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Abstract

Early design choices in building shape and fenestration significantly influ-
ence the yearly daylight performance of office buildings. Annual daylight
performance must be analyzed at the conceptual design stage to support
building form and fenestration design decisions. However, the simulation
modeling and daylight calculations necessary for the annual daylight fore-
cast are extraordinarily time-consuming, which negatively influences its early
design viability. Machine learning-based methods that experimentally learn
from simulation-derived data have been implemented to decrease the time of
daylight simulations. We concentrate on the visual comfort of working en-
vironments. This particular sort of area demands more visual comfort than
others. Four machine-learning methods are compared concerning their appli-
cability in spatial daylight autonomy, annual sunlight exposure, and spatially
disturbing glare. This research proposes a machine learning-based modeling
strategy for predicting yearly daylight performance early in the design stage.
The developed prediction model results for the sDA(Spatial Daylight Auton-
omy), ASE (Annual Sunlight exposure), and sDG(Spatial Disturbing Glare)
settings. After comparing the models for each output the best chosen model
attained R2 scores of 0.85, 0.65, and 0.26 and MAE scores of 3.33, 22.5, and
22.16, respectively.



Nomenclature

ASE Annual Sunlight Exposure

DA Daylight Autonomy

DGP Daylight Glare Probability

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MSE Mean Square Error

R2 Coefficient of Determination

RMSE Root Mean Square Erro

sDA Spatial Daylight Autonomy

sDG Spatial Disturbing Glare

SVM Support Vector Machine

UDI Useful Daylight Illuminance
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Chapter 1

Introduction

1.1 Context and Topic

Multidisciplinary optimization has demonstrated their use in assisting with
design decision-making. In the design informatics discipline within the stu-
dio, it is possible to explore AI for soft criteria in multi-objective and multi-
disciplinary architectural design optimization. In recent years, the use of ma-
chine learning approaches as a substitute for constructing simulation software
has increased. The purpose of this project is to evaluate machine learning
techniques for the prediction of daylight and visual comfort parameters.

The envelope of a building substantially impacts energy consumption, to
the degree that building facades account for more than 40% of heat loss in
winter and overheating in summer. (Yan, Li, Wang, & Lyu, 2019)Large glass
windows and curtain wall systems, commonly employed in office buildings,
can be severely influenced by direct solar radiation depending on the direc-
tion of the facade.(Yan et al., 2019). This makes them primarily reliant on
solar radiation, which might result in significant cooling demands during pe-
riods of extreme heat. On the other hand, As a result of high radiation and
glare, lighting energy has accounted for over 19% of total power consumption
(Light’s, 2006) , and more than 20% of the energy utilized in office buildings
(Ayoub, 2020). To escape such glare, building occupants typically close all
blinds and rely on artificial lighting, mechanical air ventilation, or air condi-
tioning, which significantly increase energy consumption (Reffat & Ahmad,
2020). Therefore, solar shading devices are required for maximizing and con-
trolling sun radiation entering offices. Moreover, in office buildings where
users cannot easily modify their position, optimal solar shading can improve
Indoor Environmental Quality and provide a productive work environment.

On the other hand, due to the potential impact on occupants’ productiv-
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ity and well-being, office buildings are increasingly addressing issues of visual
comfort and sufficient daylight. The quality and intensity of daylight vary
depending on building form, fenestration, material optical properties, geo-
graphical latitude, and local climate. High-performance design relies heavily
on the space’s visual comfort and daylight qualities, and designers can make
more informed decisions by predicting occupant preferences using established
metrics and thresholds.Also, accurate daylight predictions can support de-
sign decisions and help architects understand the relationship between design
variables and building daylight performance. In recent years, most of a build-
ing’s design decisions have been made during the preliminary design phase.
Since the early design stage offers the most significant possibility of achiev-
ing high-performance structures, designers must be able to collect relevant
building performance data (Echenagucia, Capozzoli, Cascone, & Sassone,
2015). Shading systems play a crucial role in the management of solar ra-
diation. Thus, selecting suitable shadings should occur early in the design
phase because it substantially impacts the building’s energy balance.

Despite shading systems’ massive impact on building performance, they
are primarily addressed during the detailed design phase or not extensively
modeled and analyzed during the early design phase. This questions early
space and window specifications. Shades should be chosen based on space and
window characteristics. To do so, the user must compare design options. Due
to simulation time and complexity, experts and businesses cannot provide
these facilities. This study offers a tool that uses AI to allow non-expert
users to choose from various possibilities and observe the repercussions of
their decisions in the shortest time possible during the early design stages.

1.2 State of the Art

Daylight can favor a person’s psychological and physiological health by acti-
vating the human circadian cycle, which can reduce depression, increase sleep
quality, reduce lethargy, and prevent disease.(Edwards & Torcellini, 2002).
On the other hand, Lighting prediction is crucial for building energy effi-
ciency. (Amasyali & El-Gohary, 2018). Incorporating daylighting solutions
that involve the controlled use of natural daylight within buildings is one of
the sustainable ways to improve energy efficiency while enhancing aesthetic
and thermal comfort (Nasrollahi & Shokri, 2016). Such factors become cru-
cial for architecture and building design. However, despite ongoing efforts to
integrate these strategies into the design process, the tools and professional
procedures now utilized to predict daylighting effectiveness in buildings are
impracticable (Nault, Moonen, Rey, & Andersen, 2017).
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(Ayoub, 2020) has referred to 5 different Methods for predicting day-
lighting in the literature, including diagrams (Millet, Adams, & Bedrick,
1980), scale models (Littlefair & Aizlewood, 1996), mathematical formu-
las (Tzempelikos & Athienitis, 2007)(Copping, 1987), protractors (Dufton,
1946), and rules of thumb (Reinhart & LoVerso, 2010) Newly developed
methods referred to as white-box or engineering have expanded traditional
practices to simulation-derived approaches (Ward, 1994) involving Daylight
Coefficient (DC) and Climate-Based Daylight Modelling (CBDM) (Reinhart
& Walkenhorst, 2001), (Mardaljevic, 2000). While the scale and complex-
ity of daylight simulation methodologies range from simple internal spaces to
complex facade fenestrations, they all share a standard set of steps (Reinhart,
Mardaljevic, & Rogers, 2006). They use physically-based simulation tools
to quantify spatiotemporal luminous conditions at given sensor grid points
in a constructed environment, On the other, machine learning-based algo-
rithms may predict annual daylight performance, Based on correlated vari-
ables. This is a potential method for enhancing the early efficiency of building
design. Numerous authors have combined machine learning and simulation
to predict annual daylight metrics. Furthermore, the building daylighting
simulation modeling process is time-consuming and laborious, creating a
divide between daylight performance evaluation and early design decision-
making, thereby limiting the potential benefits from performance evaluation
(Reinhart & Walkenhorst, 2001). However, machine learning-based algo-
rithms may forecast yearly daylight performance based on correlated data,
which is a potential strategy for enhancing the early design efficiency of
buildings. Light simulation software can overcome some physical model lim-
itations. Modern simulation software is more flexible and accurate than
real-world measurements. As models and computing power have improved
in recent decades, this has become a suitable choice. This approach’s high
computational cost may hinder conceptual design, where rapid feedback is
crucial. In the early stages of architectural design, a method that combines
accuracy, speed, and application simplicity is desirable. Machine Learning
offers new opportunities to extract information from data and better under-
stand eventual correlations. Such potential is not yet exploited in several
domains important for the built environments, such as visual comfort.
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1.3 Research Question

1.3.1 Problem Statement

There is a rising interest in computational daylight simulations as the most
accessible technique to gather accurate and exhaustive data on the lighting
conditions of buildings. The primary reason for using daylight simulation
technologies is to accelerate and test the design process early on. The de-
sign of the external shadings has a significant influence on indoor daylight
distribution. Designers need to conduct considerable simulation work to cal-
culate the daylight metrics and explore better alternative designs. However,
implementing daylighting and visual comfort simulation in the early design
process, where many vital decisions are made, is difficult, as many designers
usually ignore it due to the lack of time and the complex process of simula-
tions. In addition to speeding up daylight computations, computational tools
are the only reliable simulation approach. The recognition and application
of simulation-based daylighting techniques might be a powerful component
of a comprehensive building plan. The procedure is complicated and time-
consuming, which is one of the most significant disadvantages of using this
approach.

Using machine learning algorithms to predict daylight availability and
glare to reduce the time and costs of daylight computation in the early design
stages is not a new topic in the field. However, there is a gap in using AI
methods to predict visual comfort in the decision-making stage for solar
shading design. Studies have considered different daylight metrics to predict
daylight using machine learning methods. However, three daylight metrics
(sDA, ASE, and sDG) as performance metrics have not been fully explored.

Main Research Question

• How can machine learning algorithms be used as an assessment tool in
visual comfort prediction in early design stages based on different solar
shading designs?

Sub-Questions

• How can a facade system be assessed in terms of visual comfort?

• What are the requirements and parameters that characterize the Shad-
ing design in terms of visual comfort?

• What design approach could be best to avoid glare while simultaneously
optimizing the amount of daylight in the building?
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• Which machine learning algorithm is most suitable for capturing rela-
tions and similarities of different shading design?

• Which machine learning algorithm will result in higher accuracy in the
prediction of visual comfort?

• What are the differences in processing time and results from values
acquired by simulations and machine learning algorithms?

1.4 Method or Approach

In this thesis, a shoebox model was initially built, and then two typical so-
lar shading models with their respective variables were applied to the area.
For each solar shading, metrics related to daylight and glare were simulated.
The obtained data set consisted of office space with different shading designs,
which created a database containing 1000 options. The accompanying simu-
lation outcomes were used as training data for a supervised learning method.
Different determined metrics presented to optimal machine learning models,
including Random forest, L2 Regression, SVM, k Nearest Neighbor(kNN),
and Logistic Regression. The purpose is to compare differences in processing
time and results from values acquired by simulations and machine learning
algorithms. The machine learning training procedure should be performed
independently for each shading model and output. Since optimizing hyperpa-
rameters using the Gridsearch technique is very time-consuming, the above
methods were only studied on the dataset with louver shading. The follow-
ing methodology scheme (Figure 1.1) shows an overview of the structure in
which this research has been conducted.
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Figure 1.1: The methodology scheme

10



Chapter 2

Background

2.1 LEED and BREEAM Daylight Criteria

In regards to green building certification, such as Leadership in Energy
and Environmental Design (LEED) or Building Research Establishment En-
vironmental Assessment Method (BREEAM), daylight simulation is now
a requirement (Giarma, Tsikaloudaki, & Aravantinos, 2017). LEED and
BREEAM are critical criterion for future occupants to assess a building’s
sustainability level. The BREEAM certification standard is a British cer-
tification standard an the main focus is primarily on three aspects: envi-
ronmental (66%), social (29%) and economic (5%) aspects. However, The
LEED certification, is an American certification standard for green build-
ing certifications, which considers energy consumption, occupant comfort,
and other factors. It focuses on the environment (52%), the social (43%)
and the economy (5%) aspects. BREEAM and LEED are both credited for
quality views, interior lighting, and sufficient daylighting, 1.1% and 2.7% re-
spectively. However, when both certifications are compared, LEED is more
advanced in terms of daylight metrics, which are Spatial Daylight Autonomy
(sDA) and Annual Sunlight Exposure (ASE).(Giarma et al., 2017)

2.2 Annual Daylighting Performance Metrics

and Visual Comfort

There are multiple Daylight Performance Metrics, used by researches that
measure the various attributes of natural light, including glare, (Atzeri, Cap-
pelletti, Tzempelikos, & Gasparella, 2016), daylight availability, (Carlucci,
Causone, De Rosa, & Pagliano, 2015), and visual discomfort, in addition
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to the non-visual consequences of daylight, (Konis, 2017). Static and dy-
namic DPMs are classified depending on the analysis period (point-in-time
vs. yearly) and sky model (standard vs. climate-based), (Nabil & Mardalje-
vic, 2005). Dynamic metrics, including Useful Daylight Illuminance (UDI),
Daylight Autonomy (DA), Annual Sunlight Exposure (ASE), and Spatial
Daylight Autonomy (sDA), forecast absolute quantities, for instance, illu-
minance over an entire year. In addition to location and building orien-
tation, space geometry and material optical characteristics influence these
measurements.(Nabil & Mardaljevic, 2005).Recently, Illuminating Engineer-
ing Society (IES) presented definitions for sDA(Spatial Daylight Autonomy)
and ASE (Annual Sunlight Exposure) metrics (IES, 2013). The purpose of
these new climate-based metrics is to enhance the predictive performance of
old metrics, such as the Useful Daylight Illuminance. In this thesis the focus
is on sDA, DGP and ASE performance metrics.

2.2.1 Spatial Daylight Autonomy (sDA)

The first evidence-based yearly daylighting performance statistic is Light-
ing Measurement 83 (LM-83), which introduces Spatial Daylight Autonomy
and Annual Sunlight Exposure (ASE). The annual performance metrics were
developed for more precise measurement to provide designers with a guide
for achieving sufficient daylight illumination by the IES Daylight Metrics
Committee(LM, 2013). Using hourly illuminance grids on the horizontal
work plane, Spatial Daylight Autonomy (sDA) assesses whether a place re-
ceives adequate daylight yearly during regular operation hours (8 a.m. to
6 p.m.). According to the Approved Method IES- LM-83-121 (LM, 2013),
sDA is a dynamic metric for a precise daylight measurement. It describes
the annual sufficiency of interior ambient daylight levels. Floor areas or grid
points that reaches a certain amount of illumination (e.g. 300 lux) for at
least half of the analysis hours are considered to have met the daylighting
criteria in the building model. sDA values might be between 0% and 100%
of the concerned floor area. An sDA rating of 75% indicates a location where
daylighting is ”preferred” by the inhabitants; in this situation, occupants
would find the daylight levels adequate and able to function properly with-
out using artificial lights. When the sDA value is between 55 and 74 percent,
daylighting is ”accepted” by the occupants. Overall, designers should try to
attain sDA values of at least 55% in places where some daylight is required
and in spaces like open-plan offices, which are regularly occupied by at least
75%.
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Figure 2.1: The minimum illuminance in an office room. From: (Council,
2014)

sDA300/50% =
ΣiS(i)

Σipi
∈ [0, 1], S(i) =

{
1, if si ≥ τty,

0, if si < τty.
(2.1)

This dynamic daylight meter (sDA) is based on hourly measurements
with either manual or electrically operated window blinds, depending on
how much direct sunlight enters the area through windows to ensure visual
comfort. The blinds open and shut following the 2% regulation (LM, 2013).
When more than 2% of the analysis grid points get 1000 lux or higher (direct
sunshine), blinds for each window group will shut together until fewer than
2% receive direct sunlight. Windows must be classified before the position
of the blinds is set on an hourly basis.

Calculating the sDA requires simulation software that takes into account
the occupant’s behavior and interaction with blinds. LEED establishes a
minimum requirement of 300 lux for 50% of annual daylight hours over a
portion of the occupied area. Where sDA300/50% achieves a value of 75%, 3
points are awarded, 55% for 2 points, and 40% for 1 point. As an illustration
of spatial daylight autonomy,(Figure 2.2) depicts that 65% of the surface area
of a working plan at a height of 0.76m receives a minimum illuminance value
of 300 lux for at least 50% of the total annual operational hours from 8:00
to 18:00.(LM, 2013). It may be portrayed as follows:

sDA 50% ≥ 300lux(8 : 00− 18 : 00)

The sDA300lux/50% = 65%; therefore, this value exceeds the acceptable
threshold for sufficient daylight per LEED v4.1.
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Figure 2.2: An example that represents the Spatial Daylight Autonomy
(sDA). From:(Council, 2014)

2.2.2 Annual Sunlight Exposure (ASE)

According to IES- LM-83-12, Annual Sunlight Exposure (ASE) is a dynamic
daylight metric representing visual discomfort, glare, direct sunlight and
overheating inside a building. It is to assess the potential danger posed
by excessive sunlight. It details the percentage of each analysis grid that
has investigated an area that receives more direct sunlight than allowed for a
predetermined amount of operational hours each year without any additional
input from the sky.(LM, 2013) As an illustration of the Annual Sunlight Ex-
posure, (“Figure 2.3”) demonstrates that 8% of the surface area of a working
plan at a height of 0.76m receives daylight above the maximum recommended
illuminance value, which is 1000 lux, for more than 250 hours of the total
annual operational hours from 8:00 to 18:00. It can be represented as the
following: ASE 8% ≥ 1000lux(8 : 00− 18 : 00)(Nassimos etal.,2021)

ASE1000ux/250h equals 8% This value is below the acceptable visual
comfort threshold value for LEED v4.1, which is less than 10%.

ASE1000/250h =
ΣiA(i)

Σipi
∈ [0, 1], A(i) =

{
1, if ai ≥y,

0, if ai <y .
(2.2)

2.2.3 Discomfort Glare Probability (DGP)

According to (Carlucci et al., 2015), The Discomfort Glare Probability (DGP)
is a suggested short-term, local, one-tailed measure. in(Wienold & Christof-
fersen, 2005). This is its formulation:
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Figure 2.3: an example that represents the Annual Sunlight Exposure (ASE).
From:(Council, 2014)

Formula will be added

DGP = 5.87× 10−5.Ev +9.18× 10−2. log

(
1+

n∑
j=1

Ls.j
2.ωs.j

E1
v .87.P

2
j

)
+0.16 (2.3)

Where Ev is the vertical eye illuminance generated by the light source
(in lx), LS is the source’s luminance (in cd/m2), and s is the observed solid
angle of the source. P is the position index, which describes the variation
in uncomfortable glare related to the angular displacement (azimuth and
elevation) of the source from the observer’s line of sight. The equation is
applicable for DGP values between 0.2 and 0.8 and Ev levels over 380 lx.

The previously investigated glare indices only consider the contrast ratio
between the average brightness of the background and the luminance of the
glare source (Suk, Schiler, & Kensek, 2013). However, the DGP incorporates
an evaluation of the observer’s perception of illuminance, denoted by the
word Ev. Therefore, DGP has a more vital link with the user’s sense of
glare (Wienold & Christoffersen, 2005). According to (Suk et al., 2013),
this would be the optimal metric for analyzing fundamental glare problems.
In addition to the easy analytic computations required by the other glare
indices, the technique typically requires significantly more user effort and
computing time. There are several simplified versions of the formula, but
in this thesis, the simplified version of DGP by A study by (Wienold et
al., 2007) has proposed a simplified version of DGP where the logarithmic
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term depending on the local quantities (luminance and solid angle of the
source seen from the observation point) is neglected. They cannot be used
for absolute glare factor conditions that include a direct view of glare sources
in the observer’s field of view.

2.2.4 Spatial Disturbing Glare(sDG)

In this thesis the annual climate-based glare calculation is needed. As it is
defined by the climateStudio,(SolemmaLLC , 2020), The percentage of reg-
ularly occupied floor area views that experience Disturbing or Intolerable
Glare (DGP >38%) for at least 5% of occupied hours can be defined as
Spatial Disturbing Glare(sDG). The calculation is based on the hourly DGP
values for eight different view directions from each vantage point within the
building. The default view height is 1.2 metres above the ground (eye height
for a seated observer). The frequency of disturbing glare is represented in the
Rhino viewport by eight directional pie slices, with the colour representing
the frequency from 0% to 5%, as can be seen in the 2.4.

Figure 2.4: he frequency of disturbing glare. From:(SolemmaLLC , 2020)

16



2.3 Artificial Intelligence and Machine learn-

ing

Machine learning is a branch of computer science that examines statistical
models and algorithms that use a dataset’s variables to discover pertinent
spatiotemporal patterns and information. Machine learning provides com-
puter systems with new capabilities, as they can make rapid predictions from
newly input data without being explicitly programmed to do so (Mitchell,
1997). Machine learning searches sample training data to develop and formu-
late a mathematically-fit model, which maps the complicated relationships
between independent inputs and target outputs. Here, evaluation metrics
assess the performance of the model (Li & Lou, 2018).(Ayoub, 2020) has
categorised the machine learning process consists of the following steps: Be-
fore developing the model, (i) Data Collection involves acquiring pertinent
historical, experimental, observational, or simulation-derived data. The data
quality directly affects the accuracy of the predictive model. (ii) Data Prepa-
ration necessitates data standardization, scaling, and randomization, as the
ranges of data variables might vary greatly, altering how MLAs operate.
Randomization of data is also employed to prevent the order of input from
influencing learning. (iii) Data Exploration and Visualization employing sta-
tistical and visualization techniques are essential to evaluate if there are
meaningful associations between input variables and to uncover any data
imbalances so that the produced model is not skewed toward predicting a
specific range of variables. (iv) During Data Pre-Processing, the data are
divided into three sections. The first, the largest, is used for training the
model; the second is for testing or evaluating the model’s performance during
training; the third is for validating or fine-tuning MLAs(Machine Learning
Algorithms) hyperparameters to offer more performance improvements. Fi-
nally, (v) predictions are made, at which point the value of machine learning
is recognized. MLAs vary in technique, types of variables to manage, and
nature of problems to solve. Nonetheless, they can be divided into three
categories based on the learning technique: supervised, unsupervised, and
reinforced(Bishop & Nasrabadi, 2006)(“Figure 2.5”), each of which has its
benefits and disadvantages. Supervised learning examines potentially gen-
eralized dataset to construct a model that relates input variables to output
variables based on a training dataset containing many input-output pair-
ings. The model can then forecast variables of interest based on newly input
data. The supervised learning methods for classification and regression in-
clude MLR(Multiple Linear Regression), ANN(Artificial Neural Network),
SVM(Support Vector Machine), Nave Bayes (NB), DT(Decision Tree), and
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Figure 2.5: Different Categories of MLAs According to Learning Technique.
From:(Ayoub, 2020)

Random Forest (RF). Unsupervised learning identifies unknown patterns in
a dataset to recognize target variables without output data. The model sorts
unsorted data according to similarities, differences, and patterns. Unsuper-
vised learning algorithms for clustering, feature selection, and dimensionality
reduction include Hierarchical Clustering, K-means, and Principal Compo-
nent Analysis (PCA). In a dynamic context, reinforcement learning pursues
a specific objective without knowing if the model converges on the objec-
tive. It requires activity as input and creates a maximum expected reward
as output, with the process being driven by feedback from the environment.

2.4 Related Work

A review of existing research has been done in two sections for this study:
1.Parametric shading design. 2.Utilization of artificial intelligence to evaluate
the performance of shadings.

2.4.1 Parametric Shading Design and Optimization

The shade design technique used in this study is parametric design. Tools
for parametric design facilitate the modification of variables and let the user
view design variants in near real-time, record and compare them. Due to
the time implications of rewriting all model variants, optimization becomes
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a viable alternative for generating all iterative simulations in a single, more
precise procedure(López Ponce de Leon, 2016).

According to (Jalilzadehazhari, Johansson, Johansson, & Mahapatra,
2019), 34% of the 105 reviewed papers assessed the visual comfort perfor-
mance of different window and blind designs. By applying overhangs to an
office building with variables such as installation height, depth, tilt angle,
distance from the wall, and kind of glass,(Manzan, 2014) determined the pri-
mary energy and UDI100-2000lux (Useful Daylight Illuminance) for two cities
in Italy with contrasting climates. Trieste’s energy consumption decreased
by up to 19%, and Rome’s by up to 30%, due to using a unique strategy to
minimize primary energy. By optimizing factors such as number, breadth,
and tilt for the exterior louvers of a Sydney office building, (González & Fior-
ito, 2015) examined factors such as DA and UDI and yearly energy usage.
The findings demonstrated a 35% reduction in yearly energy usage relative
to the baseline scenario. The optimal design comprised 14 louvers with a
negative ten-degree slope and a depth of twenty centimeters.

(Manzan, 2014) generated optimum overhang models for two exposures
of an office building in Italy, with the following results: for the southern
exposure, a 20% reduction in energy consumption and a 90% UDI, and for the
southwestern exposure, a 23% decrease in energy consumption. In addition,
the usage of exterior shadings significantly decreased the time the interior
blinds had to operate by enhancing the quality of available natural light.

(Lee, Han, & Lee, 2016) employed optimization and simulation techniques
to determine the ideal shading design among models, including horizontal and
vertical louvers, two models of vertical panels with geometric patterns, and
random horizontal and vertical louvers. This study’s variable factors include
the angle of tilt of the louvers, the number of louvers, the depth of the louvers,
the number of window divisions, and the Window to wall ratio. The output
parameter represented the proportion of space area with DF between 2%
and 5%. The simulation approach determined that vertical louvers achieved
the most outstanding value (94%) among the six shade forms, while vertical
panels received the lowest value (65%). The optimization procedure yielded
results ranging from 44 to 86%. The horizontal louvers had the most value
(86%), whereas the vertical panel had the most negligible value (44%).

(Uribe, Veraand, & Bustamante, 2017) designed Venetian blinds with slat
angles of 0° and 45°, essential woven shade, and perforated screen panels in
three cities, considering factors such as glazing type, Window to wall ratio,
shading angle, etc. In Chile, Antofagasta, Santiago, and Punta Arenas, Win-
dow to wall ratio values of more than 90% were attained due to an increase
in daylight, which decreases lighting energy consumption. In Antofagasta,
single clear glass was selected; however, double clear glazing was preferred
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in two other cities. Because they give visual comfort, 45-degree louvers and
conventional woven shade were the optimal shading alternatives.

(Ishac & Nadim, 2021) established a fundamental model, sought an ef-
ficient solution, and verified the optimal solution [19]. The optimization
approach to evaluate the light shelves and vertical fins yielded the following
ideal alternatives: 1) In the south, a 120-centimeter exterior light shelf with
a 5-degree upward slope and an 80 cm inside light shelf. 2) In the east, a
120-centimeter exterior light shelf, an 80-centimeter interior light shelf, 20-
centimeter vertical fins, a -5-degree angle, and a 40-centimeter gap between
each fin. One or two shading models with restricted variable parameters have
been examined in the research, and the space-related factors have been con-
sidered fixed. Therefore the findings cannot be generalized. As previously
indicated, owing to the significance of shading characteristics and their in-
fluence on other space parameters, choices about these parameters should be
made concurrently and early in the design process. Moreover, the view and
cost analyses have been retained to analyze the performance of shadings.

2.4.2 Machine Learning Algorithms and Hyperparam-
eters

Because of their lack of complicated inputs, speed, low cost, and accu-
rate predictions, the building design community can use machine learning
algorithms.(Ayoub, 2020) assessed recent studies that used these algorithms
to predict the daylighting of spaces, the characteristics of the investigated
buildings, the algorithms used, the type of issues solved, the input parame-
ters, outputs, and error metrics.

Machine Learning Algorithms’ criteria may be implemented through prob-
lem categories, chosen MLAs and their hyperparameters, input parameters,
and output parameters. Previous research has identified three problem-type
categories: regression, classification, and clustering. The most commonly
used algorithms in previous studies, according to(Ayoub, 2020), were neural
network algorithm (ANN), multiple linear regression (MLR), and support
vector machine (SVM). The most commonly used output parameters are lu-
minance values, DA, and sDA, while the most commonly used error metrics
are, RMSE, PE, R2, and MSE.

Hyperparameters are parameters whose values regulate the learning pro-
cess and determine the model parameter values that a learning algorithm
eventually learns. According to the review paper from (Ayoub, 2020), Until
2012, only four MLAs (ANN, SVM, AR, and DT) were used to address regres-
sion issues, with the addition of NB to identify illumination types (Ahmed,
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Korres, Ploennigs, Elhadi, & Menzel, 2011). Later, MLR, RF, LSMR, DB-
SCAN, k-NN, and GPs were used to deal with regression, classification, and
clustering problems.

As ANN is the most commonly used MLA, its hyperparameters are also
the most commonly used: Hidden Neurons, Hidden Layers, Epochs, Activa-
tion Function, and Learning Rate are all examples of hidden neurons.

To produce accurate predictions using MLA, relevant data must be used
to build mathematically-fit models, which only apply to the data range from
which they were created. Once a model is built, it can quickly make predic-
tions. During the early design phases, basic building designs are repeatedly
updated to find optimal choices; data distribution is also modified. This may
alter outputs, making it challenging to generalize daylighting performance for
new designs. Machine learning models must be recreated and retrained with
new data. Transfer Learning across old and new data domains reduces time-
consuming tasks(Pan & Yang, 2009). Using MLAs as a holistic approach
to the single model output might be difficult since every performance out-
come requires a distinct procedure. Architects rarely use machine learning
(Khean, Fabbri, & Haeusler, 2018), but with more targeted implementations,
this would change.

2.4.3 Input and Output Parameters

Regarding the input parameters, as (Ayoub, 2020) reviewed, the evaluated
studies demonstrate that the selected parameters fall into two primary cat-
egories: external and internal. Climate Conditions; Temporal Settings; Ex-
ternal Obstructions; Building Physical Features, Openings, and Shading De-
vices; Occupancy and Sensor Data, which can be seen in the (“Figure 2.6”)
Some of the most commonly used input parameters are Orientation, win-
dow width, window height, room width, room length, room height, global
horizontal radiation, time of day, diffuse horizontal radiation, windows lo-
cation, sensor point identification, shading device, shading parameters, wall
material, floor material, ceiling material, and glazing properties.

According to the Literature most researches focused on predicting DA,
sDA300/50%, Daylight Glare Probability (DGP), Daylight Factor (DF), ASE1000/250h,
UDI, Continuous Daylight Autonomy (CDA) and CIE Glare Index (CGI).
The authorized technique of daylight metrics IES LM-83-12 (2012), released
by the IES in 2012, enhanced these temporal measures with sDA300/50% and
ASE1000/250h to account for spatial considerations. The values sDA300/50%
and ASE1000/250h indicate the proportion of an area that gets an appropri-
ate quantity of daylight and an excessive amount of sunshine, respectively.
sDA300/50% is the proportion of a space that meets the minimum goal illu-
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Figure 2.6: Different sets of input parameters to predict daylighting.
From:(Ayoub, 2020)

minance of 300 lx for 50% of the yearly occupied hours:
glare formula by introducing DGP, which combines vertical eye illumi-

nance with glare source brightness measured at the same location. DGP, like
other glare indices, needs the source’s brightness, size, and relative location.

2.4.4 Data Sources and Sizes

Data Sources, Sizes, and Temporal Granularities may be used to classify
the Data used for training and testing machine learning models. Two data
sources have been identified in prior research (Simulation-Derived and Field
Measurements). This thesis focused on simulation-derived datasets. Us-
ing simulation tools like DIVA-for-Rhino, Radiance, DAYSIM, Ecotect, Hon-
eybee, and ClimateStudio, the Simulation-derived data is used to create ma-
chine learning models that take into account both existing spaces and concep-
tual designs. The forms of simulated data used for machine learning include
training and test. As (Ayoub, 2020) has indicated, Simulation-Derived Train-
ing Data vary in size from 195 to 5400, and simulation-Derived Testing Data
ranges from 21 to 729. The average ratio between training and testing data
is roughly 3:1.

2.4.5 Evaluation metrics

After developing a machine learning model, evaluation metrics are used to
analyze its training and testing performance. Before forecasts can be made
for real-world applications, it is necessary to evaluate models to determine
their correctness. RMSE and MSE were utilized in most of the studied
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research that addressed regression problems as(Ayoub, 2020) studied.Both
measures emphasize outliers and extreme error values by squaring the dif-
ference between the anticipated and actual values before averaging. Since
the square term in RMSE, MSE, and MAE, and the absolute term in MAE,
cancel out negative errors, they do not show whether the model overesti-
mates or underestimates the predictions.(Le-Thanh, Nguyen-Thi-Viet, Lee,
& Nguyen-Xuan, 2022)

In contrast, other measures, such as PE and MBE, reveal positive and
negative errors. How outliers and excessive mistakes are handled determines
the best error measure. Each metric exposes distinct errors. MBE and MAE
are easier to read, but they do not contribute as much to model correctness.
MSE’s square component makes common errors quadratically larger than
RMSE, punishing the model for generating slightly off predictions. Thus,
MSE and MAE propose a significant penalty for a little mistake or a mod-
erate cost for a more significant error(Twomey & Smith, 1995). Since MSE
values increase, it becomes difficult to grasp how well a model works; thus,
RMSE is utilized in such situations, as it turns squared error values into
their initial unit, making them more straightforward to read and compare
with the original data. RMSE combines error magnitudes into a single num-
ber. Hence outliers must be eliminated from the dataset before using it.
*******formulas to be added

PE =
(ŷi − yi)

yi
100% (2.4)

MBE =
1

N

N∑
i=1

(ŷi − yi) (2.5)

MAE =
1

N

N∑
i=1

|ŷi − yi| (2.6)

MSE =
1

N

N∑
i=1

(ŷi − yi)
2 (2.7)

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (2.8)

R2 = 1−
∑N

i=1(ŷi − yi)
2∑N

i=1(yi − ȳi)2
(2.9)
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2.4.6 Machine-Learning Framework for daylight assess-
ments

In most studies, as (Daneshi, Fard, Zomorodian, & Tahsildoost, 2022) stated,
variable parameters were primarily related to space, such as window dimen-
sions, window orientation, space dimensions, obstruction dimensions, glazing
parameters, etc. In a few articles, including studies by: (Logar, Kristl, &
Škrjanc, 2014), (Ahmad, Hippolyte, Mourshed, & Rezgui, 2017), (Navada,
Adiga, & Kini, 2016), (Uribe et al., 2017) and (Verso, Mihaylov, Pellegrino,
& Pellerey, 2017),one or two typical shading models and a few variable pa-
rameters were assumed for each.

In research by (Nourkojouri, Zomorodian, Tahsildoost, & Shaghaghian,
2021), a machine learning system was created to predict daylight and visual
comfort parameters at the early phases of design. A dataset including 2,880
options was developed, with the room, window, and shade parameters. Useful
daylight illuminance, spatial daylight autonomy, mean daylight autonomy,
yearly sunlight exposure, spatial-visual discomfort, and view quality were the
outcomes. A neural network approach was used, and the average accuracy
of the predictions was projected to be 97%. In this study, a louver model
was tested with restricted parameters.

In a different research, Lin et al. [26] employed machine learning algo-
rithms to design facades and estimate daylight performance. For this pur-
pose, a parametric model of a vertical panel with properties such as Sky
Exposure, Sky View, Visible Rate, Sunlight Hours, etc., was created. A
database of 225 distinct facade conditions and 860 test surface points was
developed. The daylight model was then trained with an artificial neural
network and could estimate the DA and ASE hours per grid with excellent
precision using the test dataset (R2 values 0.91 and 0.88, respectively).

The averaged daylight autonomy (DA), daylight factor (DF), and day-
light glare probability (DGP) were predicted using ANNs by (Radziszewski
& Waczyńska, 2018), using a dataset of 2763 randomly selected office spaces
that were drawn from a distribution of seven normally distributed design
parameters. With speed increases of 31, 3, and 17 times, respectively, over
the Daysim simulation, this method produced percentage errors for DA, DF,
and DGP of 2.82 percent, 0.15 percent, and 1.06 percent. In order to pre-
dict DA for 28 identically sized rooms with various window sizes and loca-
tions, (Lorenz, Packianather, Spaeth, & Bleil De Souza, 2018) trained ANNs.
Daysim was used to generate a total of 2057 training samples, with the sen-
sor point coordinate, point id, window dimensions, and location serving as
inputs and the output being the DA at each sensor point. The findings re-
vealed that for four different test cases, the mean absolute error (MAE) and
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RMES varied from 2.71, 3.44 percent to 3.99 percent and 6.96 percent, re-
spectively. In two latter studies The numerous DA and DF metrics employed
in these works do not contain an upper limit of daylight illuminance to indi-
cate excessive daylight. In addition, averaged daylight metric was utilized to
describe a total room, which oversimplified the interior daylight dispersion
feature.

In a recent study conducted by (Ekici, Kazanasmaz, Turrin, Taşgetiren,
& Sariyildiz, 2021), MUZO methodology has been created which is focused
on the optimization problems and algorithms, results, and validation of the
method. As a case study, Berk has studied two shading designs, diagrid,
and quad-grid. He has considered DA and ASE as performance metrics.
The R2(How well the regression predictions match the actual data points) of
comparable research focusing on ML applications in daylight has been un-
dertaken to compare the accuracy findings offered for various design issues.
As he compared, there are promising results for DA, sDA, illumination level,
and useful daylight illuminance in the relevant literature. However, visual
comfort measurements such as daylight glare probability (DGP) have only
low accuracy for ML applications. Due to the difficulties in forecasting com-
fort measurements, this investigation obtained a similar result for the ASE
metric.
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Chapter 3

Machine Learning Based
Design tool

In this section, we would focus on data preparation and machine learning
algorithm selection. In the construction industry, data sources that influence
the energy performance of the built environment as well as the health and
well-being of residents are increasing. It is critical in machine learning to
understand what a dataset is, how to obtain it, and what characteristics
a valid dataset possesses. A dataset in machine learning is essentially a
collection of data points that can be handled by a computer for the purposes
of analysis and prediction. Because machines do not perceive data in the
same way that humans do, the collected data must be standardized and
machine-readable. After gathering the data, it must be preprocessed by
cleaning and finishing it, as well as annotated with machine-readable tags
containing useful information. The diagram of the main process can be seen
in the figure 3.1

3.1 Dataset Generation

The parametric model used the CimateStudio simulation programme v1.8.8244
for Rhino to simulate sDA, ASE, and DGP metrics using a weather data file
for Tehran at 32.4279° N, 53.6880° E. A shoe box model was simulated as can
be seen in the 3.2. Regarding the input settings of Climate Studio, the height
of the analysis surface is equivalent to the height of the user’s desk in the
office environment (0.76 meters), and the grid size is 0.6 meters.According to
(LM, 2013), the setup simulated sDA300/50% and ASE1000,250h. Accord-
ing to the software’s advice, the ab parameter was set to its default value
of 6, and 4094 samples were evaluated for each sensor. According to office
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Figure 3.1: Diagram Of The Main Process

hours, the occupancy time of users was assumed to be between 8am to 6pm.
Four different glazing type has been consider for the simulation with different
visual transmittance values that can be seen yin the figure 3.3

Figure 3.2: The Shoe box model used for daylight simulations
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Figure 3.3: Different glazing types used as input

Several fixed and variable factors have been established for the target
space, a Tehran office space. This area’s height ranges between 4 and 5. The
length (Y) and width (X) of the space remain constant which is 10 meter
x 10 meter. IES LM-83 (LM, 2013) determines the average material re-
flectance values of interior surfaces. Constant window characteristics include
the window sill, the window’s height, and the number of windows. Except
for space-related aspects, two typical shading models have been examined
for the opening: louvers and vertical panels, each of which has distinct char-
acteristics that have been applied independently to the area. Both variable
and fixed parameters have been provided for each item that can be seen in
the 3.5.Using the Colibri GH plugin, simulations were done parametrically
following parametric modeling and variable parameter.There are a total of
1000 for two different shading designs.The simulations and dataset creation
required ten days. A system with an Intel Corei7 processor with a 12 GB
Ram system ran concurrently for 16 hours daily. After simulations, the input
parameters and output data were sorted, classified, and readied for computer
programming. Figure 3.4 shows a summary of variables and their respective
ranges. The overall number of options is 1,000, with 500 for each shading
type.

Figure 3.4: Notions and boundaries of parameters used as input
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Figure 3.5: Shading parameters used as input

3.2 Statistical Data Analysis and Data Pre-

processing

3.2.1 Statistical Data Analysis

Statistical data analysis is a process involving the execution of a variety of
statistical processes. The primary objective of statistical data analysis is to
identify patterns. Statistical approaches aid in correlating, organizing, and
interpreting data, and statistical analysis reveals the underlying patterns
in a data set; correlation, for instance, demonstrates a link between two
variables(Sheuly et al., 2021). As a part of this framework, it is essential to
understand data structures and to know if any pre-processing for the data
set is needed, such as scaling. For this purpose, some statistical analysis
has been done for the produced dataset such as: univariate analysis, which
can be seen in Fig 3.6,3.7, and 3.8, showing the range and distribution of
sDA, ASE, sDG values. According to Fig 3.6, sDA values follow the normal
distribution within the range of [40, 100]. Fig 3.7 and 3.8 shows ASE and
sDG somehow follows the pattern of skewed normal distribution with some
outliers within the range of [10, 46] and [10, 38] accordingly.

Besides, three parallel coordinates plots on all variables in the dataset
colored by ASE, sDG and sDA can be seen in Fig 3.9, 3.10 and 3.11 ac-
cordingly. These plots show how different combinations of values for other
variables result in specific values for each target variable (ASE, sDG and
sDA).
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Figure 3.6: Univariate analysis on
sDA

Figure 3.7: Univariate analysis on
ASE

Figure 3.8: Univariate analysis on
sDG

Figure 3.9: Parallel coordinates plot on 24 variables, colored by ASE

3.2.2 Data Scaling

The construction of Machine learning algorithms starts with data reading
and scaling, typically involving parameters with multiple units and metrics.
Scaling the dataset bring all inputs and outputs inside the same bounds after
the reading process. In this research, the min-max scaling approach is used

30



Figure 3.10: Parallel coordinates plot on 24 variables, colored by sDG

Figure 3.11: Parallel coordinates plot on 24 variables, colored by sDA

to properly normalize the training data to train the estimation model. This
method helps the model to learn faster and more precisely. For min-max
scaling, data are normalized as follows:

x′
i =

xi–min

max–min
(3.1)

xi is the original value of x and x′
i is the new value of x after applying

the min-max scaling.

3.2.3 Feature Generation: Visual Comfort

A new feature is generated based on ASE, sDA and sDG, called as Visual
Comfort. The threshold is defined as follows:
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Visual Comfort =


”Preferred”, if sDA > 55 & ASE < 20 & sDG < 12.5,

”Neutral”, if sDA ≤ 55 & ASE < 30 & sDG < 15,

”Acceptable”, if sDA ≤ 55 & ASE < 35 & sDG < 20,

”Unacceptable”, Otherwise

(3.2)
Four different visual comfort levels is defined as preferred, neutral, ac-

ceptable and unacceptable. The histogram of visual comfort variable can be
seen in Fig 3.12. These levels will be used in Chapter 4.5.

Figure 3.12: Visual comfort categories generated by ASE, sDG and sDA

3.3 Machine Learning Algorithm Selection and

Model Training

According to the problem structure, a supervised learning strategy was used
throughout the study. The following research is based on different MLAs
such as Random forest, L2 Regression, SVM, k-Nearest Neighbor(kNN), and
Logistic Regression responding to the gathered data structure and problem.
An overview of the machine learning frame work is shown in the figure ??

3.4 Hyperparameter Optimization

Several strategies, such as random search, grid search, manual search, Bayesian
optimization, etc., may be used to choose model parameters. GridSearchCV,
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Figure 3.13: Diagram Of The Machine Learning Framework

which employs the Grid Search approach to determine the ideal hyperpa-
rameters to improve model performance, has been used in this thesis. Each
machine learning model has different hyperparameter optimization method.
A random forest consists of many decision trees. This means a Random
Forest comprises several trees arranged in a ”random” manner. Each tree is
constructed from a unique subset of rows, and at each node, a special subset
of characteristics is chosen for splitting. Each tree makes its prediction. The
average of these forecasts is then used to give a single outcome.

Decision trees effectively discover nonlinear connections between input
characteristics and the goal variable. A Decision Tree may be seen as a
collection of if-then circumstances. It starts with a single node at the very
top. This node then divides into two decision nodes, a left, and a right.
Then, these nodes are separated into their respective left and right nodes. ??
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Figure 3.14: Decision tree in the Random forest model, A Random Forest
Regressor prediction is the average of the forecasts generated by the forest’s
trees.
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Chapter 4

Evaluation

In this chapter the final results of different machine learning models, their
hyperparameters and the error distributions will be discussed.

4.1 Objective

In this chapter we aim to find the optimal machine learning model for pre-
dicting sDA, ASE, sDG and the visual comfort.

i. Step 1: Dataset preparation

4.2 sDA prediction

For predicting sDA value, 3 Machine learning algorithm has been chosen,
Random forest, L2 Regression, and k-Nearest Neighbors. The optimal model
is selected based on the grid search results at this stage. The criteria are the
highest R2 with the lowest MAE and MSE. The results of these evaluation
metrics can be found in the Table 4.1.

Figure 4.1: The comparison of different evaluation metrics for sDA Prediction

According to this table, we can see that the L2 Regression model has out-
performed the other two models, with R2=0.86. Based on literature(Ayoub,
2020), the value of R2 above 0.65, qualifies as a “good” result.
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In the L2 Regression model, the hyperparameter we tried to optimize
based on grid search optimization is the alpha. The best alpha value using
grid search equals 0.1, which can be seen in the graph. 4.2, resulting the
R2=0.86.

Figure 4.2: Hyperparameter optimization for L2 regression in sDA prediction

According to L2 Regression, the top 7 most essential variables in sDA
prediction coefficients can be seen in 4.3. The positive coefficient, which can
be seen in the green color, has a positive effect on the target variable, which
means the greater the value of these variables is, the greater the sDA is.The
following sensitive parameters are the Width of vertical devices, Length of
vertical devices, the height of the room, and the glazing types which have
the most effect on predicting the target variable, sDA.

Figure 4.3: Regression Coefficient for L2 regression model in sDA prediction

The difference between predicted and actual values can be seen for dif-
ferent outputs and the associated error. It can be seen in the 4.4. Ideally,
the error values should be centered around zero. As shown in 4.5, around
70% of the test data set has the error in the range of[-4,4]. It means that
the model can predict sDA values 70% of the time with the estimation of
±4 correctvalues.
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Figure 4.4: Scatter plot for sDA prediction, the differences between predicted
and actual value can be seen in this plot

Figure 4.5: Error distribution for sDA prediction

4.3 ASE prediction

Same as sDA,for predicting ASE value, 3 Machine learning algorithm Ran-
dom forest, L2 regression, and k-Nearest Neighbors have been selected. The
best model is chosen based on the grid search results. The criteria is the
highest R2 with the lowest MAE and MSE. The outcomes of these assess-
ment measures may be seen in the Table 4.6. According to this table, we can
see that the Random forest model has outperformed the other two models,
with R2=0.67.

Figure 4.6: The comparison of different evaluation metrics for ASE Prediction
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In the Random forest model, the hyperparameter we tried to optimize
based on grid search optimization is maximum depth. The best max-depth
value using grid search equals to 15, which can be seen in the graph. 4.7,
resulting the R2=0.67.

Figure 4.7: Hyperparameter optimization for Random forest in ASE predic-
tion

According to Random forest, the top 5 most important variables in ASE
prediction coefficients can be seen in 4.8. These variables have the most
significant effect on the target variable. The following sensitive parameters
are the Rotation of vertical devices on the North, South, west, and east sides
and the length of vertical shading devices.

Figure 4.8: Variable importance in ASE prediction

The difference between predicted and actual values can be seen for dif-
ferent outputs and the associated error. It can be seen in the 4.9. Ideally,
the error values should be centered around zero. As shown in 4.10, around
63% of the test data set has the error in the range of[-4,4]. It means that
the model can predict ASE values 63% of the time with the estimation of
±4 correctvalues.
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Figure 4.9: Scatter plot for ASE prediction, the differences between predicted
and actual value can be seen

Figure 4.10: Error distribution for ASE prediction

4.4 sDG prediction

For predicting sDG, 3 Machine learning algorithms, Random forest, L2 re-
gression, and k-Nearest Neighbors have been selected. Same as the two pre-
vious outputs, the best model is chosen based on the grid search results. The
criteria are the highest R2 with the lowest MAE and MSE. The outcomes of
these assessment measures may be seen in the Table 4.6. According to this
table, we can see that the Random forest model has outperformed the other
two models, with R2=0.25.

The hyperparameter optimization for sDG is the same as ASE. the hyper-
parameter we tried to optimize based on grid search optimization is maximum
depth. The best max-depth value using grid search equals 6, which can be
seen in the graph. 4.12, resulting the R2=0.25. The R2 value for sDG is
low, although Regression models with low R2 values can be good models for
several reasons; in this research, more study is needed to understand the cor-
relations between the variables and sDG, As sDG has not been thoroughly
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Figure 4.11: The comparison of different evaluation metrics for sDG Predic-
tion

studied in the literature. But some reasons for low R squared value can be:
(i) The data might be contaminated by outliers, inconsistent measurements,
or ambiguities in what is being measured,; (ii), We may require a large sam-
ple to achieve in the presence of low correlations. The scatter plot of actual
and predicted values for sDG can be seen in 4.13.

Figure 4.12: Hyperparameter optimization for Random forest in sDG pre-
diction

Figure 4.13: The scatter plot of actual and predicted values for sDG
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4.5 Visual Comfort prediction

As mentioned in the previous chapter, Considering sDA, ASE and sDG, we
have defined a new feature that classifies visual comfort into four categories:
Preferred, neutral, acceptable, and unacceptable. In this model, the output
prediction would be one of those above. Random forest, L2 Regression, k
Nearest Neighbors, and SVM have been tested. Random forest with the ROC
AUC value of 0.873 has outperformed the others. The confusion matrix of
the visual comfort can be seen in ??

Figure 4.14: Confusion matrix for predicted and actual values

According to Random forest, the top 5 most important variables in vi-
sual comfort prediction can be seen in 4.15. These variables have the most
significant effect on the target variable. The following sensitive parameters
are the Rotation of vertical devices on the North, the width of the shading
device on the North, length of vertical devices on the north and east sides.

This density graph 4.16 demonstrates the model’s success in classifying
(and identifying) the data (e.g., 1 and 0 for binary classification). It displays
the distribution of the test dataset’s actual classes following the model’s
projected likelihood that a given class would be encountered. In contrast to
rows that do not truly belong to the observed class, the two density functions
display the probability density of rows in the test dataset. A perfect model
entirely separates the density functions: the colored areas should not overlap
the density function of not Acceptable should be entirely on the left the
density function of Acceptable should be entirely on the right The dotted
vertical lines mark the medians.
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Figure 4.15: Variable importance in visual comfort prediction

4.6 Discussion

This study demonstrates that artificial intelligence can perform assessment
and decision-making among many design possibilities, which was previously
challenging and expensive. Due to varying constraints of space, window, and
neighborhood, designing shading may be a complex undertaking. The sug-
gested framework would enable the user to make choices of these in the early
phases of design with acceptable precision and speed. One thousand distinct
alternatives were introduced to machine learning algorithms to accomplish
this, and the resulting learning model could predict outputs with high ac-
curacy. Due to the various parameters, those having the most significant
effect on the outcomes were highlighted. This analysis considered a single
office space in Tehran with various variable factors based on review studies;
nonetheless, this study did not address many parameters. For instance, the
space may be investigated in multiple climates and sizes. Additionally, vari-
ous models of exterior or interior shadings, such as blinds, may be explored.
In addition, the materials used in this study were the recommended standard
materials, although the material reflectance value has the potential to be a
proper parameter. As for the neighborhood, just one structure was modeled
in front of the entrance; this size may be increased. - In this investigation,
ASE, sDA, and sDG were employed to assess visual outcomes. Other visual
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Figure 4.16: the density function of ”not Acceptable” and the density func-
tion of ”Acceptable”

comfort measures, such as DGP, may also be estimated, particularly for more
precise glare measurement. The DGP measure may be evaluated for hours
of the year with the highest amount of illumination in each direction. Addi-
tionally, it would be good to share inside photographs. In addition, Shading
design substantially influences energy usage, particularly cooling and light-
ing energy; therefore, measuring energy-related metrics may assist users in
making more informed selections. Other performance comparison indicators,
such as the percentage of improvement for sDA or ASE relative to the state
without shading, may also facilitate decision-making. - In this work, simula-
tion and optimization techniques were used to generate and develop datasets.
There are several methods for validating a machine learning model, and this
study used the train and test split technique. In addition, a new database
may be constructed outside the assumed range for each parameter, and the
estimation accuracy of the learning model can be evaluated. The anticipated
parameter range may be expanded if acceptable precision is attained.
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4.6.1 Design scenario application

It is crucial to underline that the goal of using machine-learning models in the
design process should be to enhance early-stage decision-making(Wilkinson,
Hanna, Hesselgren, & Mueller, 2013). In order to demonstrate the potential
contribution of approximation techniques to building design, an application
aiming at aiding the early design decision-making process will be shown.
Consider the next design difficulty: To design an office space module for
a new building with static shading, the glazing type, rotation angle, and
size of shading devices must be specified. Given these presumptions, we
strive to find the ideal lighting and comfort conditions for as much of the
office interior as feasible in terms of shading parameters. In other words, we
aim to choose a window treatment that will allow sufficient sunshine while
reducing glare. This assignment might benefit from a quick evaluation of the
sDA, ASE, and sDG values at different office locations and layouts. Despite
the fact that estimating precision should not be the primary priority during
the conceptual design phase, it is acceptable to sacrifice precision in return
for substantial time savings. Thus, the designer is able to adjust other design
elements, such as the office’s dimensions, glass type, and viewing position,
and obtain instantaneous feedback on the new design’s circumstances.In an
alternative investigation into the impact of different shading design on the
annual daylight, designer can decide about the design results. At this stage,
attaining the aforementioned outcomes requires the usage of specialist tools,
which the designer may not have access to or expertise with. This is due to
the fact that the described framework approach has not yet been included into
a design environment. A product based on the suggested approach could be
incorporated into parametric design environments or as a web-based platform
which could replace the conventional simulations.

As an example, The designer can benefit from the pre-processing results
in the design. Figure 4.17 shows a What-if scenario in a designed dash board
from the prediction results. Here, the designer can see what are the most
influential features for ASE. In this case it is x15, the rotation of vertical
devices. On the left slider in this figure , one can change any input variable
and see what is the result on the ASE prediction.

In the figure 4.18 it can be seen what is the corresponding input to get
the min value for ASE, which we aim for.Figure 4.19 shows the possibility of
Freezing all variables with the reference value and search for the Minimum
ASE Prediction Based on only one Values. The same dashboards for other
metrics has been designed and can be found in the appendix.
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Figure 4.17: What-if Scenarios for ASE Prediction

Figure 4.18: The corresponding input to get the min value for ASE
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Figure 4.19: Minimum ASE Prediction Based on x2 Values
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Chapter 5

Conclusion

This thesis develops a framework based on machine learning models that can
be used to predict daylight and visual comfort, considering static solar shad-
ings and evaluating their performance. As shading, space, and openings are
integrated, design parameters are related to these elements, while evaluation
metrics focus on daylight and glare. Simulated and estimated outputs for two
different shading models applied to a single shoebox space. Machine learning
results indicated that sDA (Spatial Daylight Autonomy) and ASE (Annual
Sunlight Exposure) could be predicted with high accuracy and speed by the
optimal estimation model, which was the L2 Regression and random forest
model, respectively. The R2 value for the sDG (Spatial Disturbing Glare)
was lower than the two other metrics. This procedure could form a tool ca-
pable of overcoming the current costly and time-consuming methods and can
be used for designing and evaluating the majority of solar shading options
for various spaces at the early stages of design.

5.1 Limitations and future development

To provide more precise and trustworthy information, it seems considerable
to indicate the limitations present in the study, together with recommenda-
tions for future researches.

• The main limitation relates to the nature of the dataset creation pro-
cess. Designing for daylighting performance is a complicated task
mainly based on simulation-derived analyses. It is suggested that future
studies develop indoor illuminance predictive models based on accurate
field data from multiple buildings with different design configurations.

• The current study considered daylight performance in a shoe-box model
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with limited space, which is not necessarily a general representation of
many built working spaces. Future studies should attempt to establish
a prototype model that can be used for daylight studies on the scale
of the whole building. Automating the transfer of Machine learning
results to existing interfaces for visualization and feedback can facilitate
design exploration and user interaction with the results.

• The dataset lacks sufficient interior and exterior parameters. This lack
of capabilities prevents the framework from supporting diverse design
scenarios. Future research should train ML-based models with a more
comprehensive dataset.

• The annual enhanced simplified DGP simulations were conducted util-
ising the new subprogram developed by (SolemmaLLC , 2020).The sDG
and its correlation to other features have not been studied thoroughly
in the literature. More understanding regarding this would enhance
the better prediction results.
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Chapter 6

Reflection

This is a reflection on the graduation thesis with the topic: Machine learning-
based assessment tool for predicting daylight and visual comfort. Multi-
disciplinary optimization has demonstrated its use in assisting with design
decision-making. In the design informatics discipline within the studio, it was
possible to explore AI in multi-objective and multidisciplinary architectural
design optimization.

Research Method and Approach

he result of the project is a machine learning model to predict visual comfort
and annual daylight metrics in the early design stages. This is achieved using
a research methodology consisting of five phases: The research framework
phase, literature review phase, data gathering phase, data processing phase,
training the machine learning model phase, and result phase. All the stages
play a role in achieving the result. A background study is the first step in the
research framework. The problem statement identifies the main issue that
needs to be addressed, followed by the research objective to help solve the
problem. A research question is formulated with various sub-questions based
on this framework to define the research in steps. Literature Review provides
all necessary information about the topic required to proceed further in the
research. The categories into which these topics were divided are

• The state of the art of machine learning models for personal comfort

• Understanding the fundamentals of light and visual comfort

• Understanding the principles of data gathering for daylight metrics.
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In the first stage of this research, the aim was to predict the visual prefer-
ence of occupants based on different parameters, which included occupants
subjective criteria, Occupants’ feedback about their visual/privacy comfort
(through questionnaires) corresponding to their location. After gathering
data from the questionnaire, it turns out that the daylight and shading de-
sign criteria were the most important for the occupants. The location played
a role mainly in the case that the location had any direct sunlight or view
outside. As the research goal was visual comfort prediction using machine
learning methods, and the dataset plays the most critical role in the machine
learning models, collecting thousands of data using only questionnaires was
not possible for this thesis. As a result, based on the conclusions from 50 re-
sponses gathered in two weeks in the Tu Delft library, the main question was
changed to objective criteria instead of subjective criteria to predict visual
comfort.

A shoebox model was first constructed, and then two conventional solar
shading models, each with their own set of variables, were applied to the area.
Three main daylight metrics were chosen, such as sDA(spatial daylight au-
tonomy), ASE(Annual sunlight exposure), and sDG(spatial disturbing glare)
was simulated by ClimateStudio, which is an advanced daylighting simula-
tion tool. The data set, which included multiple shading designs for office
spaces and a database with 1000 possibilities, was used as training data for
a supervised learning method. The data have been pre-proceed, and the ma-
chine learning algorithm based on the data type has been chosen for daylight
features. The machine learning model was trained with simulation data to
predict occupants’ visual comfort with annual daylight metrics. In the end,
the model’s accuracy was tested to predict the visual preference of a group
of occupants.

Project Relevancy

Daylighting is a major theoretical inquiry since Le Corbusier emphasized
the topic’s relevance as one of three critical requirements throughout the
design of projects. The most sophisticated study on thermal comfort and
microclimate demonstrates its effect on occupants’ comfort conditions fol-
lowing sustainable architectural design principles. The most recent results
in the physiology study a favorable long-term influence of daylight on indi-
vidual well-being as it regulates the circadian rhythm. The significance of
implementing optimal daylighting practices in buildings has increased inter-
est in computational daylight simulations, which have become the most ac-
cessible method for evaluating interior lighting conditions. However, during
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the master’s thesis, I discovered that this procedure is time-consuming and
costly. The study’s primary objective is to investigate AI potentials to lower
the time required for computational calculations and 3D model preparation.
This thesis addresses the possibility of substituting a simulation engine with
an algorithm for machine learning. As the literature review is built upon
studies from other disciplines, such as computer science, its interpretation
through Building Technology relates to contemporary discussions of AI and
architecture. This means the project uses knowledge formulated from ex-
ternal disciplines to an alternative design strategy. Therefore the project is
relevant in academic and general discussions.

Difficulty in the process and final phase

A lot of background knowledge in computer science was required for this
topic, so the research and learning phase was quite long. Another challenge
was the data gathering. Machine learning models require a massive amount
of data to be most optimized. Gathering that amount of data with an average
laptop is challenging, so a smaller dataset was gathered to train the models.
In the final part of the graduation period, the spatial disturbing glare(sDG)
needs to be investigated more to understand its correlation with other inputs
used in the thesis.
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I. S. (2021). Multi-zone optimisation of high-rise buildings using ar-
tificial intelligence for sustainable metropolises. part 2: Optimisation
problems, algorithms, results, and method validation. Solar Energy ,
224 , 309–326.

Giarma, C., Tsikaloudaki, K., & Aravantinos, D. (2017). Daylighting and vi-
sual comfort in buildings’ environmental performance assessment tools:
A critical review. Procedia Environmental Sciences , 38 , 522–529.
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Appendix

A visualization of histogram on visual comfort can be seen here.

Figure 1: A visualization of histogram on visual comfort

What-if scenario dashboards for sDA and sDG can be seen bellow.
Samples of generated data from grasshopper and climatestudio.
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Figure 2: What-if scenario for sDA
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Figure 3: What-if scenario for sDA
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Figure 4: What-if Scenarios for Maximum sDA Prediction Based on x3 Values
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Figure 5: What-if Scenarios for Maximum sDG Prediction Based on x15
Values
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Figure 6: data generated from grasshopper and climatestudio
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Figure 7: Project timeline
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