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Abstract— The concept of view factor has various applications in 

engineering problems, ranging from heat management to bifacial 

photovoltaics. Analytical solutions for view factor calculations 

are difficult to obtain and normally numerical methods are used. 

For complex geometries, when several surfaces are arbitrarily 

arranged in a three-dimensional environment, conventional 

numerical approaches such as Monte Carlo method will take a lot 

of simulation time. To tackle this challenge, we have developed a 

simple and yet accurate view factor estimation method based on 

ray-casting. In our method, the view factor is determined by 

sending out rays, evenly distributed in all directions from the 

target surface, and consequently counting the number of rays 

intercepted by each of the other surfaces present in the 

environment under study. Then, a simple algebraic procedure 

enables the estimation of a large number of view factors 

simultaneously. The results have been compared with exact and 

numerical solutions, proving that we have devised a fast and 

accurate view factor estimation method. This can be used to 

determine the view factors in environments generated via Light 

Detection And Ranging (LiDAR). The method has the potential 

to be applied in several scientific researches and engineering 

studies including heat transfer and solar energy.  

Index Terms— view factor, shape factor, configuration factor, 

reflected irradiance, albedo, solar energy, ray casting, computer 

simulation, sky view factor (SVF), bifacial photovoltaics, building 

integrated photovoltaics 

I. INTRODUCTION

 The view factor (also known as shape factor and 

configuration factor) F1-2 is defined as the fraction of radiation 

leaving area A1 that is intercepted by area A2. In the same way, 

F2-1 is the fraction of radiation leaving A2 that is intercepted by 

area A1 [1, 2]. The view factor is a geometrical concept 

dependent only on the size, shape and orientation of the 

surfaces and the distance between them. It is often used in the 

field of heat and mass transfer, optics and rendering [3, 4, 5]. 

In view of such definition, all surfaces must be isothermal, 

opaque, and Lambertian and the media has no effect 

(scattering, emission and absorption) on the transfer of 

radiation between surfaces. Vacuum is such a medium and 

also other monatomic and most diatomic gases at low and 

moderate temperatures. In many engineering applications the 

medium does not affect the radiation heat transfer [2, 6, 7]. 

Therefore, within the scope of view factor algebra, to calculate 

the power that is transmitted between two surfaces, only the 

view factor and the net power of the source is required. 

However, to be able to calculate the view factor for every 

situation, a more complex equation has to be solved. For the 

radiation leaving a finite area A1 that is intercepted by area A2, 

the related view factor F1-2 is defined as [1]: 
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where A2 is the area of the surface that intercepts the radiation 

from finite area A1; θ1 is the angle between the normal vector 

to the area A1 and the line that connects the center of area A1 to 

A2; θ2 is the angle between the normal vector to the area A2 

and the line that connects the center of area A2 to A1; and, 

finally, L is the distance between the centers of A1 and A2.  

The view factors of several two- and three- dimensional 

configurations can be easily calculated using the 

corresponding algebraic formulas. However, as Equation (1) 

involves a double integral, it may turn to be a very challenging 

mathematical problem in many cases [1]. In such cases, 

numerical approaches are normally used. 

Bopche and Sridharan [8] have tried to estimate the view 

factor analytically by applying the contour integral technique. 

Using this technique an estimation of ±5% was achieved for a 

specific case. Computational times of several hours are not 

uncommon using this technique [8]. Sirimanna et. al. [9] have 

used a numerical method to estimate the view factors for a 

simple roof enclosure of five surfaces. In order to obtain an 

error of 1.0%, 10
8
 iterations were required. 

In order to estimate the view factor for more complex 

problems, the Monte Carlo method is often used. Vujicic et. 

al. [10] showed that using the Monte Carlo method an error 

range between 1.18% and 7.67% (with respect to the 

analytical solution) can be obtained, depending on the size to 

distance ratio of surfaces. The Monte Carlo method results 

will be different for each simulation run because of statistical 

error [11]. Also, it is not uncommon for the Monte Carlo 

method to result in simulation times of multiple hours [12]. 

Another method based on probability theory to estimate 

the view factor is proposed by Baronski et. al. [13] and makes 

use of the Chebyshev’s inequality [14], while Vueghs et. al. 

[15] make use of the random hemisphere method in order to

estimate the view factor from a point to a surface. Despite the

low computation time, as they are based upon the probability

theory, they are also subjected to statistical error.

This paper uses ray-casting method to find an approach 

that performs view factor calculation in a quicker and more 

accurate way. In Section II, we will describe how ray casting 

method can be used to estimate the view factors. Then, 
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Section III shows the capability of the introduced approach to 

estimate the view factor from a differential and finite surface 

to another finite surface. The estimations are then compared to 

exact mathematical solutions in terms of accuracy and 

simulation time as function of the number of rays. 

Applications of this method in urban energy areas will also be 

discussed in section IV. Finally, in Section V conclusions and 

highlights are presented. 

 

II.  METHOD 

The term radiation in the abovementioned definition of 

view factor may be considered to be either a wave or a particle 

[16]. In this study, to be able to use the ray-casting method, 

the light is considered as rays, which move from a source in 

certain directions. Light is then reflected from a surface either 

in specular or diffuse way, or both [17]. A perfect mirror 

reflects light in a specular way [18]. However, most materials 

reflect light diffusely [19]. To be able to use the view factor 

algebra, we assumed that materials reflect light all directions 

according to Lambert’s cosine law [20, 21]. In this regard, to 

accurately determine the view factor from A1 to A2, a large 

number of rays should be cast from A1 in all directions and be 

evenly distributed (i.e. the same number of rays for each solid 

angle). 

There are several methods to achieve an even distribution 

of rays on a sphere, that is to densely pack points on a closed 

surface. One of them is the so-called Rusin’s disco ball 

method [22], which requires a specific number of points to be 

packed on a sphere. Another method, proposed by Saff and 

Kuijlaars [23], allows for any positive integer number to be 

used for the amount of points to be packed on a sphere, but it 

can distribute fewer points on a sphere than Rusin’s disco ball 

method. Another method, reported by González, uses in the 

simulation the so-called Fibonacci lattice method [24], which 

results in higher packing density on a sphere compared to Saff 

and Kuijlaars and is still able to allow any positive integer 

number of points to be put on a sphere. Finally, Boucher [25] 

created a method (coded in python), which is able to take any 

positive integer number x as an input and return an array of x 

points on a sphere evenly distributed on its surface. Based on 

Boucher’s code, we wrote an equivalent script in C# language, 

which was then used for the simulation in this work. 

When the surfaces are on a large distance from each other, 

A1 may be considered to be a differential surface dA1 [26]. In 

this way, such a radiating surface can be considered as a 

differential surface and thus the simulation has to be done only 

once to obtain the view factor. If surfaces are too close to each 

other, the radiating surface may no longer be considered to be 

a differential surface. For these cases, the radiating surface has 

to be divided into smaller surfaces, which may in turn be 

considered to be differential surfaces, depending on their size 

and distance to the receiving surface (see Section III.3). 

Assuming that the dA1 is a flat plane (e.g. one cell of a 

photovoltaic module), each emitted ray will be assigned an 

angle factor according to the cosine of its angle. In other 

words, each ray xi emitted by dA1 that hits A2 will be counted 

and multiplied by its weight factor cosθi resulting in the total 

number of rays X that hit A2 corrected according to Lambertian 

cosine law. The angle θi refers to the outcoming angle of the i-

th ray with respect to the normal vector of the emitting area 

dA1. Mathematically, this can be stated as follows:  
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where n is the total integer number of rays that hit A2. Also, 

every ray yj cast from dA1 will be counted and multiplied by its 

weight factor cosθj resulting in the total number of rays Y, 

corrected according to Lambertian cosine law in the same way 

resulting in equation (5): 
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where m is the total number of rays cast and the angle θj has 

the same meaning of the abovementioned angle θi. Dividing 

the total number of rays hitting A2, X, by the total number of 

rays cast from dA1, Y, results in the desired view factor from 

dA1 to A2 (Fd1-2): 

1 2

1

1

cos

.

cos

i i

d

j j

i n

i

j m

j

x
X

F
Y

y















 




            (4) 

To test equation (4) in a complex geometry, we have 

considered urban environment. One engineering exemplary 

case is a photovoltaic (PV) module (as A1) installed on a roof 

in urban area surrounded by buildings (as A2). In such a 

situation, most PV modules are placed such that they are 

visible to a great amount of surface area. The surfaces visible 

to the PV module may be considered to be on a large distance. 

Therefore, PV module is treated as dA1. Figure 1 shows the 

position of a PV module (green tilted rectangle) in a location 

in Delft, the Netherlands, as rendered in Google maps [27]. As 

each infinitesimal surface contributes to the reflected 

irradiance on the PV module, the view factor has to be known 

for all of these surfaces. In order to make this a finite problem, 

the infinitesimal surfaces will be clustered into small surfaces 

with a finite area. In order to increase the accuracy of the 

simulation, the size will be kept as small as possible. 

However, decreasing the area will increase the number of 

surfaces inside the simulation domain. Figure 2 shows the 

visible surfaces to the PV module (in red), where surfaces 

closer to the PV module are smaller while the surfaces farther 

from the PV module are larger. 

For urban PV purposes, the view factor from all reflecting 

surfaces to the PV module is needed for assessing the diffuse 

reflected component as each of these surfaces will contribute 

to the total reflected irradiance. However, as there may be
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Figure 1- Google maps [27] view of an example simulation location (roof of 

the thermal station in Delft, Latitude 51.999693N, Longitude 4.368932E) 
showing an imaginary PV module placed inside the simulation environment 

(depicted in green). 

 

Figure 2 – 3D reconstruction of the thermal station in Delft in the Unity3D 

Game engine. The imaginary PV module (depicted in green) is where the rays 
will be cast. The visible surfaces to the PV module are depicted in red, where 

the surfaces closer to the PV module are smaller and the surfaces farther from 

the PV module are larger. This 3D surface was created using LiDAR data 
imported from the AHN height map [28] with a height resolution of 0.5 

meters. 

several thousands of surfaces visible to the PV module, 

performing a ray casting simulation for obtaining the view 

factor from each of these surfaces to the PV module would be 

an extremely time-demanding task. Alternatively, we may 

obtain the view factor from the PV module to all reflecting 

surfaces and then apply the so-called reciprocity rule [1]. As a 

single ray will never hit multiple surfaces, each ray will have 

its own hitting surface. By counting the number of ray hits on 

each surface, individually per each surface (again, using 

Lambertian cosine law), the numerator of equation (6) is 

found for each reflecting surface separately. The denominator 

of equation (6) is equal for each reflecting surface, as it 

resembles the total number of rays cast during the ray casting 

simulation. In this way, a single ray casting simulation will 

result in the view factors from the PV module to every 

reflecting surface inside of the simulation. From the symmetry 

of equation (3), the view factor of an area A1 that intercepts the 

radiation from a finite area A2 can be written as follows: 

2 1

2 1
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Combining equations (1) and (5) yields: 

1 1 2 2 2 1
,A F A F

 
               (6) 

which is the reciprocity rule of the view factors. Equation (6) 

implies that the view factor F1-2 is related to view factor F2-1 

by the ratio of surface A1 and A2 [1, 2].  

Using the reciprocity rule makes it easy to find the view 

factors from the radiating surfaces to the PV module if the 

surface area of both the PV module and the surfaces are 

known. A flowchart showing the processes taken in order to 

obtain the view factors from the radiating surfaces to the PV 

module can be seen in Figure 3.   

 

Figure 3 – The sequential processes taken to obtain the view factors from the 

surfaces to the PV module are here reported. (1) Rays are cast in all directions 

in order to find the 3D LiDAR-induced terrain visible to the PV module. 
Surfaces are instantiated on these terrain-hit points. (2) Y number of rays are 

cast in all directions from the APV and each ray hit is counted per surface. (3) 

The view factor from APV to each surface Ai is calculated. (4) Using the 
reciprocity rule, the view factor from each surface Ai to APV is obtained. 

As a corollary, each ray that does not hit any surface is cast 

to the sky. By counting rays that do not hit any surface in the 

same way as done in equation (2), the SVF, which is the view 

factor from the PV module to the sky dome, can be easily 

estimated by applying equation (4). In case of blocked 

horizon, this method eliminates the need of estimating the 

SVF using a fish-eye lens camera, a time-consuming process 

that requires field work and image processing. 
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III.  METHOD VALIDATION 

In order to validate the introduced approach of ray casting 

for the accurate estimation of the view factor between two 

surfaces, simulations have been made and compared with 

equivalent mathematical solutions. 

    1)  View factor comparisons with differential cases 

View factor estimation for differential surfaces is the 

foundation of the view factor estimation for finite surfaces, as 

it is required to estimate the finite cases. Reflective surfaces 

may be curved or flat. In order to validate the ray-casting 

model, several results of mathematical solutions of view 

factors are compared with the results of our computer 

simulation.  

The exact solution of the view factor for a differential 

sphere to a sphere with radius r can be calculated, since the 

geometry is relatively simple. According to Chung et. al. [29], 

the view factor from a spherical point source, or differential 

sphere to a sphere can be found from the exact solution of: 

 2

1 2

1
1 1 ,

2
d

F K

                (7) 

where K is defined as K = r/h, h is the distance from the 

differential sphere 1 to the center of sphere 2 and r is the 

radius of sphere 2. As an example, h and r have been set to 

200 and 50, respectively, in the equation (7), resulting in a 

view factor of 0.015877. When casting 2×10
5
 rays from sphere 

1 in the simulation, 3175 rays are intercepted by sphere 2. This 

situation as used in the simulation has been illustrated in 

Figure 4.  

Using equation (4), the view factor from the ray-casting 

simulation can be calculated, yielding a view factor of 

0.015875. As the radiating surface is a sphere, Lambertian 

cosine law is not applied. With a mere 0.013% difference 

between the simulation and the exact solution, our method 

basically delivers the same results as the exact solution. As the 

distance h becomes larger or the radius r becomes smaller, the 

view factor will become smaller, thus decreasing the accuracy. 

This is explained more in Section III.2. 

For the application of urban PV, as a PV module is not a 

sphere, but it is often considered to be a planar object, our ray-

casting approach has to work also for more realistic cases.  

According to Hamilton and Morgan [30] the exact solution of 

the view factor from a differential planar surface dA1 to a 

finite parallel planar rectangular surface A2, where the normal 

of surface dA1 passes through the corner of surface A2 can be 

found by the following equation: 
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               (8) 

where A = a/c and B = b/c with a and b being the sides of the 

rectangular surface A2 and c being the distance between the 

differential surface dA1 and the corner of surface A2 through 

which the normal of surface dA1 passes (see Figure 5). 

 

Figure 4 - The view factor for a differential sphere dA1 to sphere A2, where h 

is the distance between differential sphere 1 and the center of sphere 2, which 
has a radius r. 

 

Figure 5 – The view factor from dA1 to A2, where dA1 is the radiating 
differential surface and A2 is a finite receiving surface. 

To compare the results of the simulation to the exact value 

of Fd1-2, the values 300, 200 and 100 are chosen for a, b and c, 

respectively, in both the equation and the simulation. Using 

then equation (10), the exact view factor Fd1-2 is 0.21758. 

According to the carried-out simulation, when using the same 

exact geometry and parameters, 10878 rays hit the receiving 

surface A2 with respect to a total of total 2×10
5 

emitted
 
rays, 

yielding a view factor of 0.21756. The difference between the 

exact value of the view factor and the estimated view factor 

using ray casting has a negligible difference equal to 0.009%. 

The difference in percentage will be different with respect 

to the distance between the surfaces and the length and width 

of the receiving surface. As the distance between surfaces 

increases and/or as the length and width of the surfaces 

decreases, the view factor becomes smaller. As the view factor 

becomes smaller, the difference in percentage for the same 

amount of ray casts will become larger because the simulation 

is only accurate up to a certain decimal point. The sphere 
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example has a difference in percentage of 0.013%, while the 

rectangular surface example has a difference in percentage of 

0.009%, which would suggest that the second surface example 

is more accurate. For the same amount of casted rays, 

however, the sphere example is accurate up to 5 decimals, 

while the surface example is accurate up to 4 decimals.  

    2)  Accuracy of the simulation with respect to amount of the 

rays cast 

Depending on the scenario for which the simulation is 

used, different amounts of casted rays will be sufficient.  

 

Figure 6 – The difference between the exact mathematical solution value and 

the simulated value for certain ray cast amounts for the case of a differential 
surface to a finite surface as seen in figure 5. 

Figure 6 gives the difference between the view factor 

obtained from the exact mathematical solution and the 

simulation result for a range of different total number of rays 

cast for the case of a differential surface to a finite surface as 

shown in Figure 5. Clearly, as the number of rays increases, 

the accuracy of the simulation increases as it approaches the 

real view factor value. Table 1 gives estimation bounds with 

regard to the total number of casted rays. In order to achieve a 

view factor accurate within 2 decimals, 1000 rays have to be 

cast in total. For this study case, ten times the inverse 

estimation bound gives the required number of rays.  

Table 1 – Required casted rays to achieve a view factor estimation within 

certain bounds for the case of a differential surface to a finite surface as seen 

in Figure 5. 

VF Estimation bounds Required ray casts 

±10-01 102 

±10-02 103 

±10-03 104 

±10-04 105 

±10-05 106 

    3)  View factor comparisons for the finite case 

The ray casting simulation proved to be usable to estimate 

the view factor from a differential surface to a finite surface. 

However, in several cases, radiating surfaces may not be 

considered to be differential. In order to evaluate whether the 

proposed model can estimate the view factors from a finite 

surface to another finite surface, the simulation procedure is 

repeated for different positions on the radiating finite surface, 

where after the different view factors are averaged to obtain 

the view factor from the entire radiating finite surface to the 

receiving finite surface. This makes the estimation for finite 

cases much more time consuming, but more useful and 

accurate. 

To validate our ray-casting approach for the finite case, 

several results of mathematical solutions for view factors are 

compared with the results of the simulation. Again, before a 

comparison can be made, the geometry of both cases has to be 

the same.  

The mathematical exact solutions for finite cases quickly 

become more complex as compared to the differential cases. 

For some relatively simple geometries the exact solutions are 

available. An example of such a case is the view factor for two 

identical, parallel, directly opposed rectangles. An illustration 

of the case is shown in Figure 7. 

 

Figure 7 – The view factor for two identical, parallel, directly opposed 

rectangles A1 and A2. 

In Figure 7, a and b are the length and width of the 

rectangles and c is the distance between them. According to 

Hamilton and Morgan [30] the exact solution for the view 

factor from a finite planar surface to an opposing identical 

finite parallel planar rectangle can be found by the following 

exact solution: 
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                        (9) 

 

where A = a/c and B = b/c. When taking 1 for a, b and c, the 

resulting view factor F1-2 is 0.199825. 

Since the radiating surface is now a finite surface as well, 

apart from the number of rays casted in the simulation, also 
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the distribution of the radiating points on the finite surface is 

now required. We suggest to distribute the points from which 

the rays will be cast evenly over the surface of the radiating 

finite surface, as shown in Figure 8. When casting 10
5 

rays 

from 9 different points (9×10
5 
rays in total), the resulting view 

factor is 0.1685016. The difference in percentage between the 

exact mathematical solution and the simulation result is 

17.0085%, which is a rather large difference. Instead of 

casting a large number of rays from a single point, we can also 

cast a smaller number of rays from more points distributed on 

the finite surface. When casting from 95 × 95 = 9025 different 

points (evenly distributed over the surface), where only 100 

rays are cast per point, again 9×10
5 
rays in total, the estimated 

view factor is 0.1980125. The difference between the exact 

mathematical solution and the new simulation result is now 

0.911176%, which is a very large improvement considering 

that the total number of casted rays is the same for both 

approaches. When increasing the number of points as opposed 

to increasing the number of rays, the view factor becomes 

even more accurate, as 151 × 151 = 22801 ray-cast points 

result in an estimated view factor of 0.1985698, which is even 

closer to the exact value of the view factor with a difference in 

percentage of 0.630129%. 

 

Figure 8 – The points on the radiating surface A1 (in red) from which the 
simulations are performed. 

    4)  Ray-cast ratio 

While the number of points from which the rays are casted 

is important for the simulation, the number of casted rays from 

a point is still important as it determines the accuracy of each 

point. As the total number of casted rays is a multiplication of 

the total number of radiating points and the casted rays from 

each of such points, the total number of rays cast increases 

exponentially for an increasing number of points on a side. If 

there are only a few rays casted from each point, the number 

of points does not matter, as the simulation will be rather 

inaccurate. Similarly, if a large number of rays is cast from a 

few points, again the simulation will be inaccurate. 

 

As a figure of merit (FoM), the ratio between the total 

number of casted rays and the difference between the exact 

solution and the simulated result is found to determine the 

optimal number of rays cast from each point. The FoM has 

been plotted against the total number of casted rays and 

reported in Figure 9. 

 

 

Figure 9 – The Figure of Merit (FoM) is the ratio between the total number of 
casted rays and the difference between the exact solution and the simulated 

result. Here, it is plotted against the total number of ray-casts. The 

abovementioned difference refers, in this case, to the difference between the 
exact mathematical value obtained from equation 9 and the simulation result. 

As the ratio increases, the accuracy increases.  

It becomes clear that the greatest accuracy per ray-cast is 

found for 500 or 1000 rays cast per point, where 1000 rays 

seem to perform slightly better in the greater amounts of ray-

cast. When using 1000 rays at 48841 points on the radiating 

surface, the total number of rays cast is 4.8×10
7
. These 

parameters result in the estimated simulation result for the 

view factor of 0.199644, whereas the exact solution equation 

gives 0.199825 for the case of Figure 8. The resulting 

difference in percentage is 0.0906203%. 

Table 2 shows the rays required to estimate within certain 

decimal points of accuracy limit for the case study shown in 

Figure 7. A comparison between Tables 1 and 2 reveals that 

ten to a thousand bigger number of rays are required to 

achieve a similar accuracy bound for the finite case compared 

to the differential case. 

Table 2 – Required ray casts to achieve a view factor estimation within certain 

bounds for the finite case of 1000 rays per point as seen in Figure 8. 

VF Estimation bounds Required ray casts 

±10-01 103 

±10-01 104 

±10-02 105 

±10-03 106 

±10-03 107 

 

    5)  Simulation time 

The main advantage of the ray-casting method is the 

reduction of simulation time as thousands of view factors are 

determined simultaneously. Still, millions of rays are casted in 

order to achieve a high accuracy. Each ray-cast requires 

computational time. In this work, an entry-level computer with 

an Intel Core i5 2.7 GHz processor has been able to simulate a 
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maximum of approximately 3000 rays per second. Table 3 

shows the time required to estimate within certain decimal 

points. 

In order to achieve a view factor accuracy of 3 decimals, 

the required amount of simulation time is then approximately 

between 5.5 minutes and 55 minutes. In order to achieve this 

simulation time, a single processor core was used. Multi-core 

processing would reduce the simulation time drastically [31]. 

However, if the simulation had to be done for each 

surrounding surface separately, the simulation time would 

have to be multiplied by the number of surfaces instantiated in 

the simulation, which would make the simulation impractical 

for many cases. 

Table 3 – Required ray casts and the corresponding simulation time to achieve 

a view factor estimation within certain bounds for the finite case of 1000 rays 
per point as seen in Figure 8. 

VF Estimation bounds Required ray casts Simulation time (s) 

±10-01 103 3.3×10-1 

±10-01 104 3.3×100 

±10-02 105 3.3×101 

±10-03 106 3.3×102 

±10-04 107 3.3×103 

IV.  EXTENSION TO MORE COMPLEX GEOMETRIES                                 

(EXAMPLE OF PV MODULES IN URBAN ENVIRONMENT)  

The surroundings of a real PV array may consist of various 

surfaces of different geometries. Each of the surfaces will 

have a different view factor to the PV module, which means 

that each of the surfaces will reflect light to the PV modules in 

different intensities. The quantities of these surfaces can be 

very high (specially in urban areas), depending mostly on the 

size of each surface. Our proposed ray-casting method is 

especially usable when estimating multiple view factors 

simultaneously. Since each ray can only hit one surface and 

the total number of casted rays is the same for all of the 

surfaces, multiple view factors can be estimated using only a 

single set of ray-casts. 

The Unity3D game engine was used for the simulation as 

it allows the import of LiDAR data obtained from the Actueel 

Hoogtebestand Nederland (AHN) [28] and their 

transformation into polygons. These are able to intercept rays 

and are used to position also the PV module as they form the 

simulation environment. Such a virtual environment is similar 

to the real world with a spatial resolution of 0.5 meters. The 

surfaces are instantiated onto the 3D simulated terrain, which 

is visible to the PV module. 

Referring to Figure 3, when estimating the view factors, 

all the surfaces surrounding a PV module and visible to it, are 

defined. A first batch of rays is casted in all directions to 

determine the surfaces visible to the PV module. Small 

rectangular surfaces are instantiated on each location where a 

ray hits the environment. The view factors will be determined 

from each of these surfaces to the PV module. The size of the 

instantiated surfaces can be constant or dynamic. The sizes as 

well as the distance are the variables, which affect the view 

factor. A small sized surface or a large distance will decrease 

the view factor, making the reflection from the surface less 

significant. Keeping the amount of instantiated surfaces low 

will improve the performance of the simulation in terms of 

time. Instantiating large surfaces will decrease the number of 

surfaces. A ratio can be applied to define the size of the 

instantiated surface based on its significance. Based on the 

experience obtained from various simulations, the suggested 

ratio for an urban environment is to keep the size of the 

instantiated surfaces constant (e.g. 2×2 m
2
) up to a distance of 

30 meters and to increase the size of the instantiated surface 

by 0.5 meter per side for every 1 meters of distance after that. 

The size of the instantiated surfaces will increase as the 

distance between the surface and the PV module increases, 

making the surfaces that are farther away more significant as 

they will receive more rays even if they are far away, while 

keeping the amount of surfaces as low as possible. Reciprocity 

rule 

Our ray-casting method determines the view factor from 

the PV module to each of the surrounding surfaces, which are 

seen in Figure 10. However, the desired view factor is from 

each surrounding surface to the PV module as it is the 

direction in which the radiation is reflected. When the areas of 

both the radiating surface as well as the receiving surfaces are 

known, the view factor from each surface to the PV module 

can be determined using equation (6) [26]. This makes it 

extremely easy and fast to estimate thousands of view factors 

accurately using only a single simulation run. 

 

 

Figure 10 – A Unity3D simulation top view, showing the imaginary PV 
module (in green) and the surfaces visible to the PV module (in red). Each of 

these surfaces contributes to the total reflected irradiance on the PV module 

(i.e. to the albedo component of the irradiance). 

    1)  Application in calculation of albedo component in urban 

areas 

The irradiation received by a PV module has three 

components, consisting of (1) the direct component, which is 

the irradiance radiated directly from the sun, (2) the diffuse 

component, which is the irradiance radiated from the whole 

sky dome, and (3) the albedo component, which is the 

irradiance radiated as a result of reflection from the 

surrounding surfaces [32]. The amount of irradiance reflected 

from a uniformly illuminated surface is given by: 

,
reflected incident

surfaceI I R        (10) 

 

where reflectance (R) is the fraction of the incident irradiance 

which is reflected [33]. 𝐼𝑠𝑢𝑟𝑓𝑎𝑐𝑒
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡  and 𝐼𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑  are the amount 
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of radiation received by and reflected from that surface, 

respectively. The amount of irradiance that a PV module will 

receive from the reflective surface (𝐼𝑃𝑉
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) depends on the 

geometrical positioning of the PV module, reflective surface 

and the environment. Consequently, the amount of irradiance 

radiated from all reflective surfaces to the PV module is given 

by: 

1

,

K N
received incident

PV K K K PV

K

I I R F







            (11) 

where FK-PV is the view factor from the surface K to the PV 

module. N is the total number of instantiated reflected surfaces 

in the simulation. Each of these surfaces has its own incident 

irradiance, reflectance and view factor. The last is found using 

the ray-casting method. 

Note that the application of our method for urban PV (in 

the form of equation (11)) does not give information about the 

specular reflection from the surrounding, such as glare effect 

[34], since we consider all surfaces to be diffuse reflectors in 

our model. Also, the chance of receiving specular reflection 

for PV module in urban environment is lower than diffuse 

reflection because most of the urban environment materials 

(specially the roofs) does not cause glare. Besides, if specular 

reflection happens, the duration of specular reflection is very 

low because Sun position is changing but reflector and 

receiver (PV module in this case) are fixed. Moreover, in the 

case of Netherlands, as most of the time sky is cloudy or 

overcast, materials reflect light diffusely as there is no direct 

component from the Sun. 

 

    2)  Application in remote SVF estimation for urban areas 

Sky view factor (SVF) is a unit-less quantity that 

represents the ratio at a point in space between the visible sky 

and a hemisphere centered over the studied location [35]. SVF 

lies between zero and one. SVF = 0 means the entire sky is 

blocked from view by obstacles and when the horizon is free: 

SVF = 1. SVF is a useful value in urban heat-island studies 

[36] and also urban PV system modelling [37].  

SVF is a special case of view factor. A direct application 

of our proposed method is the remote estimation of SVF. 

Using LiDAR data, seven locations in the TU Delft campus 

were chosen for this investigation. On-site SVF measurements 

were taken using a hori-catcher device [38] and the results 

were compared to the simulation based on our ray-casting 

approach. Figure 11 shows the seven locations and their 

corresponding sky view from a height of 0.6 m above the 

ground. There, we use the tool of sky grids as formulated by 

Steyn [39] and further refined by Calcabrini et. al. [40] to 

estimate the measured SVF. To simulate the SVF at each 

location, rays were casted from a single point (i.e. the hori-

catcher location) in all directions according to Lambertian 

cosine law in the same way that was done for the view factor 

estimation method described before. However, instead of 

counting the number of rays hitting a surface, the number of 

non-hitting rays (i.e. the number of rays that are “lost” to the 

sky X) are counted.  

As it can be seen in Table 4, our ray-casting approach is 

capable of accurately estimating the SVF in urban areas with 

complex geometries. With an average error for the seven 

different cases of only 3.82%, our ray-casting method results 

to be easy-to-implement, cost-effective, and time-saving for 

SVF estimation in urban studies.  

 
Table 4 – Result of comparison for SVF estimation and measurement 

Location no. Simulated SVF Measured SVF Error (%) 

1 0.724 0.7031 2.97 

2 0.8333 0.8236 1.18 

3 0.541 0.527 2.66 

4 0.2613 0.2542 2.79 

5 0.3313 0.3096 7.01 

6 0.521 0.4992 4.37 

7 0.6891 0.6513 5.80 

 

We observe that the simulated SVF is slightly bigger than 

the measured counterpart. We believe that this biased error is 

mainly due to the fact that LiDAR data is limited by its grid 

resolution, which is 0.5 meters [28]. This results in many 

details in the surroundings to be left out, which in reality will 

have some effect on the SVF. Also, the walls of buildings and 

other objects are slightly inclined, while in reality the walls are 

perfectly vertical. This may also result in a slightly higher 

simulated SVF as compared to the measured SVF. For the 

SVF simulations, 10
5
 rays were cast, requiring a simulation 

time of 5 seconds. Using more casted rays and accepting a 

somewhat longer simulation time, even more precise results 

are expected.   

V.  CONCLUSION 

In this paper, a simulation approach was presented for 

view factor calculations in complex geometries or urban 

environment. The ray-casting method only requires the 

environment around the surface under study (e.g. a PV 

module). The three-dimensional environment can be obtained 

from LiDAR data and formed into polygons which are able to 

intercept rays. The rays are cast from a point in all directions 

according to the Fibonacci lattice method. This method allows 

an even distribution of an arbitrary number of points onto a 

sphere. This way, no random number generator has to be used 

in the simulation. The effects of distance, angle and size are 

incorporated in the method automatically. When comparing 

the result of a view factor simulation to examples of exact 

solutions, very small differences were observed. As the ray-

casting method is able to estimate multiple view factors, the 

simulation time is decreased considerably compared to 

performing the simulation for each surface. This makes our 

approach a viable method to estimate the albedo component of 

the irradiance on a PV module. That is, it enables more 

accurate energy yield estimation of building integrated PV 

(BIPV) modules or bifacial PV modules, since the albedo 

component may contribute significantly to the irradiance on 

these types of PV modules.  Also, the ray-casting model is 

usable for the estimation of the sky view factor, which can be 

used in urban energy and urban climate studies. 
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Figure 11 (b), Location no. 1. 

Figure 11 (c), Location no. 2. 

Figure 11 (d), Location no. 3. 

Figure 11 (e), Location no. 4. 

Figure 11 (f), Location no. 5. 

Figure 11 (g), Location no. 6. 

Figure 11– (a) Locations in the TU Delft campus where the hori-catching measurement were done; 

(b to h) corresponding horizons (on the right) and sky grids (on the left) of measurement locations.  

Location 1

Location 2

Location 3

Location 4

Location 5

Location 6

Location 7
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Figure 11 (h), Location no. 7. 
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