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Abstract

Image registration is a fundamental requirement for many medical applications. In recent years,
deep learning approaches for registration have shown to be a promising alternative to conven-
tional methods. However, most learning based methods do not consider the different physical
properties of various tissues, which can result in unrealistic deformation in anatomical regions
where both deformable tissue and rigid bone is present. In this work, we develop and evaluate
deep learning methods for intrapatient CT-MR registration while maintaining rigidity of the
bones. Unconstrained and locally constrained registration methods are compared in an unsu-
pervised and weakly-supervised setting. The results show that qualitatively and quantitatively
accurate registrations can be obtained.
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Introduction

Medical imaging techniques are an important tool to obtain insights in the human body. Over
the past years, the advancement of machine learning and the continuous increase in use and
generation of medical data [46] has inspired numerous developments in image analysis [31].

One such application is the task of synthetic CT generation. For imaging bone in 3D, com-
puted tomography (CT) is the reference modality because of its fast acquisition speed, high
resolution and relatively low cost. The main disadvantage of CT is the ionizing radiation dose,
which is especially of concern in children [36]. Another disadvantage of CT is the poor soft tissue
contrast. Magnetic resonance imaging (MRI) has excellent soft tissue contrast without ionizing
radiation deposition, but is limited in imaging cortical bone with discernable contrast due to
low proton density [6]. With synthetic MR-derived CT-like imaging, an MR-only workflow can
be obtained to simultaneously assess soft tissue as well as bone structure without radiation ex-
posure [14, 19, 54]. This can potentially simplify the workflow and reduce costs for diagnosis
and pre-operative planning of musculoskeletal conditions where typically both CT and MR are
required. One overarching requirement for many medical applications, and in particular machine
learning approaches for synthetic CT due to the dependency on voxel-wise corresponding image
pairs [13], is the need for image registration.

Image registration is the task of spatially aligning two or more images. This done by transforming
a moving image to align with a non-moving fized image. Such a transformation can be of different
complexity depending on the intended application; a distinction can be made between rigid
or affine registration, and deformable (also known as non-rigid or elastic) registration. Rigid
transformations have up to 6 degrees of freedom, modelling translation and rotation. Affine
transformations can have up to 12 degrees of freedom, additionally being able to capture scaling
and shearing motion. Deformable transformations use a high degree of freedom to accurately
model local deformations. Conventional iterative registration has been studied extensively and is
commonly used for medical image analysis [23, 52]. Because registration is an ill-posed problem
[12], and can have multiple desired properties and objectives, it remains challenging and an
active research area [52]. Recently deep learning has been used to solve registration problems.
Deep learning based image registration usually employs convolutional neural networks (CNN)
to predict transformation parameters. It has been shown to be able to predict registration
faster than conventional approaches, often near real-time [15, 20]. Conventional iterative image
registration can take a few minutes for a low degree of freedom and resolution up to multiple hours
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for a high degree of freedom/resolution. Deep learning based approaches can also potentially
provide more accurate registration. However, most learning based methods that have been
proposed in recent years have been focussed on performing registration with the same imaging
modality and do not take into account the physical constraints of deformation with respect to
different tissue types.

1.1 Research aim

This study investigates multi-modal registration. In particular, we consider registration of MRI
and CT for musculoskeletal imaging which is challenged by the composition of rigid bony anatomy
and deformable soft tissues leading to complex spatial transformations between images of the
same patient in different poses. The aim of this project is to develop and evaluate deep learning
methods for multi-modal registration of intrapatient CT-MR images while maintaining rigidity
of the bones.

1.2 Outline

The remaining sections in this work are organized as follows. In chapter 2 the necessary back-
ground and related work on image registration and deep learning is provided, followed by the
proposed method in chapter 3. In chapter 4 the experiments and results will be detailed, followed
by the discussion and conclusion in chapter 5.



Background

2.1 Medical imaging

Before 1895, physicians did not have any method to investigate and view the internal anatomy
of a patient without invasive techniques [4, 39]. With the invention of of Réntgen imaging [40],
physicians obtained the possibility to inspect the internals of the body with a minimally invasive
technique.

2.1.1 Computed tomography (CT)

In computed tomography imaging, multiple X-ray slices are generated through rotating an X-ray
tube and detector around a patient to obtain projections of the attenuated signals from different
angles [4]. The attenuation is based on the electron density of the imaged tissue. A 3D image is
reconstructed using a reconstruction algorithm such as filtered backprojection. Image intensities
are measured in Hounsfield units, which expresses the attenuation coefficients in relation to the
known attenuation in water and air.

2.1.2 Magnetic resonance imaging (MRI)

MRI is a non-invasive imaging modality that generates tissue contrast based on magnetic prop-
erties of protons (or other nuclei) by using strong magnetic fields. Protons have a magnetic
dipole moment, which results in precession around the Larmor frequency under influence of an
external static magnetic field [4]. Radio frequency pulses can be utilised to temporarily excite
protons, after which the protons realign or relax to an equilibrium. The temporal changes in net
magnetism can be measured by receiver coils, which can then be translated into image intensities.
As opposed to CT, MRI does not have a calibrated intensity scale. The resulting intensities are
dependent on the choice of a specific protocol or sequence and can be based on e.g. variations
in longitudinal or transversal relaxation time or proton density.
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2.2 Image registration

Image registration is the task of spatially aligning two or more images. Image registration can
be used with any set of images that have some degree of structural similarity. Images can
be acquired at different points in time, with different subjects and/or with different imaging
modalities. We will consider pairwise registration of two images, where in general the goal is to
estimate a vector field u in order to transform a moving image I,, to align with a fixed image
I using a plausible transformation mapping T(x) = x + u, such that (I, o T)(x) = I;(x +u)
and I (x) are aligned by having high similarity according to an objective function. Registration
is thus typically formulated as an optimisation problem in some form of:

argmin S(Ip, I;;,u) + vR(u) (2.1)

where S is a measure of the (dis)similarity between the images and R is a regularisation term
with weight v > 0 that addresses the ill-posed nature of the problem [12; 48] by enforcing smooth
and plausible deformations.

A wide variety of registration methods has been developed [27, 34, 35], where the most suitable
method and related parameters is dependent on the specific problem at interest. Main differences
in registration methods can be found in three key components; the objective function consisting
of the (dis)similarity metric and possibly a regularisation term, the transformation model and in
the optimisation algorithm [3, 48].

Similarity measures are based on image intensity or specific features such as landmark points,
segmentations or edges of the image. Examples include e.g. sum of squared distances (SSD),
mean squared error (MSE), (local) cross-correlation (LCC/CC), mutual information (MI) [33, 53]
and normalised gradient fields (NGF) [18].

The transformation model limits the solution space by determining the allowed degrees of free-
dom (DOF), and can distinguished to be non-parametric or parametric. Non-parametric methods
estimate a vector for each pixel or voxel. Parametric methods include the aforementioned rigid
(up to 6 DOF) or affine (up to 12 DOF), and non-rigid transformations. For non-rigid registra-
tion, instead of directly estimating a vector for each image element, the vector field can also be
inferred through interpolation by parametrisation based on control points and basis functions
(e.g. B-Splines) which provides some implicit regularisation. Non-parametric methods or a large
number of control points result in high dimensional solution spaces which require explicit regu-
larisation to solve [48]. Most regularisation terms are based on the first or second order spatial
derivatives of the vector field. Ideally, appropriate regularisation and choice of transformation
model results in a diffeomorphic transformation, i.e. a bijective and invertible mapping, but for
most methods this is not guaranteed.

Conventional registration methods iteratively optimise equation 2.1 for each image pair, which
can result in slow registration for high dimensional solution spaces. Typical optimisation algo-
rithms include first order derivative based methods such as (stochastic) gradient descent or second
order methods such as Newton-Raphson or BFGS. Further details can be found in [3, 34, 48].
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2.3 Deep learning

Many of the complex tasks in machine learning which have been successfully accomplished to a
certain extent in recent years make use of deep neural networks. Inspired by biological neural
networks, artificial neural networks consist of many interconnected neurons. In deep learning
parameters of neurons are trained on data to fit or ”learn” a certain function. Neurons are
usually connected in parallel to form layers. Multiple layers are stacked sequentially to form
networks, and with enough layers and parameters these networks are then considered to be deep
neural networks [29, 41].

Computation in neural networks usually consists of two operations, a forward pass and a back-
ward pass (backpropagation). In the forward pass, for a single neuron j first multiple inputs are
summed together to obtain a linear combination of n inputs a; weighted by 6;; and optionally
thresholded by bias b;. Next, a non-linear activation function o is applied to obtain the output
y;. For a neuron in layer [ the output is thus

w0 (bé- +> %aé‘l) 22)
i=0

The output is then used in the next layers, where the same principle is applied. The weights 6, ;
and bias b; are the trainable parameters @ of the network. Considering an initial input x, the
mapping to the output y of a network can be expressed by y = fg (x).

The error of the predicted output is calculated by a loss function on the training samples. To
update the weights in the backward pass, the loss is then propagated trough the network by
backpropagation, which essentially calculates the gradient of a loss function with respect to the
individual weights using the chain rule.

2.3.1 Convolutional neural nets (CNN)

Most tasks in computer vision are solved by making use of convolutional neural networks (CNN).
As opposed to using connections between all neurons, which can quickly become intractable
for common input dimensions, in CNN’s weights are encoded in learnable convolutional ker-
nels/filters. This provides some form of spatial invariance and reduces the number of trainable
parameters in a network. Depending on the dimensionality and structure of the input data, con-
volutional layers can use one, two or three dimensional kernels. The kernel is moved by taking
a step, or stride, on the input grid where the output is calculated by taking the product of the
kernel weights and the input at that specific position to output a feature map. In successive lay-
ers, the resolution of the intermediate feature maps is usually reduced, increasing the receptive
field. This can be achieved by using a kernel with stride > 1 or through non-parametric pooling
operations, by taking the maximum or average of a small patch.

Figure 2.1: Illustration of 2D convolutional operation [9]
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2.4 Learning based image registration

Various deep learning based image registration methods have been proposed, each with distinc-
tive properties, advantages and disadvantages, of which a limited overview will be discussed here.
Differences in pipelines exist with respect to e.g. learning method ((weakly-) supervised, unsu-
pervised), network architecture and spatial dimensionality (2D, 2D/3D, 3D) [15, 20]. For most
methods, the general concept is to learn the parameters 8 of a network to learn a transformation
function

follnr, Ip) = (2.3)

which can then be used to directly (in a single forward pass) or indirectly estimate the de-
formation vector field u, instead of iteratively optimising a cost function with respect to (a
parametrized version of) u for each image pair. Training a network is performed by optimising,
depending on the type of supervision, similar objective functions as used in conventional image
registration.

The specific nuances of different supervision methods in learning based registration needs
some elaboration. When considering non-parametric deformable registration, since the output of
a network is a vector field u, supervised methods in a strict sense use the error between predicted
and associated target vector fields as the loss function. These can be acquired by artificially
generating representative synthetic sample deformations, i.e. by using a single image to obtain
a corresponding artificial image to be registered to. This removes the need for an image simi-
larity metric. However, depending on the assumptions on the degree of realism that is required,
this is difficult - especially in the multi-modal case it might be infeasible to generate realistic
anatomically correct deformations that are good representations of the complex transformations
stemming from acquisition with different scanners, timepoints, field of view and pose.

Alternatively the output vector field of traditional image registration frameworks can be used.
In practice, images can also be used instead of vector fields to provide some form of supervision by
utilising an intensity based loss between the transformed moving image and a ground-truth regis-
tered image. In both approaches, the performance of learning based registration is limited by the
quality of the ground-truth vector fields or aligned images. Note that manual expert-knowledge
based generation of ”ground-truth” deformations can be done for rigid transformations, but in
practice is impossible for deformable registration (i.e. estimating vector fields by hand). Also
note that by employing vector fields or images from traditional image registration methods as
supervision there remains a dependency on image similarity metrics, as these are still used in
the complete pipeline.

For mono-modal registration, randomly generated simulated ground truth vector field super-
vision was used in e.g. Sokooti et al. [47], Eppenhof et al. [11] and Uzunova et al. [51]. In
multi-modal registration, Cao et al. [5] used an image based supervised approach for deformable
CT-MR registration, by first performing registration using traditional frameworks based on im-
age and label similarity. This dataset was then used to train a network by calculating the
intramodal loss over both modalities, i.e. combining warped CT to pre-aligned CT and warped
MR to pre-aligned MR losses.

Unsupervised methods only rely on the input moving and fixed image, without the need of a
ground-truth, by making use of an image similarity metric as the loss and warping the moving
images using interpolation methods introduced in spatial transformer networks [26]. Unsuper-
vised registration has been applied in several works [2, 7, 28, 30]. Due to implicit regularisation
of optimisation across a dataset, these methods can potentially avoid local minima which can
sometimes be an issue in registration methods [8]. However, especially for use in multi-modal
registration, the same challenges with image similarity metrics as in traditional methods remain.
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Weak-supervision allows to introduce additional structural information (e.g. landmark points,
segmentations) during training, while not relying on these labels during inference. This makes
the task more similar to other tasks in computer vision which are usually solved with label
supervision (e.g. classification, segmentation), although it should be noted that the goal is not
to predict the labels as output. Labels can be acquired (semi)automatically or manually and are
independent of modality. Although acquisition of labels can be a difficult and/or labour intensive
task, it might be less challenging than generating representative synthetic deformations for full
supervision. Labels in the form of landmark points or segmentations are usually only available
for a certain region of interest, and not for the full image. Furthermore, for a segmentation
based loss, the change in overlap drives the optimisation, thus for binary segmentation masks
the voxels that contribute most to the loss difference are likely to be concentrated at the edge of
a segmentation mask. Hence, the notion of weak supervision in this case refers to the sparsity
of training data on a voxel-wise level, and not necessarily to the quality which is determined by
the accuracy of the segmentations. In other domains of computer vision weak supervision can
have a different meaning. Hu et al. [24] first proposed a method to perform MR-US registration
of the prostate using only segmentation labels as supervision. Balakrishnan et al. [2] extended
their unsupervised approach to include a segmentation based loss, achieving improved accuracy
in mono-modal brain MR registration.






Methodology

3.1 Data

The dataset consists of CT and MR images of the same patient. MR images were acquired at
3T with a 3D gradient echo sequence (TE/TR = 2/7 ms) with a resolution of 0.6x0.6x0.8mm.
CT images were acquired with a resolution of 0.64x0.64x0.7mm and have a varying field of view.
Segmentations of the vertebrae were obtained by using an automatic segmentation network fol-
lowed by additional manual inspection and correction. An example slice of the dataset including
segmentations can be seen in figure 3.1. Images were selected to all have correct segmentations
of the L5, L4 and L3 vertebrea within the field of view, resulting in 49 image pairs.

-
(a) CT (b) MR

Figure 3.1: Example sagittal slice of CT and MR images. Segmentations are shown
of the L5 (blue), L4 (orange) and L3 (red) vertebrae.
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Figure 3.2: Overview of registration pipeline.

3.2 Preprocessing

The images in the dataset have different spatial resolutions, dimensions, intensity scales and can
have large initial misalignment, requiring preprocessing for use in neural networks. Both CT and
MR are resampled to isotropic 1.0 x 1.0 x 1.0 mm? spatial resolution using Lanczos interpolation
for images and nearest neighbour interpolation for segmentations. Images and segmentations are
cropped to 320 x 320 x 96 voxels. Image intensities are linearly rescaled by mapping the 1st and
99th percentile to [0, 1]. The resulting intensity distribution can be seen in figure 3.3.

3.2.1 Rigid registration

The complete registration pipeline in this work involves two different steps. As a preprocessing
step, images and segmentations are first rigidly registered to provide initial alignment. The rigidly
aligned images are then used as an input to the network which applies non-rigid registration. An
overview can be seen in figure 3.2.

A rigid transform can be described by

x t,
T(a,y.2) =R |y| + |1, (3.1)
z t
where the matrix R is composed of rotations
1 0 0 cos¢, 0 sing, cos¢s —sings 0
Ra:(¢1) = |0 cos ¢1 —sin d)l ) Ry(¢2) = 0 1 0 ) Rz(¢3> = | sin ¢3 COS ¢3 0
0 sing, cos¢; —sing, 0 cosg, 0 0 1
(3.2)

Rigid registration is performed using Elastix[27] by optimising the error between the L5 segmen-
tation labels.
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Figure 3.3: Intensity distribution (KDE) of normalized CT and MR images where

each line represents a different image.
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3.3 Non-rigid registration
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Figure 3.4: Overview of learning based non-rigid image registration method.

An overview of the proposed registration method, which builds upon [16], can be seen in figure
3.4. The moving and fixed images I, and I, are used as an input to a convolutional neural
network which outputs the vector field. The vector field is used to warp moving image I, and
(optionally) corresponding segmentation S,,. Since image intensities are defined on a discrete
grid, interpolation is required to warp the images and segmentations to obtain the new intensity
values. Trilinear interpolation is used during training and inference, although to obtain output
images with the best quality, different interpolation methods could be used during inference
such as tricubic or B-Spline interpolation while keeping the computational efficiency of trilinear
interpolation during training. After obtaining the registered image and segmentation, the loss
function is calculated and used to update the weights of the network during training. The loss
function is based on similarity and regularisation terms, consisting of image similarity £;, label
similarity £g, global regularisation £ and local regularisation £pp:

L, Iy, Spy Sppyu) = — M Li(Ip, Iy o T) + 7 Lr(a) — A Lg(Sp, Sy oT) +72Lpp(Sy, T)

image segmentation

(3.3)

3.4 Loss functions

3.4.1 Regularisation

In order to enforce smoothness of the transformation, a first order regularisation loss is used
Lg = ||Vul.

3.4.2 Label similarity

To include information on the of similarity segmentation labels, the Dice loss is used
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215, NS
g = S/| M 5 F| (3.4)
[Shul +1Sp| + €

where S}, is the warped trilinear interpolated moving segmentation label and € is a small term
for numerical stability (1077).

3.4.3 Image similarity

For quantifying image similarity, mutual information is used as the loss function [16, 17]. Mutual
information is a measure of the mutual dependence between two or more (stochastic) variables,
which are the intensity distributions in the respective images in the context of image registra-
tion [37]. The use of intensity distributions instead of using a direct (linear) relation between
intensities makes for a relatively general applicable similarity metric and thus suitable for multi-
modal registration, where as aforementioned there often is no evident linear relationship between
intensities. Mutual information can be defined as

MI(Ip,Iy) = H(Ip)+ H(Iy) — H(Ip, Iy) (3.5)
where H(I) is the Shannon entropy [45] for an image with intensity distribution p(i) defined as
H(I) == p(i)logp(i) (3.6)
icl
and H(Ip,I),) is the joint entropy of the images with joint intensity distribution p(iy,1,,)
ipelp i, ely

which results in

MI(Ip,Iy)= > Y pligi,)log {p(zfz’”)} (3.8)

The estimate of the intensity distribution in images is usually achieved by calculating the (joint)
histogram, i.e. discretizing into a number of bins. To improve optimisation characteristics
histograms are further approximated as a continuous function by using kernel density estimation
(also known as Parzen-Rosenblatt windowing). For samples z, ..., z,, with distribution p(z) the
estimated probability then becomes

By = 23 Kia ) (59)

where the kernel K can be any non-negative function such that [ K(x)dx = 1, commonly chosen
as the Gaussian kernel defined as
1 (@—x)2

K(zr—ux;) = a\/ﬂei 207 (3.10)

where o denotes the bandwidth.
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3.4.4 Local regularisation: rigidity penalty

In order to improve local rigidity of transformations, we implement a loss function to penalize lo-
cal non-rigid transformations based on methods in conventional image registration [32, 43, 44, 49].
The idea is to add an additional regularisation term, which does not act on the global image
domain but only locally, to impose constraints in areas with tissue that is known to be rigid
and therefore should not be able to deform non-rigidly. This requires prior knowledge of tissue
properties. For conventional image registration, this prior knowledge would have to be available
for each image, while using a learning based approach allows to implicitly incorporate this prior
knowledge into a trained network thus not requiring explicit knowledge of tissue properties dur-
ing inference.

We follow the approach in [49] to measure departure from multiple conditions that must hold
for a vector field to represent a rigid transformation. For a transformation to be rigid, it must
hold that the transformation is affine, the Jacobian matrix is orthonormal and orientation is pre-
served [49]. The segmentation label corresponding to the moving image is used to locally apply
constraints on the spatial derivatives of the vector field. Due to the nature of implementation
with tensor operations in deep learning frameworks requiring compatible dimensions, gradients
are calculated for each location in the vector field, while only the values within the segmentation
label are of interest and used in the subsequent calculations.

Linearity Recall that a rigid transformation can be written as an affine function T(x) = Rx +
t, i.e. a composition of a linear function and a translation, which implies second order spatial
derivatives should be zero. Non-linearity can be measured with the bending energy [44].

9T 2T\> [T 9T 92T 92T\
= [l (52) +(58) +(55) +2(32) 2 (52) w2 (%) arares
(3.11)

Orthonormality Since a rigid transformation has an orthonormal Jacobian matrix, deviation
from orthonormality can be measured with

1 T 2
Pon = — /// |9 (T)3(T)" —1|| dadydz (3.12)
Sur Ms,, r
where || - || » denotes the Frobenius norm, I is the identity matrix and J(T) is defined as
ot, Ot, ot

J(T) = |Le O Oy (3.13)

which results in
2 2 2
W i) ( ) + (%) -1 +9 8tx 8ty +% %_Fai at
Pon = g~ a 2 dr ~9r oy ~dy o2 ¥
2 2 2 2
87 N oty 1 +2(% 8tZ+8t atZJr% atz>
ox 0z Jor O oy 0Oy 0z 0z

2
at,\> (ot \:  /at,\> dt, ot, Ot, ot, It, 0t,)\"
+<(8x) +<8y> +(3z>_1> +2<8x°63:+6y08y+8z08z>dxdydz

(3.14)
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Orientation preservation Since a transformation with a orthonormal Jacobian matrix can
include reflections/mirroring which is indicated by a negative determinant, orientation can be
preserved with

Pip= i ///S (detJ(T) — 1)2 dx dydz (3.15)

The resulting rigidity penalty loss is then

Lrp =Ppe+PontPip (3.16)

(a) Sample vector field (5x5x5) with equal vectors (b) Sample vector field (5x5x5) with random vectors,
(translation), Lrp =0 Lpp>0

Figure 3.5: Illustration of rigid and non-rigid vector fields.
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3x3x3 downsampling upsampling —— skip connection
conv+norm+act

Figure 3.6: Schematic overview of UNet architecture.

3.5 Network architecture

The network architecture which is used in this project is based on a 3D UNet, introduced by
Ronneberger et al. [42] for 2D segmentation in small datasets. The UNet architecture follows a
fully convolutional encoder-decoder structure, consisting of a contracting and an expanding path
where convolutions are respectively applied on progressively reduced and consecutively progres-
sively increased resolutions of the intermediate feature representations.

The input consists of a tensor with the concatenated moving and fixed images. In the contracting
path, three repeated blocks consisting of two 3D convolutional layers with stride 1 and a 3x3x3
kernel size are used. Each layer is followed by batch normalisation and ReLU activation. The
output is then propagated to the next block by downsampling through a 2x2x2 max pooling
operation with stride 2. In the first layers, 4 filters are used, which are doubled after each con-
secutive block, up to 32 filters in the bottleneck layers.

In the expanding path the same configuration is used in reverse, where 2x2x2 transposed convo-
lutions with stride 2 are used to upsample features while halving the number of filters after each
block. Additive skip connections [21] between convolutional layers of the same depth are used
to retain some of the detailed feature representations at each resolution level. The last layer is a
single 3x3x3 convolutional layer with stride 1 without activation, outputting a 5D tensor which
describes the 3D vector field u at the same resolution as the input for each image pair in a batch.
Due to memory constraints, a batch size of 1 was used.

Tmplementation was done in Tensorflow [1] and Keras using a modified version of the open-source
DeepReg framework [16]. Preprocessing, validation and visualisation pipelines were implemented
in Python, using Elastix[27], PyTorch/TorchIO [38], OpenCV, and MeVisLab. Training was per-
formed on NVidia RTX3080 and Tesla P100 video cards.
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Experiments and results

4.1 Experiments

We conduct several experiments to assess the performance of the proposed methods with respect
to accuracy and the ability to preserve local rigidity of the transformations. Experiments are
done with four different configurations of the loss functions given in section 3.4; we compare
unconstrained unsupervised and weakly supervised models and the respective variants with local
rigidity constraints.

4.1.1 Experimental set-up

To make an estimate of performance, models were trained using 3-fold cross-validation. The
dataset was randomly split in 3 different train and validation sets, and a separate test set which
was not utilised for parameter tuning, consisting of 31, 9 and 9 image pairs respectively. Results
are reported as an average over folds on the test set. Models were trained using Adam optimisa-
tion with a learning rate of 4-10~4, first-order moment estimate decay 3; = 0.9 and second-order
moment estimate decay 8, = 0.999 for 1000 epochs. Mutual information is calculated using his-
tograms discretized into 24 bins.

4.1.2 Evaluation

The results of the registration method are evaluated both qualitatively and quantitatively. In
the region of interest accuracy is measured quantitatively based on overlap of and volume change
within the segmented structures. For all areas where no structural information is available, re-
sults are evaluated by a qualitative investigation of a subset of images and vector fields.

Dice similarity coefficient (DSC)
The Dice coefficient measures spatial overlap between the binary segmentations, defined by
215" N S|

DSC = ————
|57 + 1S

(4.1)

where | - | is the number of voxels in the segmentation label. The DSC is a scalar between 0 and
1, where a higher value indicates better overlap. This is equivalent to the notion of the F} score
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in other domains.

Mean surface distance (MSD)

The mean surface distance is defined as

1 , ,
MSD = oo (Zd@o,S )+ D dlp ,5)> (4.2)

peS p’es’

where the error between the surface of label S and S’ is given by the absolute surface distance,
calculated for each point p on surface S as

d(p,S") = min|[|p —p’|| (4.3)
p’eS

Hausdorff distance (HD)

The Hausdorff distance is the largest difference between surface distances, defined as

HD = max(d(S,5"),d(5,9)) (4.4)
where d(S,S’) is given by
d(S,S") = maxmin ||p — p’|| (4.5)
peS p’es’

Since the Hausdorfl distance can be sensitive to potential outliers [25, 50] the 99th percentile of
the surface distances is used for evaluation.

Jacobian determinant

To investigate topological properties of the transformation, the Jacobian determinant is cal-
culated for each point in the vector field, given in equation 4.6, where partial derivatives are
approximated using the discrete central finite difference. As mentioned earlier, the Jacobian
determinant measures local volumetric change. A value between 0 and 1 is indicative of com-
pression, a value larger than 1 indicates expansion and a Jacobian < 0 indicates implausible
and thus undesired folding in the registered image. For transformation of rigid structures, there
should be no volumetric change and as such the Jacobian determinant should ideally be 1.

ID(T) = | % % O (4.6)
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4.2 Results

The quantitative results of the experiments are presented in figure 4.2 and table 4.1. To provide
insights in the qualitative registration results, figure 4.3-4.5 show exemplary slices of different
images and segmentations before and after registration, as well as the colormap and the histogram
of the Jacobian determinant, respectively in the full image domain and within the segmented
structures. We describe the results in more detail in the next sections.

4.2.1 Non-rigid registration

Unsupervised
To assess the performance of unsupervised models, a baseline was established by using only
images as an input, i.e. with a loss function with image similarity loss £; and regularization loss
Lp as

L(Ip,Iyu) = =L(Ip, Iy o T) +7,Lp(0) (4.7)

The ratio of the image similarity loss and regularisation provides a balance between smooth
deformation fields and the ability to capture local deformations. To investigate the influence of
the regularisation weight, models were trained with varying values for v;. The percentage of all
locations in the vector field with a Jacobian determinant < 0 was calculated, of which the results
can be seen in figure 4.1.

30

N N
oS o

% voxels with D < 0
=
o

0 1 2 3 4 5 6 7 8 9 10
regularisation weight

Figure 4.1: Percentage of voxels that show folding for different regularisation weights

As can be seen in figure 4.1, regularisation has a large influence on the plausibility of the registra-
tions as measured by the percentage of locations in the vector field that show folding. While low
values for 7, result in folding with completely unrealistic results, high values resulted in plausible
images with reduced registration accuracy. Consequently v; = 2 was chosen, with on average
0.02% folding. Visual inspection shows that for all images the alignment of soft tissue improves
compared to the initial rigid registration. Figure 4.2 shows that the alignment improves for L3,
but a small degradation of registration quality can be observed in the L5 vertebra, which was
considered to be registered nearly optimal in the initial registration. Furthermore, local rigidity
is not preserved. An example can be seen in figure 4.4a, where unrealistic warping of vertebrae
can be observed.
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Weakly supervised

To investigate whether including information from the segmentation labels in the loss can improve
the alignment of the vertebrae, a weakly supervised approach is investigated by adding the Dice
loss £g and using the loss function

LU, Iy, SpySypa) = (A—=1)L1(Ig, Iy o T) = ALg(Sp, Spr o T) + v, Lr(u) (4.8)

with A = 0.5. The registration quality improves for all labels compared to the unsupervised
models, achieving an improvement in Dice score from 0.924 to 0.939. Interestingly, what can be
seen when visually inspecting the vector field in figure 4.3-4.5c is that for all images the Jacobian
determinant at the outer edges of vertebrae deviates from 1, which indicates that local volume
change is present.

4.2.2 Locally rigid registration

Unsupervised

To obtain the goal of having locally rigid transformations a rigidity penalty is added. We first
assess the influence of the rigidity penalty in the case of unsupervised registration, with the
following loss function

LI, Iy, Spy Syrya) = =L (I, Iy o T) + 71 Lp(0) + 7L gp(Syy, T) (4.9)

with v, = 0.2. The results show similar accuracy as measured by the overlap metrics compared
to the unconstrained unsupervised method. The standard deviation of the Jacobian determinant
within the segmented structures decreased from 0.095 to 0.025, achieving better preservation of
rigidity.

Weakly supervised
To investigate the influence of the rigidity penalty in the case of weak supervision, the following
loss function is used

LUp Iy, SpySayn) = (A= 1) LI, Iy o T) + 7 Lr(u) = ALg(Sp, Sy o T) + ’72£RP(SJ<\£7 T))

.10
with v = 0.4. The results show similar accuracy compared to the unconstrained weakly su-
pervised method. The standard deviation of the Jacobian determinant within the segmented
structures decreased from 0.151 to 0.020, achieving better preservation of rigidity. The volume
change at the edge of the vertebrae that could be seen in unconstrained weakly-supervised case
is not present anymore.
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Figure 4.2: Violinplots of the geometrical overlap metrics of the different registra-
tion methods. From top to bottom: Dice similarity coefficient (DSC), mean surface
distance (MSD), Hausdorff distance (HD).
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Figure 4.3: Comparison of different registration methods for a) unsupervised (US), b) unsupervised with
rigidity penalty (US-RP), ¢) weakly-supervised (WS) and d) weakly-supervised with rigidity penalty (WS-
RP). From top to bottom: overlay I + I,,, overlay I, + I, o T, difference |I,; — I,, o T'|, label contours
Sr (green) + S, (red) + Sy, o T (yellow), colormap of the Jacobian determinant, probability histogram

(binwidth = 0.01) of the Jacobian determinant within the segmented structures.
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(a) US (b) US-RP (c) WS (d) WS-RP

Figure 4.4: Comparison of different registration methods for a) unsupervised (US), b) unsupervised with
rigidity penalty (US-RP), ¢) weakly-supervised (WS) and d) weakly-supervised with rigidity penalty (WS-
RP). From top to bottom: overlay I + I,,, overlay I, + I,, o T, difference |I,, — I, o T|, label contours
Sp (green) + S, (red) + S,; o T (yellow), colormap of the Jacobian determinant, probability histogram

(binwidth = 0.01) of the Jacobian determinant within the segmented structures.
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Figure 4.5: Comparison of different registration methods for a) unsupervised (US), b) unsupervised with
rigidity penalty (US-RP), ¢) weakly-supervised (WS) and d) weakly-supervised with rigidity penalty (WS-
RP). From top to bottom: overlay I + I,,, overlay I, + I, o T, difference |I,; — I,, o T'|, label contours
Sr (green) + S, (red) + Sy, o T (yellow), colormap of the Jacobian determinant, probability histogram

(binwidth = 0.01) of the Jacobian determinant within the segmented structures.






Discussion and conclusion

In this study the application of deep learning for multi-modal image registration has been in-
vestigated. We present a UNet based approach that employs global and local similarity and
regularisation losses to perform registration of MR and CT images while maintaining rigidity of
the bones.

The results show that all trained models are able to perform visually accurate registrations.
The unsupervised method resulted in an overall improvement although a slight deterioration of
registration quality in vertebrae with good initial alignment could be observed. This might be
because mutual information is not particularly suited for very precise alignment; rather a global
correspondence of intensity distributions is sought after and spatial context is not explicitly taken
into account. Adding a segmentation based Dice loss improved upon the accuracy of registration
in the region of interest without negatively impacting the overall alignment, in agreement with
previous work which has shown the benefit of combining intensity metrics with segmentation
based losses [2, 20] where the region of interest was soft deformable tissue. However, our results
show that this can introduce local volume change which is undesired for rigid tissue. This is not
entirely unexpected, as the model learns to predict transformations guided by change in Dice
loss which is the result of change in overlap that mainly occurs at the edge of the segmentation
labels. By introducing a loss function that can enforce local rigidity, volume change could be
reduced as measured by a reduction of the standard deviation of the Jacobian of the local vector
field and therefore the rigid characteristics of bone structures are better preserved.

As aforementioned, deep learning methods for registration to a large extent make use of
similar concepts and objectives as conventional methods. The benefit of using a learning based
approach is that registration can be performed within seconds and that prior knowledge is em-
bedded in the model through training. As such, the segmentation masks are not required during
inference. Note that, as a consequence, a completely locally rigid transformation can not be
guaranteed in contrast to conventional methods. Another potential benefit from a learning
based approach could be that the models might learn meaningful representations and can learn
to recognise which structures should be kept rigid. In the present study, in some cases volume
change appeared to be reduced in the models with constraints on rigidity in structures which
were not included in the segmentations, such as the L2 vertebra and the sacrum.
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We acknowledge several limitations of this study and provide various recommendations for fu-
ture work. First of all, in general the evaluation of registration methods is difficult due to the
lack of a clearly defined ground truth. The common approach is to measure overlap of corre-
sponding segmentations, which naturally relies on the quality of the segmentations to make a
proper estimate of accuracy. Evaluation of the experiments could improve by including more seg-
mented regions and by providing quantitative error measurements for the alignment of soft tissue.

Furthermore, while the general findings of the experiments might be expected to hold in dif-
ferent datasets and anatomies, conclusions can only be drawn for the considered dataset and the
generalisation ability of the models has to be investigated further. This is not only dependent
on the features, data quality and specific normalisation of two images, but also on the respective
initial global registration. In the present study, following initial rigid registration, the largest
deformation could be found at the outer edge of the body (e.g. 8-14 mm displacements) while
within the vertebrae relatively small initial misalignment is present (e.g. 0-4 mm displacements).
It would be interesting to investigate the performance with respect to accuracy and the ability
to keep structures rigid in anatomies with larger initial misalignment. Moreover, since medical
imaging datasets are generally small, the effects of pre-training on large scale diverse datasets
with multiple anatomies would be worthwhile to explore.

A main challenge of training networks with high resolution 3D datasets is the high GPU memory
requirement, which scales with network size and resolution. In this work, a relatively small archi-
tecture (~160k parameters) is used with an input of almost 20 million voxels. The performance
could likely improve with networks with a higher capacity, provided that enough training data
is available. To reduce memory requirements, images can be downsampled to a lower resolution.
However this leads to a loss of information, and since our interest is in accurate alignment with
small deformations in the region of interest this is not a suitable approach for the problem (e.g.
consider a misalignment of a few voxels in segmentations which are downsampled using near-
est neighbour interpolation). Preliminary experiments on downsampled images - evaluated at
full resolution through upsampling and upscaling of the vector fields - seemed to confirm this,
achieving visually accurate but quantitatively worse registration accuracy.

Typical medical images might have a resolution in the order of 5123 voxels, which will not fit in
memory of common GPU’s. To maintain a full resolution input, a patch based approach could
also be utilised. Patch-based approaches are unfortunately not trivial to implement for registra-
tion due to the problems associated with boundary conditions, and might be especially difficult
for the considered multi-modal setting with both global intensity and local loss terms based on
segmentations. With full images, the assumption that there is no deformation at the edge of
an image is generally valid, whereas by using patches this would introduce grid-like artefacts.
To resolve this, the images would have to be transformed over the boundaries of a patch which
evidently results in problems. Further complications could arise when adding additional segmen-
tation based losses where sampling strategies would have to be considered to avoid issues. Future
work could try to establish the best methods for highly accurate alignment of high resolution
images and investigate memory and parameter efficient architectures.

Obtaining the best performance in registration problems and deep learning problems in general
requires tuning of many (hyper)parameters, which in this work was mainly performed manually
using a trial-and-error approach. Recent advances in other domains of computer vision such
as segmentation or classification have shown promising automatic approaches for parameter
optimisation and neural architecture search [10, 22]. It might be interesting to explore whether
this can be applied to registration problems as well, although this might be challenging due to
the computational demands, the inherent multi-objective nature and difficulties of evaluating
registration performance.
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5.1 Conclusion

This study presents a learning based method for multi-modal registration while maintaining
rigidity of the bones. The results of the experiments suggest that imposing local constraints in
selected anatomical regions during training can reduce unrealistic deformation of bones while
having similar accuracy compared to unconstrained model variants. Furthermore, the results
show that using a similarity loss based on corresponding segmentations can improve accuracy, but
this can lead to additional volume change at the edge of segmented regions when no constraints
are applied. Based on the experimental results, the best performance could be achieved with
the locally constrained weakly-supervised approach, obtaining accurate alignment while keeping
bony anatomy nearly rigid. Overall, this study demonstrates the feasibility of deep learning
based registration for anatomical regions where both rigid and soft tissue is present, thereby
enabling fast and accurate registration without requiring segmentations during inference of the
selected anatomical regions that should be kept rigid.
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