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Serious fluctuations caused by disturbances may lead to instability of power systems. With the disturbance
modeled by a Brownian motion process, the fluctuations are often described by the asymptotic variance at
the invariant probability distribution of an associated Gaussian stochastic process. Here, we derive the explicit
formula of the variance matrix for the system with a uniform damping-inertia ratio at all the nodes, which
enables us to analyze the influences of the system parameters on the fluctuations and investigate the fluctuation
propagation in the network. With application to systems with complete graphs and star graphs, it is found that
the variance of the frequency at the disturbed node is significantly bigger than those at all the other nodes.
It is also shown that adding new nodes may prevent the propagation of fluctuations from the disturbed node
to all the others. Finally, it is proven theoretically that larger line capacities accelerate the propagation of the
frequency fluctuation and larger inertia of synchronous machines help suppress the fluctuations of the phase
differences, however, these acceleration and suppression are quite limited.

1. Introduction Here, we focus on the relation of synchronous stability with the
variance of the disturbances. The relation depends on the power system
parameters in particular upon: the damping and the inertia coefficients

of the synchronous machines, the susceptance in the transmission

A power system consists of synchronous machines, transmission
lines and power supply and demand. The electricity system needs

the frequency to be synchronized in order to operate properly. All
synchronous machines, such as steam or gas turbine rotor-generators,
need to operate with frequencies equal to or very close to the nominal
frequency, typically 50 Hz or 60 Hz [1]. Here, the frequency is the
rotating phase’s derivative, and it equals the synchronous machine’s
rotational speed, measured in rad/s. Synchronization stability, also
known as transient stability in the field of power systems research,
refers to the ability to maintain synchronization subjected to distur-
bances. The electrical system is experiencing an unprecedented threat
of losing synchronization as a result of the expansion of the integration
of renewable energy sources, which are inherently more vulnerable to
unpredictable disturbances.

lines, the power supply and demands and the network topology and
so on. Based on the analysis of the existence condition [2-4], the
small signal stability [5] and the basin attraction of the synchronous
state [6-8], the synchronization stability may be improved by changing
these parameters, such as changing the inertia of the synchronous
machines [9], controlling the power flows in the network [10], adding
or deleting transmission lines [11]. This analysis focuses on the syn-
chronous state, in which the disturbances have not yet been explicitly
considered in the mathematical model. However, in practice, due to
continuously occurring disturbances, the state always fluctuates around
a synchronous state. If the state experiences large variations and cannot
recover and return to the basin attraction of the synchronous state, then
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the system will lose the synchronization. Thus, the severity of the state
fluctuations caused by disturbances directly determines the ability to
maintain synchronization.

To suppress the fluctuations, the key is to define such a metric that
can reflect the impacts of the system parameters on the propagation
of the fluctuations in the system. The H, norm defined for an input-
output system, which treats the disturbances as inputs and the phase
differences and the frequency deviation as outputs, has been used to
measure the severity of the fluctuations [9,12-18]. Although it is hard
to derive the analytic formula of the H, norm due to the heterogene-
ity of the system parameters, significant insights on suppressing the
fluctuations have been obtained from the formulas of the H, norm
under homogeneous assumptions on the system parameters, e.g., [14-
19]. By minimizing this norm, parts of the system parameters such as
the inertia and primary control gain can be assigned to suppress the
fluctuations in the frequency and the phase difference [9]. In particular,
this norm is also used to study the transient performance of the system
with the disturbance modeled by colored noise [19]. To avoid the
assumption of the uniform damping-inertia ratio, which allows the
deduction of the analytic formula of the H, norm, a matrix pertur-
bation approach is proposed for the optimal placement of inertia and
primary control [20]. With a more realistic metric of Rate of Change of
Frequency (RoCoF), the propagation of the fluctuation in the network
and the impact of the placement of the inertia on the propagation are
investigated in [21]. In physics, the propagation of the fluctuations is
also widely investigated [22-26] with various metrics. For example,
the variance of these fluctuations can be calculated statistically via
simulations with the disturbances modeled by either Gaussian or non-
Gaussian noises [22]. By the perturbation method, the arrival time of a
disturbance at a node are estimated in [24] in order to investigate the
propagation of the disturbance in the network. A new metric is defined
in [27] to find susceptible nodes and lines in the network. With the
amplitude of the response at the nodes as a metric, emergent complex
response pattens across the network are investigated in [26]. From
these studies, important insights on the role of the system parameters,
such as the inertia and damping of the synchronous machines, the
network topology, on the propagation of the disturbances are obtained,
which are helpful on tuning the system parameter for real networks.

With the disturbance modeled by a Brownian motion process in
the linearized system of the nonlinear power system, the asymptotic
variance matrix in the invariant probability distribution of the cor-
responding stochastic process is used to characterize the fluctuations
in the phase difference in each line and the frequency at each node
[28,29]. Its analytic formula clearly reveals the relationship between
the system parameters and the fluctuations, and the correlation be-
tween the phase differences and the frequencies. It also describes how
a disturbance propagates in the network. In contrast, the H, norm,
which is a scalar and equals to the trace of the variance matrix, cannot
provide such detailed information. Based on this variance matrix and
the synchronous state, a quantitative optimization framework has been
proposed in [30]. This variance matrix can be computed from a Lya-
punov equations [28,31], which has a very high computing complexity.
With this formula, the fluctuations can be effectively suppressed by
optimally configuring the system parameters. Due to the heterogeneity
of the system parameters and the non-linearity of the system, this
explicit formula still has not been derived, which is also a hard problem.

With the assumption of uniform disturbance-damping ratio among
the nodes, in which the ratio of the strength of the disturbances and
the damping coefficients are all identical at the nodes, formulas of the
variance matrix have been deduced in [28]. The relationship between
system parameters and fluctuations are partly explored by these for-
mulas. By means of these formulas, the dependence of the fluctuations
on the system parameters are partly explored. However, because of the
assumption, how the disturbances supplied to nodes propagate through
the power network and hence affect the phase differences and the
frequencies of all nodes cannot be revealed. In this paper, we deduce
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the formula for the variance matrix under an assumption of uniform
damping-inertia ratios at the nodes. This formula enables us to explore
the propagation of the fluctuations throughout the network.

The contributions of this paper to the stability analysis of power
systems include:

(i) under the assumption of the uniform damping-to-inertia ratio
at all the nodes, we derive analytic expressions of the variance
matrices of the phase differences in lines and the frequency at
nodes;

(ii) based on the formulas, we analyze the propagation of the dis-
turbances, and investigate the reliance of the propagation on the
various system parameters, including the damping and inertia of
the synchronous machines, the capacity of lines and the size of
networks in special graphs, i.e., complete graphs and star graphs.

This paper is organized as follows. In Section 2, elementary prelim-
inaries on graph theory and the invariant probability distribution of
Gaussian process are provided. The problem formulation and the main
results of this paper are presented in Sections 3 and 4 respectively.
Section 5 provides proofs of the results and Section 6 concludes with
remarks.

2. Preliminaries

The elementary notation, properties of graphs and the concept of
the asymptotic variance of a stochastic Gaussian system are introduced
in this section.

2.1. Notations

The set of the real numbers and the set of the strictly positive real
numbers are denoted by R and R, respectively. The vector space of
n-tuples of the real numbers is denoted by R” for an integer n. For
the integers n, m the set of n by m matrices with entries of the real
numbers, is denoted by R"". Denote the identity matrix of size n by n
by I, € R™", the zero vector by 0,, the vector with all elements equal
to one by 1,, which may also be denoted by I, 0 and 1 respectively if
the size is clear from the context.

Denote subsets of matrices according to: for an integer n, R;’;;
denotes the subset of symmetric positive semi-definite matrices of
which an element is denoted by 0 < Q = QT; szrg the subset of
orthogonal matrices which by definition satisfy U UT = I, = UT U.
Call a square matrix A € R™" Hurwitz if all eigenvalues have a real
part which is strictly negative, in terms of notation, for any eigenvalue
AMA) of the matrix A, Re(A(A)) < 0. For a matrix A, denote the element
at the entry (i, ) by a; ;.

2.2. Graphs

Denote an undirected weighted graph by ¢ = (V, £) with a set of n
nodes denoted by V and a set of m edges or lines denoted by £ and line
weight w; ; = w;; € R, if the nodes i and ; are connected and w; ; =0
otherwise. Denote by k = (i, j) € € the edge connecting the nodes i and
j which edge is also denoted by e,. The Laplacian matrix of the graph
with weight w; ; of line (i, j) is defined as L = (/; ;) € R™" with
l _{ _wi,j» lfl;ﬁ_/,

i Yot i Wik A=
The incidence matrix is defined as C = (c;) € R™™ with ¢;;, €R,

1, if node i is the beginning of line ¢,
if node i is the end of line ¢, (€8]
0, otherwise.

Here the direction of line e, is arbitrarily specified in order to define
the incidence matrix. For the elementary properties of the Laplacian
matrix, we refer to [32].
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(a)

Fig. 1. (a) A complete graph with 5 nodes. (b) A star graph with 9 nodes.

The definitions of complete graphs and star graphs are described
below.

Definition 2.1. Consider the graph ¢ = (V, &).

(i) If each pair of nodes is connected by a line, then call this graph
a complete graph.

(i) If the graph is a tree and there is a root node which is directly
connected to all the other nodes, then call this graph a star graph.

For both a complete graph and a star graph, the form of the
incidence matrix depends on the indices of the lines. For convenience
of expression, we define the indices for the nodes and lines as below.

Definition 2.2. Consider the graph G = (V, €).

(i) If G is a complete graph, then the indices of the line (i, j) with
i < j is defined according to the Lexicographic order.

(ii) If G is a star graph, the index of the root node is defined as i = 1
and the indices of the other nodes are defined as i = 2, ...,n. The
indices of the line (1,k + 1) are defined as ¢, for k =2,...,n— 1.

An example of a complete graph and an example of a star graph
with such indices are shown in Fig. 1.

3. Problem formulation

The power network can be described by a graph G(V, £) with node
set V and line set £ C ¥ X V. A node represents a bus and a line (i, j)
represents the transmission line between node i and j. We focus on the
transmission network and assume the lines are lossless. The number of
nodes in ¥ and edges in € are denoted by n and m respectively. The dy-
namics of the power system are described by the equations [6,33,34],

8 = w;, (2a)
n
moo; = P, — djo; — Y K, sin (5, - 6,), (2b)
j=1
where §; and w; represent the phase and the frequency deviation of
the synchronous generator at node i; m; > 0 and d; > 0 describes the
inertia and damping with droop control of the synchronous machine;
P, represents power generation if P, > 0 and denotes power load
otherwise; K;; = Eijl/il/j denotes the effective susceptance with 13,»,/.
being the susceptance of the line (i, j) and V; is the voltage at bus i;
In this definition, the voltage dynamics are not considered, which
is assumed to be constant. This is practical because the voltage can be
controlled in a short time-scale thus can be approximated as constant
in the time-scale of the frequency.
When the graph is complete, and d; = 1 for all the nodes and
K,; = K/n for all (i,j) € €& with K € R,, the system becomes the
second-order Kuramoto Model [35].

Definition 3.1. Define a synchronous state of the power system (2) as
the vector (5*(1), w*(t)) with 8*(r) = 8+ (@11, € R" and 0*(t) = @1, €
R", which is a solution of the equation

n
d@=P+Y K, sin@,—35), fori=1,..,n, 3)
j=1
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and 6 = col(§;) € R” that satisfies 6, — 5, = (57 (1) 57(1))(mod (2m)) for all
(i,j) EE.

By summing all the equations in (3), it yields that at the syn-
chronous state,

xR
2 d;
The existence of a synchronous state can typically be obtained by
increasing the coupling strength K; ; for all the lines to sufficiently high
values [2].
The derivation of the linearized system of (2) is briefly summarized
below with an assumption for the synchronous state.

eR. 4

o=

Assumption 3.2. Consider the system (2), assume that (1) the graph ¢
is connected, hence m > n—1 holds; (2) there exists a synchronous state
(6*(»),0) such that the phase differences |5, — 6;| < /2 for all (i, j) € £.

The linearized system of (2), linearized around the considered syn-
chronous state, is then derived

(2)-( e i )(2)-0(2) o

where 6 = col(§;,) € R", ® = col(w;) € R", D = diag(d;,) € R™",
M = diag(m;) € R™", and L € R™" is the Laplacian matrix of the
graph with the weight w;; = K;;cosé]; for the line (i, ), generated
by (6%,0) with &, =6 -065, )€ R27%2 is also called the Jacobian
matrix of the power system at the synchronous state. Note that the state
variables in (5) characterize the deviations of the phase and frequencies
deviate from the synchronous state (6%, 0). It is proven that if the weight
K; ; cos 6[.*/. keeps positive for all the lines, the system is stable at the
synchronous state (6%, 0) [36,371, which results in the security condition
of the phase angle ability

0={6eR"

I8yl < 5.V(G.)) € £} 6)

Similarly, as in [28,29,32], we model the disturbance by a Brownian
motion model, which serves as the input to a linearized system, and
study the stochastic system

dé(t) = e(r)dt, (7a)
do(r) = —M™! (L8() + De(t))dr + M~ Bdv(r), (7b)
with the state variable, system matrix and input matrix,

[8] . [ o I, T o
x= [w] A= [—M—IL —M—ln]’ B= [M—lﬁ]’

where B = diag(b;) € R™" with b; > 0 being the strength of the
disturbances of node i; v(r) = col(v;(t)) € R" where v;(r) denotes a
Brownian motion that results in Gaussian-distributed disturbance at
each node. The noise components v,, v,, ..., v, are assumed to be
independent. Here, we refer to K;; as the line capacity of line e,
which is also called the coupling strength between nodes, and refer to
w; ; = K; jcos 5 as the weight of e,. It is clear that the weights of the
lines are influenced by the power flows at the synchronous state solved
from (3) and the line capacities. Note that the weight depends on the
line capacity in a non-linear way, i.e., increasing the line capacities of
the lines, the phase differences 5;; may decrease which further increases
the weights of the lines.

Because the locations of the power generations including renewable
energy are usually far from each other, the assumption of the inde-
pendence of the disturbance v;(¢) is reasonable in the model (7). The
probability distribution of the state is Gaussian due to the linearity
of the system (7). To reveal the dependence of the fluctuations on
the system parameters, we focus on the variance matrix of the phase
differences and the frequency in the invariant probability distribution
of the linear stochastic system (7), which can be solved from a Lya-
punov equation. For the invariant probability distribution of a Gaussian
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stochastic process, we refer to [31,38], which are summarized in [28,
Definition A.1]. The output matrix are set to

y= CX, y= |:y5:| , C= [CT 0] e R(m+n)x2n. (8)
[0] 0 In
The vector y; € R” describes the phase differences in the m lines,
and the vector y,, € R" describes the frequencies at the »n nodes. The
matrix C = (¢;x) € R™" denotes the incidence matrix of the graph C.
The variance matrix of the output is denoted by

_[e @,

Qéw Qw
with Q; € R, Q;,, € R™™ Q, € R™",

For comparison with the main result of this paper, we present the
variance of the state in the invariant probability distribution of the
linearized system of the Single-Machine Infinite Bus (SMIB) model,
which is governed by the dynamics,

Qy e R(m+n)><(m+n) , 9

(10a)
(10b)

6= w,
no=P—dwo— Ksiné.

Assume there exists a synchronous state (arcsin (P/K),0), the linear
stochastic system of SMIB model corresponding to the system (7) is

dé(r) = w(t)ds, (11a)

do(t) = -~ (16(1) + do(®))dt + 17! pdv(r), (11b)

where | = Kcosé* = VK2 — P2. The system matrix and input matrix
are

0 1 0
A= _ _ , B=| _, |. (12)
[—n on ld] ['1 ‘ﬂ]

We set the output as y = (§,w)". Because the matrix A with / > 0
is Hurwitz, the variance matrix of the state in the invariant probabil-
ity distribution is solved from the following Lyapunov equation [31,
Theorem 1.53,Lemma 1.5] and [38],

AQ,+Q,AT +BBT =0.
We further obtain the variance matrix Q, of the output
s 0
Q,=Q,=|2VK-p2 | (13)
0 i
2nd

From this formula, it is found that the variance of the phase fluc-
tuations is independent of the generator inertia and the variance of
the frequency is independent on the line capacity. The roles of the
damping played on the suppression of the variance of the phase and the
frequency are the same. Obviously, due to the simplicity of this model,
the fluctuations in the power networks with multi-machines cannot be
fully explored by this model.

The problem of the characterization of the asymptotic variance of
the stochastic linear system (7) is described below.

Problem 3.3. Consider the stochastic linearized power system (7)
with multi-machines. Deduce an analytic expression of the asymptotic
variance of the output process y and display how this variance depends
on the system parameters.

The theorem for the solution of Problem 3.3 makes use of the
properties and the notations in the following lemma.

Lemma 3.4 ([28]). Consider the matrix L and the diagonal matrix M in

system (7). There exists an orthogonal matrix U € szrg such that

UM 2LM~1/20 = A, 14)

with A, = diag(4;) € R™" where 0 = 1| < 1, -+ < A, being the eigenvalues
of the matrix M~'/2LM~'/2, Denote the eigenvectors corresponding to A,
byu fori=1,....n, thenU=[u, u, u,| and u; = c'M/21,
where c is the L, norm of the vector M'/?1,,.

Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 188 (2024) 115511

For the variance matrix in the invariant probability distribution of
the stochastic system (7), we have the following theorem .

Theorem 3.5 ([28]). Consider the stochastic system (7) with Assump-
tion 3.2 and the notations of matrices in Lemma 3.4. Define matrices

0 I
A = n e RanZn,B — = R2nxrl’
¢ |-4, -UTM"'DU ¢ U™ 2B

1 (15)

Ce — C'M2U 0] c R(m+n)><2n’
0 M :2U
which can be decomposed according to
[0 Ap _{o _

A=, AQ], B, = [Bz]’ C.=[0 q, (16)

where A, € RX2=D gnd A, € R@-Dx@n-1) B, ¢ R@=X21 gqnd C, is

obtained by deleting the first column of the output matrix C, so that
CTM-1/20)

c, = [C M~'/2U0 0

0 M—I/ZU c R(m+n)><(2nfl)’ (17)

with U = [u, uy u,| € R™@=D, The variance matrix Q, of the
output y of the stochastic system (7) satisfies

Q, =(,Q,C7, 18)

where Q, € RZ"~Dx-1) s the unique solution of the following Lyapunov
equation

A,Q, + QAT +B,B] =0. (19)

By assuming b7/d; = b7/d; for i,j € V, the explicit formula the
Q have been deduced in [28], from which the impact of the network
topology is explored. However, the fluctuation propagation cannot be
fully illustrated with this assumption.

To emphasize the effect of the inertia in the system (7), we also
study the fluctuations in the stochastic process

ds(r) = —-D~'La(H)dt + D~'Bdv(r),
y(1) = CT8(n),

(20a)
(20b)

which is the linearization of the non-uniform Kuramoto model [32,39].
This system can also be obtained by setting m; = 0 in the system (7) at
all the nodes. Denote the matrix U € R™" such that

—T — =
U D '2LD"'/?U =4, (21

where 4, = (4,) € R™" ‘with 7, being the eigenvalue of the matrix
D~!/2LD~!/2, The matrix U is further decomposed into the form U =

T, ﬁzl.
For the model (20), the variance matrix of the phase angle differ-
ence is presented in the following theorem [32].

Theorem 3.6. Consider the stochastic system (20) with a connected graph
G. The asymptotic variance of the output process 'y can be computed by

—_ — —T ~
Q; = C'p~'/21,Q,U, D7'/2C, (22)

where U, = [, u;
is the unique solution of the Lyapunov equation,

- _ = - —1)x(n—1
un] € R~ and Qx = (qxi,j) € Rﬁ;d el

. — —_ —_T ~~ —

0= _An—le - QxAn—l + U2 D_I/ZBBTD_I/ZUZﬁ (23)
with 4, = diag(,. As. ... 4,) € Ry V. In addition, the matrix
Q, is solved from the Lyapunov equation such that for i, j=1, -, n—1,
@y, = (g +7;,1)"'u),,D"'/?BBTD 2, 24)
and in particular, fori=1, -, n—1,

— 1=l T 1 2RRTH—1/2=

9x;; = 5’1[+1“f+1D '2BBTD™ 0, (25)
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4. Main results

In this section, we present the main results of this paper. The reader
may find the proofs of the results in Section 5. We focus on multi-
machine systems (7). Based on the following assumption, we deduce
the explicit formula of the variance matrix Q,.

Assumption 4.1. Consider the stochastic Gaussian system (7), assume
the damping-inertia ratios d;/m; are uniform at all the nodes, i.e., for
allieV, d/m=aeR,.

This assumption allows us to derive explicit formulas of the variance
matrix of the phase difference and the frequency, though in reality the
damping-inertia ratio usually varies from machine to machine [40].
From the explicit formulas, new insights can be found on the propaga-
tion of the disturbances in the network. This assumption is often made
in the calculation of the H, norm to study the transient performance of
the system when subjected to various disturbances [14-18] and in the
investigation on the propagation of the disturbance with the metric of
Rate of Change of Frequency(RoCoF) [21].

Following Theorem 3.5, we derive the following theorem.

Theorem 4.2. Consider the invariant probability distribution of the system

(7). Decompose the matrix Q, defined in Theorem 3.5 into matrices,
G S

Qx = [ST R] B

where G = (g; ;) € R=DX0=D which satisfies G = GT, 8 = (s; ;) € Ri=Dxn

and R = (r; ;) € R™" which satisfies R = R'. The variance matrix Q, with

the form of block matrix in (9) satisfies

(26)

Q; = C™M~'/20G60™™M~1/2C, (27a)
Q, =M"/2URUTM™!/2, (27b)
Q;, = M/2USTOT™™M1/2C. (27¢)

Define
pi =207+ A gy = (A= A)* +2a%(4; + A).
If Assumption 4.1 holds, then Q, can be solved from (27) with explicit

formula of Q, solved from the Lyapunov Eq. (19), where S satisfies for
i=1,2,...,n—1,
5= p;lluLlM_l/zﬁzM_l/zul, (28)

fori,j=2,3,...,n,

A VST SV ST . (29)
Xij

G satisfies for i,j =2,3,...,n,

Si—1,j =

2 12—

8io1jo1 = —u M'/2B2M 2y, (30)
Xij

R satisfies

= iuITM-l/ZPM-I/ZuI, 3D

fori,j=1,2,...,n, with (i,j) # (1, 1),
a(; + 4;)
Xij

ro.=

L u M/2B2M 2y, (32)

Here B2 = BBT because B is a diagonal matrix.

See Section 5 for the proof of this theorem. Following this theo-
rem, the Superposition Principle can be used to describe the impact of
the disturbances. This property demonstrates that the fluctuations in the
system caused by the disturbance at a node can never be balanced by the
disturbances at the other nodes.

To reveal the influences of the system parameters on the fluctua-
tions more explicitly, we further make an assumption.
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Assumption 4.3. Assume that the inertia and the damping of the
synchronous machines are all identical in the system, i.e., M = I, and
D = dI,,, which leads to a = d/#.

Clearly, this assumption is more restrictive than Assumption 4.1,
with which we obtain the following corollary for the trace of the
variance matrix of the frequency (31).

Corollary 4.4. Consider the system (7). If Assumption 4.3 holds, then the
variance matrix of the frequency satisfies

1r(Q,,) = ;Tntr(ﬁz).

The proof follows immediately from tr(R) = ;Tntr(ﬁz) with the fact

that pre- and post-multiplication of the matrix B2 by the orthogonal
matrix U according to UB2UT will not change the trace of this matrix.
If Assumption 4.3 is applied, this formula can also be obtained from
the result of [9, Theorem 3] deduced from the corresponding H, norm.

Following from this corollary, it is found that adding new nodes
without any disturbances will not change the total amount of fluctu-
ations in the network if Assumption 4.3 is satisfied. It is shown that
the trace of the variance matrix of the frequency is independent on
the network topology. However, it will be shown in the next section
that the variance of the frequency at each node depend on the network
topology.

Based on Assumption 4.3 and Theorem 4.2, we investigate the prop-
agation of the disturbance in two types of special graphs, i.e., complete
graphs and star graphs. For simplicity, we further make an assumption
on the weight of the lines as below.

Assumption 4.5. Assume the weights of the lines in the graph are all
identical, i.e., K ; cos 51.*/. =y for (i,j) € €.

This assumption is practical for the power networks with identical
line capacities and small phase differences at the synchronous state.,
ie., 6 =~ 5;.‘ for all (i,j) € £. Together with the analytic formulas of
the eigenvalues of the Laplacian matrices of complete graphs and star
graphs in Appendix A.1, this allows us to derive the explicit formulas
of the variance matrix of the phase differences and the frequencies in
the power networks with complete graphs and star graphs. In these
explicit formulas, the eigenvalues will not emerge explicitly, which
enables us to reveal the impact of the system parameters independent
of the eigenvalues, such as the impacts of the size of network, the line
capacity, the inertia and damping of the synchronous machines on the
fluctuation propagation in the network.

4.1. Complete graphs

For a power systems with a complete graph, it yields the following
proposition from Theorem 4.2 and Eq. (A.1) in Appendix.

Proposition 4.6. Consider the system (7) with a complete graph. If
Assumptions 4.3 and 4.5 hold, then the variance of the frequency at node
i fori=1,2,...,n satisfies

y(tr(B2) - b?)

1 y(in=1) 2
=[— - b’ , 33
o [Zdn dn(2d? + yr]n)] Y odn (2d2 + ynn) 33)
and the variance matrix Q; of the phase difference satisfies
Q; = ——CTBRC. 34

" 2dyn
In particular, for the line e, connecting node i and j, the variance of the
phase difference in this line is

I 2.2
Dok = 2dyn & +bj)’ (35)

and the trace of Qg satisfies

Lr@2). (36)

Q) = ;dyn
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Table 1
The setting of the parameters for plotting Figs. 2 and 3.
Parameters Fig. 2 Fig. 3
(@ (b) © (@ (a) (b) (© @
v 10 10 - 10 10 10 - 10
n 0.5 - 0.02 0.02 0.5 - 0.01 0.1
d - 0.3 1.2 1.5 - 0.1 1.2 0.1
b, 0.04 0.04 0.04 0.05 0.8 0.8 1.5 1
n 20 20 30 - 20 10 50 -
The next corollary of Proposition 4.6 explains the finding on the [COR ®) 05
propagation of the fluctuations from a node to the others in details. 0005 oo
. . 0.02
Corollary 4.7. Consider the system (7) with a complete graph. If Assump- Soors - 003
. . -0l 3
tions 4.3 and 4.5 holds, and b, # 0 and b; = 0 for dll j with j # i, > S 002
0.01
then 0.005 0.01
b? (n— 1)yb?
Yoy = 2,,1',1 T dnd? + ln)’ 37 ra— 1 15 2 TR L5 2
. m ! !
vb; (€) 403 (d)
qa),j = d (2d2 : s for J#i (38) 0.035 —— Analytical solutios 0.0415
I dn (242 + yin
m ) 0.033 o T s 0.041
and the variances of the phase differences satisfy 0035 bois
b? ) 3
; o 1s . ; 0.032 S 004
G, = v if line e, is connected to node i, (39)
’ X else. 0.0315 0.0395

For comparison, the asymptotic matrix of the phase differences in
the model (20) is presented in the following proposition with proof in
Section 5.

Proposition 4.8. Consider the system (20) with a complete graph. Assume
D = dI and Assumption 4.5 holds, then the variances of the phase
differences satisfy

= —CBC, 40
Q 2dyn “0
with
_ 1
5, = m(bﬁ +b), fork=1,....m. (41)

To verify the correctness of these analytical formulas in Corol-
lary 4.7, we use Matlab to compute the variances numerically from (18)
and (19) in the complete graph with b, # 0 and b; =0 for j # 2 and
indices of the nodes and lines defined in Definition 2.2(i). In order to
satisfy Assumption 4.5, we set P, = 0 for all the nodes and K;; = K
for all the lines in the system (2), which leads to 67 — &7 = 0 at the
synchronous state and the line weight y = K cos 6 = K. The setting
of the parameters for plotting these figures are shown in Table 1. It is
shown in Fig. 2 and Fig. 3 that the analytical solution and the numerical
solution of the variances are all identical.

Based on Corollary 4.7 and Proposition 4.8, we get the following
findings on the variance of the frequency and the phase differences in
the stochastic system (20) with the complete graph.

(a) On the variance of the frequency in the complete graph.
As either the inertia # or the damping d of the synchronous machines
increases, the variance of the frequencies at all the nodes decrease.
This statement is well known to experts in the field and will not be
discussed further. There are two terms in the right hand side of (37),
in which the first term is the variance of the fluctuations introduced by
the disturbance at node i and the second term measures the fluctuations
propagated from node i to all the other nodes. Thus, we only need to
analyze the dependence of the variance of the frequency at node i on
the weight of the lines and the network size.

First, we describe the impact of the line weights. On contrary to the
case of SMIB model, the weights of the lines play roles on the variance
of the frequency. The derivative of the variance with respect to y satisfy
04, 2d(1 — n)b? 04, , 2db?

= <0, = >0
d  n(2d? + ynn)? dy n(2d? + ynn)?

— Analytical solution]
o Numercial solution|

0.031 - 0.039
0.5 3

Fig. 2. The dependence of the variance q,,, on the system parameters in the complete
graph with b, # 0 and b; = 0 for j # 2 and indices of the nodes and lines defined in
Definition 2.2(i).

(a) ®) (033

0.04 [— Analytical solution
[— Analytical solution 0 Numercial solution
© Numercial solution|
0.03 0.032
50.02 S
=
0.031
0.01
0 0.03
0.05 05 1 5 P 0.05 0.5 1 L5 2
d n
(¢) 004 (@) 0,025
[— Analytical solution| [— Analytical solution|
0 Numercial solution| 0 Numercial solution|
0.03 0.02
go0 goos
0.01 0.01
0 0.005
0.5 10 20 30 20 40 60 80 100
b n

Fig. 3. The relationship for the variance s, for line (1,2) in the complete graph with
b, #0 and b; = 0 for j # 2 and indices of the nodes and lines defined in Definition 2.2(i).

This indicates that, as the line weights increase, the frequency variance
at the source node of the disturbance decreases while those at the other
nodes increase. Thus, increasing the line capacities, which increases the
line weights, will accelerate the propagation of the fluctuation from the
source node to the other nodes. However, there exists a lower bound
for the variance of the frequency at nodes and an upper bound for the
variance of the frequency at the other nodes, which are the limits of

the variance as y goes to infinity respectively,
1 2 n—1

lim qw__ = mbl -

2 . __ L
dnn? b, and ylggoq“’j./ T dnn? by

y—oo i
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This indicates that the acceleration of the propagation of the fre-
quency fluctuations by increasing the line capacities is limited.

Second, we focus on the impact of the network size. From (37), it
yields

2

b
2dn’

Clearly, this limit equals to the value of the frequency variance
presented in (13) for the SMIB model. This indicates that the network

becomes an infinite bus for node i when the size is sufficiently large. If
the size of the network is large, then it holds

lim Go, =

n—co

-1
Ly 107D o
2dn ' dn(2d? +ynn) !
which demonstrates that the disturbance impacts the local node most.
In addition, the derivative of the variances with respect to n satisfies

%o, y(ynn® = 2ynn —2d%) 52
Ton dQdZn+ymdE F
Yayy _ —y@d® +2ynn) ,

on  dQdn+ynn2)?

It is found that if n > n, with n, = [1 + /1 + 2:’—2

, | defined as a
critical value of the network size, then

aqwii
— > 0.

on
This indicates that the variance of the frequency at node i increases as
the size of the network increases. This trend is shown in Fig. 2(d) for
the graph with b, # 0 and b; = 0 for j # 2.

It is found that when n > n,, increasing the size of the network have a
negative impact on suppressing the frequency variance at node i. In other
words, a newly added node to the network prevents the propagation of the
fluctuations from the disturbance’s source node to the other nodes though it
helps to dissipate the fluctuations. In addition, for any »n > 2, it holds

1 4 2
— — )b.,
20 d(fyn+ Nyn+2472

which shows the lower bound of the variance of the frequency at node
i.

qwu z (

(b) On the variance of the phase difference in the complete graph.
The roles of the damping coefficient d, the line weight y, the graph
size n can be clearly seen from the formula (35). Because the inertia #
is absent in this formula, the variance is independent on the inertia of
the node. Due to this independence, the variance matrix of the phase
difference in the system (7) and the system (20) are equal, i.e., 65 =Q;,
which is verified by the formula (34) and (40). It is surprisingly found
that the variance only depends on the disturbance from the node i and j
while it is independent on the disturbances from all the other nodes. In
addition, as the size of the network increases, the variances of the phase
differences in the lines connecting node i decrease. This is because as
the size of the complete graph increases, the lines connecting node i
also increases, which dissipate the fluctuation from node i.

4.2. Star graphs

In this subsection, we study the variance matrices in the systems
with star graphs. Based on Theorem 4.2 and Eq. (A.2) in the Appendix,
we obtain the following result.

Proposition 4.9. Consider the system (7) with a star graph where the
indices of the nodes and lines are defined as in Definition 2.2(ii). If the
Assumptions 4.3 and 4.5 both holds, then the variance Q,, of the frequency
satisfies

| ri-b y(r(B?) - b?)

- _ , (42)
2dn dn@d*+ynn)' ' dn(2d% + ynn)

qﬂ’l,] = [
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and for i =2,3,...,n,

2 2 2
P . SR o S
M dn (2d +ynn) - 2dn - dnd? + yin)
y(n—2)b? 7>n(n = 2)b7

C dnQd2(n+ 1)+ yn(n— 12 dn(2d2 + yn)2d> + ynn)
y(tr(B)— b2~ b?) r2n(r(B2)—b2 - b2)
dnQd>(1+n)+yn(n — 1)?)  dnQd2+yn)(2d%+ynn)’
and the variance matrix Q; of the phase differences satisfies for k # g,

_2d%(n+ D +yn(n— 1) )
Bokg = 2dyn@d> (A +m) + = 12) !
=2d*(n— 1)+ yn2n —n* + 1) 5 =2d*(n— 1)+ yn2n —n* + 1) 5
2dyn2d>(1 + n) + yn(n — 12) **1 " 2dyn(2d?(1 + n) + yp(n — 1)2) 9+
2d2 + yn(n+ 1)) (rr(§2) -0, -, - bf)
2dyn(2d2(1 + n) + yn(n — 1))

+

and for k=1,...,m,

2
o = = (n=2)Qd” +yn(n+1)) 52
%k “2dyn ' ‘2dyn  2dyn(2d®(1 +n) + yn(n — D2)’ K+ 43
2 R2 2 2
@d? + pnn -+ 1) (r B = 82, — 87 )

2dyn(2d2(1 + n) + yn(n — 1)2)
and the trace of Q; satisfies

n—1
2dyn

Q) = tr(B2). (44)

See the proof of this proposition in Section 5. With these explicit
formulas, we investigate the propagation of the disturbances in the star
graphs. We first focus on the graphs with a disturbance at the root node
and then on the networks with a disturbance at a non-root node.

Corollary 4.10. Consider the system (7) with a star graph where the
indices of the nodes and lines are defined as in Definition 2.2(ii). If
Assumptions 4.3 and 4.5 hold and there are disturbances at the root node
i =1 and no disturbances at all the other nodes, i.e., b; # 0 and b; = 0 for
i =2,...,n, then the variances matrix Q,, of the frequencies satisfies

Gy, = [ - 2=
L L2dy dnQd? +ypn)t ¥

and for the other nodes,

4 2

—_— b, i=2,...,n,
dn (2d% + ynn) ! "

bo,; =
and the variances Q; of the phase differences satisfy

1
G5, = mbf, k=1,...,n—1.

It is clearly seen in this corollary that the formulas are all the same
to the ones in Corollary 4.7 when i = 1. This demonstrates that when
there are disturbance at the root node i = 1 only in the star graph, the
dependence of the variances of the frequency and the phase difference
on the system parameters, i.e., the damping and inertia of synchronous
machines, the size of the network and the weights of the lines, are total
the same as in the complete graph, which will not be explained again.

If the disturbances occurs at the non-root node, we obtain the
following corollary.

Corollary 4.11. Consider the system (7) with a star graph where the
indices of the nodes and lines are defined as in Definition 2.2(ii). If
Assumptions 4.3 and 4.5 hold and there are disturbances at node i = 2
and no disturbances at all the other nodes, i.e., b, # 0 and b; = 0 and
b; = 0 for i = 3,...,n, then the variances matrix Q,, of the frequencies
satisfies

14 2
S S 45
o dnQ2d? + ynn) * (45)
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Table 2
The setting of the parameters for plotting Figs. 4-6.
Parameters Fig. 4 Fig. 5 Fig. 6
(@ (b) © (d) @ (b) @ () (@ (b) © (d)
v 10 10 - 10 10 10 - 10 10 10 - 10
n 0.5 - 0.02 0.02 0.5 - 0.01 0.1 0.5 - 0.01 0.1
d - 0.3 1.2 1.5 - 0.2 1.2 0.4 - 0.2 1.2 0.4
b, 0.04 0.04 0.04 0.05 0.2 0.5 0.5 0.5 0.2 0.5 0.5 0.5
n 20 20 30 - 20 10 50 - 20 10 50 —
2 2 _ 2
o = b_z _ rb; _ y(n=2)b;
22 2dn  dn2d? +ynn)  dnQd*(n+ 1)+ yn(n — 1)) (a) 08 (b)
2 _ 2 ! — Analytical solution 005 S
B yn(n 2)b2 (46) 0.025 0.04
dn(2d® + yn)(2d? + ynn) 002
0,03
and fori =3,...,n, 50015 3
01 0.02
2 2,12 -
Go, = % + T , @) o005 por
b dnQRd2(1+n)+yn(n — 1)2)  dn2d?+yn)(2d2 +ynn) . 0
. . . . 0.05 0.5 1 15 2 0.05 0.5 1 1.5 2
the variances matrix Q; of the phase differences satisfies, d n
(©) 0334 (d)
n—1 (n=2)2d* + yn(n + 1)) 0.0334 - 0.04165
50, = G~ 503 )5 (48
. 2dyn ~ 2dyn2d>(1+n) + yn(n — 12 o 0 Numercial solution 0016
2d% + yn(n + 1) s
Doy = 2 > b%- (49) F. 004155
’ 2dyn(2d*(1 + n) + yn(n — 1)?) & 00 3
~0.0415
To emphasize the impact of the inertia, we deduce the variance 0.0328 i
matrix of the system (20) with a star graph. o
0.0326 0.0414
0.5 10 20 30 40 20 40 60 80 100
Proposition 4.12. Consider the system (20) with a star graph where the v n

indices of the nodes and lines are defined as in Defi_nition 2.2(ii). Assume
D = dI,, and Assumption 4.5 hold, then the matrix Q, satisfies

»? (I-m®,  +b,) ~
_ 1 k+1 7 Ug+l 1 2 2 2 2
= — tr(B°)—b;, , —b°, ., —b7),
9oy 2dyn * 2dyn(l + n) * 2dyn(l + n) ( ( ) K+l Tgtl ')
(50)
and
— 1 2 n—n+1 2 1 =2 2 2
. = ——b + (tr(B)—b —b).
Yok = 20y 1 T 2dyn(L+n) " 2dyn(l +n) k1 T 01

(51)

Similar as for the complete graphs, we verify the correctness of
the analytical formulas in Corollary 4.11 by comparing the analytical
solution with the numerical solution which is computed by Matlab from
(18) and (19) in the star graph with b, # 0 and b, = 0 for i # 2 and
indices of the nodes and lines defined in Definition 2.2(ii). In order to
satisfy Assumption 4.5, we set P, = 0 for all the nodes and K;; = K for
all the lines in system (2), which leads to y = K cos 6;;. = K. The setting
of the parameters for plotting these figures are shown in Table 2. The
results of these comparison are shown in Figs. 4-6, which demonstrate
that these explicit formulas are all correct.

Based on Corollary 4.11, we analyze the dependence of the vari-
ances of the phase difference and the frequency on the system param-
eters.

(a) On the variance of the frequency in the star graph. As in
the complete graph, the roles of the inertia # and the damping d of
the synchronous machines are clear, which will not be discussed again.
Here, we focus on the impacts of the weights of lines and the network
size. There are four terms in the right hand of (46), i.e., the first term
is the total amount of fluctuations caused by the disturbance at node
i =2, which equals to the trace of the matrix Q,,, the absolute value of
the second term measures the fluctuations propagating to the root node
i = 1 and the absolute value of the sum of the third and the fourth term
measure the fluctuations propagating to the other »n — 2 nodes.

Fig. 4. The dependence of the variance g,,, on the system parameters in the star
graph with b, # 0 and b, = 0 for i # 2 and indices of the nodes and lines defined in
Definition 2.2(ii).

@) 0.04 ®) 004951
— Analytical solution|
© Numercial solution| 0.0495 0 Numercial solution|
0.03
0.04949
£0.02 g
= S0.04948
0.01 0.04947
0 0.04946
0.05 0.5 1 1.5 2 0.05 0.5 1 1.5 2
d n
c d
© 0.25 @ 0.031
[—— Analytical solution|
0.2 © Numercial solution|
0.03
015
< S
S 01 &
0.029
0.05
— Analytical solution
0 0.028
0.5 10 20 30 20 40 60 80 100
g n

Fig. 5. The dependence of variance g; = for line (1,2) on the system parameters in the
star graph with b, # 0 and b, = 0 for i # 2 and indices of the nodes and lines defined
in Definition 2.2(ii).

First, on the influences of the weights of the lines, it yields from
(46) that

4, , 2db} 2d(n+ 1)(n - 2)b3
ar  nQd>+ymm?  nQd*n+ D+ arin— )22
2dyn(4 +yn(n+ 1))(n — 2)b2
T nQd? + ym)2Q2d? + ynn)?
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(a) i (b)
12 x10 85 x10~*

— Analytical solution]
1 o Numercial solution|

0.8

2

206

95

0.4

0.2

— Analytical solution]

o Numercial solution
0.8

— - = 0
0.5 10 20 30 20 40 60 80 100

Fig. 6. The dependence of variance g, , for line (1,3) on the system parameters in the
star graph with b, # 0 and b, = 0 for i # 2 and indices of the nodes and lines defined
in Definition 2.2(ii).

which indicates that as the weight of the lines increases, the variance of
the frequency at the node with disturbance decrease. Thus, increasing
the line capacity will accelerate the propagation of the fluctuations in
the graph. The lower bound of this variance is obtained as the limit as
y increases to the infinity,
i B b 1
yggoqwz‘z - m - % ; - n2(n _ 1)2 :
This indicates again that the acceleration of the propagation of the
frequency fluctuations by increasing the line capacities is limited.
Second, for the impact of the network size, we get from (46) that
for n > 2,
WMo, 263> +ynn)  yPnb3(4d” + yan(4 — )
on  dn2Qd2 +yqn)?  dn2(2d? + yn)(2d2 + ynn)?
Zybg(dZ(rﬁ —4n=2)+yn(n — D(® = 3n+ 1))
dn?2d2(n+ 1) + yn(n — 1)2)2

and

. 5
A, Gy = 2y

The dependence of the variance 4y, ON the size n is shown in
Fig. 4(d). Because the derivative of G with respect to n is positive, the
variance of the frequency at node i = 2 increases at the size of the net-
work increases. Note that the critical size n, in the complete graph does
not exist in the star graph. Clearly, as the size n increases to infinity,
the variance 4y, COnVerges to the value of the synchronous machine
in the SMIB model. This shows that for a sufficiently large size graph,
the graph plays roles as an infinite bus on each synchronous machine
connecting this graph.

(b) On the variance of the phase difference in the star graph.
The impacts of the line weight y and the damping coefficient d on the
variance of the phase difference, which can be obtained from (48) and
(49) directly, will not be discussed here. We focus on the impact of the
size n and the inertia 7.

A new finding is that the variance also depends on the inertia in the
star graph. By (48) and (49), we obtain

05, 4(n —2)db3
on Rdn+ D+ppn— 122 T
945, , 4db?

= 0
on [2d2(n+ 1) + yn(n — 1)2]2 g
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From the perspective of the fluctuations of the phase difference,
this demonstrates that increasing the inertia of the system, the amount
of the fluctuations of the system propagating from the node n = 2 to
the other non-root nodes increase. This trend can be seen in Fig. 5(b)
and Fig. 6(b). This is different from the findings in the network with
uniform damping-disturbance ratio, where the inertia has no impact on
the variances of the phase differences [28]. However, it is obtained that

. n—1 n—2 5
1 =(— — ————)b;,
qlr(r)lJr 61,4 (Qdyn 2dyn(n + 1)) 2

. 1 5
I S E——1
pe0r Bk = Ddyn(n+ 1) 2

This indicates the fluctuation suppression of the phase differences by
increasing the inertia is limited.
Regarding to the influence of the network size n, we derive

05, 4d*Q2n? —2n— 1)+ 4d>yn2n® —6n> +n— 1)
Ton 2dyn2(2d%(1 + n) + yy(n — 1)2)2
2 (n— 12 —4n®> = 3n+1) 2
2dyn2Q2d>(1 +n) +yn(n— 122 2~ 7
s 4d*(1+2n) +4d>yn2n® —n+1) ,
Ton T 2dym2Qd2(1+nm)+ yn(n— 122 2
_ Pr(n=1D@nr? +3n-1) 2 <0
2dyn22d2(1 +m) +yn(n— 122 2
This indicates that in the star graph the fluctuations the line connecting
to the source node of the disturbance will increase as the graph size
increases, while the fluctuations in other lines will decreases. These
trends can also be observed in Figs. 5(d) and 6(d).
Comparing the formulas of Q; in Proposition 4.9 to that of Q; in
Proposition 4.12, it is found that

lim Q, = Q;,
n—0+ Q5 Q(S

where 7 — 07 means that the inertia goes to zero. This property demon-
strates that the variance of the phase difference in a power system
with very small inertia can be estimated by that in the non-uniform
Kuramoto model of a star graph.

5. The proofs

In (16), A, and B, are further decomposed as,

=l el 2
where
Ap=[0 I ]eRO-Dw AT =[0 -4, ]eRODx (53a)
A, =-UTM'DU € R™ By, = UTM~!/?B € R™". (53b)

Here, A,_, = diag(4;,i = 2,...,n) € R#=Dx=D jg gbtained by removing
the first column and the first row of the diagonal matrix A,,.

Proof of Theorem 4.2. With the matrix C, in (17), we obtain from
(18) that

+_ |[€TM-120G60™™M-1/2¢ CTM-/28SUTM- /2
Q,=G6Q.C, = M-12usTOTM-1/2¢ M-/2URUTM-1/2

With the block matrices A, and B, in (52) and the blocks A,,, A3,

A,, and By, in (53) and the block matrix Q, in (26), we derive from

the Lyapunov Eq. (19) that

.
0 An||G S G S|[0 Ay 0 _—
[A23 AzJ [ST R] * [ST R] [A23 Al T [Bs [0 B} =0,

which yields

SAJ, +Ay,ST =0, (54a)
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GAJ, +SAJ, + AR =0, (54b)
STAJ, +RAJ, + A;S+ AR =-ByB),. (54c)

Denote S = [S;
it into (54a), then

S,| with S; € R*~! and S, € R"-DX(*-1) and insert

S 8] [1 (: (55)

ST
+[0 I,_] [ 1] =0,
S
which leads to
S,+8] =0,

which means that S, is a skew-symmetric matrix. Thus, the elements
of S satisfy

SjoLi+l = —s,-yj,i =1,2,....,n—1, j=2,...,n

It yields from Assumption 4.1 and (53) that A,, = —al,,. Hence, we
obtain from (54b) and (54c) that

aS=GAJ, + ApR,
2aR =STA}; +AxS+ByB),.

(56a)
(56b)

By inserting (56b) into (56a), we derive

20’8 = 2aGA,,

3 ARSTAL + ApAyS +AypB,,B.,

by (54a)

=2aGAJ, —SALA]

AL +AnA;S +AyByBT

Plugging A,; and A,, of (53) into the above equation, we get

0 0

2aG[0 —A, ] +]0 In_l]BZQBgzzzazsw[o A

] +A,_;S.

n—1

With the notation of § = [S; S,|, we obtain from the above

equation that

[0 —2aGA,_,|+[0 1,,]By,BL

=2 [S;  S,|+[A,_S] A8 ]+ [0 -S4, ] (57)
= [2a2S, + 4,18 2a%S,+ A8, -S4, 4]
From the definition of B,, in (53), we obtain
Z Uty €k Z Uy 5& z U ot nbic
k k k
Z U 3ty S Z Uy 3ty 28 Z Up 3ty S
[0 In—1:| B,B], =| * k k ,
Z U by 1 €k 2 Uty 2k 2 “i,,,fk
k k k
(58)

where u;; is the element of the matrix U and &, represent the kth
diagonal elements in M~!/2B*M~!/2, Plugging (58) into (57), we obtain
that the elements of the vector 2aS, + A,_,S, satisfy

(2(12 + /12)31,1 Zk uk,Zuk,lék
Qa® + Aoy | _ | X st i

>

2a? + An)Sp_i1 2k Ug nUg 1Sk
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which yields (28). Similarly, the elements of the matrix 2a2S,+4,_,S,—
S,A,_, satisfy

0 (—2012—/12 + 43)822 (=2a> — Ay + 4812
(2% + 45 = A)sy, 0 (=207 = 23+ 4,)8,-13
7(2(12 + A, = )8, 2a? + Ay = A3)Suo13 o 0
Z "i,sz Z Uy ot 38k Z U 2l nSi
3 3 k

2
z U 3ty 26k Z U 58k Z U 3tg Sk

=| k k k

2 Uty 26k

2
Z u &
T

Z Uy plhye 36k
| & k
81 3812 An81n-1
% 12:52,1 A3$2,2 Ang?,n—l
Agiin A8 An8n-tn-1

(59

By the symmetry of G, i.e., g;; = g;;, we obtain from (59) that for
i=12,...,n—=1,j=2,...,n,

202 202 Ay A 1 1 TN
R A R e R o) L SO
i+1 j j i+1 i+1 Jj

(60)
which yields (29).
From (59), we obtain for i = 1,2,...,n—1,
_ 11 N 12ReN-1/2
g = 2a,1,.+1“i+1M 12BMu,, (61)
and fori=1,2,...,n—1,j=i+1,...,n—1,
20418 = (A1 — A1 — 200)s; 0 —ul MTV2B2M 2, (62)

which yield (30) with the expression of S in (29).
Now, we focus on the derivation of R. We denote

.
ro[B K]
RZ R3

where R; € R, R, € R®"D and R; € R#DX0-D_ Then, (56b) is
rewritten into

R, R] 1 0 -STA,_ T
= — +B,,B,, ), 63
[Rz Ry| 2o \[-4,,8; -A,,8,-S]4,, »n ©3
where
Z Miqlé’k Z Ug g 28k Z Ug 1 U S
% x x
Z Ug 2Ug 1 Sk Z w26k Z Ug 2l S
ByB] =|k X k .

2
Z Ug nlhie 26k Z Uy Sk

k k

Z Ug i1 Sk
k

From (63), we obtain the expression of R; which equals to r; in
(31). From (63), we obtain,

81,1 Dk it 28k

R, = L|_| #4521 |, 2k iUy 36k
27 2a : : ’

AnSn_1,1 ok U1 Ui

from which we obtain for i =1,2,...,n—1,
1 125N a—
Tip11= Z(_’lHlsi,l +ul M7PBIM ), (64)

which leads (32) with the expression of s, ; in (28).
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From (63), we further obtain,
Z 26k Z Ug 2y 36k
K 3
Z U 38 26k Z Ui 3&

Z Ug 2Uk nSi

k

Z Ug 53Uk S

2aR;y =| & k k
Z Ug nlg 26k Z Ug nlhie 36k Z ui,nfk
| k k |
0 (A2 = 43)s2 (A = A)sn_12
(=43 + A2)sp 0 (A3 = A)Sn_13
Ay +2A2)Su_1p (A, + 43813 o 0
(65)
Thus, for i,j =2,3,...,n,
r= i ((,1 - A))sj_y; +uT MBI 2y )
Wthh leads to (32) with the formula of i1y in (29). O

Proof of Proposition 4.6. Following (A.1) in the Appendix and
Assumptions 4.3 and 4.5, we obtain the eigenvalues of the matrix
M~1/2LM~1/2 as defined in (14), which satisfy

M =0,4=yqg " n, fori=2,....n

With these eigenvalues and Theorem 4.2, the formula of R is
rewritten into

1 TR?2 a ul R2
R= 7]_1 2_u B bl 2a2+n~yn lB U (66)
(TR2
2a2+rrlynU Bul EU B20

Hence, the variance matrix of frequency satisfies
. R AT
Q,=n" [ul U] R [ul U]
by u]ulT +00T =1

_, 21z a 1 TR2 L B2 uT
=7 (%B + <m - %> (ulu]B +B llllll)
<1 2a
+ —_——
a

TR2 T
m) llllllB lllll1 > .

Inserting u;, = 1/ \/;II into the above equation, we obtain the
diagonal elements of Q,, which satisfy for i =1,...,n,

2 2 §2>
. _ ’1_2 b_z —ybi . ytr (
Pid 20 dQa%+n7lyn)  dnQa?+nlyn)
1 ri-b y(te(B?) - b?)
2dn  dn2d? +ynn)’ T dn (2d2 + ynn) '

With the eigenvalues in (66) and the formula of G in (30), we derive

G= 0780,
2ayn

which is inserted into (27), we obtain

Q; = CTO0TB2007C

2anyn
by[u; Olu; 01" =uu] + 007 =1,

:LCT(I —uluT)Bz(I - IT)C

2dyn
by CTu, =0
1 &2
=——20C'B
2dync C,

which leads to (34). If we substitute the formula of incidence matrix
into the above equation, we will get (35). []
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Proof of Proposition 4.8. Following Eq. (A.1) in the Appendix and the
assumption of D = dI and the weight K; ; cos 8}, = y for all the lines,
we obtain the eigenvalues of the matrix D~!/2LD~!/2,

21 =0, Ei=ny/a' fori=2,...,n

Plugging these eigenvalues of the Laplacian matrix of the complete
graph into (24), we obtain the expression of the elements of the matrix

Q.

lu B n—1.

2yn i+1 J+1 vi,j=1.

Gy, =

_ T —
Thus, Q, = ﬁUz B?U,. Following (22), we derive

Q,= CTUZU B2 U2U C= d—CT(I u,u))B 1 -u,u;)C

2d y
—CBC,

2dyn

which completes the proof. []

Proof of Proposition 4.9. The proof is in analogy to the one for
Proposition 4.6 with the explicit formulas of the eigenvalues of the
Laplacian matrix of a star graph in (A.2). For details of the proof, we
refer to the arXiv version of this paper [41].

Proof of Proposition 4.12.
Following Eq. (A.2) in the Appendix and the assumption of D = dI

and I/, =T for all the lines, we obtain the eigenvalues of the matrix
D—I/ZLD—I/Z
=0, h=-=2A,_1=r/d, A,=ny/dfori=2,...,n

Following the formula of the matrix ax in (24), we obtain,

%ﬁjﬁzﬁ- ihj=2,...,n—1,
1 =Txi— . .
_ y(l+n)u"B uj, i=nj=2,....,n—1,
Ix,; = | —Tea— ) (67)
T ‘Bu,,, j=ni=2,...,n—1,
1 =TH2= .
munB u,, i=j=n
Denote U, = [U, u,], where U, € R™®=2_ Then we convert the
matrix Q, into four blocks,
1 al_ o L
4 2 2=
5. - LU,B0, U, B,
X .
ST 1 =TRo—
y(l+n) nB U, 2ynuﬂB u,

== T
Let T = U,Q,U,, then we have

~ 1T mT R BN
= —U,B°U uC| =
T=[U, w]| > 2 2 s 27 70, 4,
—-u, B0,  o-u, B4,
—1)? .
—217B2+%(uuBuu —uuB—Buu)+%uuBuuT

= 1
2y(1+n)
So we get the formula of the variance matrix of the phase differ-
ences,

— —T&o—

B2 R o R2
(u]u B-u, u +u,u, B’ ulu -B u,,un —ununB )

p— 1 ST
=-C'TC,
Q; 7
and substitute the incidence matrix C into the above equation, we have
_ 1 (=~ = ~ ~
4, =7 Ty = Tirrg — Tiger + Tigrger ) -

Following Eq. (A.2) in the Appendix, the vector u, = 1/+/n(n — D[1—

n,1,...,1]7 is the eigenvector corresponding to the eigenvalue n, then
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