landing Time). The departure definition throughout this work
is milestone Take Off (milestone 16). The corresponding time for this milestone is the
ATOT (Actual Take off time). Note that for a flight departing from Airport A to airport B,
milestone 16 of Airport A, is identical to milestone 3 for Airport B.

1.3 Outline

The rest of this document is structured as follows: in chapter 3 we answer research question
1 by working through the process of going from raw data to a machine learning model
for arrivals and departures. In addition we answer research question 2 in this chapter by
defining a validation method that works for both the original algorithm and the machine
learning models, such that they can be measured in the same way. In chapter 4 we answer
research question 3 by presenting the results and making a comparison between the original
algorithm and machine learning models. In chapter 5 we recap the research questions,
discuss our work and present possible future work. Finally, uncommon terms are explained
in appendix A.

4



1.3. Outline

Figure 1.2: CDM Milestones ([5])

5





Chapter 2

Background and Related work

In this chapter we describe the background of the original algorithm, how this algorithm
works and what its core design flaws are. In the second part of this chapter we present other
work aimed at improving the aviation industry. Finally we refer to related researches based
on the techniques and nature of our data, and motivate how we use those techniques in this
work.

2.1 Background

The aviation sector is rapidly growing due to demand caused by for example globalization.
This drives airlines into enforcing strict turn-around time rules on airports with high fines
in case they are not met. The turn around time of an aircraft is the time it takes from the
moment of landing until departing again. In order to meet these turn around times, airports
require detailed information about the flights arrival and departure times. For example, if
an aircraft arrives at airport Alpha, with destination airport Beta, which is an hour away,
preparations should already start at airport Beta the moment this aircraft landed on Alpha.
These preparations can range from preparing the fuelling trucks, de-icing tanks and catering
services. On the other hand, the same services have to be applied on other aircrafts as well,
and the time-frames for performing each of the services is minutes rather than hours. Due
to this, it is important to have accurate information available as soon as possible. However,
this information is currently manually registered and reported to the next airport with delays
of up to 30 minutes. These delays cause the next airport to be planning based on scheduled
information rather than real time information. This causes inefficient use of resources and
last minute changes for the operational staff.

In addition to this, airports need to keep track of the amount of movements (arrivals/de-
partures) they handle throughout the year for environmental and financial reports to the
government. This is currently tracked by hand and verified manually against schedules and
flight packs for commercial flights. For flights such as training, recreational, medical and
those for private transport this verification can’t be done as these are often not scheduled,
and do not have these flight packs available. This makes tracking the amount of movements

7



2. BACKGROUND AND RELATED WORK

Parameter Description

EMFRC maximum possible rate of climb for all aircrafts
EAOS manual time correction in seconds for arrivals
EDOS manual departure time correction in seconds for departures
LBFD altitude which the aircraft has to be been below to be allowed to be marked

as departure
ALFD altitude which the aircraft has to go through to be marked as departure
STS minimum amount of data needed by the algorithm to allow for a departure

/ arrival detection
ENGB altitude that the aircraft has to be below to allow for marking as arrival
ALDL altitude which the aircraft has to go through to be marked as arrival
EMTBDD minimal time that has to pass from the former departure to allow for new

departure detection
EMTBAA minimal time that has to pass from the former arrival to allow for new

arrival detection
EMTBAD minimal time that has to pass from the former arrival to allow for new

departure detection
EMTBDA minimal time that has to pass from the former departure to allow for a new

arrival detection
EMSSTBL minimally required signal-strength to allow for arrival or departure detec-

tion

Table 2.1: AirFee parameters

at an airport for these flights resource intensive and error prone due too all the manual work.
Automatic registration can significantly reduce the workload of these mandatory reports.

Adecs Airinfra designed a fixed-rule algorithm that operates on ADS-B data from individual
aircrafts. This algorithm contains 13 different parameters that have to be tuned. We listed
each of the parameters including a description on how they are used in table 2.1.While most
of these parameters are to check if the data is even a candidate for arrival or departure,
the most important parameters are ALDL (altitude for landing) and ALDD (altitude for
departure). These two parameters are the foundation of the algorithm, whereas the other
parameters were introduced over time as patches to problems with the algorithm. The core
idea of the algorithm is to detect an event (arrival or departure) based on the aircraft going
through a certain altitude level. However, this brings a challenge, as the altitude of an air-
craft is computed based on barometric pressure, which fluctuates with weather. While these
fluctuations are in the range of approximately 300 feet, this causes the altitude boundary for
altitudes and departures to be placed on the upper bound of these altitudes. In other words,
on a good weather day, arrivals and departures may be detected 10’s of seconds earlier or
later than on a bad weather day. This is strongly undesirable, as detection should be near
real time for verification purposes. This real time registration is important, as one person
of operations is constantly monitoring the runway and this system for errors, and to add

8



2.2. Related work

in additional data. This tracking becomes hard when flights are registered with delays of
30 to 60 seconds, as there might already be another aircraft on the runway by that time. In
addition, the person verifying is responsible for several other aspects, making this a side-job
that should not be resource intensive.

Parameter EMSSTBL (minimum required signal-strength) was introduced to ignore air-
crafts arriving at other airports, or flying particularly low for example for aerobatics or
training. Prior to the introduction of this parameter, these cases were also detected as ar-
rivals and departures, due to the wide range of the ADS-B signal, which can receive data
from aircrafts up to 200 km away, depending on the altitude and strength of the ADS-B
transponder on the vehicle itself.

Given this patching over time, the algorithm has grown to some kind of black box where
the impact of tweaking and adding of rules cannot be overseen easily. To make things more
difficult, a direct performance measurement method for the algorithm does not currently
exist. Creating a new rule based algorithm is hard as coming up with rules that encapsu-
late near real time detection is non trivial, if not impossible. In contrast, machine learning
is widely used for pattern recognition and extracting underlying statistical rules from data
for detection purposes. In addition, machine learning models can be improved by training
it with corrections for false positive and false negative cases [6][7]. This makes machine
learning an suitable alternative for a fixed rule based algorithm.

2.2 Related work

Our research is not the first attempt at making more accurate flight information available
through machine learning. In 2014, Ravizza et al. performed a collaborative research for
aircraft taxi time predictions [8]. In this work they compared different forms of regression
to determine the taxi time in minutes for aircrafts based on historical airport data. In figure
1.2, the arrival taxi time is defined as the time between landing (6) and In-Block (7). For
a departure the taxi time is defined as the time between Off-Block (15) and Take Off (16).
Note that our work focusses on predicting milestone 6 and 16, rather than these two inter-
vals, but can complement the research of Ravizza et al. for arrivals by providing milestone
6 for their regression algorithm.

Aircrafts, like any other vehicle need maintenance, especially when a rough landing has
occurred. X. Wang et al. did a research on detecting these kinds of landings [9]. Their main
goal was to allow for reporting of preventive maintenance after a hard landing, such that mi-
nor issues are addressed before they become major issues. To detect a rough landing, they
collected accelerometer data from landings, and used domain knowledge to label this data.
They then trained a Support Vector Machine (SVM) using a training split of the original
data, and did parameter tuning by running for a range of parameters against the test set. By
this method, they managed to get a 97% accuracy for detecting rough landings. Where they
can detect the roughness of a landing on board of an aircraft, our work differs in that we

9



2. BACKGROUND AND RELATED WORK

attempt to detect time rather than roughness. In contrast, we do not require any additional
device to be on board of an aircraft, whereas the accelerometer data is not transmitted via
for example ADS-B. This allows our work to be deployed without need of access to the
actual vehicles involved.

Using time series sensor data in machine learning is interesting in many different research
fields. One of the most popular examples of this is activity recognition based on accelerom-
eter data from a mobile phone [10]. The main difference with our work however, is that their
recognition is done based on a repetitive pattern. For example, one takes a step, which takes
approximately 1.2 seconds, and this pattern is repeated many times to detect that someone
is walking. In our case, an arrival or departure is a pattern that only occurs once in a time
frame of minutes, sometimes even hours or days. In other words, where with recognizing
walking, the model has a series of chances to detect the pattern, the model has only one shot
in our case. Identically to the detection of accelerometer data, a team of researchers from
Norway and Spain published a research on detecting cardiac arrest based on cardiogram
data. [11]. What we find interesting is that both researches conclude that K-NN outper-
forms other algorithms.

Our data source is a raw ADS-B data-stream from an on-site receiver that is provided by
Adecs Airinfra. We have full access to this stream such that we can freely collect data.
We know in advance that our neutral data class will be several orders of magnitude larger.
This means that our data is extremely imbalanced. Garcia et al. have conducted a large
scale research, on performing machine learning on imbalanced data [12]. In this work they
summarize state of the art techniques for dealing with this imbalanced data, and review
evaluation metrics in machine learning and the effect of imbalanced data on these metrics.
In this evaluation research they combined knowledge of over 140 different papers on ma-
chine learning, imbalance in data and evaluation metrics. Their research greatly helps us in
performing balancing techniques as well as picking the evaluation metrics, based on which
we will measure the performance of our machine learning models against the original algo-
rithm.

Given our ADS-B data stream, we also know that we only have raw data points available
as possible features to start with. These points contain an underlying structure that can be
modelled into separate features. R. Chatterjee did a talk on extracting features from time
series data [13]. In this talk he presents the process of extracting features from time series
data to predict possible problems with IT systems. While we are not attempting to detect
anomalies in IT systems, his work helps us defining features based on time series data, as
using only raw data might not be enough information to perform proper classification. In
contrast, Geurts research [14] shows that K-NN with K =1, and raw data outperforms con-
structed features and other algorithms such as boosting. This gives an interesting contrast,
on which we based our feature selection method.

Using all possible features can result in the curse of dimensionality. This is the commonly
used name for having too many features for too small of a dataset. This was argued by Ver-

10



2.2. Related work

leysen et al. in their work on the curse of dimensionality in time series classification [15].
Fortunately, this is now a well known problem, and various feature selection processes have
been explored. Chandrashekar et al.[16] did an extensive survey on these methods, includ-
ing exploration of 83 publications. In their work they show that having more features is
certainly not always better. In addition they elaborate on three very common feature selec-
tion techniques: filtering, wrapping, and embedded feature selection. We use their extensive
research as the base for picking our feature selection method for model creation. In addition
we use the book feature selection for knowledge discovery[17] by Lui et al. for verification
purposes.

11





Chapter 3

Method

To go from a raw, real-world data source to a machine learning model requires a variety of
aspects to be covered. From data preparation, algorithm selection, to feature composition
and last but not least validation metrics and evaluation method(s). Our main research ques-
tion was split down into three sub questions. In this chapter we answer the first question by
describing the methods used to come from raw, real world ADS-B data to a machine learn-
ing model. In addition we answer the second question by describing a validation method
that allows for comparison of the fixed rule based algorithm against the machine learning
models. This allows us to answer our final sub question in chapter 4 such that we can answer
the main research question.

3.1 Problem identification

The rule based system reports for each received data point whether it is an arrival, departure
or neutral point. The time-stamp of a data point is then used as the time that belongs to the
detected arrival/departure. Since we are working on a replacement of the rule based system,
the resulting output has to contain the same information. In other words, a data point should
be marked as an arrival / departure / neutral. This is seen in the machine learning field as
a classification problem. A classification problem is that of labelling new data based on
prior labelled data. This makes classification belong to the category of supervised-learning
types, as labels are used in the training dataset as well. Since a time aspect is involved, the
exact problem type can be identified as time-series classification, which comes with an extra
set of challenges which we will elaborate on in section 3.3. Since the possible classes are
either arrival, departure or neutral, the problem also belongs to non-binary classification.
We can however reduce the problem to binary classification by creating a separate model
for each respective class. This allows for feature selection per event type, but introduces
the possibility that 1 data point is marked as both arrival and departure at the same time.
In practice this is very unlikely as the characteristics of an arrival such as descending, and
coming closer to the airport are opposite of a departure which is ascending and moving
away from the airport. Due to this we claim that separate models make more sense as they
allow for feature selection per event type, and for more specific fine tuning for each model.

13



3. METHOD

3.2 Dataset preparation

For this work we have collected a dataset of 35.4 million ADS-B messages from the stream
provided by Adecs Airinfra. We collected this data in a time frame of 4 months. The ADS-
B receiver is a TRX-1090 traffic receiver [18] and a message contains an aircraft identifier,
altitude (feet), signal-strength (dB), time-stamp. In very rare cases a latitude and longitude
are included, but due too the rarity we cannot use this as a feature. The total amount of air-
crafts for which messages are contained in the dataset is 10019. We could choose to create
a machine learning model for each individual aircraft. However, this is difficult due to the
limited data available for some aircrafts, and this is undesirable as whenever an aircraft ar-
rives or departs for the first time, it won’t be automatically detected. Due to this, we will use
the complete dataset while generalizing over all aircrafts. If a particular type of aircraft, say
for example gliders, come forward as wrongly detected in the final results, we will revisit
this decision and look for an alternative.

Given that our data is unlabelled we can’t directly use it for supervised learning. Fortu-
nately, field experts from the airport and Adecs Airinfra have offered to help labelling this
dataset. Performing labelling on a dataset of 35.4 million records is highly infeasible, thus
filtering prior to the labelling process has to be done. Since the dataset contains all received
ADS-B data, and is not limited to aircrafts that departed or arrived at the airport, we can
perform an informed filtering step to filter out aircrafts that do not have an altitude lower
than flight level 010 which corresponds to 1000 feet. This leaves aircrafts in the dataset that
have data both above and below flight level 010. The resulting dataset of this first filtering
step consists of a total of 4.8 million messages. If we only present the data below 1000 feet
of these aircrafts and automatically mark everything above 1000 feet as neutral, a total of
932609 points has to be viewed and labelled manually. To identify whether it is feasible to
label this data, we plot a graph for one of the aircrafts with a window size of 200 points. A
quick test for a single aircraft showed that with adding shortcut-keys for stepping forward,
and marking arrivals/departures it would take a few days of work to go through all data,
which was accepted by the field experts. We provided the field experts with the tool as seen
in figure 3.1, where one can select an aircraft, click a point in the graph, and then apply the
appropriate action depending on the point. The possible actions are, mark as arrival, mark
as departure and move forward in time from this point. To significantly ease the process we
added key bindings ’A’, ’D’ and ’M’ for these commands.

The result of this process is a dataset containing 4555 arrivals, 3023 departures and 4.063.180
neutrals. The difference of +/- 800.000 in comparison to the 4.8 million messages we had
after our first filtering step is explained by the removal of messages for aircrafts that did
not land or depart from the airport but were not filtered out with the first step of filtering
ou based on flight level 010. If we express these numbers in percentages, then the data
consists of 0.112% arrivals, 0.074% departures, and 99.814% neutrals. This shows a severe
imbalance of classes in the data, which is common in real world data, as a study by Torelli
et al.[19] shows. They summarize reports of issues with imbalanced data in classification
with real world cases. Garcia et al. summarized methods for dealing with imbalanced data

14



3.2. Dataset preparation

Figure 3.1: Ground truth labeling tool

in [12]. There are two important things to take into account when dealing with imbalanced
data. First-off the evaluation metric(s), which we will address in section 3.4. And secondly
the algorithm used for creating a model. We will discuss the algorithm choice in section
3.5. Even though we are aware of the main aspects to take into account with imbalanced
data, we try to reduce the imbalance significantly for performance reasons. However, be-
fore we can do this, we first determine a size for test and training data, because the testing
data should not be manipulated with any balancing techniques. Since we are working with
time series data, a random train test split won’t work as we need consecutive data points
for feature modelling. Instead we will split the data in 2 time frames. By taking the first 2
months of data for training, and the latter 2 months for testing, we create a test dataset of
1221 arrivals, 829 departures and 1.171.250 neutrals. On the complete dataset this results in
26.80% of all arrivals, 27.36% of all departures and 28.88% of all neutrals for testing, while
leaving 3334 arrivals, 2194 departures and 2891930 neutrals available for training purposes.

Now that we have separated the training and test set, we can apply balancing on the training
set. We start by removing all data above Flight level 010, just like we did in the presen-
tation of data to the field experts. This reduces the neutral class down to 876.633 points,
while leaving the arrival and departures at the same level. The neutral class is still two or-
ders of magnitude larger in comparison to the departures and arrivals. To deal with this,
Garcia’s work [12] discusses various methods. sub-sampling and oversampling are the
most commonly used techniques in various forms. However, with oversampling, model
over-fitting can occur, and sub-sampling brings the risk of removing important parts of the
majority class. To deal with the risk of sub sampling, informed sub sampling was devel-
oped. In this way of sub sampling, the distribution of data is taken into account, limiting
the risk of removing important data-points of the majority class. Since we do not want to
have an overfitted model based on 2 months of data, we go with informed sub sampling
on the neutral dataset in a ratio of 1 of 25. We do this informed sub sampling by taking

15



3. METHOD

Formula Description example

T (xn) Absolute time-stamp 2016-09-01 08:18:23.393
A(xn) Absolute altitude in feet, compensated for airport elevation 300 ft
F(xn) Altitude in feet, relative to pressure of 1013.25 hPa 543 ft
S(xn) Signal-strength in dB 526 dB

Table 3.1: Properties available on each data point

more neutral samples that lie close to the arrival or departure event while taking less neu-
tral points that lay far away from these points, while maintaining a ratio of 1 to 25. With
this random sub sampling we reduced the neutral class to 35605 points, which makes the
complete training dataset 41133 points with a balance distribution of 8.2% arrivals, 5.3%
departures and 86.5% neutrals. Balancing it further to equal class sizes is not necessary and
can re-introduce the risk of removing important data of the majority class, which harms the
performance of the resulting model. Since the ground truth labelling was performed by the
field experts we need to verify the correctness of their work. To do so we performed 2-fold
cross validation on the training and testing data. We then manually inspected false positives
and false negatives for both runs. By performing this step we managed to correct for 112
errors in the complete arrival dataset, against a correction of 75 departures. These correc-
tions were done in collaboration with the field experts, and consisted of failing to label an
event or falsely labelling an arrival as departure or visa versa.

3.3 Feature creation and selection

In machine learning, the data usually already exists of a large set of features such as all
pixel values of an image. This makes up for 3 values per pixel (RGB), resulting in a total
of 30000 possible features in a picture of only 100x100 pixels. Our case is different in
that one ADS-B message only brings us an altitude, time-stamp, signal-strength and aircraft
identifier. We know on beforehand that a single point of this information will not suffice to
predict properly, as for example the altitude of an arrival is the same as that of the upcoming
points on the ground. Field experts used the trend in signal-strength and altitude together
with flight plan information they had available to label the data, which tells us we need to
somehow incorporate this data into features. In order to define these features we first need
an understanding of the data we have available. For each individual aircraft, we have an
ordered set of data-points D where the most recent point is the first point in the set. The
formal definition of this set is defined in formula 3.1. In this formula, T (x) represents the
time-stamp of point x in the set.

D = {xn,xn−1, ...,x0} where {∀xi ∈ D : T (xi)> T (xi−1)} (3.1)

Given this set we can define features for point xi by combining the data of that point with
points in the past. We already defined the time-stamp to be T (x) but there are more prop-
erties available for each point, which we listed in table 3.1. Given these properties we can

16



3.3. Feature creation and selection

Figure 3.2: Plotted altitude and signal-strength per event type for 20 points

Altitude in feet Signal-strength in dBa
Arrival Departure Neutral Arrival Departure Neutral

Max 440,0 140,0 1105,0 803,0 916,0 304,0
Mean 290,0 45,6 1010,0 633,2 870,5 236,0

Min 40,0 40,0 905,0 587,0 835,0 186,0
Mode 340,0 40,0 1055,0 670,0 875,0 208,0

Peak to peak 400,0 100,0 200,0 216,0 81,0 118,0
Slope -16,5 1,3 -8,5 7,1 1,9 -3,6

Variance 85,0 9,4 47,5 39,8 19,9 30,1

Table 3.2: Metric calculations of examples from figure 3.2

now model the time series into features. For this there are various options as described by
Chatterjee [13]. Some examples are taking the mean, slope, mode, minimum, maximum or
even the signals variance. Since we want to have some idea before starting feature compo-
sition, we take one of each event type (arrival, departure and neutral) and plot the altitude
and signal-strength in figure 3.2. These plots contain the actual event, and 19 points prior to
this event. We then compute the options as mentioned by Chatterjee and list them in table
3.2. This table and the plots are not sufficient to do feature selection, as the depicted neutral
case is actually one of the many options out there. For example, an aircraft can be moving
further away or closer to the airport, and can ascend, stay steady or descend. In addition,
we only took one arrival and departure of the set, which is not representative for the set.
However, the plots and data do give some initial idea on what kind of data we are dealing
with, which is important for the feature selection process. In addition to the in table 3.2
possible time series based features, we can also include the raw altitude and signal-strength
values in the feature selection process. The latter part was argued to be giving worse results
by Lines et al. [20]. However, we know from the original algorithm that multiple arrival-
s/departures in a row were detected as moving 1 step forward does not significantly change

17



3. METHOD

−200 0 200 400 600

400

600

800

Altitude

Si
gn

al
-s

tr
en

gt
h

Arrivals

−200 0 200 400 600
400

600

800

Altitude
Si

gn
al

-s
tr

en
gt

h

Departures

Figure 3.3: Altitude vs signal strength for arrivals and departures

the signal. To deal with this, the original algorithm ignored detections for a short timespan
after its first detection. We also introduce this short mute time in our model. We set this
timespan to correspond to the window size of the points we use, such that every point still
is contained in a set that is classified. Since we are using a real world dataset, which was
labelled by field experts, the chances of noise are significant. Before we continue with the
feature selection process, we plot the signal-strength against the altitude to find outliers.
These plots can be seen in figure 3.3 for both arrivals and departures. The arrivals are nicely
concentrated around altitude 0. We see however that there is an outlier at altitude 672, and
a few points with a low signal-strength in comparison to the majority. We discussed these
cases with the field experts. The outlier at altitude 672 for arrivals was a labelling error.
Of the 23 low signal-strength cases, 17 were wrongly labelled, which were also removed.
This was decided upon by the field experts after looking into other data of the same aircraft
which revealed they were performing acrobatics in those cases. 5 cases were actual events.

The departure plot shows a bit more spreading. The low altitude and signal-strength point,
was a labelling error. The low signal-strength, high altitude points, which are green in the
plot are caused by 1 aircraft which has a so called sticky transponder. It sticks to the low
altitude for a longer time, and comes loose after reaching a certain altitude. The small scat-
terings with low altitude and high signal-strength contained 4 falsely labelled departures,
and the ones with high altitude contained 3 falsely labelled departures. The rest was found
valid.

18



3.3. Feature creation and selection

3.3.1 Methods for selecting features

While it is useful to collect any kind of feature one finds available for a model, using all
of them directly often results in the curse of dimensionality [15]. This means you have too
many dimensions (features) in comparison to the amount of data available. The effect of
this is that a model with all features performs worse than a model that includes a subset of
features. The most common methods for finding which features to use, according to various
papers[16, 17, 21] are filtering and wrapping. In filtering, each individual feature is given
a score based on test methods such as the Welch’s test, chi-squared test, information gain,
and correlation coefficient [17]. This method is usually applied when there are too many
features available to apply wrapping. Wrapping, in contrast to filtering, takes the effect
of selecting subsets of features on the models performance into account. The wrapping
algorithm can be described by the following 3 steps:

1. Select a subset of features

2. Train and evaluate a model

3. Use the evaluation metric for each result as feedback to select the next set of features

For the selection of subsets, various heuristics exist. The most common ones are forward
and backward search, which are hill climbing techniques for optimization [22]. In case of
using forward search, each individual feature would be used for training and validation, to
then select the best first feature based on these scores. The next feature would be determined
in the same way, up until the point where the difference in score when adding a feature is
neglect-able. We provide a pseudo-code implementation here below to clarify.

var selectedFeatures = {}
var maxScore = 0
val minDelta = 0.001
var featureSet = allFeatures

while (featureSet.size > 0)
{
var featureMetrics = {}
for(var feature in featureset) {
var model = trainModel(selectedFeatures +: feature)
var score = model.evaluate()
featureMetrics.Add((feature,score)})

}
selectedRecord = featureMetrics.max(record => record.score)
if (maxScore + minDelta < selectedRecord.score) {
maxScore = selectedRecord.score
selectedFeatures.add(selectedRecord.feature)
featureSet.remove(selectedRecord.feature)

}
else {
break

}
}

Listing 3.1: Forward search feature selection using wrapper method

Backwards search works similarly, but instead of adding features to the selection, it works
by leaving one feature out each run, up until the point where leaving a feature out would

19



3. METHOD

significantly impact the performance score of the resulting model. For clarification purposes
we provide the pseudo-code for backward search here below.

var maxScore = 0
var featureSet = allFeatures

while (featureSet.size > 0)
{
var featureMetrics = {}
for(var feature in featureset) {
var model = trainModel(selectedFeatures -: feature)
var score = model.evaluate()
featureMetrics.Add((feature,score)})

}
var potentialRemovableFeature = featureMetrics.min(record => record.score)
if (maxScore <= potentialRemovableFeature.score) {
maxScore = potentialRemovableFeature.score
featureSet.remove(potentialRemovableFeature.feature)

}
else {
break

}
}

Listing 3.2: Backward search feature selection using wrapper method

In the backward search, if the score stays equal, the feature is also removed, as it apparently
was not of influence to the performance, or in other words, is noise for the model. Note
that both forward and backward search are greedy optimization algorithms. Selecting the
very best feature set can be done by computing all possible solutions, but this is infeasible
with the computational power that is currently available. In forward search, the algorithm
does not have all features necessary for good predictions available from the start, which
intuitively makes it harder to perform a good feature selection. Due to this, backward search
wrapping is more commonly used. We also decided to go with backward search for feature
selection. The score calculation is done by using the F measure with F = 1 as described by
Garcia [12]. The calculation for the F measure is denoted in equation 3.2. The F measure
allows for giving a relative importance of precision and recall by parameter β, but since
precision and recall are equally important in our case, we leave this value on 1.

F =
(1+β)2×Recall×Precision

β2×Recall+Precision

Precision =
TP

TP+FP
Recall =

TP
TP+FN

(3.2)

3.3.2 Selecting the features

In figure 3.2 we noted that the plots where for a window size of 20 points. This size was
picked based on the original rule based system. However, this number was pseudo-randomly
picked in the original algorithm. Due to this, we perform the wrapper method for window
sizes 3 up to 20, and construct the feature sets accordingly to find an optimal window size
and feature set given the computational resources available. The results of this feature se-
lection process are shown in figure 3.4. What we see with arrivals is a curve that reaches

20



3.3. Feature creation and selection

5 10 15 20

1.6

1.8

2

Window size

Sc
or

e
Arrivals

5 10 15 20

1.6

1.8

2

Window size

Sc
or

e

Departures

Figure 3.4: Window size scores for arrivals and departures

Model Window Selected Features

Arrival 12 Max(A), A(x1), A(x2), A(x3), A(x4), A(x7), A(x8), A(x9), A(x10),
A(x12)

Max(S), Min(S), P2P(S), S(x1), S(x7), S(x8), S(x10), S(x11),
S(x12)

Departure 6 Max(A), Mean(A), Min(A), P2P(A), A(x1),A(x2), A(x3), A(x5),
A(x6)

Max(S), Mean(S), Min(S), Mode(S) , P2P(S), S(x1), S(x3),
S(x4), S(x5), S(x6)

Table 3.3: Results of feature selection process

it’s highest point at window size 12, and then stays steadily around this point. This is ex-
plainable by the fact that larger window sizes have all features available that are also there
for smaller window sizes. The slight fluctuation is due to the fact that computed features
such as average and mean are being calculated over more points, causing their information
to be less precise. Given that less is more in machine learning, we decide to go with the
lowest window size with the highest score for arrivals, which is 12. The features selected
for this window size are listed in table 3.3.

In figure 3.4 we see that for departures, the peak is at window size 6, and then has a fluc-
tuating but declining trend towards 20. This is due to the fact that some people tend to
turn on their transponders relatively late, causing the amount of available data points for

21



3. METHOD

training, as well as the amount of test points to be detected to decline as the window size
increases. However, since the peak is already at window size 6, this is not a big issue, as
in contrast, the original algorithm requires 20 points of data, which causes a larger blind
spot. Given this, we take window size 6 for departures and listed the selected features in
table 3.3. As we expected, the resulting window size differs significantly for arrivals and
departures. In fact, the window size of departures is half that of arrivals. In addition, we
see that while the departure model is more based on computed features, the arrival model
uses mostly raw values as features. This could be caused by the high window size of the
arrivals, which makes the computed values less informative. However, since the overall
score is high, further exploration of features is not necessary.

3.4 Validation and evaluation methods

The machine learning field uses various methods and metrics for validating a model. The
most commonly used methods are a test/training split and cross validation. Usually, a
train/test split is done to have an indication of how the model would perform in the fu-
ture on data it has not seen before, while cross validation is used to evaluate how well the
model generalizes over the data. Both methods work by training a model, and then testing
the model by running predictions for the test data and computing a confusion matrix, that
allows for computation of all kinds of other metrics such as precision, recall, accuracy and
discovery rates. Since we are already generalizing over aircrafts, we go with a training and
testing split for our validation method, as also described in section 3.2. Our data is split
into two parts with each a time frame of 2 months. This ensures that we have various air-
crafts and weather conditions in both of our datasets. To verify whether our models learned
properly, we look at each individual FP and FN and discuss how they can be addressed in
chapter 4.

Both the train/test and cross validation method are aimed at measuring exact performance
and do not take into account the time aspect, while this is of importance with time series
data. To illustrate, suppose a series of predictions of {0,0,0,1,0,0,0} where the interval
between each point is 1 second. If we now take the truth dataset which is represented by
{0,0,1,0,0,0,0}, and strictly match these two, like what would be done with non-time se-
ries classification, the model predicted 5 TN, 1 FP, and 1 FN. This gives a very negative
result in case a time tardiness is allowed for detection. In our case, we would like this tar-
diness to be reduced to a minimum, but want to know how well the model performs if we
allow this slight offset in time. To solve for this we validate the model by first predicting for
the complete test set, and then doing a mapping of the prediction results on the test results.
This mapping is done by using the Gale-Shapley stable marriage algorithm. This algorithm
is designed to find a stable mapping between two sets of data points based on certain con-
straints. In our case we have ground truth data points G = {g1, ...,gn} and the predictions
made based on our model P = {p1, ..., pm}. Each point in both G and P has an aircraft
id, event type and time-stamp which we can use to define our constraints for the mapping
process. We start off by applying matching constraints, such that only points of the same

22



3.5. Algorithm selection

event type and belonging to the same aircraft can be matched. Additionally, we introduce a
constraint such that the time difference between two points may be at most τ seconds. This
causes an extra variable to be evaluated. The area under the curve (AUC) of the Receiver
Operator Characteristic (ROC)[23] was introduced to deal with a similar problem, namely
that of the decision boundary threshold. This threshold decides whether a point belongs to
the positive or negative class, and is usually set to 0.5. The AUCROC curve made it possible
to evaluate the algorithm while moving this decision boundary from 0 to 1, and is defined
by ROC =

∫ 1
0

T P
T P+FP d( FP

T P+FP). It evaluates the true positive rate against the false positive
rate.

Davis et al. [24] have shown that these measures cause an overly optimistic view of a
model when the data is imbalanced. In addition, Garcia argued the same in [12]. As our
data is significantly imbalanced, the ROC curve would not work for us. Davis et al. pre-
sented the precision-recall curve (PRC) [24] to deal with this imbalance. It works similar
to ROC, but instead of using the false positive rate, the precision rate is used. This results
in the following definition: PRC =

∫ 1
0

T P
T P+FP d( T P

T P+FP). However, both of these metrics are
aimed at finding the optimal decision boundary, while we are not trying to find the optimum
τ value, but rather try to evaluate our model over different τ values. Due to this we cannot
directly use either of these metrics. However, we can plot precision and recall for different
τ values just like is done for the decision boundaries in prior metrics. This allows us to
compare the precision and recall individually for the machine learning model against the
original algorithm. We let τ range from 0 to 60 seconds with step sizes of 1 second. This
makes for a computation of 61 confusion matrices per model, allowing us to plot individual
curves for precision and recall against the τ values. These plots then represent how well the
model performs when a tardiness in time of τ is allowed. For example, if the precision is
60% at τ = 10, then 60% of the detected events were actual events that happened within 10
seconds of detection, while 40% of the detected events did not happen within 10 seconds
of detection. In addition, if the recall is 70% at τ = 10, then 70% of the actual events are
detected when a tardiness of 10 seconds is allowed.

Given a metrics curve plotted over τ we can then state that the model/algorithm with the
largest area under the curve has the best performance. This is due to the fact that we plot
τ from 0 to 60, and want to have recall and precision as high as possible as early as possi-
ble. This gives us a fair way to compare both the algorithm and machine learning model’s
performance.

3.5 Algorithm selection

An important part of model creation is algorithm selection. Unfortunately, there is no pre-
defined rule that states which algorithm best fits our problem. With that, the fact that there
are numerous algorithms already out there does not make this process easier. Some of the
mainstream algorithms are K-NN, Naive Bayes, Support Vector Machines, Random Forest,
various Artificial Neural Networks and several deep learning techniques. Especially deep

23



3. METHOD

learning has become interesting ever since a breakthrough in training deep belief networks
by Hinton et al. in 2015[25].

We looked at deep learning and quickly found that the arrival and departure class data is
too small to allow for performing deep learning. In addition, we found that Naive Bayes
does not take into account a pattern within a group of features. It works by evaluating
each feature individually, and finally multiplying them together to determine which class
the point belongs to. While this makes Naive Bayes perform well in text classification, it
won’t work well in our case. This leaves Random forest, SVM’s, a shallow neural network
and K-NN open.

Before we went further into exploring each algorithm we looked at similar research in the
field of time series classification. Keogh et al. explored K-NN (with K=1) versus a multi
layer perceptron neural network and various other algorithms in 2006 [26]. They reported
that K-NN with K=1 is hard to beat. In 2009, independent research on classifying activity
is done by Brezmes et al. This research also uses K-NN for to classify their raw data as
activities. In 2011, Keogh et al. show that his claim on K-NN still holds [27]. In 2013 Hu et
al. publish a paper titled ’Time series classification under more realistic assumptions’ [28].
In this work, K-NN was also used for the time classification part. While these publications
are all done before the finding of Hinton et al. in 2015, we already explained that deep
learning can unfortunately not be applied in our case, thus these publications still apply on
our case.

Due to these publications we looked further into the benefits of using K-NN and found
that it does not require long training times, is easy to understand and can be corrected lo-
cally on false predictions by simply adding corrections into the existing tree. Shallow neural
networks on the other hand need to have a network architecture defined and are harder to
understand and fine tune with limited data. In addition, SVMs need kernel selection and
parameter tuning while this is not the case for K-NN. This makes K-NN a desirable algo-
rithm, as it is maintainable and predictable. For K we pick K=1 as we only have a limited
set of arrivals and departures available in comparison to the majority neutral class. Picking
K=2 could introduce ties, which is why picking K=2 is generally not done when using the
K-NN algorithm. Picking K=3 or higher introduces the risk of having too few arrivals and
departures. In addition, prior work showed that K=1 worked best in most cases.

24



Chapter 4

Results

Let us recap research question 3: ’How does the machine learning model perform in com-
parison to the fixed rule system’. In this chapter we answer this question by first present-
ing the evaluation results of the original fixed rule system and machine learning version,
followed by a comparison and discussion on these results. The evaluation method we per-
formed to compute these results can be found in chapter 3.

4.1 Original Algorithm

The original algorithm flags a point as arrival, departure or neutral. Due to this, we have
to measure the performance of the original algorithm separately for arrivals and departures.
To run the algorithm, we also need to fill in all parameters. For this we use the configuration
as is used at the Dutch airport where the algorithm is active.

4.1.1 Arrivals

By testing the algorithm’s performance against the arrivals test set with τ ranging from 0 up
to 60, we created a precision and recall curve as seen in figure 4.1. Let us recall that τ stands
for the time in seconds the algorithm is allowed to be off the actual moment of an event.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

Algorithm

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

Algorithm

Figure 4.1: Precision and recall for arrivals of original algorithm plotted against τ

25



4. RESULTS

The raw values used to create this plot are also included in appendix B. Both plots have
τ on the x axis, and respectively recall and precision on the y axis. The first thing to notice
is that there are steps between the t values in both plots. These are explained by the interval
of approximately 3 seconds between each data point coming in from the transponder. These
steps are partially caused by the transponders, and partly by the mechanism on how the
transponder data is read from the system. However, since the same data is used among all
experiments this does not introduce an advantage for either of the options.

The second thing to notice is that the curves for both recall and precision follow the same
trend. This can be explained by the fact that precision and recall only differ slightly in their
computation. However, this small difference greatly influences the performance measured.
With precision the percentage of detected events that were actual events is measured, while
with recall the percentage of actual events that are also detected as events is measured. As
we can see from the plots, only 5% of the arrivals are detected exactly at the moment that
they occur. The original algorithm approaches precision and recall of 90% when allowing
for a time difference of up to 36 seconds, and reaches a 94% precision and 96% recall at 52
seconds, after which it no longer increases up to our measured τ of 60 seconds.

With these results we can safely say that the original algorithm manages to get a high
precision and recall, but the offset in time to reach these values is high as well. This is
strongly undesirable, as in practice one needs to verify whether the data is correct. If the
system detects an arrival, while the aircraft is still 36 seconds away from landing, verifying
whether the system detected the aircraft is hard, especially when aircrafts are coming and
going constantly.

4.1.2 Departures

Just like we did with the arrivals, we tested the algorithms performance against the departure
test set with τ ranging from 0 up to 60. The resulting precision and recall curves can be seen
in figure 4.2, and the measurements table is available in appendix B.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

Algorithm

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

Algorithm

Figure 4.2: Precision and recall for departures of original algorithm plotted against τ

26



4.2. Machine learning Models

Just like with the arrival plots, the curves contain steps, which is again explained by the
interval at which the data is received by the system. In contrast to arrivals, the curves for
recall and precision differ significantly for departures. While recall goes towards 94%, pre-
cision only comes up to 72% for τ = 60. If we look once more at the definition of precision
and recall, we find that the algorithm detects quite some false departures. In chapter 2 we
explained how departures are detected based on going through an altitude level.

These results give an indication that for departures, the detection altitude might be too low
for specific weather conditions, causing false positives to occur. However, if we look at
the recall and precision rates with respect to τ, we see that with the current altitude level it
already takes 12 seconds before a single departure is detected, and up to 43 seconds to get
a recall of 90%. Moving the altitude up more would increase this delay even further. This
shows the fundamental issue with this algorithm for accurate and fast departure detection.

4.2 Machine learning Models

Based on the techniques that we described in chapter 3, we created two separate models,
one for arrivals and one for departures. These models are not based on a fixed set of rules
and parameters like the original algorithm, but instead are trained based on a dataset. Due
to this, no assumptions are made on the importance of, for example, altitude versus signal
strength. Instead, the importance of these values is determined automatically via wrapping.
In addition, the time delay caused by having to go through a fixed altitude level, as is the
case with the algorithm, should be removed, as training data is labelled on the exact point in
time, rather than x seconds earlier or later. In the rest of this section we present the results
of the arrivals and departures model.

4.2.1 Arrivals

Based on our feature selection result in section 3.3.2, we created an arrival model using
window size 12 and 19 distinct features. This model was then evaluated using the test set
with τ ranging from 0 to 60. We then computed the precision and recall values for each
of the 61 measurements, and plotted a precision and the recall curves which can be seen in
figure 4.3.

From this plot we can see that 26% of the arrivals are detected exactly on point. From
there we see that for every new batch of data, the precision and recall go up by approxi-
mately 16%. At τ = 16 recall reaches 89% versus a precision of 90%. From there on, the
recall and precision slowly climb towards 99% at τ = 40. From there, no new arrivals are
detected. This is also unlikely as these results are close to perfect.

27



4. RESULTS

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

ML

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

ML

Figure 4.3: Precision and recall for arrivals of model plotted against τ

Arrivals detected in the range of 16< τ< 40 are arrivals where the aircraft’s transponder
had a large altitude offset. In other words, the transponder reported altitudes as low as -400
feet, while the arrival was detected around 50 feet. While this is a bit unfortunate, it causes
no harm, and is more of an issue of the transponders than it is of our model. The last
missing percent of precision and recall is caused by a total of 7 false positives, and 19 false
negatives. The false positives are caused by 2 transponders which strangely enough had a
bouncy signal, but only for a short time. For example, in one case the transponder reported
an altitude of -2, followed by an altitude of 2321 and went down to -2 again. This is natural
to real world data, where things are not perfect, so we accept these cases as they are. One
could address this by a form of preprocessing on the sensor data, to remove such infeasible
cases. In addition, this makes for a great new study on detecting faulty transponders.

4.2.2 Departures

Given the window size of 6, and 19 distinct features for the departure detection found in
section 3.3.2, we created a model and ran our validation method for τ values 0 up to 60.
The resulting precision and recall curves can be seen in figure 4.4. The first thing to notice
is that with τ = 0 a precision and recall of approximately 18% is reached. Given the next
batch of data coming available at τ = 3 this shoots up to around 49%. With allowing a time
error of only 12 seconds, 90% precision and 94% recall is reached. The cause for this time
difference comes from generalisation over aircrafts and runway usage. The runway can be
used from two different sides, and each side gives a slightly different signal. In addition,
there are various transponder types and brands, and we are now generalizing over all of
them by creating one model for all aircrafts. If we were to build a model per aircraft we
could reduce this delay even further. However, as we explained in chapter 3, this would in-
troduce the limitation of not detecting aircrafts when they have not been seen before. From
12 seconds onward, the precision and recall climb slowly towards 94% and 98% respec-
tively. The error in precision comes down to a total of 51 false positives. For recall a set of
20 false negatives is the cause of the missing 2 percent.

28



4.3. Results comparison

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

ML

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

ML

Figure 4.4: Precision and recall for departures of model plotted against τ

Of these 51 false positives, 42 are caused by 3 aircrafts, of which the transponder gives
a bouncy signal. The other 9 positives look like departures in their signal but don’t take
off in the end. These are most likely cancelled departures, as for most of these cases, a
little while later, the aircraft did take off. Of the 21 false negatives, 16 were caused by a
lack of data. There simply were no 6 data-points available for feature creation for these 16
cases. Most of them occurred in the same time window, indicating a possible issue with
our data collector at that time. The other 5 were very particular signals that almost looked
like overshoots on the runway. An overshoot happens when the aircraft attempts to land,
but pulls up again because it can’t make the landing safely. We did not train our model in
particular on these cases, and as they are very rare, the chance of them being in our training
data is slim. We asked a field expert regarding these specific cases and they noted that these
5 cases would have been removed from the system, so would not have been false negatives
in practice.

The overall view on false positives and negatives do not indicate an issue with our model,
but rather with outside factors such as a broken transponder and a drop of communication
in the receiver, and unfortunate events on the runway. The overall precision and recall of
the departure model climb vastly with low τ values, which indicates that this model detects
departures fast and accurately.

4.3 Results comparison

Given the performance measures of both the algorithm and machine learning models for
each individual event type, we can compare them such that we can answer our final sub
question. Since arrivals and departures are separate models, we go into detail on each
model individually.

29



4. RESULTS

4.3.1 Arrivals

For comparison reasons, we plotted the curves of both the original algorithm and the arrival
model in figure 4.5. We can see here that at the initial τ value of 0, our model outperforms
the algorithm by 21%. From there, our model climbs steeply towards 100% precision and
recall, but a similar curve is happening for the original algorithm. The fact that these trends
are similar is explainable by the fact that the original algorithm detects arrivals at a certain
altitude threshold, which lies around 350 feet to prevent issues with detection. In contrast,
our model can detect arrivals much more on point, while not having other issues with de-
tection. This comes from the fact that our model exploits multiple values of the signal, and
does not solely rely on altitude but also takes signal strength as a strong indicator. Further-
more we can see that our model reaches a higher precision and recall. The missed arrivals
by the original algorithm are caused by not having a high enough signal strength when they
were within the altitude range. When the signal strength was high enough to be accepted as
arrival, the aircrafts were already below the altitude level, which caused them to be missed
out on.

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

ML
Algorithm

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

ML
Algorithm

Figure 4.5: Precision and recall for arrivals of model and algorithm plotted against τ

4.3.2 Departures

In figure 4.6 we plotted the precision and recall curves for both the original algorithm and
machine learning model for departures. From these plots it is clear that the overall perfor-
mance of our newly created machine learning model exceeds that of the original algorithm.
In particular, the precision significantly exceeds that of the original algorithm, even with an
allowed delay in detection of up to 60 seconds. The recall is fairly close at τ = 60. How-
ever, we can see that while the original algorithm starts detecting departures only after 12
seconds, our machine learning model already detected up to 90% of the departures at that
time. This shows how our machine learning model detects departures significantly faster in
comparison to the original algorithm. Since the goal of arrival and departure detection is to
be near real time, this difference is a significant improvement over the original algorithm.

30



4.3. Results comparison

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

R
ec

al
l

ML
Algorithm

0 20 40 60
0

0.2

0.4

0.6

0.8

1

τ

Pr
ec

is
io

n

ML
Algorithm

Figure 4.6: Precision and recall for departures of model and algorithm plotted against τ

31





Chapter 5

Conclusions and Future Work

5.1 Conclusion

We conclude our work by going over our sub questions, and finally answering our main
research question:

1. How can machine learning be applied for detection of arrivals and departures of air-
crafts using ADS-B data?
Detecting arrivals and departures is a form of time series classification that can be per-
formed using techniques as described in chapter 3. These techniques are not unique
to arrival and departure detection, but are generally used for time series classification.
However, we noticed that there is a significant difference between detecting from a
repeating pattern versus detecting from a single pattern. In the latter case, allowing a
small offset in time can greatly increase performance indicators, as matching on point
can give very negative results, while it would be detected a matter of seconds later.

2. How can the performance of the fixed rule based algorithm be measured and com-
pared to a machine learning model?
By defining a test set and a measurement method using the Gale Shapley algorithm,
we were able to do a thorough measurement of the performance of both the original
algorithm and machine learning model with respect to tardiness. Given that we can
use this measurement method on both the algorithm and models, and by using the
same test set we can make a fair comparison between these two ways of detecting
arrivals and departures. The metrics we used for this were precision and recall, as
they give a good representation of the model’s performance, even when dealing with
imbalanced data.

3. How does the machine learning model perform in comparison to the fixed rule system
Based on our results we can safely say that our machine learning model for both
arrivals and departures significantly outperform the original algorithm when it comes
to detection time and precision. It also outperforms on recall, however the difference
here is lower when a large tardiness is allowed.

33



5. CONCLUSIONS AND FUTURE WORK

Answering all sub questions brings us to answer the our main research question: ’Can ma-
chine learning be used for detecting aircraft arrivals and departures based on ADS-B data
and how does it compare to an existing fixed rule based system’. We found that applying
machine learning on ADS-B data can indeed allow for arrival and departure detection. In
addition we found that our machine learning models outperform the original algorithm for
both arrivals and departures, although the improvement is more significant for departures.

5.2 Contributions

In this work we described a complete case on how to come from raw data to a machine
learning model. In addition we have shown that accurate and fast automatic arrival and de-
parture detection at an airport is possible by applying machine learning on ADS-B receiver
data. ADS-B receivers are inexpensive and do not require new hardware on board of the
aircrafts, making it a feasible and cost efficient solution in comparison to acquiring people
to do this manual work as a dedicated task. This allows more accurate information to be
available at airports while reducing the workload. More accurate and fast information al-
lows for airports to do a more informed planning of their available resources, which on its
own results in an increase of efficiency and reduction of congestion. Coming to this final
result of reduction of congestion still requires some work, which we will elaborate on in
section 5.4. In addition, we presented a new way of measuring performance of a time series
classification model where some tardiness is allowed. By running all predictions and allow-
ing an offset in τ we were able to get a performance indication of our model with respect to
tardiness. Finally we showed independently of Keogh et al. that K-NN with K=1 performs
well in time series classification in both our arrival and departure model case.

5.3 Discussion

In this work we used a manually labeled dataset with a timespan of 4 months. To reduce
issues of false labeling and bias, we did a 2 fold cross validation step, and looked at the false
positives and false negatives for both cases. Using this method we corrected falsely labeled
data and added missing data. However, by doing this, there is no guarantee that the data is
completely clean of errors. Unfortunately this is a limitation of our data collection process.
In addition we used data from one airport, while generalizing over multiple airports would
be the ideal case. Unfortunately we did not data sources available from multiple airports to
perform a multi airport test, as the system only became operational at the second airport in
the last 2 months of this research. Future work could however cover this aspect.

We used wrapping for feature selection, which is an approximation algorithm. While this
means that we possibly did not find the optimal feature set and window size of all pos-
sible combinations, finding this would take infinite time using the current computational
power available. Since wrapping is a commonly used technique in machine learning, we
believe this is an acceptable method to determine our features for a good performing model.
In addition, by allowing tardiness, we introduced the risk of over-fitting on falsely linked

34



5.4. Future work

data. However, as the precision and recall curves displayed the performance significantly
increases in the first few time steps, and is barely affected afterwards, and given that we
performed cross validation we believe this risk is minor. Especially as we also looked into
the false positives and false negatives to verify whether the models errors were explainable,
which was the case for both arrivals and departures.

5.4 Future work

While we generalized over aircrafts and weather conditions by using a dataset that repre-
sents a significant portion of this data, the current model is not yet tested at multiple airports.
Future work could go into how far the current models can be generalized such that they can
be picked up and put into operation at different airports. One way could be to find the min-
imum amount of data needed to train a new model. Another idea could be to collect and
label data similarly to what we did, but for another airport and compare the altitude and
signal strength datasets. Alternatively, semi supervised or even unsupervised learning tech-
niques could be explored in order to create a model. The latter can however be a difficult
process due to the low representation of the arrival and departure class in contrast to the
high amount of neutral data points. We did an initial test using K-Means to see if we could
do without manual labelling but this came out negative. However, before we tried this, we
did not know which features to use, so all of them were included, which most likely affected
the performance of the K-Means algorithm.

In chapter 4 we briefly mentioned overshoots and cancelled departure events to be among
our false positives and false negatives. Our research did not go into detail on these particular
cases, as we were not sure if machine learning could generalize over the different aircrafts
and their respective transponders. However, in this work we showed that this can be done,
thus future research could go into detecting these cases, as these are also reported in the
CDM system as designed by Euro control.

While we focused on measuring arrival and departure times using a single ADS-B an-
tenna, we now believe that using multiple antennas, and combining those data sources,
more CDM milestones, such as on-block and off-block could be detected. Bringing in mul-
tiple antenna’s does bring new challenges that have to be overcome, such as positioning,
but these are challenges that have been addressed before by for example indoor localization
using WIFI signals.

We know from the prior system that one could escape automatic detection by flying low
while moving away from the airport, to then climb when the signal strength was signifi-
cantly reduced. This is obvious from the design of the algorithms and corresponding pa-
rameters. However, for the machine learning models, we cannot directly tell how one can
fool the system. Future research could go into this attempt of fooling the system, and could
look into adversarial online learning [7] as possible solution to this problem.

35





Bibliography

[1] IATA. Iata forecasts passenger demand to double over 20 years. http://www.iata.
org/pressroom/pr/Pages/2016-10-18-02.aspx, 2016.

[2] FlightAware. Do you want to build your own flightaware piaware ads-b ground sta-
tion? https://flightaware.com/adsb/piaware/build, 2017.

[3] Air Traffic Management. Nz satellite-based aircraft tracking on
the way. http://www.airtrafficmanagement.net/2016/09/
nz-satellitebased-aircraft-tracking-on-the-way, 2016.

[4] Eurocontrol. Airport collaborative decision making. http://www.eurocontrol.
int/articles/airport-collaborative-decision-making-cdm, 2016.

[5] Eurocontrol. Airport collaborative decision making presentation 2011.
https://www.eurocontrol.int/sites/default/files/event/files/
airport_cdm_presentation_madrid-30-03-2011.pdf, 2011.

[6] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory, vol-
ume 1. Wiley New York, 1998.

[7] Myriam Abramson. Toward adversarial online learning and the science of deceptive
machines. In 2015 AAAI Fall Symposium Series, 2015.

[8] Stefan Ravizza, Jun Chen, Jason AD Atkin, Paul Stewart, and Edmund K Burke. Air-
craft taxi time prediction: comparisons and insights. Applied Soft Computing, 14:397–
406, 2014.

[9] Xuhui Wang and Ping Shu. Incremental support vector machine learning method for
aircraft event recognition. In Enterprise Systems Conference (ES), 2014, pages 201–
204. IEEE, 2014.

[10] Tomas Brezmes, Juan-Luis Gorricho, and Josep Cotrina. Activity recognition from
accelerometer data on a mobile phone. In International Work-Conference on Artificial
Neural Networks, pages 796–799. Springer, 2009.

37

http://www.iata.org/pressroom/pr/Pages/2016-10-18-02.aspx
http://www.iata.org/pressroom/pr/Pages/2016-10-18-02.aspx
https://flightaware.com/adsb/piaware/build
http://www.airtrafficmanagement.net/2016/09/nz-satellitebased-aircraft-tracking-on-the-way 
http://www.airtrafficmanagement.net/2016/09/nz-satellitebased-aircraft-tracking-on-the-way 
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm 
http://www.eurocontrol.int/articles/airport-collaborative-decision-making-cdm 
https://www.eurocontrol.int/sites/default/files/event/files/airport_cdm_presentation_madrid-30-03-2011.pdf 
https://www.eurocontrol.int/sites/default/files/event/files/airport_cdm_presentation_madrid-30-03-2011.pdf 


BIBLIOGRAPHY

[11] Ali Bahrami Rad, Trygve Eftestol, Jan Terje Kvaloy, Unai Ayala, Jo Kramer-Johansen,
and Kjersti Engan. Nearest-manifold classification approach for cardiac arrest rhythm
interpretation during resuscitation. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 3621–3625. IEEE, 2014.

[12] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions
on knowledge and data engineering, 21(9):1263–1284, 2009.

[13] Rohit Chatterjee Microland. Using modes for time series clas-
sification. http://www.slideshare.net/bangaloremicroland/
using-modes-for-time-series-classification-rohit-chatterjee, 2015.

[14] Pierre Geurts. Pattern extraction for time series classification. In European Conference
on Principles of Data Mining and Knowledge Discovery, pages 115–127. Springer,
2001.

[15] Michel Verleysen and Damien François. The curse of dimensionality in data mining
and time series prediction. In International Work-Conference on Artificial Neural
Networks, pages 758–770. Springer, 2005.

[16] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Com-
puters & Electrical Engineering, 40(1):16–28, 2014.

[17] Huan Liu and Hiroshi Motoda. Feature selection for knowledge discovery and data
mining, volume 454. Springer Science & Business Media, 2012.

[18] Garrecht Avionik GmbH. Trx-1090 ads-b traffic receiver. http://www.
air-avionics.com/support/TRX_1090_USR_e_rev1.0f.pdf.

[19] Giovanna Menardi and Nicola Torelli. Training and assessing classification rules with
imbalanced data. Data Mining and Knowledge Discovery, pages 1–31, 2014.

[20] Anthony Bagnall and Jason Lines. An experimental evaluation of nearest neighbour
time series classification. arXiv preprint arXiv:1406.4757, 2014.

[21] Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection.
Journal of machine learning research, 3(Mar):1157–1182, 2003.

[22] Ron Kohavi and George H John. Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273–324, 1997.

[23] Andrew P. Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145 – 1159, 1997.

[24] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning,
pages 233–240. ACM, 2006.

38

 http://www.slideshare.net/bangaloremicroland/using-modes-for-time-series-classification-rohit-chatterjee
 http://www.slideshare.net/bangaloremicroland/using-modes-for-time-series-classification-rohit-chatterjee
http://www.air-avionics.com/support/TRX_1090_USR_e_rev1.0f.pdf
http://www.air-avionics.com/support/TRX_1090_USR_e_rev1.0f.pdf


Bibliography

[25] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[26] Li Wei and Eamonn Keogh. Semi-supervised time series classification. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 748–753. ACM, 2006.

[27] Gustavo EAPA Batista, Xiaoyue Wang, and Eamonn J Keogh. A complexity-invariant
distance measure for time series. In Proceedings of the 2011 SIAM International
Conference on Data Mining, pages 699–710. SIAM, 2011.

[28] Bing Hu, Yanping Chen, and Eamonn Keogh. Time series classification under more
realistic assumptions. In Proceedings of the 2013 SIAM International Conference on
Data Mining, pages 578–586. SIAM, 2013.

39





Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

Turn-around: The complete process of arriving at an airport, unloading, processing ser-
vices, boarding and departing. More information can be found in section 1.2.1.

Automatic Dependent Surveillance-Broadcast (ADS-B): A surveillance system in which
aircrafts periodically broadcast information such as altitude, transponder code. More
information can be found in section 1.2.2.

Flight level xxx: An altitude at a standard pressure of 1013.2 hPa translated into a number
(xxx) for ease of communication. For example Flight level 010 is at 1000 feet.

Supervised learning: Supervised learning is the subclass of machine learning where a
training dataset including expected results is used to create a model. This is in contrast
to unsupervised learning where the training data does not contain expected results.

Classification: Classification is the subclass of machine learning problems where a record
is labelled as belonging to one of either classes. In contrast to for example regression
where a real value is computed for a record.

Filtering: Filtering is a feature selection method that selects statistically independent fea-
tures based on a set of tests, but does not take the effect this has on a machine learning
model into account.

Wrapping: Wrapping is a method for feature selection that takes the bias of a trained
model into account when selecting features. More information can be found in section
3.3.

Precision: Precision is a metric that represents the percentage of positively marked cases
by a model, that were actually positive cases. The formula for precision can be found
in section 3.3 in equation 3.2.

Recall: Recall is a metric that represents the percentage of actual positive cases that were
marked as positives by a model. The formula for recall can be found in section 3.3 in
equation 3.2.

41



A. GLOSSARY

TP (True Positives): Records marked as positive by a machine learning model, that were
actually positive cases.

FP (False Positives): Records marked as positive by a machine learning model, that were
actually negative cases.

TN (True Negatives): Records marked as negative by a machine learning model, that
were actually negative cases.

FN (False Negatives): Records marked as negative by a machine learning model, that
were actually positive cases. In binary classification this can also be seen as missed
cases by the model.

42



Appendix B

Measurement results

τ Precision Recall τ Precision Recall τ Precision Recall τ Precision Recall
0 0.05 0.05 16 0.51 0.52 32 0.86 0.88 48 0.93 0.95
1 0.05 0.05 17 0.51 0.52 33 0.88 0.90 49 0.94 0.95
2 0.05 0.05 18 0.58 0.59 34 0.89 0.91 50 0.94 0.95
3 0.09 0.09 19 0.61 0.63 35 0.89 0.91 51 0.94 0.95
4 0.1 0.11 20 0.61 0.63 36 0.9 0.92 52 0.94 0.96
5 0.1 0.11 21 0.67 0.69 37 0.91 0.93 53 0.94 0.96
6 0.17 0.17 22 0.69 0.71 38 0.91 0.93 54 0.94 0.96
7 0.19 0.20 23 0.69 0.71 39 0.92 0.94 55 0.94 0.96
8 0.19 0.20 24 0.76 0.77 40 0.92 0.94 56 0.94 0.96
9 0.27 0.27 25 0.77 0.79 41 0.92 0.94 57 0.94 0.96

10 0.3 0.30 26 0.77 0.79 42 0.93 0.95 58 0.94 0.96
11 0.3 0.30 27 0.81 0.83 43 0.93 0.95 59 0.94 0.96
12 0.38 0.39 28 0.83 0.84 44 0.93 0.95 60 0.94 0.96
13 0.41 0.41 29 0.83 0.84 45 0.93 0.95
14 0.41 0.41 30 0.85 0.87 46 0.93 0.95
15 0.48 0.49 31 0.86 0.88 47 0.93 0.95

Table B.1: Precision and recall of arrivals per τ value for original algorithm

τ Precision Recall τ Precision Recall τ Precision Recall τ Precision Recall
0 0 0 16 0.05 0.06 32 0.6 0.79 48 0.7 0.91
1 0 0 17 0.05 0.06 33 0.62 0.82 49 0.7 0.92
2 0 0 18 0.1 0.14 34 0.63 0.83 50 0.7 0.92
3 0 0 19 0.12 0.16 35 0.63 0.83 51 0.7 0.92
4 0 0 20 0.12 0.16 36 0.65 0.85 52 0.71 0.93
5 0 0 21 0.22 0.29 37 0.65 0.85 53 0.71 0.93
6 0 0 22 0.26 0.34 38 0.65 0.85 54 0.71 0.93
7 0 0 23 0.26 0.34 39 0.66 0.87 55 0.71 0.93
8 0 0 24 0.34 0.45 40 0.67 0.88 56 0.71 0.93
9 0 0 25 0.4 0.52 41 0.67 0.88 57 0.71 0.93
10 0 0 26 0.4 0.52 42 0.68 0.89 58 0.72 0.94
11 0 0 27 0.48 0.63 43 0.68 0.9 59 0.72 0.94
12 0.01 0.01 28 0.52 0.68 44 0.68 0.9 60 0.72 0.94
13 0.01 0.02 29 0.52 0.68 45 0.69 0.91
14 0.01 0.02 30 0.57 0.75 46 0.69 0.91
15 0.04 0.05 31 0.6 0.79 47 0.69 0.91

Table B.2: Precision and recall of departures per τ value for original algorithm

43



B. MEASUREMENT RESULTS

τ Precision Recall τ Precision Recall τ Precision Recall τ Precision Recall
0 0.26 0.26 16 0.90 0.89 32 0.98 0.97 48 0.99 0.99
1 0.26 0.26 17 0.90 0.89 33 0.98 0.97 49 0.99 0.99
2 0.26 0.26 18 0.92 0.92 34 0.98 0.98 50 0.99 0.99
3 0.39 0.39 19 0.94 0.93 35 0.98 0.98 51 0.99 0.99
4 0.44 0.44 20 0.94 0.93 36 0.99 0.98 52 0.99 0.99
5 0.44 0.44 21 0.95 0.94 37 0.99 0.98 53 0.99 0.99
6 0.54 0.54 22 0.96 0.95 38 0.99 0.98 54 0.99 0.99
7 0.57 0.57 23 0.96 0.95 39 0.99 0.98 55 0.99 0.99
8 0.57 0.57 24 0.97 0.96 40 0.99 0.99 56 0.99 0.99
9 0.67 0.66 25 0.97 0.96 41 0.99 0.99 57 0.99 0.99
10 0.71 0.70 26 0.97 0.96 42 0.99 0.99 58 0.99 0.99
11 0.71 0.70 27 0.97 0.97 43 0.99 0.99 59 0.99 0.99
12 0.80 0.79 28 0.98 0.97 44 0.99 0.99 60 0.99 0.99
13 0.82 0.81 29 0.98 0.97 45 0.99 0.99
14 0.82 0.81 30 0.98 0.97 46 0.99 0.99
15 0.88 0.87 31 0.98 0.97 47 0.99 0.99

Table B.3: Precision and recall of arrivals per τ value for the machine learning model

τ Precision Recall τ Precision Recall τ Precision Recall τ Precision Recall
0 0.17 0.18 16 0.93 0.96 32 0.94 0.98 48 0.94 0.98
1 0.17 0.18 17 0.93 0.96 33 0.94 0.98 49 0.94 0.98
2 0.17 0.18 18 0.94 0.97 34 0.94 0.98 50 0.94 0.98
3 0.48 0.50 19 0.94 0.97 35 0.94 0.98 51 0.94 0.98
4 0.59 0.61 20 0.94 0.97 36 0.94 0.98 52 0.94 0.98
5 0.59 0.61 21 0.94 0.97 37 0.94 0.98 53 0.94 0.98
6 0.76 0.79 22 0.94 0.97 38 0.94 0.98 54 0.94 0.98
7 0.82 0.84 23 0.94 0.97 39 0.94 0.98 55 0.94 0.98
8 0.82 0.84 24 0.94 0.97 40 0.94 0.98 56 0.94 0.98
9 0.87 0.90 25 0.94 0.97 41 0.94 0.98 57 0.94 0.98
10 0.88 0.91 26 0.94 0.97 42 0.94 0.98 58 0.94 0.98
11 0.88 0.91 27 0.94 0.97 43 0.94 0.98 59 0.94 0.98
12 0.90 0.93 28 0.94 0.97 44 0.94 0.98 60 0.94 0.98
13 0.90 0.94 29 0.94 0.97 45 0.94 0.98
14 0.90 0.94 30 0.94 0.98 46 0.94 0.98
15 0.92 0.95 31 0.94 0.98 47 0.94 0.98

Table B.4: Precision and recall of departures per τ value for the machine learning model

44



Appendix C

Visualisation of performance
difference

Since both the algorithm and machine learning model are abstract things, and detection of
arrivals and departures is a practical problem, we’ve build a demonstration tool which vi-
sualises the ADS-B data feed, and event decisions made by both the algorithm and model.
To see how far off the decisions are from the actual events, we used the test data set for this
visualisation. This allows us to also mark the ground truth point. A complete screenshot of
the tool can be seen in figure C.1.

The image shows a total of 5 important components: a time, aircraft legend two graphs,
and feed controls. The legend, to the left in this image, shows which color belongs to which
aircraft registration in both graphs. The first graph shows the altitude in feet for each aircraft
on the y axis, and the time on the X axis. The second graph shows the signal-strength in
dBA for each aircraft on the y axis, and the time on the X axis. Note that the X axis for
both graphs goes from T − 15 to T , where T is the time represented on top of the screen,
T −1 stands for the last data-point received before time T , and so forth. Note that the actual
time for the data-points T − 1 can vary between aircrafts, in case their transponders were
not turned on at exactly the same time, or are not reporting at the same interval. Also note
that the only difference between the two graphs is the Y axis values.

The graphs themselves show an aircraft icon facing downwards in case of a landing, and
facing upwards in case of a departure. Text above the aircraft icon tells whether the algo-
rithm (ALG), machine learning model (ML), or ground truth (GT) was presented. In case
a combination of them is presented, the texts are combined, as can be seen on step T − 4
where the Machine learning model was on point with the ground truth for Aircraft PH-JBG.

The data presented in the graphs can be controlled by the feed controls. These controls
allow for playback, pausing and fast forwarding through the data. In addition, 6 pre-set
times have been defined for both arrivals and departures. Finally a search box is added to
allow for quick stepping to specific times in the data.

45



C. VISUALISATION OF PERFORMANCE DIFFERENCE

Figure C.1: Visualisation tool

46


	Preface
	Contents
	List of Figures
	Introduction
	Research Questions
	Context
	Outline

	Background and Related work
	Background
	Related work

	Method
	Problem identification
	Dataset preparation
	Feature creation and selection
	Validation and evaluation methods
	Algorithm selection

	Results
	Original Algorithm
	Machine learning Models
	Results comparison

	Conclusions and Future Work
	Conclusion
	Contributions
	Discussion
	Future work

	Bibliography
	Glossary
	Measurement results
	Visualisation of performance difference

