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The material behaviour of concrete at elevated temperatures is highly nonlinear since thermal
dilatation, temperature-dependent material properties, transient creep and cracking all play an
important role. For reinforced and prestressed concrete structures there is the added complication that
the material properties of the reinforcing steel are also a strongly nonlinear function of the tempera-
ture. In this contribution an algorithm is developed which treats these phenomena in a unified concept.
It includes a generalised mid-point rule as a time integrator, the accuracy of which has been assessed
for forward, fully backward and mid-point integration strategies. Proper linearisation moduli have been
set up which ensure that the algorithm converges quadratically on a structural level if Newton’s method
is used. The model has been tested against some tests on plain concrete specimens and has been
compared with an experiment on a one-way reinforced concrete slab.

1. Introduction

The behaviour of concrete structures that are exposed to thermal loading is an issue of great
practical importance. Indeed, a considerable amount of literature exists with regard to the
behaviour of plain concrete as well as reinforcement at elevated temperatures [1-9]. Also, a
significant number of structural tests are known in which for instance slabs have been brought
to failure by exposing them to extreme thermal conditions, e.g. [10]. In consideration of the
modern trend to predict the behaviour of structures under extreme circumstances by numeri-
cal techniques rather than simulating the behaviour in scale tests it is surprising that numerical
simulations are virtually absent in the literature. Only a few contributions have been published
which consider numerical simulations of concrete structures under thermal loading, e.g.
[11,12]. This paucity is probably a silent testimony to the difficulties that are involved in
properly carrying out such analyses, which obviously must account for cracking, degradation
of elastic and inelastic properties with increasing temperature, thermal dilatation, transient
creep and yielding of the reinforcement. Most phenomena that are mentioned in the above
enumeration may already present considerable numerical difficulties alone. A proper combi-
nation of them presents a major challenge to the analyst.

It is the writers’ conviction that numerical predictions of large-scale concrete structures such
as storage tanks for liquid natural gas are only feasible when a smeared formulation is used for
cracking. The classical approach to smeared cracking as pioneered by Rashid [13] and Suidan
and Schnobrich [14] then immediately presents difficulties, since it is not well suited for
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combination with other nonlinear phenomena, e.g., transient creep, thermal dilatation and
degradation of the elastic moduli. Indeed, the use of modern fracture mechanics tools for
controlling crack propagation rules out the use of the classical smeared crack approach if
constitutive models for phenomena such as mentioned above are employed [15]. This
fundamental difficulty can be overcome when the strain decomposition approach [15-19] is
followed. In this method the total strain rate is decomposed into a crack and a concrete strain
rate. Each strain rate is governed by a separate constitutive law which opens the possibility of
constructing a consistent set of rate equations.

To date, little is known about the impact of temperature changes on crack propagation in
concrete. Experiments which for instance aim at providing a relation between the fracture
energy G; and the temperature 6 are scarce. The few available data suggest a decrease of the
fracture energy at elevated temperatures [20], but it is judged to be premature to introduce
such a dependence into a constitutive model. For the behaviour of the solid, intact concrete
much more is known [1-8], although also in that case there are gaps which should be filled in
order to comstruct a reliable, consistent model. In particular three-dimensional models for
transient creep seem to lack a firm experimental basis. In consideration of the importance of
the phenomenon of transient creep, i.e., the observation that thermal strains depend not only
on the temperature, but also on the applied stress, disregarding this effect in an analysis will
severely undermine the capability to accurately predict stresses and strains in concrete
structures under transient temperature conditions.

The main purpose of this contribution is to outline a consistent approach to smeared crack
analysis of concrete structures which are exposed to extreme thermal conditions. Since it is
important that such analyses are based on true material behaviour we will also discuss the
constitutive models for the concrete and the reinforcement. Thermal dilatation, degradation of
the elastic moduli and strength properties, and transient creep will be discussed. A proper
three-dimensional model will be set up for the latter phenomenon and will be calibrated with
experimental data. Next, it is discussed how the constitutive relations for the concrete are
combined with a smeared crack model in a consistent fashion. The integration to finite time
increments is presented and consistent linearisation moduli are derived. Finally, the correla-
tion is made with elementary tests on plain concrete cylinders and with a structural test on a
reinforced one-way slab exposed to fire conditions.

2. Transient creep of concrete

During heating of a concrete specimen several nonlinear physical phenomena can be
observed. First the material expands. This thermal dilatation is governed by the linear
coefficient of thermal expansion « which may be a nonlinear function of the temperature 6.
Another important effect is the decrease of the stiffness properties such as Young’s modulus
E. The latter effect is partly responsible for the observation that a loaded concrete specimen
experiences a different change in strains than an initially stress-free specimen. Yet, the change
in elastic properties at elevated temperature cannot explain the difference in strain develop-
ment alone when two concrete specimens, one being stress-free, the other being subjected to
an initial stress, are heated. This phenomenon has been investigated thoroughly by Anderberg
and Thelandersson [1-3] over the past decade. From their as well as from other investigations
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[4-8] it has appeared that during the first heating of a concrete specimen there exists another
strain component, which takes place in a very short period of time. This strain component is
often named transient thermal strain or transient creep and is a function of the temperature as
well as the stress.

It is not yet entirely clear which mechanisms cause the phenomenon of transient creep, but
it seems that between 100 and 200°C drying of the cement matrix is the most important factor
(drying creep), while for higher temperatures a change of the chemical structure of the cement
matrix is primarily responsible for the observed strains (transitional thermal strain). In a
one-dimensional context a simple formula has been proposed by Anderberg and Thelander-
sson [2]. According to this proposal the transient strain £" is given by

o ok o
= — fo , 1
7 (1)

where « is the current value of the linear coefficient of thermal expansion, f,. is the
compressive strength at room temperature, o is the uniaxial stress and k& is a material
parameter, which varies between 1.8 [7, 8] and 2.35 [1-3]. Although hygric influences which
are particularly important in the temperature traject between 100 and 200°C are not taken
into account explicitly in this model, so that the phenomenon of drying creep is not modelled
properly, (1) turns out to be reasonably accurate also for this temperature regime.

For the formulation of a proper three-dimensional model, we shall postulate that the
three-dimensional creep rate ¢ depends linearly on the stress vector o. Accordingly, we can
write

£"=6Ho , ’ (2)

with H a constant matrix. If it is assumed that the process of transient creep does not induce
any anisotropy, H is given by

ak
Hy = _f__ [_'Yaijskl +3(1+ y)(aikajl + ailajk)] ) (3)

with vy an additional material constant and 8, the Kronecker symbol.

Thelandersson [3] has also developed a multiaxial generalisation of the model of (1) for
transient creep. He has decomposed the transient creep strain rate into a deviatoric part £
and a volumetric contribution &,":

" =8¢, + €y, (4)
where

£y =1v,0pi (5)
and

5 =v,0s, (6)

p is the hydrostatic pressure (negative for compression), s is the deviatoric stress vector,
i=[111000}, and v, and v, are material constants. They can be related to the constants k
and y by considering that (4)-(6) can be rewritten to yield
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8‘:; =[3(y, — 7d)8ij8k1 + %'}’d(sikaﬂ + Silajk)]éo'kl . (7
Comparison with (3) shows that

aklfe. =527+ %) (8)

Y=Y~ %) Cva+v,) . 9

and

Thelandersson [3] finds the values vy, =1.0a/f,, and vy, =3.0a/f,, on the basis of two-
dimensional experiments. According to (8) and (9) this results in k =2.33 and vy = 0.285. Note
that the result & = 2.33 is within the range of values (1.8-2.35) that has been found in uniaxial
testing.

3. Constitutive relations for concrete at elevated temperatures

A basic assumption of the smeared crack model as proposed by De Borst, De Borst and
Nauta, and Rots et al. [15-18] is the decomposition of the total strain rate € into a crack strain
rate £ and a concrete strain rate &°°:

=g 4+ % (10)

The crack strain rate € can again be decomposed into several contributions, thus modelling
multiple, non-orthogonal cracking [15, 16]. The actual implementation of this crack model is
not the subject of this discussion. Here, we shall focus on deriving the incremental stress—
strain relations and tangent operators for cracked under thermal loading conditions.

In the present analysis we assume that the concrete strain rate £ is composed of three
contributions, namely the elastic strain rate £°, the thermal strain rate ¢° and the transient
creep strain rate €. When we introduce the matrix C*® which contains the instantaneous
elastic compliances, we can set up a bijective relationship between the elastic strain vector &°
and the stress vector o:

e=C. (11)

Since the elastic properties have been postulated to be a function of the temperature, we have
for the elastic compliance matrix: C° = C*°(#). Accordingly, we obtain for the time derivative

£°=C + C%0 . (12)
Since

oo aCc*° .

C* = 30 6, (13)

(12) can be written as
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e co _* ) aCCO

£°=C"r + 0 Y (14)
The rate of thermal dilatation £° is given by

£°=ali, (15)

while the transient creep rate ¢ has been defined in (2).
When the elastic strain rate, the thermal strain rate and the transient strain rate are added
we obtain for the total strain rate £°° of the concrete

co

a6

£°=C0 + abi+ 6 o+ 6Ho . (16)
Note that this formulation is accurate only for moderate compressive stresses. If higher stress
levels in the compressive domain are to be considered, plastic behaviour of concrete (and
temperature influences on the plastic properties) has to be included in the analysis. Incorpora-
tion of such models, however, is outside the scope of the present analysis. Another limitation
is the fact that hygric influences are also not explicitly taken into account. At moderate
temperatures, we observe hygral transport phenomena and an ensuing influence on the
strains. Equation (16) is therefore less accurate in such conditions.

Equation (16) has been obtained by simply superimposing elastic deformations, thermal
dilatation and the thermomechanical coupling term £". In an alternative strategy Thelander-
sson [3] proposes to consider the strain rate £’ as a function not only of the stress o and the
temperature 6, but also of their fluxes ¢ and §: £°° = £°°(o, d, 6, 6). Using the representation
theorem for isotropic tensor functions and retaining only those terms that are at most linear in
the stress tensor o or the stress rate tensor o, we also arrive at (16).

Before integrating (16) for a finite time step, we briefly recall the equations for the crack
formulation [15-18]. We shall restrict the present treatment to a single crack, but the
extension to multiple cracking is straightforward [15-17]. We first consider the crack strain

+CT -cr]t +CI ¢

rate in a coordinate system that is aligned with the crack axes: é* =[é;,, é7;]. éq, is the
normal crack strain and ¢, is the shear crack strain in this local coordinate system. ¢ " can be
transformed to the global xyz-coordinate system with the aid of 3 X 2 transformation matrix N

[15-18];
6% = Né°" . (17)

The relation between the stress and the crack strains is most conveniently expressed in the
local (crack) coordinate system:

éCI‘ — CCl'.s; , (18)

where C" is a 2 X 2 matrix which contains the compliances of the smeared crack and s is the
stress rate vector in the crack coordinate system.

Considering the fact that § and é°" each contain two components, C* is a 2 X 2 matrix. The
off-diagonal terms of this matrix represent the shear—normal coupling, that is the coupling
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between normal stresses and shear strains, and between shear stresses and normal strains.
These couplings only become significant for large crack strains. For the present purpose they
may be assumed to be negligibly small. Accordingly, C*' reads

or __ C({rl 0
c= |57 &) 4

Furthermore, the normal and the shear stresses in the crack have been assumed to be linearly
related to respectively the normal and the shear crack strain and, in consideration of the
aforementioned paucity of experimental data, have been assumed to be independent of the
temperature (see also Fig. 1). Consequently, C{} and C;, have a constant value. When we
have no state changes (e.g. crack formation) during a time step, C*" and hence C*° + NC“N"
are essentially constant matrices, i.e. independent of the stress. It is noted though, that
C® + NC®N" does depend on the temperature since C*° = C*(8).

When s, is the normal stress rate vector in the crack and s, is the shear stress rate vector in
the crack, we have § =[s__, §..]" In a similar fashion as ¢ is related to ¢, the stress rate § can
be linked to the stress rate in the global coordinate system o:

§=N'o. (20)
Combination of (17), (18) an (20) results in
£ =NC“N'o, (21)

so that in consideration of (10) the total strain rate is given by

co

a6

é=[C°°+NC"Nt]d'+[ai+ a+Ha]é. (22)

S Snt

cr
)

)
[

€un €nt

Fig. 1. Dependence of crack stresses on crack strains: (a) normal stress as a function of normal crack strain; (b)
shear stress-as a function of shear crack strain.
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4. Numerical integration and linearisation moduli
For integration of (22) over a finite time step we assume that the stress vector o and the
compliance matrix C*° vary linearly in the course of a time step. @, and C;° refer to the stress

vector and the compliance matrix in the beginning of the time step while o,,,, and C.5,,
denote their values at 7+ A1. At 7+ BA7, 0B <1, o and C* are given by

0.7+/3A'r = (1 - B)o.'r + BUT+AT (23)
:iBAr = (1 - B)C:O + BC:(:'AT . (24)

Rewriting (23) and (24) gives

and

0-1+ﬁA'r = 01 + BA‘T (25)
and

€500 = €25 + BAC™, (26)
which, upon substitution in (22), results in

co

£=[C° + BAC® + NC*“N']o + [ai + <3C + H> (o, + BAa’)] 6. (27)

a0

Note that owing to the fact that the stress—strain relation within the crack has been assumed to

cr

be time-independent, C*' = C;" = C7, .. Integration of (27) and invoking (13) yields

Ag =[C + BAC® + NC“N'|Aa + aAbi + (AC* + A6H)(o, + BA@). (28)
Rearranging (28) we obtain

Ae=[C° + NCN' + B(2AC™ + A6H)]Ao + aAfi + (AC* + A6H) 0, . (29)

When we employ the definitions

A=CZ+ B(2AC* + A6H) , (30)

Ae" = AHo, : (31)
and

Ag’ = abi, (32)

(29) can be written more simply as
Ae—Ae’ — A" — AC®0, =[A+ NC*N'lAo . (33)

We next make use of the Sherman-Morrison-Woodbury formula to obtain the inverse
relation
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Ag=[I'—-TN(D” + N'I'N)"'NT)(Ae — Ae’ — Ae"" ~AC%a,), (34)

where I and D have been defined as I'=A"" and D" = [C*"]"". Differentiation of (33) with
respect to o gives

38 A+ NCTN',
o

since C** has been assumed to be a constant matrix. If C* depends on ¢ an additional term
arises. Inversion subsequently shows that

D=I-TND"+NTN) 'N'T (35)

serves as proper tangent operator if Newton’s method is used for the solution of the resulting
set of nonlinear algebraic equations on structural level.

It is emphasised that (34) will only predict the stress increment exactly if the stress varies
linearly over a time step. This is the assumption on which the algorithm is based (23). If this
assumption is violated an error is committed. The magnitude of this error depends on the
value of B as will be discussed in a quantitative sense in the next section. If the optimal value
of B still gives unacceptable errors the presently used single-step integration rule should be
replaced by a higher order scheme (e.g. [21]), but the example calculations do not support the
necessity for such a scheme.

The present deviation considers compliance relations, adds all relevant strain rates and then
inverts the resulting constitutive relation. As another approach we may set out to derive a
stiffness relation directly. The result is given by

=[I=IN(D" +NTN) 'NT|(de - Ae’ — Ae" - [D3,,]'AD%e;),  (36)

with D% = [C*®°]"! and AD® = D%, — D%. Equation (35) is identical to (34), since it can be
shown that

[D;5,.]'AD g} = —AC*g, . (37)

It has been assumed that the matrix H which governs the distribution of the transient creep
strains has an isotropic structure. If the elastic behaviour of the concrete is governed by an
isotropic elastic law throughout the entire heating process (which is a reasonable assumption
to moderate stress levels), I' can be calculated explicitly. Calculation of I'is then tantamount
to modifying Young’s modulus E and Poisson’s ratio vinto E and v, respectively. To show this
we first write

v 1+ v
Ay = “E 8,0yt —= °F (8,9, +8116jk] (38)
and
1 + v

[C,,kz] = 8 Ot 55 [axk'6 +8i18jk]’ (39)
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and we recall that AC* = C:5,, — C;°. From (30), (38) and (39) we can now derive that

7 +
LtV _q1ogpy 1% og LY Brrar | gy g (L¥ )0k (40)
E 1- E1-+A1- f;:c
and N L
14 -r+A'r Y&
e 1-2B)—= -2 Ab 41
E ( B) E B E-r+A'r B fcc ( )
which can be solved to give
_ E,
) E=q1- 2BAE/E,, . + BAOE_ aklf, (42)
an
. v, ~2B(v, — v\ EJE_,,.)t+ BAOYE _aklf,
V= (43)

1-2BAEIE.,, + BAOE, aklf,
with AE=E,,, — E

-
It is interesting to scrutinise the classical case that £ = 0 somewhat closer. In that case (42)
and (43) reduce to

- E
- i 4
E=1%prIE .. (44)
and
17: V¢ '_ZB(VT - VT+AT)E1-/ET+AT . (45)

1-2BAE/E,,,.

When creep effects are not taken into account, we have the total (secant) stress—strain relation
at 7+ Ar

87+A‘r = C:c—:-A'r 0"r+A'r ’ (46)
which can be brought in an exact incremental form

Ae=C*

T+AT

Ao +AC%0, (47)

so that in an exact incremental approach E_,,, and v, ,, serve as the pseudo-elastic moduli.
We observe that the choice 8 = 3 also yields E= E__, and v = v_,,_, which shows that in the
absence of creep strains a midpoint integration rule (8 = %) is exact.

5. Examples

In this section we will consider some examples. First we will scrutinise the properties of the
solution algorithm outlined in the preceding section. Next we will simulate the behaviour of
plain concrete cylinders under thermal loading conditions. The section will be concluded with
an analysis of a reinforced one-way slab subjected to a fire test.



302 R. de Borst, P.P.J.M. Peeters, Concrete structures under thermal loading

Assessment of the solution algorithm

Before predictions are made with a numerical program it must be checked carefully for its
consistency and proper implementation. This is best done by numerical simulation of a
problem that is also tractable with analytical tools. For this purpose we shall consider an
initially unstressed plane stress element which is constrained at the bottom and at the top and
is heated from 0 to 200°C. To make an analytical solution possible the material properties
have been assigned constant values; & =12-107°°C™", E =30000 N/mm? and f,, = 40 N/mm>.
The material parameter k for the transient creep has been assigned the value 2.35.

Because of the lack of strain rate components which are caused by cracking or degradation
of the elastic properties, the total strain rate consists of an elastic component, a component
due to thermal dilatation and a contribution caused by transient creep. The boundary
conditions require that the total strain rate be zero, so that

6°+&°+6"=0.

The individual contributions are given by ¢° = ¢/E, ¢° = af and " = kaba/f, , which results

in the following differential equation: ”

o - ka .
E—+a0+zc—00‘—0.

This differential equation can be solved to give
_ _fe _
o=-7 (1 —exp (—Eka#b/f.))) .

The analytical result has been plotted in Fig. 2. In order to assess the influence of B three
calculations have been carried out, namely for =0, 8 =3 and B =1. The results are
represented in Fig. 2 for the case that temperature steps are taken of 40°C. The calculation
with the mid-point rule 8 = § matches the analytical solution most closely, but all solutions

approach the analytical solution if the time step is made smaller.

20

~Oaxial + 5
IN/mm?] 5| x
+ x
. =00
10 Analytical
=0.5
51
=10
O I 1 1
40 80 120 160 200

temperature [°C ]

Fig. 2. Axial stress as a function of the temperature. Analytical and numerical results.
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Further, the impact of using a proper tangent operator has been assessed. To this end
calculations have been carried out for temperature steps of 40°C, 66.7°C and 100°C. A
mid-point integration rule has been used for all the calculations. It appeared that if an elastic
stiffness matrix is used instead of a proper tangent the calculation becomes unstable for
temperature steps of 100°C.

Simulation of tests on plain concrete cylinders

Anderberg and Thelandersson [1] have conducted experiments on plain concrete cylinders
in order to investigate the mechanical behaviour at high temperatures. Two series of
experiments have been carried out. In the first series of experiments the temperature increase
was 1°C/min while the second series was exposed to a temperature increase of 5°C/min. No
significant differences were observed between both test series and an approximately homoge-
neous temperature distribution was observed in the specimens.

Since we now set out to simulate the true material behaviour the assumption of constant
material properties which has been made in the preceding example no longer suffices. Instead
Young’s modulus E, the linear coefficient of thermal dilatation « and the compressive strength
f.. are now assumed to be a function of the temperature. The experimentally determined
relationships and the adopted idealisation are shown in Fig. 3, in which the value of each
material parameter has been plotted relative to its value at room temperature. For both
experiments to be discussed the initial value of Young’s modulus was E = 21500 N/mm?* and
the initial value of the coefficient of thermal dilatation was o =12-107°°C™" In the first
experiment f,, = 34.7 N/mm? while for the second specimen it was equal to f,, = 41.3 N/mm">
In the analyses that take into account transient behaviour, a value of 2.35 has been adopted
for k.

The first experiment that has been simulated is a concrete cylinder that is fully restrained in
the vertical direction. The results of the numerical simulations with and without the effect of
transient creep strains as well as the experimental data have been plotted in Fig. 4. In the
beginning of the experiment the cylinder is stress-free. Because of the increasing temperature
the structure will dilate which is prevented by the boundary conditions. This causes a
compressive stress in the specimen. For the analysis that includes the effect of transient creep
strains the compressive stress reaches a maximum around 200°C. For higher temperatures the
decreasing Young’s modulus causes an overall decrease in the stress until the specimen has
become stress-free at 800°C, i.e., when the Young’s modulus has been reduced to zero.

The agreement between the experiment and the model simulation is quite reasonable, at
least in a qualitative sense. Quantitatively, there are some deviations between simulation and
experiment, in particular in the beginning of the test and between 100°C and 200°C. The
deviation at the onset of loading may be due to misalignment of the loading plates and the
concrete cylinder. The deviation in the temperature traject between 100°C and 200°C can be
explained by the neglect of moisture transport phenomena. As argued before these influences
are particularly important in this temperature regime. The analysis which does not consider
transient creep strains shows an overly stiff response compared with the experimental
measurements. When § = 171°C the axial stress becomes equal to the compressive strength,
thus causing failure of the specimen.

The second experiment that has been simulated is a cylinder which has been loaded
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Fig. 3. Material parameters of concrete as a function of the temperature: (a) Young’s modulus; (b)blinear
coefficient of thermal dilatation; (c) compressive strength.
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Fig. 4. Axial stress as a function of the temperature for the restrained concrete cylinder,
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Fig. 5. Axial strain as a function of the temperature for the unrestrained concrete cylinder.

uniaxially to 22.5% of its compressive strength at room temperature. The strain that has been
measured as well as model simulations with and without the effect of transient creep strains
have been plotted in Fig. 5 as a function of the temperature. Around 750°C the uniaxial
compressive strength has been reduced to such an extent that failure occurs. Again, the
agreement between experiment and the numerical simulation that includes the effect of
transient creep strains is good, especially if we consider the relatively coarse multilinear
idealisation of the development of the material properties with temperature. The analysis
without transient creep strains shows far too much volumetric expansion compared with the
experimental measurements.

Simulation of a fire test on a reinforced concrete siab

In the next example the influence of cracking on the structural behaviour has also been
taken into account. The example concerns two reinforced concrete one-way slabs which have
been subjected to a fire test at the University of Gent [10]. The slabs were simply supported
on the short sides while the displacements at the other two sides were free. The slabs were first
loaded by two jacks over the full width, whereafter their bottom was heated uniformly.
Because of these boundary and loading conditions the slabs could be analysed as beams. The
finite element idealisation of both slabs, which will be denoted as G1 and G3 in conformity
with the experiment, is shown in Fig, 6. Eight-noded plane stress elements with four-point

L

200 | 2250
[ )

i

Fig. 6. Finite element idealisation for reinforced concrete slabs tested at the University of Gent [10],
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Table 1 Table 2

Geometry and loading data for reinforced concrete Material properties of concrete at room temperature

slabs Slab G1 Slab G3

Slab G1 SlbG3 g (N/mm?) 45200 39800

Width (mm) 1900 1900 v 0.2 0.2

d (mm) 15 35 a’C™) 0.000012 0.000012

Reinforcement (mm?) 1178 1414 f.(N/mm?) 427 43.0

Self-weight g (kN/m) 6.29 6.89  f(N/mm?) 2.6 2.6

Line load F (kN/m) 14.5 14.6 C;(mm?/N) —0.000902 ~0.000902
CS (mm?/N) 0.000212 0.000241

Gauss integration have been used in both analyses. The geometrical data and the loading
intensity are listed in Table 1 for both slabs.

The values of the concrete properties at room temperature are listed in Table 2. Because
the dependence of the material parameters on the temperature is not given in [10], the
dependence of the compressive strength and the coefficient of thermal expansion on the
temperature have been assumed to be identical to the relations that have been plotted in Fig.
3, while Young’s modulus has been assigned a slightly different dependence on the tempera-
ture (Fig. 7). In consideration of the lack of experimental data regarding a possible
dependence of Poisson’s ratio on the temperature, this material parameter has been assigned a
constant value: v =0.2. The transient creep coefficients k£ and y have been assigned the
following values: k=2.35 and y =0.2. Especially the estimation of the latter parameter is
rather crude. The choice is based on Thelandersson’s [3] multiaxial data, which suggest that y
has approximately the same value as Poisson’s ratio ». Note that the assumptions that » has a
constant value for the entire temperature regime and that y = v, lead to an extremely simple
form of (42) and (43). There is also a paucity of experimental data with regard to the
dependence of tensile strength on the temperature [20]. For this reason the constant value
f.. =2.6 N/mm? has been used. Furthermore a linear descending branch has been used to
model the tension-stiffening effect with an ultimate uniaxial strain e, =f, /E_. f, and E_ are
respectively the yield strength and Young’s modulus of the reinforcing steel at room
temperature.

EIE,

0 j | |
0 200 400 600 800

temperature [°C ]

Fig. 7. Dependence of Young’s modulus on the temperature as used in the analysis of reinforced concrete slabs.
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As alluded to in the preceding the material properties of the reinforcement are a function of
the temperature [9]. In particular the yield strength f, and Young’s modulus E_ depend on the
temperature. The specific relationships that have been adopted in the present simulations are
shown in Fig. 8. The values at room temperature are listed in Table 3.

An accurate estimate of the temperature distribution through the thickness of the slab is
very important for correctly determining the strains and stresses in the slab in the course of the
heating process. From experimental data [10] the temperature distributions as shown in Fig. 9
have been extracted for the various time steps. It has been assumed that this distribution
through the thickness is the same everywhere in the slab, although this is doubtlessly a rather
course idealisation of reality.

The finite element simulations of both slabs yielded time-deflection curves as represented in
Fig. 10. We observe that slab G3 exhibits a much more ductile behaviour than slab G1. This is
because the concrete cover of slab G3 is thicker. Consequently, the temperature increase of
the reinforcement takes place at a later stage and also the degradation of the stiffness of the
reinforcement is postponed. The overall agreement with the experimental data is quite

1.2 1.2
EJ(E:)p 1 ToylUyda 1
0.8]- 0.8
Model Model
0.6 * 0.6}
0.4 L 0.4}
0.2} 021
O a L | L [ ! 0 b i ] L 1
0 150 300 450 600 750 150 300 450 600 750
temperature [°C ] temperature [°C ]

Fig. 8. Material parameters of steel as a function of the temperature: (a) Young's modulus; (b) yield strength,
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Fig. 10. Measured and calculated time-deflection curves for reinforced concrete slabs.
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reasonable. It is noted that in the experiment the measurements have been terminated when
the deflection of the centre of the slab exceeded 150 mm for slab G1, while the measurements
of slab G3 have been continued until structural failure,

More interesting than the time-deflection curves are the horizontal normal stresses in the
centre of the slab. In Fig. 11 these stresses have been plotted through the thickness of slab G1
for three different stages in the heating process. At r=0, so at the onset of the fire test, we
observe that the top of the slab is loaded in compression, while the bottom of the slab is
cracked. The reinforcement is loaded in tension. At 7= 10 min we observe the impact of the
nonlinear temperature distribution through the thickness. The lowermost fibres are now
loaded in compression owing to the effect of thermal dilatation. At 7 = 60 min the middle of
the cross-section is completely cracked. The deflections are so big, that the lower fibres again
have to sustain tensile stresses. On further heating the reinforcing steel will reach the yield
strength and failure will occur.

6. Conclusions

In this paper models and algorithms have been discussed for the analysis of concrete
structures, reinforced or not, which are subjected to thermal loadings. The discussed theory
and the presented simulations support the following statements.

Incorporation of the phenomenon of transient creep is indispensable for obtaining accurate
simulations of concrete structures which are exposed to extreme temperature conditions. Any
analysis of a concrete structure subject to thermal loading which ignores this phenomenon may
be grossly in error. A three-dimensional model has been developed, calibrated with ex-
perimental data [3] and implemented in the three-dimensional finite element code.

Classical smeared crack formulations cannot be extended to deal with concrete structures
that are exposed to thermal loading, at least not when modern fracture mechanics-based crack
propagation theories are employed. This observation is similar to the fact that classical
smeared crack formulations cannot be used in the prediction of long-term behaviour of
concrete members [15, 16]. A proper solution to this problem involves a rigorous resolution of
the total strain rate into a concrete and a crack strain rate.

In this paper a consistent algorithm has been developed which simultaneously considers the
effects of thermal dilatation, degradation of the elastic properties with increasing temperature,
transient creep and smeared cracking. Explicit as well as implicit versions of the algorithm
have been considered. The implicit mid-point rule appeared to perform superior.

No attention has been paid to the issue of possible loss of parabolicity of the governing field
equations owing to the fact that a strain-softening law has been used for cracking of concrete
and that the Young’s modulus has been made in a descending function of the temperature, A
closer examination of this issue should definitely be undertaken in the future.
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