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Chapter 1

Introduction

1.1 System-on-Chips

At the heart of system-on-chip (SoC) design lies the process of integrating diverse intellectual
property (IP) blocks — ranging from processors and peripheral interfaces to memory con-
trollers and connectivity modules — into one system. SoC integration enables the creation of
highly specialized and optimized systems to meet the high demands of modern embedded
applications. Central to the integration of an SoC is its global address map, which specifies
the address space allocated to peripheral IP blocks within the system. The implementation
of the global address map through mappings of IP memory facilitates the routing of data
and control signals across the SoC. Initiator IP blocks initiate data transactions in the SoC.
The implemented address maps enable initiator IP blocks in the SoC to access and control
peripheral IP blocks by reading from or writing to its designated addresses. Address maps
thereby connect individual IPs into a cohesive system.

The timeline of SoC development has strict deadlines to minimize its time-to-market, en-
forcing software to be developed in parallel with hardware. This requires architects to define
the SoC global address map at an early stage in the design process. The process of defining
an global address map specification is often ad-hoc in nature. In consequence, the use of un-
constrained, non-standardized text documents and spreadsheets for describing the global
address map is prevalent among companies [1]. Consequently, the address map must be re-
defined in standardized formats at a later points in the design flow, in order to realize, verify,
and document the address map. While designers and developers try to adhere to the pre-
scribed global address map, its implementation in other formats is currently prone to human
€erTor.

1.2 Motivation

During SoC integration, the description of address map implementations plays a critical role.
To formalize these descriptions, a standardized format is used, such as IP-XACT (IEEE Stan-
dard 1685) [2]. IP-XACT is an eXtensible Markup Language (XML) standard that is widely
used to describe the aforementioned SoC integration. Once expressed in IP-XACT, the ad-
dress maps implemented by the IP-XACT description together form its memory structure,
which represents a possible implementation of the global address map specification. A spec-
ification describes how peripheral memory should be addressable by the SoC, typically as a
single address map. However, the memory structures that implement the specification can
be complex. One address map in the specification may be realized by multiple address maps
in the implementation, allowing for intermediate address maps to take any form and paths
through the design, as long as the addresses are mapped according to specification.
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1. INTRODUCTION

To avoid bugs in SoC products, it is essential to thoroughly verify the IP-XACT descrip-
tions for SoC designs, especially given the complexity and often manual construction. Typi-
cal verification methodologies today construct complex testbenches and run elaborate simu-
lations to perform the functional verification of an integrated SoC design. Such methodolo-
gies take a significant amount of time, while not verifying the correctness of implemented
address maps directly. Instead, the correctness of the design is verified based on its correct
functioning. A direct and formal verification method of address maps implemented by IP-
XACT descriptions against their global address map specification could improve efficiency
in this context by providing immediate verification of implemented address maps before
functional verification or even during IP-XACT development.

1.3 Objectives

This thesis aims to find a methodology for the formal verification of address map implemen-
tations in IP-XACT descriptions (implementations) against their global address map spread-
sheet (specification) in order to improve the efficiency of the current verification methodolo-
gies. To do this, this thesis addresses the following four research questions:

e RQO: What unified data model represents both a memory implementation and speci-
fication, and enables the comparison of their address maps?

e RQ1: What algorithms process a memory specification XLS file into the unified data
model?

e RQ2: What algorithms process the IP-XACT files of an SoC into the unified data model?

e RQ3: What algorithms check any two unified data model instantiations for equivalence
in address maps?

1.4 Contributions

The main contributions of this thesis are:

e Definition of a unified data model, called the Address Map Graph (AMG) to represent
address maps of both memory implementations described by IP-XACT and memory
specifications outlined in XLS files. This includes the definition of the Address-Axis Di-
agram (AAD) format to illustrate the path of an AMG; a bitmapping representing the
mapping of contiguous bit addresses between two nodes in the AMG; and the equiv-
alence in mapped addresses between two AMGs, called Graph Bitmapping Equivalence
(GBE).

e Implementation of a parser to process memory specification XLS files into the AMG
data model.

e Development and implementation of an algorithm to transform hierarchical IP-XACT
descriptions into the AMG data model.

e Development and implementation of an algorithm to determine GBE between an imple-
mentation and specification AMG and to generate a text-based report of found bitmap-
pings equivalences and non-equivalences for debugging purposes.

e Integration of all algorithm implementations into a solution flow that is modular for
extension purposes to other specification and implementation standards.



1.5. Related Work

1.5 Related Work

Only a few studies have been conducted on the topic of formal memory map description,
including its modeling and visualization. Besides these, we will discuss the standards that
have been established for functional SoC verification and formal memory description.

1.5.1 UVM

The Universal Verification Methodology (UVM) [3], [4] is currently the most popular [5]
methodology for the functional verification of SoC designs [6], [7]. However, UVM suffers
from two drawbacks regarding address map verification:

Firstly, the verification of address map implementations against their specifications using
UVM takes significant time, involving the construction of complex testbenches and elaborate
simulations. Furthermore, the verification consists of development-simulation-debugging-
coverage cycles [5], which can take substantial time in the SoC design process. Reducing the
duration of these verification cycles is crucial to achieve efficiency in this methodology.

Secondly, the debugging process is slowed down due to the ambiguity of the origin of the
bugs it finds. To perform the verification, UVM generates a register model from the design’s
IP-XACT description that models the memory state of the SoC under test. This model is then
used as reference to perform tests and verify its state under different circumstances. However,
a found bug may be caused by an error in the design behavior, but it may also be caused by an
error in the generated register model. An incorrectly generated register model may be caused
by discrepancies between the global address map specification and the implementation by
the IP-XACT description.

Our proposed formal verification could shorten the verification cycles, by indicating in-
consistencies between specified and implemented address maps instantly compared to UVM.
As such, bugs could be found before testbench construction or even during IP-XACT devel-
opment. This could result in less bugs found in the verification cycles, and thus shorter
debugging steps and shorter cycles.

Additionally, our proposed formal verification provides assurance of the correctness of
the generated UVM register model. This is achieved by the verification of the memory organi-
zation implemented by the IP-XACT description from which the register model is generated.
When the implemented memory organization conforms to the specified global address map,
then there is a higher assurance that the register model generate from it contains less bugs,
and thus that any bugs found by UVM are not due to errors in the register model, but errors
in the IP-XACT functionality.

1.5.2 Kactus2

Pekkarinen, Teuho, and Hamaldinen have developed a method that is most relevant and com-
parable to the modeling aspect of this research; they have developed a graph-based method
for analyzing the memory layout in IP XACT design hierarchies. They have built upon the
foundations laid by Kamppi et al., who have developed a graphical electronic design automa-
tion (EDA) tool for intuitive use of the IP-XACT standard, called Kactus2 [8], [9]. Pekkarinen
etal. [1] have developed a method of interpretation, representation, and visualization of the
memory map information of an IP-XACT design into a graph model to analyze and edit the
memory organization. This included an algorithm to traverse the entire design and gener-
ate the corresponding graph elements and properties. In the developed graph model, nodes
represent interfaces of the IP block, while edges represent their connections through vari-
ous IP-XACT constructs. Our graph model developed in this work differs fundamentally in
that nodes represent the memory elements of the IP blocks rather than their interfaces. Fur-
thermore, our research focuses on the automated and formal verification of IP-XACT design
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1. INTRODUCTION

memory organization, rather than on visualization and editing. Finally, we hope to provide
our solution as a verification tool that can be integrated in various workflows beside Kactus2.

The visualization of the resulting model has been improved further by their continued
effort of creating a method of visual data compression [10]. This has resulted in a compressed
version of the original visualization, to improve the clarity and ease of viewing and editing
the memory structures in Kactus2. In contrast, our research visualizes memory structures in
the form of directed graphs using the DOT format with GraphViz.

1.5.3 SystemRDL

For the purpose of formally describing an SoC global memory map, SystemRDL has emerged
as a capable framework and language [11]. It is able to describe and manage the top-level IP
global memory map, including a comprehensive register hierarchy, specifying details from
individual bitfields to larger constructs like contiguous memory blocks. Additionally, Sys-
temRDL allows the definition of access policies and constraints. As such, the capabilities of
SystemRDL to describe the global memory map is more powerful than that of IP-XACT!.

Itis possible to specify an HDL path for a memory description in order for the SystemRDL
environment to access and potentially verify it. No public implementation of this verification
process is known. Furthermore, the verification is performed against the HDL, while the
focus of this research lies on IP-XACT.

For further integration into the SoC design flow, SystemRDL compilers and parsers are
introduced. PeakRDL [12], [13] is an open-source implementation of such a SystemRDL
transpiler to and from SystemVerilog, C header files, and IP-XACT. The PeakRDL implemen-
tation shows, however, that this translation to and from IP-XACT only deals with a single
IP-XACT component comprising of multiple addressBlock elements. This level of imple-
mentation is insufficient for complex or hierarchical IP-XACT designs involving multiple
IP instantiations.

1.54 CMSIS-SVD

Another relevant standard to describe SoC memory maps, particularly for ARM Cortex mi-
crocontrollers, is CMSIS-SVD [14]. It is an XML standard that provides a standardized way
to describe the system and peripheral registers of a microcontroller design, akin to System-
RDL and IP-XACT for general SoC designs. Similar to SystemRDL, it is able to define the
global memory map from course grained device or peripheral regions down to bitfield level.
Regarding its integration into the SoC design flow, it is able to generate C header files to
aid in software development and could be used to perform verification. However, similar
to UVM, this involves a dynamic functional verification which requires significant effort to
setup. Instead, our approach aims for an automated and formal verification.

1.6 Overview

In the following Chapter 2 we give an introduction to the aspects of IP-XACT relevant to this
research, after which we explain the data model and its properties we created. Finally, we
use this data model to describe the formal problem statement at the end of the chapter.
Chapter 3 will provide the solution that we found to the formal problem. We explain how
this solution was implemented, including its algorithms, structure, and general workflow.
Chapter 4 will then provide the methodology and results of evaluation of the solution
against a complex SoC design. Alongside this evaluation, we explain the structure of the
solution’s generated report, and causes to the types of results we identified in this evaluation.

1h’t’cps: / /peakrdl-ipxact.readthedocs.io/en/latest/exporter.html#limitations



1.6. Overview

Finally, Chapter 5 will summarize the thesis project and provide a detailed discussion of
our found results. It will evaluate the effectiveness and shortcomings of the model, the solu-
tion, and its implementation to realize the asserted objectives. Furthermore, it will discuss
research directions for future work.






Chapter 2

Problem Statement

Verification can be defined as checking whether an implementation adheres to a specification.
In the context of this research, a memory specification is defined as the layout of a component’s
memory that is predefined at the early stages of IP design flow. Its source file is a spreadsheet
that maps address blocks and peripheral memory to an address offset and range for one or
more root components. After the IP-XACT description of an IP design is completed, it has
its own memory layout dispersed through its components, called the memory implementation.
With these two address map descriptions, we define verification as the matching of a memory
implementation against the corresponding memory specification.

The comparison of a memory implementation with its specification is simplified when
both are represented in the same data structure. A network of address maps lends itself
well to be represented in a directed graph G = (V, F) named a address map graph (AMG).
When the AMG represents a memory specification, it is called a specification graph. When
it represents a memory implementation, it is called an implementation graph. The definition
and construction of both AMG types will be elaborated first. Then the general operations
and methodology of comparison and verification will be explained. Finally, code of the gen-
erators that implement these operations are discussed.

2.1 IP-XACT (IEEE Std 1685)

This section provides an overview of the general organization of the IP-XACT standard [15]
which enables designers to describe reusable IP blocks and system designs in a format that
is agnostic to vendor, implementation language, and used tooling. To realize these system
designs, IP-XACT facilitates the description address maps between IP instantiations. In turn,
these designs can be assembled into new IP blocks, or complete products if forwarded further
along the design flow.

Given that IP-XACT is an extensive standard, this section focuses specifically on aspects
related to address mapping. We begin with the general structure and objects of an IP-XACT
design implementation, then explain the memory structures that can be created using IP-
XACT, and finally, we explain the addressing details of these memory structures.

2.1.1 General Design Structure

The IP-XACT standard abstracts the integration of SoC design into a structure of interacting
objects. This section outlines the general structure of I>-XACT and how the objects and their
elements realize a hierarchical design description. Some of the discussed objects are shown
in Figure 2.1 [15, p. 4], which indicates the reference of one object to another with an arrow.
We will focus on objects that are relevant to creating IP-XACT designs and to the research
conducted in this work.
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Component
Design Design Generator
Configuration Chain
A A A 4
Component Abstractor |
y
Abstraction Bus
Definition > Definition
_____________ -
Generator

Figure 2.1: IP-XACT object references

2.1.1.1 Component Objects and Views

An IP block is abstracted into a component object, also called “component” in this work. It
describes the metadata of an IP block such that it can be integrated into larger designs. A
componentcontains view elements that define the implementation of the component. For a be-
havioral component, its register-transfer level (RTL) view elements contain the HDL files that
implement its IP. For a structural component, its hierarchical view contains the instantiation
of a design and designConfiguration object.

2.1.1.2 Bus Interface Objects and Interaction

Components may define bus interfaces, also called “interfaces” in this work. Interfaces are
used to interact with other components. These interactions can involve communication pro-
tocols (e.g. I°S), interrupt signals, hierarchical implementations, and address maps. As
such, the interfaces have properties and attributes that adhere to their communication re-
quirements. These properties and attributes are defined in their referenced bus definition and
abstraction definition elements. Furthermore, the interface modes determines the role each in-
terface has in the interaction, such as initiator or the target of communication.

2.1.1.3 Design Objects

A design object defines the internal structure of a structural component; it defines the config-
uration of and interconnection between component instances, later to be packaged into a new
component. Essentially, they describes component instances and the interconnections between
their bus interfaces.

2.1.1.4 Design Configuration Objects

A designConfiguration object defines the active views for each component instance within the
design. This object defines the active view for each component instance in a design. Note
that the design and designConfiguration are referenced by a view of the enclosing component,

8
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Co
AS
LMM,

AB,

Figure 2.2: Diagram of a local memory map in IP-XACT

Co Cl

R SN e N Fee

AB;

Figure 2.3: Diagram of a memory map in IP-XACT

such that different designs are possible per component. This flexibility enables the creation
of various configurations and hierarchical structures of the same component within a single
design.

2.1.1.5 Integration

The hierarchical integration of component instantiations is realized through the combined use
of design and designConfiguration object instantiations. A top-level component references a
design that describes how multiple lower-level component instantiations are interconnected
through their bus interfaces. In turn, each lower-level structural component may also reference
adesignand designConfiguration, creating a multi-level hierarchy, and enabling the creation
of complex SoC designs.

2.1.2 Memory Structures

In the following section, we identify and explain the memory structures that can be defined
in IP-XACT in order to realize an address map. All the memory that is addressable by a
component must be mapped to its address space, defined by an addressSpace element. A
component may use zero, one, or multiple addressSpace elements, describing an address
range with addresses starting at 0. Physical memory blocks of components are defined by
addressBlock elements, which possibly start at a base address offset. A component cannot
reference the contents of an addressBlock directly. Instead, it must be mapped to one of its
addressSpaces. IP-XACT offers several memory structures to realize this address mapping:
local address maps, (regular) address maps, bridges, and channels. Each will be elaborated
in detail.

2.1.2.1 Local address map

By mapping a locally defined addressBlock to one of the component’s addressSpaces, the
component may address memory in the addressBlock. In this case, the addressBlock must be
contained in a localMemoryMap element, which in turn is contained in one of its addressSpaces.
This will create a local address map to the addressspace, as illustrated in Figure 2.2, where
component Cy contains an addressSpace ASg. This addressSpace contains a localMemoryMap
LMM,, with LMM containing one addressBlock ABy. Note that the ABj is mapped to its
own base address inside ASy.
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Figure 2.4: Diagram of an IP-XACT construct using a transparent bridge

2.1.2.2 Address map

A component may address memory in the addressBlock of another component, such that the
addressBlock is mapped to one of its addressSpaces. In this case, the addressBlock must be
contained in a memoryMap element of an external component. An address map is established
implicitly via the connection of bus interfaces. The initiator and target interface modes are
most important to create address maps. An initiator interface initiates transactions, while
a target interface receives transactions. The establishment of an address map will now be
explained according to the example showed in Figure 2.3. An element reference is denoted
as a gray arrow. In order to realize the address map, firstly, an initiator interface must ref-
erence an addressSpace. Secondly, a target interface in another component must reference
a memoryMap. When the initiator interface and target interface are connected by an IP-XACT
interconnect element, indicated by the black line, then the addressBlocks of the memoryMap be-
come addressable from the addressSpace, again under their own base address like for local-
MemoryMaps. This results in the mapping of addressBlock AB; to addressSpace ASy. The green
box with the dashed outline in AS; denotes the mapped AB; that is now accessible from ASy.

2.1.2.3 Bridges

It is possible to combine and reorder multiple address mappings into one address map
through the use of a bridge. A bridge component contains an element configuration that
(implicitly) map multiple addressSpaces to a single memoryMap. IP-XACT defines two types
of bridges — transparent and opaque — which will be explained in further detail.

Unlike a memoryMap in an address map, a mapped addressSpace defines no base address off-
set. Instead, this offset is provided by the bridge component for each mapped addressSpace
individually. This offset causes inbound address accesses to the corresponding addressSpace
to shift positively or negatively. As a result, the contents of the addressSpace are mapped with
an offset. This process is called the shifting of an address mapping.

2.1.2.3.1 Transparent Bridge

A transparent bridge describes the mapping of (the contents of) multiple addressSpaces to
one memoryMap. Each addressSpace is mapped with a unique offset defined in its referencing
initiator interfaces. In the element configuration of a transparent bridge partake one target
interface and one or more initiator interfaces. The target interface references each of the
partaking initiator interfaces in the bridge component. For each of the initiator interfaces, if it
references an addressSpace then it will be mapped to the memoryMap. Note that the transparent
bridge does not actually contain a memoryMap element. Instead, its memoryMap is only implied at
the target interface. In other words, when this target interface is connected to a component’s
initiator interface referencing an addressspace then this implied memoryMap is mapped to the
addressSpace.

10
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Figure 2.5: Simplified diagram of an IP-XACT construct using an opaque bridge
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Figure 2.6: Detailed diagram of an IP-XACT construct using an opaque bridge

Figure 2.4 shows an example configuration that implements a transparent bridge Cj,
where each initiator interface references an addressSpace AS;;, and the implied memoryMap
at Ty is mapped to addressSpace ASp in Cy. As a result, incoming transactions will be able
to access their address spaces directly. This direct access implicitly maps shifted contents of
the bridge component’s addressSpaces ASy ; to the destination addressSpace ASy.

Note that when multiple initiator interfaces reference the same addressSpace, then each
interface maps to its own instantiation of this addressSpace, instead of mapping to the same
addressSpace.

2.1.2.3.2 Opaque Bridge

An opaque bridge can reorganize a set of address mappings even further than its trans-
parent counterpart. This is possible, because an addressSpace can define segment elements.
These are segments of the addressSpace that are to be mapped separately from the containing
addressSpace. They define their own base address offset and address range. See Section 2.2
for more information on their addressing. Figure 2.5 is a simplified illustration of the map-
ping structure. Via regular address maps, the addressBlocks AB; and AB3 are mapped to
AS1 and ASq 1 respectively. In component Cy, it shows the mapping of addressSpace AS
and segments SG1 1 and SGy 2 to memoryMap MM by the colored arrows. Finally, the memoryMap
is mapped to the addressSpace ASy in component Cy via an address map.

Contrary to the transparent bridge, the offset at which a segment is mapped is not defined
in the initiator interface, but in a subspaceMap element defined and contained in the memory-
Map to which it must be mapped. A subspaceMap defines a reference to an initiator interface,
a reference to a segment or addressSpace, and a base address offset. This is illustrated in the
more detailed diagram of Figure 2.6 which denotes subspaceMaps as SM; ;. To establish the
mapping, the subspaceMap must first reference an initiator interface. For a segment mapping,
the subspaceMap must also reference the segment contained in the addressSpace referenced

11
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Figure 2.7: Diagram of an IP-XACT construct using a channel
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Figure 2.8: Simple address map structure with two hierarchical interconnects

by the initiator interface, as is done by SM; g and SM . For an addressSpace mapping, the
subspaceMap must reference the addressSpace referenced by the initiator interface, as is done
by SM171.

Via the opaque bridge, an address map’s memoryMap can contain addressBlocks, but also
subspaceMaps that map a segment Or addressSpace. In all cases, the memoryMap’s contents are
mapped to the addressSpace referenced by the initiator interface. Therefore, an address map
can map addressBlocks, segments, and addressSpaces.

2.1.2.4 Channel

In the context of previous constructs, a channel component is essentially a transparent bridge,
but without any addressSpaces associated with its initiator interface(s). Instead of regular ini-
tiator and target interfaceModes, they use the mirroredInitiator and mirroredTarget. Interfaces
in these modes may only be connected to non-mirrored initiator and target interfaces respec-
tively. An example configuration that implements a channel is illustrated in Figure 2.7. In-
side the component, the mirroredInitiators reference the mirroredTargets, for example MT
referenced by MI;. Incoming memory operations are forwarded from the mirroredInterface
to the mirroredTargets. This causes addressSpaces and addressBlocks accessible through the
connected target interface to be mapped to the addressSpace referenced by the connected
initiator interface.

The mirroredTarget interfaces can provide a remap address. This remap address offsets
the address of the incoming memory accesses. Consequently, the addressSpaces and address-
Blocks that are accessible through the mirroredTarget are mapped with the offset defined by
its remap address.

2.1.3 Hierarchical Interconnects

An IP-XACT design is a hierarchical description of an IP-block. This means that it consists
of IP-blocks, which in turn may also be hierarchical. For each instantiation of a hierarchical
component, its child components are also instantiated. The hierarchy is implemented by
hierarchical interconnects, which connect an interface of a child component to an interface of
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Figure 2.9: Example contents of (a) an addressBlock and (b) an addressSpace

the parent component of the same type. For example, a hierarchical connection may connect
the initiator interface of a child component to the initiator interface of the parent component.

Any interconnection used in previously explained constructs may be followed or lead by
any number of hierarchical interconnects. This is illustrated in Figure 2.8. The source and
destination memory elements of a mapping construct may reside in components at different
hierarchical levels.

2.2 Addressing

The addressing of addressSpaces and memory in addressBlocks depends on their properties
and their context. Memory addressing is understood as the way (groups of) bits are accessed
by an address in an addressBlock, addressSpace, or segment; how many bits per address; un-
der what address offset; starting from which address; for how many addresses. The context
of an IP-XACT element is defined by the properties of its parent element and (in)directly
referenced elements. The addressing may be further delimited by a semantic consistency
rule (SCR) as defined by the IP-XACT standard [2, Annex B]. This section explores the fun-
damentals of this addressing for the memory structures provided by Section 2.1.2.

2.21 Addressing Properties

The addressing of addressBlocks and addressSpaces in address mappings depends on several
of their properties and of their parent element.

Each addressBlock defines a row width, base address offset, and address range. It makes
use of an address unit bits (AUB) value, which defines the number of bits which are ad-
dressed by one bit increments of the address. The AUB may be defined by its containing
memoryMap for an address map, or by its containing addressSpace for a local address map. If
it is not defined, it is presumed to be 8 [2, p. 222]. The width is a multiple of the AUB in
accordance with SCR 8.1 [2]. The range is defined in AUBs. An example addressBlock is il-
lustrated in Figure 2.9a, where the AUB is 8, the width is 8, base address is ©x2, and the range
is 3. In accordance with SCR 8.4 [2], addressBlocks in the same memoryMap may not overlap.

Each addressSpace defines a row width and an address range. It may also define an AUB
value, else it is presumed to be 8. Again, its width is a multiple of its AUB, and its range is
defined in AUBs. An example addressSpace is illustrated by Figure 2.9b, where the AUB is 4,
the width is 8, and the range is 10. Let us assume that the addressBlock AB; of Figure 2.9a is
mapped to addressSpace AS, via the memory map of Figure 2.3. The mapped memory bits
of AB; are shown in ASy with a dashed outline. Any defined segments must fall within the
range of the containing addressSpace in accordance with SCR 9.8 [15].
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Figure 2.10: Example contents of a segment defined in AS, of Figure 2.9b

Each segment defines a base address offset and an address range, while it inherits the
address width and AUB from its containing addressSpace. An example segment is illustrated
by Figure 2.10. Note that the boundaries of a segment are irrespective of the boundaries of
mapped addressBlocks. Therefore, (parts of) multiple addressBlocks may be mapped to one
segment.

2.2.2 Address Resolution

The contents of memory may not remain at the same address when they are mapped to
an addressSpace. Beside offsets introduced by bridges and channels, the AUB of a mapped
addressBlock, addressSpace, Or segment may differ from that of the destination addressSpace.
The resolution of an address to its mapped address therefore possibly involves a translation
of addresses. In this translation, the range and width of the destination addressSpace will al-
ways take precedence over those of the addressBlock addressSpace or segment being mapped.
Each scenario of altered addressing will now be explained.

Firstly, the width may become smaller or larger. In both cases, it causes the bits to be
wrapped to the new width and the content of addresses to shift. This happens because an
addressBlock is an array of contiguous memory bits that can be addressed in any addressing
width. This, however, only affects the number of bits transferred per transaction. A width
change does not affect the addressing of mapped memory, for this is solely determined by
the AUB and any induced offsets.

Secondly, the AUB may become smaller or larger. With exception of address 0x0, a smaller
AUB increases all memory addresses, while a larger AUB decreases them. For example, in
the mapping of AB; to ASq in Figure 2.9, their widths remain the same, but the AUB is halved
in ASg. Consequently, the base address offset doubles from ox2 to 0x4, and the bits originally
at address 0x3 are now mapped to address ox6 and ox7.

After memory has been mapped to its new address, it is possible for it to fall outside
the accessible addresses of the destination addressSpace. Alternatively, it may fall outside
the boundaries of a mapped segment. One example is the situation where the range of an
addressSpace is smaller than the range of the mapped addressBlock. The addresses mapped
to such out-of-range addresses remains inaccessible, which is called the clipping of memory.
Note that neither memoryMaps nor their subspaceMaps define a range. Therefore, they cannot
clip memory that is mapped to them. Clipping will be further elaborated in the following
chapter.

2.2.3 Bit Addressing

The following chapters use bit addressing to simplify the aforementioned situations of differ-
ing AUBs. A bit address in an addressBlock or addressSpace is calculated by multiplying an
address by the appropriate AUB value. The starting address of an addressBlockand subspace-
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Mapin bit-addressing is given by Equation (2.1) and Equation (2.2) respectively [2, p. 223].
In a similar fashion, the bit addressed range of memory elements is obtained by multiplying
its range with the appropriate AUB.

addressBlock_bit_address_offset = addressBlock.baseAddress

(2.1)
x addressUnitBits

subspaceMap_bit_address_offset = subspaceMap.baseAddress (22)
x memoryMap.addressUnitBits '

The address at the target interface for a transparent bridge is given by Equation (2.3) [2,
p- 225]. The address at the target interface for an opaque bridge mapping an addressSpace
and a segment is given by Equation (2.4) and Equation (2.5) respectively [2, p. 225]. Note
that the term “initiator” in the equations refers to the initiator interface.

target_bit_address_offset = initiator_bit_address_offset
+ initiator.addressSpaceRef.baseAddress (2.3)
x addressSpace.addressUnitBits

target_bit_address_offset = initiator_bit_address_offset
+ initiator.subspaceMap.baseAddress (2.4)
x memoryMap.addressUnitBits

target_bit_address_offset = initiator_bit_address_offset
— segment.addressOffset
x addressSpace.addressUnitBits (2.5)
+ initiator.subspaceMap.baseAddress
x memoryMap.addressUnitBits

The address at the mirrored target interface of a channel can be derived from Equa-
tion (2.6) [2, p. 225]. The bitsInLau is an AUB value defined specifically by amirroredTarget
interface. The interface’s remap address is defined in this bitsInLau.

mirrored_initiator_bit_address_offset = mirrored_target_bus_bit_address_offset
+ mirrored Target.baseAddress.remapAddress

x mirroredTarget.bitsInLau
(2.6)

2.3 Global Address Map Specification

The memory organization of an SoC design is specified in a global address map, which de-
fines the address space and layout of memory elements within the system. The global ad-
dress map ensures that all memory elements are correctly addressed and accessible by the
initiator IP blocks within the SoC design. In the rest of this research, the organization speci-
tied by a global address map is referred to as a “specification”.

This research focuses on specifications defined in spreadsheets, which are commonly
used because they are intuitive to read and edit during the design process. To integrate
this tool into such workflows and utilize existing designs with spreadsheet specifications as
study cases for verification, XLS files are used as specification format in this research.

A spreadsheet specification file defines how peripherals are mapped to the address space
of initiator IP blocks, such as the CPU, DMA controller, and others. An example spreadsheet

15



2. PROBLEM STATEMENT

Address Identifier Attached Unit Purpose Sp?igze Impl?ﬁ?"tw CPU DMA
0x00000000 Eoot Code 'I!OM System Boot Code 524288 524288 'I!OM CODE |
0x20000000 |[RAM RAM1 Data 524288 524288 RAM [RAM
0x40000000 |IO FLEXCOMM Debug 4 0.5 FLEXCOMM |FLEXCOMM
0x40001000 SPI SPI Interface 1 1 SPI SPI

Figure 2.11: Example specification spreadsheet in default layout

layout is illustrated in Figure 2.11. This layout defines peripherals row-wise on the left and
initiator IP blocks column-wise on the right, specifying the mapped starting address, the
mapped range, and to which initiator IP blocks each peripheral should be mapped.

The default layout, as defined by the configuration parameters, is shown in Figure 2.11.
On the left side, the layout specifies all peripherals and their potential mappings to the ad-
dress space of initiator IP blocks. The first column displays the hexadecimal byte-address,
while the sixth column indicates the kilobyte-addressed range mapped for each peripheral.
The right side columns define the initiator IP blocks, where each is specified by a name in
the header, followed by a cell for each peripheral row. A non-empty cell signifies that the
peripheral in that row should be mapped to the address space of the initiator IP block. For
example, in Figure 2.11, all peripherals are mapped to both initiator IP blocks, except for the
tirst ROM peripheral, which is not mapped to the "DMA”.

2.4 Graph Definition

In this section, we present the unified graph model to describe the memory organization
defined by both the IP-XACT implementation and the spreadsheet specification of the SoC
design. This allows us to compare the models of implementations and specifications with
each other.

This section starts by identifying the the different mapping types to be modeled, as well
as how the specification memory specification is handled. Then we explain the properties of
the nodes and edges in our model, as well as properties of the graph as a whole.

24.1 Address Mapping Types

To help in further defining the graph data structure, we identify the mapping types of both
the IP-XACT implementation and spreadsheet specification of the memory organization.

24.1.1 Implementation Mapping Types

The following five types of address mappings to addressSpaces are identified for the memory
structures introduced in Section 2.1.2:

1. Alocal address map that maps addressBlocks from a localMemoryMap to an addressSpace
without any shifting.

2. An address map that maps the contents of a memoryMap to an addressSpace without any
shifting. The contents can be addressBlocks, but also segments and addressSpaces from
bridges.

3. An address map with a transparent bridge, that maps one or more addressSpaces to an
addressSpace, possibly with an address offset defined by the channel’s initiator inter-
faces under the AUB of the mapped addressSpace.
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Figure 2.12: Identified memory element mapping streams

4. An address map with an opaque bridge, that maps one or more addressSpaces or
segments to a memoryMap, possibly with an address offset defined by the subspaceMap
under the AUB of the containing memoryMap.

5. Mapping type 2, 3, or 4, interjected by a channel. It may map the contents of one or
more memoryMaps to an addressSpace in the case of type 2 and 4. Or, it may map address-
Spaces to an addressSpace in the case of type 3.

It is important to observe that a memory element that is explicitly mapped to an address-
Space may end up in one of its segments. Whenever any memory element is mapped to an
addressSpace, then is it also mapped to the segment within which it falls, if such a segment
is defined. Furthermore, whenever an addressSpace is mapped, we must assume that all its
segments are mapped as well. In short, any mappings to or from an AS are also performed to
and from its segments. In the latter case, note that the segment base offset is not considered,
thus not subtracted, so Equation (2.4) applies instead of Equation (2.5).

At first glance, these mapping types show that there are two streams of address mappings
shown in Figure 2.12; firstly, from addressSpaces, their segments and contained address-
Blocks to memoryMaps and secondly, from memoryMaps addressSpaces, and contained segments
to addressSpaces. Note that child items are in parentheses, as their mapping to the parent
memory element is implicit by their child-parent relation. It is observed, however, that
memoryMaps have significantly different behavior from addressSpaces and segments as map-
ping destinations. To elaborate, a memoryMap has no clipping behavior like addressspaces and
segments have, for memoryMaps have neither a defined base nor range. The clipping of a memory-
Map’s contents only happens once it is mapped to an addressSpace or segment and clipped by
its boundaries. It is part of the mapping process, in which addressBlocks, addressSpaces,
and segments are aggregated by the memoryMap as an implied addressSpace before finally be-
ing mapped to an actual addressSpace or segment. In other words, a memoryMap can be re-
garded as a transitory mapping element. Therefore, only addressSpaces, their segments, or
addressBlocks are modeled as nodes in the graph, while memoryMaps are not. This results in
one stream remaining, where addresses in addressSpaces can resolve to addresses in either
other addressSpaces, their segments, or addressBlocks, shown in Figure 2.13.

2.4.1.2 Specification Mapping Types

As explained in Section 2.3, the spreadsheet specifies how the addressBlocks of peripheral
IP blocks should be mapped to the addressSpaces of initiator IP blocks. This specification
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Figure 2.13: Memory element mapping stream processed into the model

includes both the address range and the destination address within the initiator IP blocks.
As such, the spreadsheet defines regular address maps analogous to implementation map-
ping types 1 and 2. Therefore, our model can represent both the implementation and the
specification effectively.

2.4.2 Node Attributes

A node v € V is defined to represent a memory element, which is either an addressSpace,
segment, or addressBlock. Therefore, For each memory element, there exists a node and vice
versa. As explained in Section 2.1, every memory element has several IP-XACT properties
related to their addressing: a base address and an address range, both of which under a cer-
tain AUB. This results in a window of addresses that are accessibly by the memory element.
Its base address is the first address in its window. Its address range is the number of ad-
dresses in its window. Given an IP-XACT element m, assume that its defined base address,
range, and AUB - if they exist — can be retrieved through ipBase(m) € N, ipRange(m) € Z,
aub(m) € N, respectively.

The graph model must also handle the situation where the two memory elements of an
address mapping have different AUBs. Given a mapped memory element, this translation
may increase or decrease, and thereby shift, the addresses to which this memory is mapped.
Meanwhile, the mapping offsets must be applied while dealing with different AUBs, as ex-
plained in mapping types. For the purpose of uniformity and simplicity of calculation, all
addressing in the graph will therefore be using bit addressing.

bBase(mg, m1) = ipBase(my) - aub(m;) (2.7)

bRange(mg, m1) = ipRange(my) - aub(m;) (2.8)

The processing of a memory element into a node v € V' then involves the calculation of
two bit-addressed attributes base(v) € N and range(v) € Z*. Their calculation involves the
multiplication of their non-bit-addressed properties with their corresponding AUB, accord-
ing to functions bBase(mg, m1) and bRange(mg, m) defined by Equation (2.7) and Equa-
tion (2.8) respectively. The IP-XACT element arguments m, and m; depend on the memory
element type — addressSpace, segment, Or addressBlock:

e Any addressBlock ABg in memoryMap MM is processed into anode v € V with base(v) =
bBase(ABy, MMy) and range(v) = bRange(ABy, MM)).

e Any segment SGy contained in addressSpace ASy is processed into a node v € V with
base(v) = bBase(5Gp, ASp) and range(v) = bRange(5Gy, ASy).

e Any addressSpace AS is processed into a node v with base(v) = bBase(AS;,AS1) and
range(v) = bRange(AS;, AS1).
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Together, base(v) and range(v) define the window W (v), which is a range of bit addresses
available to the node. As defined in Equation (2.9), the base is the first bit address in the
window, and the range is the number of bit addresses in the window.

W (v) = [base(v),base(v) + range(v)) (2.9)

2.4.3 Edge Attributes

With the memory elements processed into nodes, the address mappings between them can
be processed into edges. Any address mapping between two nodes u,v € V is processed
into an edge e € E. Such an edge is an ordered pair e = (u,v), also shortly denoted as uv.
We define the edge source u = s(e) as the addressing memory element, and the edge target
v = t(e) as the mapped memory element. Each edge has the attribute offset(v) € Z, which is
the address offset it may induce.

The graph edge direction has been chosen to follow address evaluation, instead of the
direction of address mapping. Although the direction should not matter in the final verifica-
tion, this direction was chosen because the mappings in the memory implementation should
resolve to the same addresses as in the specification, while the opposite does not hold. In
other words, address resolution is a central aspect of the verification process.

The interpretation of IP-XACT address mappings into graph edges depends on the map-
ping type. As is examined in Section 2.1.2, the mapping type is determined by the constella-
tion of IP-XACT components, their interface interconnections, their interface references, and
their contained IP-XACT elements, configurations and types. Given an IP-XACT element
m, assume that its defined offset — if it has one — can be retrieved through ipOffset(m). For
transparent bridges and channels, this means that the remap address defined in their initia-
tor interface I is retrievable via ipOffset(/). For opaque bridges, this means that the base
address defined in their subspaceMap SM is retrievable via ipOffset(SM).

bOffset(mg, m1) = ipOffset(myg) - aub(m,) (2.10)

Then, the bit-addressed offset(e) property is calculated for each edge e € E according
to Equation (2.10). Mappings of type 5 that involve channels are ignored for now, because
channels are rarely used in practice. From the four remaining types of address mappings
identified in Section 2.4, we look at how combinations of the first three types are processed
into edges. This results in the following scenarios:

e Consider a local address map (type 1), an example of which is shown in Figure 2.2.
Assume that the addressSpace of a component Cy contains a localMemoryMap, which in
turn contains an addressBlock. Then, the addressSpace and addressBlock are processed
into nodes u and v respectively. Consequently, edge uv is created with offset(uv) = 0.

e Consider simple address map (type 2) where the memoryMap contains only address-
Blocks, an example of which is shown in Figure 2.3. Then, the addressSpace is processed
into node u, and the addressBlock in the memoryMap is processed into node v. Then, edge
uv is created with offset(uv) = 0.

e Consider an address map with a transparent bridge (type 3), an example of which
is shown in Figure 2.4. Assume that an addressspace AS; g — referenced by initiator
interface I; ¢ in component C; — is mapped to addressSpace AS( in component Cy. ASy
and AS; o are processed into nodes v and v respectively. Then, edge uv is created with
offset(uv) = bOffset(I; 9, AS1 ).

e Consider an address map with an opaque bridge (type 2 & 4), an example of which
is shown in Figure 2.6. Assume that it maps a segment SG1,; to a subspaceMap SM; g
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contained in a memoryMap MM);, all in component C;. Then, assume that MM in turn
is mapped to addressSpace ASy in component Cy. Then, ASy is processed into node
u, and SGy g or ASy g is processed into node v. Consequently, edge uv is created with
offset(uv) = bOffset(SM; 1, MM, ) — bBase(5Gj o, ASp). The segment base must be sub-
tracted because the opaque bridge will map the segment directly to the subspace map’s
offset, disregarding the segment base. Meanwhile, the node that represents the segment
does contain the base. As such, the base must be subtracted from the edge offset.

e Consider an address map with an opaque bridge (type 2 & 4), an example of which
is shown in Figure 2.6. Assume that it maps addressSpace AS; o to subspaceMap SM 1
contained in memoryMap MMj, all in component C;. Then, assume that MM; in turn
is mapped to addressSpace ASy in component Cy. Then, ASy is processed into node
u, and SGy g or ASy g is processed into node v. Consequently, edge uv is created with
offset(uv) = bOffset(SM; 1, MM, ).

2.4.4 Graph Properties

The set of nodes V' and edges F, that result from processing all address mappings in an
IP-XACT design, together form its graph G = (V, E), called the Address Mapping Graph
(AMG). An AMG is directed, possibly a non-tree, and possibly disconnected. When the
AMG represents the memory organization of an IP-XACT implementation, it is called an
implementation AMG. When it represents the memory organization of a spreadsheet speci-
fication, it is called a specification AMG. An implementation AMG may contain cycles, the
base case of which is a bridge initiator interface connected to its own target interface. In
practice, cycles rarely occur. For this reason, we exclude cyclic AMGs from the scope of this
research. Specification AMGs cannot contain cycles in this research. This means that an IP
block cannot be specified as both a initiator IP block as well as a mapped peripheral in the
spreadsheet. As such, specification AMGs have a height of 1.

AMGs have a set of roots R < V without incoming edges, and a set of leaves L < V'
without outgoing edges, as defined by Equation (2.11) and Equation (2.12). A root node
always represents an addressSpace Or segment, because an addressBlock cannot address itself.
On the other hand, a leaf node always represents an addressBlock, because addressSpaces
and segments have nothing to address as leaves. As such, R and L are disjunct, such that
R n L = @. Components may contain multiple addressSpaces that are processed into root
nodes. Such a component is typically a initiator component, such as a CPU.

R={reV|st(r)=0} (2.11)

L={leV |5 ()=0} (2.12)

A path p = (e, €1, ...,en—1) is a sequence of n consecutive edges, where p(i) = ¢;, such
that for each 0 < i < n — 1, t(e;) = s(ej+1). The set of all possible paths in G, that start in
R and end in L, is denoted P, as defined by Equation (2.13). When we take a specific root
r € Rand leaf [ € L, then we define a root-to-leaf path p,_,; as a path that starts in  and ends
in [. Multiple paths may exist from the same root to leaf. As such, the set of all root-to-leaf
paths from  to [ is denoted P,_,;, as defined by Equation (2.14).

P={pe Z|s(ey) € RAtlen_1)€ L} (2.13)

P.;={peP|s(e) =7 rtlen-1) =1} (2.14)
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Figure 2.14: AAD of (a) a non-leaf node and (b) a leaf node

2.5 Bitmapping Calculation

With the definition of implementation and specification AMGs completed, we can now move
forward to defining their equivalence in terms of address mappings. To achieve this, we first
need to analyze and define the concepts of shifting and clipping of a path, as introduced in
Section 2.1, in more detail. Next, we will explain the concept of the addressable window of
a path. This will allow us to formalize the cumulative clippings along a path. Finally, we
will use this formalization to define the concept of a bitmapping, on which we will base the
equivalence definition.

2.5.1 Shifting and Clipping

An address mapping can have a clipping effect, shifting effect, or both effects on the mapped
addresses of a memory element. A shift occurs when the edge uv € E of the address mapping
has a non-zero offset(uv). Without channels, shifting is only possible between non-leaf nodes,
however, shifting of leaf node memory will still be considered in the graph model and the
following analysis. This is done for completeness of the model, and possible future inclusion
of channels. Mapped addresses are clipped after shifting when they fall outside the window
of addressing node u.

2.5.1.1 Address-Axis Diagrams

To aid more detailed explanation of address mappings, and their the shifting and clipping
phenomena, they will be visualized using an address-axis diagram (AAD). Figure 2.14a
shows the address axis of a non-leaf node v. The dashed line indicates the address axis. A
solid line indicates its address window W (v). Figure 2.14b shows the address axis of a leaf
node /. Addresses that resolve to an addressBlock are visualized as a block. Because [ is a
leaf node and represents an addressBlock, its entire window W ([) visualized as a block.

Figure 2.15 shows an AAD where the window of leaf node [ is mapped to node v by an
edge eg. At this point, the AAD must be read from right-to-left, in the direction of address
mapping. Later on, we will read the AADs from left-to-right, in the direction of address
resolution. The address axis of leaf [ is shown on the right. The middle axis is a transitory
address axis, unto which the shifted memory of [ is projected under offset(eg). Finally, the
shifted memory is mapped to the address axis of v on the left. Only addresses that fall inside
the window W (v) are kept, while addresses that fall outside of it are clipped. In this case. In
this case, all addresses in W () remain addressable.
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base(v) + range(v)
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base(l)

Figure 2.15: AAD of the address mapping of a leaf node

2.5.1.2 Addressable Windows

The concept of addressable windows is first introduced using Figure 2.15, after which the
format definition is explained.

An address in an addressSpace or segments is only addressable when an addressBlock
address is mapped to it; addresses that do not resolve to an addressBlock address are non-
addressable. Therefore, v’s window in Figure 2.15 has an addressable (sub-)window, de-
noted AW (ep).

Leaf nodes represent the addressBlock. addressable, however, as leaf nodes cannot ad-
dress their own memory. Instead, the leaf window must be mapped to the window a non-leaf
node u. All addresses in W (v) to which it directly maps will become addressable. This re-
sults in a range within window W (v) that is addressable, called the addressable window
AW (e;). Because any addressable window AW (e;) resolves to addressBlock addresses, it is
also visualized as a block in AADs.

For any edge e along a path p, the unclipped portion of an addressBlock that is mapped
to the window of node s(e) is the addressable window AW (e) of that node. For any path p
starting in r and ending in leaf /, take edge e; with v = s(e;) € V. Then, the addressable win-
dow AW (e;) is the range of addresses of the leaf window W (!) that are mapped to window
W (v). This is illustrated by Figure 2.15 for a single edge path.

2.5.1.3 Final Edge Clipping Conditions

To form an intuition in the clipping conditions, consider of the final edge e,,—1 = (v,[) of a
path p, such that t(e,—1) = [ and [ € L. Then, the bottom mapped addresses are clipped
when the condition in Equation (2.15) holds, while the top mapped addresses are clipped
when the condition in Equation (2.16) holds.

base(v) > base(l) + offset(e,—1) where e; = p(7) (2.15)

base(v) + range(v) < base(!) + range(l) + offset(e,—1) (2.16)

An example of such a final edge is illustrated in Figure 2.15. For this example, no clipping
occurs because both equations do not hold.

2.5.1.4 Addressable window boundaries

Once an address has been clipped, it will no longer be mapped to further nodes up along the
path. Figure 2.16 shows an AAD where the memory of previously used non-leaf node v maps
to a node u by an edge e;. Note how only the addressable window AW (e) is mapped to the
window W (u). This is done, because we do not care about the mapping of non-addressable
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Figure 2.16: AAD of the address map of a non-leaf node

addresses. As such, for any leaf [ € V, the size of the addressable portion of W () along a
path is only able to be clipped or remain equal. The bounds of an addressable window of an
edge depend on the bounds of the addressable window of all edges towards the leaf node.
Therefore, the definition of the bounds of the addressable window is recursive.

Given any e; € p, the boundaries of AW (e;) can be resolved with respect to the remain-
der of the path down the to the root. In other words, the lower bound and upper bound
of the addressable window AW (e;) must be calculated recursively down to ey. Given a
p = (eg, €1, ..., en—1) with edge index i € Z* such that p(i) = e;, the lower bound Ib(e;) and
upper bound ub(e;) of AW (e;) can be calculated recursively according to Equation (2.17)
and Equation (2.18) respectively. For each function, the first line shows the base case where
i = n and the second line gives the recursive case where i < n. Note that no shifting can occur
in the base case, for it must be a address map, such that offset(e,,) = 0. Then an addressable
window can be defined as in Equation (2.19).

Ib(e,—1) = max (base(s(e,—1)), base(t(en—1)) + offset(e,—1))
Ib(e;) = max (base(s(e;)), Ib(e;+1) + offset(e;)) (2.17)

where e; = p(i)

ub(e,—1) = min (base(s(e,—1)) + range(s(en—1)),

base(t(e,—1)) + range(t(e,—1)) + offset(e,—1)) (2.18)
ub(e;) = min (base(s(e;)) + range(s(e;)), ub(e;11) + offset(e;)) '
where e; = p(i)
AW (e;) = [Ib(e;), ub(e;)) where e; = p(i) (2.19)

2.5.2 Bitmappings
2.5.2.1 Cumulative Path Clipping

Any AW (e;) addresses an equal sized region in the leaf node window W (l). It is necessary
to calculate the offset this region has from the base address offset of the leaf. The offset
can be viewed from the bottom boundary of W (I) called the bottom delta bd(e;), or from
the top boundary of W (l) called the top delta td(e;). The bottom and top deltas are equal
to the cumulative clippings of the bottom and top addresses, respectively. For any path
p = (eo, €1, -..,en—1), they are calculated recursively according to Equation (2.20) and Equa-
tion (2.21) respectively. Both deltas are visualized in Figure 2.17 for the final edge e, of a
path.
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Figure 2.17: AAD a final edge that clips top and bottom addresses

bd(e,,—1) = max(0,1b(e,,—1) — base(t(e,—1)) — offset(e,—1))
bd(e;) = bd(e;41) + max(0,1Ib(e;) — Ib(e;y1) — offset(e;)) (2.20)
where e; = p(i)

td(e,—1) = max(0,base(t(e,—1)) + range(t(en—1)) + offset(e,—1) — ub(en—1))
td(e;) = td(e;11) + max(0,ub(e;+1) + offset(e;) — ub(e;) (2.21)

where e; = p(i)

Symbolic definition of 1b in terms of bd and vice versa is difficult, due to the max and min
functions. These require further information, or assumption on their resolution (e.g. they
always resolve to their second term). Instead, to demonstrate their correctness, we express
the codomain upper bound in terms of td and bd, resulting in Equation (2.22). All formulas
and this equations are applied an example path in Appendix A.1, which demonstrates their
correct representation of the cumulative clippings of top and bottom address.

base(t(en—1)) + range(t(e,—1))—td(ep) = base(t(e,—1)) + bd(eo) + ub(ep) — Ib(ep) (222)
where e; = p(i) .

2.5.2.2 Domains and Codomains

For any root-to-leaf path p,_,; = (ep,ei,...,en—1), the recursive calculations of Ib(ep) and
ub(eg) together define the addressable window AW (e), called the domain of path p,_,;. This
domain maps to an equally sized range of contiguous bit addresses of the leaf window;, called
the codomain of path p,_,;. The codomain is defined by the recursive calculation of bd(ey),
the leaf node e,,_; base base(e,,—1), and the range of the domain ub(ep) — Ib(ep). The lower
bound of the codomain is defined as base(e,,—1) + bd(ep), and its upper bound is defined as
base(e,,—1)+bd(ep)+ub(eg)—1b(ep). Thus, the domain and codomain represent a contiguous
range of bit addresses in the root and leaf node, respectively.

2.5.2.3 Bitmapping Definition

A bitmapping, denoted as m(p), is formed by the domain and codomain of a path within an
AMG. As defined in Equation (2.23) with e; = p(i), it is a tuple of four values. The first two
valueslb(ep) and ub(eg) are the lower and upper bounds of the path recursively calculated for
the path root, which together define the domain of the path. The second two values bd(ey)
and base(e,,—1) are the bottom delta recursively calculated for the path root, and the base
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Figure 2.18: AAD of a bitmapping along two edges

address offset of the path leaf, which together with the domain range define the codomain
of the path. A bitmapping describes the address map from the domain in the root to the
codomain in the leaf of a path. This way, a bitmapping describes the mapping of equally
sized contiguous memory regions realized by the path within the AMG. The bitmapping
m(pr—1) defines the range of bits in the window of the path root W (r) map, and the range of
bits in the window of the path leaf W (I) that map to each other. The domain of a bitmapping
is denoted D(m(p)). The codomain of a bitmapping is denoted C(m(p)).

m(p) = (Ib(ep), ub(ep),bd(eg), base(t(e,—1))) where e; = p(7) (2.23)

An example two-edge path p = (e, e1) is visualized by Figure 2.18. Both edges introduce
only bottom address clippings, and no top address clippings. The resulting bitmapping is
m(p) = (Ib(ep), ub(ep),bd(eq), base(w)), with its domain D(m(p)) = [Ib(ep), ub(ep)) and its
codomain equal to C(m(p)) = [base(w) + bd(ep), base(w) + range(w)).

2.5.2.4 Bitmapping Sets

A graph G can have one or more edges defined in its edge set F2. The edges form a network
of root-to-leaf paths P throughout the graph. A bitmapping m(p) exists for each path p € P.
The set of bitmappings of all paths in P is denoted M (G).

A bitmapping set is also defined for the bitmappings of all paths from any root r € R to
any leaf [ € L, denoted M (G, r,1). As such, Equation (2.24) holds.

M@ = ) M@, (2.24)
reR,leL

2.6 Graph Bitmapping Equivalence (GBE)

In this section, we define Graph Bitmapping Equivalence (GBE) by building on the concepts
of bitmappings introduced earlier. We begin by explaining the bitmapping address functions
and node mappings. Afterwards, we use these two concepts to define GBE.

2.6.1 Bitmapping Address Function

A bitmapping address function A(m) : D(m) — C(m) exists for any bitmapping m(p), as
defined in Equation (2.25) with e; = p(i). According to the bitmapping m, its address func-
tion accepts a bit address b in its domain and returns the mapped bit address in its codomain.
The calculation involves subtracting the domain lower bound from the absolute bit address b
to obtain the bit address relative to the domain. Then, addition of the codomain lower bound
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results in the mapped address in the codomain. Then, applying A(m(p)) to all b € D(m) re-
sults in the codomain [base(l) + bd(eq), base(!) + bd(ep) + ub(eg) — Ib(eg)) = C(m), where
p(0) = eg. The mapped address is undefined for bit addresses that fall outside the bitmap-
ping’s domain, which conforms to our assumed behavior of memory implementations and
specifications.

A(m(p))(b) = b — Ib(eg) + base(t(en_1)) + bd(eo) (2.25)

2.6.2 Bitmapping Set Address Function

A bitmapping set address function A(M (G, r,1)) : W(r) — {N} is constructed for a bitmap-
ping set M (G,r,1). It accepts a bit address in the root’s window W (r) and returns a set of
mapped bit addresses. As shown by Equation (2.26), the returned set contains the results
from the application of all bitmapping address functions of each bitmapping m € M (G, r,1)
for which b € D(m).

AM)b) = | Am)(b)ifbe D(m) (2.26)
meM (G,r,l)
2.6.3 Bitmapping Set Equivalence

Two sets of bitmappings M; and M, are equivalent when their set address functions are
equal, such that A(M;) = A(M>). Note that the address function requires the base property
of each bitmapping path leaf. Hence, the context of the graph is considered. Bitmapping
set equivalence means that two sets of bitmappings implement the same address mappings;
from the same bit address in the domain to the same bit address in the codomain.

2.6.4 Node Mapping
Given two graphs G and H, then there exists a node mapping function B(Vy, Va)(u) : Vi — V;

where V; < Vi and Vo < Vg. As such, multiple nodes in G may map to the same node in
H. Typically, this means that graph G is the implementation graph, while graph H is the
specification graph, such that multiple implementation nodes may be merged to correspond
with one specification node.

2.6.5 Graph Bitmapping Equivalence

Given are two graphs G and H and two bijective maps: Br : R — Rpu between the roots
and By, : Lg — Ly between the leaves. Graph bitmapping equivalence holds between G
and H if and only if for all r € Rg and all [ € L Equation (2.27) holds.

A(M(G,r,1)) = A(M(H, Bg(r), BL(1))) (227)

2.7 Formal Problem Statement

The aforementioned definitions allow us to formulate a format problem statement by refining
our last three research questions. This problem statement guides the development of the
algorithms presented in the next chapter.

1. What algorithms process a memory specification XLS file into an AMG?
2. What algorithms process the IP-XACT files of an SoC into an AMG?
3. What algorithms check any two AMGs for Graph Bitmapping Equivalence (GBE)?
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Chapter 3

Solution

This chapter discusses our solution to the aforementioned problem statements and its imple-
mentation. The next Section 3.1 provides an overview of our created solution flow and its
substeps. Afterwards, each of the following five sections discusses one step in the solution
flow. Section 3.2 discusses the method developed to process a global address map specifi-
cation into an AMG. Section 3.3 discusses the method developed to process the IP-XACT
implementation of an SoC design into an AMG. Section 3.4 discusses the program and its
algorithms that process two AMGs into an explicit node mapping. Section 3.5 discusses the
program and its algorithms that analyzes two AMGs and their node map on graph bitmap-
ping equivalence (GBE). Finally, Section 3.6 discusses the structure and tools used in creat-
ing an automated workflow for this solution using a TCL scripting environment.

3.1 Overview

Figure 3.1 shows the typical solution flow with the programs implemented by each section,
interjected with the file type of each input and output. A flow performs the modeling and
analysis of an SoC design’s memory organization. Since the SoOC memory organization is
described using IP-XACT XML documents it is convenient to implement the flow with IP-
XACT generators using the Tight Generator Interface (TGI) API. Generators are programs
which may be executed in the IP-XACT design environment (DE), which streamlines the
consecutive execution of these generators while simultaneously granting them access to the
IP-XACT metadata. As such, the solution programs can be executed consecutively as well as
separately.

N —
XLS >
(Spec) (Section 2) _Il
Specification R
_B AMG » GraphML
Generation
TXT > N >
(Reserved) i
D — (Section 4) B (Section 5) T
Node Map Csv > GBE > (Report)
— Generation (Node map) Calculation p
_B (Section 3) _B
+| Implemen- - ~—
IP-XACT > tation AMG » GraphML
Generation
N—

Figure 3.1: Overview of the implemented solution flow
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In the explanation of the solution, the following sections use several terminologies. Firstly,
unless stated otherwise, you may assume that graph G refers to the implementation AMG,
and graph H refers to the specification AMG. The term ”graph” is used interchangeably with
AMG. Secondly, bitmappings originating from paths in an implementation AMG may be
referred to as “implementation bitmappings”, the same holds for specification bitmappings.

3.1.1 Tools

We implement all programs in Java 8 to integrate in the IP-XACT workflow using the TGI
provided by a vendor Java 8 APL This API follows the IEEE 1685-2009 standard of IP-XACT
[15, p. 273]. We parse Excel files using the JXL! library version 2.6.10 which was already im-
ported in the IP-XACT environment. We implement graph modeling using the JGraphT [16]
library version 1.5.2. We altered it to support JDK 8 from JDK 11. The same modification was
made for the JHeaps dependency of JGraphT. The DOT [17], [18] language from GraphViz
version 2.30.1 is used for graph visualization. LibreOffice [19] version 7.5.0.3 is used for XLS
editing and conversion to and from other spreadsheet formats (XLSM and CSV).

3.1.2 AMG Model Representation and Serialization

AMG:s exist inside programs to be constructed, altered, and analyzed, while they are also out-
put from and input to programs in this solution flow. Therefore, AMGs have an in-memory
format directly used by the programs, as well as a serialized format used for storage and
transmission.

Anin-memory AMG is represented by a JGraphT DirectedPseudograph. Among JGraphT’s
other supported directed graph structures, this structure is chosen because it supports cycles,
unlike DirectedAcyclic graphs or DirectedMultiGraph, and does not use weighted edges, un-
like Directedweighted.

We use GraphML as the serialized format for AMGs. It is a generic XML standard sup-
ported by JGraphT for export and import. We select GraphML for its ability to define custom
node and edge attributes and because it is widely used compared to other supported stan-
dards.

JGraphT graph structures can be customized with specific Node and Edge classes to de-
fine necessary properties. In accordance with Section 2.4, the node class includes base and
range properties, while the edge class includes an offset property. Additionally, the node
class has a name property for distinguishing the IP-XACT memory element or specification
entry. Furthermore, we extend the node class with several identification properties to ei-
ther store IP-XACT identifiers or GraphML identifiers. We do not extend the edge class with
unique identifier because we use JGraphT’s default edge retrieval mechanism through their
connected nodes.

3.1.3 Test Cases During Development

We developed the solution under continuous testing with a set of test cases. Each test case
consisted of a small design for which we had the IP-XACT description and constructed the
specification spreadsheet. Some of the designs were created to cover corner cases of the
IP-XACT processing into AMGs. These corner cases are the hierarchical instantiation of com-
ponents and the cloning of addressSpaces of transparent bridges. Additionally, the small
size of these cases allowed for quick testing of the functionality of each program and the
overall solution flow. We provide example results for each program using the largest test
case design.

1https://jexcelapi.sourceforge.net/

28


https://jexcelapi.sourceforge.net/

3.2. AMG Construction from Global Address Map Specification

3.2 AMBG Construction from Global Address Map Specification

One of the initial steps in the solution flow, as illustrated in Figure 3.1, is the modeling of the
memory specification as an AMG. The memory specification, described by an XLS spread-
sheet, needs to be transformed into an AMG to facilitate further analysis. This section out-
lines the implementation of a program developed to perform this transformation, detailing
the program’s operation, configuration, and processing steps.

The program developed for this task primarily consists of an XLS parser. In general, the
parser reads the memory specification from an XLS spreadsheet and converts it into nodes
and edges, forming a new specification graph H. The following subsections detail the pro-
gram’s functionality, input requirements, and the process of transforming the spreadsheet
data into an AMG.

3.2.1 Program Arguments

The program accepts the following arguments:
o Specification XLS file path: The path to the XLS file to be processed into an AMG.

o Reserved words TXT file path: The path to the TXT file containing all keywords (sepa-
rated by a newline) that indicate an unmapped entry to be ignored by the parser. The
reserved words are required in order to detect reserved memory regions in the spread-
sheet, as the words to denote such regions may differ between SoC design. For exam-
ple, one sheet may use "Reserved”, while another may use ”-”, and yet another may
use both.

o Output GraphML file path: The path at which the GraphML export should be stored.

o Spreadsheet layout configuration parameters: These optional parameters override the de-
fault layout by which the supplied XLS file will be parsed. In other words, the program
allows customization of its layout configuration through parameters that can be ad-
justed to match the specific structure of the provided XLS file. These are not described
in the thesis.

3.2.2 Configurable Spreadsheet Layout

Our parser processes the spreadsheet layout explained in Section 2.3. We assume the layout
to use byte-addresses for all addressing. The layout specifies two ranges per peripheral: a
specified range and an implemented range, both defined in kilobytes. The specified range
defines the maximum number of byte addresses available to the peripheral before the next
peripheral is mapped. The implemented range defines the number of kilobytes that should
be mapped by the implementation and should be at most equal to the specified range. The
specified range column must be located directly to the left of the implemented range column.
Note that no leaf base address offset can be specified in this format, which means that all leaf
nodes [ have base(l) = 0.

While the parser adheres to this default spreadsheet layout, it remains configurable for
deviating layouts to save time in adjusting existing spreadsheets to one layout. We provide
nine layout parameters for this layout configuration. These includes the sheet index in the
XLS workbook, the header row index defining the column names, the address column index
defining the destination addresses of peripherals, the description column index defining the
name of the peripheral, the range column index defining the address range mapped for each
peripheral, the column index of the first defined root, and the number of roots that follow.
This flexibility ensures the parser can handle a variety of spreadsheet layouts.
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Figure 3.2: AMG graph visualization of an example specification

3.2.3 Construction Procedure

The following subsections describe the specific procedures for processing root nodes, leaf
nodes, and edges, highlighting the considerations and calculations involved in each step.

For example, we generate the AMG for the global address map specification of Figure 2.11.
This produces the AMG visualized in Figure 3.2. As mentioned before, the graph has a height
of 1 for the specification AMG.

3.2.3.1 Root Node Processing

The root nodes are added starting at the specified root column index. For each root, a new
node r is created with the specified name in the cell, and properties base(r) = 0 and
range(r) = . An infinite range is used for specification root nodes because the range of
a specification root is not relevant in our definition of GBE. The root range can be under-
stood as the final mapped peripheral address plus its specified range. Thus, an infinite range
ensures no clipping occurs. In this implementation, the maximum value of a Java long, 2631,
is used instead of infinity, which sufficed for the project duration.

3.2.3.2 Leaf Node Processing

Each row is processed into a leaf node and a set of incident (incoming) edges from the roots.
The node name is the concatenated region identifier, unit identifier, and purpose description.
If the region identifier is empty, the last defined region identifier is used. Similarly, if the unit
identifier is empty, the last defined unit identifier is used. If only the unit identifier is empty
while a new region identifier is defined, the empty unit identifier is used. Non-alphanumeric
characters are replaced by hyphens to adhere to the naming standard of the DOT language,
which will be used later.

To calculate the bit-addressed range of the leaf node, the kilobyte-addressed range in the
implemented range column is multiplied by 8192 (the number of bits in a kilobyte). If no
number can be parsed, the range from the specified range column is used instead.

For example, assume the last row of Figure 2.11 is processed into leaf node v. Then it will
have properties name(v) = I0__SPI__SPI-Interface,base(v) = 0,range(v) = 8192.

3.2.3.3 Edge Processing

After the node is added to the graph, we process the specified edges. An edge is added for
each root in the root columns with a non-empty cell for the current row. To calculate the
bit-addressed offset of this edge, the byte-address in the address column is multiplied by 8.
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For example, assume the last row of Figure 2.11 is processed into leaf node v. Then, it will
have two incident edges from root cpu and root bMA, both with offset 8 x 0240001000, which
is the bit address of hexadecimal byte address 0x40001000.

3.2.3.4 Handling Inaddressable Addresses

When the root accesses an address that is either unmapped or falls outside its range, the
behavior is undefined and may result in returning a 0, an error code, or something else. Ac-
cording to our definition of GBE, the root can access any address within its domains. Con-
sequently, the behavior of addresses outside its domains — whether unmapped or outside
its range —- remains undefined in the context of GBE. Therefore, handling of unmapped
address behavior is outside the scope of this research.

3.3 AMG Construction from IP-XACT Description

The other initial step of the solution flow depicted in Figure 3.1 is the modeling of the mem-
ory implementation as an AMG. Like the memory specification before, the memory imple-
mentation must be processed into an AMG, in order to compare them. Unlike the memory
specification, which is derived from an XLS spreadsheet, the memory implementation is de-
scribed by IP-XACT project files that detail the memory structure across various components
of an SoC design. This section outlines the steps performed by the implemented program to
realize this transformation.

To model the memory implementation, the program must traverse all components of the
IP-XACT project that are relevant to the memory structure. In general, it converts all relevant
components and their elements into nodes, and their memory constructs into edges. These
nodes and edges collectively form a new implementation graph G. The following subsections
explain the implementation details of this program, including its arguments, abstractions,
and recursive design traversal algorithms.

3.3.1 Program Arguments

The program accepts the following arguments:

o [P-XACT project identifier: This identifier is used by the DE to retrieve the project files
that describe the design.

o Output GraphML file path: The path at which the GraphML export should be stored.

Typically, IP-XACT project files are imported into the design environment (DE) at an ear-
lier stage. We supply the identifier of the top component to the generator. The DE then makes
the project metadata accessible to all programs via the Tight Generator Interface (TGI). Fig-
ure 3.1 only shows this section’s program receiving the IP-XACT files as input. This indicates
that this is the only program in the flow accessing the metadata through the supplied project
identifier.

3.3.2 Extension of Node Fields with IP-XACT Identifiers

To correctly process the memory organization of an IP-XACT design into the graph model,
the IP-XACT elements must be uniquely identifiable from their node representation. The
TGI generates an identifier for each IP-XACT entity, also called a reference or ID. These are
regenerated at each run, hence the identifier to the same entity may differ between runs.
Although the concepts of configured versus unconfigured identifiers [2, p. 345] are important
in this implementation, they are omitted from this explanation for simplicity. The TGI can
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use an ID, or a combination of several, to retrieve an entity’s metadata. This capability is
frequently used in the implementations of the pseudocode in this section. For example, it is
used to find the memory elements and interfaces in a component or to determine the interface
endpoints of interconnections. The obtained metadata is processed into an AMG.

To facilitate this, the extra IP-XACT information is integrated into the same data structure
that represents the graph model. This integration involves the following extra node proper-
ties introduced for constructing the implementation AMG:

1. designInstanceID: ID of the design instance in which the memory element exists.
2. instanceID: ID of the component instance in which the memory element exists

3. memoryID: ID of the addressSpace or the memoryMap that contains the processed memory
element.

4. elementID:ID of the addressSpace, segment or the addressBlock that this node represents.
When the node represents an addressSpace, both the memoryID and are the same.

5. interfacelDs: Set of interfaces that link to this memory element.

6. isSegment: Boolean that explicitly indicates whether the node is a segment.

The designInstanceID, instanceID, memoryID, and elementID together are unique for all
nodes during implementation AMG construction. These identifiers precisely identify the
node’s implementation in the IP-XACT design, whose metadata can be retrieved by sup-
plying these identifiers. When the node represents an addressSpace, both the memoryID and
elementID are the same. The interfaceIDs are unique within the contained component in-
stance.

For clarity, the pseudocode algorithms abstract from the retrieval of metadata via IP-
XACT identifiers, hence they will be absent in the pseudocode. Futhermore, future analyses
on the resulting AMGs do not use these identifiers; they are only used in the AMG construc-
tion from the IP-XACT implementation. No identifier property is included in the GraphML
as they relate only to the IP-XACT implementation, not the graph model. Instead, the auto-
matic identifier index of GraphML nodes is used for node identification after export. The
isSegment property is included in the GraphML because it is necessary in the programs of
Section 3.4 and Section 3.5.

Algorithm 1: Implementation Graph Initiation

Input: Ciop: Top component of design to be modeled
Output: G: Constructed AMG of this design’s memory implementation

1 createGraph(Ciop) {

2 G — Empty graph

3 interfaceMap < Empty map between interfaces
4 foreach Cq instantiated in Ciop do

5 ‘ createGraphRec (G, interfaceMap, Crop, Clhiig)
6 end

7 addEdges (G, interfaceMap, Ciop)

8 return G

9}

3.3.3 Construction Procedure

To construct the implementation AMG, we developed an algorithm that recursively explores
all components of the hierarchical IP-XACT designs. The pseudocode of this is shown in Al-
gorithm 1. It starts with the top component, initiating a new graph and kicking off recursion
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Figure 3.3: AMG graph visualization of an example implementation

for each contained component instance (line 4-6). Our approach is inspired by the C++
implementation of [1] discussed in Section 1.5.2, which uses a general recursive structure.
Given a component instance, the algorithm extracts the graph nodes from the component,
performs recursive calls for its child component instances, and finally extracts its graph edges.
Our Java implementation follows the same recursive structure. As such, AMG nodes are
added on the recursive way down the IP-XACT hierarchy, while AMG edges are added on
the recursive way back up. The exact procedures to perform each of these steps is explained
by the following subsections.

For example, we generate the AMG for the IP-XACT description implementing the spec-
ification of Figure 2.11. This produces the AMG visualized in Figure 3.3. As expected, this
graph has a height larger than 1 unlike the AMG of the specification in Figure 3.2. The bitmap-
pings are performed via the intermediate address maps.

The following subsections explain each step of the recursive Algorithm 2. Therefore, you
may assume that all line references are for this algorithm, unless Algorithm 1 is mentioned
explicitly.

3.3.3.1 Node Processing

First, all memory elements contained in the current component are added as nodes to the
graph. These nodes can become root nodes, leaf nodes, or intermediate nodes. When an
addressSpace is added, all its contained segments and localMemoryMaps are also added with a
directed edge pointing towards them with an offset of 0 (line 2-15). All addressBlocks inside
a memoryMap are processed into nodes (line 16-21).

To complete the definition of the nodes, the helper function addInterfacesToNodes adds
the interface identifiers interfaceIDs to the nodes whose corresponding memory element
they reference (line 22). This is necessary because each interconnect contains a pair of in-
terface identifiers, so it must be known which nodes in the graph these interfaces belong
to.
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Algorithm 2: Recursive Implementation Graph Construction

Input: G: the graph under construction
Input: interfaceMap: map between interfaces
Input: Cparent: parent component of currently processed component
Input: Ceurrene: currently processed component
Output: G: The AMG under construction after processing Ceurrent
1 createGraphRec(G, interfaceMap, Cparent, Ccurrent) {
/* Process all memory elements in Cecyrrent into graph nodes. */

2 foreach addressSpace AS in Ceyrrent dO

3 process AS into node u

4 add u to V(G)

5 foreach segment SG in AS do

6 process SG into node v

7 add v to V(G)

8 add edge uv to E(G) with offset 0

9 end
10 foreach tocalMemoryMap LMM in AS do
11 process LMM into node v
12 add v to V(G)
13 add edge uv to E(G) with offset 0
14 end
15 end
16 foreach memorymMap MM in Ceyrrent dO
17 foreach addressBlock AB in MM do
18 process AB into node u
19 add u to V(G)
20 end
21 end

/* Add the interfaces of Ceyrent to the previously added nodes. */
22 addInterfacesToNodes (G, Ceurrent)
/* Map the two 1interfaces of hierarchical interconnects 1in 1interfaceMap. */

23 foreach hierarchical interconnect | in Ceyrrent dO
24 Infy s, < interface of [ in higher level component
25 Inf,,,, < interface of [ in lower level component
26 add map Infhigh — Inf, . to interfaceMap
27 end
28 foreach Clq instantiated in Ceurrent O
29 ‘ createGraphRec (G, interfaceMap, Ceurrent, Clpilg)
30 end
31 addEdges (G, interfaceMap, Ccurrent)

32 }

When a transparent bridges contains a target interface, each initiator interface on the other
end of the bridge requires an additional processing step. When multiple bridge initiator in-
terfaces reference the same addressSpace, they each reference their own new instantiation
of this addressspace. In other words, the address maps from multiple bridge initiator in-
terfaces cannot be combined into the same referenced addressspace. This is implemented in
addInterfacesToNodes by creating a new addressSpace node clone for each transparent bridge
initiator interface, while the original addressSpaces nodes are removed from the graph. Re-
moval does not affect non-bridge connections, as their interfaces are added to the original
node before cloning.

3.3.3.2 Registering Hierarchical Interconnects

Before the algorithm executes the recursive calls, all hierarchical interconnects defined in
the current component are processed into an interface map (line 23-27), as explained in Sec-
tion 2.1.2. In this map, the interface of the current component points to the interface of the
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child component. For example, when the hierarchical interconnects of Figure 2.8 are pro-
cessed, interface I, maps to Iy while interface T3 maps to T;. This map of hierarchical in-
terconnect interfaces is needed to resolve the non-hierarchical interconnects to which they
connect.

3.3.3.3 Recursive Call

The recursive call is performed for each child component instance (line 28-30). This call
passing along the current graph, the interface map, the current component, and the child
component itself. The current component is needed in the recursive call to register the precise
location of the node in the IP-XACT implementation by including the parent design instance
identifier in its properties.

3.3.3.4 Edge Processing

After the algorithm has performed recursive call, all memory constructs defined in the cur-
rent component are processed into edges by helper function addedges (line 31). This step is
also performed for the initiator Algorithm 1 (line 7). Because all recursive calls have been
performed for this component, we know all memory elements defined by child components
have also been processed into graph nodes. Additionally, we know all hierarchical inter-
connects defined by either child components or parent components have been added to the
interface map. The rest of this subsection explains how helper function addedges processes
interconnects (hierarchical and non-hierarchical) into edges between these nodes.

All non-hierarchical interconnects defined by this component, which connect a target
and initiator interface, can now be processed into edges. To do this, the endpoint memory
elements of each interconnect must be identified. There may be several hierarchical intercon-
nects between the non-hierarchical interface and the final interface that references the mem-
ory element. These hierarchical interconnects are resolved to their final interface using the
interface map. The resolution involves exhaustively retrieving the hierarchically-connected,
lower-level interface from the interface map until no further entries exist, indicating that the
final interface has been found. This process results in the retrieval of the two final initia-
tor and target interfaces for both endpoints of the interconnect chain. For the example in
Figure 2.8, resolution of the non-hierarchical interconnect between I and T3 results in end-
points Iy and T}, respectively.

If a bridge does not contain the final target interface, the interconnect implements a simple
address map structure that can be processed into an edge directly. An edge with zero offset
is added to the graph from each source node to each target node. The source nodes are all
nodes that contain the initiator interface identifier, while the target nodes are all nodes that
contain the target interface identifier.

If a bridge does contain the final target interface, the interface will not directly reference a
memory element represented in the graph. Instead, the bridge constructs are analyzed and
processed into edges in the following manner:

e For each opaque bridge, retrieve its initiator interface and all subspaceMaps contained
in its memoryMap. Then, for each subspaceMap, retrieve its referenced addressSpace or
segment, and add an edge from each source node to the target node. The source nodes
are all nodes that contain the identifier of the final non-hierarchical initiator interface.
The target node is the node that represents either the addressSpace or segment refer-
enced by the subspaceMap. The edge offset is calculated as discussed in Section 2.4.3.

e For each transparent bridge, retrieve its initiator interface. Add an edge from each
source node to each target node. The source nodes are all nodes that contain the identi-
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Graph H Graph G

Node ID Node Name Map Index Map Index Node Name Node ID
ROOTS

0 CPU 0 1 u_dma$AS 18

1 DMA 1 0 u_cpu$AS 6
LEAVES

2 ROM 0 0 u_rom$MEM$ROM 5

3 RAM 1 1 u_ram$MEM$RAM 23

4 SPI 2 2 u_spi$MM1$AS17 4

Table 3.4: Example of the first seven entries of a node map CSV.

fier of the final non-hierarchical initiator interface, while the target nodes are all nodes
that contain the bridge initiator interface.

3.4 Node Mapping

After constructing the Address Map Graphs (AMGs) for both memory specification and
implementation, the next step in the solution flow, depicted in Figure 3.1, is constructing
the node map. This node map is essential for determining the Graph Bitmapping Equiva-
lence (GBE) between two AMGs as defined by Section 2.6. GBE requires two bijective node
maps Br and Bj, between the implementation and specification roots and leaves, respec-
tively. These mappings ensure that only the bitmappings of corresponding nodes are com-
pared.

However, the raw state of the implementation AMG does not allow for a bijective map.
The implementation AMG may represent a specification leaf by means of multiple leaves,
making a bijective map impossible. To resolve this, the split implementation leaf nodes must
be merged into one. The node map defines these merges by mapping multiple implementa-
tion leaves to the same specification leaf.

This section outlines the steps our implemented program takes to generate the node map.
We start by explaining the handling of merged nodes and the CSV format used to define
node mappings. Next, we introduce bitmapping maximization, a technique that implicitly
implements the address function and enables direct comparison of bitmappings for equiv-
alence. We then demonstrate the correctness and completeness of the algorithms used for
bitmapping maximization. Finally, the procedure for generating the final node map CSV is
discussed.

3.4.1 Program Arguments

The program accepts the following arguments:

1. Specification AMG GraphML file path: The path to the GraphML file describing the spec-
ification AMG.

2. Implementation AMG GraphML file path: The path to the GraphML file describing the
implementation AMG.

3. Output node map CSV file path: The path at which the generated CSV file must be stored.
It defines the node map between the two AMGs and specifies any leaf nodes to be
merged in the implementation AMG.
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3.4.2 CSV File Layout

We use a CSV file to provide a clear and structured way to define node mappings. Table 3.4
shows the first seven lines of the node map for one of the test designs, including two indica-
tive headers. The CSV layout is split in two symmetric sides. The left side represents nodes
from the specification AMG, referred to as the H-side, while the right side represents nodes
from the implementation AMG, referred to as the G-side. Each row, excluding the "TROOTS”
and "LEAVES” headers, may display a node entry for either side.

The "Node ID” columns, located at the far left and right, contain the unique identifiers
of the nodes, which are automatically generated by the GraphML format. The "Map Index”
columns in the middle indicate the mapping of nodes. When two nodes from both AMGs
share the same map index, they are considered mapped. It's important to note that the map
indices are independent of the node identifiers. If a node’s map index cell is empty, it means
the node is not mapped and will be excluded from further analysis in the solution flow.

To handle leaf node merging, multiple G-side leaf nodes can be merged if they share the
same map index. Merging does not apply to H-side leaf nodes, because our focus lies on ver-
ification of implementations against specifications, and it is not possible in our specification
model for multiple specification entries to specify a single implementation bitmapping. As
such, this makes the merging unidirectional and specific to leaf nodes. Consequently, H-side
map indices are always unique, such that H-side nodes may not merge. Although it would
be possible, this solution also does not implement the merging mechanism for root nodes,
because it was not seen as credible that multiple roots are specified as one root.

3.4.3 Node Mapping Procedure

This subsection explains the steps and their related algorithms for generating a node map.
When handling larger designs, their implementation AMGs quickly get too many leaf nodes
to map manually. An automated program was developed to complete the map indices for leaf
nodes in Graph G, thereby automatically mapping leaf nodes to each other. To implement the
automatic mapping of nodes, a preliminary comparison of bitmappings of all root-leaf pairs
must be performed. In general, the steps consist of calculating all bitmappings in both AMGs,
performing our developed method of bitmapping maximization on both sets, and finally
traversing the nodes and generating a node map between their nodes based on bitmapping
equivalence.

3.4.3.1 Bitmapping Calculation

Before explaining the method of bitmapping calculation, it is essential to understand the
way bitmapping sets are stored throughout this solution. The set of bitmappings M (G) of
an AMG G is represented as a two-dimensional map, denoted M. Root nodes are in the
first dimension, and leaf nodes are in the second dimension. For any root r € R(G) and
leaf [ € L(G), the set M¢[r][l] contains the bitmappings of M (G, r,1), such that Mg[r][l]] =
M (G, r,1). Throughout this solution, all bitmappings m € M¢[r][l] are sorted in ascending
order of [b(m). This structure ensures that bitmappings are efficiently managed and accessed
during the various processing steps.

Algorithm 3 shows the algorithm to calculate M¢. For each root node r and leaf node [
pair, it calculates bitmapping m(p) for each path p between them (line 2-8). The bitmapping
is recursively calculated (line 8) for the AMG path as explained in Section 2.5. The bitmap-
ping is then added to set M, _,; unique to this root-leaf pair (line 9). Each set M,_,; is then
added to the two-dimensional set at M¢[r][l] (line 11). Similarly, My is calculated for the
specification AMG H.
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Algorithm 3: Graph Bitmapping Set Calculation

Input: G: AMG for which to calculate all bitmappings
Output: Mg: Two-dimensional map of all bitmappings of AMG G, with roots in first dimension and
leaves in second dimension
calculateBitmappingSet(G) {
Mg «— Empty two-dimensional map from nodes to sets
foreach r € R(G) do
foreach ! € L(G) do
if r = [ then continue
Mr—»l — @
foreachp € P,_,; do
calculate bitmapping m(p)
insert m(p) into M,_,; in order of ascending Ib
end
add M,_; to Mg[r][l]
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return Mq
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3.4.3.2 Address Function Implementation

Section 3.5 explained that GBE between two AMGs is determined by the equivalence of the
address functions A of their bitmapping sets for corresponding root-leaf pairs. To determine
GBE, it is necessary to determine the equivalent output of both functions for each bit address
in all domains of the pairs. However, this approach is inefficient for larger designs, as it
requires processing millions of bit addresses. We developed an alternative approach that is
more efficient in GBE calculation, called bitmapping maximization, which we discuss later in
this section.

3.4.3.2.1 Direct Bitmapping Comparison

The GBE definition in Section 2.6 relies on an address function because bitmappings, as they
come out of previous step, cannot be directly compared immediately. Figure Figure 3.5 illus-
trates why direct bitmapping comparison fails. This figure depicts three bitmappings: mpy
from specification graph H on the left, and m¢ ; and mg 2 from graph G on the right. As-
sume there is a node mapping that maps r¢ to g and lg to [y, and base(ly) = base(lq).
Bitmappings are equal when they have the same values for their properties: [b, ub, bd, and
base. Equal bitmappings have equivalent address functions. In Figure 3.5, neither m¢, 1 nor
mg,2 is equal to my. This implies A(mg1) # A(mpg) and A(mg2) # A(mp). However,
using the set address function, A(mq,1, mg2) = A(mp) holds because all address maps in
mp are covered by mg 1 and mg 2. This example shows that direct comparison of bitmap-
pings can lead to a false negative, where a specification bitmapping appears to be missing in
the implementation despite its address maps being present. The GBE definition avoids false
negatives by using the address function A to retrieve and compare each individual address
map implemented by a set of bitmappings.

3.4.3.2.2 Bitmapping Merging
To facilitate direct comparison, bitmappings m; and ms of the same root-leaf pair can be
merged under the following two conditions:

1. The bit address offset between the domain and codomain must be the same for both
bitmappings. This offset, also called the bitmapping address offset, is defined by Equa-
tion (3.1) and denoted addressOffset(m) for a bitmapping m. In essence, it is the off-
set by which addresses in the domain map to the codomain. Thus, it is calculated by

38



3.4. Node Mapping

myg CH
DH xr9 -
T -
0 . 0L

Figure 3.5: Bitmappings from two graphs that implement the same address function

subtracting the codomain’s (calculated) lower bound from the domain’s lower bound.
Thus, addressOffset(m;) = addressOffset(ms) must hold.

addressOffset(m) = Ib(m) — bd(m) — base(m) (3.1)

2. The domains of the bitmappings must be contiguous or overlapping. Two bitmappings
my and mg are contiguous if ub(m;) = lb(mz) or ub(m;) = Ib(mz) holds. Note that
the upper bounds is exclusive and the lower bounds is inclusive. Two bitmappings
my and my are overlapping if either Ib(mg) < ub(m;) and Ib(msz) > Ib(m;) holds, or
Ib(m) < ub(ms) and Ib(m;) > lIb(mz) holds.

When both conditions hold for two bitmappings m; and ms of the same root-leaf pair,
they can be merged into one equivalent bitmapping that spans both and is contiguous. The
merged bitmapping my, will have the minimum lower bound 1b(my ) = min(lb(m;), Ib(m2)),
the maximum upper bound ub(mm) = max(ub(m;),ub(ms)), and the minimum bottom
delta bd(my,) = min(bd(m;),bd(mz2)). The block base address offset is the same for both m;
and my, because they have the same leaf node, such that base(mn,) = base(m;) = base(mz)
holds.

For the example in Figure 3.5, the contiguous bitmappings mq,1 and mg 2 from graph G
could be merged into one equivalent bitmapping m 3, such that A(mg3) = A(ma,1, ma,2).
Then, given that base(ly) = base(lg), we get mg 3 = mpy, implying A(mg 3) = A(mpy). This
method of establishing equivalence based on the address function is significantly simpler
and more efficient than the brute force method of comparing all mapped addresses.

False positives can also occur when verifying an implementation against a specification.
Imagine mp in Figure 3.5 is as large as m,1, then m¢ 2 would remain unmatched. However,
the current specification format cannot define more than one bitmapping per leaf. Therefore,
a second bitmapping in H that matches mg 2 could never exist since it would be part of M.
Hence, this is a false positive: a match in bitmappings is found while in reality, G implements
a larger bitmapping than specified. By merging m¢ ;1 and m 2 into one, the false positive is
prevented.

3.4.3.2.3 Bitmapping Maximization

The merging of all contiguous or overlapping bitmappings with the same bit address offset
and from the same root-leaf pair is called bitmapping maximization. Figure 3.6 shows an ex-
ample bitmapping maximization of a set of bitmappings to the window of a root r¢. Only
the domains are shown with their range indicated above them. Assume that all have the
same bitmapping address offset. The bitmappings are maximized into the one bitmapping
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Figure 3.6: Example bitmapping maximization problem

with domain Dpayx. For each of the contained bitmappings, the resulting bitmapping mmax
has the maximum range of of all possible bitmapping merge combinations. Merged bitmap-
pings are removed from their bitmapping set, since their exact address maps are also covered
by the maximum combination. As a result, false negatives are not possible in the compari-
son of maximized bitmappings, for there are no bitmappings (with equal bit address offset)
contiguous or overlapping with it, for they would have been merged. Furthermore, false
positives are not possible in the comparison of maximized bitmappings, for there are no
bitmappings (with equal bit address offset) contained in it, for they would have been merged.
Therefore, there is no advantage to use address functions for comparison anymore, and we
can instead perform direct comparison of maximized bitmappings.

Note that any implementation root-leaf pair with more than one maximized bitmapping
must result in non-equivalence with its specification, as the specification defines only one
bitmapping.

3.4.3.24 Algorithm

Bitmapping maximization is implemented as shown in Algorithm 4. The input is the two-
dimensional set M calculated by Algorithm 3. For each root-leaf pair with paths in M, all
bitmappings are added to a set Mynmerged (line 2-6), which is afterwards sorted in ascending
order of /b (line 7). Maximization is then repeatedly performed for unmerged bitmappings.
In each iteration, the poll function retrieves and removes the smallest [b bitmapping that is
yet unmerged. The algorithm is initiated with this bitmapping as the running maximized
bitmapping through (line 8-9) and an empty set of merged bitmapping of this iteration (line
10). Then, it checks each of the remaining unmerged bitmappings for the two merging condi-
tions (line 11-12). When the conditions hold for an unmerged bitmapping, it is added to the
list of merged bitmappings (line 13) and the upper bound of the maximized bitmapping is
updated (line 13-16). After all unmerged bitmappings are checked, the merged bitmappings
are removed from Mynmerged (line 19-21) and the maximized bitmapping is added to the re-
sult set Mgyt (line 22). When there are no unmerged bitmappings left, the set of maximized
bitmappings replaces the original M,_,; (line 24).

3.4.3.3 Algorithm Analysis on Completeness and Correctness

To assess the robustness of the bitmapping maximization algorithm, we examine its com-
pleteness and correctness. This is necessary for this algorithm, because bitmapping maxi-
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Algorithm 4: Graph Bitmapping Maximization

Input: Mq: Two-dimensional map of all bitmappings of AMG G, with roots in first dimensions and
leaves in second dimension
Output: Mg: Two-dimensional map M after bitmapping maximization.
1 maximizeBitmappings(M¢) {

2 foreach root node r for which M (G) contains a path do
3 foreach leaf node | for which M (G) contains a path from r do
4 Miesuie «— I
5 Mr—»l «— MG [T][l]
6 Munmerged «— Copy(MT—>l)
7 s0rt Munmerged in Order of ascending Ib.
8 while Munmerged # & dO
9 Mmax <— unmerged-pou()
10 Mmerged —
1 foreach m € Mynmerged dO
12 if addressOffset(mmax) = addressOffset(m) and mmax is contiguous or overlaps with m
then
13 add m to Mmerged
14 if m.ub > Mmax.ub then
15 ‘ Mmax-Ub «— m.ub
16 end
17 end
18 end
19 foreach m € Mmerged dO
20 ‘ remove m from Mnmerged
21 end
22 add mmax t0 Mresuir
23 end
24 replace M,_,; by Mresur in Ma
25 end
26 end
27 }

mization drastically changes the manner in which GBE is determined from comparing ad-
dress function outputs for each bit address to direct comparison of maximized bitmappings.

Completeness of the algorithm is demonstrated by the following four points resulting
from the analysis of the algorithm. Firstly, the algorithm handles all root-leaf pairs for which
paths exist. Secondly, it iterates through all bitmappings, ensuring that every bitmapping
is considered. Thirdly, it ensures that all bitmappings are either merged into a maximized
bitmapping or added to M, g1, leaving no bitmappings unprocessed. Finally, completeness
can be verified by ensuring that the unchecked set is fully processed, and all bitmappings
are accounted for in the result set.

Correctness is demonstrated by checking whether it a collection of cases listed in Ap-
pendix A.2. These cases all verify an implementation AMG against a single specification
AMG bitmapping. The cases have been constructed to cover corner cases in the merging
process. Each of the cases was correctly processed.

3.4.3.4 Node Mapping Generation

With the bitmapping sets calculated and maximized for both input AMGs, the next step is to
map their nodes. Root nodes are not automatically mapped; they are listed on both sides of
the node map, with the right-hand side map index left empty. Even after manual mapping
of root nodes, a medium to large design likely contains a significant number of unmapped
implementation roots, cluttering the CSV file contents. To reduce this clutter, the graph is
trimmed before analysis by removing segment roots. This process significantly reduces the
number of unmapped implementation root nodes. This approach is effective because the
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implementation of a specification root typically corresponds to an address space node rather
than an implementation segment node.

Leaf nodes are mapped automatically with the following algorithm. Note that for a
bitmapping m; to “fall within” a bitmapping mg, this means that ib(m;) > [b(m2) and
ub(my) < ub(m?2) hold.

1. For both graphs G (right) and H (left), find the minimum /b bitmapping for each leaf
among all its connected roots.

2. Sort both sets of minimum [ in ascending order.
3. Obtain the lowest (b bitmappings mpy and mg for both graphs.
4. Repeat the following steps until all bitmappings have been traversed for both graphs:

a) If mg falls within mp, their leaves are given the same map index and both are
advanced to the next bitmapping.

b) Elseif lb(mq) < lb(mpr), the leaf of m¢ is given the next available address and m
is advanced to the next bitmapping.

c) Else if Ib(mpy) < lb(me), the leaf of mp is given the next available address and
mp is advanced to the next bitmapping.

d) Elseif lb(mq) = lb(mp), the leaf of my is given the next available address and the
leaf of m is left with empty map index. Both are advanced to the next bitmap-
ping.

e) If no nodes are left to traverse in either graph, the remaining nodes in the other
graph are given no map index.

3.5 Graph Bitmapping Equivalence Assessment

The final step in the solution flow, depicted in Figure 3.1, is to determine the Graph Bitmap-
ping Equivalence (GBE) between the two constructed Address Map Graphs (AMGs) using
the generated node map. The details of the GBE assessment are recorded in a text-based
report, which highlights any discrepancies found.

We implement a program to perform this assessment that follows the GBE definition
provided in Section 2.6. Like the node map generator described in previous Section 3.4, it
uses bitmapping maximization to implement address functions and facilitate direct bitmap-
ping comparison. Additionally, the program merges nodes as defined in the node map and
generates the text-based report highlighting any inequivalences.

3.5.1 Program Arguments
The program accepts the following arguments:

1. Specification AMG GraphML file path: The path to the GraphML file describing the spec-
ification AMG.

2. Implementation AMG GraphML file path: The path to the GraphML file describing the
implementation AMG.

3. Node map CSV file path: The path to the CSV file describing the node map generated for
the same two AMGs. It defines their node mappings and specifies any leaf nodes to be
merged in the implementation AMG.

4. Output GBE report TXT file path: The path at which the text-based GBE report should
be stored.
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3.5.2 GBE Assessment Procedure

The following subsections explain the steps executed by the program to determine GBE be-
tween the provided AMGs. Generally, the program calculates the sets of all bitmappings
for both AMGs, performs bitmapping maximization on these sets, merges leaf nodes accord-
ing to the node map, and then determines GBE using the node map. The initial steps of
bitmapping calculation and bitmapping maximization are also performed by the node map
generator and have already been explained in the previous section, and hence will not be
explained in detail. This section will focus on the steps that follow: leaf node merging, GBE
calculation, and report generation.

3.5.2.1 Leaf Node Merging

When the node map specifies that multiple leaf nodes in graph G share the same map index
as one node in graph H, these leaf nodes must be merged. Leaf nodes can be merged in two
ways: either keeping internal merge gaps or removing them.

For nodes to merge correctly, all bounds of their maximized bitmappings must align with
each other, to form one contiguous block. If they do not align, gaps of unmapped addresses
exist between the bitmappings. From the implementor’s perspective, the gaps may already
be known and the nodes must be merged anyway, such that whatever gaps are present are
not important and thus can be ignored. However, from the specifier’s perspective, the gaps
have not been specified, hence this discrepancy must be present in the equivalence report.
Hence, the gaps may be handled in different ways.

The node map CSV file is parsed into a mapping function f,,o4e, which maps nodes in
implementation G to nodes in specification H. Nodes u,v € V(G) that are to be merged,
must map to the same node in V(H), such that fiode(t) = frode(v) holds. The merging
process is performed on the two-dimensional map Mg maximized by Algorithm 4.

Algorithm 5: Node Merging, Keeping Gaps

Input: fode: Map from nodes in G to nodes in H
Input: Mq: Two-dimensional map of all bitmappings of AMG G, with roots in first dimension and
leaves in second dimension
Output: M¢: The two-dimensional map after bitmapping maximization with internal merge gaps kept
1 mergeLeaves(fnode, Mc) {

2 collect distinct H nodes that frode maps to, in set Vi mapped
3 foreach node vi in Vi mapped do
4 collect all distinct G nodes that fnode maps to v in set Vg same
5 if [V same | > 1 then
6 foreach root node r for which M (G) contains a path do
7 Miesuit <— I
8 foreach node | €V same do
9 if M (G) contains a path from r to | then
10 | add all bitmappings from M r][l] to Mresur in order ascending b
11 end
12 end
13 maximize the bitmappings in Mesuit
14 foreach leaf node | €V same do
15 ‘ replace M (G, r,1) in Mg with Myesuit
16 end
17 end
18 end
19 end
20 }

The implementation of node merging does not involve removing nodes from the AMG
nor inserting a single merged node. Instead, when multiple leaves need to be merged, we
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keep all of them in the AMG and refer to them as merge siblings. After the merging process,
each merge sibling contains the set of maximized bitmappings between each root and the set
of merge siblings. Thus, we perform merging at the bitmapping level, not the AMG level.

This approach avoids altering the AMG by removing or inserting nodes and edges, as
merging would remove detail from the AMG. Instead, we focus on interpreting the AMG
data. Additionally, inserting and removing nodes and edges would affect more bitmappings
than those that need merging. Consequently, we would need to update all affected paths to
reflect the new merged node’s base and range. By performing the merge at the bitmapping
level, we avoid these drastic effects and maintain simplicity in the analysis.

After completing bitmapping maximization and node merging, the surjective node map,
which maps multiple implementation nodes to one specification node, has become a bijective
node map. This bijective node map matches merged nodes to specification nodes, as required
by the GBE definition.

3.5.2.1.1 Keeping Internal Merge Gaps

Algorithm 5 shows how nodes are merged while maintaining the gaps between bitmappings.
First, we find the set of merge sibling Vi same, which are the leaves in G that map to the same
leaf in H according to fyode (line 2-5). Then, for each root » from which there is a path
in M(G), the bitmappings of each merge sibling I € Vg same With a path to said root are
added to a combined bitmapping set (line 6-12). Because bitmapping maximization was
only performed on a root-leaf pair basis, the resulting merged bitmapping set Mgyt may be
non-maximized. Hence, the maximization is again performed on the set, using the same al-
gorithm as in Algorithm 4 (line 13). Then, each M (G, r,1) is set to this maximized combined
set Myesult, such that each merge sibling has the same combined set of bitmappings for the
same root (line 14-16).

Algorithm 6: Node Merging, Removing Gaps

Input: frode: Map from nodes in G to nodes in H
Input: Mq: Two-dimensional map of all bitmappings of AMG G, with roots in first dimension and
leaves in second dimension
Output: M¢: The two-dimensional map after bitmapping maximization with internal merge gaps
removed

1 mergeLeaves( fnode, Mc) {
2 collect all distinct H nodes that faode maps to, in set Vi mapped
3 foreach node vy in Vi yapped do
4 collect all distinct G' nodes that fyode maps to vy in set Vi same
5 if |VG same | > 1 then
6 foreach root node r for which M (G) contains a path do
7 Miesue «— &
8 foreach leaf node | € Vg same do
9 ‘ add ]\4((:7 T, l) to Miesuit
10 end
11 check address alignment is equal across Mzesult
12 find the lowest [b bitmapping miirst € Mresult
13 find the highest ub bitmapping miast € Mresuit
14 create a new bitmapping mmerged With the 1b, bd, base of myig and ub of My
15 foreach node | € Vi same do
16 ‘ replace M (G, r,1) in Mg with {mmerged }
17 end
18 end
19 end
20 end
21 }
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3.5.2.1.2 Removing Internal Merge Gaps

This algorithm, shown in Algorithm 6, fills any gaps between bitmappings to form one large
bitmapping. Similar to the previous algorithm, we identify the set of merge sibling Viz same,
which are the leaves in G that map to the same leaf in H according to fyoge (line 2-4). For
each root r with a path in M (G), we collects all bitmappings to the merge siblings (line 6-10).
Because no maximization step is performed, we must verify manually whether the address
alignment is equal across Mes¢ (line 11). If this is not the case, the program outputs a warn-
ing message. Afterwards, we find the two bitmappings in Mgy with lowest [b and highest
ub, respectively (line 12-13). A new bitmapping mmerged is created from these two bitmap-
pings according to line 14, such that the range of the new bitmapping spans all bitmappings
to be merged. Finally, each M (G, r,1) is replaced by mpmergeq (line 15-17) such that it is the
only bitmapping from root r to each merge sibling | € V5 same-

3.5.2.2 GBE Assessment

We perform GBE calculation in two steps. First, we determine formal GBE by a simple al-
gorithm that sticks to the GBE definition, but which thereby cannot give further details into
inequivalences or bitmappings from unmapped nodes. If it is determined that GBE does
not hold, then we perform a more detailed analysis through a more complicated algorithm
which is able to generate a detailed report on inequivalences.

3.5.2.2.1 GBE Calculation

First, Algorithm 7 calculates GBE between supplied AMGs. According to the definition of
GBE in Section 2.6, only the nodes mapped by the node map are handled. It comes down to
checking for equivalence M (G,r,l) = M(H,r',l') for allr € R(G) mapped by fhoqe such that
" = frode(r), and all leaves [ € L(G) mapped by fyode such that I’ = fro4e(1). As explained
in Section 3.4.3, this is possible due to the merges performed by bitmapping maximization,
which allows for direct bitmapping comparison while avoiding false negatives and false pos-
itives. The returned boolean declares whether AMG G and H are bitmapping equivalent
according to its formal definition.

Algorithm 7: Graph Bitmapping Equivalence Calculation

Input: My: Two-dimensional map of all bitmappings of AMG H
Input: Mq: Two-dimensional map of all bitmappings of AMG G
Input: fode: Map from V(G) to V(H)
Output: Boolean whether GBE holds

1 calculateSimpleEquivalence(Mu, Ma, fnode) {

2 foreach root r mapped by faode do

3 TH ‘_fnode (TG)

4 foreach leaf | mapped by frode do

5 lH (_fnode (lG)

6 Me,r—1 = Mc[ra]lle]

7 Mp -1 = Myru][lu]

8 if Mg,r—1 # My - then return false

9

end
10 end
11 return true
12 }

3.5.2.2.2 Report Generation

In case the GBE calculation results in bitmapping inequivalence, we should find the discrep-
ancies in either the specification or implementation that caused it. For this purpose, we per-
form an extended algorithm to provide insight on the exact equivalences and inequivalences

45



3. SoLuTION

between the two AMGs, including for unmapped implementation leaves, in order to get a
complete report on the comparison of the two AMGs.

To perform a more detailed GBE analysis and generate the report, Algorithm 8 takes a
different approach and direct compares individual bitmappings in G and H. Its inputs are
the two-dimensional maps My and Mg and node mapping function fode-

Algorithm 8: Graph Bitmapping Equivalence Report Generation

Input: Mpy: Set of all bitmappings in H in order of ascending (b
Input: M¢: Set of all bitmappings in G in order of ascending (b
Input: G: Implementation AMG
Input: frode: Map from V(G) to V(H)
Output: Text-based GBE report
calculateEquivalence (My, M, G, faode) {
Mnmatched < &
foreach root node rq mapped by faode do
TH < fnode [TG]
get next bitmapping me in M (G) with lowest (b and r¢ as root
get next bitmapping my in M (H) with lowest b and rg as root
while not all bitmappings in M (G) and M (H) have been traversed do
if mg and my exist then
get leaf I of path pg of mqa
get leaf ;7 of path py of mu
lH,mapped «— fnode [lG]
if a sibling merged leaf of lg has been traversed for rq then continue
if 1y mapped = Lz and mq equivalent to my then
report both bitmappings as equivalent
get the next lowest /b bitmappings for both mg and my
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if my.getUb() smaller or equal to mea.getLb() then
report mpy as non-equivalent
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For each root r¢ in G that is mapped by f,ode, the mapped root 7 = frode(ra) is obtained
as well as the first bitmappings mg and mpy for any leaf in either graph (line 2-5). While
there are bitmappings in either set, the current bitmappings mg and mpy are compared and
the next bitmappings are retrieved. When the leaf node of m is a merged node, and one
of its merge siblings has already been traversed, then this bitmapping must be skipped in
order to avoid duplicate processing (line 11). If the mapped leaf I mappea Of M is equal to
the leaf /7 of m, then their bitmapping may be compared (line 12). Then the bitmappings
are compared and reported as equivalent or non-equivalent. Whether two bitmappings are
reported as equivalent (line 13-15) depends on the strictness of the program, which can be
configured to include the occasion where bitmapping mg € G implement a smaller range
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than its counterpart mpy € H, while my totally overlaps m. This situation is called a partial
equivalence. In such case, the report must indicate the partial equivalence, which will be visi-
ble when we discuss the structure of the report in the following chapter. If the leaf nodes are
unmapped, or if the bitmappings are found non-equivalent, one of the lower /b bitmapping
is printed (line 16-24). If either of the bitmappings is null, the other is deemed unmatched
and printed (line 25-33).

3.6 Solution TCL Scripting Flow

Each individual program is wrapped into a TCL script. The solution flow is initiated through
a single script, run. tcl, by which each step in the flow can be enabled or disabled, providing
flexibility in the execution process. The inputs and parameters for all scripts are configured
in a separate TCL file, preamble.tcl, which is run at the start of each individual program,
such that its TCL script can be initiated on its own as well.

For the specification graph generator, its TCL script supports input files in XLSX, XLS,
and CSV formats to define the specification spreadsheet. To ensure compatibility with the
JXL library used for parsing, all input files are converted to CSV and then back to XLS. This
conversion process is handled using the command-line interface of LibreOffice, specifically
using its conversion functionality [20], [21].
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Chapter 4

Evaluation

This chapter discusses the evaluation of the solution against a state-of-the-art mid-size SoC
design for which specification and implementation files are provided as a case study. The
chapter is structured as follows. First, we apply the solution flow to the design’s memory
specification and implementation, and discuss the result of each step from AMG generation
to GBE calculation. Then, we discuss the generated GBE report, including its structure. Fi-
nally, we discuss the findings of the report.

4.1 Report Structure

To understand the contents of the GBE report, it is important to first explain its structure
shown in Figure 4.1, which consists of a header, a detailed report table, and path traces. An
example of a report header, along with the first few bitmappings of the report table. To
provide context and traceability, the report also includes the analysis date and the source
paths for the three input files: the GraphML files of the two compared AMGs and the node
map CSV file. These are not shown by the figure.

The report table lists all bitmappings for both graphs in a format designed to facilitate
manual comparison. The table contains two sections, with each section displaying the bitmap-
pings of one graph, referred to as ‘Graph H’ and "Graph G’. Each row in the table represents
a bitmapping.

Bitmappings within the table facilitate the comparison between both graphs. The middle
columns display the bitmapping domains as boxes, with their lower and upper bounds (/b
and ub) shown at the top and bottom of each box, respectively. These bounds are formatted
in byte-addressed hexadecimal format to maintain consistency with the specification and IP-
XACT format. The domain boxes are positioned centrally in the row, making differences in
their bounds more recognizable.

The domains point outward to their corresponding bitmapping codomains, which are
also represented as boxes with lower and upper bounds. The codomain lower bound is calcu-
lated as base(m) +bd(m), while the upper bound is calculated as the codomain lower bound
plus the domain range. Each codomain box includes the unique identifier of its GraphML
node, allowing for traceability back to the node map and differentiation from identically
named leaves.

Each row also contains several identifiers to provide context and potential for further
analysis to the user. The leaf name is displayed beside each codomain box to help users
recognize the associated specification entry or implementation IP. Domain boxes also contain
a report identifier, which can be used to retrieve the path trace, as shown in Figure 4.2. The
path trace facilitates further interpretation of the report, especially in identifying the cause
of any non-equivalence by showing the base and range of each node along the bitmapping
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Graph H Graph G

Leaf name Codomain Domain Domain Codomain Leaf name

Root H Root G
DMA u_dma$AS

OxOOOOOOOOO u_ram$MEMSRAM

____RAM OxOOOOOOOOO 0x020000000 0x020000000
|: ]<———l: HDOOO :| |: GD000 :|———>|: :|
OxO2000OOO 0x040000000 0x040000000 xOZOOOOOOO
__ FLEXCOMM OXOOOOOOOO 0x040000000 0x040000000: xOOOOOOOOO u_flexcomm$MyMemor
|: :|<———|: HDOO1 :| |: GD001 :| ———>|: :| yMap$MyAddressBloc
OxOOOOOOZO 0x040000200 0x040000200 xOOOOOO2OO k18
__SpI OxOOOOOOOO 0x040001000 0x040001000 XOOOOOOOOO u_spi$MyMemoryMap$
|: ]<———l: HDO002 :| |: GD002 :|———>|: :| MyAddressBlockl7
OxOOOOOO4OO 0x040001400 0x040001400 OxOOOOOO4OO

Figure 4.1: Header and first entries of a GBE report example

GD007 —--> GC007
u_cpu$SAS
base: 0x0
range: 0x100000000
offset: 0x0
--> u_cpu$AS$Peripheral
base: 0x40000000
range: 0x20000000
offset: 0x40020000
--> u_busahb$AS 3
base: 0x0
range: 0x1000
offset: 0x0
--> u_dma$AHBSRegisterBlock
base: 0x0
range: 0x44

Figure 4.2: Example of a path trace

path, as well as the offset induced by the edges. An offset displayed in a node indicates the
shift by which the memory of the following node is mapped.

Finally, the table displays all bitmappings in order of ascending /b. In the simplest case,
a bitmapping in the table represents a single bitmapping calculated from the AMG. Alter-
natively, it may represent the maximized bitmapping within a single root-leaf pair. In the
more complex scenario, a maximized bitmapping may merge bitmappings across multiple
root-leaf pairs if their leaves have been merged via the node map. In such case, the name of
the first node leaf (the one with the bitmapping with the minimum [b) is used, prefixed with
"MERGED_".

A user may want to view all bitmappings to leaf nodes in an unmerged state. In such case,
the report generation can be configured without leaf node mappings, so that none leaves
are merged. Additionally, bitmapping maximization can be disabled completely to view all
bitmappings as they exist in the graphs, providing a complete and unmerged representation.
However, without node merges or bitmapping maximization, correct GBE calculation cannot
be achieved when these processes are necessary.

4.2 Bitmapping Comparison Scenarios and Report Results

A comparison of bitmappings from specification AMG H and implementation AMG G can
result in the following three scenarios:

1. Total Equivalence: A pair of bitmappings in H and G have equal domain and codomain
bounds. The bitmappings are printed side by side, as shown in Figure 4.3.
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0x000000000 0x04403a000 0x04403a000 0x000000000

I: 30 :|<———l: HD120 ] l: GD120 :|———>|: 249 :|
0x000001000 0x04403b000 0x04403b000 0x000001000

Figure 4.3: Two bitmappings with total equivalence

0x000000000 0x04409b000 0x04409b000 0x000000000

I: 72 :|<———|: HD156 :| ! |: GD156 :|———>|: 717 :I
0x000001000 0x04409¢000 0%044090400 0x000000400

Figure 4.4: Two bitmappings with partial equivalence

0x044510000 03000000000

|: GD191 :]———>|: 2178 :I
0x044513000 0x000003000

Figure 4.5: An implementation bitmapping without equivalent specification bitmapping

2. Partial Equivalence: The domain of the bitmapping in G falls within the bounds of the
bitmapping in H, with equal address alignment to their codomains. This indicates
only part of the specified bitmapping is implemented. The bitmappings are printed
side-by-side with an exclamation mark between them, as shown in Figure 4.4.

3. Non-Equivalence: No totally or partially equivalent bitmapping is found in the other
graph. The bitmapping is printed on one side only. Figure 4.5 shows an example where
no equivalent bitmapping is found in H. This creates “holes” in the table, such that
non-equivalence are easily identified by the user. Holes may occur on both sides.

We have chosen to report the results in this format in order to facilitate the identification
of non-equivalences, for these are most likely the points of interest to the user.

4.3 Analysis and Interpretation of Non-Equivalences

Manual analysis was conducted to determine the causes of the 126 non-equivalences identi-
fied during the evaluation. This section discusses the methodology of this non-equivalence
analysis, the causes identified, and the implications of these findings for interpreting the
results.

4.3.1 Analysis Methodology

The analysis of non-equivalences generally adhered to the following approach to identify the
cause. In this approach, we start with unmatched specification bitmappings. The steps are
as follows:

1. Locate non-equivalent bitmappings: Identify a hole in the right side of the GBE report
table, and identify the specification bitmapping m;.

2. Identify potential matches: Locate the anticipated equivalent bitmapping ms in the right
side of the GPE report table among neighboring bitmappings. The anticipated equiv-
alent bitmapping often occurs directly before or directly after m; in the report, as all
bitmappings are in ascending order of /b. Whether a bitmapping is anticipated to be
equivalent can be derived from the similar leaf name and domain bounds that are close
to the domain of m;. The my cannot be found, specification m; is determined not to be
implemented at all.

51



4. EvaLuATION

3. Compare domain bounds: Compare the domain bounds of m; and my. If they do not
correspond, it suggests that ms extends beyond the bounds of its specification m;.

4. Compare address alignments: Compare the codomain address alignment of both m; and
my. If these differ, it suggests that ms mapped its domain at an unspecified offset.

5. Verify node map: Ensure that the node map correctly maps the leaf nodes of ms to that
of my. If unmapped, map them and regenerate the GBE report.

6. Check for unmerged bitmappings: If other unmatched implementation bitmappings are
present before or after my, and together with ms form an equivalent bitmapping to my
when merged, then verify that the node map specifies the merging of their leaf nodes.
If not, correct the node map and regenerate the GBE report.

When the non-equivalence persists after step 2 or step 5, it indicates that the implemen-
tation of the bitmappings does not adhere to its specification. In this case, the specification
and implementation must be examined for errors. This often requires extensive knowledge
on the workings of the SoC and is in this research performed with the help of the SoC archi-
tect or a design verification engineer. To aid this manual examination, two commercial tools
were used for memory analysis of IP-XACT designs.

The remaining unmatched implementation bitmappings in this evaluation fall in two cat-
egories. Firstly, when their bounds are close to that over other implementation bitmappings,
and their leaf names are equal, then this means that this bitmapping is part of a merged
bitmapping. However, because there is a gap between their domains, they cannot be max-
imized to one bitmapping. The user can disable the reporting of internal merge gaps, but
for this evaluation, it was enabled to maintain a strict evaluation. Secondly, the bitmapping
implements and unspecified bitmapping, which must be examined with the SoC architect.

4.4 Solution Application

Starting with AMG generation, we parse the design’s specification XLS file into an AMG com-
prising 134 edges and 120 nodes, including 5 roots and 115 leaves. AMG generation from
the implementation IP-XACT files results in a significantly larger AMG with 6151 edges and
2018 nodes, consisting of 658 roots, 650 leaves, and numerous intermediate nodes. The gen-
eration process, performed in a virtual machine, takes 18.2 seconds, utilizing 2 cores running
at 2.4 GHz and 16 GB of RAM.

Visualization of the implementation AMG produces a very large graph. Despite its size,
each peripheral is easily identifiable by its small tree of nodes, hanging from a large in-
tertwined collection of edges corresponding with the Network-on-Chip (NoC) component
present in the design. This NoC seemingly always interjects the paths, which makes it im-
possible to find the exact roots of paths above the NoC. Ultimately, the visualization aids in
debugging and further interpretation of the GBE report.

Node map generation results in 316 implementation leaves being automatically mapped
to 73 specification leaves. Afterwards, we map 31 implementation leaves manually to 18 spec-
ification leaves. We verified the implementation completely for one root of the specification
that addresses the majority of the peripherals. Other roots were not handled due to their
similarity in mappings.

The final program first calculates all bitmappings of both the specification and implemen-
tation. For the specification, 107 bitmappings are calculated between the 115 leaves and the
one root. For the implementation, 502 bitmappings are calculated between the 650 leaves
and the one root, taking around 800 milliseconds. Next, node map interpretation cause 104
implementation bitmappings to be merged into other bitmappings, resulting in 212 imple-
mentation bitmappings remaining. Furthermore, 144 implementation leaf nodes are merged
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into 24 leaf nodes, leaving 530 implementation leaf nodes and 184 bitmappings. This process
takes around 10 milliseconds. The final result is that the specification and the implemen-
tation are not equivalent. The generated report shows the equivalent and non-equivalent
bitmappings for further inspection.

44.1 Causes of Non-Equivalence

The analysis of non-equivalences resulted in two categories of non-equivalences: one-sided
and two-sided. one-sided non-equivalences are bitmappings for which the anticipated other
bitmapping could not be found in the GBE report table. When the anticipated bitmapping is
found, the non-equivalence is two-sided.

For one-sided non-equivalences, the following causes were identified in this evaluation:

1. Outdated specification XLS: 4 specification and 2 implementation bitmapping are un-
matched due to the specification XLS being out-of-date, and thereby not reflecting de-
sign changes made during implementation.

2. Dead-end paths: 1 specification bitmappings is unmatched due to the implementation
path ending in an address block without connection to any leaf node, resulting in
a dead-end path ending in an addressSpace or segment instead of addressBlock. In
our case, this is caused by an incomplete IP-XACT description of the implementation,
where implementation leaf interfaces have no reference to a memory element, neither
direct nor through hierarchical interconnects.

3. Internal merge gaps: 4 implementation bitmappings are unmatched due to merged leaf
nodes having gaps between their bitmappings. This causes the bitmapping maximiza-
tion algorithm to merge into multiple bitmappings with gaps between them. The low-
est [b bitmapping a partial matches with the specification, while the other bitmappings
remain unmatched.

For two-sided non-equivalence, the following causes were identified in this evaluation:

1. Different bitmapping address offsets: 2 specification and 2 implementation bitmappings
are unmatched due to the bitmapping address offset of their codomains being differ-
ent. As a result, they map their addresses with different offsets to their codomains. In
this design, it was caused by the specification assuming relative addressing while the
implementation employs absolute addressing to the codomain. As a result, the spec-
ification domain maps to the codomain with starting address 0, while the equivalent
implementation domain maps to the codomain with starting address non-zero.

2. RTL-based address handling: IP-XACT implementation may not describe the complete
handling of addresses in the RTL code. Therefore, their addressing in the implemen-
tation may align with the specification, but this cannot be derived from the IP-XACT.
Meanwhile, RTL-based address handling may affect all aspects of a bitmapping, thereby
creating a non-equivalence. Two examples of such non-equivalences are the following;:

a Parallel ROM/RAM blocks: 20 specification and 96 implementation bitmappings are
unmatched due to the way in which ROM and RAM memory is described in the
IP-XACT description of this design. They are constructed by multiple addressBlocks
mapped in parallel to the same domain. This method of handling addressBlocks is
not described in the IP-XACT standard, and is instead handled via RTL code.
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4. EvaLuATION

Evaluation Property Implementation AMG G Specification AMG H
#Nodes 2018 120

- #Roots Nodes 658 5

- #Leaf Nodes 650 115

#Edges 6151 134
#Automatically Mapped Leaves 316 73
#Manually Mapped Leaves 31 18

Table 4.6: Evaluation properties of implementation and specification graphs

0,
10% 23% 59 4%
‘- »
36%
53%
31%
m total match partial match m total match partial match

m unmatched impl. m unmatched spec. = unmatched impl. @ unmatched spec.

(a) Raw results (b) Unsupported non-equivalences excluded

Figure 4.7: The distribution of evaluation bitmapping equivalence scenarios

b Different memory organization between components: 2 specification and 2 implementa-
tion bitmappings are unmatched due to the implementation bitmappings having sig-
nificantly larger ranges their specification bitmappings. This occurs due to different
memory organization used across components in the path. For example, the initia-
tor IP may perform byte-aligned accesses on its 32-bit word memory, while this may
access memory of a peripheral which performs word-aligned accesses on its 12-bit
word memory. Hence, in each word access in the peripheral, 4 bits remain unread.
Our solution converts all into a bit-addressed organization, such that it cannot take
into account which bits will not be used due to word alignment. This involves mostly
DSP peripherals whose RTL perform address modification for each memory access.

4.5 Results

Our solution processed the XLS address map specification and IP-XACT design description
of a mid-size SoC into a specification AMG H and implementation AMG G, respectively,
whose properties are summarized in Table 4.6. Application of the rest of our solution flow
to H and G results in 156 equivalent bitmappings, of which 66 total and 90 partial. Fur-
thermore, it also results in a significant 135 non-equivalent bitmappings, of which 106 in the
implementation AMG and 29 in the specification AMG. The distribution of the raw results of
this evaluation are shown in Figure 4.7a. Together, all scenarios represent 106 bitmappings
in the specification, 184 bitmappings in the implementation, totaling to 291 bitmappings in
both.

At first glance, it shows nearly half of the found bitmappings remain unmatched, which
would make you assume that the solution might not work well, as the design surely can-
not have this many incorrectly specified or implemented address maps. However, further
analysis found several considerations to be made when interpreting these raw results. Afore-
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Category #Bitmappings Raw #Bitmappings After Exclusion
Total Equivalence 66 66

Partial Equivalence 90 90
Non-Equivalence 135 15

- From Implementation 106 8

- From Specification 29 7

Total 291 171

- From Implementation 184 86

- From Specification 107 85

Table 4.8: Evaluation report results

mentioned causes of non-equivalences mention the case of non-equivalences caused by RTL-
based address handling. The effect of RTL-based address handling on the bitmapping cannot
be derived from IP-XACT analysis, thus not by our solution. Therefore, we decide to leave
out these comparison from this evaluation.

Exclusion of unsupported non-equivalences has significant impact on the results, leaving
8 unmatched implementation bitmappings down from 106, and 7 unmatched specification
bitmappings down from 29. The distribution of evaluation results are illustrated in a pie chart
after excluding these errors in Figure 4.7b. The majority of the decrease in non-equivalences
originates from the amount of excluded bitmappings to ROM and RAM peripherals. All
results before and after exclusion of unsupported errors are summarized in Table 4.8.
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Chapter 5

Conclusion

51 Summary

This thesis presents a methodology for formal verification of memory organizations of SoC
designs described in IP-XACT. This is achieved by (i) modeling of the address map structures
implemented by a design’s IP-XACT description (memory implementation) and specified by
its global address map spreadsheet specification (memory specification) into a unified graph
model, called an Address Map Graph (AMG); and by (ii) analysis of AMGs on equivalence
of their mapped addresses, called Graph Bitmapping Equivalence (GBE).

We have implemented the graph model and algorithms of this methodology into a mod-
ular chain of programs, integrated in the IP-XACT workflow. The programs process XLS
memory specifications and IP-XACT design descriptions into the graph model and perform
efficient calculation for GBE. Finally, we generate a report that highlights all correspondences
and discrepancies between addresses mapped by specification and implementation.

The resulting solution flow has been evaluated against a state-of-the-art, mid-size, real-
world SoC design. Our evaluation demonstrates the capability of the developed solution to
analyze and verify the memory organization of complex SoC designs, and to assist in identi-
fying the causes of discrepancies. As such, the algorithms developed for processing memory
specifications and implementations into the graph model, along with the efficient GBE cal-
culation methods, offer a solution for memory verification in SoC designs. The modularity
of the solution facilitates adaption to various specification standards. Overall, this work rep-
resents another step in the advancement of formal SoC memory verification.

5.2 Discussion

This thesis addresses four research questions:

e RQO: What unified data model represents both a memory implementation and speci-
fication, and enables the comparison of their address maps?

e RQ1: What algorithms process a memory specification XLS file into the unified data
model?

e RQ2: What algorithms process the IP-XACT files of an SoC into the unified data model?

e RQ3: What algorithms check any two unified data model instantiations for equivalence
in address maps?

Each question has been addressed through the development and implementation of specific
algorithms, followed by their application to a real-world scenario.
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5.2.1 Definition of the AMG model and GBE

To address RQO, we have developed a unified graph model called the Address Map Graph
(AMG). This model encapsulates the essential aspects of both memory implementations and
specifications through its node, edge, and graph properties. In this definition, we focus on
the typically used IP-XACT objects and constructs to realize address maps. Additionally, we
have introduced the concept of a bitmapping, which describes the mapping of contiguous
memory regions from root to leaf nodes along a path in the AMG. Finally, we have defined
Graph Bitmapping Equivalence (GBE) to enable comparison and establish the equivalence
of mapped addresses between two AMGs. The evaluation of the implementation solution
with a mid-size SoC have shown the AMG accurately represents the implementation and
specification.

5.2.2 Processing of Memory Specification XLS Files into AMGs

To address RQ1, we have developed an algorithm that traverses the rows and columns of the
XLS spreadsheet and converts the contained information into nodes and edges, creating an
Address Map Graph (AMG) of the memory specification. The algorithm can accommodate
different spreadsheet layouts. After implementing this approach in a parser program, we
have successfully applied it to the memory specification of the evaluated SoC design. Finally,
the evaluation has shown that the parser is able to accurately form the two-level AMG.

5.2.3 Processing IP-XACT Designs into AMGs

To address RQ2, we have created an algorithm to recursively traverse the IP-XACT design,
processing its structures and metadata into nodes and edges to create an AMG of the memory
implementation. The algorithm integrates extra IP-XACT identifiers into the graph model
by adding properties to each node, ensuring unique identification of each IP-XACT element.
The process involves recursively processing each component, adding nodes for memory el-
ements and edges for their various interconnection structures. Finally, we manually verify
the algorithm’s implementation with various small IP-XACT design cases containing corner
cases. It has also been verified against the evaluated SoC IP-XACT design, for which incon-
sistencies have been verified with the results of a commercial memory analysis tool. All
verifications again have shown that the resulting AMGs are accurate in their representation
and the capability of the algorithm to process the memory organization of complex IP-XACT
descriptions into an AMG.

5.2.4 Checking AMGs for GBE

For RQ3, we have developed a method to calculation Graph Bitmapping Equivalence (GBE)
between a specification and implementation AMG efficiently and accurately. The found al-
gorithm involves three steps. First, we have developed an algorithm to merge contiguous
bitmappings into their maximum combination, called bitmapping maximization. Second,
we have created an algorithm to construct a node map from two AMGs based on the corre-
spondence of their bitmappings. Finally, we have developed two algorithms to determine
GBE: one checks for equivalence between bitmapping sets, while the other traverses all maxi-
mized bitmappings individually and generates a report that provides a clear overview of any
inequivalences. Our evaluation with the mid-size SoC showed the effectiveness of the report.
91% of the bitmappings were found equivalent, with the remaining non-equivalent bitmap-
pings clearly reported. We have shown the report to the design architect, who was able to
intuitively read the report, which enabled him to perform a quick analysis and identification
of inconsistencies in the SoC.
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5.2.5 Key Observations

Application of the solution to a mid-size SoC design and its specification has resulted in
the distribution of bitmapping equivalences and inequivalences shown in Figure 4.7b. We
can interpret partial matches as a negative or positive result for the equivalence of AMGs,
but in this case study we have handled partial equivalences as a positive result. The reason
for this is that the architect knows that the implementation of this design may implement
address mappings that are smaller than specified. To elaborate for evaluated designs, given
an IP-XACT addressBlock AB, then range(AB) typically is equal to the difference between
the lowest and highest addressable register. On the other hand, in a specification, the SoC
architect generally reserves a range in terms of whole kilobytes (1 Kbyte or 4Kbyte). As such,
implementation bitmappings with unmapped addresses at the start or end of their domains.
but that are totally overlapped by the specification bitmapping are deemed acceptable. If we
do not expect partial matches for a design, the program can be configured to report them as
non-equivalences.

As expected, the results show that the majority of the evaluated SoC design has been
implemented according to its specification. We expected the significant amount of partial
matches as they were deemed correct according to the designers of the IP-XACT description.
Additionally, we expected the identified internal merge gaps and the resulting unmatched
bitmappings. A commercial memory analysis tool also displayed the mapped addressBlocks
with gaps of unmapped addresses, while the specification spreadsheet describes them as a
single contiguous block of mapped peripheral memory. Thus, the addressBlocks are not
contiguous with each other, though the specification describes otherwise. The removal of in-
ternal merge gaps is deemed incorrect for the evaluated SoC, because it would have assumed
all addresses within the merged bitmapping to be addressable, while some of them are not
mapped, thus not addressable.

Finally, this evaluation has resulted in several important findings for the SoC design.
Firstly, we have found implemented bitmappings that are not specified or specified bitmap-
pings that are not implemented. These findings directly show a discrepancy between speci-
fication and implementation for designers to review, either by updating the specification or
extending the implementation.

Secondly, we have found different codomain address offsets between specification and
implementation bitmappings caused by use of relative versus absolute addressing. We can
resolve the first case of address misalignment by enhancing the specification format. This
enhancement involves adding an extra column where the architect can define whether each
peripheral is mapped using relative or absolute addressing.

The comparison against results from commercial tools, examination of the resulting equiv-
alence distribution, detailed analysis of inequivalences, and their resulting key observations
demonstrate that the implemented algorithms adequately address the research questions.
The findings from equivalence checks, the subsequent reports, and their interpretation by
the design architect highlight the effectiveness of the proposed methodologies in verifying
the memory organization of SoC designs.

5.3 Future Work

5.3.1 GBE Analysis for AMGs of Equal Type

This thesis handled the verification of an implementation against a specification AMG. How-
ever, for the node mapping and GBE calculation procedures it is also possible to supply two
AMGs of equal type: either two specification AMGs or two implementation AMGs. Cur-
rently, our node mapping process supports merging nodes only from the second AMG. We
have not implemented bidirectional leaf merging because the primary focus has been on GBE
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calculation between a specification and an implementation. Nonetheless, we can still apply
the solution to AMGs of equal type under the limitation of unidirectional merging capability.
Extending this work to support bidirectional verification for equal AMG types would
enhance the solution’s versatility. To achieve this, the node mapping and GBE calculation
procedures require extension to correctly process AMGs of the same type. This mainly in-
volves handling of bidirectional leaf merging for the node mapping procedure, and handling
of bidirectional merges in the GBE report generation. As a result, two implementations or
specifications could be verified against each other for equivalence in address mappings.

5.3.2 Dynamic IP-XACT Address Maps

This thesis handled static implementation graphs as described in IP-XACT 1685-2009 [15].
The newest standard of IP-XACT 1685-2022 [3], however, enables element configurations to
alter during runtime. This is achieved through elements called modes of operation. Conse-
quently, address decoding inside a SoC may depend on its mode of operation. Examples of
such modes of operations are boot mode, test mode, user mode, and supervisor mode. In
different modes, access to certain memory regions may be restricted or memory regions may
be remapped to other addresses. Only one mode can be active per element. Which mode is
actives depends on whether its mode condition resolves to a value 1, and whether it has the
highest mode priority in case this holds for multiple modes. The priority is fixed, while the
condition is a symbolic expression that can contain dynamic elements, which are evaluated
at runtime. These conditions can use the value of a port slice, a register field slice, and other
mode condition values.
Many elements can define modes:

1. Modes are referenced by the interfaceModes of ubs interfaces. For initiator and target
interfaceModes, the referenced mode will be the only mode in which their reference
addressSpace Or memoryMap is accessible. As a result, an address map can be available
at one point in time, while it may be inaccessible at another. Given that the interfaces
of a bridge component now have dynamic modes, the bridge can alter the structure
of a design. This concept is often applied in designs in the form of a network-on-chip
(NoC) IP.

2. Modes are also used in memoryRemap elements. The memoryRemaps appear as optional
elements in a memoryMap. Just like regular memoryMap, they can contain addressBlocks,
banks, and subspaceMap. All of these elements will be added to the original enclosing
memoryMap when its mode is active. As such, modes affect the contents of mapped mem-
ory.

3. Modes are also used in alternateRegister elements, which are potential elements of
regular registers. When an alternateRegister’s mode is active, it will replace the con-
taining register’s definition.

4. Modes are referenced by port fieldMap elements, which maps register field bits onto
port bits. Which fieldMap is active is based on which has the highest active mode.
Hence, modes can directly alter port slice values, and thus directly affect other mode
condition values.

5. Modes are also used in accessPolicy elements, which are referenced by an address-
Block, bank, register, alternateRegister, registerfFile, and register field element in
the form of field AccessPolicy. Without a mode, the access policy functions as the default
for modes without accessPolicies referring them. The default is read-write, other op-
tions are read-only, write-only, read-writeOnce, writeOnce, and no-access. When mem-
ory elements reside in other memory elements, then the most restrictive policy is used.
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When the one of them has write-only and the other read-only, then they both become
no-access. As such, modes affect the accessibility of memory and maps.

From the affected IP-XACT elements it can be concluded that mode changes can alter the
entire layout and accessibility of memory. This, in turn, can change runtime values, which
can affect mode conditions again. This results in a dynamic problem regarding the verifica-
tion of memory implementations that make use of modes.

For the purpose of a future work, we propose the following objectives.

The first objective is to extend our static AMG model to include the mode information
into a dynamic AMG model. For example, edges may contain the accessibility information
of an address map. This information will alter the structure of the graph based on mode con-
ditions that are formulated in symbolic expressions. As such, the combination of all symbolic
expressions result in a dynamic system.

The second objective is to find the algorithms to verify this dynamic AMG against a
given static memory specification, and consequently calculate the symbolic expressions un-
der which GBE holds.
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AAD address-axis diagram

AB address block

AMG address map graph

API application programming interface
AS address space

AUB address unit bits

bd bottom delta

GBE graph bitmapping equivalence
IF interface

IP intellectual property

Ib lower bound

LMM local memory map

MM memory map

NoC Network-on-Chip

RTL register-transfer level

SCR semantic consistency rule

SG segment

SM subspace map

SoC system-on-chip

td top delta

TGI Tight Generator Interface

ub upper bound

XML eXtensible Markup Language
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Appendix A

A.1 Bitmapping Example Calculation

Given is the example path in Figure A.1, with nodes u, v, w and edges ey = uv and e; = vw.
Node w is a leaf node such that its entire window is addressable. This results in the following
given properties:

Then, we calculate the lower bounds and upper bounds of the path edges:

Ib(e;1) = max(base(v), base(w) + offset(e;))

(0,9—15) =0

ub(e;) = min(base(v) + range(v), base(w) + range(w) + offset(e;)
= min(20,25 — 15) = 10

Ib(ep) = max(base(u),1b(e1) + offset(eq))
=max(12,0+9) =12

ub(eg) = min(base(u) + range(u), ub(e;) + offset(e)
=min(17,19) = 17

= maXx

Next, we calculate the bottom deltas and top deltas of the path edges:

bd(e;) = max(0,Ib(e;) — base(w) + offset(e1))
=max(0,0 -9+ 15) =6

bd(ep) = bd(e1) + max(0,1b(ep) — Ib(e1) — offset(ep))
=6+ max(0,12—-0-9) =9

td(e;) = max(0, base(w) + range(w) + offset(e;) — ub(eq))
=max(0,9+ 16 —15—17) =0

td(egp) = td(e1) + max(0, ub(ey) + offset(eg) — ub(eg)
=0+ max(0,10+9—17) =2
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Figure A.1: Example path with two edges.

This path thus results in bitmapping m = (12,17,9,9). Finally, we calculate the codomain
upper bound from using the bottom delta (right side) and top delta (left side):
base(w) + range(w) — td(eg) = base(w) + bd(eg) + ub(ep) — Ib(ep)
94+16—-2=9+9+417 — 12 (A1)
23 =123

The equality holds, thus td and bd correctly represent the cumulative clippings of edges
€0 and e1.
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Test Case Description Expected Maximization Actual Maximization
Single One bitmapping. Unchanged Unchanged
Two disjunct Two disjunct bitmappings. Unchanged Unchanged
Two partially overlapping, Two partially overlapping bitmappings Unchanged Unchanged

unequal codomain offsets

with different codomain address offsets.

Two totally overlapping

Two totally overlapping bitmappings
with equal codomain address offsets.

One remaining

One remaining

Two contiguous

Two bitmappings contiguous in domains and codomains,
with equal codomain address offsets.

Merged into a single
bitmapping

Correctly merged

Two contiguous in reverse

Two bitmappings with domains contiguous in one direction
and codomains contiguous in reversed order

Unchanged

Unchanged

Double overlap

Four bitmappings. Two with the same domain bounds but
disjunct codomains. Two with domains contiguous with the
other overlapping domains from both sides, but the same
codomains in the middle of and contiguous with the

other disjunct codomains.

Two merged bitmappings,
overlapping in the middle.

Correctly merged

2 contiguous options

Three bitmappings where the first is contiguous and has
equal codomain offsets with other bitmappings, the last of

which has largest range.

First and last bitmappings
merged, second removed

Correctly merged

Multi choice

Five bitmappings. First bitmapping has 2 contiguous following,
bitmappings, last of which is smallest, which has in turn two
contiguous, first of which is largest. Where contiguous also

the codomain address offsets are equal.

One bitmapping spanning
all five and all five
removed.

Correctly merged

Multi choice with noise

A.2 Bitmapping Maximization Correctness Test Cases

Same set as above, but with overlapping bitmappings
between each contiguous bitmapping with a unique codomain

address offsets.

Five bitmappings; one that
spans all contiguous, and
four unmerged with unique
codomain address offsets.

Correctly merged
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