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Abstract: Simulations are often used to investigate the flow structures and system dynamics of
complex natural phenomena and systems, which are significantly harder to obtain from experiments
or theoretical analyses. Surrogate models are employed to mimic the results of simulations by
reducing computational costs. In order to reduce the amount of computational time consumed, a
novel framework for building efficient surrogate models is proposed in this work. The novelty lies
in that the new framework runs simulations using the different simulation time spans for different
inputs and builds a comprehensive surrogate model through the fusion of non-homogeneous spatio-
temporal data by integrating the temporal and spatial correlations in parametric space. This differs
from the existing works in the literature, which only consider the situation of spatio-temporal data
with a consistent time span during simulations under different inputs. Some simulation studies and
real data analysis concerning the pollution of the river in the Sichuan Province of China are used to
demonstrate the superior performance of the proposed methods.

Keywords: spatio-temporal data; proper orthogonal decomposition; cokriging; prediction

MSC: 62K99; 62P12

1. Introduction

In practice, partial differential equations (PDEs) are often employed to study com-
plex natural phenomena and engineering systems in many fields, such as meteorology,
turbulence, and aircraft design. Numerical methods, such as the finite element algorithm,
are used to solve PDEs, referred to in the literature as simulators. High-fidelity simula-
tions have been used for investigating system dynamics and flow structures. However,
it is time-consuming to run the corresponding simulations. Modeling and estimating the
spatio-temporal dynamics over a wide parametric space are important challenges that are
yet to be overcome. Surrogate models are widely utilized to mimic the results of simulators
with significantly reduced computational costs.

There have been many previous works building surrogate models for spatio-temporal
dynamics in the literature. Xiao et al. [1] present a non-intrusive subdomain POD-TPWL
(SD POD-TPWL) method through integral domain decomposition (DD), proper orthog-
onal decomposition (POD, which was first proposed by [2]), radial basis function (RBF)
interpolation, and trajectory segmentation linearization (TPWL). Ioannidis et al. [3] pro-
posed a graph-aware kernel kriged Kalman filtering (KKF) method accounting for the
spatio-temporal variations. Nguyen et al. [4] and Shi et al. [5] modeled spatio-temporal dy-
namics using mixed-effects models. These methods only pay attention to spatio-temporal
dynamics under fixed input parameters. For example, the authors of [1] investigated the
spatio-temporal performance of the oil–water reservoir system at fixed values of initial
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pressure, initial saturation, etc., instead of studying the influence of input parameters on
the spatio-temporal dynamics.

Several works have proposed modeling the relationship between the spatio-temporal
dynamics and the input parameters. Guo and Hesthaven [6] proposed a data-driven
reduced basis (RB) method for parameterized spatio-temporal modeling problems, which
reduced the dimensions of training data by POD and then built the regression-based error
surrogate model. Yeh et al. [7] used POD to decompose the spatio-temporal system of
the flow field in the vortex ejector and then trained the kriging model for the reduced
data, which can predict the system dynamics under any input parameter. Chang et al. [8,9]
proposed new surrogate models named kernel-smoothed proper orthogonal decomposition
(KSPOD) and common kernel-smoothed proper orthogonal decomposition (CKSPOD) to
emulate spatio-temporally evolving flows.

In order to build a more economical surrogate model, most of the above works
used the POD, a widely used reduced order modeling (ROM) method, to represent the
spatio-temporal data at a controlled loss of accuracy. From a data-driven point of view,
Yeh et al. [7] sampled a set of input parameters Θ , {θ1, θ2, · · · , θc} and ran simulations
to generate the spatio-temporal data of the flow field in the vortex ejector y = f (x, t; θ)
for each θ ∈ Θ. Then f (x, t; θ) is approximated into K common POD modes φk(x) with
time-varying coefficients βk(t; θ), that is

f (x, t; θ) ≈
K

∑
k=1

βk(t; θ) · φk(x), (1)

with the reasonable expectation that the approximation becomes exact as K = N [10],
where φk(x) is a spatial basis function, and βk(t; θ), k = 1, 2, · · · , K is the k-th time-varying
coefficient under input parameter θ and time t, which describes the relationship between
φk(x) and f (x, t; θ) given θ and t. Given k and time step tm, time-varying coefficients
βk(tm; θ) can be seen as functions of the input variable θ. Hence, the kriging model is
established for every βk(tm; θ), m = 1, 2, · · · , M and k = 1, 2, · · · , K. For any new parameter
θ∗ in the parameter space Ω, the kriging model can give the prediction β̂k(tm; θ∗). Then,
the prediction of the system dynamics under the new parameter is given by

f̂ (x, t; θ) =
K

∑
k=1

β̂k(t; θ) · φk(x). (2)

Most of the existing works in the literature assume that the temporal resolution is
fine [7] and build a surrogate model based on the same time span T . Attention has not been
paid to the time correlations; however, for some practical problems, there are correlations
between different time steps, such as the incompressible fluid flow, see [6].

Let [0, tM] be the time span of interest to engineers. In practice, due to the limitations
of computational time and resources, only a few parameters of the spatio-temporal data
are simulated to the last time step tM, and the others are only simulated to the Mi-th time
steps tMi , i = 1, 2, · · · , s, tM1 < tM2 < · · · < tMs = tM. Hence, the spatio-temporal data
with different time spans need to be fused to build a comprehensive surrogate model. In
this way, computational resources and time can be saved to simulate the spatio-temporal
data under more parameters. Let Ti , {t1, t2, · · · , tMi}, i =, 1, 2, · · · , s, and T = Ts.
Assume c is the number of parameters required to run the simulations for the traditional
methods. Let s = 2. Let c1 be the number of parameters under which the spatio-temporal
data are simulated over T1, and c2 be the number of parameters under which the spatio-
temporal data are simulated over T . c1 and c2 can be chosen appropriately such that
c1 × tM1 + c2 × tM ≈ c × tM and c1 + c2 > c > c2. Thus, under the same computing
resources, more input parameters, and their corresponding spatio-temporal data will be
considered, which leads to a more accurate surrogate model. Take the case study of
pollutant concentration in Section 4 as an example, for each input, the simulation will take
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approximately 22 h on a computer with 72 Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz and
16 G memory. If the number of inputs is c = 20, it will take 440 h with the full time span for
all of the inputs. If the number of inputs with full time span simulation is c1 = 10 and the
number of inputs with half time span simulation is c2 = 20, it will also take approximately
440 h. However, we collect the data for approximately 30 different inputs, which could
benefit the accuracy of the surrogate model.

Consider the pollution supervision of rivers as an example. A simulator is generally
established for the hydrological situation of the entire river basin, the relevant indicators of
the source of pollutants are used as input parameters, and certain spatio-temporal data are
generated. In daily supervision, the spatio-temporal field under certain parameters in a
certain period of time T1 is simulated through the simulator. However, when there is an
emergency, a quick response of the flow structures over T2, which exceeds T1, is required.
Therefore, it is necessary to quickly generate the spatio-temporal data over T2 \ T1 at fewer
parameters and establish a surrogate model to determine the source of pollutants and
predict the river’s pollution distribution. For this case, a surrogate model is needed that
uses different time spans for training data. In this work, we monitor pollution in the Bai
River as an example to demonstrate the effectiveness of the proposed methods.

The objective of this paper is to propose a framework to build a surrogate model
for fusing spatio-temporal data with multiple time spans. In order to reduce the amount
of computational time consumed, the new framework is used to run simulations using
different simulation time spans for different inputs, and to build a comprehensive surro-
gate model through the fusion of non-homogeneous spatio-temporal data by integrating
temporal and spatial correlations.

The remainder of this paper is organized as follows. A new predictive surrogate model
to fuse spatio-temporal data over different time spans is presented in Section 2. In Section 3,
some simulations are carried out to illustrate the performance of the proposed methods
when the training data have different time spans. In Section 4, real data analysis for the
pollution of rivers in the Sichuan Province of China is given. Conclusions are drawn in
Section 5.

2. Methodology
2.1. The Reverse Sequential Sampling Scheme

Usually, the spatio-temporal data are divided into N discrete spatial nodes X =
{x1, x2, · · · , xN} and M time steps T = {t1, t2, · · · , tM}. Suppose that there are s different
time spans T1 ⊂ T2 ⊂ · · · ⊂ Ts = T , which will be used in the simulations. Let the end
of time span Ti be tMi , i = 1, 2, · · · , s and assume that the time interval ∆t is the same
over the entire time span. For each time span Ti, ci input parameters are sampled from
parameter space Ω, and the corresponding spatio-temporal data are generated through the
simulator. For spatio-temporal data at Ts \ Ts−1 , {tMs−1+1, tMs−1+2, · · · , tMs}, there are
only cs parameters available. For Ts−1 \ Ts−2 , {tMs−2+1, tMs−2+2, · · · , tMs−1}, the number
of parameters augment cs + cs−1. Thus, there are ∑s

i=1 ci training parameters, which is at a
maximum over the first time span T1 = {t1, t2, · · · , tM1}.

In order to ensure the prediction accuracy of the surrogate model, at each time point
tm, the selected parameters should have a good space-filling ability. Since the fewest
training input parameters correspond to the spatio-temporal data at the time step t ∈
{tMs−1+1, tMs−1+2, · · · , tMs}, the selection of parameters over this time span should be
prioritized. A feasible method is to uniformly sample cs parameters from the parameter
space Ω, which is denoted as Θs. Then, using sequential Latin hypercube designs (LHDs),
such as the Quasi-LHD sequential sampling method [11,12] and maximum projection
(MaxPro) LHD [13,14], cs−1 parameters are sampled from Ω \Θs, the relative complement
of Θs in Ω, to compose Θs−1, so that the parameters in Θs ∪Θs−1 have the space-filling
property in Ω. Continue this method until the sampling of Θ1 is finished. It is obvious that
Θi ∩Θj = ∅, 1 · · · ≤ i < j ≤ · · · s. Let the j-th element in Θi be denoted as θij, j = 1, 2, · · · ci.
Then, the parameters in Θi, i = 1, 2, · · · , s, are used to simulate the spatio-temporal data
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for Ti = {t1, t2, · · · , tMi}. This method can sequentially generate spatio-temporal data
with s different time spans for different input parameters, and the parameters have a good
space-filling property in Ω and are uniform in each Θi. In this paper, we refer to this
sampling procedure as the reverse sequential sampling scheme, in which the “reverse”
means that the order in which the parameters are sampled is the reverse of the order in
which the simulator is run. The data simulation approach in this paper adopts the reverse
sequential sampling scheme.

As an example to illustrate this method, 1-dimensional parameter space and time space
are considered. The data with three time spans T1 = {1, 2, · · · , 5}, T2 = {1, 2, · · · , 10},
T3 = {1, 2, · · · , 15} and three parameter sets Θ1, Θ2, Θ3 ∈ [0, 1] are generated. Θ1 =
[0.16, 0.25, 0.50, 0.84] was first sampled from [0, 1], such that the elements in Θ1 are uniform
in [0, 1]. Next Θ2 = [0.21, 0.34, 0.61, 0.80] was sampled from [0, 1] \Θ1 to make sure that
Θ1 ∪Θ2 are uniform in [0, 1]. Then, Θ3 = [0.04, 0.44, 0.69, 0.98] was sampled to ensure the
uniformity of

⋃3
i=2 Θi.

The parameters in Θ1,Θ2, and Θ3 are represented as black, red, and green points in
Figure 1, respectively. Each row in the figure represents the parameters at the corresponding
time step. By using the reverse sequential sampling scheme, the training samples have
good space filling in [0, 1], even though the number of training parameters decreased when
t ∈ Θ3 \Θ2 = {11, 12, 13, 14, 15}.

Figure 1. An illustration of the reverse sequential sampling scheme.

The collected dataset from all the ∑s
i=1 ci simulations is then used to train a surrogate

model. Because there are many time steps and space nodes, building a surrogate model
to respond at all temporal and spatial points is expensive. POD is a common method
for reducing the dimensions of spatio-temporal data. For spatio-temporal data f (xn, tm),
xn represents a spatial node, and tm represents a time step. f (xn) represents the average
over the time steps of node xn. Let y(xn, tm) represent the spatio-temporal data minus the
mean, i.e.,

y(xn, tm) = f (xn, tm)− f (xn), (3)

and the spatio-temporal data can be denoted as

X ,

 y(x1, t1; θ) · · · y(x1, tM; θ)
· · · · · · · · ·

y(xN , t1; θ) · · · y(xN , tM; θ)


N×M

. (4)

Then, POD is used to decompose the real-valued N × N matrix XXT by eigenvalue
decomposition. Let Φ = [φ1, φ2, . . . , φN ], where φj ∈ RN is the standard orthogonal feature
vector, and λ1, λ2, . . . , λN is the corresponding eigenmatrix and eigenvalues, respectively.

The number of modes K is chosen such that ∑K
i=1 λi

∑n
i=1 λi

≥ 99%, where the proportion of eigen-
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value
λj

∑N
i=1 λi

represents the energy contained in the corresponding eigenvector φj. When

considering that the spatio-temporal data removed the mean, f (x, t) can be decomposed as

f (x, t) ≈
K

∑
k=1

βk(t)φk, (5)

where βk(tm) is the time-varying coefficient corresponding to the k-th mode at time step tm,
which can be calculated by

βk(tm) =< f (tm), φk >, (6)

where f (tm) = [ f (x1, tm), f (x2, tm), · · · , f (xN , tm)]T . Consider the modes {φ1, φ2, . . . , φK}
as a common basis function, and the spatio-temporal data f (x1, t1; θ11) · · · f (x1, tM1 ; θ11)

· · · · · · · · ·
f (xN , t1; θ11) · · · f (xN , tM1 ; θ11)


N×M1

, · · · ,

 f (x1, t1; θscs) · · · f (x1, tM1 ; θscs)
· · · · · · · · ·

f (xN , t1; θscs) · · · f (xN , tM1 ; θscs)


N×Ms

(7)

can be represented byβ1(t1; θ11) · · · β1(tM1 ; θ11)
· · · · · · · · ·

βK(t1; θ11) · · · βK(tM1 ; θ11)


K×M1

, · · · ,

β1(t1; θscs) · · · β1(tM1 ; θscs)
· · · · · · · · ·

βK(t1; θscs) · · · βK(tM1 ; θscs)


K×Ms

. (8)

Note that, through the POD, the N ×M dimensional matrix is reduced to the K×M
dimensional matrix, which means that the spatio-temporal data with N space points and
M time points are reduced from N ×M to K×M, where N � K.

2.2. The Proposed Model

After the decomposition of POD, the surrogate model can be built for each βk in
(8). Since the establishment of the surrogate model is the same for every k, hereafter we
omit k and let β(tm; θ) denote βk(tm; θ). Section 2.2.1 will introduce the steps for building
the surrogate model for β(tm; θ), j = 1, 2, · · · , tMs . A weighted model is proposed in
Section 2.2.2 to improve the stability of the model, and in Section 2.2.3, an algorithm to
predict the system dynamics under new parameters is presented.

2.2.1. The Surrogate Model for Time-Varying Coefficients

To simplify the elaboration, we first introduce the proposed method with only two
time spans T1 = {t1, t2, · · · , tM1} and T2 = {t1, t2, · · · , tM1 , · · · , tM2}, where tM2 = tM.
First, the c2 and c1 parameters are sequentially sampled from the parameter space Ω
according to the algorithm proposed in the previous section and are denoted as Θ2
and Θ1, respectively. Each set of parameters θ2j ∈ Θ2, j = 1, 2, · · · c2 is plugged into
the simulator to obtain the spatio-temporal field data y = f (x, t), x = x1, x2, · · · , xN ;
t = t1, t2, · · · , tM1 , tM1+1, · · · , tM2 . For each set of parameters θ1j ∈ Θ1, j = 1, 2, · · · c1,
corresponding simulations are made over [0, tM1 ]. Then, we have

β(t1; θ11) · · · β(tM1 ; θ11)
β(t1; θ12) · · · β(tM1 ; θ12)
· · · · · · · · ·

β(t1; θ1c1) · · · β(tM1 ; θ1c1)
β(t1; θ21) · · · β(tM1 ; θ21)
· · · · · · · · ·

β(t1; θ2c2) · · · β(tM1 ; θ2c2)


(c1+c2)×M1

and


β(tM1+1; θ21) · · · β(tM2 ; θ21)
β(tM1+1; θ22) · · · β(tM2 ; θ22)

· · · · · · · · ·
β(tM1+1; θ2c2) · · · β(tM1 ; θ2c2)


c2×(M2−M1)

. (9)

It can be seen from (9) that the training data for the surrogate model at each time step
has a different size. For tm ∈ {t1, t2, · · · , tM1}, there are c1 + c2 input parameters, so the
kriging models are built for β(tm; θ) [15–18]. For tM1+1, the number of input parameters is
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reduced to c2, which is less than that of the previous time step tM1 . When the number of
training parameters is insufficient, the kriging model is not effective [15,16]. If the kriging
model is built directly based on the spatio-temporal data for these parameters, the accuracy
of the model will be reduced, which will further affect the prediction accuracy for the flow
structures and dynamics of systems. Hence, we propose the cokriging method and the
weighted method to solve this problem by using the time correlation.

Given the covariance function C(·) = σ2R(θ, θ′; κ)), the kriging model can model the
correspondence and uncertainty between the input parameters and the responses. For
every tm, the form of the ordinary kriging model with the response β(tm; θ) is

β̂(tm; θ) = b + Zm(θ), Zm(θ) ∼ N
(

0, σ2R(θ, θ′; κ)
)

, (10)

where Zm(θ) is a zero mean stationary Gaussian process (GP) with mean zero, variance
σ2 and correlation function R(θ, θ′; κ), b is the mean. In this paper, we utilize the Gaussian
correlation function of the form

R
(
θ, θ′; κ

)
= exp

[
−

d

∑
r=1

κr

(
θ(r) − θ′(r)

)2
]

, (11)

where κ = [κ1, · · · , κd]
T , κr are the unknown correlation parameters used to fit the model,

θ(r) is the r-th dimension of θ [15,16]. Then, the unknown parameter of the ordinary kriging
model is (b, σ2, κ)T , which can be estimated by the maximum likelihood empirical best
linear unbiased prediction [15].

The cokriging models [19] will be employed to build the surrogate models for tm, m =
M1 + 1, M1 + 2, · · · , M2 with respect to the input parameters Θ2 by considering the time
correlation between different time steps. The fundamental idea is to establish a relational
model between the original data and highly correlated data such that the prediction capa-
bility of the surrogate model is enhanced. This scheme enables a more accurate predictive
model to be built for the auxiliary data, which will help capture the trend of the response
varying in parametric space. Gratiet and Garnier [20] improved the cokriging model by
constructing a recursive computation scheme. The surrogate model for β(tM1+1; θ) can be
formulated as 

β̂(tM1+1; θ) = zM1+1(θ) = ρM1(θ)zM1(θ) + δM1+1(θ)
zM1(θ) ⊥ δM1+1(θ)
ρM1(θ) = gT

M1
(θ)αρM1

, (12)

where ρM1(θ) is the adjustment function [20], zM1 is a GP model for β(tM1 ; θ) which is
given by (10), and δm1+1(θ) is a GP model for the difference of β(tM1+1; θ) and β(tM1 ; θ).
⊥ denotes the independence relationship between zM1 and δM1+1(θ), and gM1 is a vector of
regression functions with its coefficient αρM1

. ρM1(θ) can be considered as a constant [19],
which is used in this paper. Further details of the cokriging model are introduced in [19,20].
With (12), the predictions of β(tm1+1; θ) at θ ∈ Θ1 are given and denoted as β̂(tm1+1; θ).
Then, β(tM1+1; θ2j), j = 1, 2, · · · , c2 and β̂(tM1+1; θ1j), j = 1, 2, · · · , c1 are used to build the
surrogate model for β(tM1+2; θ). The surrogate models are built sequentially by (12) for
tM1+1, tM1+2, · · · , tM2 . This sequential approach makes it easy to generalize scenarios for
three or more time spans.

2.2.2. The Weighted Surrogate Model for Time-Varying Coefficients

The method in Section 2.2.2 can sequentially give predictions for β(tm; θ) when t =
tM1+1, tM1+2, · · · , tM2 . However, the above method has the disadvantage of using the
prediction of the previous step tm as auxiliary data to establish a cokriging model at the
next time step tm+1, where m = M1, M1 + 1, · · · , M2 − 1.
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We propose a weighted method based on the Pearson correlation coefficient. As is
suggested by [20], the correlation can be defined by the Pearson correlation coefficient

rtm ,tm′ =
cov(β(tm; θ), β(tm′ ; θ))

σβ(tm ;θ)σβ(tm′ ;θ)
. (13)

The closer the rtm ,tm′ is to 1, the stronger the correlation between the two sets of data.
For m = M1,M1 + 1,· · · ,M2 − 1, two surrogate models are built for β(tm; θ): one is the cok-
riging model from (12) with β(tM1 ; θ) as the auxiliary data, denoted as β̂Cok(tm; θ), and the
other is the ordinary kriging from (10), denoted as β̂Ok(tm; θ). The Pearson correlation
coefficient r = rtm ,tM1

is calculated as the weight. Then, the weighted surrogate model can
be formulated as

β̂W(tm; θ) =

{
rβ̂Cok(tm1+1; θ) + (1− r)β̂Ok(tm1+1; θ), r ≥ r0
β̂Ok(tm1+1; θ), r < r0

. (14)

where the threshold r0 is a pre-fixed constant.

2.2.3. The Prediction of System Dynamics with New Input Parameters

The kriging models for β(tm; θ) are trained independently for t ∈ {t1, t2, · · · , tM1},
and for t ∈ {tM1+1, tM1+2, · · · , tM2}, the surrogate models for β(tm; θ) are given by the
cokriging method or weighted method according to (12) or (14), respectively.

Let θ∗ be a new input parameter for which prediction is desired. Then, the prediction
of the new system dynamics at T2 can be given by the reconstruction of the predicted
time-varying coefficients β̂k(t, θ∗) and the given mode φk(x):

f̂ (x, t; θ∗) =
K

∑
k=1

β̂k(t, θ∗) · φk(x). (15)

Our whole spatio-temporal surrogate model framework is summarized as Algorithm 1.
Before building the surrogate model, there are some settings related to the model that need
to be determined.

• Determine the input parameters θ and their ranges and map the input parameter
space Θ to [0, 1]p, where p is the dimension of the input parameters.

• Determine the spatial extent and time span of the spatio-temporal data f (x, t; θ),
and make discrete divisions of the spatio-temporal field with appropriate precision,
which is denoted as X × T .

• Determine the different ending times of the simulation of spatio-temporal data tM1 ,
tM2 , · · · , tMs and the corresponding number of training samples n1, n2, · · · , ns.
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Algorithm 1: The framework for the spatio-temporal surrogate model.

1 Sample the training parameter sets Θs, Θs−1, · · · , Θ2,and Θ1 through sequential
sampling,and let Θ = Θ1 ∪Θ2 ∪ · · · ∪Θs−1 ∪Θs.

2 Generate the spatio-temporal data through the simulator.For the parameter in the
ith parameter set Θi, the corresponding spatio-temporal data are calculated as
f (x, t; θ), x ∈ X , t ∈ Ti = {t1, t2, · · · , tMi}, i = 1, 2, · · · , s.

3 Decompose the spatio-temporal data through POD, give the number of POD
modes T and write it as φ1, φ2, · · · , φK. Furthermore, calculate the corresponding
time-varying coefficient βk(t; θ) for the k-th mode at the instant of time t at
parameter θ.

4 for 1 ≤ k ≤ K do
5 for tm ∈ {t1, t2, · · · , tM1} do
6 Establish the Ordinary Kriging model for βk(t; θ).

7 for tm ∈ {tM1+1, tM1+2, · · · , tM} do
8 Establish the Weighted model or CoKriging model for βk(t; θ).

9 Do prediction.After building the surrogate model for each moment, give
predictions β̂k(t; θ) for βk(t; θ∗) under the new input parameters θ∗ sequentially
and reconstruct the new spatio-temporal data f̂ (x, t; θ∗) = ∑K

k=1 β̂k(t; θ) · φk(x).

3. Simulation Studies
3.1. The Case of 2D Input Parameters for Spatio-Temporal Data

As a simple example, a one-dimensional advection equation is considered, with the
initial phase ϕ0 and wave speed v as the input parameter. The advection equation represents
a wave propagating with a constant velocity [21,22] of the form

∂µ

∂t
+ v

∂µ

∂x
= 0, x ∈ [−2, 2]. (16)

The initial condition is

µ = µ0(x, 0) =
{

0, |x| > 1
A sin(ωx + ϕ0), |x| 6 1

, (17)

and the boundary condition is
µ(−2, t) = µ(2, t). (18)

Besides the input parameter θ = (ϕ0, v)T , the above advection equation has two
other control parameters, namely amplitude A and frequency ω. We fixed the frequency
ω = 2π and amplitude A = 1, and the input parameter space Ω = [0, 1] × [0, 1]. We
take the space interval as ∆x = 0.01, and the time interval as ∆t = 0.01. The time
range from 0 to 1 s is considered. Then, the spatio-temporal field is a grid of 401 space
points and 101 time points. Let the interested time spans be T1 = {0, 0.01, 0.02 · · · , 0.49}
and T = T2 = {0, 0.01, 0.02 · · · , 0.99, 1}. Our two proposed methods in Section 2.2.2 and in
Section 2.2.3 are compared with the ordinary kriging method.

According to the reverse sequential sampling method proposed in Section 2.1, eight
parameters were first sampled to form Θ2, and then, the other eight parameters were
sampled to form Θ1. The parameters in Θ = Θ1 ∪ Θ2 are listed in Table 1. The spatio-
temporal data at T1 were simulated under the parameters in Θ, and the spatio-temporal
data at T2 \ T1 were simulated only under the input parameters in set Θ2. The training
data were reduced by POD and the first 10 modes were chosen, which contain 99.21%
information of the training data. The time correlations of the time-varying coefficients of the
first five modes are shown in Figure 2. Next, the surrogate models were built for βk(tm, θ),
m = 1, 2, · · · , 101, and k = 1, 2, · · · , 10. We refer to the three schemes of establishing the



Mathematics 2022, 10, 3585 9 of 16

surrogate model using the weighted method, cokriging method, and ordinary kriging
methods as Scheme 1, Scheme 2, and Scheme 3, respectively.

Table 1. The training parameters.

θ ϕ0 v θ ϕ0 v

θ11 0.133 0.760 θ21 0.176 0.662
θ12 0.259 0.555 θ22 0.688 0.186
θ13 0.782 0.268 θ23 0.951 0.338
θ14 0.564 0.143 θ24 0.405 0.891
θ15 0.460 0.417 θ25 0.327 0.456
θ16 0.641 0.014 θ26 0.043 0.608
θ17 0.081 0.920 θ27 0.820 0.079
θ18 0.878 0.729 θ28 0.545 0.975

Figure 2. Time correlations of the time-varying coefficient corresponding to the first five POD modes
in the advection equation example.

Scheme 1: For β(tm; θ), tm ∈ T1, there were |Θ1| + |Θ2| = 16 groups of training
data, where | · |means the element number of the set. The ordinary kriging models were
established for β(tm; θ) separately. For β(tm; θ), tm ∈ T2 \ T1, there were only |Θ2| =
8 groups of training data. Furthermore, the weighted method, which is proposed in
Section 2.2.3, was used for tm ∈ T2 \ T1. r0 is chosen as 0.7.

Scheme 2: For β(tm; θ), tm ∈ T1, the model is the same as Scheme 1, and for β(tm; θ),
tm ∈ T2 \ T1, the cokriging method is used for βk(t, θ) as introduced in Section 2.2.2.

Scheme 3: For β(tm; θ), tm ∈ T2, the ordinary kriging models are established separately.
The simulation results at θ∗1 = (0.483, 0.427)T are chosen as the test data, which are

used to evaluate the performance of the methods. For all three schemes, the predictions are
given by (2). The predictions of the three methods for the spatio-temporal data under new
parameters at t51 = 0.5s and t101 = 1.0s are shown in Figure 3. The predictions given by
Scheme 1 and Scheme 2 are close to each other at t51, and at t101, and Scheme 1 is better
than Scheme 2. Both Scheme 1 and Scheme 2 are significantly better than Scheme 3, which
does not accurately capture the law of wave change. Figure 4 shows the prediction errors
at each time step, defined as the average of the squared error of all spatial points. At t51,
the training parameters dropped from 16 to 8, which caused the prediction error of the
ordinary kriging method to increase immediately, but both of our methods avoided the
rapid increases because they used the information of the previous time steps. The weighted
method includes the ordinary kriging method, which does not perform very well when the
training data are reduced, but avoids predictions that deviate too far from the actual value
when the data correlation weakens. In contrast with the cokriging method, the weighted
method is therefore better in this example.
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Figure 3. The left and right panels show the true and predicted waves at t51 = 0.5 s and t101 = 1.0 s,
respectively. The black lines are the true data, and the red, orange, and blue lines are the predictions
given by Schemes 1, 2, and 3, respectively.

Figure 4. The prediction errors at each time step.

One simulation considers the effect of the number of input parameters, which is used
to run further simulations. The details regarding the selection of parameters are shown
in Table 2. For each case, we randomly generated the training set and built the model
100 times, and for every trained surrogate model, 20 test parameters were sampled to verify
the prediction error of the model.

Table 2. The number of input parameters in the simulations.

Case Number

Case 1 c1 = c2 = 8
Case 2 c1 = c2 = 10
Case 3 c1 = c2 = 12
Case 4 c1 = c2 = 14
Case 5 c1 = c2 = 16

The mean square error (MSE) is used as a metric to evaluate the performance of the
method, which is defined as

MSE =
1

nte · S · T

nte

∑
i=1

S

∑
j=1

T

∑
k=1

[
f
(
xj, tk; θi

)
− f̂

(
xj, tk; θi

)]2
. (19)

Figure 5 shows the boxplot of the MSE of our two proposed methods, and for different
numbers of training samples, the weighted method is consistently better than the cokriging
method; Figure 6 shows that the mean MSE of the three schemes varies with the amount
of data, from which we can see that the MSE of the method we proposed is much smaller
than that of the ordinary kriging method.
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Figure 5. The MSE of our two proposed methods.

Figure 6. The mean MSE of the three schemes varies with the amount of data.

3.2. The Case of Canadian Weather

Our proposed methods are used for real observational spatio-temporal data. The R
package fda provides Canadian weather data, including observations of daily temperature
and precipitation at 35 different locations in Canada. Suppose that some of these stations
have only the first 250 days of observations (represented by black squares in Figure 7), some
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have only the first 300 days of observations (represented by red circles in Figure 7), and some
have all the observations (represented by green triangles in Figure 7). Furthermore, suppose
that there are four stations without observational data that thus require prediction; these
are considered the test data.

Figure 7. The location of 35 weather stations. C, T, and F represent the locations of Charlottetown,
Toronto, and Fredericton, respectively.

The stations at Charlottetown and Toronto were missing data for 65 days and 115
days, respectively, and the station at Fredericton had no observational data. We care about
the prediction error for the time period when the data are missing. As a comparison, we
built models using three methods, the ordinary kriging method, our proposed cokriging
method, and our proposed weighted method. Figure 8 shows the real and forecast temper-
atures by the three methods at three weather stations. The two methods we proposed are
significantly better than the ordinary kriging method. The MSE of the weighted method,
cokriging method, and ordinary kriging method for the temperature of days 301 to 365
at the Charlottetown station are 1.454, 3.071, and 79.107, respectively. The MSE of the
weighted method, cokriging method, and ordinary kriging method for the temperature of
days 251 to 365 at the Toronto station are 3.263, 1.982, and 52.713, respectively. The MSE
of the weighted method, cokriging method, and ordinary kriging method for the annual
temperature at the Fredericton station are 3.361, 4.101, and 4.496, respectively.

Figure 8. Predictions of Canadian weather.

In the example of the advection equation, the time correlation under some modes
decreases very quickly—see Figure 2. In this situation, the weighted method performs
better than the cokriging method. In the example of Canadian weather, the time correlation
falls off more slowly relative to the advection equation example (Figure 9), and the cokriging
method can also be used.
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Figure 9. Time correlations of temperature in the Canadian weather example.

4. Application of the Model to Bai River Data

In this section, real data analysis for Bai River, which is located in Sichuan Province,
as shown in Figure 10, is used to illustrate the performance of the proposed method. In
the upper reaches of the river, there are some factory sewage pipes discharging a certain
pollutant into the river. Assuming that there are two sewage outlets, A and B, then there are
four-dimensional input parameters, the pollutant concentrations and water flow velocities
of the two outlets, which are denoted as θ = (pA, pB, vA, vB)

T ∈ [0, 1]4.
The simulator is the C++ code based on [23], which divides the geographic space into

37,960 mesh points. The time interval was ∆t = 0.1s, and the solver was stored every
1000 steps. The solver with M2 = 1950 time steps was calculated, which simulated the
pollutant concentration in the Bai River over a 54 h period.

Figure 10. The shape of the Bai River.

According to the reverse sequential sampling scheme, 10 parameters are selected for
Θ2, and another 10 parameters are selected for Θ1, which is used to run the simulations.
Suppose that when the simulation reached tM1 , M1 = 1000, the detectors downstream
of the river identified the high-level warning line of pollutants in the river. Thus, we
needed to predict the change in pollutants in the future. However, we did not have
enough time to simulate the spatio-temporal data under all parameters. Only the spatio-
temporal data corresponding to the parameters in Θ2 were simulated, and a surrogate
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model was established in order to further judge which sewage outlet discharged pollutants
excessively and caused the increase in pollution. The weighted method, cokriging method,
and ordinary kriging method are used to establish the surrogate models. Figure 11 shows
how pollutants at the red point and blue point in the Bai River map (Figure 10) changed
over time. Figure 12 shows the prediction error of the three methods over the whole time
span, which shows that two new methods are better than the original method.

Figure 11. Changes in pollutants at one point in the Bai River over the whole time span.

Figure 12. The MSE at each time step.

5. Conclusions

Simulation is a common approach to the investigation of complex phenomena and
systems. However, simulations are very expensive due to the requirement of solving large
PDEs. How to best build surrogate models for simulations is an area still facing significant
challenges. The goal of the surrogate models is to drastically reduce computational costs,
especially when many predictions of spatio-temporal dynamics for unsimulated inputs are
required. Most existing works in the literature only consider the situation with the same
simulation time span. In this work, we consider the situation with multiple simulation time
spans and propose a novel method to build efficient surrogate models. Firstly, a reverse
sequential sampling method is presented to choose the input parameters for different
simulation time spans. Then, a weighted surrogate model is proposed to fuse the spatio-
temporal data from simulations with different time spans. The results of simulation studies
and real data analysis based on Bai River in Sichuan Province of China show that the newly
proposed method performs well and is superior to the traditional method.

The methods proposed in this work require that the spatio-temporal data are relatively
smooth with respect to inputs and have correlations between time steps. The simulation
studies also demonstrate that when the time correlations fall off quickly, the performance
of the cokriging model deteriorates dramatically. Some random effects models could
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be considered to deal with this challenge, and will be studied in future work. The non-
stationary nature of the data is another new challenge that will be considered.
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