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Single Module Identifiability in Linear Dynamic
Networks With Partial Excitation

and Measurement
Shengling Shi , Member, IEEE, Xiaodong Cheng , Member, IEEE,

and Paul M. J. Van den Hof , Fellow, IEEE

Abstract—Identifiability of a single module in a network
of transfer functions is determined by whether a particular
transfer function in the network can be uniquely distin-
guished within a network model set, on the basis of data.
Whereas previous research has focused on the situations
that all network signals are either excited or measured,
we develop generalized analysis results for the situation
of partial measurement and partial excitation. As identifi-
ability conditions typically require a sufficient number of
external excitation signals, this article introduces a novel
network model structure such that excitation from unmea-
sured noise signals is included, which leads to less conser-
vative identifiability conditions than relying on measured
excitation signals only. More importantly, graphical condi-
tions are developed to verify global and generic identifiabil-
ity of a single module based on the topology of the dynamic
network. Depending on whether the input or the output
of the module can be measured, we present four identi-
fiability conditions which cover all possible situations in
single module identification. These conditions further lead
to synthesis approaches for allocating excitation signals
and selecting measured signals, to warrant single module
identifiability. In addition, if the identifiability conditions
are satisfied for a sufficient number of external excitation
signals only, indirect identification methods are developed
to provide a consistent estimate of the module. All the ob-
tained results are also extended to identifiability of multiple
modules in the network.

Index Terms—Dynamic networks, graph theory, identifia-
bility, system identification.
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I. INTRODUCTION

DUE to the increasing complexity of current technological
systems, the study of large-scale interconnected dynamic

systems receives considerable attention. They can adequately
describe a wide class of complex systems in various applica-
tions, including multirobot coordination [1], power grids [2],
gene networks [3], and brain networks [4]. For data-driven
modeling problems in structured dynamic networks, differ-
ent types of network models have been used. Connecting to
prediction-error identification methods, the most popular mod-
eling framework is based on a network of transfer functions as
introduced in [5] and [6], where vertices represent the inter-
nal signals, that can be measured, and directed edges denote
transfer functions referred to as modules that represent the
causal relations among the signals. This modeling framework
has been applied to brain networks [4], gas pipeline networks [7],
and physical networks with diffusive couplings [8]. While
there are alternatives, e.g., in the form of state-space models
[9]–[12], this article will adhere to the former so-called module
framework.

Various identification problems of dynamic networks have
been addressed in the literature. For example, one can focus on
the estimation of the network topology, i.e., the interconnection
structure of the network [13]–[18]. Another problem is to iden-
tify a single module in the network while the topology of the
network is given. This includes the selection of internal signals
that need to be measured and excited for achieving consistent
module estimates [6], [19]–[25]. Identification of the full net-
work dynamics, for a given network topology, is addressed in
[15] and [26].

In this article, we focus on network identifiability, which is
a concept that is independent of the particular identification
method chosen. Based on the deterministic network recon-
struction problems in [5] and [3], a novel concept of global
network identifiability is introduced in an identification set-
ting in [27] and [28], as a property that reflects the ability to
distinguish between network models in a network model set
on the basis of measurement data. In the literature, there are
three notions of network identifiability which are introduced
here from the strongest to the weakest: global identifiability
[27]–[29] that requires all models to be distinguishable from all
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other models in the model set1; generic identifiability [30]–[34]
which requires almost all models to be distinguishable from all
other models in the model set; and local identifiability [35] which
requires models to be distinguishable from the models in a small
neighborhood. In this article, we consider global identifiability
and generic identifiability.

In addition, identifiability of a network can be analyzed
in a localized fashion by considering identifiability of each
multiple-input-single-output (MISO) subsystem or each single-
input-multiple-output (SIMO) subsystem independently [28],
[29], [31], [36]. On the other hand, identifiability of different
MISO subsystems or SIMO subsystems can also be analyzed
jointly based on the topology of the complete network [32],
[33], [37]. In this article, we consider the localized analysis of
identifiability. Particularly, identifiability of a single module is
investigated, and the results in this article are also extended to
multiple modules from the same MISO or SIMO subsystem.

The above problem of global and generic identifiability has
been investigated for different settings. In [29]–[31], all vertices
are excited by external excitation signals, while only a subset
of vertices is measured. In contrast, the analysis in [28] and
[34] assumes that all vertices are measured, while a subset of
vertices is excited, i.e., the so-called full measurement setting.
However, the above works do not address the problem of global
and generic identifiability when not all vertices are excited
and not all vertices are measured, i.e., the setting with partial
measurement and partial excitation. The analysis of generic
identifiability in this setting has rarely been addressed. A recent
work [38] only addresses a necessary condition for network
identifiability. In [37], sufficient conditions on generic identifi-
ability are presented, requiring a sufficient number of excitation
signals to achieve generic identifiability, where only measured
excitation signals are considered. However, the contribution of
the unmeasured noise signals, which may also serve as excitation
sources for identifiability as shown in [28] and [34] for the full
measurement setting, is not explored. In addition, the main result
in [37] is not fully graphical as it also requires the availability
of certain mappings from excitation signals to node signals, and
thus, the conditions cannot be tested solely based on the network
topology. Special network structures are then considered in [37]
such that the required mappings are obtainable; however, how to
handle networks with more general topology is not addressed.

In this article, we consider the network identifiability concept
in [28], [39], and [34] and generalize the results significantly
from the full measurement setting to the setting with partial mea-
surement and partial excitation. We also address the limitations
of [37] by exploring the excitation contributed by unmeasured
noises and by developing fully graphical identifiability condi-
tions. Additionally, the model sets considered are allowed to
contain a priori known/fixed modules.

In Section III, we show how unmeasured noise signals can
serve as excitation sources for identifiability analysis. This anal-
ysis has been performed in [28] and [34] with all the vertices

1There are actually two versions of global identifiability, reflecting whether
either one particular model in the set can be distinguished or all models in the
set [28].

measured, but the results are not directly applicable to networks
with unmeasured vertices. In this article, these results are gener-
alized to the partial measurement case by introducing a concept
of equivalence between network models and by developing a
novel network model structure. Due to the contribution of the
noise signals, a smaller number of measured excitation signals is
needed for network identifiability, compared to the result in [37].

More importantly, for the developed model structure, this
work develops a series of novel graphical conditions to ana-
lyze both global and generic identifiability of a single module
with different excitation and measurement schemes in Sections
IV–VI. With the obtained conditions, single module identifia-
bility can be checked by only inspecting the topology of the
dynamic network. It is worth emphasizing that the conditions
presented in this article cover all possible measurement schemes
of the input and the output when identifying the target mod-
ule in a network. In addition, the graphical conditions further
lead to comprehensive synthesis approaches in Section VII for
excitation and sensor allocation to achieve identifiability, and
indirect identification methods for single module estimation
in Section VIII. All the above results also extend to multiple
modules from the same MISO or SIMO subsystem of the net-
work. The proofs of all the technical results are collected in the
Appendix.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Dynamic Networks

The dynamic network model describes the relation-
ship among a set of L scalar internal signals W �
{w1(t), w2(t), . . . , wL(t)}, a set of deterministic excitation sig-
nals {r1(t), . . . , rK(t)} with K � L, and a set of unmeasured
disturbances {v1(t), . . . , vL(t)}. The model is written as

w(t) = G(q)w(t) +Rr(t) + v(t),

wC(t) = Cw(t) (1)

whereG(q) is anL× Lmatrix of rational transfer operators with
delay operator q−1, i.e., q−1wi(t) = wi(t− 1); w(t), r(t), and
v(t) are the column vectors that collect all the internal signals,
excitation signals and disturbances, respectively; C is a binary
matrix that extracts a subvector wC(t) fromw(t), i.e.,C consists
of a subset of rows of an L× L identity matrix; R is a binary
matrix that decides which internal signals are influenced by r(t),
i.e., R consists of K columns of an L× L identity matrix. In
the above model, only wC(t) and r(t) signals are measured.

In addition, v(t) is a vector of zero-mean stationary stochastic
processes. Let Φv(q) of dimension L× L denote the rational
power spectral density matrix of v(t) with rank p � L, and then
a noise model for v(t) can be introduced based on the spectral
factorization of Φv(q) as

v(t) = H(q)e(t) (2)

where e(t) is a vector of white noises with a covariance matrix
Λ; H(q) is proper and stable. Depending on the chosen spectral
factorization of Φv , Λ may have size L or p [28], [40].
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Combining (1) and (2) leads to a complete network model
specified as a quintuple M � (G(q), R,C,H(q),Λ), on which
the following assumptions are made.

Assumption 1: It will be assumed that
1) G(q) is proper, stable, and hollow, i.e., the entries on its

main diagonal are zeros;
2) [I −G(q)]−1 is stable;
3) the network is well-posed in the sense that all principal

minors of limz→∞(I −G(z)) are nonzero [41];
4) H(q) is proper and stable;
5) Λ is real and positive semidefinite.

Note that Assumption 1(c) ensures that every principal sub-
matrix of [I −G(q)] has a proper inverse [42], i.e., every closed-
loop transfer function is proper.

In a network model, both the excitation signals in r(t) and
the noise signals in e(t) are called external signals, which are
collected in a set X . The entries in G(q) are referred to as
modules. Let setC ⊆ W contain all the measured internal signals
in wC(t), and Z = W \ C contains all the unmeasured internal
signals. Without loss of generality, vector w(t) is considered to

be ordered as w(t) =
[
wC(t)
wZ(t)

]
, where wC(t) and wZ(t) contain

the measured internal signals and the unmeasured ones. Accord-
ingly, C is partitioned as C = [I 0] .

The external-to-internal mapping of (1) is

wC = C[I −G(q)]−1Rr + C[I −G(q)]−1H(q)e (3)

and a standard open-loop identification of the above model [43]
can typically lead to consistent estimates of the following ob-
jects:

CT (q)R, CΦ(ω)CT (4)

where T (q) � [I −G(q)]−1, Φ(ω) � [I −G(eiω)]−1H(eiω)
ΛH(eiω)�[I −G(eiω)]−�, and (·)� denotes the complex conju-
gate transpose. Note that CT (q)R contains a subset of rows and
columns of T (q), based on which internal signals are measured
or excited. In addition, it can be found that the two objects in
(4) describe the stochastic properties of the measured internal
signals wC , i.e., its mean and spectral density [28]. Thus, an
identifiability question arises to determine the uniqueness of
modules inG(q)given the objects in (4). In addition, we consider
the situation where the measured internal signals are affected by
a full-rank process noise.

Assumption 2: The power spectrum CΦ(ω)CT has full rank
for almost all ω.

B. Model Sets and Identifiability

Network identifiability is defined on the basis of a network
model set whose definition is given first. For a network model
M and by parameterizing its entries in a rational form as
M(θ) = (G(q, θ), R,C,H(q, θ),Λ(θ)), a network model set
M � {M(θ)|θ ∈ Θ ⊆ Rn} is formulated, where M(θ) satis-
fies Assumption 1 for every θ ∈ Θ. Note that in the sequel the
dependency of transfer matrices on q and θ is often omitted for
simplicity of notation when no confusion arises. For the graphi-
cal identifiability analysis, the transfer functions in G and H are
typically parameterized with independent parameters [28].

Assumption 3: The transfer functions in a parameterized net-
work model set are parameterized independently.

There can be certain entries in the matrices of M(θ) that
are fixed, and thus, do not depend on the parameters. These
entries are called known or fixed modules, which reflect the prior
knowledge or simply the modeling assumptions imposed by the
user. For example, the absence of an interconnection between
internal signals is represented by a fixed 0 in G; some entries
in G may be particularly designed controllers that are known,
while in H(q) entries can be 1 or 0 specifying where e signals
enter the network. The entries that depend on the parameters are
called unknown or parameterized entries.

The above structural information of a model set can be rep-
resented by a directed graph G = (V, E), where V � W ∪X
is a set of vertices representing both the internal signals in w
and the external signals in r, e, and E ⊆ V × V denotes a set of
directed edges representing those entries in (G,R,H) that are
not fixed to zero, e.g., the directed edge from wi to wj , denoted
by (wi, wj), exists if and only if Gji is not fixed to zero, and
this edge is said to be known (or unknown) if Gji is known
(or unknown). Similarly, (ek, wj) ∈ E and (rp, wj) ∈ E if and
only if Hjk and Rjp are not fixed to zero, respectively. In this
way, any parameterized model set or network model induces a
directed graph G to encode its structural information. Note that
notation wi now represents both a signal and a vertex, and the
dependency of the signal on t is often omitted for the simplicity
of notation.

Concerning network identifiability, we follow the concept of
global network identifiability as defined in [28] and also consider
its generic version obtained by combining it with the concept of
generic identifiability that was originally introduced in [30] and
[31] for a different setting. In this respect, we follow an approach
that is formulated in [34].

Definition 1: Given a parameterized network model set M,
consider θ0 ∈ Θ and the following implication:

CT (q, θ0)R = CT (q, θ1)R

CΦ(ω, θ0)C
� = CΦ(ω, θ1)C

�

}
⇒ Gji(q, θ0) = Gji(q, θ1)

(5)
for all θ1 ∈ Θ. Then, the module Gji(q, θ) is

1) globally identifiable in M from (wC , r) if the implication
(5) holds for all θ0 ∈ Θ;

2) generically identifiable in M from (wC , r) if the implica-
tion (5) holds for almost all θ0 ∈ Θ.

In the above definition, the notion “almost all” excludes a sub-
set of Lebesgue measure zero from Θ. The definition based on a
single module also extends trivially to a subset of modules, i.e.,
a subnetwork, by replacing Gji in the RHS of (5). The concept
of identifiability in this definition concerns the uniqueness of a
module given the first and second moment information of the
measured signals [28]. If the module is not identifiable in the
model set, no identification method, that is based on the first
and second moments for estimating the module, can guarantee
to provide a unique estimate of the module. This identifiability
issue is illustrated in the following example.

Example 1: Consider the graph of a model set in Fig. 1(a),
where identifiability of G31 is of interest with measured input
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Fig. 1. Two network model sets with G31 as the target module (thick
edge) and known R11, R22 (double-line edges). The input and the
output of G31 are measured, indicated in green; however, w2 is unmea-
sured in (a).

and output. The question is whether G31 can be uniquely distin-
guished within the model set, on the basis of CTR and CΦC�.
As there is no noise, we consider CTR only, i.e., the mappings
from r1 to the measured internal signals w1 and w3, denoted by
T11 and T31, respectively. SinceR is a binary matrix, it is known
that T11 = R11 = 1, and furthermore, it holds that

T31 = G31 +G32G21. (6)

Since both G32 and G21 are unknown, the module G31

cannot be uniquely recovered from T11 and T31, and thus, is
not identifiable.

However, when w2 is also measured and excited as in
Fig. 1(b), the additional mappings given by CTR, i.e.,

T21 = G21, T32 = G32

together with T31 in (6) ensure the uniqueness of G31 as

G31 = T31 − T32T21.

Therefore, G31 is globally identifiable in this model set.

C. Problem Formulation

In this article, we are going to investigate under which con-
ditions a module Gji is identifiable in a model set M, on the
basis of measured signals wC and r. While focusing on generic
identifiability, we will develop conditions that are fully graph
based and that can handle flexible model sets including prior
known/fixed modules.

Since identifiability conditions typically require sufficient
excitation signals [28], [34], a challenge will be to explore how
noise signals can be utilized for this purpose. This will require a
further analysis of the spectral factorization of the noise power
spectrum CΦC� in (5).

D. Notations and Definitions

The following notations are used throughout the article. Ma-
trix T (q, θ) is called to have full rank generically (or full rank
globally) if it has full rank for almost all θ (or for all θ). More
generally, a property that depends on parameter θ is said to hold
generically (or globally) if it holds for almost all θ (or for all θ).
For subsets W1, W2 ⊆ W , TW1W2

denotes the mapping from
the internal signals in W2 to the ones in W1, i.e., a submatrix
of T in (4) whose rows and columns correspond to the signals

TABLE I
DESCRIPTION OF IMPORTANT SET NOTATIONS

in W1 and W2, respectively. A set in the subscript with a single
element is replaced by the index of this element, i.e., TW1{wi}
is simply written as TW1i. A binary matrix is a selection matrix
if it consists of a subset of rows from an identity matrix. By
premultiplying a matrix A by the selection matrix, a subset of
rows in A can be extracted.

In a graph G, a directed edge from wi to wj , i.e., (wi, wj),
is called an in-coming edge of wj , and an out-going edge of
wi. In this case, wi is called an in-neighbor of wj , and wj is
an out-neighbor of wi. The out-degree of wi is the total number
of out-neighbors of wi. A (directed) path from wi to wj is a
sequence of vertices and out-going edges starting from wi to
wj without repeating any vertex. The length of a path is the
number of edges in the path. A single vertex is also regarded
as a directed path to itself. In a path, internal vertices are
the vertices excluding the starting and the ending vertices. A
vertex wi is said to be excited by a vertex xi ∈ X if there is
a directed edge (xi, wi), and wi is indirectly excited by xi if
there exists a path from xi to wi with length larger than one.
Similarly,wi is said to be measured ifwi ∈ C, and it is indirectly
measured if wi /∈ C but it has a path to a measured internal
signal.

Two directed paths are called vertex disjoint if they do not
share any vertex, including the starting and ending vertices,
otherwise they intersect. Given two subsets of vertices V1 and
V2, bV1→V2

denotes the maximum number of vertex disjoint paths
from V1 to V2. A vertex set D is a V1 − V2 disconnecting set
if it intersects with all paths from V1 to V2, where D may also
include vertices in V1 ∪ V2. It is a minimum disconnecting set if
it has the minimum cardinality among allV1 − V2 disconnecting
sets [44].

Important set notations in this work are collected in Table I,
and some of them will also be formally introduced later in the
main results.

III. EQUIVALENT NETWORK FOR NOISE EXCITATION

Identifiability in Definition 1 concerns the uniqueness of a sin-
gle module given the mapping CTR and the spectrum CΦC�.
In this section, we introduce a novel network model structure
to model the data without loss of generality. With this model
structure, the noise spectrum CΦC� admits a unique spectral
factor CTH̃ for a transformed noise model H̃ . Therefore,
implication (5) can be equivalently simplified by considering
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(CTR,CTH̃) in the LHS instead of (CTR,CΦC�), which
implies that the unmeasured noises can act as excitation sources
for the identifiability analysis.

A. Noise Spectrum Analysis and Equivalent Networks

We introduce the novel model structure by exploiting a con-
cept of network equivalence. Based on (3), the objects CTRr
and CΦC� reflect the mean and the power spectral density of
the measured processwC . These objects encode all the stochastic
properties of interest for the measured processes (wC , r), as
the first and the second moments are the main focus. This
motivates the concept of network equivalence by extending [45,
Definition 4] to the setting with partial measurement.

Definition 2: Any two network models M1 = (G1(q), R1,
C1, H1(q),Λ1) and M2 = (G2(q), R2, C2, H2(q),Λ2) are said
to be (observationally) equivalent if it holds that

C1T1(q)R1 = C2T2(q)R2, and C1Φ1(ω)C
T
1 = C2Φ2(ω)C

T
2

where T (q) and Φ(ω) are defined in (4), and the equivalence is
denoted by M1 ∼ M2.

The above concept of equivalence characterizes two network
models that can be used to model the same measured processes
(wC , r), because given measured r, the stochastic processes wC
in two equivalent models have the same mean CTRr and power
spectrum CΦC�. Note that G1 and G2 from two equivalent
models may have different dimensions, e.g. a model M and its
immersed network where wZ is eliminated [19], [45].

It can be found that any network admits the following equiv-
alent network by exploiting the spectral factorization of the
disturbance spectrum CΦC�.

Theorem 1: For any network model M = (G(q), R,C,
H(q), Λ), there exists an equivalent network model as

M̃ � (G(q), R,C,
[
H̃�(q) 0

]�
, Λ̃) (7)

where H̃(q) is a c× c rational transfer matrix, with c = |C|, and
is minimum phase and monic; Λ̃ ∈ Rc×c is positive semidefinite.
In addition,

1) if M satisfies Assumption 2, (H̃(q), Λ̃) is unique with
positive definite Λ̃.

Based on the above result, the measured process (wC , r) that
is modeled by M can be equivalently modeled by M̃ in (7),
which has the same matrices G, R, C; however, the unmeasured
internal signals of M̃ are noise-free. Note that the model M̃ (7)
has a related white noise vector, denoted by ẽ, with covariance
matrix Λ̃. This noise model is simpler than the one in M ,
and more importantly, M̃ keeps the G matrix invariant as in
M . This invariance is important for identifiability analysis and
identification of network modules.

The equivalence between M and M̃ is obtained due to the
freedom in transforming the unmeasured internal signals and
modeling the noises, since the objects in (4) only reflect the
properties of the measured processes.

B. Equivalent Network for Handling Noise Excitation

Since a network M and its corresponding M̃ are equivalent
and contain the sameGmatrix, both of them can be used to model
the same data set, i.e., the measured (wC , r), for the identification
of the modules in a dynamic network (1). In the previous section,
it is discussed that M̃ in (7) can potentially be a better option
due to its simpler noise model. In this section, we further show
that the particular noise model of M̃ is also beneficial for the
identifiability analysis.

From now on, we use M to specifically refer to a parameter-
ized set of models that are structured according to M̃ (7), defined
as follows.

Definition 3: Let M be a network model set that is obtained
from the rational parameterization of M̃ in (7) as

M � {M̃(θ)|θ ∈ Θ ⊆ Rn}

where M̃(θ) satisfies Assumption 1 for all θ ∈ Θ.
It can be found that the implication (5) for M can be further

simplified under mild conditions.
Assumption 4: A network model set M satisfies at least one

of the following two conditions:
a) G(q, θ) is parameterized to be strictly proper;
b) Λ̃ is diagonal and G(q, θ) is parameterized without alge-

braic loops, i.e., there exists a permutation matrix P such
that PG∞(θ)P� is lower triangular, where G∞(θ) �
limz→∞ G(z, θ).

Proposition 1: For a network model set M that satisfies
Assumptions 2 and 4 and defining

TWX (q, θ) � T (q, θ)X(q, θ), X(q) �
[
R

[
H̃(q, θ)

0

]]
(8)

implication (5) for M can be equivalently formulated as

CTWX (q, θ0) = CTWX (q, θ1) ⇒ Gji(q, θ0) = Gji(q, θ1)
(9)

for all θ1 ∈ Θ.
According to (3), the above result indicates that both the

mappings from r and ẽ to the measured internal signals can be
used for analyzing identifiability inM, and thus the unmeasured
noise signal ẽ plays the same role as the measured r(t) for the
identifiability analysis. In this case, we say that ẽ signals act as
excitation sources for the identifiability analysis. Proposition 1
is an extension of [28, Propositions 2] to the partial measurement
and partial excitation setting.

Proposition 1 shows another advantage of M̃ over a general
network model M in network identification with partial mea-
surement and partial excitation. These two models are equiva-
lent to describe the same data and contain the same modules;
however, the model set M of M̃ allows us to exploit the noise
spectral density through Proposition 1, such that the noise signals
act as excitation signals for identifiability analysis. Therefore,
in this work, we regard M̃ as the standard model for network
identification in the partial measurement and partial excitation
setting.
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IV. NECESSARY GRAPHICAL CONDITIONS

From now on, we focus on the development of graphical
conditions for identifiability in M obtained from the param-
eterization of M̃ . Particularly, we focus on identifiability of a
single module.

Necessary and sufficient graphical conditions for generic
identifiability of a single module are obtained in [31] for the
full excitation case and in [34] for the full measurement case.
When the setting with partial measurement and partial excitation
is considered, the existing necessary conditions from the above
works for full measurement or full excitation setting naturally
remain necessary conditions for the current setting.

To introduce these necessary conditions, we first impose a
regularity assumption on the fixed modules, since the fixed
modules may cause graphical conditions to fail [34]. Firstly,
we define that the structural rank of a matrix is the maximum
rank of all matrices with the same nonzero pattern [46].

Assumption 5 ([34]): In model set M, the rank of any sub-
matrix of [(G(q, θ)− I) X(q, θ)] that does not depend on θ is
equal to its structural rank.

Then define the following sets of signals related to the input
wi and the output wj of Gji:

1) let Xj contain all the signals in r and ẽ that have no
unknown directed edge to wj ;

2) W−
j contains all the internal signals that have an unknown

directed edge to wj ;
3) W+

i contains all the internal signals to which wi has an
unknown directed edge.

Note that when all the nonzero modules are unknown, W−
j

and W+
i contains all the in-neighbors of wj in W and all the

out-neighbors of wi, respectively. Then the following necessary
condition on excitation signals can be derived from [31] and [34]
directly.

Lemma 1: In the model setM that satisfies Assumptions 2, 3,
4, 5, and a topological property2, moduleGji(q, θ) is generically
identifiable in M from (wC , r) only if the following conditions
are satisfied:

1) bXj→W−
j
= 1 + bXj→W−

j \{wi};
2) bW+

i →C = 1 + bW+
i \{wj}→C ;

3) each signal in {wi, wj} is measured or is excited by a
vertex in X .

The above conditions imply a necessary number of measured
signals and external signals, including r and ẽ, for identifiability.
This is because the scheme of measurement and excitation
decides the sparsity pattern of matrices C, R, H , and thus,
further influences the mapping CTX in (9). The formulation
of Xj indicates that the noises, which have unknown directed
edges to wj , are not helpful for identifiability of Gji.

The graphical conditions can be easily tested using graphical
algorithms to compute the maximum number of vertex disjoint
paths. However, the conditions are not suitable for design-
ing synthesis approaches for excitation and sensor allocation,
since they do not specify explicitly which signals are necessary
to be excited and measured. Thus, following [34], the above

2For the necessity to hold, M should be an open set as in [34, Assumption 4].

path-based conditions can be equivalently formulated with the
concept of disconnecting sets.

Lemma 2: Consider the setting of Lemma 1,
1) condition (1) holds if and only if there exists aXj −W−

j \
{wi} disconnecting set D such that bXj→{wi}∪D = |D|+
1;

2) condition (2) holds if and only if there exists a W+
i \

{wj} − C disconnecting set Dc such that b{wj}∪Dc→C =
|Dc|+ 1.

Proof: The first result follows from [34, Lemma 8] and con-
dition (1) of Lemma 1. The last result is the dual situation �

In the above lemma, the first result shows that the signals in
{wi} ∪ D are necessary to be excited or indirectly excited by
r and ẽ. In addition, the second result specifies that the signals
in {wj} ∪ Dc should be measured or indirectly measured, i.e.,
they are not measured but have vertex disjoint paths to measured
internal signals.

However, the necessary conditions in Lemma 1 are not suffi-
cient to verify identifiability. This also means that the require-
ments on excitation signals and on measured internal signals are
not separable for identifiability, i.e., first allocating excitation
signals according to the results for the full measurement case
and then selecting measured signals according to the results for
the full excitation case are not sufficient for identifiability in the
current setting.

V. SUFFICIENT CONDITIONS: BOTH INPUT AND OUTPUT

MEASURED OR EXCITED

In this section, sufficient graphical conditions are developed
to verify global and generic identifiability of a single module in
M for the situation, where the input and the output are both mea-
sured or both excited. As shown in Proposition 1, identifiability
concerns the uniqueness of network modules given CTWX . In
the special cases where C = I or R = I , identifiability of mod-
ules relates to the rank of submatrices in TWX as follows [31],
[34]. Taking the case where C = I as an example and based
on (9) and the definition of TWX in (8), the rank condition is
analyzed on the basis of the relation

(I −G)TWX = X (10)

based on which, identifiability of modules in G can be formu-
lated as the uniqueness of solutions for entries in G given matrix
TWX , which is thus connected to TWX ’s rank and can also be
tested using the following graphical rank tests.

Lemma 3: Consider a network model set M that satisfies
Assumptions 3, 5, and let TW̄X̄ (q, θ) denote a submatrix of
TWX (q, θ) with its rows and columns corresponding to subsets
W̄ ⊆ W and X̄ ⊆ X , respectively. It holds that

1) rank[TW̄X̄ (q, θ)] = bX̄→W̄ generically;
2) rank[TW̄X̄ (q, θ)] = bX̄→W̄ globally if the set of maxi-

mum number of vertex disjoint paths from X̄ to W̄ is
unique and the transfer functions contained in these paths
are nonzero for all models in M.

Proof: The first result is proven in [34] which is extended
from [31] to the setting with known modules. The global rank
has been investigated in [29] in terms of the unique (constrained)
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Fig. 2. Visualization of a situation where Gji is generically identifiable.
G∗

j represents the other in-coming modules of wj , and the dashed
edges represent directed paths.

set of vertex disjoint paths. Note that the assumption for nonzero
transfer functions is implicit in [29] as parameterized model sets
are not considered there. �

The above result shows that the generic and the global rank of
TWX can be found by counting the maximum number of disjoint
paths. In addition, we define a new notation b̄X̄→W̄ for the global
rank test in Lemma 3, i.e., the equality b̄X̄→W̄ = a means that
bX̄→W̄ = a, and the set of maximum number of vertex disjoint
paths is unique, while the transfer functions contained in those
paths are nonzero for all models in the set.

In contrast to (10), when C �= I and R �= I , we have TCX =
C(I −G)−1X instead, where (I −G)−1 cannot be moved to
the LHS to obtain a system of linear equations as in (10) in
general. Thus in this work, we consider identifiability of a single
module in several special situations, depending on whether its
input and output are measured. For each situation, identifiability
conditions can still be connected to the rank of TWX and further
to the graphical rank tests in Lemma 3.

Even if each of the considered cases is limited to a specific
situation and these cases cannot be combined into a single
result, they together cover all the situations for single module
identification in the partial measurement and partial excitation
setting.

A. Measured Input and Output

A sufficient condition is first derived for the verification of
single module identifiability in the situation where both the input
wi and the output wj of Gji are measured.

Consider the equation (I −G)TWX = X , and its jth row can
be permuted as

[
−Gji −GjN−

j \{wi} 1 0
]
⎡
⎢⎢⎢⎣

TiX
TN−

j \{wi}X
TjX
�

⎤
⎥⎥⎥⎦ = Xj� (11)

where Xj� denotes the jth row vector of X , and N−
j denotes the

set of in-neighbors of wj for now and will be formally defined
later. The modules contained in the jth row of G are shown as
blue blocks in Fig. 2.

If all internal signals are measured, i.e., C = I , all the sub-
matrices of TWX in (11) are given by CTWX , and thus we
can analyze the uniqueness for Gji given TWX , as investigated
in [34]. However, when a subset of internal signals is measured
with C being a selection matrix, only a subset of rows in
TWX is given by CTWX . Although TiX and TjX are available
from CTWX due to measured wi and wj , TN−

j \{wi}X may not

be directly available as the signals in N−
j \ {wi} may not be

measured.
To address the unavailability of TN−

j \{wi}X , the following
result is instrumental and can be derived from [34, Th. 5].

Lemma 4: For any network model set M that satisfies As-
sumptions 3, 5 with a disconnecting set D from any X̄ ⊆ X to
any W̄ ⊆ W , there exists a proper transfer matrix K(q, θ) such
that

TW̄X̄ (q, θ) = K(q, θ)TDX̄ (q, θ). (12)

In addition, it holds that
1) K(q, θ) has full column rank generically if bD→W̄ = |D|;
2) K(q, θ) has full column rank globally if b̄D→W̄1

= |D| for
some W̄1 ⊆ W̄ .

The above result shows that if an appropriate disconnecting
set D is chosen, as in Fig. 2, TN−

j \{wi}X can be factorized into
KTDX for some K, where TDX can be obtained from CTWX in
certain way, e.g., the signals in D are measured. This together
with (11) leads to

[
Gji GjW−

j \{wi}K
] [TiX

TDX

]
= TjX −Xj� (13)

and thus, the uniqueness of Gji is ensured if
[
TiX
TDX

]
has full row

rank and the signals in D ∪ {wi, wj} are measured.
The above requirement for full row rank can be reformulated

into a path-based condition using Lemma 3, i.e., D is excited
or indirectly excited by a set X̄ of external signals as in Fig. 2.
In addition, the requirement for measuring D can be further
relaxed by the indirect measurement of D, i.e., the signals in
D are not necessarily measured but have paths to a set C̄ of
measured internal signals as in Fig. 2.

The above reasoning for identifiability analysis can be gener-
alized. Before introducing this result, we first define an important
set of signals as follows.

1) Let set N−
j contain all internal signals that are in-

neighbors of wj excluding the measured signals that have
a known directed edge to wj .

According to the above definition, it holds that W−
j ⊆ N−

j .
When all the nonzero modules are unknown, we have N−

j =

W−
j which simply contains all the in-coming internal signals of

wj .
Then the following graphical result can be obtained from the

generalization of the reasoning in (13).
Theorem 2: For a model set M that satisfies Assumptions 2,

3, 4, and 5 with its graph, Gji(q, θ) is generically identifiable in
M from (wC , r) if for some X̄ ⊆ Xj and C̄ ⊆ C \ {wi}, there
exists a X̄ − (N−

j \ {wi}) ∪ C̄ disconnecting set D such that
1) bX̄→{wi}∪D = |D|+ 1;
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2) bD→C̄ = |D|;
3) wi and wj are in C.

The above result is visualized in Fig. 2 for the special case
where wj /∈ C̄, for simplicity. It shows that to identify Gji,
instead of measuring and exciting all the inputs of the MISO
subsystem that containsGji, we only need to excite and measure
the signals in D ∪ {wi} indirectly. The difficulty in applying the
above result may arise from the need to search for the subsets X̄
and C̄, which, however, cannot be avoided due to the coupling
between the excitation signals and the measured signals that are
relevant to identifiability of Gji.

Compared to [34, Th. 4] which states that the signals in
{wi} ∪ D need to be excited when all the internal signals are
measured, the above result is a generalization which only re-
quires the signals in {wi, wj} ∪ D to be measured. In addition,
D can also be measured indirectly as in condition (2), i.e., the
signals in D are not measured but have vertex disjoint paths to
measured signals in C̄.

This indirect measurement of D can be shown to appear also
in the network identification method of [47]. For the consistent
estimate of Gji, the method requires the indirect measurement
of signals that block the so-called parallel paths from wi to wj

and the loops around wj , while these signals actually coincide
with D as shown in [34]. Thus, the considered experimental
setup in [47] matches the one in Theorem 2.

Remark 1: Based on the connection between the unique
set of vertex disjoint paths and the global rank of transfer
matrices as in Lemma 3, Theorem 2 can be modified to ad-
dress global identifiability by considering b̄X̄→{wi}∪D and b̄D→C̄
instead.

Theorem 2 has a potential application for signal and sensor al-
location, as it explicitly states that signals in {wi} ∪ D should be
excited or indirectly excited as in condition (1), and the signals in
D should be measured or indirectly measured as in condition (2).
However, it can be difficult to perform an identifiability test for
a given model set as one needs to search for a disconnecting set.
In order to better facilitate such an analysis step, an equivalent
path-based condition of Theorem 2 is developed.

Proposition 2: For a model set M that satisfies Assump-
tions 2, 3, 4, and 5 with its graph, Gji(q, θ) is generically identi-
fiable inM from (wC , r) if for some X̄ ⊆ Xj and C̄ ⊆ C \ {wi},
it holds that

1) bX̄→N−
j ∪C̄ = bX̄→(N−

j \{wi})∪C̄ + 1;
2) bX̄→(N−

j \{wi})∪C̄ = bX̄→C̄ ;
3) wi and wj are in C.

Compared to Theorem 2, the above result avoids the search
for a disconnecting set, and thus, is easier for analyzing identi-
fiability. However, it is less informative than Theorem 2 since it
does not specify explicitly where to allocate excitation signals
and sensors for single module identifiability.

The conditions in this section are illustrated in the following
example.

Example 2: Consider a model set M in Fig. 3 with G21 of in-
terest and the measured internal signals C = {w1, w2, w3, w6}.
It can be found that N−

2 = {w1, w4}, which does not include
the in-neighbor w3 of w2 since w3 is measured and has a known
edge tow2. In addition, we haveX2 = {ẽ1, r4, r5} because these

Fig. 3. Identifiable G21 (thick edge) with only green internal signals
measured and one known module G23 (double-line edge).

external signals do not have an unknown edge to w2. The goal
is then to verify generic and global identifiability of G21 using
the graphical conditions.

By taking X̄ = {ẽ1, r5} and C̄ = {w6}, it holds that {w5} =
D is a set that disconnects X̄ from (N−

2 \ {w1}) ∪ C̄ =
{w4, w6}, as indicated by a red vertex in Fig. 3. Thus, condi-
tion (1) of Theorem 2 is satisfied as there are two vertex disjoint
paths ẽ1 → w1 and r5 → w5 indicated by the red arrows in
Fig. 3. In addition, condition (2) also holds because of the green
path w5 → w6. Then, based on Theorem 2, G21 is generically
identifiable. The conditions in Proposition 2 can be verified
similarly with the chosen X̄ and C̄.

If the transfer functions are nonzero in all models of the model
set, G21 is also globally identifiable as the set of maximum
number of vertex disjoint paths from {ẽ, r5} to {w1, w5} and
the one from w5 to w6 are unique.

Next, we extend the result in Proposition 2 from a single
module to a subnetwork, i.e., a subset of in-coming modules of
wj .

Corollary 1: For a model set M that satisfies Assumptions 2,
3, 4, and 5 with its graph, let GjN�(q, θ), with any N � ⊆ N−

j ,
denote a vector of unknown modules from the jth row ofG(q, θ).
GjN�(q, θ) is generically identifiable in M from (wC , r) if for
some X̄ ⊆ Xj and C̄ ⊆ C \ N �, it holds that

1) bX̄→N−
j ∪C̄ = bX̄→(N−

j \N�)∪C̄ + bX̄→N� and bX̄→N� =

|N �|;
2) bX̄→(N−

j \N�)∪C̄ = bX̄→C̄ ;
3) N � and wj are in C.

Proof: The proof is analogous to the proof of Proposition 2
and can be based on the proof of Theorem 2. In this case, we only
need to replaceGji withGjN� andTiX̄ withTN�X̄ in (27). Then,
the rank condition implied by the first path-based condition leads
to a unique solution for GjN� . �

Corollary 1 is related to [37, Th. IV.4] which also specifies
sufficient conditions for generic identifiability ofGji, in a setting
without known nonzero modules and with only r signals as ex-
citation sources for identifiability analysis. In addition, the the-
orem not only contains a graphical condition, but also requires
the prior knowledge for certain submatrices of TWX . When all
nonzero modules are unknown and only r signals are considered
as excitation sources for identifiability analysis, the graphical
condition there is equivalent to the first condition in Corollary 1,
while the corollary further specifies the graphical conditions,
under which the required submatrices of [37, Th. IV.4] can be
obtained.
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Fig. 4. Visualization of a situation where Gji is generically identifiable,
and its input and output are excited. G∗

i represents the other out-going
modules of wi, and the dashed edges represent directed paths.

B. Excited Input and Output

In the previous section, it is assumed that both the input and
the output of a module are measured, which may not be feasible
in some practical situations. This motivates us to consider the
situation where the input or the output can be unmeasured, with
the cost that they are excited.

In this case, instead of starting with the equation (I −
G)TWX = X as in (11), we analyze identifiability using the
ith column of C = TCW(I −G), obtained from the relation
TCW = CT . Unlike (11) which treats Gji in the corresponding
MISO subsystem, we take a dual perspective now and analyze
Gji in the corresponding SIMO subsystem, as shown in Fig. 4
where the two blue blocks denote the module Gji and the other
out-going modules of wi. Thus, a dual result of Lemma 4 can
be obtained analogously.

Lemma 5: For any network model set M that satisfies As-
sumptions 3 and 5 with a disconnecting set D from any X̄ ⊆ X
to any W̄ ⊆ W , there exists a proper transfer matrix K(q, θ)
such that

TW̄X̄ (q, θ) = TW̄D(q, θ)K(q, θ). (14)

Additionally, it holds that
1) K(q, θ) has full row rank generically if bX̄→D = |D|;
2) K(q, θ) has full row rank globally if b̄X̄1→D = |D| for

some X̄1 ⊆ X̄ .
In view of analyzing generic identifiability of Gji when its

input and output are excited, the above result allows us to find
an appropriate disconnecting set D, as shown in Fig. 4. It can
then be found that generic identifiability ofGji is satisfied, if the
signals in D are either excited or indirectly excited by a set X̄
of external signals and either measured or indirectly measured.
This is illustrated in Fig. 4 and can be formalized as follows.

To introduce the identifiability results, we first define an
important set related to the input wi of Gji:

1) Let N+
i contain the out-neighbors of wi excluding the

ones that satisfy a)wi has a known directed edge to it, and
b) it is excited by an external signal that has out-degree
one with a known out-going edge.

Therefore, it holds that W+
i ⊆ N+

i , and when all modules
are unknown, we have N+

i = W+
i which simply contains all

the out-neighbors of wi.
Then, the following result can be obtained.
Theorem 3: For a model set M that satisfies Assumptions 2,

3, 4, and 5, let there be two vertices xi and xj in X , which have
out-degree 1 and known directed edges towi andwj respectively.
Then, Gji(q, θ) is generically identifiable in M from (wC , r) if
for some X̄ ⊆ Xj \ {xj} and C̄ ⊆ C, there exists aN+

i \ {wj} ∪
X̄ − C̄ disconnecting set D such that

1) b{wj}∪D→C̄ = |D|+ 1;
2) bX̄→D = |D|.

Proof: The proof is analogous to Theorem 2 by considering
the ith column of C = TCW(I −G). Note that the analysis re-
quires the availability of TCj and TCi, where TCi can be obtained
fromCTX whenwi is excited byxi.xi can be either a measured
signal ri or a noise signal ẽi: First, ri always has out-degree
one, and it is clear that TCi is a submatrix of CTR. On the other
hand, when ẽi has out-degree one and a known edge to wi, its
corresponding column H�i in H has only one nonzero entry that
is also known. Therefore, TCi can be obtained from CTH�i as
well. The mapping TCj can be obtained from CTX similarly
due to the existence of xj . �

Theorem 3 is visualized in Fig. 4. It shows that to identify
Gji, instead of measuring and exciting all the outputs of the
SIMO subsystem that contains Gji, it is sufficient to measure
and excite the signals in D ∪ {wj} indirectly.

Theorem 3 is also a dual result of Theorem 2: While Theo-
rem 3 considers the input and the output to be excited, Theorem 2
assumes them to be measured; in addition, the graphical condi-
tions of the two results have a similar dual structure. The result
can also be extended to address global identifiability by requiring
that the sets of maximum number of vertex disjoint paths are
unique. In addition, a path-based formulation of Theorem 3 can
also be obtained, which is analogous to Proposition 2.

Proposition 3: For a model set M that satisfies Assump-
tions 2, 3, 4, and 5, let there be two vertices xi and xj in X ,
which have out-degree 1 and known directed edges to wi and
wj respectively. Then Gji(q, θ) is generically identifiable in M
from (wC , r) if for some X̄ ⊆ Xj \ {xj} and C̄ ⊆ C, it holds that

1) bN+
i ∪X̄→C̄ = bN+

i \{wj}∪X̄→C̄ + 1;
2) bN+

i \{wj}∪X̄→C̄ = bX̄→C̄ .
While Proposition 3 is a dual result of Proposition 2, it allows

us to analyze identifiability in a completely different setting, as
illustrated in the following example.

Example 3: Consider identifiability of G21 in M of
Fig. 5 where {w4, w5, w7} contains the measured signals,
and {w1, w2} is excited by {r1, ẽ2}. It holds that N+

1 =
{w2, w3, w5}, and furthermore, we can choose X̄ = {ẽ5, r6}
and C̄ = {w4, w5, w7}.

It can be found that D = {w3, w5} is disconnecting (N+
1 \

{w2}) ∪ X̄ = {w3, w5, ẽ5, r6} from C̄, as indicated by the red
vertices in Fig. 5. In addition, condition (1) of Theorem 3 is
satisfied since there are three vertex disjoint paths including
w3 → w7, w2 → w4, and w5 itself, indicated by green edges in
Fig. 5. Condition (2) is then satisfied because there are two vertex
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Fig. 5. Identifiability of G21 is considered (thick line) in M with both
input and output unmeasured, while w1 and w2 are excited by r1 and ẽ2
via known edges (double-line edges), respectively.

disjoint paths indicated by the red edges, including r6 → w3 and
ẽ5 → w5, which concludes generic identifiability of G21. Note
that r6 excites w3 indirectly through a path.

Since the above sets of maximum number of vertex disjoint
paths are unique, G21 is also globally identifiable.

Remark 2: When identifiability of multiple modules GN�i

from one SIMO subsystem is considered, where N � ⊆ N+
i , the

results in this section can be extended in a straightforward way
by considering N � instead of the single output wj , which is
similar to the extension in Corollary 1.

The above remark leads to a graphical result that is related
to [37, Th. IV.2], which also considers identifiability of multiple
modules from one SIMO model. However, [37, Th. IV.2] is not
fully graphical as it requires the availability of certain mappings,
and it does not consider known modules nor the excitation
contributed by unmeasured noises.

VI. SUFFICIENT CONDITIONS: MEASURED INPUT OR

OUTPUT WITH INDIRECT EXCITATION

Even if Proposition 3 considers the most general measurement
scheme, it requires wi and wj to be excited. When wi (or wj)
is measured, it is not necessary to excite wi (or wj), as shown
in the last condition of Lemma 1. In this section, we develop
graphical identifiability conditions for the situation where either
wi or wj is measured and not excited.

We first consider the case where the input wi is unmeasured
and the output wj is measured, and the measured wj may
not be excited by r or ẽ. As in (11), the mapping TiX is not
available from CTX as wi is unmeasured, and thus, needs to be
represented by available mappings via an appropriately chosen
disconnecting set, which can be motivated by the following
example:

Example 4: Consider the network model set in Fig. 6(a)
where identifiability of G21 is of interest while w1 is unmea-
sured. Since the mapping from r1 to w1 is known to be 1, G21

can be uniquely recovered from the available external-to-internal
mapping from r1 to w2. In Fig. 6(b) there is a loop around w1,
and the mapping from r1 to w2 is

Tw2r1 =
G21

1−G13G31

Fig. 6. Two network model sets with G21 as the target module and w1

unmeasured. G21 is generically and globally identifiable in both cases
under measured signals (green).

and, thus, G21 cannot be recovered from Tw2r1 alone as in
Fig. 6(a). However, the loop transfer can be found as

Tw3r3 =
1

1−G13G31

and, thus, G21 = Tw2r1(Tw3r2)
−1, where both mappings are

available because w3 and w2 are measured. �
As shown in the above example, it is important to measure

and excite the vertices in the loops around the unmeasured
input, in order to achieve identifiability of the module under
consideration. This observation can be generalized as follows.

Theorem 4: For a model set M that satisfies Assumptions 2,
3, 4, and 5, let set N∗

i contain all the in-neighbors of wi in W .
Suppose that wj is measured but wi cannot be measured, and let
there be a vertex xi in X , which has out-degree 1 and a known
edge to wi. Then, module Gji is generically identifiable in M
from (wC , r) if for some X̄ ⊆ Xj \ {xi} and C̄ ⊆ C, there exists
a X̄ ∪ {xi} − N∗

i ∪ (N−
j \ {wi}) ∪ C̄ disconnecting setD such

that
1) bX̄∪{xi}→D∪{wi} = 1 + |D|;
2) bD→C̄ = |D|.

In the above result, the disconnecting set intersects with the
paths from xi to N∗

i , which implies that all loops around wi are
blocked by the disconnecting set D, matching the observation
from Example 4. Therefore, this result is an extension of The-
orem 2 to the setting with unmeasured input, by additionally
blocking all the loops around the unmeasured input.

In addition, both Theorems 3 and 4 can be used to analyze
identifiability of Gji with unmeasured input and measured out-
put, while Theorem 4 provides the extra freedom that wj does
not need to be excited.

Then, the corresponding path-based formulation of Theo-
rem 4 can also be derived.

Corollary 2: For a model set M that satisfies Assumptions 2,
3, 4, and 5 with its graph, suppose that wj is measured but wi

cannot be measured, and let there be a vertex xi in X , which
has out-degree 1 and a known edge to wi. Then, module Gji is
generically identifiable if for some X̄ ⊆ Xj \ {xi} and C̄ ⊆ C,
the following conditions hold:

1) bX̄∪{xi}→N∗
i∪Nj∪C̄ = 1 + bX̄∪{xi}→N∗

i∪(N−
j \{wi})∪C̄ ;

2) bX̄∪{xi}→N∗
i∪(N−

j \{wi})∪C̄ = bX̄∪{xi}→C̄ .
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The above result can also be extended trivially to a subset of
in-coming modules of wj , which is similar to the extension in
Corollary 1.

For the situation where the input wi is measured while the
output wj is unmeasured, the requirement for direct excitation
for wi in Theorem 3 can also be relaxed. Here, we start with the
analysis in a SIMO problem as in Section V-B. When the direct
excitation for wi is not present, the mapping TCi is, thus, not
given by CTWX . However, based on Lemma 5, we can simply
require a disconnecting set D from {wi} to C, and then TCi is
represented by TCDK for some transfer matrix K where TCD
can be obtained from other mappings when the signals in D are
excited or indirectly excited.

Theorem 5: For a model set M that satisfies Assumptions 2,
3, 4, and 5, suppose that for moduleGji, its inputwi is measured
but output wj is unmeasured, and let there be a vertex xj in X ,
which has out-degree 1 and a known edge to wj . Then, Gji

is generically identifiable in M from (wC , r) if for some X̄ ⊆
Xj \ {xj} and C̄ ⊆ C withwi ∈ C̄, there exists a (N+

i \ {wj}) ∪
X̄ ∪ {wi} − C̄ disconnecting set D such that

1) b{wj}∪D→C̄ = |D|+ 1;
2) bX̄→D = |D|.

Note that since wi ∈ C̄, the disconnecting set in the above
result must contain wi. This result generalizes Theorem 3 to
address the situation where the input is measured but has an
indirect excitation source, while the input needs to be excited in
Theorem 3. The above generalization is achieved by additionally
blocking the paths from wi to C̄ using the disconnecting set,
compared to Theorem 3. Furthermore, the result in Theorem 5
can be extended to analyzing global identifiability as in Remark 1
and identifiability of a subnetwork, i.e., a subset of out-going
modules of wi in this case, as in Remark 2. A path-based
formulation of Theorem 5 can be also obtained analogously as
in Corollary 2.

VII. ACTUATOR AND SENSOR ALLOCATION FOR

IDENTIFIABILITY

The results in the previous sections provide analysis results
for verifying identifiability for a given configuration of measured
and excited signals. In order to extend these results for solving
a synthesis problem, i.e., allocating sensors and actuators to
achieve identifiability, we extend a reasoning that is originating
from [39] as follows.

Depending on whether the input or the output of a module
is measured, Theorems 2, 3, 4, and 5 explicitly require the
signals in the disconnecting sets to be excited and measured
(indirectly) to guarantee single module identifiability. Therefore,
the idea is to first compute a disconnecting set and then allocate
signals and sensors accordingly. However, the disconnecting
sets in the theorems cannot be computed before the excitation
signals X̄ and the measured signals C̄ are specified. Thus, for
the disconnecting sets, we first provide the necessary conditions
that do not rely on the external and measured signals.

Corollary 3: For a model set M that satisfies Assumptions 2,
3, 4, 5

1) if it satisfies the conditions in Theorem 2 with disconnect-
ing setD1,D1 is also a {wi} − N−

j \ {wi} disconnecting
set;

2) if it satisfies the conditions in Theorem 3 with disconnect-
ing setD2,D2 is also aN+

i \ {wj} − {wj}disconnecting
set;

3) if it satisfies the conditions in Theorem 4 with discon-
necting set D3, D3 is also a {wi} − N∗

i ∪ (N−
j \ {wi})

disconnecting set;
4) if it satisfies the conditions in Theorem 5 with disconnect-

ing setD4,D4 is also a (N+
i \ {wj}) ∪ {wi} − {wi, wj}

disconnecting set.
Proof: The proof is analogous to the proof of [34, Corol-

lary 2]. �
After computing the above specified disconnecting sets, exci-

tation signals and sensors can be allocated to achieve identifia-
bility of Gji. Following the theorems, we illustrate the synthesis
approaches in Table II for different cases depending on whether
the input or the output can be measured. For each situation,
we specify how the disconnecting set is constructed and which
signals are to be excited or measured.

Taking Case 2 in Table II as an example, a N+
i \ {wj} −

{wj} disconnecting setD that satisfieswj /∈ D is first computed.
Then, for actuator and sensor allocation, each signal in D ∪
{wi, wj} is excited by a distinct r signal, and all signals in D
are measured. In addition, the output wj is indirectly measured,
which is also required in Case 4.

The indirect measurement for wj in Cases 2 and 4 means that
wj has a path to a measured vertex wk, and more importantly,
based on Theorems 3 and 5, we choose wk in the following way:
wk ∈ C \ {wj} is an internal signal such that the computed D
is also a N+

i \ {wi} − {wk} disconnecting set in Case 2 or a
(N+

i \ {wj}) ∪ {wi} − {wk} disconnecting set in Case 4; in
addition, there exists a path from wj to wk that is vertex disjoint
with D.

The synthesis approaches can be justified in the following
result.

Theorem 6: For a model set M that satisfies Assumptions 2,
3, 4, and 5, consider each case in Table II. If the disconnect-
ing set D is formulated and the excitation signals and sensors
are allocated according to Table II, module Gji is generically
identifiable in the obtained model set from the measured signals.

Proof: In Case 1, the allocated r signals form a set X̄ , and
D forms a set C̄. It is straightforward that the obtained X̄ , C̄,
and D together satisfy the conditions in Theorem 2. In Case 2,
the r signals that excite D form the set X̄ , and D ∪ {wk}, or
D ∪ {wj} if wj is measured, forms the set C̄ where wk is the
indirect measurement of wj . Then, due to the chosen wk and
the direct excitation and measurement of D, the conditions of
Theorem 3 are satisfied. The proofs for the other two cases
follows analogously and, thus, are omitted. �

When computing the disconnecting set in the above ap-
proaches, a minimum disconnecting set can be found by the
Ford–Fulkerson algorithm in time O(|E||V|) [44], where V and
E are the vertex set and edge set of the dynamic network G,
respectively. Also note that in the obtained model set in Cases 1
and 3, module Gji is globally identifiable as all the relevant
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TABLE II
DIFFERENT SYNTHESIS APPROACHES FOR IDENTIFIABILITY OF Gji

signals are excited and measured, and thus, Theorems 3 and 4
are satisfied with the unique sets of maximum number of vertex
disjoint paths. Global identifiability ofGji in the other two cases
depends on the chosen indirect measurement wk for wj .

Furthermore, like the extension made in Corollary 1, the
synthesis approaches for Cases 1 and 3 can be extended trivially
to deal with a subset of in-coming modules of wj ; and the ones
for Cases 2 and 4 can also be extended to consider a subset of
out-going modules of wi, as noted in Remark 2.

VIII. INDIRECT IDENTIFICATION METHODS

The disconnecting-set-based results in Theorems 2, 3, 4, and
5 also suggest several indirect identification methods through
which the module of interest Gji can be estimated in the sit-
uation that the identifiability conditions are satisfied through
external excitation signals r only, and so no use is made of noise
excitation. The identification algorithms can be retrieved from
the following result, where all nonzero modules are assumed to
be unknown for simplicity.

Proposition 4: For M with all fixed modules being zero
1) if it satisfies the conditions in Theorem 2 with wj /∈ D

and X̄ having no directed edge to wj , then for M it holds
generically that

Gji(q, θ) = TjX̄ (q, θ)

[
TiX̄ (q, θ)
TC̄X̄ (q, θ)

]† [
1

0

]
; (15)

2) if it satisfies the conditions in Theorem 3 with wi /∈ D ∪
C̄, it holds generically that

Gji(q, θ) =
[
1 0

] [
TC̄j(q, θ) TC̄X̄ (q, θ)

]†
TC̄i; (16)

3) if it satisfies the conditions in Theorem 4 with wj /∈ D, X̄
having no directed edge to wj , and xi being a measured
excitation signal, it holds generically that

Gji(q, θ) = TjX̄ (q, θ)

[
exi

TC̄(X̄∪{xi})(q, θ)

]† [
1

0

]
(17)

where exi
is a standard basis vector which denotes the

mapping from (X̄ ∪ {xi}) to xi;
4) if it satisfies the conditions in Theorem 5, it holds gener-

ically that

Gji(q, θ) =
[
1 0

] [
TC̄j(q, θ) TC̄X̄ (q, θ)

]†
CC̄i (18)

whereCC̄i is the submatrix ofC whose rows and columns
correspond to C̄ and wi, respectively.

Proof: Equation (15) is obtained from (27) where P = TjX̄
under the assumptions that X̄ has no directed edge to wj and
there is no known module, and (16) is a dual result of (15).
Similarly, (17) is derived from (30), and combining (31) and
(32) leads to (18). �

The four expressions in the above proposition show opportu-
nities to estimate Gji when the set Xj consists of only measured
r signals. In this case, all the involved mappings, including TC̄X̄ ,
TC̄i, and TC̄j , are mappings from measured r signals to measured
internal signals, and thus, they can be estimated consistently
under mild conditions. Consequently, Gji can also be estimated
consistently on the basis of the above expressions. Taking (16)
as an example, it shows that an estimate of Gji can be obtained
from dividing the mapping from xi to C̄ by the mapping from
{xj} ∪ X̄ to C̄, as visualized in Fig. 4. Note that these methods
can also be generalized to identify multiple modules, which is
similar to the extensions in Corollary 1 and Remark 2.

The methods cover all possible situations for single module
identification, depending on if the input or the output is mea-
sured. The particularly interesting case is (16) which leads to a
method that can estimateGji even when both its input and output
are unmeasured. The methods also do not require measuring the
inputs of the MISO subsystem that contains Gji, which is a
typical choice in the literature such that the MISO subsystem
can be estimated to obtain the module estimate [23].

The obtained indirect methods can address significantly more
general settings than the existing network identification meth-
ods [19], [21], [23], [34], [47] which are typically limited to a
specific measurement scheme, e.g., both the input and output
are measured [19], [23], [34], [47]; or the input is unmeasured
but the output is measured [21], [23]. The disadvantage of
these indirect methods is that they cannot exploit excitation
through unmeasured disturbance signals, and therefore, gen-
erally will require a more expensive experimental setup, re-
quiring a relatively large number of external excitation signals
r. The presented identifiability conditions point to the use of
identification methods that can exploit both types of excitation,
as, e.g., [47].

IX. CONCLUSION

For single module identifiability analysis, this article intro-
duces the concept of network equivalence and develops a novel
network model structure, which has a simple noise model and
more importantly, allows us to explore the noise excitation for
the identifiability tests.
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More importantly, graphical conditions for verifying both
global and generic identifiability of a single module are devel-
oped in the case of partial measurement and partial excitation.
Given the developed model structure, the graphical conditions
regard both measured excitation signals and unmeasured noises
as excitation sources for identifiability analysis. It is also shown
that disconnecting sets provide important information regard-
ing which signals should be excited or measured to achieve
identifiability. The above information further leads to synthesis
approaches, for excitation allocation and sensor allocation to
achieve identifiability, and indirect methods for estimating net-
work modules. The Matlab software for conducting the graphical
analysis in Proposition 2 and the synthesis in Case 1 of Table II
can be found in [48].

APPENDIX

Proof of Theorem 1

We first exploit the spectrum CΦC� of M . Based on the
measured signals wC , an immersed network model, which only
represents the behavior of the measured signals, can be obtained
by eliminating the unmeasured signals (called immersion or
Kron reduction) [19]. To introduce the immersed network, we
first define

Ḡ = GCC +GCZ(I −GZZ)−1GZC (19)

H̄ = HC +GCZ(I −GZZ)−1HZ (20)

and R̄ similarly, where, for example, GCZ represents the sub-
matrix of G that has its rows and columns corresponding to the
signals in C and Z , respectively. Then the immersed network
model after the elimination of unmeasured internal signals has
the following form:

wC = ḠwC + R̄r(t) + H̄e(t). (21)

Note that the above model may have nonzero diagonal entries
in Ḡ, and (I − Ḡ) has a proper inverse because of Assump-
tion 1(c) and consequently (I − Ḡ∞) having full rank. This
model further leads to an external-to-internal mapping

wC = (I − Ḡ)−1R̄r(t) + (I − Ḡ)−1H̄e(t). (22)

Based on (3) and (22), it can be found that

CΦCT = (I − Ḡ)−1H̄ΛH̄∗(I − Ḡ)−∗ (23)

where it holds that

C(I −G)−1CT = (I − Ḡ)−1. (24)

In addition, H̄ΛH̄� can be refactorized into H̃Λ̃H̃� [40],
where (H̃, Λ̃) satisfies the properties of this theorem. Note that
(H̃, Λ̃) is unique and Λ̃ has full rank if Assumption 2 is satisfied.
This together with (23) and (24) leads to

CΦCT = C(I −G)−1

[
H̃

0

]
Λ̃
[
H̃� 0

]
(I −G)−∗CT .

The above equation implies that the external-to-output map-
ping of (7), i.e.,

wC = C(I −G)−1Rr + C(I −G)−1

[
H̃

0

]
ẽ

leads to the same object (CTR,CΦC�) asM , which concludes
that M̃ ∼ M .

Proof of Proposition 1

For any θ, it holds that

CΦv(θ)C
T = C(I −G)−1HpΛ̃H

�
p (I −G)−∗CT

where Hp �
[
H̃

0

]
, H̃ is monic, and C = [I 0]. Then the propo-

sition is proved by showing that unique C(I −G)−1Hp and Λ̃
can be found given CTR and CΦC� under Assumption 4, and
then the two implications are trivially equivalent.

If G is strictly proper by Assumption 4(a), C(I −G)−1Hp is
also monic. As CΦv(θ)C

T admits a unique factorization as

CΦv(θ)C
T = LΛpL

�

where L is monic [49], it holds that C(I −G)−1Hp = L and
Λ̃ = Λp. Thus, the uniqueness of Λ and C(I −G)−1Hp is
guaranteed given CΦv(θ̃)C

T , which concludes the proof under
Assumption 4(a).

If Assumption 4(b) holds, there exists a permutation matrix
P such that

CΦv(θ)C
T = (CP�)F (PHp)Λ̃(H

�
pP

�)F ∗(PC�)

where F � [I − PG∞(θ)P�]−1, and F is lower unitriangular.
As CP� contains the first |C| rows of P�, there exists another
permutation matrix P̄ such that P̄CP� is in row echelon form.
Note that premultiplying a square matrix by P̄CP� extracts a
subset of rows in the matrix without reordering them. Based on
the above facts, consider P̄CΦv(θ)C

T P̄� that equals

(P̄CP�)F (PHpP̄
�)P̄ Λ̃P̄�(P̄H�

pP
�)F ∗(PC�P̄�)

where (P̄CP�)F (PHpP̄
�) is lower unitriangular because the

pre- and postmultiplication of F leads to a submatrix of F
with rows and columns corresponding to the same indexes. As
P̄CΦv(θ)C

T P̄� admits a unique LDL� decomposition as

P̄CΦv(θ)C
T P̄� = L̄ΛpL̄

�

where L̄ is lower unitriangular, (P̄CP�)F (PHpP̄
�) and

P̄ Λ̃P̄� can be uniquely determined as

(P̄CP�)F (PHpP̄
�) = L̄, P̄ Λ̃P̄� = Λp.

Therefore, C(I −G)−1Hp and Λ̃ can also be uniquely found
given the spectrum matrix, which proves the proposition under
Assumption 4(b).
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Proof of Lemma 4

The existence of K is proven in [34, Th. 5], and based on this
theorem, K can take the following form:

K =

[
[(I −GPP)−1]W1�GPD1

[(I −GPP)−1]W1�XPD2

C 0

]

for some P ⊆ W , D1 = W ∩D, and D2 = X ∩ D; C is a
selection matrix that extracts the rows corresponding toW2 from
a matrix whose rows correspond to D1, where W2 = W̄ ∩ D,
and W1 = W̄ \W2.

Note that the K matrix equals the external-to-internal map-
ping from D to W̄ in a subgraph of G, where the vertices
in D are the external signals with all in-coming edges of
D removed, and the signals in P are internal signals. This
characterization of K is clearly seen from its formulation:

(I −GPP)−1
[
GPD1

XPD2

]
has the same structure as TWX

in (8); and the block row [C 0] in K represents the mapping
from D to W2, as C is the mapping from D1 to W2 ⊆ D1, and
the zero entries indicate that there is no path between any two
distinct vertices in D when vertices in D are externals signals.
Thus, the full column rank of K can be evaluated based on
Lemma 3 for this subgraph.

Proof of Theorem 2

The proof is to show that a unique Gji can be found given
TC̄X̄ , TiX̄ , and TjX̄ . Note that by condition (1), wi /∈ D holds.
Let setN contain the remaining in-coming internal signals ofwj

which are not in N−
j , i.e., N contains the ones that are measured

and have known directed edges to wj . When wj /∈ D, recall the
jth row of (I −G)TWX = X , and after permutation we have

[
−Gji −GjN−

j \{wi}K1 1 0
]
⎡
⎢⎢⎢⎣
TiX̄
TDX̄
TjX̄
�

⎤
⎥⎥⎥⎦ = X̄ +GjNTNX̄

(25)
where X̄ is a row vector with its columns corresponding to the
signals in X̄ , and thus, is known; GjNTNX̄ is also given as the
modules in GjN are known and N is measured; K1 satisfies
K1TDX̄ = TN−

j \{wi}X̄ based on Lemma 4. Furthermore, there
exists K2 such that K2TDX̄ = TC̄X̄ , and K2 has full column
rank generically by condition (2) and Lemma 4. This generically
leads to

TDX̄ = K†
2TC̄X̄ (26)

where ()† denotes the matrix’s left inverse. Then, combining the
above equation and (25) leads to

[
−Gji −GjN−

j \{wi}K1K
†
2

] [TiX̄
TC̄X̄

]
= P (27)

whereP = X̄ − TjX̄ +GjNTNX̄ , and the above equation holds
generically. In addition, due to conditions (1) and (2), it holds
that

bX̄→{wi}∪C̄ = 1 + bX̄→C̄

and thus, generically

rank(T({wi}∪C̄)X̄ ) = 1 + rank(TC̄X̄ ) (28)

which implies that (27) has a unique solution forGji generically
based on [34, Lemma 2], and thus, generic identifiability of Gji.

When wj ∈ D, the jth row of (I −G)TWX = X can be
written as follows after permutation:

[
−Gji −Gj({wj}∪N−

j \{wi})K̄1 0
]⎡⎢⎣TiX̄

TDX̄
�

⎤
⎥⎦=X̄+GjNTNX̄

where K̄1TDX̄ = T({wj}∪N−
j \{wi})X̄ for some K̄1. Note that for

the above equation in the special case where N = ∅, GjNTNX̄
disappears and X̄ becomes nonzero, because X̄ must have a
directed edge to wj ∈ D; otherwise, there exists a path from
X̄ to N−

j \ {wi} which does not intersect with D based on
condition (1), and thus, contradicts that D is a disconnecting set.
Finally, combining the above equation and (26) leads to unique
Gji generically given CTWX̄ and the first two conditions.

Proof of Proposition 2

We prove this result by showing that the conditions are
equivalent to the conditions of Theorem 2. Firstly, based on
[34, Lemma 8], condition (1) is equivalent to condition (1) of
Theorem 2, and both conditions are satisfied by choosingD to be
a minimum X̄ − (N−

j \ {wi}) ∪ C̄ disconnecting set. With this
choice, bX̄→(N−

j \{wi})∪C̄ = |D| by the Menger’s theorem [34],

and D is also a X̄ − C̄ disconnecting set. Then if condition (2)
is satisfied, it holds that

|D| = bX̄→C̄

which implies that D is a minimum X̄ − C̄ disconnecting set
by the Menger’s theorem, and thus, bD→C̄ = |D|, i.e., condi-
tion (2) in Theorem 2. On the other hand, if condition (2) in
Theorem 2 holds, there are maximally |D| vertex disjoint paths
from X̄ via D to C̄, collected into set P . As D is a minimum
X̄ − (N−

j \ {wi}) ∪ C̄ disconnecting set, all the paths from X̄ to
(N−

j \ {wi}) should intersect with the paths inP , which implies
condition (2) of this result and thus concludes the proof.

Proof of Theorem 4

Whenwj /∈ D, as the conditions imply the first two conditions
in Theorem 2 with X̄ ∪ {xi}, we can use part of the proof for
Theorem 2, while the differences start from (27) by replacing
X̄ in (27) with X̃ , where X̃ = X̄ ∪ {xi}. In addition, it can be
found that D ∪ {xi} is a X̃ − {wi} disconnecting set, and thus,
for some proper Ki, it holds

TiX̃ = Ki

[
exi

TDX̃

]
(29)

where exi
is a row vector containing one entry as 1 and zeros

elsewhere, and it denotes the mapping from X̃ to xi since
xi ∈ X̃ . Moreover, following the proof of Lemma 4, Ki is the
external-to-internal mapping of a subnetwork, where D ∪ {xi}
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are external signals, and all in-coming edges of D are removed.
AsD ∪ {xi} intersects with all the paths fromwi toN∗

i in G, the
subnetwork does not contain any loop around wi. This indicates
that Ki has a special structure as

Ki =
[
H̄ K̄i

]
where the H̄ is the known module from xi to wi in the subnet-
work, and note that H̄ = 1 if xi is a signal in r. Combining the
above equations, (29), (26), and (27) leads to

[
−GjiH̄ (−GjiK̄i −GjN−

j \{wi}K1)K
†
2

] [ exi

TC̄X̃

]
= P

(30)

where

[
exi

TC̄X̃

]
denotes the mapping from X̃ to C̄ ∪ {xi}. Fol-

lowing a similar reasoning as in the proof of Lemma 4, it can
be obtained from the two graphical conditions that generically
GjiH̄ and consequently Gji are obtained uniquely since H̄ is
known. The proof for the case where wj ∈ D can be shown
analogously.

Proof of Theorem 5

First, it holds that wi ∈ D since C̄ contains wi, and let N
denote the out-neighbors of wi that are not in N+

i . Considering
the column of C = TCW(I −G) corresponding to wi and since
D is a (N+

i \ {wj}) ∪ {wi} − C̄ disconnecting set, we have

[
TC̄j TC̄DK̄1

]⎡⎢⎣
−Gji[

−GN+
i \{wj}i
1

]⎤⎥⎦ = P (31)

where TC̄DK̄1 = TC̄(N+
i \{wj})∪{wi} for some K̄1 based on

Lemma 5; and P = CC̄i + TC̄NGN i where P is known and CC̄i
is now nonzero becausewi ∈ C̄. Note thatTC̄j is given byCTWX
due to the existence of xj . In addition, it holds that for some K̄2

TC̄D = TC̄X̄ K̄
†
2 (32)

based on Lemma 5. Combining the above equation and (31), and
following the analysis of Theorem 2 analogously conclude that
unique Gji is guaranteed generically.
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