
Bachelor of Electrical Engineering

Acceleration of Fingerprint
Minutiae Extraction Using a
VLIW Processor

M.S.B. Purba, E. Yigit and A.J.J. Regeer

B
a
c
h
e
lo

r
T

h
e
s
is





Acceleration of Fingerprint Minutiae
Extraction Using a VLIW Processor

Bachelor Thesis

M.S.B. Purba, E. Yigit and A.J.J. Regeer

August 23, 2011

Faculty of Electrical Engineering, Mathematics and Computer Science · Delft University of
Technology



Copyright c© Faculty of Electrical Engineering, Mathematics and Computer Science
All rights reserved.



Preface

This thesis has been written in the context of the Electrical Engineering bachelor exam at
the Delft University of Technology. The project its title is: ‘Acceleration of Embedded Appli-
cations Using a VLIW Processor’. The project was conducted at the Computer Engineering
group of the department of Electrical Engineering, Mathematics and Computer Science.

Chapter 1 gives the introduction of the project and specifies the exact problem. Chapter 2
presents some alternatives of applications using the ρ-VEX and explains why the fingerprint
minutiae extraction application was chosen as vehicle to demonstrate the capabilities of the
VEX implementation. In chapter 3 relevant theory is presented on embedded systems design,
which is used in later chapters to explain our results. In chapter 4 the background of the
chosen application is presented and the modified version of the software package is explained.
In chapter 5 the setup of the experiment is described such as the FPGA-board, the VEX
system, and the additional software tools that were written to extract the binary code for the
VEX. In chapter 6 the results of the experiment are discussed, in particular the details of the
partitioning of the application and the resulting system is described. In chapter 7 conclusions
and recommendations are described, concluding this thesis.

We would like to thank our supervisor Fakhar Anjam for his valuable advice and support.
Furthermore, we are indebted to Roël Seedorf and Anthony Brandon for their help on many
occasions. A special thanks goes to Koen Bertels for his pragmatic solutions in unforeseen
circumstances.

Delft, 24 August 2011,

Mandaren Purba, Erkut Yigit and Arjan Regeer
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Summary

The research group working on the ρ-VEX VLIW processor has expressed its desire that
the performance of the ρ-VEX as accelerator in embedded applications is investigated fur-
ther. This thesis presents a hardware-software co-design of a fingerprint minutiae extraction
application in a Xilinx Virtex-6 FPGA using the ρ-VEX processor for acceleration.

Research on embedded systems design has shown that in order to meet contemporary con-
straints on embedded systems, systems have to be built as heterogeneous multiprocessor
platforms, i.e. systems where the application is divided into several tasks, and where the
hardware is tailored to its specific task, resulting in systems that contain several different
processors and hardware specifically designed to perform some of the tasks.

VLIW processors have certain properties that make them in particular applicable in the design
of embedded systems. Their design is less complex compared to other CPUs, which results
in low cost, energy efficient, high performance processors.

At the computer engineering group of the Delft University of Technology research is being
conducted on the implementation of a VLIW architecture processor based on the VEX in-
struction set architecture, called the ρ-VEX. In order to acquire data about the performance
of this VEX implementation, embedded applications are built using the ρ-VEX as accelerator.

The goal of this project has been to present a hardware-software co-design of an application,
demonstrating the specific capabilities of the ρ-VEX as accelerator. In particular a finger-
print minutiae extraction application has been partitioned in a Virtex-6 FPGA, using the
MicroBlaze soft core processor and the ρ-VEX.

The first thing we did was to adapt the existing fingerprint extraction program such that
we could run it on the MicroBlaze processor. For this we had to remove some troublesome
functions and replace them by functions that posed no problem for the MicroBlaze system.
Second, we had to rewrite the part of the program that reads in the compressed fingerprint
image. Before we could run the program we had to create a MicroBlaze platform on which
to run the program. A MicroBlaze platform was created on which the VEX processor was
also already present. Once we did that we were able to run the program on the MicroBlaze
platform. The next step was finding out the distribution of execution times over the different
functions. The program was profiled in order to find out which parts of the program took
the most execution time. These identified parts were then removed from the program and
implemented in a program of its own, to be executed on the VEX processor. In order to run
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xii Summary

this program on the VEX simulator we had to rewrite the original program to produce some
blocks of data that the VEX program needs. Once this was done we were able to run the
VEX program on the VEX simulator for several configurations of the VEX processor. Once
the optimal configuration for the VEX processor was obtained from these simulations, we
optimized the program for the VEX, using the different optimizing options for the VEX C
compiler.

We obtained a speedup of 1.13 for the computation of one DFT block. This speedup was
obtained by estimating the execution time of the kernel on the ρ-VEX because we were
not able to get the ρ-VEX running. It is not possible to get an estimation for the whole
application.
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Chapter 1

Introduction

Embedded systems have to meet often conflicting requirements. They have to provide real-
time computing power, but at the same time must be energy efficient, and development time
has to be kept low because of time-to-market constraints. The area that the circuit occupies
has to be kept small because costs increase exponentially with size. Designers have chosen
to use parallelism to meet these different constraints. After careful analysis some of the
functionality is implemented in software and some in hardware, where the hardware can be
some processor running its own software or it can be some dedicated hardware specifically
designed for just this function. A specially designed piece of hardware implementing some
function is called hardware acceleration. Besides the obvious advantages that hardware accel-
eration offers, it has some disadvantages too. Hardware designs take a lot of time to develop,
introducing additional labour costs compared to software design and risking violation of time-
to-market constraints. The circuits are often designed for just one function, limiting their
reuse in other designs. This short lifetime of these circuits make them expensive. Finally,
most dedicated circuits cannot be programmed, so errors in design cannot be compensated for
by reprogramming, as is the case in software design. A solution is needed that offers the speed
advantage of hardware design and the flexibility of software design without the disadvantages
that traditionally come with hardware design. Advances in technology offer new possibilities
to solve these issues.

1-1 Project Statement

At the Delft University of Technology research is being done on a reconfigurable softcore
processor, called ρ-VEX. With this processor it will be shown that designing with VLIW pro-
cessors offers some substantial benefits compared to the more conventional design approaches.
In order to show that the VLIW approach indeed meets the requirements of embedded system
design, many existing applications are being rebuilt using the ρ-VEX. The objective of this
project has been to present a hardware-software co-design of an application, in this case the
fingerprint verification application, demonstrating the specific capabilities of the ρ-VEX as
accelerator.
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2 Introduction

1-2 Workplan

This project starts with selecting an application that is going to be implement on the ρ-VEX
processor. The next step is doing the literature research on the application that has been
chosen and the architecture of the ρ-VEX processor. It is necessary to get an understanding
of the application and the ρ-VEX processor. Subsequently, we need to study the fingerprint
application source code before running them on the VEX simulator. It provides us the
performance estimate of executing fingerprint application on the target processor. After this
step is completed, the fingerprint application is run on the VEX simulator. This enables
us to decide which issue-width should be used on the ρ-VEX processor: 1, 2, 4 of 8. The
following step is to get the application to be able to run on MicroBlaze and then to analyze
the application to find out for each part of the application how much execution-time and how
many clock-cycle they have consumed. This will enable us to determine the bottlenecks in
the application. After detecting the bottlenecks, these parts with insufficient speedup will be
mapped to the ρ-VEX processor. In the next step, this mapping will be implemented to gain
a higher speedup of these functions and the final speedup will be measured as the last step.

In the following the overall strategy to reach the project objectives are described:

• Select an application that is going to be implemented on the embedded system and find
the available software application

• Research on software application and the ρ-VEX architecture

• Explore and study the source code of the application

• Run the application VEX-simulator

• Adapt and modify the application in order to be able to run on MicroBlaze and the
ρ-VEX

• Run the application on MicroBlaze

• Analyze the bottlenecks(kernel) of application

• Mapping onto MicroBlaze and the ρ-VEX

• Implement the mapping

• Measure the speedup that the ρ-VEX has delivered in accelerating the application
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1-3 Thesis Layout 3

1-3 Thesis Layout

The structure of this thesis is as follows. In chapter 2 some alternative designs of the appli-
cation are presented and why the fingerprint minutiae extraction application was chosen as
vehicle to demonstrate the capabilities of the ρ-VEX implementation are also explained. In
chapter 3 relevant theory is presented on embedded systems design, which is used in later
chapters to explain our results. In chapter 4, the background of chosen application is presented
and the modified version of the software package is explained. In chapter 5 the setup of the
experiment is described such as the FPGA-board, the ρ-VEX system, and the additional soft-
ware tools that were written to extract the binary code for the VEX. In chapter 6 the results
of the experiment are discussed, in particular the details of the partitioning of the application
and the resulting system is described. In chapter 7 conclusions and recommendations are
described, concluding this thesis.
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Chapter 2

Alternative Product Designs using the
ρ-VEX

In this chapter, a decision will be made about what kind of product the designers will make
at the end of this project. This product is based on the accelerated fingerprint verification
application that works with a higher rate of speedup by using the ρ-VEX processor. Today,
there are many embedded systems or products requiring very high computing power and using
the ρ-VEX in embedded applications is one of the solutions to achieve a high computation
system. In order to get a decision, in section 2.1, some different forms that the hardware can
take for fingerprint verification, within the security market, will be compared and a choice
from these forms will be made. Section 2.2 deals with the requirements that the chosen design
form will have to meet and in the last section, conclusion for this chapter is given.

2-1 Chosen Product Design

Fingerprint verification is one of the oldest forms of biometric identification and its use is
varied. The FBI (Federal Bureau of Investigation) for example uses fingerprints to identify
persons that were present at a crime scene and its use has increased in recent years for civilian
purposes as well. Another use is in security issues and access control. Entrance to buildings
is increasingly controlled by fingerprint verification, figure 2-1 shows an example of a door
lock.

As has been mentioned earlier the task at hand is to design a hardware solution for minutiae
extraction containing, in some form or another, the VEX processor. The hardware solution
in this project can take on many forms, but the designers have chosen to narrow the design
to the following three different design forms. These are listed as:

1. A PCI card: A Peripheral Component Interconnect (PCI) card that can be added to
the motherboard of a personal computer. PCI fingerprint card allows computer users
to identify the fingerprint of each personal data.
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6 Alternative Product Designs using the ρ-VEX

Figure 2-1: An example of a doorlock that uses fingerprint verification as a way to control access.
Source: http://walyou.com/biometric-finger-print-door-lock/

2. A closed box that can be attached to the PC or other computer by means of a USB
connector or other communication port. This can also be seen as an external PCI card
but as it will follow below, it has a disadvantage compared to a PCI card.

3. An embedded piece of hardware, for example as part of a doorlock. Within these kind
of doorlocks, the fingerprint verification application from this project is the key. In this
kind of doorlock, the keyed locking mechanism is replaced with a fingerprint sensor that
actually recognizes who is and who is not authorized to enter.

As it is apparent from the research on the security markets made for the Business Plan that
is already established before this project, it is expected that the demand for PCI cards in
the coming years will increase alongside other forms of products listed above. It might be
considered that the safety measures in customs (access controls) or safety measures to be
taken by secret or security services will be made more stringent to counteract the increasing
terrorism. From this reasoning item 3 of the list above falls off. As it is already said, a
closed box has a disadvantage compared to a PCI card. A PCI card works with a higher
rate of speedup because it can make direct communication with the main computer, without
using any cable or connector, which is in turn an important requirement at customs (access
controls) and secret services. In this case, a Peripheral Component Interconnect (PCI) card
has been chosen to be the design form of the hardware solution in this project.

2-2 Program of Requirements

There are some requirements and conditions that the PCI card produced has to meet. The
requirements and conditions concern intended use, business strategy and marketing, the us-
ability of the product etc. They are listed as follow:
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2-2 Program of Requirements 7

Figure 2-2: Peripheral Component Interconnect card (PCI) of fingerprint. Source:
http://www.topproduct.nl/hardware/hubs/12249-belkin/78818-belkin-firewire-800-3-port-
pci-card/

Requirement on intended use of the fingerprint application

• The system has to work with higher speed compared to its software solution.

• The system has to operate as a PCI-express; a plug-card for different computers.

• The system should not save the fingerprints on its memory.

• Required drivers associated with the system need to be delivered to the users.

Precondition

• The system has to produce the required minutiae list by the user within 3 seconds.

• The system has to be able to run with 4 issue slots on ρ-VEXVEX processors.

• The product have to offer secure and powerful computer protection, so it must not cause
any damage to the computer it is connected to.

Regulation

The design of the interface must not infringe patents or other intellectual property rights of
competitors.

Liquidation properties

• The product users will receive an envelope including freepost to return the product back
for recycling when it stops working.
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8 Alternative Product Designs using the ρ-VEX

Settings of the Application

User manual/software CD and software license code has to be included in the product package.

Usability of the Application

• The product have to be easily fixed on and removed from PC.

• The product has to make a back-up in PC in order not to lose the saved information.

• Advanced Password security has to be available to protect the users.

• The application has to include an installation guide that enables the users to install the
application easily.

• No matter dry or wet of your finger skin, it can get clear fingerprint image easily.

• Multilingual support: English / Japanese / Traditional Chinese /Simplified Chinese /
French / German

Business Strategy and Marketing

• The product must have an internal security code that protects the sellers against reverse
engineering.

• The users must be offered quick service in case of a technical malfunction.

• Orders up to 3 products must be delivered to the users within one week without any
shipping costs. For orders more than 3 products, 40% of the shipping costs will be paid
by the users.

• The product has to able to support Windows 2000, Windows XP, Windows Vista and
Windows7.

2-3 Conclusion

In this chapter the reader have seen what kind of possible forms the hardware solution of the
fingerprint verification application can take. From the three possible forms, namely a PCI
card, a closed box with USB connection or communication port and an embedded piece of
hardware such as a doorlock system, the PCI card has been chosen to be the end product to
be made in this project. It has been chosen because it is expected that the demand for this
cards will be increase and it also has the advantage to operate with higher rate of speed up
compared to a closed box which can be seen as an external PCI card. As all products have
to meet some criteria, there are also some requirements and conditions that this PCI card
have to meet such as that the product have to be easily fixed on and removed from PC , the
system has to produce the required minutiae list within 3 seconds,the system should not save
the fingerprints on its memory etc.

M.S.B. Purba, E. Yigit and A.J.J. Regeer Bachelor Thesis



Chapter 3

Embedded Systems Design

3-1 Introduction

Embedded computing systems are part of a bigger system and are necessary for their opera-
tion. They enable part or most of the functionality of the device which it is part of. Without
embedded systems technology some developments would not be economically feasible [1].
Take for example the developments in telecommunication such as mobile phones, or engine
control in automobiles.

Embedded computing systems are found everywhere. Table 3-1 lists some areas of application,
and gives some examples of systems in each application area.

APPLICATION AREA EXAMPLES

Military Rocket missile guidance systems, digital radio

Communication Mobile phones, wireless systems, satellites

Consumer Washing machines, televisions, microwaves

Industry Control systems, safety systems

Table 3-1: Some application areas in which embedded systems can be found.

Embedded computing systems differ from the general-purpose computing systems that we
know from the desktop. For desktop systems, such as the personal computer, and other similar
computing systems the main task of these systems is computing, and energy consumption and
other costs are of secondary concern. When designing embedded systems, energy consumption
and design costs have to be considered as well.

The goal of embedded system design is to build embedded systems that offer enough (real-
time) performance, are cost-effective, and operate at low energy levels [2]. These constraints
make building embedded systems a challenge. Research on embedded system design has
shown that in order to meet these constraints it is necessary to design hardware and software
concurrently. The design methodology that takes this into consideration is called co-design.
The goal of co-design is to make appropriate design decisions early in the design process such
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10 Embedded Systems Design

that hardware and software can be implemented independently in later stages of the design
process. One aspect of co-design is software/hardware partioning, where it is decided which
parts are implemented in hardware and which parts are implemented in software. Apart from
choosing the right design methodology, it has also become clear recently that using available
parallelism is the only viable solution in meeting ever more challenging constraints.

3-2 Parallelism in Embedded Applications

As was said in the previous section, in order to meet the design constraints on embedded
systems we have to exploit all available parallelism in the application. Parallelism can be dis-
tinguished at various levels of abstraction. We distinguish the following forms of parallelism:

1. Instruction Level Parallelism (ILP). Instruction level parallelism is a fine grained form
of parallelism that becomes available when the application has been translated into a
sequence of machine instructions. Instructions that do not depend on each other can
be executed concurrently. Most modern processors utilize this form of parallelism by
issuing more than one instruction per clock cycle.

2. Data-level parallelism. Some applications contain a lot of data on which the same
operation has to be performed. Designers of processors have introduced a new type of
instruction to take advantage of this type of parallelism, called an SIMD-instruction.
Without such an instruction it would be necessary to retrieve the same instructions
from memory for each data item, which would result in a very inefficient use of memory.

3. Thread-level parallelism. When a processor executes a program it can not always find
enough instructions to fill all execution units. To fill these execution units, it executes
another thread of the program concurrently with the main thread, thereby utilising all
available resources provided by the execution units.

4. Task-level parallelism. Most applications, and especially the embedded applications,
can be divided into tasks that have no strong dependency on each other and could
therefore be executed concurrently. It is this form of parallelism that provides the most
opportunities to meet the design constraints in embedded applications.

Once it has been decided to add more processing elements to do more computations in parallel
it is not to say that one and the same architectural solution is always the best solution for every
type of application. For instance, multithreaded CPUs and multicore CPUs were compared
and it was shown that applications that are typical in servers benefit more from multithreaded
CPUs, while numeric applications benefit more from multicore CPUs [3]. Although this
example comes from the general computing domain, the conclusions apply to the embedded
systems domain as well. This shows that design decisions have to be taken carefully in deciding
how the available chip real estate is used, and that the specific application’s requirements
can’t be ignored. In the next section it is shown how parallelism is exploited in the design of
embedded systems.
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3-3 Distributed Embedded Systems

To cope with the demanding requirements on embedded systems, i.e. increase their pe-
formance while at the same time keeping them cost-efficient and keeping their energy con-
sumption low, designers of embedded systems embrace some new design techniques such as
(heterogeneous) multiprocessor architectures, distributed memory, and custom designed in-
terconnection networks. These design techniques enable designers to come up with more
energy-efficient and cost-efficient platforms.

3-3-1 Multiprocessor Platforms

Most embedded applications contain a lot of task-level parallelism. Take for example the
modern cell phone.

1. It needs to communicate with the network, performing several network protocols.

2. It performs speech compression and decompression.

3. It needs to provide the interface to the user.

4. Modern phones provide cameras which need compression of the images taken.

5. A lot of phones provide audio support for most popular formats, such as MP3, AAC,
and other formats. This requires a lot of computation as well.

A characteristic of these tasks is that they can be performed relatively independently of each
other. This enables designers of these cell phones to divide the design over several processing
elements.

Different tasks have different computing needs. Because not all tasks need the same computing
power we are able to modify processing elements to the task at hand. The processor core can
be adapted to the specific needs of the task. For example, when the task is very sequential in
nature and hence there is not much ILP it would be a mistake to use a superscalar processor. It
will not be able to issue a lot of instructions, but nevertheless it will consume a lot of needless
power. A simpler core, without issuing logic would probably do the same job, requiring less
power, and because it lacks a issuing logic unit it will have lower design costs.

Other tasks are best implemented in a hardwired fashion, resulting in a cost-effective and
energy-efficient solution that will provide the expected computing performance. They do
not require the flexibility that a programmable CPU provides. The designer has to make a
decision as to implement tasks into a special hardware unit or using a CPU.

Multiprocessing offers better real-time performance at lower energy consumption and design
costs. Using multiple processors in the design of embedded systems enlarges the design space.
It enables designers to make more local modifications that only affect the local processing
elements. For example, it is possible to use a memory system for just one processing element
which allows the designer to tailor the memory system to the specific requirements of the
processing element. Another example is that the designer can remove parts of a processing
unit that are not needed for the task, thereby reducing costs and energy consumption by
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12 Embedded Systems Design

the processing element. Multiprocessing leads to more design options, it allows the designer
to make more design choices when designing the computing units for each task, and thereby
enables him to adapt the system such that it better matches the specific needs of an application
in terms of performance, energy efficiency and costs.

It is clear that multiprocessing provides more cost-effective and energy-efficient systems, but
multiprocessor designs confront the designer with some new challenges as well. Intercon-
nection between different computing units becomes an issue. Interconnection can take up
an area that of three cores on a multicore processor and take the equivalent of one core on
power consumption [4]. This shows that the design of multiprocessor systems cannot be seen
independently of interconnection of these different processing elements. The different aspects
of the design of a multiprocessor system such as memory issues, caches, number and type of
processing elements, and interconnection cannot be considered in isolation.

3-3-2 Heterogeneous Multiprocessor Platforms

Embedded systems can be classified by their number and type of processing elements. In the
early days of embedded computing most systems had one CPU, the so called uniprocessor
designs. Embedded systems soon needed more computing performance and therefore more
powerful CPUs were applied in these uniprocessor designs. So, more powerful CPUs were
needed. But designers of processors are faced with increased power consumption and heat
dissipation in their effort to improve processor performance. It is obvious that physical
limitations prohibit further improvements in the design of CPUs. This was soon realized and
a new class of embedded systems was created, that of the (symmetric) multiprocessor systems.
As was discussed in the previous section this allowed designers to design systems that were
at least as powerful as uniprocessor designs, but in a much more efficient form and at lower
costs. Lately, designers of embedded systems have started to use different types of CPUs
in one design, thereby creating a new class of embedded systems called the heterogeneous
multiprocessor embedded systems.

In heterogeneous multiprocessor systems the processing cores are not all the same, as is
the case with symmetric multiprocessor systems. This allows applications to be matched to
the processing core that is best equiped for its computing demands. Diversification of the
specifications of the cores ensures that a better match is obtained in terms of the workload,
while at the same time gains can be accomplished with respect to power consumption and
real estate, because less complex cores require less energy and area on the chip.

Heterogeneity offers more flexibility in the design choices, because every aspect of the multi-
processor, such as processing elements, memory system, and interconnection network, can be
specifically tailored to the needs of the embedded application[2]. Specializing the hardware
to the specific needs results in systems that need less hardware, which results in systems that
are more power-efficient. A heterogeneously designed system also leads to better real-time
performance because the designer can more precisely predict the timing behaviour of seperate
parts of the system, compared to processes that all run on one and the same processor. Time-
critical function-units can be moved to specially designed processing units. There are some
pitfalls too in heterogeneous systems design, because if the embedded system is uncarefully
designed the interconnection overhead between the different processing elements can result in
a system that is slower and consumes more energy.
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3-3-3 Hardware Accelerators

In terms of multiprocessing, hardware acceleration forms one of the simplest forms of multi-
processing. But it can be a very effective way of achieving improvements in the computing
performance of an embedded system.

When a given embedded platform can’t meet the required performance goals, it can be cus-
tomized by using a specific circuit that implements part of the embedded application. When
a small part of the application’s code is responsible for a large part of the execution time
then this application is a good candidtate for acceleration. This small part of code, which is
called the kernel of the application, is then mapped onto some specific piece of hardware that
communicates with the CPU over the bus. Such a circuit is called an accelerator.

From the point of view of the CPU, an accelerator can be considered an I/O device as far as
communication is concerned. The accelerator connects to the CPU bus, and communicates
with the CPU in the same way an I/O device would do. An accelerator can be implemented
using one of several techniques, such as a custom designed circuit known as an ASIC, or an
off-the-shelf component, or an FPGA that is programmed with the specific functionality, or
a seperate CPU and software that together perform the required functionality.

There are two reasons why we would add an accelerator to the design of an embedded system.
The first is that from a cost/performance perspective it often is beneficial to split the applica-
tion over several processing elements [5]. The purchase price of microprocessors is a nonlinear
function of performance. So, instead of increasing the performance of a microprocessor a bit,
it is cheaper to use two microprocessors, or a microprocessor and accelerator, and dividing
the application over these two processing elements.

The second reason is of course that the system without an accelerator is not fast enough to
meet the real-time performance requirements, and that we need to boost the performance
somehow. And in some cases adding an accelerator can do the job.

The total execution time of an accelerator that reads in the data, performs the required
computation, and then writes the result back, is given by [5]

taccel = tin + tx + tout

where taccel is the total execution time of the accelerated system, tin the time needed by
the accelerator to read in all data, tx the computation time required by the accelerator, and
finally tout is the time it takes to write back the results.

We can improve upon this result if the accelerator can start computing on the data while it is
still reading in the data, and the same is true for data that is written back. Then the values
for tin and tout have to be adapted accordingly in the equation above.

The speedup is given by the following equation [5]:

S = n(tCPU − taccel)

It can be interpreted as the time that is skipped or saved when an accelerator is used, compared
to the time when the kernel would be executed in software. From this equation it follows that
speedup is not exclusively dependent on execution time by the accelerator, but also on the
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time it takes to move the data in and the results out of the accelerator. A kernel, where it is
needed to move a lot of data, might not be a good candidate after all.

The design process for an accelerated system can be divided into several stages. The process
begins by examining the application from a performance perspective, because the ultimate
goal is speeding up the total design and we have to know in advance which part(s) of the
system can best be accelerated. First the different tasks in the application are identified
and then the execution time on the processor and the accelerator are determined. In order
to be able to determine what the best partion is, we have to know what the times are to
communicate the data between the processing elements. Once this is done, the next stage
can be commenced.

An application can be thought of as being constructed out of functional units that together
determine the overall functionality of the application which ultimately follows from the re-
quirement specification of the application. When we design an accelerated system we have
to identify the units that are best to be run on the processor and the units that are more
suited to be run on the accelerator. This process is called partitioning. Partitioning is about
determining the fitness of functional units for all processing elements, in this case the CPU
and the accelerator. This must be done on the basis of a performance analysis. It is not
the task of partitioning to come up with a definite assignment of units to the processing
elements, that is the task for the next stage. Instead partitioning has to come up with all
relevant assignments to processing elements based on their performance on that processing
element.

The next stage is responsible for assignment of the functional units to the processing ele-
ments. Once it is known what the communication times and the execution times are on the
different processing elements, we need to schedule the computations such that the different
computations do not interfere with each other, due to dependencies and specific properties
of the communication channel. Finally, an allocation is made based on the previous step
and aiming at the shortest execution time possible considering communication between the
functional units on different processing elements.

Finally, the last step in the design of an accelerated embedded system is to integrate the
different parts of the system. Communication between the CPU and the accelerator needs to
be tested and the interaction between the two processing elements needs to be tested as well.

Building an accelerated embedded system requires more design effort, and this has to be
taken into account when deciding to split the application. From a cost perspective designing
an accelerated system requires more design effort, which will result in a system that is more
expensive.

3-3-4 Interconnection Networks and Memory Systems

Interconnection networks and memory systems become important aspects when designing
distributed embedded systems, be it symmetric multiprocessor systems or heterogeneous mul-
tiprocessor systems. Results that have been computed in one processing element are needed
in processing elements elsewhere in the system. For this we need connections between the
processing elements, and these connections can take on many forms. The other aspect of dis-
tributed embedded systems is how the memory is organized. Questions have to be answered
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whether all processing elements need access to this memory or that it suffices that we keep
the memory local to some processing elements. We will next discuss aspects of networks in
multiprocessor systems and finally the design of the memory system is discussed.
The collection of connections between the processing elements and memory blocks is called

the interconnection network. The structure of these networks depends on the bandwidth
requirements of the system. Familiar networks are the bus, crossbar and mesh networks.
Each has its connection properties at the exepense of energy performance and area costs.
The designer has to carefully examine the specific needs of the embedded system. Sometimes
it is beneficial to design local networks that are exactly matched to the specific requirements
at that location, thereby saving on area and power usage.

A special type of network is the so called network on chip (NoC). The NoC is completely
integrated on the chip with the rest of the processing elements. Advances in technology have
made it possible to integrate complete networks on chip. This makes it possible to acquire
large improvements on latency, energy consumption, and production costs.
In their effort to meet the tight demands for real-time performance and energy consumption,

designers have a number of options when it comes to the design of the memory system. Real-
time performance behaviour of memory blocks depends in large part on the size of the blocks
and the number of processing elements that have access to it. By minimizing the number
of processing elements to the number of processing elements that need access to it, we can
improve the real-time behaviour of the system. In the extreme case when a processing element
must meet tight real-time constraints it can be decided to use a memory block exclusively
for just this processing element and thereby guaranteeing the real-time performance of the
processing element. So, the size and number of connections to the memory block are important
design parameters in meeting the design constraints.

Energy consumption of memory blocks depends in large part on the size of the memory
block. So, by choosing smaller blocks to improve real-time performance we automatically
improve upon the energy consumption characteristics of the memory blocks.

A design methodology that enables the designer to determine an optimal memory configura-
tion and accompanying network type for an embedded system is described in [6]. The size
of the memory blocks is determined from the clock frequency of the system, which in turn
determines together with the needs of the processing elements the number of memory blocks.
Finally a network type is chosen that meets the connection requirements of the processing
elements. The proposed methodology is iterative in nature, if the acquired results do not
meet the requirements then decisions that were made in earlier steps have to be reconsidered.

3-4 VLIW Architecture Approach

In this section we describe a type of processor architecture that turns out to be a close match
for embedded systems. In section 3-4-1 we explain the properties of VLIW processors and in
section 3-4-2 we explain why VLIW processors are the preferred choice to exploit available
ILP in an application.

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



16 Embedded Systems Design

3-4-1 VLIW CPUs

Very Long Instruction Word (VLIW) processors are widely used in embedded system design
because of their properties. A VLIW processor executes several operations concurrently.
These operations are contained in the instruction that is read from memory. All operations
are executed simultaneously and the next instruction is only executed when all operations
of the previous instruction have been executed. A VLIW processor executes the instructions
in the order they appear in the program, it does no dynamical rescheduling and it does not
issue more than one instruction at a time. A block diagram is shown in figure 3-1. After an
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Figure 3-1: A block diagram of a VLIW architecture.

instruction is fetched and decoded, its operations are assigned to the proper functional units
by putting them into the corresponding issue slots. In the figure these issue slots are the
rectangular boxes containing the texts op1, op2, etc. The process of assigning the operations
to the issue slots is called dispersal of operations. The operations that have been assigned to
the issue slots are then executed by the proper functional unit that is attached to the issue
lane. By changing the number of issue lanes and consequently the number of operations in
the instruction the designer can vary the amount of ILP that is exposed by the processor.

The operations are not scheduled by the processor, it only executes the operations that are
present in the current instruction. Hence, the job of scheduling the operations is completely
handled by the compiler. It is the job of the compiler to extract all available parallelism in
the application. The compiler is also responsible for another aspect of scheduling, namely
it has to take into account the dependencies that exist between the operations and schedule
them accordingly. Needless to say this requires a powerful state of the art compiler. Because
the compiler does most of the work in scheduling the operations, the execution logic of the
processor can be kept simple.
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The advantage of VLIW processors is that they require not much hardware for issueing and
scheduling of instructions, but there are some disadvanteges in the design of VLIW processors
too [7]. First, by increasing the issue width of the processor it is necessary to increase the
number of ports on the register file and to increase the memory bandwidth. This results
in increase of silicon area for the register file and possibly a reduction in clock frequency.
Second, when there are more operations in an instruction the compiler has a more difficult
job of filling the issue slots of the instruction. It has to find more ILP, and it can do that by
more agressive loop unrolling for example. Third, the code size for VLIW processors tends
to increase because the compiler can not always fill the instruction and applies loop unrolling
which increases the size of the code. Finally, there are issues of code compatibility. When it
is decided to change the issue width, or to add execution units, the new processor is no longer
binary compatible with the old code for the previous processor design, requiring recompiling
of the code.

The next section discusses the relation between ILP and VLIW architectures more closely. It
describes why VLIW processors are such a good candidate for embedded system design.

3-4-2 ILP and VLIW Processors

When instructions are carried out in a sequential fashion each instruction is completely carried
out before the next instruction is started. Execution of an instruction can take up several
cycles, so the average number of instructions per cycle is low. Sequential execution of the
instructions that together form a program leads to an execution time of the program that can
be reduced significantly by applying the principles of instruction level parallelism (or ILP).

The analogy often used is the assembly of cars. In the early days of car assembly, cars were
typically built by one person. The task of building a car can be split up into many subtasks,
and when one person is assembling a car he will carry out these subtasks one by one, taking
days to complete one car. But the introduction of the assembly line changed the production of
cars completely. An assembly line consists of many terminals, where each terminal is manned
by one or more persons. The car travels along those terminals, where at each terminal some
task is carried by the persons working at that terminal. Work is done simultaneously at these
different terminals, making it possible to produce a car every 15 minutes.

The same principles apply to the execution of instructions of a program. The task of executing
an instruction can be divided up into several sub tasks that can be carried out simultaneously
just as with the assembly line. We call the organization of this type of execution a pipeline. A
pipeline has several stages, each carrying out a sub task of the instruction. Using pipelining
leads to a significant speedup, but it also exposes some problems in the organization of the
processor’s hardware that need to be taken care of.

Instructions that are executed in sequence have exclusive access to all resources that are
needed for the execution of just this one instruction. But when there are several instructions
in the pipeline, instructions can contend for the same resources, for example when two in-
structions need to access the memory at the same time. Another example of a situation that
can produce problems is when an instruction is dependent on the result of an instruction that
is still in the pipeline. So it is clear that the processor’s hardware needs to be adapted to the
new situation.

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



18 Embedded Systems Design

Pipelining and all the aspects of hardware organization is what ILP is all about. ILP is about
identifying all the sub tasks in the execution of instructions and devising ways of executing
these sub tasks simultaneously as much as possible. We distinguish the following aspects of
a processor’s hardware that enable ILP.

1. Hardware carrying out arithmetic and other operations needs to be reorganized such
that it is able to carry out several sub tasks simultaneously. That way several instruc-
tions can be operated on at the same time without stalling the pipeline.

2. Operations are carried out in different parts of the hardware and this needs to be made
possible. For example, an instruction is writing its results back to the register file while
at the same time the next instruction is fetched from memory.

3. More than one instruction can be issued at the same time and requires careful design of
the hardware. Architectures that issue more than one instruction per cycle are called
superscalar, or muli-issue architectures.

4. When multiple instructions are issued, functional units need to be replicated. For
example, when there are two independent floating point instructions they can each be
issued to another floating point unit.

There are in general two ways ILP can be implemented. The first is letting the processor
decide dynamically, i.e. during execution of the program, which instructions are issued at the
same time and resolving all dependencies. This type of processor is what is used in general
purpose computing and is known as the (superscalar) RISC design style. The other way of
dealing with ILP is letting the compiler decide at compile-time what instructions are issued
simultaneously and letting the compiler take care of dependencies between instructions by
proper sequencing of operations. Letting the compiler do all the work is the VLIW design
style. The VLIW design style exposes ILP explicitly in its architecture. It applies to many
levels of the architecture, including the instruction-set architecture (ISA), the microarchitec-
tural hardware, and the compiler.

Improvements in transistor budgets and compiler technology have made it possible to use
VLIW machines specifically in the embedded systems market where performance, cost, power
and size constraints are of importance. Currently VLIW architectures are used in the high
end of the embedded computing market but it is expected that in time this will become
available for the low end embedded market as well.
There are good reasons why embedded systems designers use the VLIW approach in their

designs [8]. First, VLIW processors require less control hardware as compared to superscalar
processors. The area that control hardware occupies on the die can become very significant
in superscalar processors, leading to high costs of production and energy consumption. These
factors are important in embedded systems design, giving the VLIW approach an advantage
over superscalar processors.

Another reason is that applications that are typically used on embedded systems have a
program structure that is often very regular and contain a lot of ILP. In most cases it is very
easy to extract this ILP at compile time and thus the ability of general purpose processors to
extract ILP dynamically becomes less important [9].
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Embedded system designs are often designed from scratch and code written for previous
designs is often not reused. So, object code compatibility is not as important as it is in general
purpose computing where new processors need to be able to execute legacy code.

Finally, VLIW processors are much easier to scale and customize than general purpose
processors. A property of VLIW processors is that they have a very regular architecture,
their functional units and register bank components can be easily modified and replicated.

3-5 Hardware/Software Co-design

Standard general-purpose architectures are hardly ever sufficient in meeting the design con-
straints of embedded systems, such as real-time performance, low energy consumption, and
costs. Almost always the embedded system designer needs to make modifications to the
hardware and consequently the software of the embedded application. It has been recognized
early in the history of embedded system design that it is necessary to design both hard-
ware and software concurrently. The methodology that has been developed for this is called
hardware-software codesign.

Hardware-software codesign is a collection of design techniques that aid the designer in making
the right design decisions to arrive at an optimized embedded system with regard to the
above mentioned design constraints, real-time performance, low power consumption, and
costs. Hardware-software codesign almost always leads to heterogeneous systems because
this gives the designer the most freedom in choosing the right components for the different
tasks of the application.

In order for the heterogeneous design to be effective it is absolutely necessary for the designer
to know the application very well. Only then is he in the position to make the most effective
modifications to hardware and software. But knowing the application is not enough.

Although enlarging the design space gives more freedom to choose from different configu-
rations, it poses some challenging problems as well. Because the set of potential designs is
so large, searching for the right design configuration can become a challenging task. It is
necessary to strike a balance between efficiency of finding the right candidate and the accu-
racy of searching for the right candidate. The time the embedded system designer can take
for the design of the embedded system is bounded by time-to-market constraints and other
factors that have an influence on the design time. The designer needs a method that gives
him quick answers to such questions as: ‘should a certain task be implemented in hardware
or software’, ‘what are the costs of a certain decision’, ‘what does it mean for the real-time
performance’. Several techniques and methods have been developed that give quick answers
to these questions, but a discussion is beyond the scope of this thesis.

It has been criticized that current hardware-software codesign approaches lack an abstract
formal design methodology in which the design can be described independently of the imple-
mentation details. One of the proposals that address this problem uses a modified form of
finite state machines (FSM), called CFSMs, as formal descriptions of the tasks of the appli-
cation [10]. The applications’s tasks are mapped to these CFSMs and necessary connections
between these CFSMs are made, forming a CFSM-network. This network completely models
the embedded application. The synthesis system of this design approach can produce several
hardware and software representations for each task that are directly derived from the CFSM
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that represents this task. Cost and speed metrics are described in terms of these representa-
tions, making a cost and/or speed driven design possible at this abstract level without having
to translate these representations to some implementation. The designer can choose configu-
rations of software and hardware representations for the different tasks of the application and
determine what this will mean in terms of costs and performance. One of the big advantages
of this formal methodology, and which was an explicit desire of the designers of the method-
ology, is that this methodology makes formal verification of the designs possible. A desirable
feature that is made possible with this methodology, but is not yet implemented, is that of au-
tomated constrained-driven partitioning of a description of a system into a hardware-software
system.

There is a widespread agreement among members of the embedded systems design community
that hardware-software codesign is the best design methodology for embedded systems design.
This methodology is the answer to the question on how to design embedded systems that can
meet the severe design constraints that apply to embedded systems.

However, a characteristic of hardware-software codesign is that the design configurations that
the designer has to consider becomes overwhelmingly large very rapidly, even for moderately
sized design problems. This limits the practical use of this methodology and the only way a
designer can handle this manually is by pruning the design space to manageable proportions
thereby reducing the search to suboptimal design solutions. But there is another approach
to solving this design problem.

Several research groups are working on projects that have as goal to automate the process of
hardware-software codesign. One of those groups is working on the hArtes (Holistic Approach
to Reconfigurable Real-Time Embedded Systems) project. The aim of this project is to
provide designers with a toolset that automates or semi-automates the hardware-software
codesign process [11].

The toolchain allows the designer to take an application written in the C language and use
this as input to the toolchain. The toolchain then automatically finds a partitioning and
mapping of the application to the available hardware. The designer does not need to know
anything about mapping parts of the application to hardware, this is all being taken care of by
the toolchain. The designer can, however, use the toolchain in a semi-automatic fashion, if he
so wishes, by indicating which functions need to be mapped to hardware, or which functions
can be performed in parallel. This is being done by adding pragmas in the source code of the
application. The benefits for the designer are that he does not need to know anything about
hardware mapping, and time-to-market is reduced substantially.

3-6 Programs

Programs form an essential part of embedded systems. Several techniques exist to improve
real-time performance, as well as other constraints such as cost and energy consumption. It
is therefore important for the designer to pay attention to the design and implementation
of the programs. Compilers play an important role in software optimization and this will
be discussed after we have explained what the relation is between software and real-time
performance, cost and energy consumption.
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3-6-1 Relation between software, real-time performance and cost

The size of memory in embedded systems is often limited and it is important that the software
fits in the available memory. It is therefore important that the size of programs be kept as
small as possible.

The execution time of programs is directly related to real-time performance, which is an
important design parameter in embedded system design. The execution time of a program is
determined, among other things, by the CPU and related hardware, the quality of the source
code, and the compiler. The characteristics of the CPU and the way the hardware platform
is designed determine for the large part the execution time. The CPU can be a simple
microcontroller, or a sophisticated superscalar CPU that issues multiple instructions each
clock cycle. When a superscalar CPU is used, it is important that there is enough available
ILP. High level optimization by the compiler can produce compiled code from which the CPU
can extract more ILP. In the next section it will be discussed which compiler optimization
techniques are available.

3-6-2 Compiler Optimization Techniques

There are several performance improving techniques that are used by compilers to optimize
the code. Procedure inlining is such a technique, and another technique that is used by
compilers is transformation of loops.

When a procedure is called in a program there is some call-related overhead such as:

1. Creating space on the stack, called an activation record, that contains the arguments
for the procedure that is going to be called, and some other information that is used to
keep track of the activation record and to know where to return to when the procedure
returns to its caller.

2. Pushing the return address on the stack and jumping to the body of the procedure, i.e.
the actual call.

When such a procedure does not contain a lot of code the overhead of calling the procedure
can become quite substantial. The compiler can then substitute the code of the procedure
body at the place where the procedure is called in the code, thereby saving the overhead of
calling the procedure. This optimization method is called procedure inlining.

Other important optimization techniques concern loops. Loops are a very common program-
ming construct in which a program can spend a large fraction of its execution time. Several
loop transformation techniques exist. One is loop unrolling. The body of the loop is executed
several times and when the body of loop is small, the overhead of branching to the beginning
of the body to execute the next iteration of the loop can be quite substantial. By copying the
body of the loop several times, which is called unrolling the loop, the overhead of branching
to the start of the body can be reduced substantially. Other loop transformation techniques
aim at a better usage of the cache. These techniques modify the body of the loop such that
the data fits the cache-lines better.
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3-6-3 Improving code performance

Code performance depends on many factors:

• Performance depends very much on the efficiency of the code written in the high level
language.

• Compilers are able to optimize the code and often the level at which the compiler should
optimize can be chosen through an option at the command line.

• Performance depends very much on the CPU and memory system.

The programmer can do much on improving the code so that it performs better. It starts
by choosing the right algorithm for some problems. Often different algorithms exist for the
same problem and they do not all have the same computational costs. Hence the importance
of spending time searching for the best algorithms. The programmer should find the places
in the code where the processor spends most of its time, that are the places where most can
be gained by optimization of the code. Loops are perfect candidates for code optimalization,
and there are several techniques that can be used by the programmer to optimize loops.

When the programmer has done his best to optimize the code at the high language level it is
up to the compiler to even further optimize the code. The strength of compilers has increased
at a steady level over the past years when it comes to performance improvement of code.
The compiler can optimize the code at increasing levels of performance optimization. Code
optimization can have side effects. Some optimizations increase the code size a lot and this
can be a significant penalty in some systems, especially in embedded systems where memory
constraints are often severe.

CPUs vary from simple microcontrollers to sophisticated superscalar processors, issueing mul-
tiple instructions per clock cycle. By reordering the code at the instruction level it is possible
for the CPU to find more ILP. Another technique often used in compilers is that of loop
unrolling. That way the CPU is able to find more ILP, because of the larger loop body. But,
the memory system can severely influence code performance as well. If the code is written
in a way that causes a lot of cache misses, the cache lines have to be retreived from memory
every time and main memory is much slower than cache memory causing the performance of
the program to decrease significantly.

Optimizing code is not as straight forward as one might want. CPUs and memory systems
have become increasingly complex and hence the relation between the code and it its perfor-
mance is not always obvious. Compilers have become very powerful at optimization and they
are in fact the only way large programs can be optimized in a practical way.
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Chapter 4

Minutiae Extraction Application

In this chapter, some basic information about the application to be accelerated in this project
will be given, i.e. fingerprint minutiae extraction application. The application discussed in
this chapter is originally coming from the National Institute for Standards and Technology
(NIST). This chapter starts by giving some background information on the fingerprint minu-
tiae extraction application within section 4.1. Section 4.2 deals with the minutiae extraction
process and the steps in this process will be explained in short. Section 4.3 deals with the
image file format used in this project and a brief explanation about it. The motivation for
choosing the software system in this project is explained in section 4.4. Finally, the chapter
will be finished with conclusions in section 4.5

4-1 Background

The fingerprint of an individual is unique. It means that each person has a different fingerprint
and it remains unchanged over his/her lifetime. Therefore, fingerprint verification is one of
the oldest form of biometric techniques to verify the identity of a person. Namely, fingerprints
haven been used for over a century for identity verification. This fashion of identification is
used in forensic science to support criminal investigations and in biometric systems such as
civilian and commercial identification devices [12].

A human fingerprint is formed by a pattern of ridges and valleys. As it is also clear from
figure 4-1, a ridge is a single curved segment and a valley is the region between two adjacent
ridges. The identification verification is done by comparing two human fingerprints. This
comparison is realized using discrete features which are called minutiae. The minutiae are
defined as the local discontinuities in the ridge flow pattern. It provides the needed features
to verify the identity of a person and these features are stored in the application for each
detected minutiae. These features are mostly the position and the orientation of the minutiae
but the quality of the fingerprint is also an important feature in order to get a reliable result
from the comparison of the fingerprints. The position of a minutiae is stored as a pair of (x,y)
coordinates. These are the coordinates where the end-points or start-points from a detected
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Figure 4-1: Minutiae in a Fingerprint image [13]

ridge are located in the fingerprint. The orientation is the angle between the tangent to the
ridge line at the minutiae position and the horizontal axis, see figure 4-1. The quality of
the fingerprints, thus quality of the fingerprint images, is also important because fingerprint
images with poor quality results in false minutiae, so in the loss of true minutiae.

4-2 Minutiae Extraction Process

In [14], it is concluded that the minutiae extraction process can be seen as an image pipeline
and the extraction process can be divided in three phases ; pre-process, minutiae detection and
post-process. Pre-process consists of the following three steps ; image contrast enhancement,
image quality analysis and binarization respectively and post process consists of the following
two steps; false minutiae removal, minutiae quality assessment respectively. Now a brief
explanation about each step of the minutiae extraction process, shown in Figure 4-2, will be
given below. For more details about the process the reader is referred to [13].

4-2-1 Image (Contrast) Enhancement

Image contrast enhancement is the first step in pre-process phase and it is done in order to
improve the contrast of a fingerprint image by executing an image enhancement algorithm. In
doing this, a histogram of the fingerprint image is evaluated. This histogram is a plot of the
pixels and it consists gray scale values or intensities. The enhancement is done in the case that
the pixel values or intensities are not well-distributed over the histogram. Otherwise there
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Figure 4-2: Image processing phases
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is no enhancement done. Thus, enhancement is done by evaluating the pixels distribution
intensity.

4-2-2 Image Quality Analysis

As it is already denoted above, the quality of a fingerprint image is important in order to
get a reliable result. Mostly, fingerprint images are not of good quality, so it is needed to
improve the quality of these images. In this step, the work is to evaluate and decide whether
there are some regions of the image that are degraded or noisy and whether these regions are
located on the image that will be used in the detection phase. This is important to prevent
any problems in the detection phase. This step can be further divided in four sub-steps;
low contrast analysis, direction analysis, direction map post-processing and high curvature
analysis, respectively.

Low contrast analysis

It is too difficult or even impossible to detect minutiae in some parts of the image because
of the unclear defined ridges. These unclear defined ridges are located at some parts such as
image background or the smudge section. Regions with low contrast can also cause a problem
in the detection phase. Therefore, these regions have to be improved properly, too. In this
step, a low contrast map is generated by the low contrast analysis algorithm. The low contrast
areas are marked in this map. This low contrast analysis algorithm also solves the problem
with the background by segmentation. By segmentation, foreground is separated from the
background and all other low contrast areas in the image are mapped out. This analysis is
performed on image blocks and makes use of the reality that there is little dynamic range in
the pixels intensity of the problematic regions described above. An image block is marked as
low contrast if it is determined that there is little dynamic range in the pixel intensities in
that image block.

Direction analysis

In order to detect minutiae reliable, it is essential to have well-formed clearly visible ridges.
Hence, it is needed to know which areas of the image possess sufficient ridge structure. There-
fore, a direction map is generated in this step that represents these areas. Also the general
orientation of these areas are included in this map for every block. These are blocks of 8x8
pixel by default. More information about how to estimate the orientation and the implemen-
tation of the blocks can be found in [15] and [13], respectively.

Direction map post-processing

The task in this step is to improve the quality of the direction map that was generated in the
previous step. This is achieved by removing the voids from the direction map. There are two
basic types of techniques, called erosion and dilation, used in this step. These techniques are
known as the most basic morphological operations. Dilation adds pixels to the boundaries
of the objects in an image and erosion removes pixels on the object boundaries. Thus, by
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dilation, the mapped regions of the blocks in the directional map become larger and by erosion
these regions decrease.

High curvature analysis

Areas with high curvature such as the core and delta regions of the finger can also cause
problems for detecting the minutiae reliably. There is also a map generated in this step like
in the previous steps and it is called a high curvature map. Two different measures are made
in this step; vorticity and curvature. Vorticity is defined as the cumulative change in the
ridge flow direction between the block that is analyzed and its neighbor blocks and curvature
is defined as the largest change in the direction of the ridge flow between the block that
is analyzed and its neighbors. The algorithm used in this step determines whether a block
in high curvature map is high curved or not, based on these two measures. Details of the
algorithm used can be found in the source code.

4-2-3 Binarization

Binarization is the conversion of the gray-scale image to a binary image. This step is needed
because the extraction algorithm can only work with a binary image as its input. The
direction map generated in direction analysis step is used by this extraction algorithm in
order to determine whether the pixels in a block are white or black. The pixels in a block
are set to white when there is no direction of that block. Determining whether the pixels
in a block have to be set to black is a much complex process as it requires some intensive
mathematical computations. The reader is referred to [14] for more information about these
computations. Furthermore, binarization is the last step of pre-process phase and will be
followed by minutiae detection phase. Figure 4-3 depicts the binarization results for a typical
fingerprint image.

Figure 4-3: Typical fingerprint image (left) and its binarized version (right) [13]
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4-2-4 Minutiae Detection

The image that is undergone the pre-process phase has now become suitable for minutiae
detection. There is used a pattern matching algorithm in this phase as it is all about pattern
matching in minutiae detection. The task of this algorithm is identifying the ridge endings
and bifurcations. It performs a horizontal and vertical scan of the binary image from the
binarization step of pre-process phase. During this scan, pixel pairs are matched with 10 other
patterns that are already stored in the system. Ridge endings are identified by comparing
the current pixel pair with only 2 patterns while the rest of the patterns are used to identify
the bifurcations. Figure 4-4 depicts the 10 patterns used by the algorithm. The direction

Figure 4-4: 10 patterns used by the algorithm to detect minutiae [13]

of a ridge or valley can also be specified for minutiae detection. This is called disappearing
or appearing depending on the direction that the ridge or valley follows in the pattern. The
horizontal scan is done to detect all vertical pixels and vice versa.

4-2-5 False Minutiae Removal

False minutiae removal is the first step in post process phase. In this step, the false minutiae
produced by the minutiae detection algorithm have to be removed because this has undesired
effect on the performance of the system. Actually there is a small chance of missing the true
minutiae, however, many false minutiae are also produced. The fact that the pattern matching
utilizes patterns of 6 pixels is the main cause for the production of these false minutiae [13].
The system performance decreases in the presence of false minutiae because minimizing these
false minutiae costs much effort and code. There are used many algorithms in order to remove
hooks, lakes, holes, islands, side minutiae, overlaps, too wide or to narrow minutiae and low
quality minutiae. The description of how all these algorithms work is beyond the scope of
this thesis, more information can be found in [13] or in the source code.
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4-2-6 Minutiae Quality Assessment

Although the minimization of the false minutiae, not all of the false minutiae are completely
removed from the system. There will still be some false minutiae present in the final minutiae
list. These residual minutiae are assigned a quality factor ranging from high (4-5) to low
(0) in order to identify them. Assigning the quality factor happens in a quality map. This
quality map is generated based on the the information of the low contrast, low flow and high
curvature maps. As it is logical , a false minutiae gets lower quality factor than the true one.
Furthermore, the minutiae quality is determined using the following measures; the position
of the minutiae in the quality map and intensity statistics such as the mean and the standard
deviation within the direct neighborhood of the minutiae. A high quality factor is assigned
to a minutiae if the mean is close to 127 and the standard deviation is larger or equal to 64
pixels.

4-3 The WSQ File Format

As it is denoted earlier in this chapter, the used application in this project is coming originally
from NIST. There are several fingerprint databases distributed by NIST in order to use in
fingerprint matching systems and the fingerprint images in these databases are formatted in
different formats. The file format used as input image in this project is in WSQ file format
which is also adopted by FBI. WSQ stands for Wavelet Scalar Quantization and it compresses
gray-scale fingerprint images. An advantage of this file format is that it is optimized for
fingerprints. WSQ keeps the very high resolution details of grayscale images and maintains
high compression ratios. For other types of compressed file formats such as jpeg and tiff,
both the quality of the image and important information would be lost and it would become
unreadable by an Automated Fingerprint Identification System (AFIS).

4-4 Application Motivation

As it is denoted earlier in this chapter, the application used in this project is originally coming
from the National Institute for Standards and Technology (NIST). It is a modified version
of the MINDTCT software package by NIST and originally developed for FBI. However, the
source code and execution time in this original version from NIST are too large and contains
too much overhead. Therefore, a stripped down version of the fingerprint application has
been chosen from The Circuits And System Research Group of TU Delft as the application
to be accelerated using VEX processor.

The following four criteria was the main reason for choosing this application in this project :

• Fixed-point : As the VEX ISA uses fixed-point arithmetic for the computations, the
original version of the MINDTC extraction algorithm from NIST can not be used in
this project because it uses floating-point arithmetic for computations. It is determined
that floating- point version cost much more execution time than the fixed-point version.

• Stripped : The fixed-point version of the fingerprint application was stripped down from
some non essential codes in order to decrease the execution time.

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



30 Minutiae Extraction Application

• Optimized : The source code was optimized by utilizing look-up tables for the bina-
rization and for computing the sine and cosine values required by the Discrete Fourier
Transformation computation.

• C-program : The software package was written in the C language.

4-5 Conclusions

In this chapter, the minutiae extraction application and the extraction process is discussed.
The chapter began with a section involving the background information on the application
where it became clear that fingerprint verification is one of the oldest form of biometric
techniques to verify the identity of a person. The position and the orientation of the minutiae
and the quality of the fingerprint are the needed features in order to verify the identity of a
person. The identification verification is done by comparing two human fingerprints.

As it is denoted in section 5-2, the minutiae extraction process can be seen as an image
pipeline which is the most computationally intensive part during the verification. Because it
can be seen as an image pipeline, the process can be divided in three phases ; pre-process,
minutiae detection and post-process. Also these phases can be further divided in several steps
which results in six image processing steps. The first two steps provides a fingerprint image
with high quality by doing contrast enhancement and image quality analysis. The latter is to
evaluate and decide whether there are some regions of the image that are degraded or noisy
and whether these regions are located on the image in order to prevent any problems that
can arise in the detection phase.

In the third step, binarization, the gray-scale image is converted to a binary image as the
extraction algorithm can only work with a binary image as its input in the detection phase.
In minutiae detection phase, it is all about pattern matching. The work to be done in this
phase is identifying the ridge endings and bifurcations by performing a horizontal and vertical
scan of the binary image. During this scan, current pixel pairs in the image are matched with
10 other pre-stored patterns. Because many false minutiae are produced in previous phases,
these false minutiae are removed in the fourth step and in the last step the detected minutiae
are assigned a quality factor before storing the final minutiae list.

Also the motivation for choosing the modified version of the fingerprint verification application
has been given in this chapter. This application is chosen because it is a stripped, optimized,
in C language written and fixed-point utilizing version which is quite suitable to use in this
project. It is stripped down so that some non essential code are removed from the software.
It is optimized by utilizing look-up tables for the binarization and for computing the sine
and cosine values for DFT computation. It uses fixed-point arithmetic for the computations
which is an important requirement in order to be able to work with VEX ISA. Furthermore,
it is given that WSQ is the input image file format used in this project as it is well-suited
and optimized for fingerprints. It is widely used by FBI and has the advantage of keeping the
very high resolution details of gray-scale images and maintaining high compression ratios.
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Chapter 5

The Embedded Computing Platform

As it is common there is no design or project to be realized without making use of some
equipment, materials or tools. In this project, there are number of hardware components
used which can be named as the building blocks to realize the aim of the project. This
hardware is described in detail in the following sections. In section 5.1 The Virtex-6 FPGA
board has been represented with some important features of it such as compatibility across
its sub-families and flexible configuration options. Section 5.2 deals with the MicroBlaze soft
core processor which is designed by Xilinx. Technical properties and some important features
of this processor are discussed in detail in this section. Section 5.3 describes the VEX system
which consists of three basic components. These components are explained further in this
section. In section 5.4 the instruction set architecture is discussed. In section 5.5 the reader
can find the implementation of The VEX. In this section a previous version of the VEX and
the current implementation of it has been covered. Section 5.6 deals with the VEX tool chain
which includes a C compiler and a simulation system. In this section more is given about the
compiler; i.e its behaviour, its capabilities etc. This chapter ends with a section that describes
the complete system, the so-called hardware platform, which describes the connection of the
components described in the previous sections of this chapter.

5-1 Virtex-6 FPGA Board

An FPGA board from Virtex-6 FPGA families is used in this project which is produced by
Xilinx. It is defined as the programmable silicon foundation for Targeted Design Platforms
with integrated software and hardware components in these platforms. This board has some
advantages above the previous generations of it. These can be listed as follow:

1. Up to 50% higher performance through hard memory controller and six-input look-up
tables (LUT) architecture that can be configured as either 6-input LUT with one output
or as two 5-input LUTs with separate outputs but common addresses or logic inputs,
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2. Up to 50% lower cost and power due to advanced process technologies and integration
of multiple dedicated IP blocks,

3. They deliver breakthrough I/O performance with the integration of high speed serial
transceivers [16].

There are three sub-families of Virtex-6 FPGA boards that contain many built-in system-level
blocks; Virtex-6 LXT FPGAs, Virtex-6 SXT FPGAs and Virtex-6 HXT FPGAs. The first one
has the feature of high-performance logic with advanced serial connectivity, the second one has
high signal processing capability with advanced serial connectivity and the last one delivers
high bandwidth serial connectivity. Furthermore, Virtex-6 FPGA offers compatibility across
sub-families and has flexible configuration options. This FPGA uses SRAM-type internal
latches to store its (customized) configuration and the number of configuration bits is between
26 Mb and 160 Mb. Another advantage of Virtex-6 is that it supports partial reconfiguration
which is considered to improve the versatility of the FPGA. The reader is referred to [17] to
read more about this FPGA board.

5-2 MicroBlaze

The MicroBlaze is a soft core processor designed by Xilinx. It is a reduced instruction set
computer (RISC) and its core is a Harvard architecture core. It is optimized for implemention
in Field Programmable Gate Arrays (FPGAs) such as Spartan-6 and Virtex-6 which belong
to Xilinx, too. High configurability of this processor allows the designer to select a specific set
of features required by its design. Some important fixed features of the processor are given
as follows:

• Thirty-two 32-bit general purpose registers

• 32-bit instruction word with three operands and two addressing modes

• 32-bit address bus

• Single issue pipeline [18]

• Harvard architecture

Furthermore, this processor is also parametrized so that the designer can select and enable
the additional functionality that it needs.

In figure 5-1 below, an example of MicroBlaze system for Spartan-6 and Virtex-6 is given [19].

MicroBlaze has the following hardware supported data types ; word, half word and byte.
This processor represents the data in Big-Endian bit-reversed format. In this format, the
most significant value in the sequence of bytes is stored first, i.e. at the lowest storage
address.

This processor has a many-sided interconnect system to support a various range of embedded
applications. It has the CoreConnect Processor Local Bus (PLB) as its primary I/O bus and
Local Memory Bus (LMB bus) to get access to its local memory. The latter has the advantage
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Figure 5-1: MicroBlaze system for Spartan-6 and Virtex-6 [19]

of reducing the loading on other buses. More information about PLB will be given in section
5.6.

Features like cache size, pipeline depth (3-stage or 5-stage), embedded peripherals, memory
management unit and bus-interfaces can be customized within this processor. The perfor-
mance of this processor depends on some factors such as the configuration of the processor,
architecture of the target FPGA and speed grade. There are two versions of The MicroB-
laze: area-optimized version using 3-stage pipeline and the performance optimized version
with 5-stage pipeline. Another important property of this processor is that instructions such
as multiplying, dividing and floating-point operations can be added and removed selectively.
As it is known, these instructions are used seldom and they are expensive to implement in
hardware.

5-3 The VEX System

The VEX system, which encompasses the ISA and toolset, is used as an educational instru-
ment to support the book on embedded computing [9]. It was derived from the HP/ST Lx
(ST200) architecture. The reason for choosing the Lx architecture is that Lx was a very
clean new architecture, with no legacy to support, robust tools, and extensive scalability and
customizability features, and therefore was the perfect candidate for educational purposes.
Some adjustments had to be made to make it better match the tutorial requirements, and
the result was called the VEX.

The VEX system is comprised of the following three basic components [9]:
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1. The VEX Instruction Set Architecture. VEX defines a 32-bit clustered VLIW ISA that
is scalable and customizable to individual application domains. VEX provides the user
with the ability to change some aspects of the architecture, such as the number of
clusters, the number of execution units, the number of registers, and latencies of the
functional units. Customizability means that the user can add user defined instructions
which can be convenient in applications that require specific operations.

2. The VEX C Compiler. The C compiler that came with the HP/ST Lx (ST200) archi-
tecture formed the basis for the VEX C compiler. It is an ISO/C89 compliant compiler
that uses contemporary techniques for its global scheduling. The compiler allows the
user to configure the target VEX architecture by specifying a configuration file, which
enables the user to change the number of clusters, execution units, issue width and
operation latencies.

3. The VEX Simulation System. The VEX simulator uses the VEX ISA specification to
simulate execution of the instructions. Implementation details of a specific implemen-
tation are not considered by the VEX simulator, only what has been described in the
VEX ISA is used in the execution of instructions. The execution of VEX instructions is
translated into the host’s native instructions, making the simulation as fast as possible
on the host system. The simulator allows the use of most of the familiar C-libraries.

The processor is called the VEX which stands for ‘VLIW Example’, and is intended for
experimental use. VEX is based on production tools used at Hewlett and Packard (HP)
Labs and other laboratories. Its architecture is based on the Lx/ST200 ISA developed by
HP and STMicroelectronics [8]. It is real technology, but is simplified for instructional use.
The C compiler and the rest of the toolchain will be descibed in more detail in the section on
the toolchain. The toolchain has been modified at the Delft University of Technology. The
original toolchain does not produce an executable in native VEX binary code, and this and
many other aspects have been modified in the new toolchain [20].

5-4 The VEX Instruction Set Architecture

The VEX ISA defines a flexible and scalable architecture for VLIW processors [9]. Aspects
such as the issue width, the instruction set, and number of functional units can be modified.
Because the compiler is responsible for the scheduling of operations, special attention has been
payed to features of the VEX ISA that provide the compiler with greater flexibility in the
scheduling of operations. Only structure and behaviour are specified with the VEX ISA, most
implementation and microarchitecture details are excluded from this specification. Because
VEX is a flexible architecture, two types of constraints are distinguished. The set of rules all
implementations have to obey and the set of rules of a specific VEX instance. For the former
we can think of the base ISA, register connectivity, memory coherency and architecture state.
For the latter we can think of issue width, number of clusters, combination of functional units,
latencies, and custom instructions. A VEX instance is obtained by implementing the basic
architecture of the VEX ISA and by varying on the customizable parameters of the VEX ISA,
such as the issue width, the number and composition of functional units, and so on.
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VEX operations are very similar to RISC-style operations. They are called syllables in VEX
parlance and are the most basic operation of VEX processors. A collection of these syllables
together form an instruction in the VEX ISA. The number of syllables in an instruction
depends on the issue width of the particular implementation. An example of an instruction
is given in figure 5-2, which is the format of an instruction of a four-issue implementation,
where one box represents a syllable. Instructions are treated as atomic units in the VEX

Figure 5-2: The instruction format of the ρ-VEX, containing four syllables. Each box contains
one syllable which describes an operation. Every box is connected to functional units, in this
case two functional units. Source: R. Seedorf, “Fingerprint Verification on the VEX Processor,”
Master’s thesis, Delft University of Technology, 2010

ISA. An instruction of a VEX instance contains one or more syllables, i.e. operations, and
these operations are executed as a single atomic action. All operands that are needed by
the operations within an instruction are read first, before any operation commits its results
to the registers or memory. The execution behaviour is that of an in-order machine, i.e.
each instruction executes to completion before the start of the next one, and instructions are
executed in program order. The exception behaviour follows this in-order execution model too.
Latencies of functional units are visible in the instruction set architecture and the compiler
has to schedule its code such that it obeys the latency constraints. Operations have latencies
that depend on the functional unit and the compiler schedules the instruction in accordance
with these latencies. If the hardware requires more cycles to execute the operation than was
assumed by the compiler, the hardware stalls until the architectural requirements that are
specified in the VEX ISA hold again. For implementations that do not stall, the behaviour
of the execution of the instructions is undefined.

The VEX instruction set architecture has the usual set of instructions that can be expected
of a typical RISC-processor. They can be divided into the following classes of instructions.

• Arithmetic and logic operations

• Memory operations

• Control operations

• Intercluster communication

The last category in this list is not a RISC-style instruction class, but is typical of the
VEX architecture where multiple clusters can be present and data and other information
needs to be exhanged between clusters. VEX supports the usual set of RISC-style integer
operations, and some less traditional operations that make some often used operations more
efficient. VEX focuses on integer operations, it does not support floating point operations.
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Floating point operations have to be emulated if desired. VEX is a load/store-architecture,
which means that only load and store operations can access memory. Memory accesses are
restricted to native alignment, and misaligned accesses cause a nonrecoverable trap. The
VEX is a conventional branch architecture in that it does not expose a branch delay slot and
all instructions that come after the branch instruction are flushed from the pipeline when the
branch is taken. The branch architecture uses branch registers to determine if branches have
to be taken. These branch registers can be set using the usual logic and compare instructions.
The VEX contains multiple branch registers, this is done so that the compiler can prepare
several branches before they are actually executed. VEX specifies branch target addresses
either through a relative displacement from the program counter or through the content of
a special register. Call operations are supported by the VEX through a branch-and-link
style operation, which saves the return pointer to the special link register. All other calling
conventions are the responsibility of the software.

5-5 The VEX Implementation

5-5-1 Previous Versions of the ρ-VEX

At Delft University of Technology the VEX has been used in several research projects. Van
As [21] describes an implementation of the VEX, called the ρ-VEX, which was used as a
peripheral in the MOLEN project. It consists of four stages:

1. Fetch Stage

2. Decode Stage

3. Execute Stage

4. Write Back Stage

This implementation is a so called multi-cycle architecture where each stage is implemented
by a finite state machine (FSM). Each stage takes several cycles to complete, and all stages
are controlled by an inner control stage. This resulted in a reduced complexity and allowed
the stages to share functional units during execution time. A disadvantage of this design
choice is that the average clock cycles per instruction (CPI) is well above 1, hence making it
a slow design.

Although the design discussed in the previous paragraph was satisfactory in terms of the
project’s requirements it was not suitable for another project which is discussed in [14]. Here
a new design was proposed resulting in a five stage pipeline architecture. It’s main advantage
being that it reduces the CPI to 1, making it a faster implementation. This design will be
discussed in the following section.

5-5-2 Organization of the ρ-VEX

The current implementation of the ρ-VEX can be described by the following characteris-
tics [14],[20]:
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• The ρ-VEX is a Harvard architecture. The organization of the memory system is divided
into a memory for the instructions and a memory for the data. This way of organizing
the memory system reduces memory access conflicts.

• It has four issue slots.

• It has a pipelined micro-architecture with five pipeline stages, see figure 5-3.

• The processor has four 32-bit ALUs, i.e. each issue slot has one ALU unit. It has two
16 × 32 bit multipliers, one Load/Store unit, and a branch unit.

• It has a 64 × 32 bit general purpose register file.

• It has a branch register file with 8 × 1-bit registers, specified by the ISA. It is used to
store branch conditions, predicate values and it is used to store the carry of arithmetic
functions.

In accordance with the VEX ISA specification the number and type of the functional units
can be changed, except for the branch unit. There can be only one branch unit and it must
be placed in the first issue slot of cluster 0. By being able to change the type and number of
functional units the user is able to adapt the processor to the requirements of the application.
The current VEX implementation uses a five stage pipeline. It consists of a fetch stage, a

decode stage, two execution stages, and a write back stage. A detailed description of the

Figure 5-3: The 5-stage pipeline of the current ρ-VEX processor. Source: R. Seedorf, “Fin-
gerprint Verification on the VEX Processor,” Master’s thesis, Delft University of Technology,
2010

micro-architecture of the current VEX implementation is beyond the scope of this thesis, but
there are some observations that have to be mentioned.

Because the current implementation uses a pipeline architecture, typical issues related
to pipeline design have to be considered, such as data dependencies and branch penalties.
Forwarding logic is implemented to reduce data dependencies between the write back stage
and the branch unit, and between the decode stage and the write back stage. Dependencies
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have been reduced to a minimum, but some remained. The resulting latencies have to be
taken into account by the compiler when scheduling the syllables into instructions. NOPs
have to be inserted where necessary to resolve any dependencies that are the result of visible
latencies. The branch syllable has a single-cycle branch penalty. All other latencies are hidden
from the compiler and programmer.

5-6 The VEX Toolchain

The VEX toolchain that comes with VEX is the development system for VEX. It includes a
C compiler and a simulation system. The C compiler is derived from the Lx compiler which is
itself a descendant of the Multiflow compiler. It has the robustness of an industrial compiler
and allows for experimenting with new architecture ideas, scalability and the introduction
of custom instructions, by choosing parameter values in a configuration file that is read by
the compiler. The compiler, which is only available in binary form, is limited in many ways.
Currently, the compiler can only read C-source files, other languages such as for example
Java and C++ are not supported. Furthermore, for its scheduling it only uses some basic
compilation techniques.

The default behaviour of the compiler is to generate an executable that can be executed on
the host system. The executable contains a simulation of the code produced for the VEX.
See figure 5-4. The behaviour of the compiler can be changed by giving it the appropiate
options on the command line. With proper options set it can produce all intermediate files,
if necessary. The compiler is capable of optimizing the code by using the proper options.
Default behaviour is to optimize as if option -O2 was chosen. The compiler is capable of
loop unrolling but this should be used appropriately. Some other optimizations are inlining
and compacting the object-files. It is possible to do profiling with the compiler. Finally,
the compiler is able to support a limited amount of reconfigurability by presenting it with a
configuration file.

As was explained earlier, the default behaviour of the compiler is to produce an executable
for the host machine. There is no compiler option to produce an executable for an existing
implementation of the VEX. For that purpose the toolchain was adapted, see [20], to produce
VEX object code from the assembler code generated by the C compiler. This has been
accomplished by using the GNU binutils package. An extra tool was added with which it
is possible to extract VHDL code from the executable that is produced by the linker of
the binutils package. It produces a VHDL-file containing the data of the program, and it
produces a VHDL-file that contains the binary code of the program. These files form a part
of the VHDL-description of the VEX, and so the code becomes part of the design, so to
speak. Furthermore, it produces a prog.h file that can be included in a C project, and which
contains the data and instructions of the program for the ρ-VEX. This data must be streamed
to the ρ-VEX before it can be executed.

The VEX tools can produce graph information that is compatible with the VCG tool, which
is a tool that converts graph information to graphical information. The compiler can emit
control flow graphs, DAGs, and compacted schedules. Output produced for the gprof utility
can be converted into a graphical representation with the help of the rgg utility that comes
with the VEX toolset. Visualization helps to determine where to spend time in the source
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Figure 5-4: The intermediate steps that the compiler takes in producing the host executable

code looking for optimization possibilities. The VEX simulator includes ‘simulated’ support
for gprof. It emits profiling data with and without cache simulation data.

5-7 The Complete System

There is a so-called hardware platform generated that enables some of the hardware’s de-
scribed in previous sections, i.e. MicroBlaze and ρ-VEX and other components such as timer
and DDR memory to communicate with each other. The communication between the ρ-VEX
processor and the Microblaze processor is established by using a Processor Local Bus (PLB).
Through this bus, the MicroBlaze enable to read/write the ρ-VEX memory and exchange the
input data and results between these two processors. This platform is generated by Xilinx
Platform Studio. The schematic of the complete system can be seen in Figure 5-5. This
complete system consists of MicroBlaze processor, rvex_plb_wrapper containing the ρ-VEX
and its data and instruction memory, a timer and DDR memory mainly. Processor Local Bus
connects the components to each other as it is represented in Figure 5-5. The wrapper links
the instruction memory i_mem and data memory d_mem of the ρ-VEX to the PLB.

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



40 The Embedded Computing Platform

Figure 5-5: Communication between the components of the platform

More details of the communication between the MicroBlaze processor and ρ-VEX proces-
sor will be given in chapter 6 when discussing the partitioning of the application on ρ-
VEX/Microblaze. Below follows a detailed information on the used PLB.

Processor Local Bus

The communication between the ρ-VEX Processor and the Microblaze Soft Core Processor
is established by a Processor Local Bus (PLB). As it is already said in section 5.2, the
MicroBlaze has the CoreConnect PLB as its I/O bus. The CoreConnect is a microprocessor
bus architecture which is being used for system-on-a-chip (SoC) designs. The Processor Local
Bus, namely PLB v4.6 protocol prescribed by Xilinx, is one of the elements it is including.

This PLB enables the designer to connect some number of PLB masters and slaves by making
use of a bus infrastructure so that the designer can get an overall PLB system. So, it enables
data transfer between devices defined as masters and slaves within that bus infrastructure
[22]. The master ones make use of separate address, read-data and write-data buses and the
slave ones make use of shared, but decoupled address, read-data and write-data buses in order
to be fixed into the PLB.

Some features of this type of PLB are listed as :

• Arbitration support for a configurable number of PLB master devices

• PLB address and data steering support for all masters

• 128-bit, 64-bit, and 32-bit support for masters and slaves

• PLB address pipelining supported in shared bus mode or point-to-point configuration
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• Three-cycle arbitration

• Configurable optimization for point-to-point topology [23].

5-8 Conclusion

This chapter has covered the most useful information on the used hardware’s in this project.
In the first section the reader has seen that there are three advantages of this type FPGA
above its previous generations; up tp 50 percent higher performance, lower cost and power and
the presence of breakthrough I/O performance. Because it also supports partial configuration,
the versatility of this board is considered to be improved due to this feature.

In the second section MicroBlaze soft core processor has been represented to the reader which
is a RISC and uses Harvard architecture core. The latter deals with separate storage and
signal pathways for instructions and data which helps to improve the performance. One of
the most important feature of this processor is that it makes use of Big-Endian format which
always has to be kept in mind while working on the relevant code of the fingerprint munitiae
extraction application in order to read the data properly in and out.

In section 5.3 the VEX system has been discussed in detail which was derived from HP/ST
Lx architecture. The following three basic components that the VEX system consists of are
mentioned ; The VEX Instruction Set Architecture (ISA), The VEX C Compiler and The
VEX Simulation System. The VEX ISA offers a flexible and scalable architecture for VLIW
processors so that some important aspects such as the issue width, the instruction set and
number of functional units can be customized. The VEX operations are very similar to a
RISC-style operations. These operations are called syllables and the collection of these forms
an instruction in the VEX ISA. Another most important feature of the VEX is that it only
supports integer (fixed-point) operations and no floating point operations as it is also denoted
in section 4.3. Second component of the VEX system, The VEX C Compiler, allows the user
to configure the target VEX architecture by specifying a configuration file which enables the
user to change the number of clusters, execution units, issue width and operation latencies.
The VEX Simulator allows the use of most of the familiar C-libraries and uses the VEX ISA
specification to simulate execution of the instructions. Implementation details of a specific
implementation are not considered by the VEX simulator.

In section 5.4 the implementation of the VEX, the ρ-VEX processor, has been represented
which was used as a peripheral in the MOLEN project at Delft University of Technology. It is
a multi-cycle architecture where each of the four stages; fetch, decode, execute and write back
stages, is implemented by a finite state machine (FSM). It has been stated that the design
for MOLEN project is a slow one as the average clock cycles per instruction (CPI) is above
1. The current rho-VEX with the six characteristics given in 5.4.2 can be seen as a better
design because the older one was only suitable for the MOLEN project. The current VEX
implementation uses a five stage pipeline; fetch stage, a decode stage, two execution stages,
and a write back stage. As the current implementation uses a pipeline architecture, typical
issues related to pipeline design have to be considered, such as data dependencies and branch
penalties. Although dependencies have been reduced, they are not completely eliminated.

In section 5.5 of this chapter the VEX toolchain has been discussed. The toolchain includes
a C compiler and a simulation system. The compiler is able to read C-source files only, other
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languages such as Java and C++ are not supported. The compiler generates an executable
which contains a simulation of the code produced for the VEX and that can be executed
on the host system. There is no compiler option to produce an executable for an existing
implementation of the VEX. Furthermore, the compiler is capable of performing optimization
of the code such as loop unrolling, inlining and compacting the object files. The VEX tools
is also able to produce graph information that is compatible with the VCG tool. This tool
converts graph information in numbers to graphical information with the help of the rgg
utility.

In the last section the hardware platform consisting of the components used in this project
has been discussed. This forms a kind of communication area for these components to com-
municate with each other. It has been stated that the communication between the ρ-VEX
Processor and the Microblaze Soft Core Processor is established by a Processor Local Bus.
The MicroBlaze enable to read/write the ρ-VEX memory and exchange the input data and
results between these two processors through this bus.

M.S.B. Purba, E. Yigit and A.J.J. Regeer Bachelor Thesis



Chapter 6

Hardware/Software Mapping

In this chapter the partitioning process design and simulation results will be presented. Sim-
ulation is performed to verify the output results of the accelerator and to determine the
performance. The simulation results are given in this chapter. Section 6.1 will present the
profiling process and performance of the Minutiae Extraction application on the VEX sim-
ulator. Section 6.2 presents the description of experiments the application on MicroBlaze
and gives the profiling result. Section 6.3 presents the process design and the performance
of Minutiae Extraction on Microblaze. In section 6.4, we have conducted experiments on
the simulator to find the right configuration for the VEX implementation which has to exe-
cute the kernel. In Section 6.5 discusses several optimization that were investigated on the
VEX simulator. Finally, in the section 6.6 we discuss the execution times of the partitioned
application together with the acquired speeding.

6-1 Profiling the Minutiae Extraction Application on the VEX Sim-

ulator

Profiling the application on the VEX simulator is the first step of the experiments in this
project. In chapter 4, the fingerprint minutiae extraction application has been presented
and this gave a good basic understanding of the theory that explains how the application
works but profiling will help the designers to know more about the application practically.
This involves some important information about the application such as the amount of total
cycles, execution cycles, stall cycles and executed times that the program spent executing
each function and its children. To analyze how much time fingerprint minutiae extraction
application spent executing each function, we execute the application on the VEX simulator.

6-1-1 Description of Experiment

In order to profile the application, the gprof profiling tool which is also available within the
VEX Simulator is used. The application has been executed on the VEX Simulator several
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times for different machine configurations. Then the results are obtained by running the stan-
dard gprof utility. The different machine configurations deal mainly with different number
of issue widths such as 1, 2, 4 and 8 issue widths in order to determine what kind of effect
these different issue widths can have on the speed of the application. It is also a question
whether multiple clusters would be required to execute the application with higher speedup,
but an earlier research has shown that for the minutiae extraction application a single-cluster
processor is more promising. It has been stated in [14] that the speedup improvement from
a multi-cluster datapath is marginal and therefore it is decided to use a single cluster im-
plementation in this step of the experiments. Thus, only the number of issue width of VEX
datapath are varied, while keeping other datapath parameters such as the number and sort
of functional units and the number of clusters constant.

Total issue width 1 Issue 2 Issue 4 Issue 8 Issue

Total Time 14210.9 msec 11320.4 msec 8744.34 msec 10783.8 msec

Total Cycles 7105455801 cycles 5660207983 cycles 4372171195 cycles 5391915615 cycles

Table 6-1: Simulation cycles for single cluster

Figure 6-1: Execution time on simulator for different issue width

The application has been executed for each of these different number of issue width’s on VEX
Simulator. The number of clock-cycles it takes to run the application for each of these different
number of issue width are presented in table 6-1 and a graphical illustration is depicted in
figure 6-1. The graph shows the total execution time on the vertical axis and the issue-width
on the horizontal axis. These profiling results and their significance will be discussed in the
next subsection. Additionally, the profiling results can also be make graphically visual by
using the rgg utility included in the VEX toolchain and the user can get a graph called call
graph such as in figure 6-2. The functions taking less than 7% of the time are filtered out
in this example graph. There follows no further explanation on this graph because it is just
intended as an example to show how a call graph looks like.
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6-1-2 Results and Interpretation

As it is apparent from Table 6-1 and Figure 6-1 increasing the issue width decreases the
number of clock-cycles and the execution time, resulting in marginally higher speedup. This
holds up to 4 issue width, the number of clock cycles begins to increase again from 8 issue
width on resulting in less speedup. As it has been proved in [24], a possible explanation for
the increased execution time for 8 issue width is an increased code size and data cache conflict
stalls. From the results, it looks temporarily more promising to concentrate the hardware
design efforts on 4 issue width. It is said temporarily because this result from the VEX
Simulator doesn’t say that also the machine configuration with 4 issue width will have to be
used on rho-VEX processor for the computational intensive kernel that will be determined
after profiling the application on MicroBlaze processor, because the characteristics of the
kernel may differ from that of the whole application so that it would be more sufficient to
use, for example, 2 issue-width. Again, from these results it can be assumed that the proper
number of issue-width in order to get the highest speed up is 4. If there will be enough
time, the kernel will also be tested for the other numbers of issue-width to find a more
accurate configuration of rho-VEX processor, otherwise 4 issue-width will be used as the
right configuration of a VEX implementation running the kernel.

6-2 Profiling on MicroBlaze

The following step of the experiments in this project is profiling the application on MicroBlaze.
As described in chapter 5, a platform has been generated containing the MicroBlaze processor.
In this section, the description of the bottleneck of the application on MicroBlaze is presented.
In section 6.2.1, the result of running the application on MicroBlaze is described. In subsection
6.2.2, the application running on MicroBlaze is described. In subsection 6.2.3, the result of
profiling in MicroBlaze is interpreted.

6-2-1 Description of Experiment

Running and profiling the fingerprint minutiae extraction application on MicroBlaze can
be seen as the first most important step in this project. The application has to be run
on MicroBlaze in order to determine its execution speed before accelerating it using the ρ-
VEXprocessor and it has to be profiled on MicroBlaze in order to know which part of the
application has to be mapped to ρ-VEX processor. The part that has to be accelerated using
the ρ-VEXprocessor is called the computational intensive kernel. The reader may ask why
not the whole application is mapped to ρ-VEXso that the whole application is accelerated
at once. The reason for this is that the fingerprint application is too big and if it is tried to
accelerate the whole application at once, almost all the capacity of the FPGA will have to be
used and this makes it difficult to run the whole application on the ρ-VEXprocessor. It also
would cost the designers too much time to fix this problem. For these reasons it is decided
to be a better solution accelerate the kernel of the application only that takes pretty much
time.
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6-2-2 Running the Application on MicroBlaze

Before profiling the application it has to be made adaptable for running on MicroBlaze pro-
cessor and as well as for ρ-VEX processor. This is done by modifying and stripping the code
down further than it was done by The Circuits And System Research Group of TU Delft.
The microblaze and ρ-VEXdo not have an operating system, so there is no support for basic
input/output. The original code contains many fprintf and printf calls for generating log
files and debug information, however, these functions make use of the underlying file-IO sys-
tem. So, because these functions cannot be used, they had to be removed and substituted for
similar output routines that are still available to use within the two processors. The following
library functions that have been adapted are explained in the following.

• fprintf: This function is used to print out a sequence of characters of fingerprint to a
file.

• fopen: This function is used to read the input file; i.e. wsq-file, in the main mindtct

file.

• printf: This function is used to print formatted output to the standard output stream
which is usually the screen.

The problem how to print to the screen is solved by printing formatted output to a character
buffer using the sprintf function and subsequently this buffer is printed to the screen by
using the print function provided by Xilinx. The code had to be changed, otherwise all
fprintf and printf functions would not work on the MicroBlaze because it lacks file I/O
support. In short, there have been worked around the problem of reading the output data is
solved by using the print statement and where necessary the sprintf function in combination
with the print function. Because the MicroBlaze has also no file input support, there also
had to be found another way to read the input data. The solution to this problem is solved
by writing a little program that reads the required input file and converts the data within
this file to a C-source code so that it became suited to the processors. The language chosen
for this purpose is Python and the script is shown in appendix A. After modifying the code
and stripping it down further, it is able to run on the MicroBlaze processor and to profile it.
Next section deals with profiling the application and the profiling results.

6-2-3 Profiling the Application on MicroBlaze and Profiling Results

After the application has been made suitable to be run on the MicroBlaze, the application
had to be profiled to find out where the program spends its time and which functions take
more time than it is expected while it is being executed. This is needed as not the whole
application can be accelerated using ρ-VEX because it is too big. Also the number of times
the function actually has been called and the cumulative time spent in the functions can be
determined by profiling the application. Profiling on MicroBlaze is based on the GNU gprof

tool. This tool prints a flat profile and it also prints a call graph on standard output after
having a profile data file named gmon.out. From the profiling results listed in Table 6-2, it is
clear that the code in long_int_math.c and dft.c take the most of the execution time.
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Codes samples Time[%]

long_int_math.c 12813 85.92

dft.c 700 4.69

util.c 581 3.90

Table 6-2: Profiling results on Microblaze

Functions of dft.c Samples Time[%]

dft_dir_powers 0 0.0

dft_power_stats 0 0.0

sort_dft_waves 2 0.01

get_max_norm 5 0.03

sum_rot_blocks_rows2 693 4.65

Table 6-3: Profiling results of code dft.c on Microblaze

Furthermore, dft.c is the c-code that contains routines responsible for conducting Discrete
Fourier Transforms (DFT) analysis on a block of image data.

Table 6-3 represents the functions within dft.c code and their profiling results. From these
results one can see that sum_rot_blocks_rows2 function takes almost the whole time within
dft.c code. This means that only this function from dft.c will be mapped to the accelerator
beside the functions of long_int_math.c. So, these functions form together the kernel of the
application.

6-3 Partitioning the Minutiae Extraction Application

In the previous section we found, by profiling the application on the MicroBlaze, that the
function sum_rot_block_rows2() together with the functions of the long_int_math.c mod-
ule consume the most execution time. So we decided to accelerate these functions on the
ρ-VEX. In the first section the program for the ρ-VEX is discussed. In the second section the
modifications to the main application are described that are necessary for the new partitioned
application to function correctly.

6-3-1 The Kernel Program on the ρ-VEX

The modules that are used for the kernel program are described in table 6-4. A new
module computeDFT.c was written that contains the main() function together with the
sum_rot_block_rows2() function, which is called from the main() function. See appendix D
for the source code of the computeDFT.c module. In the main() function we first initialize the
memory of the powers matrix. The powers matrix is composed of four arrays of integers, rep-
resenting the rows of the matrix, and powers is an array containing pointers to these arrays.
Note that in the original application space in memory is assigned by calling the malloc()

function. But in the ρ-VEX there is no such function, so we had to find an alternative for
creating the necessary memory space. We created an array of 64 integers and considered that
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Module Description

_start.s Assembler file that sets the stack pointer
and calls the entry point of the program.

computeDFT.c Module containing the main() function
and sum_rot_block_rows2().

dft_lookup.h Contains the function values for the sine
and cosine functions.

fixed_point_math.h Macro definitions that are de-
fined in terms of the macros of
fixed_point_mathcode.h.

fixed_point_mathcode.h Contains macros that emulate floating
point operations.

grid_lookup.h Used for DFT computations.

lfs.h Contains all definitions of structures and
constants that are used in the application.

long_int_math.c Functions enabling 64-bit integer arith-
metic.

long_int_math.h Corresponding header file.

Table 6-4: The C-source modules that are used in the kernel program.

array to be composed of four arrays of sixteen integers each. We then stored the pointers to
the beginnings of these arrays into powers, effectively creating the same result that is obtained
in the original program.

After the memory is initialized, the function sum_rot_block_rows2() is called from main()

and when it returns, the program on the ρ-VEX is finished and an interrupt is generated
indicating that the ρ-VEX has stopped execution. This interrupt is then used by the main
application to know that the kernel has computed the results.

The kernel program uses some additional module files that are necessary for its proper op-
eration. The module long_int_math.c contains the functions that are necessary for 64-bit
integer computations. Some header files contain arrays that are used in the DFT computa-
tions. In dft_lookup, for example, the values for cosine and sine functions are stored.

The kernel program can be compiled with the makefile in appendix C. For compilation of the
kernel, the configuration file in appendix F has been used. It uses the tools in the binutils
package to produce an object file which is used as input for the elf2vhd tool to extract the
vhdl files that contain the instructions and data of the kernel. It also produces the prog.h

file that is used in the main application to load the program to the ρ-VEX. To acquire the
locations of the data where is going to be written en read from the objdump tool is used,
which produces a list of global variables of the program together with their position and size.

6-3-2 Adaptations to the Main Application

In the original program the function sum_rot_block_rows2() is called by the function
dft_dir_powers() to compute the directional information in a block of 34 × 34 pixels of
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the fingerprint image. But in the partitioned application this computation is done by the
ρ-VEX, so we had to change this call to sum_rot_block_rows2(). The partitioned appli-
cation calls instead the function sum_rot_block_rows2_onVEX(). This function stops and
resets the ρ-VEX and then writes the bytes of the 34 × 34 block contained in the array data

to the memory of the ρ-VEX. The location for this array in the memory of the ρ-VEX was
obtained with the objdump program. Then it starts the ρ-VEX and consequently waits for the
ρ-VEX to give the signal that it has computed the results, see figure 6-3. When the results
are computed, they are read from the memory of the ρ-VEX. The results are read from the
powersgeheugen location. This location is also obtained with the objdump tool. The integers
that are read in are then put into the powers matrix. The source code for this function can
be found in appendix B.

Figure 6-3: The main application loads the data into the memory of the ρ-VEX and then starts
the ρ-VEX. It waits for the ρ-VEX to compute its results and then reads the results back into the
powers matrix.

The ρ-VEX has to be initialized before it can be used. The kernel program has to be loaded
into the ρ-VEX and the interrupt routine has to be initialized. This is done in the function
initialize_VEX() and it is called in the mindtct.c module just before minutiae extraction
is commenced. The program that is loaded into the ρ-VEX is obtained from the prog.h file.
This file is produced by the elf2vhd tool in the binutils package.

6-4 Finding the Right Configuration for the ρ-VEX

In section 6.1 we described a profiling of the fingerprint minutiae extraction application on
the VEX simulator in order to determine what kind of effect several different issue width such
as 1,2,4 and 8 can have on the speed of the application. This profiling was done for the whole
application and the results have shown that 4 issue width would be the best choice to use for
the whole application. As it is already denoted in that section, that was a provisional result
from which it could be assumed that it also holds for the kernel, but as there was enough
time to test the kernel only, also a similar research has been done on the dft.c code found
in the previous section. It was needed to determine the accurate configuration for the VEX
implementation in order to execute the kernel with the highest possible speed. Thus, the
computational intensive kernel, i.e. dft.c, has also been executed on VEX simulator for 1,2,4
and 8 issue-width. Also in this experiment other datapath parameters such as the number
and sort of functional units and the number of clusters are kept constant while varying only
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the issue-width of VEX datapath. From the profiling results represented in table 6-5, one
can see that also for the kernel only, the ideal number of issue-width is 4. Total cycles and
total execution time decrease by increasing the number of issue-width up to 4 and with 8
issue-width they increase again which is similar to the results found in section 6.1 for the
whole application. These results are also represented graphically in Figure 6-4. The graph
shows the total execution time on the vertical axis and the number of issue-width on the
horizontal axis.

Total issue-width 1 Issue-width 2 Issue-width 4 Issue-width 8 Issue-width

Total Time 1.98389 msec 1.57864 msec 1.22525 msec 1.51372 msec

Total Cycles 991943 cycles 789320 cycles 612627 cycles 756858 cycles

Table 6-5: Execution times of the kernel for different issue-width obtained with the VEX simulator

Figure 6-4: Kernel issues in VEX simulator

Apparently, the kernel has the same characteristics as the whole application. Thus, increasing
the issue-width further than 4 does not help to reduce the execution time which, as desired,
leads to higher speed up of the system. Again, the reasoning in subsection 6.1.2 holds also
for this kernel. In short, the right configuration of the VEX in terms of the issue-width is 4
as it was assumed from the results in section 6.1.

6-5 Optimizing the Software Program on ρ-VEX

After profiling the application on the Microblaze, the kernel is known. The kernel will be
optimize for the ρ-VEX. This can be done by applying different optimization techniques of
the compiler. The benefits of these optimization techniques are that the program will run
faster. As it is mentioned in section 6.4, 4 issue-width is the accurate configuration for the
ρ-VEXprocessor in order to execute the kernel. Therefore, this configuration is used further in
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optimization process. Today, most compilers support compiling techniques such as inlining,
loop unrolling etc. There are many optimizations a compiler can be used to improve program
performance, and particularly well-known optimization are loop unrolling and inlining. The
several set of option can classify how the compiler optimize the application. Loop unrolling is
a very useful technique for VLIW processors. Inlining is another technique that is also useful
in optimization. In this section, the results of different optimization techniques are given. In
subsection 6.5.1, the influence of different level of loop unrolling is investigated. In subsection
6.5.2, the result of different level of inlining are given. In subsection 6.5.3, the conclusions of
optimization are given.

6-5-1 Loop Unrolling

To speed up the program, we can apply the loop unrolling technique. Loop unrolling is a
method to improve the performance by reducing the repeating sequences in loop instructions.
The main benefits of loop unrolling is reducing the loop overhead. Before optimizing the C
code, we need to know what is the optimization limit of the code. In other words, what is the
best cycle count we can achieve. Function sum_rot_blocks_rows2 (. . ., . . .) contains such
loops. There are also some limitation of loop unrolling. The loop unrolling can increase the
memory overhead in every unrolls.

Compiler Options and Results of Experiments

In order to be able to compile the kernel, the kernel code need to be modified. Therefore,
it is necessary to modified the code by hand to achieve optimization. Due to the code
modification, the compiler can run the program efficiently. The modified kernel code can
be found in appendix D. Several set option controls of loop unrolling has been applied to the
kernel only in order to see wether the loop unrolling has some influence on the performance
of the application. The flag -Hn and -O2 for different optimization options can been used
to perform loop unrolling. -O2 is the default set in compiler. This will provide standard
optimization. In [9], more details about different optimization options can be found. The
compiler options of -Hn are given as followed:

• -H0 No unrolling

• -H1 Basic unrolling

• -H2 Aggressive loop unrolling

• -H3 Heavy loop unrolling

• -H4 Very heavy unrolling

In table 6-6, the clockcycle of different optimization options can be seen. From table 6-6, it
is clear that the best result can be achieved by setting the flag to −H3. The relative speedup
that has been achieved using loop unrolling is 816527/741059 = 1.10. However, loop unrolling
has some limitation. From the table 6-6, it is shown that the amount of instruction increased.
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Compiler Option -H0 -H1 -H2 -H3 -H4

Total Cycles 816527 cycles 749278 cycles 746331 cycles 741059 cycles 741195 cycles

Total Time 1.63305 msec 1.49856 msec 1.49266 msec 1.48212 msec 1.48239 msec

Total Instructions 1.52Kb 1.56Kb 1.64Kb 1.87Kb 1.87Kb

Table 6-6: Optimizing results of different loop unrolling compiler options

Figure 6-5: Optimizing results of different loop unrolling compiler options
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6-5-2 Procedure Inlining

Other important technique to improve program performance is called inlining. This can
be done by removing calling sequences in the program. When such a procedure does not
contain a lot of code the overhead of calling the procedure can become quite substantial. The
compiler can then substitute the code of the procedure body at the place where the procedure
is called in the code, thereby saving the overhead of calling the procedure. This optimization
method is called procedure inlining. The drawback of this technique is that it may increase
the instruction size.

Compiler Option and Result of Experiments

The compiler offers two options to perform inlining. The first option is -autoinline. This is
the most easy way to perform inlining. This can be done by setting the flag -autoinline in
compiler. It enables automatic function inlining. The flag -c99inline is another option to
perform inlining. Inlining compiler options perform some results. The experiment has been
done by setting the -autoinline flag. In table 6-7, the total clockcycle of after and before
inlining are given. From the table 6-6, it is obvious that inlining can speed up the kernel of
the application. This experiment give us a total relative speedup of 754815/540313 = 1.39

Compiler Option Before Inlining After inlining

Total Cycles 754815 540313

Total Time 1.50963 msec 1.08063 msec

Total Instructions 1.54kB 1.56kB

Table 6-7: Comparison of results before and after inlining

Figure 6-6: Comparison results before and after inlining compiler options
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6-5-3 Conclusion of Optimizing

It is obvious that optimization methods can accelerate the kernel on ρ VEX. This has been
proven in table 6-6 and table 6-7. Different compiler options have been evaluated in order
to obtain the best acceleration performance. It appears in table 6-8 that loop unrolling
combined with inlining gives the best acceleration. However, it uses a lot of memory of the ρ-
VEXcompared with other optimization methods. Since the ρ-VEXprocessor has a maximum
instruction memory of 8 kB, it is important to check the amount of instructions that the
method has been gained. It is clear that this method increases the number of instructions.

In addition, loop unrolling and inlining optimization methods give also a substantial accelera-
tion. The use of loop unrolling method indicated a factor of 1.1 faster than no loop unrolling.
Inlining caused also a substantial acceleration. This provides a relative speedup with fac-
tor 1.39 faster than before inlining. The comparison of the acceleration between different
optimization methods can be seen in 6-8. According to the optimization results, we can con-
clude that the acceleration of the kernel on the ρ-VEXcan be reached by applying different
optimization methods.

Optimization Methods Loop Unrolling Inlining Loop unrolling and Inlining

Total Cycles 741059 540313 521765

Total Instructions 1.8kB 1.5kB 3.1kB

Table 6-8: The comparison of different optimization methods

Figure 6-7: The comparison of the acceleration produced by different optimization option

6-6 Running the Partitioned Application

Once the application was partitioned and all modifications were made it was time to test
the new application. But the application encountered problems almost immediately as is
described in the following section. In the second section we give an estimation of the speedup
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that can be obtained for the computation of one DFT block based on the results of the
simulator. In the third section we present the measurements of the execution times of the
application and the obtained speedup.

6-6-1 Encountered Problems

When all modifications to the application where made it was tried to run the application. We
encountered several problems. First, we did not succeed in loading the program. It turned
out that although we made modifications to the implementation of the ρ-VEX, and subse-
quentially generated a new bitstream, we were not aware of the fact that the file containing
the bitstream has to be put manually into the SDK. So, for a while we were running an older
implementation of the ρ-VEX. Once we put the bitstream into the right place, the loading of
the program for the ρ-VEX went well.

The next problem we encountered, was that the kernel program on the ρ-VEX did not finish.
It appeared, after some testing, that the call to sum_rot_block_rows2() did not return
properly to main(). The last part of the code of this function is shown in assembler code
below. It shows the code right before the return instruction and shows the code to restore
some of the used registers. As can be seen register $r0.63 is restored as well, but this is
not supposed to happen because this register and the link register $l0.0 are the same in the
VEX ISA. Because the link register is saved seperately, see line t90, it was decided to remove
the line that restores register $r0.63. It then did return properly.

.trace 13

L1?3:

c0 ldw $l0.0 = 0x70[$r0.1] ## restore ## t90

;; ## 0

;; ## 1

;; ## 2

c0 ldw $r0.57 = 0x94[$r0.1] ## restore ## t94

;; ## 3

c0 ldw $r0.58 = 0x98[$r0.1] ## restore ## t95

;; ## 4

c0 ldw $r0.59 = 0x9c[$r0.1] ## restore ## t96

;; ## 5

c0 ldw $r0.60 = 0xa0[$r0.1] ## restore ## t97

;; ## 6

c0 ldw $r0.61 = 0xa4[$r0.1] ## restore ## t98

;; ## 7

c0 ldw $r0.62 = 0xa8[$r0.1] ## restore ## t99

;; ## 8

c0 ldw $r0.63 = 0xac[$r0.1] ## restore ## t100

;; ## 9

;; ## 10

.return ret()

c0 return $r0.1 = $r0.1, (0xc0), $l0.0

## bblock 2, line 132, t91, ?2.1?2auto_size(I32), t90

;; ## 11
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Once this was fixed, the ρ-VEX gave an interrupt every time one block was calculated,
indicating that the program finished. But the main application program produced unsigned
cast errors for the 64-bit integers calculations when the results of the ρ-VEX were used, so
we suspected that the problem was that the ρ-VEX did not produce the right values in the
powers matrix.

In order to identify the problem we decided to focus on the computation of one block of
34 × 34 bytes, in particular we decided to take the 20th block. In table 6-9 the values that
should be returned, are shown. To rule out that we are reading from an incorrect place it
was decided to change the kernel program such that it already contains the data and results
in powers, and consequently we only loaded the program and then did not run it. We read
the values in powers and they matched the ones in the table, so we are reading from the right
place in the data memory of the ρ-VEX. When we do not let the ρ-VEX do the computation
then the predefined powers matrix stays the same, and when this is used by the application
on the MicroBlaze, the casting errors disappear. So, we narrowed the problem down to the
ρ-VEX.

row 1 6557372 5018944 6064806 19806538 43170873 59228698 66913728 93578868
128284170 121674782 86558608 59643831 43064712 25304216 8195291 4559378

row 2 4938792 675942 2452253 8324292 5690308 7102326 20697596 52448429
101468128 88769774 27181030 6355585 11851906 7231731 9316530 7123757

row 3 3120531 761266 196744 1107178 1822803 997881 3783886 4541426
4537683 8553284 2138247 3648197 218924 101250 1601640 3519395

row 4 365327 122468 129775 640140 500801 296067 1056788 3787023
3904941 1344099 325773 3895776 1907983 116675 1028774 2049424

Table 6-9: The output of the matrix powers for block 20 of wsq file 103_1.wsq.

It turns out that the ρ-VEX puts no values into powersgeheugen. But the program does
return properly to the calling function in _start.s, and runs for about 577636 cycles. We
checked this with results from the simulator and there the result was computed after 754815
cycles, so there is a discrepancy. It seems like the function sum_rot_block_rows2() is re-
turning too early to the main-function, without writing its results. We suspect a bug in the
ρ-VEX but were not able to find it. We did, however, find some peculiarities in the source
files of the implementation of the ρ-VEX, as discussed below.

In rvex_system.vhd we found some errors in the dimensions of some vectors. Below are
shown the declarations in the architecture body behavioural of rvex_system. The signal
imem_write_address was wrongly dimensioned. For the top of the index it was stated
ADDR_WIDTH + 1, but it should be ADDR_WIDTH - 1. The same was true in some other entries
of the file. We corrected all of them.

signal reset_s : std_logic := ’0’;

signal clk_half : std_logic := ’0’;

signal address_dr_s : std_logic_vector((DMEM_LOGDEP - 1) downto 0) := (others => ’0’);

signal address_dw_s : std_logic_vector((DMEM_LOGDEP - 1) downto 0) := (others => ’0’);

signal write_en_dm_s : std_logic_vector(3 downto 0);
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signal dm2rvex_data_s : std_logic_vector((DMEM_WIDTH - 1) downto 0);

signal rvex2dm_data_s : std_logic_vector((DMEM_WIDTH - 1) downto 0) := (others => ’0’);

signal done_s : std_logic := ’0’;

signal cycles_s : std_logic_vector(31 downto 0) := (others => ’0’);

signal address_uart_s : std_logic_vector((DMEM_LOGDEP - 1) downto 0) := (others => ’0’);

signal data_uart_s : std_logic_vector(31 downto 0);

signal flush_s, clear_s : std_logic := ’0’; -- flush for fetch stage

signal mpc_r : std_logic_vector((ADDR_WIDTH - 1) downto 0); -- pc to read instruction of i_mem

signal instr_s : std_logic_vector(127 downto 0) := (others => ’0’); -- instruction from i_mem

signal dmem_write_enable : std_logic_vector(3 downto 0);

signal dmem_address : std_logic_vector((DMEM_LOGDEP - 1) downto 0);

signal dmem_write_data : std_logic_vector(31 downto 0);

signal dmem_read_data : std_logic_vector(31 downto 0);

signal imem_write_address : std_logic_vector(ADDR_WIDTH - 1 downto 0);

signal imem_write_enable : std_logic;

signal imem_write_data : std_logic_vector(31 downto 0);

signal imem_read_data : std_logic_vector(31 downto 0);

signal status_data_out_s : std_logic_vector(31 downto 0);

The following variable was wrongfully defined:

imem_write_address <= mem_write_address(ADDR_WIDTH -1 downto 0);

It said ADDR_WIDTH + 1 and should be changed to the value shown above.

6-6-2 Expected Speedup for the Computation of one DFT Block

Due to the fact that the ρ-VEX does not produce results, it was not possible to determine
execution times for the partitioned application. However, we were able to determine the times
it took to load the data to the ρ-VEX as well as the time it took to retrieve the data from
the ρ-VEX. Together with the execution time obtained from simulating the execution of the
kernel on the ρ-VEX which computes the DFT computation of one block of data, we can
make an estimation of the speedup compared to the computation of the same block on the
MicroBlaze. In the table, see table 6-10, we have shown the results of writing and reading of
data from the ρ-VEX.

Direction Time [cycles]

To ρ-VEX 7841

From ρ-VEX 1305

Table 6-10: Transportation times between the MicroBlaze and the ρ-VEX.

From this data, together with the execution time obtained from the simulator we can deter-
mine an execution time for the computation of one DFT-block on the ρ-VEX, that includes
the transportation times of the data. The total execution time is:

total_execution_time = 7841 + 1305 + 754815 = 763961 cycles
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We have also determined the execution time for several blocks of data executed on the Mi-
croBlaze. This gave an average execution time of 603493 cycles. In table 6-11 we have shown
the execution times for one block on both the Microblaze and the ρ-VEX.

Processor Time [cycles]

MicroBlaze 603493 (average)

ρ-VEX 763961 (estimation on simulator)

ρ-VEX 530911 (optimized)

Table 6-11: Execution times for computing one DFT block on both the MicroBlaze and ρ-VEX.

We are now able to determine a speedup for the computation of one block of data based on
these results. Speedup is defined as [7]:

Speedup =
Execution_time_unaccelerated

Execution_time_accelerated

With this definition and the execution times in table 6-11 we obtain a speedup of:

Speedup =
603493

763961
= 0.7899

So, the results from the simulator suggest that we obtain no speedup with the ρ-VEX. With
the best optimization for the kernel we obtain an execution time of 521765 cycles. With the
times for transportation of data we get a total execution time of 530911 cycles, which results
in a speedup result of:

Speedup =
603493

530911
= 1.1367

So, in order to obtain a speedup we have to apply inlining and loop unrolling to the kernel
on the ρ-VEX. Although this speedup is modest it can result in a significant speedup for the
whole application because the DFT computations for the blocks of data is performed tens of
times for one wsq file, but the exact amount depends on the specific wsq file.

6-6-3 Determination of Actual Speedup

Because the ρ-VEX did not work, we were not able to obtain actual execution times for the
application. We wanted to measure the execution time of the minutiae extraction part of the
partitioned application in order to determine a speedup value. Furthermore, we wanted to
obtain the execution time of the complete application to compare this against the execution
time of 11 minutes and 23 seconds for the original application, which we described earlier.
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Chapter 7

Conclusions

In this bachelor thesis, it is presented how to accelerate the minutiae extraction process within
the big Fingerprint Verification Application using the ρ-VEX although this application also
appears to be a good choice to prove the quality of ρ-VEX. There are several steps that have
been taken to obtain the acceleration of the application. First, the application has been run on
the VEX simulator to analyze the effects of different issue widths on the execution time. The
results show that it is promising to concentrate the hardware design effort on 4 issue-width.
Second, the application has been profiled on the MicroBlaze soft core processor. The main
motive of this profiling was to determine which parts cost the most execution-time during the
minutiae extraction process. These parts of the application are going to be accelerated further.
The important reason of accelerating only the kernel part of the application is that the ρ-VEX
has not enough memory to execute the whole application since the fingerprint application is
a very big application. Also the FPGA board would be overload if the whole application
is tried to be accelerated at once. In order to make the fingerprint application running
on MicroBlaze and ρ-VEX, the application has been modified by removing the fprintf

and printf calls (libc call). After this adjustment, the application is ready to be run on
MicroBlaze. The profiling result shows that the function code sum_rot_blocks_rows2(. . .,
. . .) and long_int_math.c take the most execution time. The third step, this code which is
included in the folder mindtct has been implemented on the ρ-VEX processor and the result
has been used in the main application, running on MicroBlaze. When optimizing the kernel, it
is obvious that the application is accelerated using ρ-VEX. This has been proven in section 6.5.
The different compiler options have been evaluated in order to obtain the best acceleration.
Loop unrolling and inlining optimization methods give a substantial acceleration. Using loop
unrolling method indicates a factor of 1.1 faster than no loop unrolling. Inlining caused also
a substantial acceleration. This provide a relative speedup with factor 1.39 faster than before
inlining. The combination of loop unrolling with inlining gives the best acceleration (see Table
6-8) However, it increased the amount of instructions. With the ρ-VEX, only minimal speedup
can be obtained. With all optimizations applied we only obtained a speedup of 1.13 for the
computation of one DFT block. Speedup can still be obtained because in the application
several blocks are computed resulting in a cumulative reduction of execution cycles.
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Appendix A: Input converter

The original application opens a wsq-file and reads the contents, but with when the application
has to run on the Microblaze and ρ-VEX it cannot read the file because there is no file I/O
support on those platforms. A program in Python has been written that takes care of that.
It reads in a wsq file and outputs a C-source file called imagestub.c, containing the data
in the wsq file. This C-source file has to be included into the project and the data is put
into a memory block which is created for this purpose. The application has been modified
accordingly so that it no longer reads in the wsq file but instead uses the content of the filled
memory block.

1 #Programma om wsq-files in te lezen en om te zetten

#naar een C-source file waar de data in een

#array wordt gezet.

5 import sys

import os

from datetime import date

if len(sys.argv) != 2:

10 print ’Usage: python wsqconvert.py test.wsq’

sys.exit()

wsqpath = sys.argv[1]

15 try:

wsqfile = open(wsqpath, ’rb’)

except IOError:

print ’Could not find %s. Check spelling of name and path.’ % wsqpath

sys.exit()

20
print ’Reading:’, wsqpath

wsqdata = wsqfile.read()

wsqfile.close()

N = len(wsqdata)

25
(wsqpathhead, wsqpathtail) = os.path.split(wsqpath)

cfilepath = os.path.join(wsqpathhead, ’imagestub.c’)

cfile = open(cfilepath, ’w’)

30 now = date.today()

#Hier maken we de C-source file aan de hand van de data in wsqdata.

print ’Writing: imagestub.c...’,
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35 textblock = """/***********************************************************************

LIBRARY: IMAGE - Image Manipulation and Processing Routines

FILE: IMAGESTUB.C

AUTHOR: Automatically generated\n"""

40 cfile.write(textblock)

cfile.write(’WSQ FILE: ’ + wsqpathtail + ’\n’)

cfile.write(’DATE: ’ + now.strftime("%d %b %Y") + ’\n’)

45 textblock = """************************************************************************

Contains routines responsible for emulating reading a wsq compressed image from

a file.

************************************************************************/

50 static int fillArray(unsigned char *memptr);

/**********************************************************************

* Creates a block of memory and puts the content of a wsq-compressed

* image file into this block of memory.

55 * Emulates reading the corresponding file.

***********************************************************************/

"""

cfile.write(textblock)

60
textblock = """int fill_memory_with_raw(unsigned char **odata, int *ofsize)

{

int fsize;

unsigned char *idata;

65 """

cfile.write(textblock)

cfile.write(’ fsize = ’)

70 cfile.write(str(N))

cfile.write(’;\n’)

textblock = """

/* allocate bytes to store bytes of file*/

75 idata = malloc(fsize * sizeof(unsigned char));

if(idata == 0){

print("ERORR BUFFER NOT ALLOCATED fill_memory_with_raw : malloc : idata==0.");\n

return(-3);

}

80
fillArray(idata);

*odata = idata;

*ofsize = fsize;

85
return(0);

}\n\n"""

cfile.write(textblock)

90
textblock = """static void fillArray(unsigned char *memptr)\n"""

cfile.write(textblock)

95 cfile.write(’{\n’)

for i in xrange(N):

cfile.write(’\t*memptr = 0x%x;\n’ % ord(wsqdata[i]))

cfile.write(’\tmemptr++;\n’)

100
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cfile.write(’}’)

print ’Done.’

105 cfile.close()
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Appendix B: VEX Accelerator

1 /*

* vexaccelerator.c

*

* Created on: Jun 20, 2011

5 * Author: A.J.J. Regeer

*/

#define PTR_TO_DATA_ARRAY (0x00009400)

#define PTR_TO_POWERSGEHEUGEN (0x00009300)

10
#include "vexaccelerator.h"

#include "fixedpointmath.h"

#include "xparameters.h"

#include "rvex.h"

15 #include "compute_dft_prog.h"

#include "platform.h"

extern int debug;

static int kernel_done;

20

/*

De nieuwe vervangende functie voor sum_rot_block_rows2.

Start uiteindelijk een programma op de VEX waar dezelfde

25 berekeningen worden uitgevoerd. De functie schrijft de data

naar het geheugen van de VEX en wacht daarna totdat de VEX

klaar is. Daarna leest het de resultaten uit het geheugen van de

VEX en schrijft ze in powers. De definitie van powers is te vinden

in init.c in de folder mindtct.

30 */

int sum_rot_block_rows2_onVEX(const unsigned char *blkptr, ufp27p5_t **powers)

{

Xuint32 baseaddr, timeout;

RVexCtr *RVex;

35 int i,j;

unsigned int dword;

RVex = &RVexInstances[0];

baseaddr = RVex->BaseAddress;

40
/* Stop en Reset de VEX */

rvex_stop(RVex->BaseAddress);

rvex_reset(RVex->BaseAddress);

45 // Schrijf het data-blok naar de VEX

for (i = 0; i < 1156; i+=4){

// Maak het word dat naar het VEX-geheugen wordt geschreven.

// LET OP: Dit gaat er vanuit dat de VEX BIG ENDIAN is.
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//

50 dword = ((unsigned int)(blkptr[i]))<<24 |

((unsigned int)(blkptr[i+1]))<<16 |

((unsigned int)(blkptr[i+2]))<<8 |

((unsigned int)(blkptr[i+3]));

// schrijf naar datageheugen van rvex.

55 rvex_write_mem(RVex->DataMemAddress, (PTR_TO_DATA_ARRAY + i)/4, dword);

}

// Voer de kernel-task uit op de VEX

rvex_start(RVex->BaseAddress);

60
// Wacht voor resultaat in een loop

kernel_done = 0;

for (timeout = 0; timeout < RVEX_BREAK_TIMEOUT; timeout++)

{

65 if (RVex->Status & RVEX_DONE)

{

kernel_done = 1;

break; // Finished

}

70 }

// Indien fout dan terug met foutcode

if (kernel_done == 0)

{

75 print("Timeout bij Kernel!!!!\n");

return 1; // Return on Error

}

/* Stop de VEX */

80 rvex_stop(RVex->BaseAddress);

/* Als succesvol dan het resultaat uit geheugen van VEX schrijven naar powers. */

for (i = 0; i < 4; i++){

for (j = 0; j < 16; j++){

85 /* Read resonance coefficients from DMEM on VEX */

powers[i][j] = rvex_read_mem(RVex->DataMemAddress, PTR_TO_POWERSGEHEUGEN/4 + i*16 + j);

}

}

90 return 0; // success.

}

XStatus initialize_VEX(void)

{

95 Xuint32 baseaddr, result;

RVexCtr *RVex;

/* Initialiseer het platform: UART etc. */

init_platform();

100
/* Initialiseer het DFT-programma. */

RVexPrograms[0] = RVEX_PROG_computeDFT;

/* Initialiseer rvex-instantie: 0 */

105 RVexInstances[0].BaseAddress = XPAR_RVEX_PLB_WRAPPER_0_BASEADDR;

RVexInstances[0].DataMemAddress = XPAR_RVEX_PLB_WRAPPER_0_MEM0_BASEADDR;

RVexInstances[0].InstrMemAddress = XPAR_RVEX_PLB_WRAPPER_0_MEM1_BASEADDR;

RVexInstances[0].StatusMemAddress = XPAR_RVEX_PLB_WRAPPER_0_MEM2_BASEADDR;

RVexInstances[0].Status = 0;

110

RVex = &RVexInstances[0];

baseaddr = RVex->BaseAddress;
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115 /* Initialiseer de interrupts */

initialize_intc();

result = rvex_init_interrupts(RVex, XPAR_XPS_INTC_0_RVEX_PLB_WRAPPER_0_IP2INTC_IRPT_INTR);

if (result == XST_FAILURE) {

120 xil_printf("Interrupts initialization failed!\r\n");

return result;

}

else {

xil_printf("Interrupts initialization OK!\r\n");

125 }

/* Zet het programma in het geheugen van de VEX. */

if (rvex_setup(RVex, 0) == XST_FAILURE) {

xil_printf("\n\r VEX setup niet gelukt.\r\n");

130 return XST_FAILURE;

}

rvex_print_status(RVex);

135 if (debug > 0){

print("Initialisering van VEX gedaan.");

}

return XST_SUCCESS;

140 }
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Appendix C: Makefile for the VEX
program

1 CFLAGS = -S -fno-xnop -fexpand-div -fmm=pipe_1_4.mm

CC = ~/VEX-Tools/vex-3.43/bin/cc

DFTHEADERS = dft_lookup.h fixedpointmath.h fixedpointmathcode.h grid_lookup.h lfs.h long_int_math.h

5 MATHHEADERS = fixedpointmath.h

computeDFT : computeDFT.o long_int_math.o _start.o

~/BinTools/ld/ld-new -o computeDFT _start.o computeDFT.o long_int_math.o

10 computeDFT.s : computeDFT.c $(DFTHEADERS)

$(CC) $(CFLAGS) computeDFT.c

long_int_math.s : long_int_math.c $(MATHHEADERS)

$(CC) $(CFLAGS) long_int_math.c

15
computeDFT.o : computeDFT.s

~/BinTools/gas/as-new -o computeDFT.o computeDFT.s

long_int_math.o : long_int_math.s

20 ~/BinTools/gas/as-new -o long_int_math.o long_int_math.s

_start.o : _start.s

~/BinTools/gas/as-new -o _start.o _start.s

25 vhdl: computeDFT

~/BinTools/binutils/elf2vhd computeDFT

clean :

rm computeDFT computeDFT.s long_int_math.s computeDFT.o

30 long_int_math.o _start.o d_mem.vhd i_mem.vhd prog.h system_tb.vhd
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Appendix D: C source file
computeDFT.C

1 #include "lfs.h"

#include "dft_lookup.h"

#include "grid_lookup.h"

#include "fixedpointmath.h"

5
unsigned char data[1156];

ufp27p5_t *powersarrays[4];

ufp27p5_t powersgeheugen[64];

10 void sum_rot_block_rows2(const unsigned char *blkptr, ufp27p5_t **powers)

{

int i, ix, iy, gi, w, dir;

int rowsums[24];

fp15p17_t fp_cospart, fp_sinpart; /* FIXED-POINT */

15

/* Initialize rotation offset index */

gi = 0;

20 /* Foreach direction ... */

for(dir = 0; dir < 16; dir++)

{

/* Re-initialize rotation offset index. */

gi = 0;

25
/* For each row in block ... */

for(iy = 0; iy < 24; iy++)

{

/* The sums are accumlated along the rotated rows of the grid, */

30 /* so initialize row sum to 0. */

rowsums[iy] = 0;

/* Foreach column in block ... */

for(ix = 0; ix < 24; ix++) {

35 /* Accumulate pixel value at rotated grid position in image */

rowsums[iy] += *(blkptr + gridoffsets[gi + (dir * 576)]);

gi++;

}

}

40
/* Foreach DFT wave ... */

for(w = 0; w < 4; w++)

{ /* Initialize accumulators */

fp_cospart = 0; /* FIXED-POINT */
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45 fp_sinpart = 0; /* FIXED-POINT */

/* Accumulate cos and sin components of DFT. */

for(i = 0; i < 24; i++) {

/* Each rotated row sum is multiplied by its corresponding cos and sin point in DFT wave */

50 fp_cospart += mulfp15p17(itofp15p17(rowsums[i]),

dft_waves_cos[i + (w * 24)]); /* FIXED-POINT */

fp_sinpart += mulfp15p17(itofp15p17(rowsums[i]),

dft_waves_sin[i + (w * 24)]); /* FIXED-POINT */

}

55
/* Power is sum of squared cos and sin components */

powers[w][dir] = mulfp27p5(fp_cospart>>12, fp_cospart>>12) +

mulfp27p5(fp_sinpart>>12, fp_sinpart>>12); /* FIXED-POINT */

}

60 }

}

int main(void)

{

65 powersarrays[0] = &powersgeheugen[0];

powersarrays[1] = &powersgeheugen[16];

powersarrays[2] = &powersgeheugen[32];

powersarrays[3] = &powersgeheugen[48];

70 sum_rot_block_rows2(data, powersarrays);

return 0;

}
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Appendix E: Startup Assembler Code

1 .section .text

.proc

_start::

c0 add $r0.1 = $r0.0, 0xFF00

5 ;;

c0 call $l0.0 = main

;;

c0 stop

;;

10 c0 nop

;;

.endp

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



78 Appendix E: Startup Assembler Code

M.S.B. Purba, E. Yigit and A.J.J. Regeer Bachelor Thesis



Appendix F: Configuration File

1 # 4-issue vex default cluster

CFG: Debug 0

RES: IssueWidth 4

RES: MemLoad 1

5 RES: MemStore 1

RES: MemPft 1

RES: IssueWidth.0 4

RES: Alu.0 4

RES: Mpy.0 2

10 RES: CopySrc.0 2

RES: CopyDst.0 2

RES: Memory.0 1

DEL: AluR.0 2

DEL: Alu.0 2

15 DEL: CmpBr.0 2

DEL: CmpGr.0 2

DEL: Select.0 2

DEL: Multiply.0 2

DEL: Load.0 2

20 DEL: LoadLr.0 2

DEL: Store.0 2

DEL: Pft.0 2

DEL: Asm1L.0 2 ## user defined assembly intrinsics

DEL: Asm2L.0 2

25 DEL: Asm3L.0 2

DEL: Asm4L.0 2

DEL: Asm1H.0 2

DEL: Asm2H.0 2

DEL: Asm3H.0 2

30 DEL: Asm4H.0 2

DEL: CpGrBr.0 2

DEL: CpBrGr.0 2

DEL: CpGrLr.0 2

DEL: CpLrGr.0 2

35 DEL: Spill.0 2

DEL: Restore.0 2

DEL: RestoreLr.0 2

REG: $r0 62

REG: $b0 8

40

Bachelor Thesis M.S.B. Purba, E. Yigit and A.J.J. Regeer



80 Appendix F: Configuration File

M.S.B. Purba, E. Yigit and A.J.J. Regeer Bachelor Thesis


	Front Matter
	Cover Page
	Title Page
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Summary

	Main Matter
	Introduction
	Project Statement
	Workplan
	Thesis Layout

	Alternative Product Designs using the -VEX
	Chosen Product Design
	Program of Requirements
	Conclusion

	Embedded Systems Design
	Introduction
	Parallelism in Embedded Applications
	Distributed Embedded Systems
	Multiprocessor Platforms
	Heterogeneous Multiprocessor Platforms
	Hardware Accelerators
	Interconnection Networks and Memory Systems

	VLIW Architecture Approach
	VLIW CPUs
	ILP and VLIW Processors

	Hardware/Software Co-design
	Programs
	Relation between software, real-time performance and cost
	Compiler Optimization Techniques
	Improving code performance


	Minutiae Extraction Application
	Background
	Minutiae Extraction Process
	Image (Contrast) Enhancement
	Image Quality Analysis
	Binarization
	Minutiae Detection
	False Minutiae Removal
	Minutiae Quality Assessment

	The WSQ File Format
	Application Motivation
	Conclusions

	The Embedded Computing Platform
	Virtex-6 FPGA Board
	MicroBlaze
	The VEX System
	The VEX Instruction Set Architecture
	The VEX Implementation
	Previous Versions of the -VEX
	Organization of the -VEX

	The VEX Toolchain
	The Complete System
	Conclusion

	Hardware/Software Mapping
	Profiling the Minutiae Extraction Application on the VEX Simulator
	Description of Experiment
	Results and Interpretation

	Profiling on MicroBlaze
	Description of Experiment
	Running the Application on MicroBlaze
	Profiling the Application on MicroBlaze and Profiling Results

	Partitioning the Minutiae Extraction Application
	The Kernel Program on the -VEX
	Adaptations to the Main Application

	Finding the Right Configuration for the -VEX
	Optimizing the Software Program on -VEX
	Loop Unrolling
	Procedure Inlining
	Conclusion of Optimizing

	Running the Partitioned Application
	Encountered Problems
	Expected Speedup for the Computation of one DFT Block
	Determination of Actual Speedup


	Conclusions

	Back Matter
	Appendices
	Appendix A: Input converter
	Appendix B: VEX Accelerator
	Appendix C: Makefile for the VEX program
	Appendix D: C source file computeDFT.C
	Appendix E: Startup Assembler Code
	Appendix F: Configuration File


