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The use of MPM to estimate the behaviour of rigid structures during
landslides

L. Gonzalez Acosta, I. Pantev, P.J. Vardon & M.A. Hicks
Section of Geo-Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft,
The Netherlands

ABSTRACT: In geotechnical engineering, proper design of retaining structures is of great importance,
since failure of these structures can lead to catastrophic consequences. Nowadays, the finite element
method is seen as a reliable numerical technique to analyze soil behaviour and is widely used to assess the
interaction between soil and rigid structures. However, a disadvantage of this method is the difficulty of
simulating contact between separate bodies. Because of this, the event of a slope failing and colliding with
a rigid body cannot be analyzed, so that the additional forces acting against the rigid body caused by the
motion of the ground are neglected. With the recent development of the Material Point Method (MPM),
this limitation has been overcome and problems involving large deformation and multiple bodies in con-
tact can be analyzed. In this paper, the effect of a landslide colliding with a rigid wall has been studied,
and multiple initial conditions have been considered in order to identify the critical case.

1 INTRODUCTION using a continuum mesh to simulate the mate-
rial. Among these techniques, the material point
During the early years of geotechnical engineering, = method (Sulsky et al. 1994, 1995) has been proven
the only methods available to assess the stability  to solve problems with satisfactory results. Since,
of rigid retaining structures (retaining walls, sheet ~ in MPM, the material is not attached to the mesh,
piles, etc.) were those related with limit equilib-  large deformations can be simulated, enabling the
rium. The biggest disadvantage of such methods  analysis of complex geotechnical problems such
is their inability to take account of the complexity  as a progressive slope failures (Wang et al. 2016)
of the problem; for example, with respect to the and landslides (Soga et al. 2016). Moreover, due
geometry, construction stages, material behavior, to the development of a contact detection algo-
variability of soil properties, and irregular loading  rithm (Bardenhagen et al. 2000, 2001), the interac-
conditions. tion between separate bodies is feasible, so that the
Years later, with the implementation of numeri-  simulation of a landslide impacting on a retaining
cal techniques such as the finite element method  wall has become possible.
(FEM) and the finite difference method (FDM), In the first part of this paper, the background
taking account of complexities in geotechnical of MPM and the contact detection algorithm are
analysis has become more feasible. Using these  outlined, followed by the analysis of an elastic
techniques, it is now possible to compute the sta-  body bouncing on a rigid surface to demonstrate
bility and interaction between the soil and rigid the efficiency and accuracy of the formulation.
structures, returning important information for  Finally, the analysis of a slope colliding with a
the design process. Moreover, in the particular  rigid body is performed, including a parametric
case of retaining structures, FEM has proven to  study to find the critical conditions.
be appropriate for solving this type of problem
under both static (Hosseinzadeh & Joosse, 2015)
and dynamic (Gazetas et al. 2016) loading condi-
tions. However, because the connectivity between
the mesh and domain is essential for mos}t/slandard 2.1 MPM background
FEM analyses, there is a limit to the range of prob- A great advantage of MPM over other mesh free
lems that can be solved with the method. and meshless techniques is its significant overlap
During the last 20 years, new numerical tech-  with FEM, albeit with two key differences. The first
niques such as mesh free and meshless methods  difference is that material properties are attached
have been developed, to eliminate the need of  to the material points and not to the elements;

2 THEORETICAL FORMULATION
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Figure 1. MPM solution steps: a) mapping phase, b)

solution of momentum balance at the nodes, and c) con-
vection phase.

the second difference is that, after the equations
of motion have been solved at the nodes and the
mesh is distorted, the material points adopt their
new positions and the mesh is reset to its original
position. Figure 1 illustrates the MPM solution
procedure. Firstly, particle variables such as mass,
momentum, velocity and stresses are mapped to
the nodes; next the momentum equation is solved
for the velocities and accelerations at the nodes:;
then, the updated solution is transferred to the
material points by mapping the nodal values using
shape functions; and finally, the mesh is reset.
Since MPM shares similarities with the FEM
mechanics framework (Chen et al. 2015), the weak
form of the momentum conservation is given as

jpa'é'udV+J‘paV'é'udV =
Q

Q
pr-é'udV+Jpr‘ - OudA
Q r (l)

where p is the material density, a the acceleration,
ou the virtual displacement, V' the body volume,
o the Cauchy stress, b the body forces, 1° the pre-
scribed tractions, I the traction boundary, and 2
the solution domain.

Note that since the integration of internal and
external forces, as well as kinematic variables, is
performed considering the new positions of the
material points, the oscillation of stresses, veloci-
ties, accelerations, and many other quantities is
inevitable, reducing the accuracy of the results.
However, an explanation of these matters is
beyond the scope of this work.

2.2  Contact detection

Contact detection was developed in MPM to allow
interaction between bodies (e.g. collision, penetra-
tion, sliding, and adhesion). To detect contact,
the velocity field of a single body is compared to
the velocity field accounting for all bodies in the
system. Due to the discrete domain of the shape
functions, these will only be different at the nodes
where contact occurs, i.e. at those nodes with con-
tributions from more than one body. The contact
at the nodes is computed as

v — i 20 )

where v is the velocity field accounting for all
bodies, and v’ is the body velocity field.

After contact is established, further behaviour,
such as approach or departure, is computed by
using the surface normal direction at every contact
node, i.e.

(V' =v")-n' >0 (3)
where

nmp
n= sz"’p 4)

p=l

In which n' is the body surface normal, nmp is the
number of material points in the support elements,
G, is the gradient of the shape function with
respect to the position of the material point, and
m, is the material point mass.

Figure 2 gives an illustration of the contact
nodes detected after the total velocity at the nodes
diverges from the single body velocity contribution.

3 BENCHMARK PROBLEM

3.1 Bouncing of a block

To demonstrate the accuracy and performance of
MPM with the contact algorithm, a benchmark
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Figure 2. Contact detection nodes after mapping veloc-
ities on the background mesh.
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Figure 3. Collision between an elastic block and a rigid

body.

problem has been analysed. Specifically, an elastic
body is allowed to free fall, so that it collides with
a second body acting as a rigid surface. The falling
body is a block made up of 200 material points and
it is dropped from a height of 4, = 0.30 m relative
to the second body representing the infinite rigid
surface, which is composed of 120 material points.
Figure 3 shows a sketch of the problem. As can be
seen, the background mesh is made up of square
elements of dimensions Ax = Ay = 0.10 m, and the
material points are initially evenly spaced at & = *
0.5 and n = £ 0.5 in terms of local coordinates.
The total height of the domain is 2, = 1.1 m, and
the falling body and the rigid body have a height of
h,=0.5m and /i, = 0.30 m respectively. The width
of the domain is w = 1.0 m.

The block and the rigid surface are considered
as perfectly elastic bodies, both with an elastic
modulus and Poisson’s ratio of E = 500 kN/m? and
v = 0.49 respectively. The reason for choosing such
a high Poisson’s ratio is to avoid high compression
and deformation of the bodies during contact,
thereby avoiding stress oscillation problems caused
by the material points crossing element boundaries.

The boundary conditions for this problem are
as follows. For the rigid surface, the nodes at the
right, left and bottom are fixed in both directions
to prevent any displacement. In contrast, the nodes
at the right and left boundary for the falling block
are fixed just in the horizontal direction, in order
to allow free fall and avoid horizontal deforma-
tion. To consider the surface body as a rigid body
with infinite stiffness, the displacements, velocities,
and accelerations are erased after each step to pre-
vent any distortion and the effects this can cause
to the body representing the falling block. Finally,

the initial velocity of the falling block is zero,
and gravity is the only external force acting on it,
whereas the body representing the rigid surface is
not affected by gravity and is only affected by the
forces developed during the contact.

3.2  Results

Figure 4 shows the analytical velocity at time ¢
of a body bouncing over a surface, and the aver-
age velocity of all material points from the falling
block bouncing over a second body considering
two element sizes, Ax = 0.1 m and Ax = 0.05 m. As
can be seen, the average velocity of both solutions
matches the analytical one perfectly during free
fall, but neither reaches the analytical maximum
velocity. After two bounces, the maximum velocity
reached reduces substantially. It is also evident that
when using a smaller mesh, the solution is closer
to the analytical solution, showing that the con-
tact and body behavior depend on the mesh size.
The main reason why the velocity of the free fall-
ing block does not reach the maximum analytical
velocity, is that contact detection happens if the
material points of both bodies are in neighboring
elements, leading to an early bounce. The solution
converges to the analytical one as the element size
reduces.

In Figure 5, the average vertical position /2 of the
falling body is plotted against time and compared
with the analytical vertical position for a perfectly
elastic body bouncing on a rigid surface. As before,
the comparison is made using two different cell
sizes. The position after bouncing for the analytical
solution was computed using the analytical veloc-
ity after bouncing, leading to the perfect bounce
that reaches the initial position.

As was seen in the previous figure, the com-
puted results match the analytical solution closely
during free fall, but the bounce occurs earlier.
Also, after bouncing the block is unable to reach

—— Analytical
* Ar=0.1Im
== Ar=0.05m

vV (m/s)
DN = O = N W

0 0.2 0.4 0.6 0.8
1(s)

Figure 4. Analytical and experimental average veloci-
ties of material points of the falling body before and after
bouncing.
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Figure 5. Analytical and experimental average vertical
positions of the bouncing body with time.

the initial position, and this becomes more evident
after the second bounce. As mentioned before, the
reason why the body does not reach the rigid sur-
face (h = 0 m), is because contact takes place at a
distance of 1 element. Again, with the reduction of
element size, the contact distance is smaller, leading
to a solution closer to the analytical one. Finally, it
is clear that the maximum altitude reached by the
bouncing body is lower than the analytical solution
because of energy losses. These are due to (i) the
resetting of the rigid body, and (ii) stress oscilla-
tion in MPM.

The above analysis proves that the contact algo-
rithm works properly and that interaction between
bodies can be simulated with suitable results using
MPM. For more information regarding the math-
ematical background of the contact algorithm, as
well as benchmark problems to validate its use with
MPM, the reader is directed to Pantev (2016).

4 GEOTECHNICAL APPLICATION

4.1 Collision of a landslide with rigid structure

To illustrate the application of the combined MPM
and contact algorithm in geotechnical problems,
the behavior of a rigid body when a landslide col-
lides with it was analized. Figure 6 shows a sketch
of the problem, which consists of 2 bodies. Body 1
(B,) is a low strength block of soil that, after failure,
collides with body 2 (B,) representing a rigid wall.
Both bodies are constructed using background
meshes of size Ax = Ay = 0.1 m, and each element
is initially filled with 4 and 9 material points for
body 1 and body 2 respectively. The height of B,
is h; = 2.0 m and its length is /, = 3.0 m, whereas
the height of body 2 is 4, = 1.0 m and its length is
/, = 1.0 m. During this investigation, the distance
(d) between the bodies is varied to find the distance
at which the impact on B, is highest. Note that
gravity only acts on B, and that the bottom nodes

a) Sketch of the problem, and b) final config-
uration including displacement contours in rigid body.

Figure 6.

of B, are fixed in both directions to avoid a poten-
tial slide or roll-over of the body after impact.

The soil making up body 1 has a peak cohesion
of ¢, = 6 kPa, a residual cohesion of ¢, = 1.5 kPa,
a softening modulus of s, = -15 kPa, an elastic
modulus of E = 1000 kPa, and a Poisson’s ratio
of v=10.30. Body 2 is purely elastic, with an elas-
tic modulus of E = 2000 kPa and a Poisson’s ratio
of v=0.49. The friction coefficient acting between
the soil and the bottom boundary, and between the
soil and the rigid body, is z = 1.0, so that after con-
tact the material sticks to the rigid body. To quian-
tify the reaction in body 2, the mean value of the
deviatoric stress (¢) was computed based on the 9
points in the base element, in which the reaction is
bigger. The stresses in body 1 and body 2 are com-
puted using CMPM as in Gonzalez et al. (2017),
rather than using classical MPM, in order to have
more accurate results, especially for body 2 which
develops high stresses due to the incompressibility
caused by the high Poisson’s ratio.

4.2  Results

Figure 7 shows that the critical distance (i.e. the
distance at which the reaction in body 2 is highest)
is d. = 0.5 m, whereas for d = 0.2 and 1.5 m the
reactions are similar. The reason for similar values
at d = 0.2 and 1.5 m is because at these values the
velocity of the landslide is similar and small; in the
first case, it is because failure has not fully devel-
oped in body 1, so that the velocity of the body has
not increased significantly, whereas in the second
case the body has completely failed but the veloc-
ity developed has started to decrease because the
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travel distance of the slide is longer. Note that the
collision times for the different analyses are differ-
ent because the distance d is different; hence, the
measure of the deviatoric stress is computed rela-
tive to the time of the collision (7,) and not before.

Figure 8 illustrates the configuration of the
landslide at the critical condition, as well as the
collision at the maximum distance (in which the
effect of the impact is smaller).

After the critical distance was found, another set
of analyses were performed for d = d_, in order to
investigate the influence of the properties of body
1 on the stresses built up in body 2. The property
that is varied is the residual cohesion, with values
of ¢, = 1.5, 2.0, 2.5 and 3.0 kPa. As in the previ-
ous analysis, the change in the residual cohesion
affects the behavior of body 1, as well as causing

0 001 002 003 004 005
£, (s)
Figure 7. Mean deviatoric stress evolution with time

at the base of body 2 as a function of initial distance
between the bodies.

Landslide collision a) at the critical distance,

Figure 8.
and b) at the maximum distance.

the contact to occur at different times for each
analysis. As before, the time from the moment of
collision was used to plot the results.

Figure 9 shows that the highest deviatoric
stresses are generated when the residual cohesion
of body 1 is the smallest, and that, with an increase
of the residual cohesion, the impact on body 2
decreases. Clearly, if the residual cohesion is small,
the forces resisting the displacement of body 1 are
smaller, leading to a more sudden failure that will
cause the development of higher velocities and
thereby a bigger impact with the rigid body.

Finally, the mesh size effect has been analyzed,
using the critical distance d_ and the critical resid-
ual cohesion of ¢, = 1.5 kPa. Specifically, four
analyses are performed considering mesh sizes of
Ax =1/10, 1/8, 1/6, and 1/4 m.

— ¢,=15kPa

q (kPa)

Figure 9. Deviatoric stress in body 2 considering differ-
ent residual cohesion values for body 1.

— Ax=1/10
......... Ax=1/8
o P - S=1/4

45 ot *xx% Ay =1/4

q (kPa)

x
-------- EXXEEXNEXXEAXALLS

0 0.01 0.02 0.03 0.04 0.05

Figure 10. Deviatoric stress in body 2 for different mesh
sizes.
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As can be seen in Figure 10, the maximum
deviatoric stress is reached when the mesh size is
smallest, and this is thought to be mainly a con-
sequence of no strain regularization induced in
the current verison of the algorithm. Hence, for a
smaller element size, the shear band in B, is nar-
rower and the slope failure more sudden, caus-
ing an increase in the velocity of the slide and a
greater impact on B,.

5 CONCLUSIONS

This paper has investigated the performance of
MPM with a contact algorithm to analyse the
behaviour of a rigid structure during impact
from a landslide, considering the variation of the
mechanical properties of the sliding material and
the initial conditions of the problem.

The results have shown that the contact algo-
rithm in MPM is suitable for determining if bodies
are interacting or not. Also, the transfer of infor-
mation between bodies in contact has been demon-
strated, although improvements are needed in the
computation of the normal direction at the bound-
ary of the bodies, since this can severely impact the
accuracy of the analysis. The oscillations in the
solution caused by material points moving between
elements during contact is also a significant prob-
lem that causes an irregular redistribution of the
contact forces, especially if contact is maintained
over a longer time.

The results are an indication that MPM is an
appropriate tool for analysing geotechnical prob-
lems. Considering a broad combination of initial
conditions and a range of mechanical properties,
it is possible to obtain a wide range of results in
order to detect the most critical scenario.
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