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A B S T R A C T

Serious fluctuations caused by disturbances may lead to instability of power systems. With the disturbance
modeled by a Brownian motion process, the fluctuations are often described by the asymptotic variance at
the invariant probability distribution of an associated Gaussian stochastic process. Here, we derive the explicit
formula of the variance matrix for the system with a uniform damping-inertia ratio at all the nodes, which
enables us to analyze the influences of the system parameters on the fluctuations and investigate the fluctuation
propagation in the network. With application to systems with complete graphs and star graphs, it is found that
the variance of the frequency at the disturbed node is significantly bigger than those at all the other nodes.
It is also shown that adding new nodes may prevent the propagation of fluctuations from the disturbed node
to all the others. Finally, it is proven theoretically that larger line capacities accelerate the propagation of the
frequency fluctuation and larger inertia of synchronous machines help suppress the fluctuations of the phase
differences, however, these acceleration and suppression are quite limited.
1. Introduction

A power system consists of synchronous machines, transmission
lines and power supply and demand. The electricity system needs
the frequency to be synchronized in order to operate properly. All
synchronous machines, such as steam or gas turbine rotor-generators,
need to operate with frequencies equal to or very close to the nominal
frequency, typically 50 Hz or 60 Hz [1]. Here, the frequency is the
rotating phase’s derivative, and it equals the synchronous machine’s
rotational speed, measured in rad/s. Synchronization stability, also
known as transient stability in the field of power systems research,
refers to the ability to maintain synchronization subjected to distur-
bances. The electrical system is experiencing an unprecedented threat
of losing synchronization as a result of the expansion of the integration
of renewable energy sources, which are inherently more vulnerable to
unpredictable disturbances.

✩ This work was funded by the Natural Science Foundation of China with Grant No. 62103235, and the Foundation for Innovative Research Groups of the
National Natural Science Foundation of China with Grant No. 61821004, and the Key Program of the National Natural Science Foundation of China with Grant
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Here, we focus on the relation of synchronous stability with the
variance of the disturbances. The relation depends on the power system
parameters in particular upon: the damping and the inertia coefficients
of the synchronous machines, the susceptance in the transmission
lines, the power supply and demands and the network topology and
so on. Based on the analysis of the existence condition [2–4], the
small signal stability [5] and the basin attraction of the synchronous
state [6–8], the synchronization stability may be improved by changing
these parameters, such as changing the inertia of the synchronous
machines [9], controlling the power flows in the network [10], adding
or deleting transmission lines [11]. This analysis focuses on the syn-
chronous state, in which the disturbances have not yet been explicitly
considered in the mathematical model. However, in practice, due to
continuously occurring disturbances, the state always fluctuates around
a synchronous state. If the state experiences large variations and cannot
recover and return to the basin attraction of the synchronous state, then
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the system will lose the synchronization. Thus, the severity of the state
fluctuations caused by disturbances directly determines the ability to
maintain synchronization.

To suppress the fluctuations, the key is to define such a metric that
can reflect the impacts of the system parameters on the propagation
of the fluctuations in the system. The 2 norm defined for an input–
output system, which treats the disturbances as inputs and the phase
differences and the frequency deviation as outputs, has been used to
measure the severity of the fluctuations [9,12–18]. Although it is hard
to derive the analytic formula of the 2 norm due to the heterogene-
ity of the system parameters, significant insights on suppressing the
fluctuations have been obtained from the formulas of the 2 norm
nder homogeneous assumptions on the system parameters, e.g., [14–
9]. By minimizing this norm, parts of the system parameters such as
he inertia and primary control gain can be assigned to suppress the
luctuations in the frequency and the phase difference [9]. In particular,
his norm is also used to study the transient performance of the system
ith the disturbance modeled by colored noise [19]. To avoid the
ssumption of the uniform damping-inertia ratio, which allows the
eduction of the analytic formula of the 2 norm, a matrix pertur-
ation approach is proposed for the optimal placement of inertia and
rimary control [20]. With a more realistic metric of Rate of Change of
requency (RoCoF), the propagation of the fluctuation in the network
nd the impact of the placement of the inertia on the propagation are
nvestigated in [21]. In physics, the propagation of the fluctuations is
lso widely investigated [22–26] with various metrics. For example,
he variance of these fluctuations can be calculated statistically via
imulations with the disturbances modeled by either Gaussian or non-
aussian noises [22]. By the perturbation method, the arrival time of a
isturbance at a node are estimated in [24] in order to investigate the
ropagation of the disturbance in the network. A new metric is defined
n [27] to find susceptible nodes and lines in the network. With the
mplitude of the response at the nodes as a metric, emergent complex
esponse pattens across the network are investigated in [26]. From
hese studies, important insights on the role of the system parameters,
uch as the inertia and damping of the synchronous machines, the
etwork topology, on the propagation of the disturbances are obtained,
hich are helpful on tuning the system parameter for real networks.

With the disturbance modeled by a Brownian motion process in
he linearized system of the nonlinear power system, the asymptotic
ariance matrix in the invariant probability distribution of the cor-
esponding stochastic process is used to characterize the fluctuations
n the phase difference in each line and the frequency at each node
28,29]. Its analytic formula clearly reveals the relationship between
he system parameters and the fluctuations, and the correlation be-
ween the phase differences and the frequencies. It also describes how

disturbance propagates in the network. In contrast, the 2 norm,
which is a scalar and equals to the trace of the variance matrix, cannot
provide such detailed information. Based on this variance matrix and
the synchronous state, a quantitative optimization framework has been
proposed in [30]. This variance matrix can be computed from a Lya-
punov equations [28,31], which has a very high computing complexity.
With this formula, the fluctuations can be effectively suppressed by
optimally configuring the system parameters. Due to the heterogeneity
of the system parameters and the non-linearity of the system, this
explicit formula still has not been derived, which is also a hard problem.

With the assumption of uniform disturbance-damping ratio among
the nodes, in which the ratio of the strength of the disturbances and
the damping coefficients are all identical at the nodes, formulas of the
variance matrix have been deduced in [28]. The relationship between
system parameters and fluctuations are partly explored by these for-
mulas. By means of these formulas, the dependence of the fluctuations
on the system parameters are partly explored. However, because of the
assumption, how the disturbances supplied to nodes propagate through
the power network and hence affect the phase differences and the

frequencies of all nodes cannot be revealed. In this paper, we deduce m

2 
the formula for the variance matrix under an assumption of uniform
damping-inertia ratios at the nodes. This formula enables us to explore
the propagation of the fluctuations throughout the network.

The contributions of this paper to the stability analysis of power
systems include:

(i) under the assumption of the uniform damping-to-inertia ratio
at all the nodes, we derive analytic expressions of the variance
matrices of the phase differences in lines and the frequency at
nodes;

(ii) based on the formulas, we analyze the propagation of the dis-
turbances, and investigate the reliance of the propagation on the
various system parameters, including the damping and inertia of
the synchronous machines, the capacity of lines and the size of
networks in special graphs, i.e., complete graphs and star graphs.

This paper is organized as follows. In Section 2, elementary prelim-
inaries on graph theory and the invariant probability distribution of
Gaussian process are provided. The problem formulation and the main
results of this paper are presented in Sections 3 and 4 respectively.
Section 5 provides proofs of the results and Section 6 concludes with
remarks.

2. Preliminaries

The elementary notation, properties of graphs and the concept of
the asymptotic variance of a stochastic Gaussian system are introduced
in this section.

2.1. Notations

The set of the real numbers and the set of the strictly positive real
numbers are denoted by R and R+ respectively. The vector space of
𝑛-tuples of the real numbers is denoted by R𝑛 for an integer 𝑛. For
the integers 𝑛, 𝑚 the set of 𝑛 by 𝑚 matrices with entries of the real
numbers, is denoted by R𝑛×𝑚. Denote the identity matrix of size 𝑛 by 𝑛
by 𝐈𝑛 ∈ R𝑛×𝑛, the zero vector by 𝟎𝑛, the vector with all elements equal
to one by 𝟏𝑛, which may also be denoted by 𝐈, 𝟎 and 𝟏 respectively if
the size is clear from the context.

Denote subsets of matrices according to: for an integer 𝑛, R𝑛×𝑛
𝑠𝑝𝑑

enotes the subset of symmetric positive semi-definite matrices of
hich an element is denoted by 0 ⪯ 𝐐 = 𝐐⊤; R𝑛×𝑛

𝑜𝑟𝑡𝑔 the subset of
rthogonal matrices which by definition satisfy 𝐔 𝐔⊤ = 𝐈𝑛 = 𝐔⊤ 𝐔.
all a square matrix 𝐀 ∈ R𝑛×𝑛 Hurwitz if all eigenvalues have a real
art which is strictly negative, in terms of notation, for any eigenvalue
(𝐀) of the matrix 𝐀, Re(𝜆(𝐀)) < 0. For a matrix 𝐀, denote the element
t the entry (𝑖, 𝑗) by 𝑎𝑖,𝑗 .

.2. Graphs

Denote an undirected weighted graph by  = ( , ) with a set of 𝑛
odes denoted by  and a set of 𝑚 edges or lines denoted by  and line
eight 𝑤𝑖,𝑗 = 𝑤𝑗,𝑖 ∈ R+ if the nodes 𝑖 and 𝑗 are connected and 𝑤𝑖,𝑗 = 0
therwise. Denote by 𝑘 = (𝑖, 𝑗) ∈  the edge connecting the nodes 𝑖 and
which edge is also denoted by 𝑒𝑘. The Laplacian matrix of the graph
ith weight 𝑤𝑖,𝑗 of line (𝑖, 𝑗) is defined as 𝐋 = (𝑙𝑖,𝑗 ) ∈ R𝑛×𝑛 with

𝑖,𝑗 =
{

−𝑤𝑖,𝑗 , if 𝑖 ≠ 𝑗,
∑𝑛

𝑘=1, 𝑘≠𝑖 𝑤𝑖,𝑘, if 𝑖 = 𝑗.

The incidence matrix is defined as 𝐂̃ = (𝑐𝑖,𝑘) ∈ R𝑛×𝑚 with 𝑐𝑖,𝑘 ∈ R,

𝑖,𝑘 =

⎧

⎪

⎨

⎪

⎩

1, if node 𝑖 is the beginning of line 𝑒𝑘,
−1, if node 𝑖 is the end of line 𝑒𝑘,
0, otherwise.

(1)

ere the direction of line 𝑒𝑘 is arbitrarily specified in order to define
he incidence matrix. For the elementary properties of the Laplacian

atrix, we refer to [32].
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Fig. 1. (a) A complete graph with 5 nodes. (b) A star graph with 9 nodes.

The definitions of complete graphs and star graphs are described
below.

Definition 2.1. Consider the graph  = ( , ).

(i) If each pair of nodes is connected by a line, then call this graph
a complete graph.

(ii) If the graph is a tree and there is a root node which is directly
connected to all the other nodes, then call this graph a star graph.

For both a complete graph and a star graph, the form of the
incidence matrix depends on the indices of the lines. For convenience
of expression, we define the indices for the nodes and lines as below.

Definition 2.2. Consider the graph  = ( , ).

(i) If  is a complete graph, then the indices of the line (𝑖, 𝑗) with
𝑖 < 𝑗 is defined according to the Lexicographic order.

(ii) If  is a star graph, the index of the root node is defined as 𝑖 = 1
and the indices of the other nodes are defined as 𝑖 = 2,… , 𝑛. The
indices of the line (1, 𝑘 + 1) are defined as 𝑒𝑘 for 𝑘 = 2,… , 𝑛 − 1.

An example of a complete graph and an example of a star graph
with such indices are shown in Fig. 1.

3. Problem formulation

The power network can be described by a graph ( , ) with node
set  and line set  ⊂  ×  . A node represents a bus and a line (𝑖, 𝑗)
represents the transmission line between node 𝑖 and 𝑗. We focus on the
transmission network and assume the lines are lossless. The number of
nodes in  and edges in  are denoted by 𝑛 and 𝑚 respectively. The dy-
namics of the power system are described by the equations [6,33,34],

𝛿̇𝑖 = 𝜔𝑖, (2a)

𝑚𝑖𝜔̇𝑖 = 𝑃𝑖 − 𝑑𝑖𝜔𝑖 −
𝑛
∑

𝑗=1
𝐾𝑖,𝑗 sin (𝛿𝑖 − 𝛿𝑗 ), (2b)

where 𝛿𝑖 and 𝜔𝑖 represent the phase and the frequency deviation of
the synchronous generator at node 𝑖; 𝑚𝑖 > 0 and 𝑑𝑖 > 0 describes the
inertia and damping with droop control of the synchronous machine;
𝑃𝑖 represents power generation if 𝑃𝑖 > 0 and denotes power load
otherwise; 𝐾𝑖,𝑗 = 𝑏̂𝑖𝑗𝑉𝑖𝑉𝑗 denotes the effective susceptance with 𝑏̂𝑖,𝑗
being the susceptance of the line (𝑖, 𝑗) and 𝑉𝑖 is the voltage at bus 𝑖;

In this definition, the voltage dynamics are not considered, which
is assumed to be constant. This is practical because the voltage can be
controlled in a short time-scale thus can be approximated as constant
in the time-scale of the frequency.

When the graph is complete, and 𝑑𝑖 = 1 for all the nodes and
𝐾𝑖,𝑗 = 𝐾∕𝑛 for all (𝑖, 𝑗) ∈  with 𝐾 ∈ R+, the system becomes the
second-order Kuramoto Model [35].

Definition 3.1. Define a synchronous state of the power system (2) as
the vector

(

𝛿∗(𝑡), 𝜔∗(𝑡)
)

with 𝜹∗(𝑡) = 𝜹̃ + (𝜔̃𝑡)𝟏𝑛 ∈ R𝑛 and 𝜔∗(𝑡) = 𝜔̃𝟏𝑛 ∈
R𝑛, which is a solution of the equation

𝑑𝑖𝜔̃ = 𝑃𝑖 +
𝑛
∑

𝐾𝑖,𝑗 sin(𝛿𝑗 − 𝛿𝑖), for 𝑖 = 1,… , 𝑛, (3)

𝑗=1

3 
and 𝛿 = col(𝛿𝑖) ∈ R𝑛 that satisfies 𝛿𝑖 − 𝛿𝑗 = (𝛿∗𝑖 (𝑡) − 𝛿∗𝑗 (𝑡))(𝑚𝑜𝑑(2𝜋)) for all
(𝑖, 𝑗) ∈  .

By summing all the equations in (3), it yields that at the syn-
chronous state,

𝜔̃ =
∑𝑛

𝑖 𝑃𝑖
∑𝑛

𝑖 𝑑𝑖
∈ R. (4)

The existence of a synchronous state can typically be obtained by
increasing the coupling strength 𝐾𝑖,𝑗 for all the lines to sufficiently high
values [2].

The derivation of the linearized system of (2) is briefly summarized
below with an assumption for the synchronous state.

Assumption 3.2. Consider the system (2), assume that (1) the graph 
is connected, hence 𝑚 ≥ 𝑛−1 holds; (2) there exists a synchronous state
(

𝜹∗(𝑡), 𝟎
)

such that the phase differences |𝛿𝑖 − 𝛿𝑗 | < 𝜋∕2 for all (𝑖, 𝑗) ∈  .

The linearized system of (2), linearized around the considered syn-
chronous state, is then derived
(

𝜹̇
𝝎̇

)

=
(

0 𝐈𝑛
−𝐌−1𝐋 −𝐌−1𝐃

)(

𝜹
𝝎

)

= 𝐉
(

𝜹
𝝎

)

, (5)

where 𝜹 = col(𝛿𝑖) ∈ R𝑛, 𝝎 = col(𝜔𝑖) ∈ R𝑛, 𝐃 = diag(𝑑𝑖) ∈ R𝑛×𝑛,
𝐌 = diag(𝑚𝑖) ∈ R𝑛×𝑛, and 𝐋 ∈ R𝑛×𝑛 is the Laplacian matrix of the
graph with the weight 𝑤𝑖,𝑗 = 𝐾𝑖,𝑗 cos 𝛿∗𝑖𝑗 for the line (𝑖, 𝑗), generated
by (𝜹∗, 𝟎) with 𝛿∗𝑖𝑗 = 𝛿∗𝑖 − 𝛿∗𝑗 , 𝐉 ∈ R2𝑛×2𝑛 is also called the Jacobian
matrix of the power system at the synchronous state. Note that the state
variables in (5) characterize the deviations of the phase and frequencies
deviate from the synchronous state (𝜹∗, 𝟎). It is proven that if the weight
𝐾𝑖,𝑗 cos 𝛿∗𝑖𝑗 keeps positive for all the lines, the system is stable at the
synchronous state (𝜹∗, 𝟎) [36,37], which results in the security condition
of the phase angle ability

𝜣 =
{

𝜹 ∈ R𝑛|
|

|

|𝛿𝑖𝑗 | <
𝜋
2
,∀(𝑖, 𝑗) ∈ 

}

. (6)

Similarly, as in [28,29,32], we model the disturbance by a Brownian
motion model, which serves as the input to a linearized system, and
study the stochastic system

d𝜹(𝑡) = 𝝎(𝑡)d𝑡, (7a)

d𝝎(𝑡) = −𝐌−1(𝐋𝜹(𝑡) + 𝐃𝝎(𝑡)
)

d𝑡 +𝐌−1𝑩̃d𝐯(𝑡), (7b)

with the state variable, system matrix and input matrix,

𝒙 =
[

𝜹
𝝎

]

, 𝐀 =
[

𝟎 𝐈𝑛
−𝐌−1𝐋 −𝐌−1𝐃

]

, 𝐁 =
[

𝟎
𝐌−1𝐁̃

]

,

where 𝐁̃ = diag(𝑏𝑖) ∈ R𝑛×𝑛 with 𝑏𝑖 > 0 being the strength of the
disturbances of node 𝑖; 𝐯(𝑡) = col(v𝑖(𝑡)) ∈ R𝑛 where v𝑖(𝑡) denotes a
Brownian motion that results in Gaussian-distributed disturbance at
each node. The noise components v1, v2, … , v𝑛 are assumed to be
independent. Here, we refer to 𝐾𝑖,𝑗 as the line capacity of line 𝑒𝑘,
which is also called the coupling strength between nodes, and refer to
𝑤𝑖,𝑗 = 𝐾𝑖,𝑗 cos 𝛿∗𝑖𝑗 as the weight of 𝑒𝑘. It is clear that the weights of the
lines are influenced by the power flows at the synchronous state solved
from (3) and the line capacities. Note that the weight depends on the
line capacity in a non-linear way, i.e., increasing the line capacities of
the lines, the phase differences 𝛿∗𝑖𝑗 may decrease which further increases
the weights of the lines.

Because the locations of the power generations including renewable
energy are usually far from each other, the assumption of the inde-
pendence of the disturbance 𝑣𝑖(𝑡) is reasonable in the model (7). The
probability distribution of the state is Gaussian due to the linearity
of the system (7). To reveal the dependence of the fluctuations on
the system parameters, we focus on the variance matrix of the phase
differences and the frequency in the invariant probability distribution
of the linear stochastic system (7), which can be solved from a Lya-
punov equation. For the invariant probability distribution of a Gaussian
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stochastic process, we refer to [31,38], which are summarized in [28,
Definition A.1]. The output matrix are set to

𝐲 = 𝐂𝐱, 𝐲 =
[

𝐲𝛿
𝐲𝜔

]

, 𝐂 =
[

𝐂̃⊤ 𝟎
𝟎 𝐈𝑛

]

∈ R(𝑚+𝑛)×2𝑛. (8)

The vector 𝐲𝛿 ∈ R𝑚 describes the phase differences in the 𝑚 lines,
nd the vector 𝐲𝜔 ∈ R𝑛 describes the frequencies at the 𝑛 nodes. The
atrix 𝐂̃ = (𝑐𝑖,𝑘) ∈ R𝑛×𝑚 denotes the incidence matrix of the graph .
he variance matrix of the output is denoted by

𝑦 =
[

𝐐𝛿 𝐐⊤
𝛿𝜔

𝐐𝛿𝜔 𝐐𝜔

]

∈ R(𝑚+𝑛)×(𝑚+𝑛), (9)

ith 𝐐𝛿 ∈ R𝑚,𝐐𝛿𝜔 ∈ R𝑛×𝑚,𝐐𝜔 ∈ R𝑛×𝑛.
For comparison with the main result of this paper, we present the

ariance of the state in the invariant probability distribution of the
inearized system of the Single-Machine Infinite Bus (SMIB) model,
hich is governed by the dynamics,

𝛿̇ = 𝜔, (10a)

𝜔̇ = 𝑃 − 𝑑𝜔 −𝐾 sin 𝛿. (10b)

Assume there exists a synchronous state (arcsin (𝑃∕𝐾), 0), the linear
tochastic system of SMIB model corresponding to the system (7) is

d𝛿(𝑡) = 𝜔(𝑡)d𝑡, (11a)

𝜔(𝑡) = −𝜂−1
(

𝑙𝛿(𝑡) + 𝑑𝜔(𝑡)
)

d𝑡 + 𝜂−1𝛽d𝐯(𝑡), (11b)

here 𝑙 = 𝐾 cos 𝛿∗ =
√

𝐾2 − 𝑃 2. The system matrix and input matrix
re

=
[

0 1
−𝜂−1𝑙 −𝜂−1𝑑

]

, 𝐁 =
[

0
𝜂−1𝛽

]

. (12)

We set the output as 𝑦 = (𝛿, 𝜔)⊤. Because the matrix 𝐀 with 𝑙 > 0
is Hurwitz, the variance matrix of the state in the invariant probabil-
ity distribution is solved from the following Lyapunov equation [31,
Theorem 1.53,Lemma 1.5] and [38],

𝐀𝐐𝑥 +𝐐𝑥𝐀⊤ + 𝐁𝐁⊤ = 𝟎.

We further obtain the variance matrix 𝐐𝑦 of the output

𝑦 = 𝐐𝑥 =
⎡

⎢

⎢

⎣

𝛽2

2𝑑
√

𝐾2−𝑃 2
0

0 𝛽2

2𝜂𝑑

⎤

⎥

⎥

⎦

. (13)

From this formula, it is found that the variance of the phase fluc-
tuations is independent of the generator inertia and the variance of
the frequency is independent on the line capacity. The roles of the
damping played on the suppression of the variance of the phase and the
frequency are the same. Obviously, due to the simplicity of this model,
the fluctuations in the power networks with multi-machines cannot be
fully explored by this model.

The problem of the characterization of the asymptotic variance of
the stochastic linear system (7) is described below.

Problem 3.3. Consider the stochastic linearized power system (7)
with multi-machines. Deduce an analytic expression of the asymptotic
variance of the output process 𝐲 and display how this variance depends
on the system parameters.

The theorem for the solution of Problem 3.3 makes use of the
properties and the notations in the following lemma.

Lemma 3.4 ([28]). Consider the matrix 𝐋 and the diagonal matrix 𝐌 in
system (7). There exists an orthogonal matrix 𝐔 ∈ R𝑛×𝑛

𝑜𝑟𝑡𝑔 such that

𝐔⊤𝐌−1∕2𝐋𝐌−1∕2𝐔 = 𝜦𝑛, (14)

with 𝜦𝑛 = diag(𝜆𝑖) ∈ R𝑛×𝑛 where 0 = 𝜆1 ≤ 𝜆2 ⋯ ≤ 𝜆𝑛 being the eigenvalues
f the matrix 𝐌−1∕2𝐋𝐌−1∕2. Denote the eigenvectors corresponding to 𝜆𝑖
y 𝒖𝑖 for 𝑖 = 1,… , 𝑛, then 𝐔 =

[

𝐮1 𝐮2 ⋯ 𝐮𝑛
]

and 𝒖1 = 𝑐−1𝑀1∕2𝟏𝑛
1∕2
here 𝑐 is the 𝐿2 norm of the vector 𝑀 𝟏𝑛.

4 
For the variance matrix in the invariant probability distribution of
he stochastic system (7), we have the following theorem .

heorem 3.5 ([28]). Consider the stochastic system (7) with Assump-
ion 3.2 and the notations of matrices in Lemma 3.4. Define matrices

𝑒 =
[

𝟎 𝐈𝑛
−𝜦𝑛 −𝐔⊤𝐌−1𝐃𝐔

]

∈ R2𝑛×2𝑛,𝐁𝑒 =

[

𝟎
𝐔⊤𝐌− 1

2 𝐁̃

]

∈ R2𝑛×𝑛,

𝐂𝑒 =

[

𝐂̃⊤𝐌− 1
2 𝐔 𝟎

𝟎 𝐌− 1
2 𝐔

]

∈ R(𝑚+𝑛)×2𝑛,

(15)

which can be decomposed according to

𝐀𝑒 =
[

𝟎 𝐀12
𝟎 𝐀2

]

, 𝐁𝑒 =
[

𝟎
𝐁2

]

, 𝐂𝑒 =
[

𝟎 𝐂2
]

, (16)

where 𝐀12 ∈ R1×(2𝑛−1) and 𝐀2 ∈ R(2𝑛−1)×(2𝑛−1), 𝐁2 ∈ R(2𝑛−1)×2𝑛 and 𝐂2 is
obtained by deleting the first column of the output matrix 𝐂𝑒 so that

𝐂2 =
[

𝐂̃⊤𝐌−1∕2𝐔̂ 𝟎
𝟎 𝐌−1∕2𝐔

]

∈ R(𝑚+𝑛)×(2𝑛−1), (17)

with 𝐔̂ =
[

𝐮2 𝐮3 ⋯ 𝐮𝑛
]

∈ R𝑛×(𝑛−1). The variance matrix 𝐐𝑦 of the
output 𝐲 of the stochastic system (7) satisfies

𝐐𝑦 = 𝐂2𝐐𝑥𝐂⊤
2 , (18)

where 𝐐𝑥 ∈ R(2𝑛−1)×(2𝑛−1) is the unique solution of the following Lyapunov
equation

𝐀2𝐐𝑥 +𝐐𝑥𝐀⊤
2 + 𝐁2𝐁⊤

2 = 𝟎. (19)

By assuming 𝑏2𝑖 ∕𝑑𝑖 = 𝑏2𝑗∕𝑑𝑗 for 𝑖, 𝑗 ∈  , the explicit formula the
𝐐 have been deduced in [28], from which the impact of the network
topology is explored. However, the fluctuation propagation cannot be
fully illustrated with this assumption.

To emphasize the effect of the inertia in the system (7), we also
study the fluctuations in the stochastic process

d𝜹(𝑡) = −𝐃−1𝐋𝜹(𝑡)d𝑡 + 𝐃−1𝐁̃d𝒗(𝑡), (20a)

𝒚(𝑡) = 𝐂̃⊤𝜹(𝑡), (20b)

which is the linearization of the non-uniform Kuramoto model [32,39].
This system can also be obtained by setting 𝑚𝑖 = 0 in the system (7) at
all the nodes. Denote the matrix 𝐔 ∈ R𝑛×𝑛 such that

𝐔
⊤
𝐃−1∕2𝐋𝐃−1∕2𝐔 = 𝜦𝑛, (21)

where 𝜦𝑛 = (𝜆𝑖) ∈ R𝑛×𝑛 with 𝜆𝑖 being the eigenvalue of the matrix
𝐃−1∕2𝐋𝐃−1∕2. The matrix 𝐔 is further decomposed into the form 𝐔 =
[

𝐮1 𝐔2

]

.
For the model (20), the variance matrix of the phase angle differ-

ence is presented in the following theorem [32].

Theorem 3.6. Consider the stochastic system (20) with a connected graph
. The asymptotic variance of the output process 𝐲 can be computed by

𝐐𝛿 = 𝐂̃⊤𝐃−1∕2𝐔2𝐐𝑥𝐔
⊤
2𝐃

−1∕2𝐂̃, (22)

where 𝐔2 =
[

𝐮2 𝐮3 … 𝐮𝑛
]

∈ R𝑛×(𝑛−1) and 𝐐𝑥 = (𝑞𝑥𝑖,𝑗 ) ∈ R(𝑛−1)×(𝑛−1)
𝑠𝑝𝑑

s the unique solution of the Lyapunov equation,

= −𝜦𝑛−1𝐐𝑥 −𝐐𝑥𝜦𝑛−1 + 𝐔
⊤
2𝐃

−1∕2𝐁̃𝐁̃⊤𝐃−1∕2𝐔2, (23)

with 𝜦𝑛−1 = diag(𝜆2, 𝜆3, … , 𝜆𝑛) ∈ R(𝑛−1)×(𝑛−1)
𝑑𝑖𝑎𝑔 . In addition, the matrix

𝐐𝑥 is solved from the Lyapunov equation such that for 𝑖, 𝑗 = 1, ⋯ , 𝑛−1,

𝑥𝑖,𝑗 = (𝜆𝑖+1 + 𝜆𝑗+1)−1𝐮
⊤
𝑖+1𝐃

−1∕2𝐁̃𝐁̃⊤𝐃−1∕2𝐮𝑗+1, (24)

and in particular, for 𝑖 = 1, ⋯ , 𝑛 − 1,

𝑞 = 1𝜆
−1

𝐮⊤ 𝐃−1∕2𝐁̃𝐁̃⊤𝐃−1∕2𝐮 . (25)
𝑥𝑖,𝑖 2 𝑖+1 𝑖+1 𝑖+1
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4. Main results

In this section, we present the main results of this paper. The reader
may find the proofs of the results in Section 5. We focus on multi-
machine systems (7). Based on the following assumption, we deduce
the explicit formula of the variance matrix 𝐐𝑦.

Assumption 4.1. Consider the stochastic Gaussian system (7), assume
the damping-inertia ratios 𝑑𝑖∕𝑚𝑖 are uniform at all the nodes, i.e., for
ll 𝑖 ∈  , 𝑑𝑖∕𝑚𝑖 = 𝛼 ∈ R+.

This assumption allows us to derive explicit formulas of the variance
atrix of the phase difference and the frequency, though in reality the
amping-inertia ratio usually varies from machine to machine [40].
rom the explicit formulas, new insights can be found on the propaga-
ion of the disturbances in the network. This assumption is often made
n the calculation of the 2 norm to study the transient performance of
he system when subjected to various disturbances [14–18] and in the
nvestigation on the propagation of the disturbance with the metric of
ate of Change of Frequency(RoCoF) [21].

Following Theorem 3.5, we derive the following theorem.

heorem 4.2. Consider the invariant probability distribution of the system
7). Decompose the matrix 𝐐𝑥 defined in Theorem 3.5 into matrices,

𝐐𝑥 =
[

𝐆 𝐒
𝐒⊤ 𝐑

]

, (26)

where 𝐆 = (𝑔𝑖,𝑗 ) ∈ R(𝑛−1)×(𝑛−1) which satisfies 𝐆 = 𝐆⊤, 𝐒 = (𝑠𝑖,𝑗 ) ∈ R(𝑛−1)×𝑛

and 𝐑 = (𝑟𝑖,𝑗 ) ∈ R𝑛×𝑛 which satisfies 𝐑 = 𝐑⊤. The variance matrix 𝐐𝑦 with
he form of block matrix in (9) satisfies

𝐐𝛿 = 𝐂̃⊤𝐌−1∕2𝐔̂𝐆𝐔̂⊤𝐌−1∕2𝐂̃, (27a)

𝐐𝜔 = 𝐌−1∕2𝐔𝐑𝐔⊤𝐌−1∕2, (27b)

𝛿𝜔 = 𝐌−1∕2𝐔𝐒⊤𝐔̂⊤𝐌−1∕2𝐂̃. (27c)

efine

𝑖 = 2𝛼2 + 𝜆𝑖, 𝜒𝑖,𝑗 = (𝜆𝑖 − 𝜆𝑗 )2 + 2𝛼2(𝜆𝑗 + 𝜆𝑖).

If Assumption 4.1 holds, then 𝐐𝑦 can be solved from (27) with explicit
ormula of 𝐐𝑥 solved from the Lyapunov Eq. (19), where 𝐒 satisfies for
= 1, 2,… , 𝑛 − 1,

𝑖,1 = 𝜌−1𝑖+1𝐮
⊤
𝑖+1𝐌

−1∕2𝐁̃2𝐌−1∕2𝐮1, (28)

for 𝑖, 𝑗 = 2, 3,… , 𝑛,

𝑠𝑖−1,𝑗 =
𝜆𝑖 − 𝜆𝑗
𝜒𝑖,𝑗

𝐮⊤𝑖 𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮𝑗 . (29)

𝐆 satisfies for 𝑖, 𝑗 = 2, 3,… , 𝑛,

𝑔𝑖−1,𝑗−1 =
2𝛼
𝜒𝑖,𝑗

𝐮⊤𝑖 𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮𝑗 . (30)

𝐑 satisfies

𝑟1,1 =
1
2𝛼

𝐮⊤1𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮1, (31)

for 𝑖, 𝑗 = 1, 2,… , 𝑛, with (𝑖, 𝑗) ≠ (1, 1),

𝑟𝑖,𝑗 =
𝛼(𝜆𝑖 + 𝜆𝑗 )

𝜒𝑖,𝑗
𝐮⊤𝑖 𝐌

−1∕2𝐁̃2𝐌−1∕2𝐮𝑗 . (32)

Here 𝐁̃2 = 𝐁̃𝐁̃⊤ because 𝐁̃ is a diagonal matrix.

See Section 5 for the proof of this theorem. Following this theo-
rem, the Superposition Principle can be used to describe the impact of
the disturbances. This property demonstrates that the fluctuations in the
system caused by the disturbance at a node can never be balanced by the
disturbances at the other nodes.

To reveal the influences of the system parameters on the fluctua-
tions more explicitly, we further make an assumption.
5 
Assumption 4.3. Assume that the inertia and the damping of the
synchronous machines are all identical in the system, i.e., 𝐌 = 𝜂𝐈𝑛 and
𝐃 = 𝑑𝐈𝑛, which leads to 𝛼 = 𝑑∕𝜂.

Clearly, this assumption is more restrictive than Assumption 4.1,
ith which we obtain the following corollary for the trace of the
ariance matrix of the frequency (31).

orollary 4.4. Consider the system (7). If Assumption 4.3 holds, then the
variance matrix of the frequency satisfies

𝑡𝑟(𝐐𝜔) =
1

2𝑑𝜂
𝑡𝑟(𝐁̃2).

The proof follows immediately from tr(𝐑) = 1
2𝛼𝜂 tr(𝐁̃2) with the fact

that pre- and post-multiplication of the matrix 𝐁̃2 by the orthogonal
matrix 𝐔 according to 𝐔𝐁̃2𝐔⊤ will not change the trace of this matrix.
If Assumption 4.3 is applied, this formula can also be obtained from
the result of [9, Theorem 3] deduced from the corresponding 2 norm.

Following from this corollary, it is found that adding new nodes
ithout any disturbances will not change the total amount of fluctu-
tions in the network if Assumption 4.3 is satisfied. It is shown that
he trace of the variance matrix of the frequency is independent on
he network topology. However, it will be shown in the next section
hat the variance of the frequency at each node depend on the network
opology.

Based on Assumption 4.3 and Theorem 4.2, we investigate the prop-
gation of the disturbance in two types of special graphs, i.e., complete
raphs and star graphs. For simplicity, we further make an assumption
n the weight of the lines as below.

ssumption 4.5. Assume the weights of the lines in the graph are all
dentical, i.e., 𝐾𝑖,𝑗 cos 𝛿∗𝑖𝑗 = 𝛾 for (𝑖, 𝑗) ∈  .

This assumption is practical for the power networks with identical
line capacities and small phase differences at the synchronous state.,
i.e., 𝛿∗𝑖 ≈ 𝛿∗𝑗 for all (𝑖, 𝑗) ∈  . Together with the analytic formulas of
the eigenvalues of the Laplacian matrices of complete graphs and star
graphs in Appendix A.1, this allows us to derive the explicit formulas
of the variance matrix of the phase differences and the frequencies in
the power networks with complete graphs and star graphs. In these
explicit formulas, the eigenvalues will not emerge explicitly, which
enables us to reveal the impact of the system parameters independent
of the eigenvalues, such as the impacts of the size of network, the line
capacity, the inertia and damping of the synchronous machines on the
fluctuation propagation in the network.

4.1. Complete graphs

For a power systems with a complete graph, it yields the following
proposition from Theorem 4.2 and Eq. (A.1) in Appendix.

Proposition 4.6. Consider the system (7) with a complete graph. If
Assumptions 4.3 and 4.5 hold, then the variance of the frequency at node
for 𝑖 = 1, 2,… , 𝑛 satisfies

𝑞𝜔𝑖,𝑖
=
[ 1
2𝑑𝜂

−
𝛾(𝑛 − 1)

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)
]

𝑏2𝑖 +
𝛾(𝑡𝑟(𝐁̃2) − 𝑏2𝑖 )

𝑑𝑛
(

2𝑑2 + 𝛾𝜂𝑛
) , (33)

nd the variance matrix 𝑸𝛿 of the phase difference satisfies

𝛿 =
1

2𝑑𝛾𝑛
𝐂̃⊤𝐁̃2𝐂̃. (34)

In particular, for the line 𝑒𝑘 connecting node 𝑖 and 𝑗, the variance of the
phase difference in this line is

𝑞𝛿𝑘,𝑘 = 1
2𝑑𝛾𝑛

(𝑏2𝑖 + 𝑏2𝑗 ), (35)

nd the trace of 𝐐𝛿 satisfies

𝑟(𝐐𝛿) =
𝑛 − 1 𝑡𝑟(𝐁̃2). (36)

2𝑑𝛾𝑛
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Table 1
The setting of the parameters for plotting Figs. 2 and 3.

Parameters Fig. 2 Fig. 3

(a) (b) (c) (d) (a) (b) (c) (d)

𝛾 10 10 – 10 10 10 – 10
𝜂 0.5 – 0.02 0.02 0.5 – 0.01 0.1
𝑑 – 0.3 1.2 1.5 – 0.1 1.2 0.1
𝑏2 0.04 0.04 0.04 0.05 0.8 0.8 1.5 1
𝑛 20 20 30 – 20 10 50 −
The next corollary of Proposition 4.6 explains the finding on the
ropagation of the fluctuations from a node to the others in details.

orollary 4.7. Consider the system (7) with a complete graph. If Assump-
tions 4.3 and 4.5 holds, and 𝑏𝑖 ≠ 0 and 𝑏𝑗 = 0 for all 𝑗 with 𝑗 ≠ 𝑖,
then

𝑞𝜔𝑖,𝑖
=

𝑏2𝑖
2𝑑𝜂

−
(𝑛 − 1)𝛾𝑏2𝑖

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)
, (37)

𝑞𝜔𝑗,𝑗
=

𝛾𝑏2𝑖
𝑑𝑛

(

2𝑑2 + 𝛾𝜂𝑛
) , for 𝑗 ≠ 𝑖, (38)

and the variances of the phase differences satisfy

𝑞𝛿𝑘,𝑘 =

{

𝑏2𝑖
2𝑑𝛾𝑛 , if line 𝑒𝑘 is connected to node 𝑖,
0, else.

(39)

For comparison, the asymptotic matrix of the phase differences in
he model (20) is presented in the following proposition with proof in
ection 5.

roposition 4.8. Consider the system (20) with a complete graph. Assume
= 𝑑𝐈 and Assumption 4.5 holds, then the variances of the phase

ifferences satisfy

𝐐𝛿 =
1

2𝑑𝛾𝑛
𝐂̃⊤𝐁̃2𝐂̃, (40)

with

𝑞𝛿𝑘,𝑘 = 1
2𝑑𝛾𝑛

(𝑏2𝑖 + 𝑏2𝑗 ), for 𝑘 = 1,… , 𝑚. (41)

To verify the correctness of these analytical formulas in Corol-
lary 4.7, we use Matlab to compute the variances numerically from (18)
and (19) in the complete graph with 𝑏2 ≠ 0 and 𝑏𝑗 = 0 for 𝑗 ≠ 2 and
indices of the nodes and lines defined in Definition 2.2(i). In order to
satisfy Assumption 4.5, we set 𝑃𝑖 = 0 for all the nodes and 𝐾𝑖𝑗 = 𝐾
for all the lines in the system (2), which leads to 𝛿∗𝑖 − 𝛿∗𝑗 = 0 at the
synchronous state and the line weight 𝛾 = 𝐾 cos 𝛿∗𝑖𝑗 = 𝐾. The setting
of the parameters for plotting these figures are shown in Table 1. It is
shown in Fig. 2 and Fig. 3 that the analytical solution and the numerical
solution of the variances are all identical.

Based on Corollary 4.7 and Proposition 4.8, we get the following
findings on the variance of the frequency and the phase differences in
the stochastic system (20) with the complete graph.

(a) On the variance of the frequency in the complete graph.
As either the inertia 𝜂 or the damping 𝑑 of the synchronous machines
ncreases, the variance of the frequencies at all the nodes decrease.
his statement is well known to experts in the field and will not be
iscussed further. There are two terms in the right hand side of (37),
n which the first term is the variance of the fluctuations introduced by
he disturbance at node 𝑖 and the second term measures the fluctuations
ropagated from node 𝑖 to all the other nodes. Thus, we only need to
nalyze the dependence of the variance of the frequency at node 𝑖 on
he weight of the lines and the network size.

First, we describe the impact of the line weights. On contrary to the
ase of SMIB model, the weights of the lines play roles on the variance
f the frequency. The derivative of the variance with respect to 𝛾 satisfy
𝜕𝑞𝜔𝑖,𝑖 =

2𝑑(1 − 𝑛)𝑏2𝑖 < 0,
𝜕𝑞𝜔𝑗,𝑗 =

2𝑑𝑏2𝑖 > 0.

𝜕𝛾 𝑛(2𝑑2 + 𝛾𝜂𝑛)2 𝜕𝛾 𝑛(2𝑑2 + 𝛾𝜂𝑛)2

6 
Fig. 2. The dependence of the variance 𝑞𝜔2,2
on the system parameters in the complete

graph with 𝑏2 ≠ 0 and 𝑏𝑗 = 0 for 𝑗 ≠ 2 and indices of the nodes and lines defined in
Definition 2.2(i).

Fig. 3. The relationship for the variance 𝑞𝛿1,1 for line (1, 2) in the complete graph with
𝑏2 ≠ 0 and 𝑏𝑗 = 0 for 𝑗 ≠ 2 and indices of the nodes and lines defined in Definition 2.2(i).

This indicates that, as the line weights increase, the frequency variance
at the source node of the disturbance decreases while those at the other
nodes increase. Thus, increasing the line capacities, which increases the
line weights, will accelerate the propagation of the fluctuation from the
source node to the other nodes. However, there exists a lower bound
for the variance of the frequency at nodes and an upper bound for the
variance of the frequency at the other nodes, which are the limits of
the variance as 𝛾 goes to infinity respectively,

lim 𝑞𝜔 = 1 𝑏2 − 𝑛 − 1 𝑏2, and lim 𝑞𝜔 = 1 𝑏2.

𝛾→∞ 𝑖,𝑖 2𝑑𝜂 𝑖 𝑑𝜂𝑛2 𝑖 𝛾→∞ 𝑗,𝑗 𝑑𝜂𝑛2 𝑖
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This indicates that the acceleration of the propagation of the fre-
quency fluctuations by increasing the line capacities is limited.

Second, we focus on the impact of the network size. From (37), it
yields

lim
𝑛→∞

𝑞𝜔𝑖,𝑖
=

𝑏2𝑖
2𝑑𝜂

.

Clearly, this limit equals to the value of the frequency variance
resented in (13) for the SMIB model. This indicates that the network
ecomes an infinite bus for node 𝑖 when the size is sufficiently large. If
he size of the network is large, then it holds
1

2𝑑𝜂
𝑏2𝑖 ≫

𝛾(𝑛 − 1)
𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)

𝑏2𝑖 ,

which demonstrates that the disturbance impacts the local node most.
In addition, the derivative of the variances with respect to 𝑛 satisfies
𝜕𝑞𝜔𝑖,𝑖

𝜕𝑛
=

𝛾(𝛾𝜂𝑛2 − 2𝛾𝜂𝑛 − 2𝑑2)
𝑑(2𝑑2𝑛 + 𝛾𝜂𝑛2)2

𝑏2𝑖 ,

𝜕𝑞𝜔𝑗,𝑗

𝜕𝑛
=

−𝛾(2𝑑2 + 2𝛾𝜂𝑛)
𝑑(2𝑑2𝑛 + 𝛾𝜂𝑛2)2

𝑏2𝑖 < 0.

It is found that if 𝑛 > 𝑛𝑐 with 𝑛𝑐 = ⌊1 +
√

1 + 2𝑑2
𝛾𝜂 ⌋ defined as a

critical value of the network size, then
𝜕𝑞𝜔𝑖,𝑖

𝜕𝑛
> 0.

This indicates that the variance of the frequency at node 𝑖 increases as
the size of the network increases. This trend is shown in Fig. 2(d) for
the graph with 𝑏2 ≠ 0 and 𝑏𝑗 = 0 for 𝑗 ≠ 2.

It is found that when 𝑛 > 𝑛𝑐 , increasing the size of the network have a
egative impact on suppressing the frequency variance at node 𝑖. In other
ords, a newly added node to the network prevents the propagation of the
luctuations from the disturbance’s source node to the other nodes though it
elps to dissipate the fluctuations. In addition, for any 𝑛 ≥ 2, it holds

𝜔𝑖,𝑖
≥
( 1
2𝑑𝜂

−
𝛾

𝑑(
√

𝛾𝜂 +
√

𝛾𝜂 + 2𝑑2)2
)

𝑏2𝑖 ,

which shows the lower bound of the variance of the frequency at node
𝑖.

(b) On the variance of the phase difference in the complete graph.
The roles of the damping coefficient 𝑑, the line weight 𝛾, the graph
size 𝑛 can be clearly seen from the formula (35). Because the inertia 𝜂
is absent in this formula, the variance is independent on the inertia of
the node. Due to this independence, the variance matrix of the phase
difference in the system (7) and the system (20) are equal, i.e., 𝐐𝛿 = 𝐐𝛿 ,

hich is verified by the formula (34) and (40). It is surprisingly found
hat the variance only depends on the disturbance from the node 𝑖 and 𝑗
hile it is independent on the disturbances from all the other nodes. In
ddition, as the size of the network increases, the variances of the phase
ifferences in the lines connecting node 𝑖 decrease. This is because as
he size of the complete graph increases, the lines connecting node 𝑖
lso increases, which dissipate the fluctuation from node 𝑖.

4.2. Star graphs

In this subsection, we study the variance matrices in the systems
with star graphs. Based on Theorem 4.2 and Eq. (A.2) in the Appendix,
we obtain the following result.

Proposition 4.9. Consider the system (7) with a star graph where the
ndices of the nodes and lines are defined as in Definition 2.2(ii). If the
ssumptions 4.3 and 4.5 both holds, then the variance 𝐐𝜔 of the frequency
atisfies

𝜔1,1
=
[ 1 −

𝛾(𝑛 − 1)
2

]

𝑏21 +
𝛾(𝑡𝑟(𝐁̃2) − 𝑏21)
(

2
) , (42)
2𝑑𝜂 𝑑𝑛(2𝑑 + 𝛾𝜂𝑛) 𝑑𝑛 2𝑑 + 𝛾𝜂𝑛

7 
nd for 𝑖 = 2, 3,… , 𝑛,

𝑞𝜔𝑖,𝑖
=

𝛾𝑏21
𝑑𝑛

(

2𝑑2 + 𝛾𝜂𝑛
) +

𝑏2𝑖
2𝑑𝜂

−
𝛾𝑏2𝑖

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)

−
𝛾(𝑛 − 2)𝑏2𝑖

𝑑𝑛(2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2)
−

𝛾2𝜂(𝑛 − 2)𝑏2𝑖
𝑑𝑛(2𝑑2 + 𝛾𝜂)(2𝑑2 + 𝛾𝜂𝑛)

+
𝛾(𝑡𝑟(𝐁̃2)−𝑏2𝑖 −𝑏

2
1)

𝑑𝑛(2𝑑2(1+𝑛)+𝛾𝜂(𝑛 − 1)2)
+

𝛾2𝜂(𝑡𝑟(𝐁̃2)−𝑏2𝑖 −𝑏
2
1)

𝑑𝑛(2𝑑2+𝛾𝜂)(2𝑑2+𝛾𝜂𝑛)
,

nd the variance matrix 𝐐𝛿 of the phase differences satisfies for 𝑘 ≠ 𝑞,

𝛿𝑘,𝑞
=

2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
𝑏21

+
−2𝑑2(𝑛 − 1) + 𝛾𝜂(2𝑛 − 𝑛2 + 1)
2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)

𝑏2𝑘+1 +
−2𝑑2(𝑛 − 1) + 𝛾𝜂(2𝑛 − 𝑛2 + 1)
2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)

𝑏2𝑞+1

+
(2𝑑2 + 𝛾𝜂(𝑛 + 1))

(

𝑡𝑟(𝐁̃2) − 𝑏2𝑘+1 − 𝑏2𝑞+1 − 𝑏21
)

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
,

nd for 𝑘 = 1,… , 𝑚,

𝑞𝛿𝑘,𝑘 =
𝑏21

2𝑑𝛾𝑛
+
( 𝑛 − 1
2𝑑𝛾𝑛

−
(𝑛 − 2)(2𝑑2 + 𝛾𝜂(𝑛 + 1))

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
)

𝑏2𝑘+1

+
(2𝑑2 + 𝛾𝜂(𝑛 + 1))

(

𝑡𝑟(𝐁̃2) − 𝑏2𝑘+1 − 𝑏21
)

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
,

(43)

nd the trace of 𝐐𝛿 satisfies

𝑟(𝐐𝛿) =
𝑛 − 1
2𝑑𝛾𝑛

𝑡𝑟(𝐁̃2). (44)

See the proof of this proposition in Section 5. With these explicit
formulas, we investigate the propagation of the disturbances in the star
graphs. We first focus on the graphs with a disturbance at the root node
and then on the networks with a disturbance at a non-root node.

Corollary 4.10. Consider the system (7) with a star graph where the
indices of the nodes and lines are defined as in Definition 2.2(ii). If
Assumptions 4.3 and 4.5 hold and there are disturbances at the root node
𝑖 = 1 and no disturbances at all the other nodes, i.e., 𝑏1 ≠ 0 and 𝑏𝑖 = 0 for
= 2,… , 𝑛, then the variances matrix 𝐐𝜔 of the frequencies satisfies

𝜔1,1
=
[ 1
2𝑑𝜂

−
𝛾(𝑛 − 1)

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)
]

𝑏21,

and for the other nodes,

𝑞𝜔𝑖,𝑖
=

𝛾
𝑑𝑛

(

2𝑑2 + 𝛾𝜂𝑛
) 𝑏21, 𝑖 = 2,… , 𝑛,

nd the variances 𝐐𝛿 of the phase differences satisfy

𝛿𝑘,𝑘 = 1
2𝑑𝛾𝑛

𝑏21, 𝑘 = 1,… , 𝑛 − 1.

It is clearly seen in this corollary that the formulas are all the same
to the ones in Corollary 4.7 when 𝑖 = 1. This demonstrates that when
there are disturbance at the root node 𝑖 = 1 only in the star graph, the
dependence of the variances of the frequency and the phase difference
on the system parameters, i.e., the damping and inertia of synchronous
machines, the size of the network and the weights of the lines, are total
the same as in the complete graph, which will not be explained again.

If the disturbances occurs at the non-root node, we obtain the
following corollary.

Corollary 4.11. Consider the system (7) with a star graph where the
ndices of the nodes and lines are defined as in Definition 2.2(ii). If
ssumptions 4.3 and 4.5 hold and there are disturbances at node 𝑖 = 2
nd no disturbances at all the other nodes, i.e., 𝑏2 ≠ 0 and 𝑏1 = 0 and
𝑖 = 0 for 𝑖 = 3,… , 𝑛, then the variances matrix 𝐐𝜔 of the frequencies
atisfies

𝜔 =
𝛾

𝑏2, (45)

1,1 𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛) 2
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Table 2
The setting of the parameters for plotting Figs. 4–6.

Parameters Fig. 4 Fig. 5 Fig. 6

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

𝛾 10 10 – 10 10 10 – 10 10 10 – 10
𝜂 0.5 – 0.02 0.02 0.5 – 0.01 0.1 0.5 – 0.01 0.1
𝑑 – 0.3 1.2 1.5 – 0.2 1.2 0.4 – 0.2 1.2 0.4
𝑏2 0.04 0.04 0.04 0.05 0.2 0.5 0.5 0.5 0.2 0.5 0.5 0.5
𝑛 20 20 30 – 20 10 50 – 20 10 50 −
𝑞𝜔2,2
=

𝑏22
2𝑑𝜂

−
𝛾𝑏22

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)
−

𝛾(𝑛 − 2)𝑏22
𝑑𝑛(2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2)

−
𝛾2𝜂(𝑛 − 2)𝑏22

𝑑𝑛(2𝑑2 + 𝛾𝜂)(2𝑑2 + 𝛾𝜂𝑛)
, (46)

and for 𝑖 = 3,… , 𝑛,

𝜔𝑖,𝑖
=

𝛾𝑏22
𝑑𝑛(2𝑑2(1+𝑛)+𝛾𝜂(𝑛 − 1)2)

+
𝛾2𝜂𝑏22

𝑑𝑛(2𝑑2+𝛾𝜂)(2𝑑2+𝛾𝜂𝑛)
, (47)

he variances matrix 𝐐𝛿 of the phase differences satisfies,

𝑞𝛿1,1 =
( 𝑛 − 1
2𝑑𝛾𝑛

−
(𝑛 − 2)(2𝑑2 + 𝛾𝜂(𝑛 + 1))

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
)

𝑏22, (48)

𝑞𝛿𝑘,𝑘 =
2𝑑2 + 𝛾𝜂(𝑛 + 1)

2𝑑𝛾𝑛(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)
𝑏22. (49)

To emphasize the impact of the inertia, we deduce the variance
atrix of the system (20) with a star graph.

roposition 4.12. Consider the system (20) with a star graph where the
ndices of the nodes and lines are defined as in Definition 2.2(ii). Assume
= 𝑑𝐈𝑛 and Assumption 4.5 hold, then the matrix 𝐐𝛿 satisfies

𝛿𝑘,𝑞 =
𝑏21

2𝑑𝛾𝑛
+

(1 − 𝑛)(𝑏2𝑘+1 + 𝑏2𝑞+1)

2𝑑𝛾𝑛(1 + 𝑛)
+ 1

2𝑑𝛾𝑛(1 + 𝑛)

(

tr
(

𝐁̃2
)

− 𝑏2𝑘+1 − 𝑏2𝑞+1 − 𝑏21
)

,

(50)

nd

𝑞𝛿𝑘,𝑘 = 1
2𝑑𝛾𝑛

𝑏21 +
𝑛2 − 𝑛 + 1
2𝑑𝛾𝑛(1 + 𝑛)

𝑏2𝑘+1 +
1

2𝑑𝛾𝑛(1 + 𝑛)

(

tr
(

𝐁̃2
)

− 𝑏2𝑘+1 − 𝑏21
)

.

(51)

Similar as for the complete graphs, we verify the correctness of
the analytical formulas in Corollary 4.11 by comparing the analytical
solution with the numerical solution which is computed by Matlab from
(18) and (19) in the star graph with 𝑏2 ≠ 0 and 𝑏𝑖 = 0 for 𝑖 ≠ 2 and
indices of the nodes and lines defined in Definition 2.2(ii). In order to
satisfy Assumption 4.5, we set 𝑃𝑖 = 0 for all the nodes and 𝐾𝑖𝑗 = 𝐾 for
all the lines in system (2), which leads to 𝛾 = 𝐾 cos 𝛿∗𝑖𝑗 = 𝐾. The setting
of the parameters for plotting these figures are shown in Table 2. The
results of these comparison are shown in Figs. 4–6, which demonstrate
that these explicit formulas are all correct.

Based on Corollary 4.11, we analyze the dependence of the vari-
ances of the phase difference and the frequency on the system param-
eters.

(a) On the variance of the frequency in the star graph. As in
the complete graph, the roles of the inertia 𝜂 and the damping 𝑑 of
he synchronous machines are clear, which will not be discussed again.
ere, we focus on the impacts of the weights of lines and the network

ize. There are four terms in the right hand of (46), i.e., the first term
s the total amount of fluctuations caused by the disturbance at node
= 2, which equals to the trace of the matrix 𝐐𝜔, the absolute value of
he second term measures the fluctuations propagating to the root node
= 1 and the absolute value of the sum of the third and the fourth term
easure the fluctuations propagating to the other 𝑛 − 2 nodes.
8 
Fig. 4. The dependence of the variance 𝑞𝜔2,2
on the system parameters in the star

graph with 𝑏2 ≠ 0 and 𝑏𝑖 = 0 for 𝑖 ≠ 2 and indices of the nodes and lines defined in
Definition 2.2(ii).

Fig. 5. The dependence of variance 𝑞𝛿1,1 for line (1, 2) on the system parameters in the
star graph with 𝑏2 ≠ 0 and 𝑏𝑖 = 0 for 𝑖 ≠ 2 and indices of the nodes and lines defined
in Definition 2.2(ii).

First, on the influences of the weights of the lines, it yields from
(46) that

𝜕𝑞𝜔2,2

𝜕𝛾
= −

2𝑑𝑏22
𝑛(2𝑑2 + 𝛾𝜂𝑛)2

−
2𝑑(𝑛 + 1)(𝑛 − 2)𝑏22

𝑛(2𝑑2(𝑛 + 1) + 𝜂𝛾(𝑛 − 1)2)2

−
2𝑑𝛾𝜂(4 + 𝛾𝜂(𝑛 + 1))(𝑛 − 2)𝑏22
𝑛(2𝑑2 + 𝛾𝜂)2(2𝑑2 + 𝛾𝜂𝑛)2

< 0,
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Fig. 6. The dependence of variance 𝑞𝛿2,2 for line (1, 3) on the system parameters in the
tar graph with 𝑏2 ≠ 0 and 𝑏𝑖 = 0 for 𝑖 ≠ 2 and indices of the nodes and lines defined
n Definition 2.2(ii).

hich indicates that as the weight of the lines increases, the variance of
he frequency at the node with disturbance decrease. Thus, increasing
he line capacity will accelerate the propagation of the fluctuations in
he graph. The lower bound of this variance is obtained as the limit as
increases to the infinity,

lim
𝛾→∞

𝑞𝜔2,2
=

𝑏22
2𝑑𝜂

−
𝑏22
𝑑𝜂

( 1
𝑛
− 1

𝑛2(𝑛 − 1)2
).

This indicates again that the acceleration of the propagation of the
frequency fluctuations by increasing the line capacities is limited.

Second, for the impact of the network size, we get from (46) that
for 𝑛 ≥ 2,
𝜕𝑞𝜔2,2

𝜕𝑛
=

2𝛾𝑏22(𝑑
2 + 𝛾𝜂𝑛)

𝑑𝑛2(2𝑑2 + 𝛾𝜂𝑛)2
−

𝛾2𝜂𝑏22(4𝑑
2 + 𝛾𝜂𝑛(4 − 𝑛))

𝑑𝑛2(2𝑑2 + 𝛾𝜂)(2𝑑2 + 𝛾𝜂𝑛)2

+
2𝛾𝑏22(𝑑

2(𝑛2 − 4𝑛 − 2) + 𝛾𝜂(𝑛 − 1)(𝑛2 − 3𝑛 + 1))

𝑑𝑛2(2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2)2
> 0,

and

lim
𝑛→∞

𝑞𝜔2,2
=

𝑏22
2𝑑𝜂

.

The dependence of the variance 𝑞𝜔2,2
on the size 𝑛 is shown in

ig. 4(d). Because the derivative of 𝑞𝜔2,2
with respect to 𝑛 is positive, the

ariance of the frequency at node 𝑖 = 2 increases at the size of the net-
ork increases. Note that the critical size 𝑛𝑐 in the complete graph does
ot exist in the star graph. Clearly, as the size 𝑛 increases to infinity,
he variance 𝑞𝜔2,2

converges to the value of the synchronous machine
n the SMIB model. This shows that for a sufficiently large size graph,
he graph plays roles as an infinite bus on each synchronous machine
onnecting this graph.
(b) On the variance of the phase difference in the star graph.

he impacts of the line weight 𝛾 and the damping coefficient 𝑑 on the
ariance of the phase difference, which can be obtained from (48) and
49) directly, will not be discussed here. We focus on the impact of the
ize 𝑛 and the inertia 𝜂.

A new finding is that the variance also depends on the inertia in the
tar graph. By (48) and (49), we obtain

𝜕𝑞𝛿1,1
𝜕𝜂

= −
4(𝑛 − 2)𝑑𝑏22

[2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2]2
≤ 0,

𝜕𝑞𝛿𝑘,𝑘
𝜕𝜂

=
4𝑑𝑏22

[2𝑑2(𝑛 + 1) + 𝛾𝜂(𝑛 − 1)2]2
> 0.
9 
From the perspective of the fluctuations of the phase difference,
this demonstrates that increasing the inertia of the system, the amount
of the fluctuations of the system propagating from the node 𝑛 = 2 to
the other non-root nodes increase. This trend can be seen in Fig. 5(b)
and Fig. 6(b). This is different from the findings in the network with
uniform damping-disturbance ratio, where the inertia has no impact on
the variances of the phase differences [28]. However, it is obtained that

lim
𝜂→0+

𝑞𝛿1,1 =
( 𝑛 − 1
2𝑑𝛾𝑛

− 𝑛 − 2
2𝑑𝛾𝑛(𝑛 + 1)

)

𝑏22,

lim
𝜂→0+

𝑞𝛿𝑘,𝑘 = 1
2𝑑𝛾𝑛(𝑛 + 1)

𝑏22.

his indicates the fluctuation suppression of the phase differences by
ncreasing the inertia is limited.

Regarding to the influence of the network size 𝑛, we derive
𝜕𝑞𝛿1,1
𝜕𝑛

=
4𝑑4(2𝑛2 − 2𝑛 − 1) + 4𝑑2𝛾𝜂(2𝑛3 − 6𝑛2 + 𝑛 − 1)

2𝑑𝛾𝑛2(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)2

+
𝛾2𝜂2(𝑛 − 1)(2𝑛3 − 4𝑛2 − 3𝑛 + 1)
2𝑑𝛾𝑛2(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)2

𝑏22 > 0,

𝜕𝑞𝛿𝑘𝑘
𝜕𝑛

= −
4𝑑4(1 + 2𝑛) + 4𝑑2𝛾𝜂(2𝑛2 − 𝑛 + 1)
2𝑑𝛾𝑛2(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)2

𝑏22

−
𝛾2𝜂2(𝑛 − 1)(2𝑛2 + 3𝑛 − 1)

2𝑑𝛾𝑛2(2𝑑2(1 + 𝑛) + 𝛾𝜂(𝑛 − 1)2)2
𝑏22 < 0.

his indicates that in the star graph the fluctuations the line connecting
o the source node of the disturbance will increase as the graph size
ncreases, while the fluctuations in other lines will decreases. These
rends can also be observed in Figs. 5(d) and 6(d).

Comparing the formulas of 𝐐𝛿 in Proposition 4.9 to that of 𝐐𝛿 in
Proposition 4.12, it is found that

lim
𝜂→0+

𝐐𝛿 = 𝐐𝛿 ,

where 𝜂 → 0+ means that the inertia goes to zero. This property demon-
strates that the variance of the phase difference in a power system
with very small inertia can be estimated by that in the non-uniform
Kuramoto model of a star graph.

5. The proofs

In (16), 𝐀2 and 𝐁2 are further decomposed as,

𝐀2 =
[

𝟎 𝐀22
𝐀23 𝐀24

]

, 𝐁2 =
[

𝟎
𝐁22

]

, (52)

where

𝐀22 =
[

𝟎 𝐈𝑛−1
]

∈ R(𝑛−1)×𝑛, 𝐀⊤
23 =

[

𝟎 −𝜦𝑛−1
]

∈ R(𝑛−1)×𝑛, (53a)

𝐀24 = −𝐔⊤𝐌−1𝐃𝐔 ∈ R𝑛×𝑛, 𝐁22 = 𝐔⊤𝐌−1∕2𝐁̃ ∈ R𝑛×𝑛. (53b)

Here, 𝜦𝑛−1 = diag(𝜆𝑖, 𝑖 = 2,… , 𝑛) ∈ R(𝑛−1)×(𝑛−1) is obtained by removing
the first column and the first row of the diagonal matrix 𝜦𝑛.

Proof of Theorem 4.2. With the matrix 𝐂2 in (17), we obtain from
(18) that

𝐐𝑦 = 𝐂2𝐐𝑥𝐂⊤
2 =

[

𝐂̃⊤𝐌−1∕2𝐔̂𝐆𝐔̂⊤𝐌−1∕2𝐂̃ 𝐂̃⊤𝐌−1∕2𝐔̂𝐒𝐔⊤𝐌−1∕2

𝐌−1∕2𝐔𝐒⊤𝐔̂⊤𝐌−1∕2𝐂̃ 𝐌−1∕2𝐔𝐑𝐔⊤𝐌−1∕2

]

.

With the block matrices 𝐀2 and 𝐁2 in (52) and the blocks 𝐀22, 𝐀23,
𝐀24 and 𝐁22 in (53) and the block matrix 𝐐𝑥 in (26), we derive from
the Lyapunov Eq. (19) that
[

𝟎 𝐀22
𝐀23 𝐀24

] [

𝐆 𝐒
𝐒⊤ 𝐑

]

+
[

𝐆 𝐒
𝐒⊤ 𝐑

] [

𝟎 𝐀22
𝐀23 𝐀24

]⊤

+
[

𝟎
𝐁22

]

[

𝟎 𝐁⊤
22
]

= 𝟎,

which yields
⊤ ⊤
𝐒𝐀22 + 𝐀22𝐒 = 𝟎, (54a)
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𝐆𝐀⊤
23 + 𝐒𝐀⊤

24 + 𝐀22𝐑 = 𝟎, (54b)
⊤𝐀⊤

23 + 𝐑𝐀⊤
24 + 𝐀23𝐒 + 𝐀24𝐑 = −𝐁22𝐁⊤

22. (54c)

Denote 𝐒 =
[

𝐒1 𝐒2
]

with 𝐒1 ∈ R𝑛−1 and 𝐒2 ∈ R(𝑛−1)×(𝑛−1) and insert
t into (54a), then

𝐒1 𝐒2
]

[

𝟎
𝐈𝑛−1

]

+
[

𝟎 𝐈𝑛−1
]

[

𝐒⊤1
𝐒⊤2

]

= 𝟎, (55)

hich leads to

2 + 𝐒⊤2 = 𝟎,

hich means that 𝐒2 is a skew-symmetric matrix. Thus, the elements
f 𝐒 satisfy

𝑗−1,𝑖+1 = −𝑠𝑖,𝑗 , 𝑖 = 1, 2,… , 𝑛 − 1, 𝑗 = 2,… , 𝑛.

It yields from Assumption 4.1 and (53) that 𝐀24 = −𝛼𝐈𝑛. Hence, we
btain from (54b) and (54c) that

𝛼𝐒 = 𝐆𝐀⊤
23 + 𝐀22𝐑, (56a)

𝛼𝐑 = 𝐒⊤𝐀⊤
23 + 𝐀23𝐒 + 𝐁22𝐁⊤

22. (56b)

By inserting (56b) into (56a), we derive

𝛼2𝐒 = 2𝛼𝐆𝐀⊤
23 + 𝐀22𝐒⊤𝐀⊤

23 + 𝐀22𝐀23𝐒 + 𝐀22𝐁22𝐁⊤
22

by (54a)

= 2𝛼𝐆𝐀⊤
23 − 𝐒𝐀⊤

22𝐀
⊤
23 + 𝐀22𝐀23𝐒 + 𝐀22𝐁22𝐁⊤

22.

Plugging 𝐀23 and 𝐀22 of (53) into the above equation, we get

𝛼𝐆
[

𝟎 −𝜦𝑛−1
]

+
[

𝟎 𝐈𝑛−1
]

𝐁22𝐁⊤
22 = 2𝛼2𝐒 + 𝐒

[

𝟎 𝟎
𝟎 −𝜦𝑛−1

]

+𝜦𝑛−1𝐒.

With the notation of 𝐒 =
[

𝐒1 𝐒2
]

, we obtain from the above
quation that
[

𝟎 −2𝛼𝐆𝜦𝑛−1
]

+
[

𝟎 𝐈𝑛−1
]

𝐁22𝐁⊤
22

= 2𝛼2
[

𝐒1 𝐒2
]

+
[

𝜦𝑛−1𝐒1 𝜦𝑛−1𝐒2
]

+
[

𝟎 −𝐒2𝜦𝑛−1
]

=
[

2𝛼2𝐒1 +𝜦𝑛−1𝐒1 2𝛼2𝐒2 +𝜦𝑛−1𝐒2 − 𝐒2𝜦𝑛−1
]

.

(57)

From the definition of 𝐁22 in (53), we obtain

[

𝟎 𝐈𝑛−1
]

𝐁22𝐁⊤
22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘
𝑢𝑘,2𝑢𝑘,1𝜉𝑘

∑

𝑘
𝑢2𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,2𝑢𝑘,𝑛𝜉𝑘

∑

𝑘
𝑢𝑘,3𝑢𝑘,1𝜉𝑘

∑

𝑘
𝑢𝑘,3𝑢𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,3𝑢𝑘,𝑛𝜉𝑘

⋮ ⋮ ⋮ ⋮
∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,1𝜉𝑘

∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢2𝑘,𝑛𝜉𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

(58)

where 𝑢𝑖,𝑗 is the element of the matrix 𝐔 and 𝜉𝑘 represent the 𝑘th
diagonal elements in 𝐌−1∕2𝐁̃2𝐌−1∕2. Plugging (58) into (57), we obtain
that the elements of the vector 2𝛼2𝐒1 +𝜦𝑛−1𝐒1 satisfy

⎡

⎢

⎢

⎢

⎢

(2𝛼2 + 𝜆2)𝑠1,1
(2𝛼2 + 𝜆3)𝑠2,1

⋮
2

⎤

⎥

⎥

⎥

⎥

=

⎡

⎢

⎢

⎢

⎢

∑

𝑘 𝑢𝑘,2𝑢𝑘,1𝜉𝑘
∑

𝑘 𝑢𝑘,3𝑢𝑘,1𝜉𝑘
⋮

∑

⎤

⎥

⎥

⎥

⎥

,

⎣

(2𝛼 + 𝜆𝑛)𝑠𝑛−1,1⎦ ⎣ 𝑘 𝑢𝑘,𝑛𝑢𝑘,1𝜉𝑘⎦ w

10 
which yields (28). Similarly, the elements of the matrix 2𝛼2𝐒2+𝜦𝑛−1𝐒2−
𝐒2𝜦𝑛−1 satisfy

⎡

⎢

⎢

⎢

⎢

⎣

0 (−2𝛼2−𝜆2 + 𝜆3)𝑠2,2 ⋯ (−2𝛼2 − 𝜆2 + 𝜆𝑛)𝑠𝑛−1,2
(2𝛼2 + 𝜆3 − 𝜆2)𝑠2,2 0 ⋯ (−2𝛼2 − 𝜆3 + 𝜆𝑛)𝑠𝑛−1,3

⋮ ⋮ ⋮ ⋮
(2𝛼2 + 𝜆𝑛 − 𝜆2)𝑠𝑛−1,2 (2𝛼2 + 𝜆𝑛 − 𝜆3)𝑠𝑛−1,3 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘
𝑢2𝑘,2𝜉𝑘

∑

𝑘
𝑢𝑘,2𝑢𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,2𝑢𝑘,𝑛𝜉𝑘

∑

𝑘
𝑢𝑘,3𝑢𝑘,2𝜉𝑘

∑

𝑘
𝑢2𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,3𝑢𝑘,𝑛𝜉𝑘

⋮ ⋮ ⋮ ⋮
∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,2𝜉𝑘

∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢2𝑘,𝑛𝜉𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 2𝛼

⎡

⎢

⎢

⎢

⎢

⎣

𝜆2𝑔1,1 𝜆3𝑔1,2 ⋯ 𝜆𝑛𝑔1,𝑛−1
𝜆2𝑔2,1 𝜆3𝑔2,2 ⋯ 𝜆𝑛𝑔2,𝑛−1
⋮ ⋮ ⋮ ⋮

𝜆2𝑔𝑛−1,1 𝜆3𝑔𝑛−1,2 ⋯ 𝜆𝑛𝑔𝑛−1,𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

.

(59)

By the symmetry of 𝐆, i.e., 𝑔𝑖,𝑗 = 𝑔𝑗,𝑖, we obtain from (59) that for
𝑖 = 1, 2,… , 𝑛 − 1, 𝑗 = 2,… , 𝑛,
(

2 − 2𝛼2

𝜆𝑖+1
− 2𝛼2

𝜆𝑗
−

𝜆𝑖+1
𝜆𝑗

−
𝜆𝑗
𝜆𝑖+1

)

𝑠𝑖,𝑗 =
(

1
𝜆𝑖+1

− 1
𝜆𝑗

)

𝐮⊤𝑖+1𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮𝑗 ,

(60)

hich yields (29).
From (59), we obtain for 𝑖 = 1, 2,… , 𝑛 − 1,

𝑖,𝑖 =
1

2𝛼𝜆𝑖+1
𝐮⊤𝑖+1𝐌

−1∕2𝐁̃2𝐌−1∕2𝐮𝑖+1, (61)

and for 𝑖 = 1, 2,… , 𝑛 − 1, 𝑗 = 𝑖 + 1,… , 𝑛 − 1,

−2𝛼𝜆𝑗+1𝑔𝑖,𝑗 = (𝜆𝑗+1 −𝜆𝑖+1− 2𝛼2)𝑠𝑗,𝑖+1 − 𝐮⊤𝑖+1𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮𝑗+1, (62)

which yield (30) with the expression of 𝐒 in (29).
Now, we focus on the derivation of 𝐑. We denote

𝐑 =
[

𝑅1 𝐑⊤
2

𝐑2 𝐑3

]

,

where 𝑅1 ∈ R, 𝐑2 ∈ R(𝑛−1) and 𝐑3 ∈ R(𝑛−1)×(𝑛−1). Then, (56b) is
rewritten into
[

𝑅1 𝐑⊤
2

𝐑2 𝐑3

]

= 1
2𝛼

([

0 −𝐒⊤1𝜦𝑛−1
−𝜦𝑛−1𝐒1 −𝜦𝑛−1𝐒2 − 𝐒⊤2𝜦𝑛−1

]

+ 𝐁22𝐁⊤
22

)

, (63)

where

𝐁22𝐁⊤
22 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘
𝑢2𝑘,1𝜉𝑘

∑

𝑘
𝑢𝑘,1𝑢𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,1𝑢𝑘,𝑛𝜉𝑘

∑

𝑘
𝑢𝑘,2𝑢𝑘,1𝜉𝑘

∑

𝑘
𝑢2𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,2𝑢𝑘,𝑛𝜉𝑘

⋮ ⋮ ⋮ ⋮
∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,1𝜉𝑘

∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,2𝜉𝑘 ⋯

∑

𝑘
𝑢2𝑘,𝑛𝜉𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

From (63), we obtain the expression of 𝑅1 which equals to 𝑟1,1 in
(31). From (63), we obtain,

𝐑2 =
1
2𝛼

⎛

⎜

⎜

⎜

⎜

⎝

−

⎡

⎢

⎢

⎢

⎢

⎣

𝜆2𝑠1,1
𝜆3𝑠2,1
⋮

𝜆𝑛𝑠𝑛−1,1

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎣

∑

𝑘 𝑢𝑘,1𝑢𝑘,2𝜉𝑘
∑

𝑘 𝑢𝑘,1𝑢𝑘,3𝜉𝑘
⋮

∑

𝑘 𝑢𝑘,1𝑢𝑘,𝑛𝜉𝑘

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

,

rom which we obtain for 𝑖 =1, 2,… , 𝑛 − 1,

𝑖+1,1=
1
2𝛼

(−𝜆𝑖+1𝑠𝑖,1 + 𝐮⊤𝑖+1𝑴
−1∕2𝐁̃2𝐌−1∕2𝐮1), (64)
hich leads (32) with the expression of 𝑠𝑖,1 in (28).
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From (63), we further obtain,

2𝛼𝐑3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑘
𝑢2𝑘,2𝜉𝑘

∑

𝑘
𝑢𝑘,2𝑢𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,2𝑢𝑘,𝑛𝜉𝑘

∑

𝑘
𝑢𝑘,3𝑢𝑘,2𝜉𝑘

∑

𝑘
𝑢2𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢𝑘,3𝑢𝑘,𝑛𝜉𝑘

⋮ ⋮ ⋮ ⋮
∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,2𝜉𝑘

∑

𝑘
𝑢𝑘,𝑛𝑢𝑘,3𝜉𝑘 ⋯

∑

𝑘
𝑢2𝑘,𝑛𝜉𝑘

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 (𝜆2 − 𝜆3)𝑠2,2 ⋯ (𝜆2 − 𝜆𝑛)𝑠𝑛−1,2
(−𝜆3 + 𝜆2)𝑠2,2 0 ⋯ (𝜆3 − 𝜆𝑛)𝑠𝑛−1,3

⋮ ⋮ ⋮ ⋮

(−𝜆𝑛 + 𝜆2)𝑠𝑛−1,2 (−𝜆𝑛 + 𝜆3)𝑠𝑛−1,3 ⋯ 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(65)

Thus, for 𝑖, 𝑗 = 2, 3,… , 𝑛,

𝑟𝑖,𝑗 =
1
2𝛼

(

(𝜆𝑖 − 𝜆𝑗 )𝑠𝑗−1,𝑖 + 𝐮⊤𝑖 𝐌
−1∕2𝐁̃2𝐌−1∕2𝐮𝑗

)

,

hich leads to (32) with the formula of 𝑠𝑗−1,𝑖 in (29). □

Proof of Proposition 4.6. Following (A.1) in the Appendix and
Assumptions 4.3 and 4.5, we obtain the eigenvalues of the matrix
𝐌−1∕2𝐋𝐌−1∕2 as defined in (14), which satisfy

𝜆1 = 0, 𝜆𝑖 = 𝛾𝜂−1𝑛, for 𝑖 = 2,… , 𝑛.

With these eigenvalues and Theorem 4.2, the formula of 𝐑 is
rewritten into

𝐑 = 𝜂−1
⎡

⎢

⎢

⎣

1
2𝛼 𝐮

⊤
1 𝐁̃

2𝐮1
𝛼

2𝛼2+𝜂−1𝛾𝑛𝐮
⊤
1 𝐁̃

2𝐔̂
𝛼

2𝛼2+𝜂−1𝛾𝑛 𝐔̂
⊤𝐁̃𝐮1

1
2𝛼 𝐔̂

⊤𝐁̃2𝐔̂

⎤

⎥

⎥

⎦

. (66)

Hence, the variance matrix of frequency satisfies

𝝎 = 𝜂−1
[

𝐮1 𝐔̂
]

𝐑
[

𝐮1 𝐔̂
]⊤

by 𝐮1𝐮⊤1 + 𝐔̂𝐔̂⊤ = 𝐈

= 𝜂−2
(

1
2𝛼

𝐁̃2 +
(

𝛼
2𝛼2 + 𝜂−1𝛾𝑛

− 1
2𝛼

)

(

𝐮1𝐮⊤1 𝐁̃
2 + 𝐁̃2𝐮1𝐮⊤1

)

+
(

1
𝛼
− 2𝛼

2𝛼2 + 𝜂−1𝛾𝑛

)

𝐮1𝐮⊤1 𝐁̃
2𝐮1𝐮⊤1

)

.

Inserting 𝐮1 = 1∕
√

𝑛𝟏⊤𝑛 into the above equation, we obtain the
iagonal elements of 𝐐𝜔, which satisfy for 𝑖 = 1,… , 𝑛,

𝜔𝑖,𝑖
= 𝜂−2

⎛

⎜

⎜

⎜

⎝

𝑏2𝑖
2𝛼

+
−𝛾𝑏2𝑖

𝑑(2𝛼2 + 𝜂−1𝛾𝑛)
+

𝛾tr
(

𝐁̃2
)

𝑑𝑛(2𝛼2 + 𝜂−1𝛾𝑛)

⎞

⎟

⎟

⎟

⎠

=
[ 1
2𝑑𝜂

−
𝛾(𝑛 − 1)

𝑑𝑛(2𝑑2 + 𝛾𝜂𝑛)
]

𝑏2𝑖 +
𝛾(tr(𝐁̃2) − 𝑏2𝑖 )

𝑑𝑛
(

2𝑑2 + 𝛾𝜂𝑛
) .

With the eigenvalues in (66) and the formula of 𝐆 in (30), we derive

= 1
2𝛼𝛾𝑛

𝐔̂⊤𝐁̃2𝐔̂,

hich is inserted into (27), we obtain

𝛿 =
1

2𝛼𝜂𝛾𝑛
𝐂̃⊤𝐔̂𝐔̂⊤𝐁̃2𝐔̂𝐔̂⊤𝐂̃

by[𝐮1 𝐔̂][𝐮1 𝐔̂]⊤ = 𝐮1𝐮⊤1 + 𝐔̂𝐔̂⊤ = 𝐈𝑛

= 1
2𝑑𝛾𝑛

𝐂̃⊤(𝐈𝑛 − 𝐮1𝐮⊤1 )𝐁̃
2(𝐈𝑛 − 𝐮1𝐮⊤1 )𝐂̃

by 𝐂̃⊤𝐮1 = 𝟎

= 1
2𝑑𝛾𝑛

𝐂̃⊤𝐁̃2𝐂̃,

which leads to (34). If we substitute the formula of incidence matrix
into the above equation, we will get (35). □
 𝑛
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Proof of Proposition 4.8. Following Eq. (A.1) in the Appendix and the
assumption of 𝐃 = 𝑑𝐈 and the weight 𝐾𝑖,𝑗 cos 𝛿∗𝑖𝑗 = 𝛾 for all the lines,

e obtain the eigenvalues of the matrix 𝐃−1∕2𝐋𝐃−1∕2,

𝜆1 = 0, 𝜆𝑖 = 𝑛𝛾∕𝑑 for 𝑖 = 2,… , 𝑛.

Plugging these eigenvalues of the Laplacian matrix of the complete
graph into (24), we obtain the expression of the elements of the matrix
𝐐𝑥,

𝑞𝑥𝑖𝑗 =
1

2𝛾𝑛
𝐮⊤𝑖+1𝐁̃

2𝐮𝑗+1, ∀𝑖, 𝑗 = 1,… , 𝑛 − 1.

Thus, 𝐐𝑥 = 1
2𝛾𝑛𝐔

⊤
2 𝐁̃

2𝐔2. Following (22), we derive

𝐐𝑦 =
1

2𝑑𝛾𝑛
𝐂̃⊤𝐔2𝐔

⊤
2 𝐁̃

2𝐔2𝐔
⊤
2 𝐂̃ = 1

2𝑑𝛾𝑛
𝐂̃⊤(𝐈 − 𝐮1𝐮

⊤
1 )𝐁̃

2(𝐈 − 𝐮1𝐮
⊤
1 )𝐂̃

= 1
2𝑑𝛾𝑛

𝐂̃⊤𝐁̃2𝐂̃,

which completes the proof. □

Proof of Proposition 4.9. The proof is in analogy to the one for
Proposition 4.6 with the explicit formulas of the eigenvalues of the
Laplacian matrix of a star graph in (A.2). For details of the proof, we
refer to the arXiv version of this paper [41].

Proof of Proposition 4.12.
Following Eq. (A.2) in the Appendix and the assumption of 𝐃 = 𝑑𝐈

and 𝑙𝑐𝑖,𝑗 = 𝛾 for all the lines, we obtain the eigenvalues of the matrix
𝐃−1∕2𝐋𝐃−1∕2,

𝜆1 = 0, 𝜆2 = ⋯ = 𝜆𝑛−1 = 𝛾∕𝑑, 𝜆𝑛 = 𝑛𝛾∕𝑑 for 𝑖 = 2,… , 𝑛.

Following the formula of the matrix 𝐐𝑥 in (24), we obtain,

𝑞𝑥𝑖,𝑗 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2𝛾 𝐮

⊤
𝑖 𝐁̃

2𝐮𝑗 , 𝑖, 𝑗 = 2,… , 𝑛 − 1,
1

𝛾(1+𝑛)𝐮
⊤
𝑛 𝐁̃

2𝐮𝑗 , 𝑖 = 𝑛, 𝑗 = 2,… , 𝑛 − 1,
1

𝛾(1+𝑛)𝐮
⊤
𝑖 𝐁̃

2𝐮𝑛, 𝑗 = 𝑛, 𝑖 = 2,… , 𝑛 − 1,
1

2𝛾𝑛𝐮
⊤
𝑛 𝐁̃

2𝐮𝑛, 𝑖 = 𝑗 = 𝑛.

(67)

Denote 𝐔2 = [𝐔̂2 𝐮𝑛], where 𝐔̂2 ∈ R𝑛×(𝑛−2). Then we convert the
matrix 𝐐𝑥 into four blocks,

𝐐𝑥 =

⎡

⎢

⎢

⎢

⎣

1
2𝛾 𝐔̂

⊤

2 𝐁̃
2𝐔̂2

1
𝛾(1+𝑛) 𝐔̂

⊤

2 𝐁̃
2𝐮𝑛

1
𝛾(1+𝑛)𝐮

⊤
𝑛 𝐁̃

2𝐔̂2
1

2𝛾𝑛𝐮
⊤
𝑛 𝐁̃

2𝐮𝑛

⎤

⎥

⎥

⎥

⎦

.

Let 𝐓̃ = 𝐔2𝐐𝑥𝐔
⊤
2 , then we have

𝐓̃ = [𝐔̂2 𝐮𝑛]
⎡

⎢

⎢

⎣

1
2𝛾
𝐔̂

⊤

2 𝐁̃
2𝐔̂2

1
𝛾(1+𝑛)

𝐔̂
⊤

2 𝐁̃
2𝐮𝑛𝐂̃

1
𝛾(1+𝑛)

𝐮⊤𝑛 𝐁̃
2𝐔̂2

1
2𝛾𝑛

𝐮⊤𝑛 𝐁̃
2𝐮𝑛

⎤

⎥

⎥

⎦

[𝐔̂2 𝐮𝑛]⊤

= 1
2𝛾

𝐁̃2 + 1
2𝛾

(

𝐮1𝐮
⊤
1 𝐁̃

2𝐮1𝐮
⊤
1 − 𝐮1𝐮

⊤
1 𝐁̃

2 − 𝐁̃2𝐮1𝐮
⊤
1

)

+
(𝑛 − 1)2

2𝛾𝑛(1 + 𝑛)
𝐮𝑛𝐮

⊤
𝑛 𝐁̃

2𝐮𝑛𝐮
⊤
𝑛

+ 𝑛 − 1
2𝛾(1 + 𝑛)

(

𝐮1𝐮
⊤
1 𝐁̃

2𝐮𝑛𝐮
⊤
𝑛 + 𝐮𝑛𝐮

⊤
𝑛 𝐁̃

2𝐮1𝐮
⊤
1 − 𝐁̃2𝐮𝑛𝐮

⊤
𝑛 − 𝐮𝑛𝐮

⊤
𝑛 𝐁̃

2
)

.

So we get the formula of the variance matrix of the phase differ-
ences,

𝐐𝛿 =
1
𝑑
𝐂̃⊤𝐓̃𝐂̃,

and substitute the incidence matrix 𝐂̃ into the above equation, we have

𝑞𝛿𝑘,𝑞 = 1
𝑑

(

𝑇11 − 𝑇𝑘+1,1 − 𝑇1,𝑞+1 + 𝑇𝑘+1,𝑞+1
)

.

Following Eq. (A.2) in the Appendix, the vector 𝐮𝑛 = 1∕
√

𝑛(𝑛 − 1)[1−
, 1,… , 1]⊤ is the eigenvector corresponding to the eigenvalue 𝑛, then
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we obtain,

𝑇11 =
1
2𝛾

𝑏21 +
1

2𝛾𝑛3(1 + 𝑛)

[

(1 − 𝑛)4𝑏21 + (1 − 𝑛)2
𝑛
∑

𝑡=2
𝑏2𝑡

]

+ 1
2𝛾

( 1
𝑛2

tr
(

𝐁̃2
)

− 2
𝑛
𝑏21
)

+ 1
2𝛾𝑛2(1 + 𝑛)

(

2(1 − 𝑛)2𝑏21 + 2(1 − 𝑛)
𝑛
∑

𝑡=2
𝑏2𝑡 − 2𝑛(1 − 𝑛)2𝑏21

)

,

𝑇1,𝑞+1 =
1

2𝛾𝑛3(1 + 𝑛)

[

(1 − 𝑛)3𝑏21 + (1 − 𝑛)
𝑛
∑

𝑡=2
𝑏2𝑡

]

+ 1
2𝛾

(

1
𝑛2

tr
(

𝐁̃2
)

−
𝑏21 + 𝑏2𝑞+1

𝑛

)

+ 1
2𝛾𝑛2(1 + 𝑛)

(

(2 − 𝑛)(1 − 𝑛)𝑏21 + (2 − 𝑛)
𝑛
∑

𝑡=2
𝑏2𝑡 − 𝑛(1 − 𝑛)𝑏21 − 𝑛(1 − 𝑛)𝑏2𝑞+1

)

,

𝑇𝑘+1,1 =
1

2𝛾𝑛3(1 + 𝑛)

[

(1 − 𝑛)3𝑏21 + (1 − 𝑛)
𝑛
∑

𝑡=2
𝑏2𝑡

]

+ 1
2𝛾

(

1
𝑛2

tr
(

𝐁̃2
)

−
𝑏21 + 𝑏2𝑘+1

𝑛

)

+ 1
2𝛾𝑛2(1 + 𝑛)

(

(2 − 𝑛)(1 − 𝑛)𝑏21 + (1 − 𝑛)
𝑛
∑

𝑡=2
𝑏2𝑡 + (2 − 𝑛)𝑏21 − 𝑛(1 − 𝑛)𝑏2𝑘+1

)

,

𝑇𝑘+1,𝑞+1 =
1

2𝛾𝑛3(1 + 𝑛)

[

(1 − 𝑛)2𝑏21 +
𝑛
∑

𝑡=2
𝑏2𝑡

]

+ 1
2𝛾

(

1
𝑛2

tr
(

𝐁̃2
)

−
𝑏2𝑞+1 + 𝑏2𝑘+1

𝑛

)

+ 1
2𝛾𝑛2(1 + 𝑛)

(

2(1 − 𝑛)𝑏21 + 2
𝑛
∑

𝑡=2
𝑏2𝑡 − 𝑛(𝑏2𝑘+1 + 𝑏2𝑞+1)

)

, (𝑘 ≠ 𝑞),

𝑘̃+1,𝑘+1 =
1
2𝛾

𝑏2𝑘+1 +
1

2𝛾𝑛3(1 + 𝑛)

[

(1 − 𝑛)2𝑏21 +
𝑛
∑

𝑡=2
𝑏2𝑡

]

+ 1
2𝛾𝑛2(1 + 𝑛)

(

2(1 − 𝑛)𝑏21 + 2
𝑛
∑

𝑡=2
𝑏2𝑡 − 2𝑛𝑏2𝑘+1

)

+ 1
2𝛾

(

1
𝑛2

tr
(

𝐁̃2
)

−
2𝑏2𝑘+1
𝑛

)

.

With these formulas, we further obtain

𝑞𝛿𝑘,𝑞 = 1
𝑑

(

𝑇11 − 𝑇𝑘+1,1 − 𝑇1,𝑞+1 + 𝑇𝑘+1,𝑞+1
)

,

and

𝑞𝛿𝑘,𝑘 = 1
𝑑

(

𝑇11 − 𝑇𝑘+1,1 − 𝑇1,𝑘+1 + 𝑇𝑘+1,𝑘+1
)

,

hich leads to (50) and (51) respectively. □

. Conclusions

The explicit formula of the variance matrix of a linearized stochastic
ystem of a power system has been deduced at the invariant probability
istribution based on the assumption of uniform damping-inertia ratio
t all nodes. With this analytic formula and assumption of identical
eights of the lines, the impact of the system parameters on the
ropagation of the fluctuations in the system with complete graphs
nd star graphs is analyzed. It is found that increasing the size of the
etwork prevents the fluctuations from the source node of disturbances.
his implies that adding a new node, which does help dissipate the
luctuations, prevents the fluctuations propagate from the disturbance’s
ource node to other nodes. In addition, increasing the line capacity
ccelerates the fluctuation propagation in frequency and increasing the
nertia also help suppress the fluctuation in the phase difference, both
f which however is quite limited.

In the future, research interest remains on the analytic formula of
he variance matrix without any assumptions on the system parameters.
he results for different types of networks will be compared to reveal
he impact of network topology on disturbance propagation. Attention
ill also be on the variance matrices of the systems with correlated

isturbances.
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Appendix

A.1. The spectrum of the Laplacian matrices

Consider the graph  = ( , ). Assume the weights of all the lines
re all identical, i.e., 𝑤𝑖,𝑗 = 𝜈 ∈ R+ for (𝑖, 𝑗) ∈  ,

(i) If  is a complete graph, then the eigenvalues of the Laplacian
matrix satisfy [42],

𝜇1 = 0, and 𝜇𝑖 = 𝜈𝑛 for 𝑖 = 2,… , 𝑛. (A.1)

(ii) If  is a star graph, then the eigenvalues of the Laplacian matrix
satisfy [42],

𝜇1 = 0, 𝜇2 = ⋯ = 𝜇𝑛−1 = 𝜈, 𝜇𝑛 = 𝜈𝑛, (A.2)

the vector
[

𝑛 − 1 −1 −1 ⋯ −1
]⊤ ∈ R𝑛 is an eigenvector of

the Laplacian matrix corresponding to the eigenvalue 𝜇𝑛 = 𝜈𝑛.
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