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Abstract

Differential DNA methylation patterns can serve as biomarkers for allergic diseases such as pediatric asthma
and rhinitis, but age-dependent variability in epigenetic profiles undermines the reliability of predictive models.
This thesis addresses that challenge by introducing a graph-based deep learning approach for age-independent
allergy prediction from DNA methylation data. Each subject’s DNA methylation profile is represented as an
individualized graph constructed via an extended Weighted Gene Co-expression Network Analysis (WGCNA) that
captures global co-methylation structure and subject-specific patterns, thus balancing population-level relationships
with individual epigenetic heterogeneity. Edges between CpG sites are assigned weights using a Gaussian kernel
on methylation values, ensuring the graph reflects personalized similarity while maintaining biologically meaningful
connections. A Graph Neural Network (GNN) with an Edge Convolution (EdgeConv) architecture is then trained
on these subject-specific graphs to predict allergy outcomes. We evaluated this framework on DNA methylation
data from three harmonized pediatric cohorts (PIAMA, MAKI, COPSAC) processed with the MEFFIL pipeline for
cross-cohort normalization and quality control. An Epigenome-Wide Association Study (EWAS) identified key CpG
features associated with asthma, rhinitis and IgE, which were used to guide feature selection for model training.
Our graph-based model outperformed conventional methods like ElasticNet and XGBoost in certain cohorts and
maintained robust predictive accuracy between the ages of 6 and 16, demonstrating a certain resilience to age-
related methylation differences. Furthermore, we applied gradient-based saliency analysis to the trained GNN to
highlight influential methylation features, providing interpretability and revealing plausible epigenetic markers of
allergy. The proposed pipeline is scalable and interpretable, and its ability to deliver reliable, age-invariant risk
predictions from early-life epigenetic data underscores its potential clinical utility for early allergy diagnostics in
children.

I. Introduction

Asthma remains one of the most prevalent chronic res-
piratory conditions among children, significantly impact-
ing quality of life and posing a considerable healthcare
burden globally [1]. Early and accurate diagnosis is essen-
tial for timely intervention, yet traditional diagnostic ap-
proaches often struggle due to symptom variability and the
complexity of disease presentation across different popula-
tions especially young children [1]. Although artificial in-
telligence (AI) techniques have shown promise in enhanc-
ing predictive capabilities for complex diseases [2], their
effectiveness is frequently limited by challenges in gener-
alizing across diverse patient cohorts [3].

DNA methylation (DNAm) has emerged as a powerful
early-detection biomarker: it integrates genetic predispo-
sition with environmental and lifestyle exposures, offering
a read-out of the underlying biological state [4]. However,
most conventional prediction pipelines—typically linear
models or other single-site analyses—cannot capture the
intricate, non-linear and multi-locus interactions that gov-
ern the methylome [5]. Their apparent success within a
single cohort often masks a lack of robustness when faced
with new data [3].

We posit that deep-learning frameworks, with their ca-
pacity to learn hierarchical patterns, are uniquely suited
to model the inherent three-dimensional and long-range
structure of the genome relationships that classical mod-
els struggle to represent. By encoding these complex
DNA-wide interactions, deep learning should yield more
informative features and, ultimately, stronger predictive
power [6].

This thesis specifically, investigates advanced graph-
based approaches to solve this age-independent predic-
tion issue, specifically integrating Weighted Gene Co-
expression Network Analysis (WGCNA) [7] [8] for graph
building and EdgeConv for feature extraction and classi-
fication [9], to construct individualized methylation net-
works for each patient and subsequently use those to pre-
dict disease. In doing so, it aims to address critical gaps
in prediction accuracy and cross-cohort generalizability,
ultimately advancing personalized and clinically action-
able diagnostic strategies for asthma and other allergic
diseases.

Our goal, therefore, is to learn DNAm signatures that
remain predictive across the full paediatric age spectrum,
even when the model is trained on only a few small, age-
skewed cohorts. Achieving such age-robust performance
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would make DNAm-based screening a practical clinical
tool, particularly for the youngest children, whose symp-
toms are most ambiguous and who are hardest to recruit
for studies [3].

This research is non-trivial as the methylation dataset
is very large with 450,000 points per patient, and allergic
disease is not the only biomarker impacting methylation
sites. Additionally research cohorts are expensive to ob-
tain, meaning we have relatively few patients, however we
have been provided access to three different medical co-
horts making the use of Deep Learning models, while still
difficult, possible. The use of three harmonized cohorts in
combination with deep learning makes this work unique in
the research space for DNA methylation for allergic dis-
ease.

The guiding research questions are as follows:

1. Does combining and harmonizing data from diverse
cohorts enhance the robustness of allergy prediction
across age groups?

2. Can deep learning and graph-search techniques be
used to incorporate the global connections of DNA
methylation into the feature selection process?

3. Does using deep learning and graph-search tech-
niques lead to more age-independent prediction of
allergies?

II. Background

A. Epigenetics and DNA Methylation in Dis-
ease Prediction

Epigenetics refers to heritable shifts in gene activ-
ity that occur without changing the underlying DNA se-
quence [4]. Of the many epigenetic marks, DNA methy-
lation (DNAm) is especially prominent because of its
strong influence on transcriptional regulation. By bind-
ing methyl groups to cytosines within CpG dinucleotides,
DNAm compacts chromatin and restricts access of tran-
scription factors and other enzymes to the underlying
DNA [10](Figure I). In this way, methylation acts as an
epigenetic switch, governing which genes are expressed
and thereby shaping the full spectrum of physiological
functions in the human body [10].

Figure I: Visualization of the DNA-methylation pro-
cess: a methyl group blocks enzyme binding and com-
pacts chromatin, so the DNA cannot be transcribed.

DNA methylation patterns can be significantly influ-
enced by environmental factors, age, lifestyle, and vari-
ous stressors, adding layers of complexity and variability
to the methylome [10]. However, these dynamic do in-
teractions mean that the methylome provides a valuable
biomarker for early disease detection, potentially even be-
fore the clinical manifestation of symptoms, making DNA
methylation a promising target for developing predictive
models for personalized medicine and early intervention
strategies.

DNA methylation has proven its predictive ability
across various different diseases. A 30-CpG nasal signa-
ture identifies children who will go on to develop atopic
asthma with an AUC of 0.93 [11], and a compact 3-
site model [3] keeps similar performance while eliminat-
ing over-fit. In oncology, which is typically slightly easier
as one compares tumor cells to healthy ones, a nested-
genetic-algorithm pipeline classifies TCGA tumours with
99.1 % accuracy for malignant lesions and 93.9 % for be-
nign ones [12]. Even early, subtle disease is detectable:
the DeepMeth auto-encoder [13] spots lung cancer in cir-
culating cfDNA with an AUC of 0.81—well before clinical
presentation [13]. These successes are possible because
methylation shifts often precede symptoms [7] and be-
cause profiling is relatively affordable and minimally inva-
sive [3]. Taken together, consistently high accuracy/AUC,
pre-symptomatic signal, and easy sampling make DNA-
methylation a uniquely powerful biomarker for precision
prediction.

Figure II: Principal-component analysis of the har-
monised cohorts, showing how each phenotype drives
variance along its most influential principal compo-
nents.

However, an examination of the principal component
analysis (PCA) results by phenotype for allergic disease
(Figure II) highlights why cross-cohort prediction is chal-
lenging and why linear dimensionality reduction tech-
niques like PCA may be suboptimal for disease classi-
fication. Asthma and rhinitis have but subtle associ-
ated methylation signatures, especially when compared to
stronger influences like age and cohort. These dominant
sources of variation overshadow the disease-related signals,
making them harder to detect.

2



This challenge is particularly evident in Figure III,
which presents the principal components accounting for
the most variance in relation to the combined Asthma and
Rhinitis (AsRhi) phenotype. The lack of clear separation
between affected and unaffected groups underscores the
limited discriminatory power of linear methods in captur-
ing the complex and nuanced epigenetic patterns associ-
ated with allergic disease.

Figure III: Principal component illustrating the domi-
nant variance axis for the combined Asthma + Rhinitis
phenotype, highlighting how little variance there is
in the methylation of the two groups.

B. Limitations of Current Methylation Analysis
Approaches

DNA methylation analyses often use single-site meth-
ods like Epigenome-Wide Association Studies (EWAS)
[14], which identify CpGs with significant methylation dif-
ferences between cases and controls. While simple and
widely used, these approaches are highly sensitive to out-
liers and prone to errors from measurement noise or bio-
logical variability [15,16].

Consequently, predictors that are trained on a single
cohort often under-perform when applied to new cohorts,
undermining their clinical usefulness where robust, age-
independent accuracy is essential. Maas et al. already
illustrated this problem: when their single-CpG models
were tested outside the discovery set, AUCs swung from
0.60 to 0.84 [17]. Yet the change in performance de-
pends on which external cohort is chosen. A study by
van Breugel et al. used an Elastic-Net classifier trained
on nasal DNA-methylation data from the PIAMA cohort.
They distilled the signal to just three CpG sites and ob-
tained a PR-AUC of 0.502 on held-out PIAMA subjects.
Performance rose to 0.837 in the age-matched EVA-PR
cohort (children aged 7–20) but fell when the same three-
CpG model was applied to younger populations—PR-
AUC 0.348 in MAKI and 0.372 in COPSAC, both cohorts
of 6-year-olds [3]. These age-dependent swings underscore
that single-CpG models currently lack the robustness re-

quired for broad clinical deployment. Note that this study
was trained and tested on the same data as the current
research and thus will make a good comparison for the
results.

Although EWAS is often treated as a complete clas-
sification strategy, it can also serve as a pragmatic
dimensionality-reduction filter, ranking CpGs on variance
and trimming the ∼ 450,000 loci assayed on the Illumina
450K array down to a tractable subset before more com-
plex modeling techniques thereby mitigating the curse of
dimensionality in the small-sample studies. This approach
gains empirical support from studies demonstrating that
EWAS-filtered CpG subsets achieve clinical-grade predic-
tive performance, while outperforming conventional di-
mension reduction methods like PCA in computational
efficiency and biological interpretability [18].

To overcome the limitations of single-CpG analyses,
region-based methods like Bump Hunting [19], Probe
Lasso [20], and DMRcate [5] group adjacent CpGs into
Differentially Methylated Regions (DMRs), improving in-
terpretability, dimensionality reduction [6], and noise ro-
bustness [21]. However, these methods focus on local pat-
terns and often miss broader, trans-chromosomal interac-
tions. Additionally, their reliance on linear models and
correlation-based clustering limits their ability to capture
the complex, non-linear methylation landscape, and their
sensitivity to cohort differences hampers generalizability.

These challenges highlight the need for advanced ap-
proaches capable of modeling global methylation interac-
tions and integrating biological context, such as genomic
annotations and regulatory elements [6]. Graph-based and
deep learning methods offer a promising solution, enabling
the representation of intricate, long-range dependencies in
a scalable and interpretable framework suitable for robust
disease prediction

C. Global Connectivity and Graph-Based Meth-
ods

Global connectivity methods attempt to address these
limitations by integrating information across the entire
genome [22], recognizing both cis- (within chromosome)
and trans-chromosomal (across chromosome) interactions.
Methods such as Autoencoders [23, 13, 24] and Varia-
tional Autoencoders (VAEs) [25, 26] have been proposed
to extract latent biological patterns from high-dimensional
DNA methylation data. These approaches, despite show-
ing improved prediction capabilities, face interpretability
challenges that complicate clinical translation.

Graph-based machine learning methods could repre-
sent a particularly promising advancement in this do-
main [27,28, 29]. By modeling methylation data as a net-
work (graph), where nodes correspond to CpG sites and
edges represent their interactions, graph-based approaches
could be used to capture both local and global methy-
lation dynamics. These interactions include biologically

3



relevant non-linear and non-local relationships, thus pro-
viding deeper biological insights.

Figure IV: (Left) A DNA double helix with marked
methylated CpG sites. (Center) Each CpG site be-
comes a node in a feature matrix whose entries are
the sites’ methylation percentages. (Right) Edges
are inferred with various similarity measures—most
often Pearson correlation [7], Gaussian-kernel simi-
larity [30], or representation-learning methods such
as DeepWalk [31]—yielding a CpG network that cap-
tures coordinated methylation patterns.

Recent work illustrates that graph learning could pro-
vide capabilities that other methylation models lack.
Jiang et al. who completed the only other study using
graph learning on methylation data, converting methyla-
tion data into a graph as in figure IV, transformed pairwise
CpG correlations into a weighted interaction graph simi-
lar to WGCNA, and passed it through a Self-Attention
GCN, achieving an AUC of 0.9987 across 32 tumour
types—far above convolutional or multilayer-perceptron
baselines that ignore graph topology [7] At the unsuper-
vised end of the spectrum, Li et al. applied DeepWalk
to a miRNA–disease bipartite graph: random-walk em-
beddings preserved higher-order connectivity and lifted
association prediction to AUC ≈ 0.90 compared with
attribute-only or matrix-factorisation approaches [32].

These studies show that graph learning captures long-
range dependencies missed by single-CpG or local meth-
ods, is data-efficient via sparse edge sharing, and offers
interpretable outputs like attention weights or node im-
portance. These strengths make it well suited for clinically
robust methylation-based prediction.

Interpretability is crucial in medical models, where in-
correct predictions can have serious consequences. For
graph-based methylation models, methods like gradient
saliency help identify the CpG sub-networks driving pre-
dictions. Gradient-based approaches are scalable to large
graphs and maintain biological relevance by computing
first-order importance scores without retraining. More
advanced post-hoc methods—such as GNNExplainer [33],
and PGM-Explainer [34]—offer deeper insight into model
decisions. Combining these tools with GNNs ensures both
predictive performance and transparency, critical for clin-
ical deployment in age-independent allergy prediction.

1. WGCNA.

Among hand-crafted network methods, Weighted
Gene/ CpG Co-expression Network Analysis (WGCNA)
is commonly used for uncovering structure in biological
data like gene co-expression [35], and was the method se-
lected by Jiang et al. for their graph building model [7].
WGCNA assumes a scale-free topology (figure V) an ex-
pected property of epigenetic networks [36, 37] and yields
interpretable modules whose hub CpGs often map to key
regulatory genes [7].

Figure V: WGCNA creates scale-free graphs which
are more accurate towards epigenetic systems com-
pared to random graphs [37]

2. EdgeConv

Edge Convolution (EdgeConv) was introduced by
Wang et al. in the Dynamic Graph CNN (DGCNN)
architecture for 3-D point-cloud analysis [9]. Their key
idea was to impose a k-nearest-neighbour graph on an
otherwise unordered point set and learn “edge features”
that encode the geometric relation between each point
and its neighbours. By recomputing the graph after ev-
ery layer, DGCNN lets these edge features evolve with
the learned representation, so information diffuses non-
locally while the network remains permutation-invariant
and lightweight. This design closed the performance gap
with grid-based CNNs, achieving state-of-the-art results
on ModelNet40 classification, ShapeNetPart segmenta-
tion, and S3DIS indoor-scene parsing benchmarks.

In our approach, the CpG methylation data is treated
as the “point cloud,” with each CpG site represented by
its methylation level. WGCNA structures this point cloud
into a biologically informed, scale-free graph where edges
capture co-methylation strength. EdgeConv is then ap-
plied to this graph, using the WGCNA-defined neighbor-
hoods to guide feature aggregation. Unlike traditional
GCNs, EdgeConv learns edge-aware representations by
modeling both the relative differences between CpGs and
their interaction strengths. This enables the capture of
complex, non-linear dependencies across the methylome.
By recomputing edge features through multiple layers,
EdgeConv supports multiscale information flow, making
it particularly effective for high-dimensional, low-sample
methylation data. Its ability to combine biological priors
with deep feature extraction makes it a powerful tool for
epigenetic analysis.
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III. Methods

We developed a biologically-informed pipeline for dis-
ease classification from DNA methylation data across
three pediatric cohorts (MAKI, PIAMA, COPSAC). Af-
ter harmonizing the data using the MEFFIL framework,
we performed an EWAS to select the 50 most discrimina-
tive CpG sites. These features were used to construct
subject-specific co-methylation graphs via an extended
WGCNA approach that incorporates both global corre-
lation structure and individual methylation profiles. We
then trained a weighted EdgeConv graph neural network
on these graphs, using contrastive learning and focal loss
to address class imbalance. To benchmark performance,
we compared the GNN against Elastic-Net logistic regres-
sion and XGBoost, both trained on the same CpG fea-
tures. Evaluation was conducted using cohort-stratified
cross-validation and standard classification metrics.

A. Cohorts

Throughout this study we analyse three paediatric co-
horts—MAKI, PIAMA and COPSAC. Immunoglobulin E
(IgE) is the allergen-specific antibody that initiates mast-
cell degranulation and thus serves as a sensitive marker of
atopic sensitisation; yet sensitisation alone is often asymp-
tomatic. Following the MeDALL criteria developed by
Pinart et al [38], we label a participant as “diseased” only
when IgE positivity co-occurs with physician-diagnosed
asthma or rhinitis. A summary of the cohorts is provided
in Figure VI.

Figure VI: Summary of the three cohorts used in
training and testing of the model. In this figure
Eczema data is included though it is not used to clas-
sify disease status, see Appendix B.

B. MEFFIL

Prior to any downstream analysis, DNA-methylation
data from the three cohorts were pre-processed and har-
monized with the meffil R package [39]. The work-
flow—quality control, probe filtering, and functional nor-

malization—removes technical variation (batch, array
slide, and other platform effects) and dampens cohort-
specific age effects, making the cohorts more compara-
ble, despite their inherant technical variation. Residual
variation was assessed with principal-component analysis
(PCA); PCs associated with technical variation were re-
gressed out before the harmonized β-values were passed to
all subsequent analyses, including WGCNA module detec-
tion and graph-neural-network modeling [39]. Note that
figure II and III were calculated post-MEFFIL meaning
that there are still biological and cohort effects to be found
in the data.

C. Epigenome-Wide Association Study (EWAS)

To make the high-dimensional research plausible it was
necessary to reduce the number of CpG sites included in
the network process down to 50, this is to mitigate the
impact of the inherent imbalance in the dataset with only
1100 samples as opposed to 450,000 CpG sites.

Therefore, after pre-processing with MEFFIL an
EWAS was conducted on the harmonized methylation
data from the COPSAC, MAKI, and PIAMA cohorts.
This was done to reduce the size of the dataset, as
well as to identify CpG sites associated with key phe-
notypes. Phenotypic data, including derived outcomes
such as IgE AsRhi (co-occurrence of IgE positivity and
asthma or rhinitis), were cleaned, encoded, and merged
with methylation matrices via sample IDs.

For each CpG site, logistic regression was performed,
adjusting for covariates such as age, sex, and batch. The
output is a list of the 50 CpGs that show the highest vari-
ance across diseased/healthy patients. This list is then
used to filter the relevant CpGs in downstream analyses.

D. Genomically aware WGCNA

Weighted Gene Co-methylation Network Analysis
(WGCNA) is the backbone of our graph construction,
however this methodology is extended on three fronts:
i) every child receives an individual network rather than
sharing a single cohort graph, this is to ensure clinical
applicability; ii) edges encode methylation similarity as
edge weights and iii) the final output is a sparse PyTorch-
Geometric object that preserves biological context while
remaining GPU-friendly. A full visualization and sum-
mary of the methodology can be seen in figure VII.

1. Per-CpG normalisation and imputation

After MEFFIL harmonisation and EWAS feature se-
lection, each retained CpG column is z-scored, xi ←
(xi − µi)/σi, and any residual missing values are set to
0. This stabilises probe variance and guarantees numeri-
cally robust correlations.
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Figure VII: Breakdown of WGCNA methodology: 1. The original methylated DNA strand, 2. The methy-
lation at the relevant locations is analyzed, the top 50 sites are calculated based on an EWAS, and the
three medical cohorts are harmonized 3. WGCNA is performed over the train set to calculate a global
correlation backbone that is later used as a blueprint for which sites to analyze 4. To create individual
graphs, aside from the top 5 % of edges from WGCNA, additional edges are chosen based on the θp (eq. 2) 5.
Edge Weights are calculated using Gaussian Similarity 6. This process is repeated to create graphs for each
patient

2. Global backbone construction

Across the training cohort we compute an absolute
Pearson correlation matrix ρij = | cor(xi, xj)|. Follow-
ing classic WGCNA we raise it to the power β = 4 and
zero out weak entries (< 0.75), yielding a sparse template
Aglobal ∈ RN×N . This backbone is reused when building
every subject graph, ensuring all networks share a com-
mon “scaffolding” of population-supported links.

3. Subject-specific edge selection

For each child p the normalised methylation profile is

the vector m(p) = (m
(p)
1 , . . . ,m

(p)
N ). The goal is to decide

which CpG pairs (i, j) to connect.

1. Core links. We first lock in a cohort-wide skeleton:
every pair whose global correlation already satisfies
Aglobal

ij ≥ 0.95 (95th percentile of all absolute cor-
relations) is included in every graph. These edges
are so consistently strong that excluding them could
erase biology shared by all subjects.

2. Adaptive fringe. Remaining sites from the global
correlation matrix enter a second gate that adapts
to each child’s own methylome. Define

σp = sd(m(p)) and Hp = −
∑
k

pk log2 pk, (1)

where pk is the fraction of sites whose z-score falls
into histogram bin k. A small standard deviation
(σp) or entropy (Hp) means the subject’s methyla-
tion levels cluster tightly; a large value signals dis-
persion.

We translate these two statistics into a personalised
edge-weight cut-off based on Gaussian similarity

θp = clip
(
0.80 [1−ασp/0.30] [1+βHp/4], 0.60, 0.95

)
,

(2)
with α = β = 1. Hence: if σp > 0.30 (above-average
variation) ⇒ the product [1 − ασp/0.30] dips be-
low 1, lowering θp and admitting more edges so that
the graph is not starved of information.
Alternatively, Hp > 4 (high entropy) ⇒ the term
[1 + βHp/4] exceeds 1, raising θp to suppress noisy
links.

A hard clip confines θp to [0.60, 0.95], preventing the
threshold from drifting to extremes.

4. Edge weighting

Each retained edge carries the following weight value
calculated as follows:
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w
(p)
ij = exp

[
− (∆m

(p)
ij )2

2σ2
M

]
× exp

[
− (1−ρij)

2

2σ2
S

] (3)

∆m
(p)
ij Absolute methylation difference

∣∣m(p)
i − m

(p)
j

∣∣.
Small differences yield values near 1, large
ones near 0.

ρij Absolute Pearson correlation across the training
cohort— a proxy for long-term co-regulation.

Both Gaussian kernels share bandwidth σM = σS =
0.10, chosen so that a half-sigma deviation shrinks the
factor to ≈0.78.

5. Adaptive sparsification

Dense graphs bias message-passing toward a few highly
connected CpGs. As we have already created highly con-
nected graphs with WGCNA, we want to cap this effect,
and therefore we restrict each node’s out-degree:

d
(p)
i = min

{
15, max

(
5,

⌈
0.01 |E(p)|

⌉)}
. (4)

Thus every node keeps ≥ 5 edges (avoiding isolates),
≤ 15 edges (avoiding hubs). If a node exceeds its budget,
only its top-weighted connections survive. The resulting
network is small enough to learn from with relatively few
samples, while it is also large enough to represent global
structure, and balanced so that no single CpG dominates
information flow.

6. Final graph representation

Each child p is represented by a PyG-ready object

G(p) =
(
V, E(p), x(p), e(p), yp

)
, (5)

• Nodes V : one vertex per CpG (fixed order). Node

feature x
(p)
i is the subject’s z-scored methylation

value.

• Edges E(p): selected via the described logic

• Edge attr. e
(p)
ij : [w

(p)
ij ], containing the edge weight.

• Graph label yp: binary outcome (0 =control,
1 =case), used only during GNN training.

This genomically aware WGCNA thus weaves together
subject-level co-methylation, as well as population evi-
dence, yielding compact yet information-rich graphs ready
for downstream deep-learning analysis.

E. Graph Feature Extraction and Model Train-
ing

After constructing biologically-informed graphs using
WGCNA and subject-specific adaptation, the next stage
involved training a graph neural network (GNN) to clas-
sify phenotypic labels. This section outlines the full com-
putational pipeline from feature preprocessing to model
evaluation, emphasizing patient-level graph normaliza-
tion, model architecture, loss functions, and evaluation
procedures. This process is also visualized in figure VIII.

1. EdgeConvGNN Architecture

Our model is a three-block weighted EdgeConv graph
neural network. First, each node feature vector xi ∈Rdin

is passed through a linear layer, batch normalisation, and

a ReLU to obtain an encoded representation h
(0)
i ∈Rdhid .

For every edge (i, j) with scalar weight wij (met hyla-
tion correlation), an EdgeConv block computes the mes-
sage

mij = MLP
[
h
(ℓ)
i , h

(ℓ)
j − h

(ℓ)
i , wij

]
, (6)

followed by mean aggregation over the neighbourhood
N (i):

h
(ℓ+1)
i =

1

|N (i)|
∑

j∈N (i)

mij . (7)

We use three such blocks (ℓ = 0, 1, 2); blocks 2 and 3

include residual connections: h
(2)
i ← h

(2)
i + h

(1)
i and

h
(3)
i ← h

(3)
i + h

(2)
i . After the third block, node features

are pooled with global mean pooling to yield a graph em-
bedding z ∈ Rdhid , which is fed through a two-layer MLP
(ReLU +dropout) to produce the final logits o ∈ R2.

What each EdgeConv layer learns. An EdgeConv
layer can be regarded as a local, edge-aware “convolution”
on graphs that proceeds in three steps:

1. Edge-conditioned message. For every neighbour
j ∈ N (i) the layer concatenates the centre feature

h
(ℓ)
i , the relative feature h

(ℓ)
j −h

(ℓ)
i , and the edge at-

tribute wij . This lets the kernel adapt both to direc-
tion and to methylation-correlation strength, unlike
a vanilla GCN.

2. Non-linear filtering. The shared MLP transforms
this concatenated vector, extracting a higher-level,
task-specific representation of the edge.

3. Permutation-equivariant aggregation. The
messages for all neighbours are averaged, giving an
update that is invariant to the ordering of N (i) yet

sensitive to their content. The output h
(ℓ+1)
i there-

fore embeds both the node’s own state and an edge-
weighted summary of its local context.

Stacking three EdgeConv blocks allows information to
propagate up to three hops, or three steps away, so the fi-
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Figure VIII: Breakdown of EdgeConv methodology: 1. graphs created using Genomic Aware WGCNA, 2. Node
Feature Encoding, transforming raw node input into richer representations 3. EdgeConv methodology with
message passing [9] 4. Pooling of results 5. Inital disease classification 6. Use of focal loss and contrastive
learning to adapt for the class imbalance 7. Final classification prediction

nal embedding captures not only local promoter–TSS links
but also distal enhancer–gene and even inter-chromosomal
co-methylation patterns. Residual shortcuts ensure stable
gradients through the deep, edge-conditioned stack.

2. Loss Function

Training minimises a composite objective

L = Lfocal + λCL Lcontrast (8)

where (i) Lfocal is class-balanced focal loss (γ = 2.0,
α = 0.35); (ii) Lcontrast is a supervised graph-level con-
trastive loss that pulls together embeddings of graphs with
the same label and pushes apart different classes, using
temperature-scaled cosine similarity.

3. Training and Evaluation

We perform 5-fold cross-validation. Each fold is trained
for up to 200 epochs with Adam (lr = 3×10−4, weight-
decay = 10−4), using a one-cycle cosine learning-rate
schedule with warm-up. Early stopping monitors valida-
tion PR-AUC with a patience of 150 epochs. At the end of
training we select the checkpoint with the best validation
PR-AUC, tune an optimal probability threshold on the
validation data, and then report metrics on the hold-out
test set: ROC-AUC, PR-AUC, F1, and Accuracy.

F. Baseline Methods and Evaluation Metrics

1. ElasticNet Logistic Regression

As a linear-model baseline we trained an Elastic-
Net logistic regression on the same tabular input that
is output after MEFFIL and EWAS: the top–50 differ-
entially methylated CpG features per sample. Prior to
modelling, each feature vector was cleaned for NaN/ ±
∞ entries, imputed with the training-set mean, and
scaled with a RobustScaler. To mitigate label im-
balance we supplied inverse-frequency class weights to
the loss. Hyper-parameters were tuned by a five-fold
grid search over the inverse regularisation strength C ∈
{10−3, 10−2, 10−1, 1, 10} and ℓ1 mixing coefficient αEN =
1− ℓ2 ratio l1-ratio∈{0.1, 0.5, 0.7, 0.9}, using the saga op-
timiser and an ElasticNet penalty. The resulting sparse co-
efficient vector provides an interpretable ranking of CpGs:
the absolute weight |βj | of each feature directly reflects its
influence on the log-odds of the class label.

2. Gradient-Boosted Trees (XGBoost)

For a non-linear baseline we employed XGBoost—an
ensemble of gradient-boosted decision trees—trained on
the same CpG feature matrix. After robust scaling, an
XGBClassifier was fit with 100 trees, maximum depth
4, learning rate 0.1, subsample ratio 0.8, and column-
subsample ratio 0.8; early stopping halted boosting when
the validation objective ceased improving. Class imbal-
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ance was addressed via the built-in scale pos weight

parameter, computed from the positive/negative sample
counts in the training set. The model outputs proba-
bility estimates through logistic leaves, and its built-in
gain–based feature importance yields a ranked list of CpGs
whose splits contribute most to the boosted ensemble’s
predictions. Together, Elastic-Net and XGBoost serve as
strong tabular-data baselines against which to benchmark
the EdgeConv graph network.

3. Classification Performance

To evaluate the classification performance there
are two common metrics Receiver-Operator Curve and
Precision-Recall. The components of which are as follows:

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + TN
(10)

PPV =
TP

TP + FP
(11)

A ROC curve plots TPR against FPR; a PR curve
plots TPR against PPV. ROC-AUC is robust but can
look overly optimistic when the negative class vastly out-
numbers the positive—as in methylation studies—because
FPR is diluted by the many true negatives. PR-AUC
avoids this bias: every extra false positive lowers precision,
and its baseline equals the positive-class prevalence, mak-
ing it the preferred metric for highly imbalanced data [3].
The performance of Precision-Recall is relative to the class
imbalance, i.e. if the cohort has 20% positive samples,
then a PR-score of 0.2 would mean that the model is guess-
ing randomly.

4. Ability of the model to capture global structure

To identify the network elements that drive the asthma
prediction we applied a lightweight gradient–saliency ex-
plainer. For each subject-graph we back-propagated the
positive-class logit y to every input tensor—node features
x and scalar edge weights wij—and took the absolute gra-
dient |∂y/∂x| as a first-order importance score: the larger
the magnitude, the more a small perturbation of that CpG
site or edge would change the output. Node scores were
obtained directly; an edge score was defined as the sum of
the two endpoint scores. Gradients were computed for the
first 50 training graphs (one backward pass each), then
averaged across subjects within a cohort to yield cohort-
level importance maps. This saliency approach requires no
additional training or perturbation cycles, making it scal-
able to thousands-of-node methylation graphs while still
offering biologically interpretable rankings for downstream
analysis. This method could however be overly positive as
to the relative importance of the edges.

5. Representation-learning advantage via dimensionality
reduction

To assess how message passing augments the learned
representations, we compared our full GNN (node encoder
+ three WeightedEdgeConv layers) against an MLP-only
baseline that shares the same node encoder but omits all
edge convolutions. For each sample graph, we extracted a
fixed-length embedding by global mean-pooling the final
node features. These per-graph vectors were then pro-
jected into two dimensions using both t-SNE and PCA,
yielding four scatterplots (GNN vs. MLP under t-SNE
and PCA). No additional training or parameter tuning
was required beyond a single forward pass per graph and
standard dimensionality-reduction steps.

IV. Results

Figure IX: Comparison of the number of edges for all
three cohorts.

The WGCNA network contained the top-50
phenotype-enriched CpG sites per chromosome. These
50 sites are those which are expected to be significant for
our disease status according to the EWAS. Graph-level
analysis revealed a consistent, disease-associated rewiring
of the CpG interaction network. Across all three co-
horts, graphs from allergic patients had more edges when
compared to control patients reflecting a greater overall
interaction load as seen in figure IX.

Figure X: Comparison percentage overlap between co-
horts diseased v. control. MAKI and PIAMA show
clear overlap while COPSAC graphs show clearer
differences.
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To assess the consistency of graph structure across co-
horts, we compared the percentage of shared edges be-
tween diseased and control graphs. In figure X, it is vi-
sualized that disease graphs consistently exhibited higher
edge overlap across cohort pairs than controls, indicating
a more conserved co-methylation architecture. This sug-
gests that allergic disease drives a shared reorganization of
methylation dynamics in the top-50 sites form the EWAS,
reinforcing the potential of graph-based models to gener-
alize predictive patterns across diverse populations.

Figure XI: PR-AUC Classification performance per
Cohort, across three tested models, XGBoost, Elas-
ticNet, and WGCNA/EdgeConv. PRC results are rel-
ative to the prevalance of disease, meaning that for
PIAMA the baseline is ≈ 0.23, for MAKI it is ≈ 0.16,
and finally for COPSAC it is ≈ 0.12

Figure XI compares the two classical machine-learning
models (ElasticNet and XGBoost) with the graph-based
approache evaluated in this study. When trained and eval-
uated on the pooled MAKI–PIAMA–COPSAC dataset,
XGBoost achieved the highest aggregate PR-AUC of 0.52.
ElasticNet performed slightly worse at 0.50 and Edge-
Conv performed the worst at 0.45. However, this result
is not seen across all cohort. EdgeConv performs better
on classification in just MAKI and PIAMA and the rel-
ative weaker performance seems to come only from the
COPSAC cohort.

Figure XII: Evaluation of the location of the most im-
portant features, comparing the relative importance
of trans-chromosomal edges to cis-chromsomal edges

Gradient–saliency analysis was used to identify the
CpG features and interactions most influential to the
EdgeConv model’s predictions. When ranking features
(Appendix E), the most important features were often
edges—suggesting that the model relies heavily on co-
methylation relationships between CpG sites. This em-
phasis on edges may partly reflect the nature of the
gradient-based method, which assigns high importance to
an edge if both connected CpGs are influential.

Importantly, many of these top-ranked edges span
different chromosomes as seen in figure XII, indicat-
ing that EdgeConv captures trans-chromosomal interac-
tions—patterns that are typically missed by methods fo-
cused only on local or linear relationships. This high-
lights the model’s capacity to learn biologically meaning-
ful, genome-wide methylation structures.

Figure XIII: t-SNE visualization of graph-level em-
beddings for 100 subjects. Each point represents a
pooled embedding of a subject’s methylation graph,
colored by asthma status. Left: embeddings from the
full GNN (node encoder+three WeightedEdgeConv
layers) exhibit higher separability. Right: embeddings
from an MLP baseline that omits all graph convo-
lutions show no clear separation, demonstrating the
representational advantage conferred by leveraging
network structure.

The t-SNE and PCA projections in figure XIII reveal a
slight improvement in class separability when graph struc-
ture is incorporated. In the left panel (“GNN Embed-
dings”), diseased samples (yellow) cluster more to the left
of the curve, indicating that message passing over the
methylation network does captures disease-relevant pat-
terns, even still though there are quite a few samples
overlapping. By contrast, the right panel (“MLP Embed-
dings, No Graph Structure”) shows that embeddings de-
rived solely from individual CpG features overlap heavily
between cases and controls, with no clear cluster bound-
aries. This comparison indicate that the GNN’s ability
to aggregate information across correlated CpG sites pro-
duces more discriminative representations, which in turn
underlie its improved predictive performance in two of the
three cohorts.
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V. Discussion

This study combined WGCNA–based graph construc-
tion with a weighted EdgeConv GNN to predict allergic
disease from nasal DNA-methylation profiles across three
pediatric cohorts. Results show (i) allergic patients show
different methylation graphs when compared to control pa-
tiens (Figure IX), and (ii) graph learning offers compet-
itive classification performance, outperforming XGBoost
and ElasticNet in MAKI and PIAMA while lagging in
COPSAC.

A. Research Questions

To begin we will look back to the original research ques-
tions.

1. Can the combining of variant cohorts lead to a more
robust prediction of allergies?

To look at this results it is best to compare to the re-
search by van Breugel et al [3] (Section II-B) as that study
was also trained on PIAMA, and subsequently externally
replicated on MAKI and COPSAC, our study was trained
and tested on all three. One important caveat to the di-
rect comparison of these results is that the van Breugel et
al. study also classified using Eczema data. This reduced
the class imbalance present in the dataset (figure VI) and
could skew results. The results are summarized in table I.

Study PIAMA MAKI COPSAC

van Breugel et al. [3] 0.50 0.35 0.37
ElasticNet 0.48 0.36 0.51
XGBoost 0.51 0.57 0.49
EdgeConv 0.56 0.61 0.42

Table I: PR-AUC comparison to van Breugel et
al. [3] across cohorts. Their study included ad-
ditional phenotype data, which reduced class
imbalance. Additionally, they used MAKI and
COPSAC for external validation.

We will focus on the results for testing on the PIAMA
cohort—the dataset on which the three-CpG model of van
Breugel et al. was originally trained. In this setting our
re-implementation of Elastic-Net (with 50 CpGs) yields a
similar PR-AUC (0.48 vs. the baseline 0.50), whereas the
non-linear models show clear gains: XGBoost rises slightly
from 0.50 to 0.51 and EdgeConv further to 0.56. This sug-
gests that, on the same cohort, supplying a richer 50-CpG
feature set in combination with a non-linear model ben-
efits models that can exploit higher-order interactions or
graph structure. Additionally, that combining datasets
improves prediction, even when that means training on
two datasets from different age groups.

External validation on independent cohorts will be
needed for the combined dataset to confirm that the com-

bined dataset, larger CpG panel and graph-based learn-
ing generalise beyond the data used here. But as an ini-
tial result we can see that the harmonized cohort predicts
well on both 16-year-olds (PIAMA) as well as 6-year-olds
(MAKI).

2. Can deep learning and graph-search techniques incor-
porate the global connections of DNA methylation into
the feature selection process?

Figure XIII demonstrates that graph structure does
contribute to the predictive ability of the model. This
finding supports the hypothesis that graph-based learning
frameworks provide a richer and more informative repre-
sentation of the methylome compared to traditional ma-
chine learning models such as ElasticNet, which evaluate
CpGs in isolation.

Notably, none of the top-20 most influential edges con-
nect CpG sites located on the same gene (Appendix E).
This suggests that global, long-range interactions domi-
nate the feature importance landscape—consistent with
our premise that disease-relevant methylation signatures
are distributed across the genome rather than being con-
fined to localized regions. However, this conclusion comes
with two important caveats:

(i) The findings are influenced by the initial EWAS-
based feature selection, which prioritized the top-50
CpG sites by differential signal. If these CpGs are
widely dispersed across the genome, the potential for
capturing local interactions is inherently limited.

(ii) Although the analysis confirms that many CpGs re-
side on different chromosomes, the biological im-
plications of these trans-chromosomal links remain
speculative. Further validation would require addi-
tional data modalities, such as Hi-C, which capture
the 3D conformation of the genome.

In Figure XII, the relative importance of trans-
chromosomal edges does reinforces the global perspec-
tive: cross-chromosome interactions dominate the model’s
learned feature space. While cis-chromosomal links do
contribute, they appear to play a secondary role. This
second analysis is also less impacted by the EWAS pre-
processing as there are CpGs in the top-50 on all the plot-
ted chromosomes. Together, these findings underscore the
utility of deep graph models in capturing the non-local,
system-wide structure of methylation regulation that may
underpin allergic disease.

3. Does using deep learning and graph-search techniques
lead to more age-independent prediction of allergies?

Our results suggest that deep learning and graph-based
methods do contribute to more age-independent allergy
prediction. EdgeConv performed strongly in both the
PIAMA and MAKI cohorts, which together represent ages
16 and 6 respectively. This indicates improved gener-
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alizability across age groups. Performance in COPSAC
was weaker, likely in part due to the stronger class imbal-
ance in COPSAC. Additionally, according to the dataset
owners, asthma in COPSAC was labeled using alternative
clinical criteria than is common, introducing potential la-
bel noise. Deep Learning models like EdgeConv appear
more sensitive to this kind of inconsistency, whereas other
methods like XGBoost and ElasticNet remain compara-
tively robust. This difference was likely not corrected by
MEFFIL preprocessing as MEFFIL focuses on technical
variation like batch size. While the overall findings are
promising, especially across PIAMA and MAKI, confirm-
ing true age-independence will require external validation
on additional cohorts beyond the scope of this thesis.

B. Biological interpretation and Clinical Out-
look

The disease-associated increase in edge count observed
in our graphs suggests biologically meaningful changes in
the methylome of allergic children. However, to fully
confirm the spatial and regulatory significance of these
connections, integration with three-dimensional chromatin
conformation data (e.g., Hi-C) would be ideal, such
datasets are currently expensive and challenging to gener-
ate [40]. Clinically, this work demonstrates the feasibil-
ity of applying graph-based learning to DNA methylation
at the individual-patient level, with a scalable and inter-
pretable framework. Since a patient-specific graph can
be constructed from minimally invasive nasal samples and
processed through the trained model, this method holds
promise for future diagnostic use.

C. Limitations

This study also presents several limitations that should
be addressed in future work. First, discrepancies be-
tween cohorts impact model performance: for example,
the MAKI cohort is relatively small, and the COPSAC
cohort uses differing phenotyping criteria, which may re-
duce classification accuracy even when techniques such
as focal loss and class weighting are applied. Second,
graph sparsity remains a constraint. While limiting the
number of CpG sites to 50 per chromosome helps man-
age GPU memory, and balance the discrepancy between
the number of CpG sites and size of the dataset, this re-
striction may inadvertently exclude biologically relevant
loci. More adaptive pruning strategies—such as attention-
based feature selection—could improve information reten-
tion. Third, the current use of gradient saliency for model
interpretability may oversimplify the true underlying fea-
ture interactions. As this method ignores higher-order
graph dependencies and can suffer from saturation effects,
more expressive explanation techniques, such as GNNEx-
plainer or PGExplainer, are necessary to accurately iden-
tify and interpret the subgraphs most influential in driving
predictions.

VI. Conclusion and Future Work

This thesis presents a novel graph-based deep learn-
ing framework for predicting allergic disease from DNA
methylation data in pediatric cohorts. By first us-
ing three harmonized cohorts and subsequently combin-
ing EWAS-guided feature selection, genomically aware
WGCNA graph construction, and the EdgeConv GNN
architecture, we model long-range, patient-specific co-
methylation patterns in a scalable and interpretable way.
Our results demonstrate that graph-based learning not
only captures biologically meaningful relationships—often
spanning chromosomes and aligning with immune-related
pathways but can match or outperforms traditional ap-
proaches like ElasticNet and XGBoost in certain cohorts.

Despite the promising results, the work is constrained
by several limitations. The top-CpG selection process may
bias the graph’s genomic coverage, and current analyses
lack integration with 3D genome data (e.g., Hi-C), which
could validate or refine inferred interactions. Furthermore,
while the framework is designed to be clinically applicable
its predictive accuracy and robustness must still be tested
in external, independent datasets.

To that end, three additional cohorts (ATLANTIS,
ADEM, and VIVA) have already been identified for ex-
ternal validation. Future work should focus on apply-
ing stronger graph-explainer models (e.g., GNNExplainer,
PGExplainer) for subgraph attribution and interpretabil-
ity, and on incorporating multi-omics modalities such as
RNA-seq and Hi-C to evaluate functional and spatial co-
herence of the learned methylation graphs.
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Supplementary Information

Appendix A: Additional Results for the Final Model

Convergence of the Model

Figure 1: ROC-AUC and PR-AUC across 10 runs of the WGCNA/EdgeConv model, with the addition of error bars to
show the variation in the model and thus its ability to converge. Only MAKI shows significant variation, in all likelihood
caused by its small cohort size. These results suggest that EdgeConv consistently learns across datasets and provides
reliable predictions.

ROC perfomance of the Model

Throughout this study we have used precision-recall to evaluate the model as that is generally less affected by the class
imbalance inherent in this dataset. However, ROC is still very commonly used in methylation research therefore we also
decided to include this in the supplement.
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Figure 2: ROC curves for MAKI, PIAMA, COPSAC and the entire dataset for the WGCNA/EdgeConv model showing
consistently high performance with COPSAC performing the worst

Appendix B: Performance in a model with eczema

The complete dataset, including the eczema data, was eventually shared for this research however this was very shortly
before the completion of this research, so while tests were performed on this data, the model was not optimized to account
for the difference, but the results can be found below. There is no significant difference, but optimization of the model to
the new situation would likely improve results, as the class imbalance in the new situation is much less extreme.

Study PIAMA MAKI COPSAC

van Breugel et al. 0.50 0.35 0.37
ElasticNet 0.48 0.36 0.51
XGBoost 0.51 0.57 0.49
EdgeConv 0.59 0.57 0.42

Table 1: PR-AUC comparison to van Breugel et al. across cohorts. They externally validated on
MAKI and COPSAC and did not include it in the train data.

Appendix C: SAGCN Architecture

A Self-Attention Graph Convolutional Network (SAGCN) was initially tested as part of this research due to its use in the
paper by Jiang et al 1 , which represents the only other use of graph learning for methylation data. Its performance was
however found to be unstable and significantly lower than that of the EdgeConv model. Due to its poor generalization
across cohorts and high variance between runs, it was ultimately excluded from the final methodology. The Jiang et al.
study was a cancer study which had many more samples which is a potential reason that their model was able to converge.

SAGCN Implementation and Evaluation

SAGCN was implemented using a standard two-layer Graph Convolutional Network (GCN) with SAGPooling. This
approach introduces a learnable self-attention mechanism that prunes the graph hierarchy by retaining only the most
important nodes, dynamically adapting the structure during training.

1X. Jiang, Z. Li, A. Mehmood, H. Wang, Q. Wang, Y. Chu, X. Mao, J. Zhao, M. Jiang, B. Zhao, G. Lin, E. Wang, and D. Wei, “A Self-
attention Graph Convolutional Network for Precision Multi-tumor Early Diagnostics with DNA Methylation Data,” Interdisciplinary Sciences:
Computational Life Sciences, vol. 15, no. 3, pp. 405–418, Sep. 2023. doi: 10.1007/s12539-023-00563-1.
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• Architecture: The model comprised two GCN layers interleaved with self-attention pooling, followed by a multi-
layer perceptron (MLP) classification head.

• Input: Subject-specific graphs constructed using WGCNA, where nodes represent CpG sites and edges encode
co-methylation patterns.

• Loss Function: Focal loss and contrastive learning were used to address class imbalance, and early stopping based
on validation AUC was applied.

• Training Setup: Models were trained using a cosine-annealing learning rate scheduler, with 10 repeated runs to
account for initialization variability.

Performance and Exclusion Justification

Despite its conceptual appeal, and previous success, SAGCN exhibited poor and unstable performance across runs, espe-
cially on the COPSAC cohort. Compared to EdgeConv, the SAGCN model showed:

• Lower average ROC-AUC and PR-AUC across all cohorts.

• Higher variance in results

• A tendency to overfit cohort-specific noise due to the learnable adjacency mechanism.

These limitations were most pronounced in cross-cohort generalization, where SAGCN failed to learn robust, transferable
representations. Figure 3 illustrates the inconsistency and performance degradation due to the models inability to converge.
Based on these findings, SAGCN was not used in the final analysis pipeline.

Cohort ROC–AUC (µ± σ) PR–AUC (µ± σ)

MAKI 0.70 ± 0.05 0.30 ± 0.06
PIAMA 0.71 ± 0.05 0.28 ± 0.06
COPSAC 0.58 ± 0.07 0.12 ± 0.08

Table 2: Performance metrics (mean ± standard deviation) for SAGCN across cohorts.

Compared to Elastic Net (ROC–AUC: 0.89, PR–AUC: 0.50) and EdgeConv (ROC–AUC: 0.82, PR–AUC: 0.48), SAGCN
showed up to 30% lower performance in precision-recall space. The overall SAGCN performance is summarized in table
2.
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Figure 3: Mean performance over 10 runs for the WGCNA/SAGCN model, error bars repsenting the variation across
runs. Model performance for this model was much poorer than the performance seen in EdgeConv

Appendix D: Addition of Genomic Edge Typing

Given the well-established influence of genomic context on methylation function 2 3 —such as proximity to promoters,
gene bodies, and chromosomal co-localization—we incorporated genomic edge typing as a biologically motivated extension
to the graph construction process. The goal was to enhance model performance and interpretability by categorizing CpG–
CpG edges based on their underlying genomic relationships. Although ultimately this edge typing did not yield measurable
improvements in predictive accuracy, and in fact decreased the performance of the model, it was still valuable to test as
an addition to the model architecture.

Categorisation Pipeline

The function add genomic edge types assigned a five-level categorical label to each CpG–CpG edge based on gene
annotations and chromosomal position. The classification pipeline proceeds as follows:

(a) Annotation lookup: Chromosome, genomic coordinate, and gene identifiers are retrieved from provided CpG
annotation files.

(b) Same-gene test: Two CpGs are flagged as belonging to the same gene if they share at least one gene symbol
(including overlapping genes).

(c) Distance test: Genomic distance is computed for CpGs located on the same chromosome.

(d) Edge-type assignment: Each edge is assigned a type (0–4) based on a rule-based decision tree described in Table 3.

2Pierce BL et al. (2018). Co-occurring expression and methylation QTLs allow detection of common causal variants and shared biological
mechanisms. Nature Communications, 9, 804. doi:10.1038/s41467-018-03209-9

3Zhang X-M et al. (2021). Graph Neural Networks and Their Current Applications in Bioinformatics. Frontiers in Genetics, 12, 690049.
doi:10.3389/fgene.2021.690049
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Edge Type Definitions

Code Label Rule Distance

0 Same gene, proximal CpGs in the same gene with genomic distance < 5 kb <5 kb

1 Same gene, distal CpGs in the same gene but ≥ 5 kb apart ≥5 kb

2 Cis-regulatory* CpGs on the same chromosome, < 50 kb apart, with
one in a promoter/TSS region and the other in a gene
body or 5’UTR

<50 kb

3 Same chromosome All other intra-chromosomal pairs ≥50 kb

4 Inter-chromosomal CpGs located on different chromosomes n/a

Table 3: Edge types and corresponding genomic rules.

* Putative cis-regulatory links where one site is near a transcription start site and the other is in a transcribed region.

Edge Typing Integration into Graph Construction

Genomic edge types were integrated during and after graph assembly via the create genomic aware graph function. This
graph construction process involved three primary edge classes:

• Local edges: High-confidence links with strong methylation similarity (> 0.95), retained without modification.

• Global edges: Moderate-similarity links above a relaxed threshold (> 0.8), prioritized if supported by genomic
proximity or shared annotation.

• Genomic edges: Edges with weaker methylation similarity but retained due to strong genomic context—such as
proximity within 100 kb, co-membership in a gene, or putative regulatory roles.

To integrate genomic information into edge inclusion and weighting, the methylation similarity score between each CpG
pair was scaled by a multiplicative genomic boost factor. This factor was additive and based on biologically motivated
criteria:

• +0.3 boost if CpGs belonged to the same gene.

• +0.2 if the edge linked promoter/TSS regions to gene bodies or 5’UTRs (putative cis-regulatory interaction).

• +0.1 to +0.4 based on physical distance (e.g., < 5 kb received the highest boost).

This adjustment allowed edges that were genomically meaningful—but might fall below strict similarity thresholds—to
be retained in the final graph. The adjusted similarity score (combined similarity) was then used to determine whether
an edge qualified as local, global, or genomic.

Once edges were selected, they were labeled with a categorical genomic edge type using add genomic edge types, based
on gene co-membership, chromosomal identity, and physical distance. While these edge types were not explicitly used in
message passing or model parameters (e.g., via edge-type-specific kernels), they were preserved for downstream stratified
analysis and interpretability.
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Performance of EdgeConv Model with Edge Typing

Figure 4: Mean performance over 10 runs for the WGCNA/EdgeConv model with Edge Typing, error bars repsenting the
variation across runs. Model performance with this inclusion decreased, and results were less likely to converge

With the addition of genomic edge categories, the performance of the model did not differ significantly from the baseline
using methylation similarity alone. These results suggest that although the edge types are biologically reasonable, they
did not offer a meaningful inductive bias under the current model structure.
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Appendix E: Additional Feature Extraction Information

Figure 5: Ranking of the relative importance of the features of the EdgeConv model, both for the nodes as well as the
weighted edges. Created using a gradient-saliency explainer.
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