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Abstract

Rotating frame relaxation (𝑇1𝜌 ) measurement is a promising technique for magnetic resonance imaging
of, for example, articular cartilage and the heart. This technique is very sensitive to inhomogeneities in
themain and excitationmagnetic field, which causes the image to locally lose contrast. Adiabatic pulses
are able to perform similar measurements (𝑇1𝜌,adiab ) while being resistant to these inhomogeneities.
For these pulses it is important to find the correct pulse parameters. Current optimization methods for
these parameters rely on Bloch simulations, that ignore 𝑇1𝜌 relaxation during the pulse application. The
Redfield method uses a semi-classical model that allows for the incorporation of these relaxation times.
The goal of this project is to find an optimization method, based on Redfield theory, that can take 𝑇1𝜌
relaxation during the pulse application into account.

Redfield theory was first used to derive the relaxation times during continuous spin-lock pulses. These
were in agreement to limits found in the literature. Next, the derivation was extended to also consider
main field inhomogeneity, which results in off-resonant pulses. In the limit these agreed with our on-
resonance derivation, and they also agreed with similar derivations found in the literature. Finally this
derivation was extended to amplitude- and frequency-modulated pulses by means of finite-difference
time simulations. For these simulations, it was assumed that the AM and FM modulation functions
were constant during each time step: the quasistatic assumption.

Two parameters of the hyperbolic secant pulses were optimized: the peak sharpness 𝛽 and the fre-
quency modulation amplitude 𝐴. This optimization was based on an equal weighting of two scores.
The first is the deviation in 𝑇1𝜌 , predicted by the Redfield calculations, for off-resonance values of
0, 50, 100,… , 200 Hz. These represent the variations in the main magnetic field. The second is the
final magnetization along the longitudinal axis, found using conventional Bloch simulations. As a com-
parison, state-of-the art optimization was performed using the final magnetization score only. It was
observed that incorporating the 𝑇1𝜌 deviation into the optimization resulted in in a 83%, 83%, 88%
improved resilience to off-resonance for 𝜏𝑐 = 0.01, 0.1, 1 ns correlation times.

Experimental validation of the Redfield calculations encountered difficulties due to artefacts in the ac-
quired MRI scans. These are assumed to be related to dephasing, and further research could avoid
them by adding refocusing to their pulses. The qualitative behaviour acquired from this data matches
with the calculations, but the actual values do not match theoretical predictions.

In conclusion, adding Redfield calculations to the pulse optimization method allows for the selection of
parameters that are optimally resistant to magnetic field inhomogeneities. Further research is needed
to obtain results that can improve MR imaging in practice.
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Abbreviations and Symbols

MR(I) Magnetic Resonance (Imaging)

AM Amplitude Modulation

FM Frequency Modulation

RF Radio-Frequency / excitation pulse

𝑇1𝑇1𝑇1 Relaxation time along the main magnetic field, no RF field present

𝑇2𝑇2𝑇2 Relaxation time perpendicular to the main magnetic field, no RF field present

𝑇1𝜌𝑇1𝜌𝑇1𝜌 Relaxation time along the effective field, in the presence of an RF field

𝑇2𝜌𝑇2𝜌𝑇2𝜌 Relaxation time perpendicular to the effective field, in the presence of an RF field

𝑇1𝜌,𝑎𝑑𝑖𝑎𝑏𝑇1𝜌,𝑎𝑑𝑖𝑎𝑏𝑇1𝜌,𝑎𝑑𝑖𝑎𝑏 Relaxation time along the effective field, in the presence of an adiabatic RF field

𝐵0𝐵0𝐵0 Main magnetic field strength

𝐵1𝐵1𝐵1 Radio-frequency field strength

RMS Root-Mean-Square

AHP Adiabatic Half-Passage, an adiabatic pulse that rotates the magnetization into the transverse
plane

̂𝐼𝑎 Quantum mechanical spin operator in the 𝑎 direction.
̂�̂�𝜃 ̂𝐼𝑎 Operator for the rotation of spin Hamiltonians by 𝜃 degrees around the 𝑎 axis.
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1
Introduction

Magnetic Resonance Imaging (MRI) is an important imagingmodality since it can create high-resolution
cross-sectional images of the human body [1]. In MRI scanners, the nuclear spin magnetization is
excited using radio-frequency pulses. Images are created based on the time evolution of this magne-
tization [2]. This evolution is caused by multiple effects, which can be characterized by time constants
(𝑇1, 𝑇2, 𝑇1𝜌, … ). These time constants change from tissue to tissue, and for healthy and diseased
tissues. Measuring these relaxation properties with specific MRI sequences can provide important di-
agnostic information. Unfortunately, most MRI measurements are strongly patient-, scanner- and pulse
sequence dependent [3]. This hinders monitoring patient progress between scans, and the creation of
quantitative diagnastic criteria for diseases.

Rotating frame relaxation measurements are concerned with finding the 𝑇1𝜌 and 𝑇2𝜌 time constants.
They are a promising technique that allow the use of MRI to assess slow molecular interactions in tis-
sue. This assessment can find rich clinical applications, for example detection of arthritis in the articular
cartilage of the knee [4] or assessment of scar tissue following myocardial infarction, without contrast
agent injection [5]. Rotating frame relaxation measurements require continuous application of a elec-
tromagnetic excitation field. Local variations in both the main scanner field and this excitation field can
cause contrast loss, which degrades image quality [6]. Furthermore, they hinder the quantitative com-
parison of measurements between patients [7]. Adiabatic pulses, whose orientation changes slowly in
time, are resistant to the effect of these variations. Their effectiveness, however, is largely dependent
on their pulse parameters [8]. Conventional methods to optimize these parameters are based on Bloch
simulations, and thus neglect the influence of the excitation field on the relaxation. This makes these
methods less suitable for rotating frame relaxation measurements.

A paper by Garwood et al. has demonstrated optimization of pulse parameters while neglecting re-
laxation [8]. A paper by Sorce et al. has examined the relaxation behaviour during adiabatic pulses,
but has not investigated specifically the effect of pulse parameters [9]. There is thus still a need to
investigate pulse optimization while considering rotating frame relaxation times.

In this project, we will use Redfield theory to create a pulse optimization framework that can take this
relaxation behaviour into account. Redfield theory describes a semi-classical model, in which the spin
system itself is treated quantum mechanically, while the interactions with its environment are described
by classical thermodynamics. We will first use this model to derive the influence of local magnetic
field variations on relaxation times. Then we will extend this calculation to amplitude- and frequency-
modulated pulses. This is done by a finite-difference time simulation, where the assumption is made
that these fields are constant in each timestep (a quasistatic assumption). We will apply these results
to a pulse optimization algorithm. Finally, experimental measurements are made using pulses that
emulate magnetic field variations. These measurements are used to our theoretical results of their
influence on 𝑇1𝜌 .

Chapter 2 describes the experimental methods used in this project, both for the mathematical deriva-
tions and the physical measurements. Chapter 3 contains the theoretical and experimental results.
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2 1. Introduction

Chapter 4 discusses the limitations and implications of these results, and further work. Chapter 5 pro-
vides the final conclusions. The part of this project that investigates the use of Redfield theory in pulse
optimization has also been submitted to the 2024 EMBC conference.

1.1. Theoretical Background
This section contains a summary of the theoretical knowledge that is used in this report. First, MRI re-
laxation is examined as a classical phenomenon. Afterwards this description is extended using Redfield
theory, that also takes into account the quantum mechanical nature of MRI relaxation.

1.1.1. Magnetic Resonance Imaging and Relaxation
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Figure 1.1: Figures showing the evolution of the magnetization (𝑀, in green) during various stages of a classical MRI experiment.
The excitation is assumed to be on-resonance. A) the main field 𝐵0 magnetizes the tissue. The magnetization precesses around
the main field. B) An radio-frequency pulse is applied to the tissue. This causes a rotating magnetic field 𝐵1 to appear. 𝐵1
causes the magnetization to tilt towards the transverse plane. C) The same as B), but now in the first rotating frame (𝑥′ , 𝑦′ , 𝑧′),
rotating at the same speed as the magnetization. D) After the RF pulse is switched off, the magnetization returns to its equilibrium
position by relaxation. The longitudinal relaxation recovers with a time constant 1/𝑇1, while the transverse relaxation disappears
with a time constant 1/𝑇2.

MRI scanners contain a big permanent magnet, generating a field with field strength in the order of
0.1 to 10 T. This main magnetic field 𝐵0 is so strong that it magnetizes regions of the patient’s tissue.
Each of these regions acts like a magnetic dipole with strength 𝜇, experiencing a torque 𝜏 = 𝜇𝜇𝜇 × 𝐵𝐵𝐵 in
an external magnetic field 𝐵. If the magnetization is not completely parallel to the magnetic field, this
torque causes it to rotate around the magnetic field. This is called precession, and is shown in figure
1.1a. The speed of the precession depends on the strength of the magnetic field. The constant of
proportionality is 𝛾, the gyromagnetic ratio. Its value is around 42.58 MHz 𝑇−1 , so a standard MRI
scanner with 𝐵0 = 3T would have a precession frequency of 𝜔0 = 𝛾𝐵0 = 804 ⋅ 106 rad/s ≈ 128 MHz.
This is such a common calculation in MRI physics, that it is sometimes ignored altogether: it is common
to talk about a pulse having a field strength of 50 Hz , which corresponds to 1.17 𝜇T. The precession
frequency in the main magnetic field is also called the Larmor frequency.

The magnetization component in the transverse plane acts like a rotating dipole, and thus emits electro-
magnetic waves. However, when only the main magnetic field is present, the magnetization is aligned
to the 𝑧-axis and there is no detectable transverse component. To create a detectable signal, the mag-
netization must be tipped into the transverse plane. This is accomplished by using electromagnets to
transmit a radio-frequency (RF) wave towards the patient.

In a classical MRI experiment a short, circularly polarized RF pulse is used. This pulse causes a rotating
magnetic field 𝐵1 to appear in the transverse (𝑥, 𝑦) plane. Ideally, this rotation is also at the Larmor
frequency, so that 𝐵1 and the magnetization do not rotate with respect to each other. This is called
on-resonance excitation. In that case, the torque due to this pulse simply rotates the magnetization
around the 𝐵1 field as shown in figure 1.1b. Since both 𝐵1 and 𝑀 are rotating at the Larmor frequency,
it is convenient to consider a reference frame that also rotates at this frequency. This is called the
first rotating frame, and is shown in figure 1.1c. In this frame, the only movement is the magnetization
precessing around the 𝐵1 field, tilting into the transverse plane. 𝐵0 only causes the magnetization to
precess, so it has no effect on the magnetization in this rotating frame. Therefore the effective field in
this frame is 𝐵eff = 𝐵1 ̂𝑥′
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After this excitation, the RF pulse is switched off. Themagnetization relaxes back to equilibrium through
two processes: 𝑇1 relaxation describes the return of the longitudinal magnetization to its original value.
𝑇2 relaxation describes the decay of the transverse magnetization to zero. This relaxation can be seen
in figure 1.1d. This relaxation is often modelled as an exponential function with time constant 1/𝑇1 and
1/𝑇2, respectively. The relaxation times 𝑇1 and 𝑇2 depend on the local environment of the protons.
For example, fatty tissue tends to have a shorter 𝑇1 than tissues with a higher water content. The
magnetization is allowed to relax for a short period of time before imaging. This turns the relaxation
time difference into a difference in magnetization, which is detectable through the electromagnetic
waves emitted by the rotating magnetization.

More complex imaging methods will use additional RF-pulses to get a maximum signal from either 𝑇1
or 𝑇2 decay. Furthermore, they use additional so-called gradient fields to resolve the position of each
magnetization. This project focuses on MR relaxation, but the details of these steps can be found in
references [2] and [1].

The precession and relaxation phenomena are described in the Bloch equations:

𝑑𝑀𝑥
𝑑𝑡 = 𝛾 (𝑀𝑀𝑀 ×𝐵𝐵𝐵)𝑥 −

𝑀𝑥(𝑡)
𝑇2

𝑑𝑀𝑦
𝑑𝑡 = 𝛾 (𝑀𝑀𝑀 ×𝐵𝐵𝐵)𝑦 −

𝑀𝑦(𝑡)
𝑇2

𝑑𝑀𝑧
𝑑𝑡 = 𝛾 (𝑀𝑀𝑀 ×𝐵𝐵𝐵)𝑧 −

𝑀𝑧(𝑡) − 𝑀0
𝑇1

(1.1)

Here 𝑀𝑀𝑀 is the magnetization, 𝐵𝐵𝐵 the magnetic field, 𝛾 the gyromagnetic ratio and 𝑀0 the equilibrium
magnetization (assumed to be along the 𝑧-axis).
These equations are a very popular way of modelling MRI, but they require 𝑇1 and 𝑇2 to be known in
advance. This is not trivial, as multiple different processes contribute to both types of relaxation. In
practice, the 𝑇1 and 𝑇2 values for tissues are measured experimentally, or found in the literature. This
is also problematic, as measured relaxation times depend on the imaging method used [3].

(a) On-resonance (b) Off-resonance

Figure 1.2: Two MRI images of the same bottle. The colour of each pixel represents the intensity of radio signals received by
the scanner. B) shows strong off-resonance artefacts near the edges, due to the difference in susceptibility between the bottle
and the surrounding air. A) does not show these artefacts, because a different preparation pulse was used.

If the RF pulse does not rotate at the Larmor frequency, we say that the RF pulse is off-resonant. In that
case, both 𝐵1 and the first rotating frame rotate at a frequency 𝜔rf ≠ 𝜔0. The magnetization, however,
still precesses at a frequency 𝜔0. In this situation, a more careful approach is required to find the
effective field. The calculation, shown in appendix A, shows that 𝐵eff = 𝐵1 ̂𝑥′−Ω ̂𝑧′, where Ω = 𝜔0−𝜔rf
is called the off-resonance. The magnetization will precess around this effective field, and will thus not
experience the same rotation as in the on-resonance case. The actual transverse component of the
magnetization depends on the duration of the RF pulse, and the amount of off-resonance. In general,
off-resonance is caused by inhomogeneities in the 𝐵0 field, which are in turn caused by the different
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magnetic susceptibilities in the tissue [10]. In practice, off-resonance artefacts tend to show up as
ripples in regions were the MRI signal should be homogeneous. An example of this is shown in figure
1.2.

A rotating frame relaxation experiment is similar to a classical MRI experiment, except for that the RF
pulse is not switched off during the relaxation. In a spin-lock experiment, the magnetization is first
tipped into the transverse plane, and then the RF pulse is applied in phase to the magnetization. For
an adiabatic1 pulse experiment, the RF-pulse is transmitted so that it is aligned with the magnetization.
In both cases, the magnetization precesses around the effective field. By varying the amplitude and
frequency of the RF pulse, the effective field moves into the transverse plane. As long as this change
is slow enough (i.e. the pulse is adiabatic) the magnetization will follow. A big advantage of adiabatic
pulses is that the magnetization will follow the pulse, even if originally it is originally aligned differently
due to off-resonance. In contrast, a normal block pulse will tip the magnetization by a fixed angle, no
matter its original orientation.

In the next section, we show that there is not simply 𝑇1 and 𝑇2 relaxation during these rotating frame
experiments. Instead, we must consider the relaxation parallel to the effective field, which is called 𝑇1𝜌 ,
and perpendicular to this field, which is called 𝑇2𝜌 . It is convenient to consider the second rotating frame
(𝑥″, 𝑦″, 𝑧″), where the effective field 𝐵eff is aligned to the 𝑧″-axis, and which rotates with a frequency
𝜔eff = √𝜔21 + Ω2 around this axis. In this frame, 𝑇1𝜌 and 𝑇2𝜌 relaxation are just the relaxation along the
𝑧″-axis and in the transverse plane, respectively.

During an adiabatic pulse, the apparent relaxation times additionally strongly depend on the parameters
of the pulse that is being transmitted. Therefore, the relaxation times during these experiments are
called 𝑇1𝜌,𝑎𝑑𝑖𝑎𝑏 and 𝑇2𝜌,𝑎𝑑𝑖𝑎𝑏 to distinguish them from 𝑇1𝜌 and 𝑇2𝜌 .

1.1.2. Redfield Theory

E

B

ΔE

Spin down

Spin up

Figure 1.3: An illustration of the Zeeman effect. As the magnetic field 𝐵 increases, the energy difference between the spin-up
and spin-down eigenstates grows.

E ΔE
Potential Energy

released

Figure 1.4: An illustration of stimulated emission. The proton (filled red dot) needs to release energy to move to the lower-energy
state (hollow dot). This emission is only possible after an external potential interacts with the particle.

The relaxation times in the Bloch equations are phenomenological: they are observed, but do not cor-
respond to a single physical process. Dipole-dipole relaxation, chemical shift anisotropy and J-coupling
1The pulse is adiabatic in the sense that it cause the effective field to slowly change orientation. There is still energy transfer
from the pulse into the tissue.
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are some of the relaxation mechanisms. In clinical MRI, where the signal is mostly due to proton spin,
dipole-dipole interaction is often the biggest contributor, and we will focus on this phenomenon in the
remainder of the work.

At a microscopic level, the spins are characterized by a Hamiltonian, that describes its energy as a
function of external magnetic fields. This Hamiltonian has two energy eigenstates: the spin-up state,
which is aligned parallel to the magnetic field, and the spin-down state that is aligned antiparallel. In
practice the spins can be aligned in any direction by a superposition of these two states. The Zeeman
effect, shown in figure 1.3, causes an energy difference between the spin-up and spin-down state.
Similarly to classical behaviour, there is less potential energy when the magnetization is aligned to the
magnetic field.

The Hamiltonian consists of two parts. The first part is 𝐻0. It is time-independent, and caused by
the orientation of the spin in the external magnetic field. In equilibrium, these are aligned parallel to
each other, and the energy is minimal. After excitation, however, the spin is rotated and this energy is
no longer minimal. Because of the relatively small energy difference, the spin will not spontaneously
reorient itself [11]. Instead, this relaxation is stimulated by a time-dependent perturbation part 𝐻1. This
Hamiltonian will cause the spin to evolve from its original state to a superposition, from where it can
relax back to equilibrium. Stimulated emission is shown in figure 1.4.

On a macroscopic scale, the behaviour of a single particle is irrelevant. Many MRI effects can be
understood entirely classically [12], but relaxation rates must be calculated from the behaviour of an
ensemble of many quantum particles. Redfield theory allows for these calculations using the density
matrix formulation. The density matrix 𝜌 represents the state of a group of protons using a matrix 𝜌.
For a particle in the spin-up state |↑⟩, the density matrix is |↑⟩ ⟨↑|, and for a particle in the spin-down
state it is |↓⟩ ⟨↓|. The power of the density matrix is that a mixture of 50% spin-up and 50% spin-down
particles simply has a density matrix of 0.5 |↑⟩ ⟨↑|+0.5 |↓⟩ ⟨↓|. A more detailed description of the density
matrix can be found in [13].

The evolution of the density matrix due to a Hamiltonian ̂�̂� is given by the Liouville-von Neumann
equation:

𝜕
𝜕𝑡 �̂� = −𝑖

̂�̂��̂� (1.2)

Redfield theory mainly focuses on rewriting this into a master equation:

𝜕
𝜕𝑡 �̂� = −𝑖

̂�̂�0�̂� − ̂Γ̂�̂�

Where �̂�0 is the Hamiltonian due to the static main magnetic field, and ̂Γ̂ is the relaxation matrix de-
scribing the effect of the 𝐵1 field, and of relaxation interactions. It is possible to find the relaxation times
by taking inner products of the spin operators ̂𝐼𝑥,𝑦,𝑧 with this relaxation matrix. For example:

1
𝑇1
= 𝑑 ⟨𝐼𝑧⟩

𝑑𝑡 = ⟨ ̂𝐼𝑧| ̂Γ̂ | ̂𝐼𝑧⟩

Redfield theory is described in more detail in [14] and [15].





2
Methods

2.1. Redfield Theory
2.1.1. On-Resonance
First, we calculate the 𝑇1𝜌 and 𝑇2𝜌 relaxation times for an on-resonance RF pulse. This is useful to find
limiting cases for the off-resonance derivation and to be able to see the general properties of rotating
frame relaxation. In all our Redfield derivations, it is assumed that the perturbation Hamiltonian comes
from a randomly fluctuating field Δ𝐵, which has a Lorentzian power spectrum. This is a good model for
dipole-dipole relaxation, which is one of the main relaxation mechanism in clinical MRI, and the only
relevant mechanism in homogeneous liquids. The final relaxation time is given as a function of the
power spectrum of the Δ𝐵 fluctuations. This gives us an idea of the dependence of the relaxation times
on molecular motion. A more detailed version of this derivation is shown in appendix B.

The magnetic fields in this case are 𝐵0, the main magnetic field, 𝐵1, the RF-pulse, and Δ𝐵 the randomly
fluctuating field. These are given by:

𝐵0𝐵0𝐵0 = 𝐵0�̂�
𝐵1𝐵1𝐵1 = 𝐵1 (cos(𝜔0𝑡)�̂� − sin(𝜔0𝑡)�̂�)
Δ𝐵Δ𝐵Δ𝐵 = Δ𝐵𝑥(𝑡)�̂� + Δ𝐵𝑦(𝑡)�̂� + Δ𝐵𝑧(𝑡)�̂�

Since protons are spin-half particles, they behave like magnetic dipoles with a dipole moment 𝜇𝜇𝜇. In a
magnetic field 𝐵𝐵𝐵(𝑡), they have potential energy given by:

𝐸 = −𝜇𝜇𝜇 ⋅ 𝐵𝐵𝐵(𝑡)

The dipole moment is given by the spin operators ̂𝐼𝑥, ̂𝐼𝑦, ̂𝐼𝑧:

�̂�𝑥,𝑦,𝑧 = 𝛾ℏ ̂𝐼𝑥,𝑦,𝑧
Here 𝛾 is the gyromagnetic ratio, and ℏ is the reduced Planck constant. This leads to the following
Hamiltonian:

�̂� = �̂�
ℏ =

−�̂�𝑥𝐵𝑥(𝑡) − �̂�𝑦𝐵𝑦(𝑡) − �̂�𝑧𝐵𝑧(𝑡)
ℏ

=
−𝛾ℏ ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))

ℏ
= −𝛾 ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))

(2.1)

Filling in our magnetic fields gives:

�̂� = −𝛾𝐵0 ̂𝐼𝑧 − 𝛾𝐵1 (cos(𝜔0𝑡) ̂𝐼𝑥 − sin(𝜔0𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦

7
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Rearranging terms, and using the Larmor frequencies 𝜔0 = 𝛾𝐵0, 𝜔1 = 𝛾𝐵1:

�̂� = −𝜔0 ̂𝐼𝑧 − 𝜔1 (cos(𝜔0𝑡) ̂𝐼𝑥 − sin(𝜔0𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦 (2.2)

In order to calculate the rotating frame relaxation time, this Hamiltonian must be transformed to the
second rotating frame.

First, it is rotated 𝜔0𝑡 around the 𝑧-axis, so that it is in the first rotating frame. Using the derivation
in appendix A, it can be seen that this can be done by adding fictitious term, and applying a rotation
operator to the Hamiltonian:

�̂�eff = 𝜔0 ̂𝐼𝑧 + ̂�̂�−𝜔0𝑡 ̂𝐼𝑧�̂� (2.3)

The rotations of the spin operators are:

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑥 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑥𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑥′ cos(𝜔0𝑡) + ̂𝐼𝑦′ sin(𝜔0𝑡)

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑦 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑦𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑦′ cos(𝜔0𝑡) − ̂𝐼𝑥′ sin(𝜔0𝑡)

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑧 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑧𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑧′

(2.4)

So that finally filling in the Hamiltonian gives the first rotating frame expression:

�̂�eff = −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

In order to simplify the last term, we make use of the spin-raising and lowering operators:

̂𝐼+ = ̂𝐼𝑥 + 𝑖 ̂𝐼𝑦 and ̂𝐼− = ̂𝐼𝑥 − 𝑖 ̂𝐼𝑦
These are the eigenoperators of this rotation:

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼+ = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼+𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = 𝑒−𝑖𝜔0𝑡 ̂𝐼+

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼− = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼−𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = 𝑒𝑖𝜔0𝑡 ̂𝐼−

Hence we can finally write this as:

�̂�eff = −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2𝑒

−𝑖𝜔0𝑡 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) −
𝛾
2𝑒

𝑖𝜔0𝑡 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))

Note that now the only term that is constant in time is �̂�′0 = −𝜔1 ̂𝐼𝑥′ . This is the Hamiltonian due to
the effective field. We can thus move to the second rotating frame, rotating with angular velocity −𝜔1
around the �̂�′ axis. To find these rotations, it is convenient to do a coordinate substitution:

�̃� = 𝑦′ 𝑦 = 𝑧′ 𝑧 = 𝑥′

Applying this substitution, and calculating the rotations, eventually gives:

�̂�′eff = −
𝛾
2
̂𝐼�̃� ((Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒−𝑖𝜔0𝑡 + (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒𝑖𝜔0𝑡)

+ 𝑖𝛾2
̂𝐼+̃ (Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔1𝑡 −

1
2 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(𝜔0+𝜔1)𝑡 + 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(−𝜔0+𝜔1)𝑡)

− 𝑖𝛾2
̂𝐼−̃ (Δ𝐵𝑧(𝑡)𝑒𝑖𝜔1𝑡 +

1
2 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(𝜔0−𝜔1)𝑡 − 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(−𝜔0−𝜔1)𝑡)

= 𝐹′0(𝑡) ̂𝐼�̃� + 𝐹′1(𝑡) ̂𝐼+̃ + 𝐹′−1(𝑡) ̂𝐼−̃

Where in the last equation the Hamiltonian was split into terms of each of the eigenoperators of ̂�̂�
′
0.

The relaxation operator ̂Γ̂ can be found by calculating the power spectra of these values:

̂Γ̂ = ∑
𝑞
𝐽𝑞 ̂�̂�−𝑞 ̂�̂�𝑞
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with:
𝐽𝑞 = ∫

∞

0
𝐺𝑞(𝜏)𝑑𝜏 = ∫

∞

0
𝐹−𝑞(𝑡)𝐹𝑞(𝑡 − 𝜏)𝑑𝜏

We assume our fluctuations follow:

⟨Δ𝐵𝑝(𝑡)Δ𝐵𝑞(𝑡 − 𝜏)⟩ = {
0 𝑝 ≠ 𝑞
𝐺(𝜏) = ⟨𝐵2⟩ 𝑒−|𝜏|/𝜏𝑐 𝑝 = 𝑞 (2.5)

With a power spectrum:

𝐽(𝜔) = 1
⟨𝐵2⟩ ∫

∞

0
𝐺(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏 = ∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔𝜏𝑑𝜏 = 𝜏𝑐

1 + 𝜔2𝜏2𝑐
(2.6)

Carrying out these calculations gives:

𝐽0 =
𝛾2
2 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0) = 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0)

and

𝐽1 = 𝐽−1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1) +

𝛾2
16 ⟨𝐵

2
𝑥 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1)) +

𝛾2
16 ⟨𝐵

2
𝑦 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1))

The relaxation times follow from inner products with the relaxation matrix:

1
𝑇1𝜌

= ⟨ ̂𝐼�̃�| ̂Γ̂ | ̂𝐼�̃�⟩ = 𝐽−1 ⟨ ̂𝐼�̃�| ̂̂𝐼+̃ ̂̂𝐼−̃ | ̂𝐼�̃�⟩ + 𝐽1 ⟨ ̂𝐼�̃�| ̂̂𝐼−̃ ̂̂𝐼+̃ | ̂𝐼�̃�⟩ + 𝐽0 ⟨ ̂𝐼�̃�| ̂̂𝐼�̃� ̂̂𝐼�̃� | ̂𝐼�̃�⟩

= 2(𝐽−1 + 𝐽1)

= 2(𝛾
2

4 ⟨𝐵
2⟩ (𝐽(𝜔1) + 𝐽(𝜔0)) +

𝛾2
4 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0)))

= 𝛾2 ⟨𝐵2⟩ (𝐽(𝜔1) + 𝐽(𝜔0))

(2.7)

and
1
𝑇2𝜌

= ⟨ ̂𝐼𝑥| ̂Γ̂ | ̂𝐼𝑥⟩ = 𝐽0 Tr ( ̂𝐼𝑥 ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼𝑥) + 2𝐽1 (Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥 ̂̂𝐼𝑥 ̂𝐼𝑥) + Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 ̂̂𝐼𝑦 ̂𝐼𝑥))

= 𝐽0 + 2𝐽1

= 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0) +
𝛾2
2 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0))

= 𝛾2
2 ⟨𝐵

2⟩ (𝐽(𝜔1) + 3𝐽(𝜔0))

(2.8)

Where we also assumed equal fluctuation size in each direction (⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩).

2.1.2. Time-independent Off-Resonance
In this section, we consider the case that the RF-field rotates at a frequency 𝜔rf ≠ 𝜔0, but 𝜔rf does
not depend on time. This can, for instance, happen when 𝐵0 inhomogeneity causes different 𝜔0 for
different spins. The derivation is mostly the same as in the on-resonance case shown above, until the
second rotating frame. A more detailed version of this derivation is shown in appendix C.

We once again have 𝐵0, the main magnetic field, 𝐵1, the RF-pulse, and Δ𝐵 the randomly fluctuating
field.

𝐵0𝐵0𝐵0 = 𝐵0�̂�
𝐵1𝐵1𝐵1 = 𝐵1 (cos(𝜔rf𝑡)�̂� − sin(𝜔rf𝑡)�̂�)
Δ𝐵Δ𝐵Δ𝐵 = Δ𝐵𝑥(𝑡)�̂� + Δ𝐵𝑦(𝑡)�̂� + Δ𝐵𝑧(𝑡)�̂�
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The energy corresponding to a magnetic field is given by the Hamiltonian:

�̂� = −𝛾 ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))
Filling this in gives:

�̂� = −𝛾𝐵0 ̂𝐼𝑧 − 𝛾𝐵1 (cos(𝜔rf𝑡) ̂𝐼𝑥 − sin(𝜔rf𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦

In order to get real 𝑇1𝜌 relaxation, we must transform to the second rotating frame. In the first rotating
frame, a rotation of 𝜔rf𝑡 around the 𝑧-axis, gives:

�̂�eff = −Ω ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2𝑒

−𝑖𝜔rf𝑡 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) −
𝛾
2𝑒

𝑖𝜔rf𝑡 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))
(2.9)

Moving to the second rotating frame requires a tilt so that 𝐵eff is aligned to the 𝑧″-axis). This is shown

Figure 2.1: 𝐵𝐵𝐵′eff in the first rotating frame

as the angle 𝛼 in figure 2.1. It also requires a rotation of 𝜔eff𝑡 = √𝜔21 + Ω2𝑡 around the 𝑧″-axis. This
gives:

�̂�″eff𝜔eff = ̂𝐼𝑧″ (−Ω𝛾Δ𝐵𝑧(𝑡) −
𝜔1𝛾
2 Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 − 𝜔1𝛾2 Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

+ 12
̂𝐼+″(𝜔1𝛾Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔eff𝑡 − 𝛾2 (Ω + 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf+𝜔eff)𝑡 − 𝛾2 (Ω − 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf−𝜔eff)𝑡)

+ 12
̂𝐼−″(𝜔1𝛾Δ𝐵𝑧(𝑡)𝑒𝑖𝜔eff𝑡 − 𝛾2 (Ω − 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf−𝜔eff)𝑡 − 𝛾2 (Ω + 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf+𝜔eff)𝑡)

= 𝐹0 ̂𝐼𝑧″ + 𝐹1 ̂𝐼+″ ++𝐹−1 ̂𝐼−″

The relaxation operator ̂Γ̂ can be found by calculated in the same way as for the on-resonance case.
This gives:

𝐽0 =
𝛾2Ω2
𝜔2eff

⟨𝐵2⟩ 𝐽(0) + 𝛾
2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf)

= 𝛾2Ω2
𝜔21 + Ω2

⟨𝐵2⟩ 𝐽(0) + 𝛾2𝜔21
𝜔21 + Ω2

⟨𝐵2⟩ 𝐽(𝜔rf)

and

𝐽1 =
𝛾2𝜔21
4𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff) +
𝛾2(Ω + 𝜔eff)2

8𝜔2eff
⟨𝐵2⟩ 𝐽(𝜔rf + 𝜔eff)

+ 𝛾
2(Ω − 𝜔eff)2
8𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf − 𝜔eff)

Finally, we can once again find our relaxation times using inner products with the relaxation ma-
trix:
1
𝑇1𝜌

= ⟨ ̂𝐼�̃�| ̂Γ̂ | ̂𝐼�̃�⟩ = 𝐽−1 ⟨ ̂𝐼�̃�| ̂̂𝐼+̃ ̂̂𝐼−̃ | ̂𝐼�̃�⟩ + 𝐽1 ⟨ ̂𝐼�̃�| ̂̂𝐼−̃ ̂̂𝐼+̃ | ̂𝐼�̃�⟩ + 𝐽0 ⟨ ̂𝐼�̃�| ̂̂𝐼�̃� ̂̂𝐼�̃� | ̂𝐼�̃�⟩

= 2𝐽−1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) + 2𝐽1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) = 2(𝐽−1 + 𝐽1)

= 4𝐽1 =
𝛾2𝜔21
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff) +
𝛾2
4𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) ((Ω + 𝜔eff)2𝐽(𝜔rf + 𝜔eff) + (Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff))

(2.10)
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For equal fluctuation size in all directions, so ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩:

1
𝑇1𝜌

= 𝛾2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff) +
𝛾2
2𝜔2eff

⟨𝐵2⟩ ((Ω + 𝜔eff)2𝐽(𝜔rf + 𝜔eff) + (Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff))

Similarly, 𝑇2𝜌 can be found using another inner product:

1
𝑇2𝜌

= 𝐽0 + 2𝐽1 =
𝛾2Ω2
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(0) +
𝛾2𝜔21
2𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf) +
𝛾2𝜔21
2𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff)

+ 𝛾
2(Ω + 𝜔eff)2
8𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf + 𝜔eff) +
𝛾2(Ω − 𝜔eff)2

8𝜔2eff
(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf − 𝜔eff)

(2.11)

Once again taking equal fluctuation size in all directions:

1
𝑇2𝜌

= 𝛾2Ω2
𝜔2eff

⟨𝐵2⟩ 𝐽(0) + 𝛾
2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf) +
𝛾2𝜔21
2𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff)

+ 𝛾
2(Ω + 𝜔eff)2
4𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf + 𝜔eff) +
𝛾2(Ω − 𝜔eff)2

4𝜔2eff
⟨𝐵2⟩ 𝐽(𝜔rf − 𝜔eff)

In order to characterize equations 27 and 28, it is necessary to find values for some parameters. Some
are constants, such as 𝛾 = 2.675 ⋅ 108 rad 𝑠−1𝑇−1 or 𝐵0 = 3 T due to the scanner type. Others can
be chosen based on reasonable assumptions: 𝐵1 = 1 𝜇T, fluctuation correlation time 𝜏𝑐 = 1 ns (which
are of the right order for spin-lock pulses and water). The biggest challenge is finding ⟨𝐵2⟩, as this
cannot be set or measured directly. Instead, the formula for 𝑇1 due to random fluctuating fields can be
used:

1
𝑇1
= 2𝛾2 ⟨𝐵2⟩ 𝜏𝑐

1 + 𝜔20𝜏2𝑐
⇒ ⟨𝐵2⟩ = 1 + 𝜔20𝜏2𝑐

2𝛾2𝜏𝑐𝑇1
(2.12)

Together with a reasonable assumption 𝑇1 = 1.5s it is now possible to fill in all parameters in formulas
27 and 28.

2.1.3. Amplitude- and Frequency-Modulated Pulses
The relaxation times calculated in the previous section correspond to spin-lock experiments. Spin-lock
measurements are useful, but they are very susceptible to inhomogeneities in the 𝐵0 and 𝐵1 fields.
An alternative to these spin-lock pulses are adiabatic pulses. While spin-lock pulses are just block
functions, switching on and off a constant amplitude, adiabatic pulses have an amplitude and frequency
modulation. An adiabatic pulse with amplitude modulation 𝜔1(𝑡) and frequency modulation 𝜔rf(𝑡)−𝜔0
gives a magnetic field:

𝐵1𝐵1𝐵1 =
𝜔1(𝑡)
𝛾 (cos(𝜔rf(𝑡) ⋅ 𝑡)�̂� − sin(𝜔rf(𝑡) ⋅ 𝑡)�̂�)

Analytical calculation of the relaxation times during adiabatic pulses is complex, as it involves integrals
of products of many time-dependent factors. Therefore, we take a finite-difference approach. We divide
the pulse into very short discrete time-steps, and assume that during each time-step the amplitude and
the frequency modulation function are constant. This is called the quasistatic assumption. In that case,
we can simply use the results for the time-independent off-resonance at each timestep, substituting the
AM function in 𝜔1 and the FM function in −Ω. This minus sign is due to our convention of the definition
of the off-resonance.

A common type of adiabatic pulse is the hyperbolic secant pulse. These have an amplitude and fre-
quency modulation given by:[8]

𝜔1(𝑡) = 𝜔max
1 ⋅ sech(𝛽 (2𝑡𝑇𝑝

− 1))

−Ω(𝑡) = 𝐴 tanh(𝛽 (2𝑡𝑇𝑝
− 1))

(2.13)
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(a) Amplitude modulation (b) Frequency modulation

Figure 2.2: Amplitude and frequency modulation functions for a hyperbolic secant pulse. The different colours represent different
values for the parameter 𝛽.

Here 𝛽 is a dimensionless parameter that influences the sharpness of the curve, 𝜔max
1 is the maximum

amplitude of the pulse in rad/s. 𝐴 is the maximum FM-modulation of the curve in rad/s, and 𝑇𝑝 is the
duration of the pulse in seconds. These modulation functions are also shown in figure 2.2. It can be
seen that the higher 𝛽, the sharper the modulation functions.

Using the quasistatic assumption, the Redfield calculation gives a list 𝑇1𝜌,adiab(𝑡𝑖) of relaxation times
for each time point 𝑡𝑖. To get the effect of the total pulse, the effective relaxation time can be found as
a reciprocal sum:

1
𝑇1𝜌,adiab

= 1
𝑇𝑝
∑
𝑖

Δ𝑡
𝑇1𝜌,adiab(𝑡𝑖)

Where Δ𝑡 is the time step, and 𝑇𝑝 is the total pulse duration. The effective 𝑇2𝜌,adiab can be found using
an analogous formula

2.2. Applications
2.2.1. Pulse Optimization
The previous sections allow for the calculation of the relaxation times during a pulse in the presence
of off-resonance. Our goal is to minize the the influence of the off-resonance on the final image in real
MRI measurements. To this end, pulse parameters are found that exhibit the smallest difference in
𝑇1𝜌,adiab in response to off-resonance.

The sharpness parameter 𝛽 and the FM amplitude 𝐴 were chosen as the independent variables for
this optimization. A grid search was carried out on a 100 by 100 grid with 𝛽 ∈ {0.1, 0.3, … , 20} and
𝐴 ∈ {0, 50.4, … , 5000} Hz. For each combination (𝛽, 𝐴) the pulse was initialized with a duration 𝑇𝑝 = 30
ms. Next, the pulse was adjusted to satisfy two constraints. The first is that safety concerns require
that the total power delivered to the patient is below a certain maximum. On the other hand, image
contrast is improved by increasing the power. Concretely, this means that the root-means square 𝐵1
must be ≤ 5.48 𝜇T, and that the maximum 𝐵1 must be ≤ 13.43 𝜇T. The amplitude modulation function
was scaled by a factor:

𝛼 =min(𝐵
limit
1max
𝐵1max

, 𝐵
limit
1rms
𝐵1rms

) (2.14)

The other constraint is that the relaxation should bemostly due to 𝑇1𝜌,adiab . Under some circumstances,
e.g. when the RF pulse is a really sharp peak, 𝑇1 relaxation occurs instead. To solve this, a constraint
was put on the total decay fraction during the pulse, given by:

𝑁 = 𝑒−𝑇𝑝/𝑇1𝜌,adiab

Where 𝑇𝑝 is the total pulse duration, and 𝑇1𝜌,eff is the effective relaxation rate of the pulse. In order
to ensure 𝑇1𝜌,adiab is the main contributor, the pulse duration is scaled until 𝑁 = 0.970 ± 0.001. This
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guarantees that the pulse is long enough to cause at least some relaxation during the parts where the
AM modulation is not zero.

After the pulse was rescaled to satisfy these constraints, the objective function of the optimization was
calculated. First of all, the effective 𝑇1𝜌,adiab was calculated for different off-resonance values Ω. The
off-resonance was modelled by adding Ω to the frequency modulation part of the pulse. This was
repeated for Ω ∈ {0, 50, 100,… , 200} Hz. The root-mean-square (RMS) difference between the on-
resonance and off-resonance relaxation times was taken as a measure of the off-resonance resiliency
of the pulses.

Next, Bloch simulations were carried out on the same pulses. Bloch simulations are the conventional
way to optimize pulses (e.g. in [5]) based on a finite-time discretization of the Bloch equations (equation
1.1). These Bloch simulations were used to find the final magnetization along the 𝑧-direction. In an
adiabatic pulse, the magnetization will follow the effective field, and end up along the negative 𝑧-axis.
However, if the effective field moves too rapidly, the pulse will not be adiabatic and the magnetization
will not be inverted correctly. For this analysis it is not necessary to consider the (𝑇1 and 𝑇2) relaxation,
so these were neglected during the Bloch simulations.

Both these parameters were turned into a score from 0 to 1. The RMS difference 𝜀 in 𝑇1𝜌,adiab due to
off-resonance was scored as:

𝑆RMSdiff(𝛽, 𝐴) = 1 −
𝜀(𝛽, 𝐴)

max𝛽,𝐴 𝜀(𝛽, 𝐴)
(2.15)

Therefore a score of 1 means no difference at all, while the biggest difference in the domain gets a
score of 0. The Bloch simulations were scored according to the final 𝑧-magnetization 𝑀𝑧:

𝑆Bloch(𝛽, 𝐴) =
1 −𝑀𝑧(𝛽, 𝐴)

2 (2.16)

Therefore a complete inversion with 𝑀𝑧 = −1 gets a score of 1, while no inversion at all gets a score
of 0.
Two optimization methods were compared. The first made use of both the 𝑧-magentization score and
the RMS deviation score. This method takes both the Redfield and Bloch simultions into account, and
is the method that was in this paper. The second is the conventional optimization method, using only
Bloch equations. For this optimization only the 𝑧-magnetization score was used. This second method
therefore does not take rotating frame relaxation into account.

The optimization was repeated for both methods, for correlation times 𝜏𝑐 ∈ {0.01, 0.1, 1.0} ns, to simulate
the effect of different samples. These are valid for liquids with molecular masses of 20, 200 and 2000
Da.

2.3. Experimental Validation
2.3.1. Off-Resonance Behaviour
Equation 27 allows for the calculation of 𝑇1𝜌 in the presence of off-resonance. To validate these results,
MRI scans were performed on phantoms, using a prepulse that simulates the effect of off-resonance.
This prepulse is shown in figure 2.3. The first adiabatic half-passage (AHP) pulse rotates the magneti-
zation into the transverse plane. During the second part, the AM and FM functions are held constant.
This part functions like a spin-lock pulse, and the magnetization undergoes 𝑇1𝜌 relaxation. The final
part is another AHP pulse, that aligns the magnetization again to the 𝑧-axis for measurement. Off-
resonance is modelled by shifting the frequency modulation function by a constant. Since the true
resonance frequency 𝛾𝐵0 remains constant, changing the frequency of this pulse has the same effect
as off-resonance due to variations in 𝐵0.
The AHP pulses were chosen because they can efficiently flip themagnetization even in the presence of
off-resonance. If a block pulse was used, like in a normal experiment, the magnetization may not have
been totally aligned to the 𝑧-axis at the end of the pulse. This would interfere with the measurement
process of the magnetization. In this experiment, the AHP pulses had a hyperbolic secant shape (given
in equation 2.13). The shape of the first AHP pulse is given by this equation for 0 ≤ 𝑡 ≤ 𝑇𝑝/2. The
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Figure 2.3: Sketch of the amplitude- and frequency modulation function of the prepulse used in the off-resonance experiment.
The amplitude modulation function is the same for the on- and off-resonance version. The frequency modulation is different for
the on- (black) and off-resonance case. The dotted line represents zero modulation.

shape of the second AHP follows from this equation for 𝑇𝑝/2 ≤ 𝑡 ≤ 𝑇𝑝, and the FM part is flipped. This
is because the magnetization should end up along the positive 𝑧-axis. Both pulses had 𝛽 = 4 and an
FM amplitude of 500 Hz.
The MRI scans were performed on a plastic jar, with filled with a mixture of water and nickel chloride.
Nickel chloride was added to the water to lower its relaxation time, so that it exhibits more contrast
in the MRI images. The scanner used was a 3T Philips Ingenia. First, the jar was positioned in the
scanner, and a survey scan was performed to select a slice going lengthwise through the jar. Then a
𝑇1 mapping sequence was performed. This allows for the calculation of 𝑇1 values throughout the jar,
which can be used to check if our assumptions for the ⟨𝐵2⟩ calculation (equation 2.12) were valid. The
𝑇1 mapping was based on the Modified Look-Locker Inversion Recovery method.

Next, the 𝑇1𝜌 measurements were performed. These consist of the pulse mentioned before, followed by
a gradient echo sequence for imaging. This sequence was used as it can quickly image the longitudinal
magnetization. A field of view of 150 by 150 mm was used, and a single 2D image was made of the
selected slice. The echo time was set to be the shortest possible, and the pulse power was set to be as
high as possible (in this case corresponding to a flip angle of 350 degrees). The scanner was set up to
take 6 dynamic images. These dynamic images were taken after 0, 15, 20, 25 and 30 ms application
of the prepulse. Of these time, 5 ms was for each of the AHP parts. The final image used a saturation
prepulse, which is used to find the magnetization that would exist after a very long relaxation.

For each pixel an exponential fit wasmade to time evolution of themagnetization. This gives 𝑇1𝜌,adiab as
one of the parameters. Additionally, the standard deviation of the measured signal from the exponential
fit was calculated. This provides insight into the accuracy of the fit.
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Results

3.1. Redfield Theory
3.1.1. Time-Independent Off-Resonance
On-resonance limit
To validate equations 27 and 28 for 𝑇1𝜌 and 𝑇2𝜌 , various limits are taken and compared against the
literature. Starting from the off-resonance derivation, and taking the limit Ω → 0, we obtain an expres-
sion for on-resonance excitation. This was both derived independently by us (in equation 2.7), and it is
available in the literature [15]. Taking this limit gives 𝜔rf → 𝜔0 and 𝜔eff → 𝜔1. Applying this to equation
27 gives:

1
𝑇1𝜌

= 𝛾2 ⟨𝐵2𝑧 ⟩ 𝐽(𝜔1) +
𝛾2
4 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (𝐽(𝜔0 + 𝜔1) + 𝐽(𝜔0 − 𝜔1))

Taking 𝜔0 ≫ 𝜔1 (as 𝐵0 ≫ 𝐵1):
1
𝑇1𝜌

= 𝛾2 ⟨𝐵2𝑧 ⟩ 𝐽(𝜔1) +
𝛾2
2 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0)

Finally taking equal fluctuation magnitude in all directions (⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩):
1
𝑇1𝜌

= 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔1) + 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0)

= 𝛾2 ⟨𝐵2⟩ (𝐽(𝜔0) + 𝐽(𝜔1))
Which agrees with the theoretical limits mentioned above.

Similarly, taking the on-resonance limit of equation 28 gives:

1
𝑇2𝜌

= 𝛾2
2 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0) +

𝛾2
2 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1)

+ 𝛾
2

8 (⟨𝐵
2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0 + 𝜔1) +

𝛾2
8 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0 − 𝜔1)

Taking 𝜔0 ≫ 𝜔1:
1
𝑇2𝜌

= 3𝛾2
4 (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0) +

𝛾2
2 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1)

And finally ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩:
1
𝑇2𝜌

= 𝛾2
2 ⟨𝐵

2⟩ (𝐽(𝜔1) + 3𝐽(𝜔0))

Which agrees with our on-resonance result (equation 2.8).

15
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ANZMAG limit
In June 2019, the Australian and New Zealand Society for Magnetic Resonance (ANZMAG) published
a lecture series on NMR relaxation [16]. As a part of these lectures, they derived the 𝑇1𝜌 relaxation for
time-independent off-resonance, but with only a fluctuation in the 𝑧-direction. Their result was:

1
𝑇1𝜌

= 𝑅1𝜌 = 2𝐽(𝜔eff)

Furthermore, assuming (as we do) that the autocorrelation of the fluctuations decays exponentially with
constant 𝑘 = 1

𝜏𝑐
:

1
𝑇1𝜌

=
sin2(𝛼)𝛾2 ⟨𝐵2𝑧 ⟩

1
𝜏𝑐

1
𝜏2𝑐
+ 𝜔2eff

(adjusted to use our variable names, and pulling 𝛾2 out of their fluctuation amplitude)
Rewriting this gives:

1
𝑇1𝜌

= 𝜔21𝛾2 ⟨𝐵2𝑧 ⟩ 𝜏𝑐
(𝜔21 + Ω2) (1 + 𝜔2eff𝜏2𝑐)

= 𝜔21𝛾2 ⟨𝐵2𝑧 ⟩ 𝜏𝑐
(𝜔21 + Ω2) (1 + (𝜔21 + Ω2) 𝜏2𝑐)

If we set ⟨𝐵2𝑥 ⟩ = ⟨𝐵2𝑦 ⟩ = 0 in equation 27, we can also find 𝑇1𝜌 for fluctuations in the 𝑧-direction from our
calculations. This gives:

1
𝑇1𝜌

= 𝛾2𝜔21
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff)

For the power spectrum of the fluctuations, we take a Lorentzian with correlation time 𝜏𝑐:

𝐽(𝜔) = 𝜏𝑐
1 + 𝜔2𝜏2𝑐

Filling this in gives:

1
𝑇1𝜌

= 𝛾2𝜔21
𝜔2eff

𝜏𝑐
1 + 𝜔2eff𝜏2𝑐

⟨𝐵2𝑧 ⟩

= 𝜔21𝛾2 ⟨𝐵2𝑧 ⟩ 𝜏𝑐
(Ω2 + 𝜔21) (1 + (Ω2 + 𝜔21) 𝜏2𝑐)

Which indeed agrees with the result from the ANZMAG lectures.

High-off-resonance limit
As the plots in the next section will show, the 𝑇1𝜌 and 𝑇2𝜌 relaxation times strongly approach a limit for
large off-resonance values. To calculate these limits, we assume Ω ≫ 𝜔1, which gives the following
limits:

𝜔eff = √Ω2 + 𝜔21 = Ω
Ω2
𝜔2eff

= 1 𝜔21
𝜔2eff

= 0

(Ω + 𝜔eff)
2

𝜔2eff
=
(Ω + Ω)2

Ω2 = 22 = 4
(Ω − 𝜔eff)

2

𝜔2eff
=
(Ω − Ω)2

Ω2 = 0

Applying these to 𝑇1𝜌 gives:

1
𝑇1𝜌

= 𝛾2
2 ⟨𝐵

2⟩ 4𝐽(𝜔rf + 𝜔eff) = 2𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0 − Ω + Ω) = 2𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0) =
1
𝑇1
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Similarly for 𝑇2𝜌 :

1
𝑇2𝜌

= 𝛾2 ⟨𝐵2⟩ 𝐽(0) + 4𝛾
2

4 ⟨𝐵2⟩ 𝐽(𝜔rf + 𝜔eff) = 𝛾2 ⟨𝐵2⟩ 𝐽(0) + 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0 − Ω + Ω)

= 𝛾2 ⟨𝐵2⟩ (𝐽(0) + 𝐽(𝜔0)) =
1
𝑇2

Off-resonance plots

(a) 𝑇1𝜌 (b) 𝑇2𝜌

Figure 3.1: Plot of the 𝑇1𝜌 and 𝑇2𝜌 relaxation time versus the off-resonance Ω. The blue line represents a RF-field strength of
0.1 𝜇T, the orange line 1 𝜇T, and the green line 10 𝜇T. The grey dashed line represents the limits of these values: 𝑇1 for 𝑇1𝜌 and
𝑇2 for 𝑇2𝜌 .

(a) 𝑇1𝜌 (b) 𝑇2𝜌

Figure 3.2: Plot of the 𝑇1𝜌 and 𝑇2𝜌 relaxation time versus the off-resonance Ω, and the RF-field strength 𝐵1.

Figure 3.1 shows the relation between the off-resonance and the 𝑇1𝜌 relaxation time, for various RF
amplitudes 𝐵1. These plots are based on equation 27. 𝑇1𝜌 is minimal for on-resonance measurements,
and increases to 𝑇1 = 1.5 s for highly off-resonant measurements. The speed of this increase depends
on 𝐵1: the higher 𝐵1, the less influence off-resonances have on the relaxation times. For the 𝑇2𝜌
relaxation time, from equation 28, something similar is observed. Instead of 𝑇1, it approaches 𝑇2 for high
off-resonance. It also has a minimum instead of a maximum for on-resonance measurements.

Figure shows the 𝑇1𝜌 and 𝑇2𝜌 relaxation times for different combinations of off-resonance and 𝐵1. It
can still be seen that a higher 𝐵1 leads to less influence due to off-resonance.

3.1.2. Amplitude- and Frequency Modulate pulses
Figure 3.3 shows the amplitude and frequency modulation functions of a hyperbolic secant pulse, given
in equation 2.13. This pulse has parameters 𝛽 = 4, a duration of 25 ms, an FM amplitude of 500 Hz,
and an AM amplitude of 13.5 𝜇T. The 𝑇1𝜌,adiab relaxation times during this pulse are shown in figure
3.4. It was also assumed that the scanner had a main magnetic field 𝐵0 = 3T and that the sample had
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(a) Amplitude modulation (b) Frequency modulation

Figure 3.3: Plot of the shape of a hyperbolic secant pulse with 𝛽 = 4, a duration of 25 ms, an FM amplitude of 500 Hz and an
AM amplitude of 13.5 𝜇T.

Figure 3.4: Figure showing the instantaneous relaxation times during the pulse shown in figure 3.3. A main field of 3 T and
a 𝑇1 relaxation time of 1.5ms was used. The red, green and blue lines correspond to a correlation time of 0.2, 0.5 and 1 ns
respectively.

a relaxation time 𝑇1 = 1.5s when no RF pulse was applied. This simulation was repeated for different
random field correlation times 𝜏𝑐, to simulate the effect of different samples being imaged.

3.2. Applications
3.2.1. Pulse Optimization
Figures 3.5a and b show the results of the Redfield and Bloch simulations for the different values of
𝐴 and 𝛽. Interestingly, it can be seen that the RMS deviation due to off-resonance depends on the
correlation time. The final 𝑧-magnetization does not depend on 𝜏𝑐. This is because it was calculated
using the Bloch equations, while 𝜏𝑐 is a parameter that is only present in the Redfield calculations.

The optimal solutions are shown in table 3.1. It can be seen that the addition of the Redfield method
changes the pulse parameters significantly: 𝛽 shifts by around 3.6, while 𝐴 changes around 850 Hz.

Redfield and Bloch Bloch only
𝜏𝑐 (ns) 𝑇𝑝 (ms) max 𝐵+1 (𝜇T) 𝛽opt (a.u.) 𝐴opt (Hz) 𝛽opt (a.u.) 𝐴opt (Hz)
0.01 44.4 13.35 5.9 1472 9.5 615
0.1 44.4 13.35 5.9 1472 9.5 615
1.0 43.2 13.35 5.9 1522 9.3 564

Table 3.1: Optimal pulse parameters found by both methods. The pulse duration 𝑇𝑝 and the maximum pulse amplitude 𝐵+1 were
the result of the constraints on the optimization, and were the same for both methods. In all cases the optimization score was 1
(up to rounding error).
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Figure 3.5: A collection of plots showing the different results used for the optimization. In all of these plots the black cross
represents the optimal solution taking into account both criteria. The red cross is the optimal solution for Bloch simulations only.
The columns show the results for different correlation times 𝜏𝑐. A) Root-mean-square deviation of 𝑇1𝜌,adiab for off-resonances
0, 50,… , 200 Hz. B) Final longitudinal magnetization after the Bloch simulations, given as a percentage of the original magneti-
zation. C) Total objective score, normalized to give 100% at the highest score in this domain.

Figure 3.6: Plot of the optimal pulses found by the joint optimization (solid) and Bloch-only optimization (dotted lines). The
orange, green and red lines represent correlation times of 0.01, 0.1 and 1.0 ns. A) Amplitude modulation functions B) Frequency
modulation functions C) Deviation in 𝑇1𝜌,adiab for different off-resonance values.

All the pulses had a maximum 𝐵+1 amplitude of 13.35 𝜇T, which was not the limit set in the constraint:
𝐵𝑚𝑎𝑥1 ≤ 13.43 𝜇T. Apparently the constraint on the root-mean-square 𝐵+1 was the limiting factor. Inter-
estingly, 𝜏𝑐 = 0.01 and 0.1 ns have identical results in this table, while 𝜏𝑐 = 1 ns has different results for
some parameters. Figure 3.6 show the pulses corresponding to these optimal values. The Bloch-only
results (dotted lines) have a sharper peak in the AM function, and a smaller FM function than the result
incorporating Redfield (solid line). The off-resonance always causes a larger deviation in the Bloch-only
pulses than in the Bloch-and-Redfield pulses. The difference in RMS 𝑇1𝜌,adiab deviation between the
two optimization methods is 83% for 𝜏𝑐 = 0.01 ns , 83% for 𝜏𝑐 = 0.1 ns and 88% for 𝜏𝑐 = 1 ns
Figure 3.7 shows a larger version of the final longitudinal magnetization on the optimization domain.
Four different regions are marked, according to their (𝛽, 𝐴) position, and their final magnetization. Rep-
resentative magnetization evolutions in these regions are shown in figure 3.8. Region A is the adiabatic
region: this has intermediate values for 𝛽 and 𝐴, and a final magnetization that is around −1. In this
region, the pulse moves slowly (in the first rotating frame) and the magnetization smoothly follows it.
This is also shown in figure 3.8A: the magnetization changes smoothly and is fully inverted.

Region B corresponds to low FM amplitudes 𝐴, and a final magnetization that is higher than 0. Since



20 3. Results

B

C

D
A

A

Figure 3.7: Final longitudinal magnetization on the opti-
mization domain. The intial magnetization was 1. Four
regions are marked: A) adiabatic, B) block-pulse-like,
C) chirp-like and D) non-adiabatic.

Figure 3.8: Representative examples of the longitudinal
magnetization evolution for each of the domains in figure
3.7. The pulse durations differ between the figures due to
the rescaling in the optimization algorithm.

the frequency modulation is so low, the 𝐵1 field barely rotates around the 𝑧-axis. In that case the 𝐵1 field
behaves like the excitation pulse in a 𝑇1 relaxation experiment: the field flips the magnetization by being
perpendicularly oriented to it. This can also be seen in figure 3.8B: at 𝑡 = 20 ms, the magnetization
rotates quickly around the 𝑥-axis.

Region C corresponds to low 𝛽, so very broad pulses. Since the FM amplitude 𝐴 is not empty, pulses
in this region perform similarly to a chirp pulse. A chirp pulse has a constant AM function, and a linear
FM function. These pulses cause the magnetization to oscillate rapidly [8]. This is also observed in
figure 3.8C.

Finally, region D corresponds to high 𝛽, high 𝐴 and a final magnetization that is between 0 and −0.75.
Due to the high 𝛽, the AM function is a sharp peak, and the FM function also changes rapidly. The high
𝐴 also causes the range of the FM function to be large. Combined, this means that the 𝐵1 field due
to this pulse moves rapidly, and the magnetization cannot follow it. This is also seen in figure 3.8D: at
𝑡 = 20ms, the magnetization first follows the effective field. But this field moves too quickly, and the
magnetization falls behind. This causes the final magnetization to not be fully inverted.

3.3. Experimental Validation
3.3.1. Off-Resonance Behaviour
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Figure 3.9: Map of the 𝑇1 values inside the jar, reconstructed by the scanner. The scale is in milliseconds.

The 𝑇1 map reconstructed by the scanner is shown in figure 3.9. The mean 𝑇1 value inside the bottle
is 1.464 s, with a standard deviation of 0.265 s. The results of our time-independent off-resonance
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Figure 3.10: Examples of the artefacts seen during this experiment. A) shows the image obtained during a single dynamic scan.
B) shows the calculated 𝑇1𝜌 map for the on-resonance scan. Values of 𝑇1𝜌 above 20 s were discarded, as these are physically
infeasible. C) shows the standard deviation of the exponential fit (clipped at 50) for the on-resonance scan.

model, shown in figure 3.1, assumed 𝑇1 = 1.5 s. They should therefore be a good fit for these experi-
ments.

The individual images acquired during the 𝑇1𝜌 measurement show very strong artefacts. An example
of this can be seen in figure 3.10a. Instead of an uniform signal throughout the bottle, strong “ripples”
can be seen near the edges. Similar ripples can also be seen in the 𝑇1𝜌 maps (e.g. figure 3.10b).
Furthermore, in the dark spots caused by these ripples, the standard deviation is high (as can be seen
in figure 3.10c). Some pixels have values that are unphysical: relaxation times on the order of 105 s
with standard deviations of up to 1061. Normal relaxation times are of the order of microseconds to
seconds. This could be the result of the artefacts changing the measured signal interfering with the
exponential fit.

(a) Entire image (b) Pixels with fit STD < 10

Figure 3.11: Box plot of the 𝑇1𝜌 values found by the fitting, for different off-resonance frequencies. These plots are cropped to
show the box and whiskers: not all outliers are visible. A) considers the entire image, while b) considers only the pixels where
the fit had a standard deviation of < 100

Figure 3.11a shows a box plot of the distribution of 𝑇1𝜌 values throughout the maps, for each off-
resonance frequency. It can be seen that the 0 Hz off-resonance values are significantly larger than
those for the other measurements. The statistical mode of these 𝑇1𝜌 values is nearly constant, while the
third quartile and higher values increase with the off-resonance. Outliers with 𝑇1𝜌 of up to 160 seconds
are present in the data, but not shown in the plots as they would stretch the vertical axes too far.

Many pixels in the 𝑇1𝜌 maps had a very high standard deviation, which is an indication that the expo-
nential fit was not accurate. Excluding the pixels with a standard deviation of 100 or more results in
the box plot shown in figure 3.11b. In this figure, the 0 Hz off-resonance values are still larger than
the other values. Additionally, there appears to be an upward trend of the 𝑇1𝜌 values with increasing
off-resonance.





4
Discussion

The time-independent off-resonance Redfield calculations match earlier results. In the on-resonance
limit, they agree with our on-resonance calculations. When the random field fluctuations are only
aligned with the 𝑧-axis, they agree with the limits found in the ANZMAG lecture [16]. In the high off-
resonance limit Ω ≫ 𝜔1, we obtain 𝑇1𝜌 → 𝑇1 and 𝑇2𝜌 → 𝑇2. These results agree with our off-resonance
plots (figure 3.1). They can also be explained by looking at the coordinate system (figure 2.1). If
Ω ≫ 𝜔1, then 𝐵′eff is aligned with the 𝑧′-axis, and so our second rotating frame coincides with the first
rotating frame.

The correlation time 𝜏𝑐 of the fluctuations can be a source of error. It is not directly measured in
MRI experiments, so instead a reasonable estimate was used. These correlation times model the
molecular motion of the sample, so they can be influenced by the molecular mass and the sample
temperature.

For the Redfield calculations, it was assumed that relaxation is only the result of a randomly fluctuating
field. This is an approximation: in reality the relaxation is the result of dipole-dipole interactions between
protons. A more accurate model uses a Hamiltonian which directly models the dipole-dipole interaction.
An example of such a model is given in section 4.4 of [14]. For imaging solid samples, such as actual
patient tissues, chemical exchange also contributes to the relaxation. This can be modelled as an
additional term in the Hamiltonian. These additions can lead to more accurate results, but also make
the calculations involved much more complex.

The relaxation during amplitude- and frequency-modulated pulses was assumed to be quasistatic.
This assumption allowed us to reuse the results for time-independent off-resonance. It does however
neglect the effect that the time derivatives of the AM and FM functions could have on the relaxation.
Since this project involves adiabatic pulses, where these derivatives are required to be small anyway,
this assumption is valid. However this assumption could hinder the extension of our results to non-
adiabatic pulses.

The size of the effects ignored by the quasi-static assumption could be estimated by a calculation.
In this calculation Redfield theory is applied to an AM function that is linear with a slope 𝛼. The FM
function is held constant. Comparing the exact Redfield result to the result obtained with the quasistatic
approximation reveals the effect size. Alternatively, the effect could be estimated by comparing the
qausi-static result with a real measurement on an MRI scanner. We recommend these investigations
for further research.

Further research could also investigate the relaxation times for other pulse shapes. With the quasistatic
assumption, these calculations can be done by substituting different AM and FM functions in the finite
difference algorithm. No additional derivations are necessary.

In the pulse optimization results, it was seen that the RMS 𝑇1𝜌,adiab deviation due to off-resonance
strongly depended on the correlation times 𝜏𝑐. This can be explained by the fact that the power spec-
trum 𝐽(𝜔) of the fluctuations (equation 25) depends on 𝜏𝑐. The off-resonance causes a change in 𝜔rf
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and 𝜔eff, which are substituted into 𝐽(𝜔) in equation 27.

The relative difference in RMS 𝑇1𝜌,adiab deviation due to off-resonance is big (83, 83, 88%). In absolute
value, however, the effect of off-resonance on 𝑇1𝜌 is very small. It is never more than 0.15% compared
to on-resonance (for the optimal pulse found using only Bloch simulations, and 𝜏𝑐 = 1 ns). For 𝜏𝑐 = 0.01
ns, the effect is never larger than 1.2 ⋅ 10−5%. This can be explained by the fact that the hyperbolic
secant pulses used for this optimization are designed to be resistant to off-resonance effects. They
appear to retain this property even at suboptimal pulse parameters. Further research could investigate
if this optimization providesmore substantial gains in off-resonance resiliency for different pulse shapes.
Further research could also perform MRI measurements for different pulse parameters, to verify that
the solutions found by the algorithm are also optimally resistant to off-resonance in real life.

Interestingly, the optimal pulse parameters for the 𝜏𝑐 = 0.01 and 0.1 ns case were identical. Perhaps
the pulse parameters approach a limit for rapid correlation times. Further research could investigate
the whether optimization results for 𝜏𝑐 = 0.001 and 0.0001 ns also give these same optimal parame-
ters.

The experimental validation of the off-resonance behaviour was hindered by artefacts. The scan of the
jar shows “ripples” of high and low signal values, while the homogeneous liquid should give the same
signal everywhere. These artefacts could have been caused by the difference in susceptibility between
the bottle and the surrounding air. This difference causes variations in the 𝐵0 and 𝐵1 field amplitude,
which in turn cause artefacts.

One method by which this occurs is dephasing. In dephasing, differences in 𝐵0 inside the sample leads
the magnetizations to precess at different rates. This causes them to acquire a phase difference, which
eventually causes 𝑇2 decay of the magnetization. A solution to this problem would be to change the
pulse shape to have a refocusing pulse. The simplest option would be to invert the latter half of the
prepulse shown in figure 2.3. This would change the direction of the precession in the latter half of
the pulse. This causes an extra phase difference that compensates the difference due to dephasing.
Another possibility is that the inhomogeneities in the 𝐵0 and 𝐵1 fields cause spurious precession, which
leads to these artefacts [17].

Since the received signal is altered by the artefacts, the exponential fit often does not give correct
results. This explains the outliers with unfeasibly high 𝑇1𝜌 values, and the high fit standard deviation
values. Taking only the pixels were the standard deviation was less than 100 ensures that the expo-
nential fit was accurate. However, from the theoretical results (such as figure 3.1) we would expect
the 𝑇1𝜌 values to be between 1 second and 𝑇1 = 1.5 s. In reality the values are in the 0 to 25 ms
range. This suggests that even though the exponential functions fit the measured data closely, they
do not correctly give the underlying 𝑇1𝜌 value. Alternatively, the theoretical derivation could be invalid
for the relatively short pulses used in the experiment. The results appear to give the correct qualitative
behaviour (increasing 𝑇1𝜌 for increasing off-resonance) but the actual values are not reliable.

The 0 Hz off-resonance measurements also did not follow this qualitative behaviour. Perhaps this is
caused by the FM function being zero at the middle part of the pulse. Further research should try to
compare the 0 Hz results with results for a similarly small off-resonance, such as 0.01 Hz.
Finally, the application of these methods to clinical practice requires further investigation. More realistic
phantom studies (e.g. on body-shaped phantoms made out of ballistic gelatin) and patient studies
are required to evaluate the practical gain in contrast caused by these optimized pulses. If these
give positive results, further research could investigate if this contrast gain results in more accurate
diagnoses.



5
Conclusion

The aim of this project was to use Redfield theory to create a pulse optimization framework that can
take dispersion into account. The theoretical calculation for time-independent off-resonance agrees
with limits found in the literature. In order to simulate amplitude- and frequency modulated pulses it
is necessary to assume quasistatic relaxation. This approximation appears to be valid for adiabatic
pulses, but further experiments should be carried out to validate this. All the calculations assumed
that relaxation was only due to a randomly fluctuating field. More accurate models directly consider
a dipole-dipole Hamiltonian, or consider chemical exchange as well. These would, however, be more
complex computationally.

A joint optimization using Bloch and Redfield simulations performs better than using Bloch simulations
only. These result in a 83%, 83%, 88% improved resilience to off-resonance for 𝜏𝑐 = 0.01, 0.1, 1 ns cor-
relation times. The absolute value of off-resonance effects is small, however, as it is at most 0.15%RMS
deviation. Perhaps different pulse shapes would benefit more from this optimization algorithm.

Experimental validation of the off-resonance behaviour encountered serious difficulties due to artefacts
in the images. Further research using refocusing pulses should be able to bypass these problems. As
it stands, the measurements seem to confirm the qualitative behaviour. The actual relaxation times,
however, do not match theoretical calculations.

Overall, the joint Bloch and Redfield optimization method is able to take dispersion into account. It
is able to provide better off-resonance resiliency than methods that neglect dispersion, but further re-
search is necessary to obtain results that can improve MR imaging in practice.
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Appendix A: Derivation of the Fictitious
Field in the First Rotating Frame

In this appendix, we will calculate the fictitious magnetic field term that appears in the first rotating frame
due to an off-resonant RF pulse. First, we calculate the effect moving to the first rotating frame has
on the Hamiltonian. Afterwards, we fill in the Hamiltonian term that is already present due to the main
magnetic field, and finally recognize the effective magnetic field.

For this first step we move to a frame rotating by 𝜔rf𝑡 around the �̂�-axis. This has two effects:

1. The Hamiltonian needs to be rewritten in terms of the new reference frame (analogous to rewriting
�̂�, �̂�, �̂� to �̂�′, �̂�′, �̂�′)

2. Extra fictitious terms appear in the Hamiltonian (analogous to the Coriolis force, or the extra
magnetic field in the Bloch equations.)

In this derivation we use the density operator formalism. This makes use of a density matrix (or density
operator) �̂� as an analogue to the wavefunction |Ψ⟩ used in quantum mechanics. Superoperators ̂�̂�
are analogous to operators. Density operators evolve according to the Liouville-von Neumann equa-
tion:

𝜕
𝜕𝑡 �̂� = −𝑖

̂�̂��̂� (1)

Our rotation is given by:
�̂�′ = 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 �̂� (2)

This follows from the Taylor series of infinitesimal rotations. Branson derives it in two dimensions, but
it is true in general [18].

Now we use this to see:

𝜕
𝜕𝑡 �̂�

′ = 𝜕
𝜕𝑡 (𝑒

−𝑖𝜔rf𝑡 ̂̂𝐼𝑧) �̂� + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 𝜕
𝜕𝑡 �̂�

= −𝑖𝜔rf
̂̂𝐼𝑧𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 �̂� + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 𝜕

𝜕𝑡 �̂�

Recognising �̂�′, and filling in equation 6 gives:

𝜕
𝜕𝑡 �̂�

′ = −𝑖𝜔rf
̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 (−𝑖 ̂�̂��̂�)

= −𝑖 (𝜔rf
̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 ̂�̂��̂�)

Now since ̂̂𝐼𝑧 is Hermitian, 𝑒+𝑖𝜔rf𝑡 ̂̂𝐼𝑧𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 = 1. This allows us to write:

𝜕
𝜕𝑡 �̂�

′ = −𝑖 (𝜔rf
̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 ̂�̂�𝑒+𝑖𝜔rf𝑡 ̂̂𝐼𝑧𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 �̂�)

= −𝑖 (𝜔rf
̂̂𝐼𝑧 + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 ̂�̂�𝑒+𝑖𝜔rf𝑡 ̂̂𝐼𝑧) ̂𝜌′

This is again in the form of equation 6, with an effective Hamiltonian:

̂�̂�eff = 𝜔rf
̂̂𝐼𝑧 + 𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 ̂�̂�𝑒+𝑖𝜔rf𝑡 ̂̂𝐼𝑧 (3)

The first term here is the fictitious term due to the rotation.
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The main magnetic field causes a term −𝛾𝐵0 ̂̂𝐼𝑧 = −𝜔0 ̂̂𝐼𝑧 in the Hamiltonian. This gives a total Hamil-
tonian of:

̂�̂�eff = 𝜔rf
̂̂𝐼𝑧 − 𝜔0𝑒−𝑖𝜔rf𝑡 ̂̂𝐼𝑧 ̂̂𝐼𝑧𝑒+𝑖𝜔rf𝑡 ̂̂𝐼𝑧

= 𝜔rf
̂̂𝐼𝑧′ − 𝜔0 ̂̂𝐼𝑧′ = −(𝜔0 − 𝜔rf) ̂̂𝐼𝑧′

= −Ω ̂̂𝐼𝑧′

And since the Hamiltonian due to a magnetic field 𝐵𝐵𝐵 is given by −𝛾𝐵𝐵𝐵 ⋅ ̂𝐼𝐼𝐼, I see that the corresponding
magnetic field is

𝐵𝐵𝐵fict =
𝜔0 − 𝜔rf

𝛾 �̂� = Ω
𝛾 �̂�

Indeed we also see here for an on-resonance excitation 𝜔0 = 𝜔rf there will be no term due to 𝐵0: all
the movement of the magnetization will be due to the 𝐵1 field.



Appendix B: Derivation of the Relaxation
Times for On-Resonance Excitation

Introduction and Methods
The derivation of 𝑇1𝜌 consists of four steps:

1. Formulating the Hamiltonian

2. Transferring it to the doubly rotating frame

3. Calculating the relaxation superoperator

4. Taking the inner product to calculate the relaxation time

𝑇1𝜌 is the result of relaxation in the presence of a radiofrequency field. In the presence of this rf-field,
we must use the doubly rotating frame to align the effective magnetic field to the 𝑧-axis. This simplifies
the final calculation of the relaxation rates.

We assume the relaxation is the result of a fluctuating magnetic field. The final relaxation time is given
as a function of the power spectrum of these fluctuations. This gives us an idea of the dependence of
𝑇1𝜌 on molecular vibrations. A more accurate model replaces these fields by an actual dipole-dipole
interaction.

Deriving the Hamiltonian
In order to calculate 𝑇1𝜌 , we must find a model that describes the behaviour of protons in an MRI
scanner. Since protons are spin-half particles, they behave as magnetic dipoles. In a magnetic field 𝐵𝐵𝐵,
they have potential energy given by:

𝐸 = −𝜇𝜇𝜇 ⋅ 𝐵𝐵𝐵(𝑡)
The dipole moment is given by the spin operators ̂𝐼𝑥, ̂𝐼𝑦, ̂𝐼𝑧:

�̂�𝑥,𝑦,𝑧 = 𝛾ℏ ̂𝐼𝑥,𝑦,𝑧
This leads to the following Hamiltonian:

�̂� = �̂�
ℏ =

−�̂�𝑥𝐵𝑥(𝑡) − �̂�𝑦𝐵𝑦(𝑡) − �̂�𝑧𝐵𝑧(𝑡)
ℏ

=
−𝛾ℏ ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))

ℏ
= −𝛾 ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))

(4)

Now we consider three magnetic fields: the main magnetic field 𝐵0𝐵0𝐵0, a on-resonance spin-lock pulse 𝐵1𝐵1𝐵1
and random fluctuations Δ𝐵Δ𝐵Δ𝐵 that cause the relaxation:

𝐵0𝐵0𝐵0 = 𝐵0�̂�
𝐵1𝐵1𝐵1 = 𝐵1 (cos(𝜔0𝑡)�̂� − sin(𝜔0𝑡)�̂�)
Δ𝐵Δ𝐵Δ𝐵 = Δ𝐵𝑥(𝑡)�̂� + Δ𝐵𝑦(𝑡)�̂� + Δ𝐵𝑧(𝑡)�̂�

We assume the fluctuations are small: Δ𝐵 ≪ 𝐵0. Substituting these fields into equation 4 gives:

�̂� = −𝛾𝐵0 ̂𝐼𝑧 − 𝛾𝐵1 (cos(𝜔0𝑡) ̂𝐼𝑥 − sin(𝜔0𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦
Rearranging terms, and using the Larmor frequencies 𝜔0 = 𝛾𝐵0, 𝜔1 = 𝛾𝐵1:

�̂� = −𝜔0 ̂𝐼𝑧 − 𝜔1 (cos(𝜔0𝑡) ̂𝐼𝑥 − sin(𝜔0𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦 (5)
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The First Rotating Frame
First, we move to a frame rotating by 𝜔0𝑡 around the �̂�-axis. This has two effects:

1. The Hamiltonian needs to be rewritten in terms of the new reference frame (analogous to rewriting
�̂�, �̂�, �̂� to �̂�′, �̂�′, �̂�′)

2. Extra fictitious terms appear in the Hamiltonian (analogous to the Coriolis force, or the extra
magnetic field in the Bloch equations.)

In this derivation we use the density operator formalism. This makes use of a density matrix (or density
operator) �̂� as an analogue to the wavefunction |Ψ⟩. Superoperators ̂�̂� are analogous to operators.
Density operators evolve according to the Liouville-von Neumann equation:

𝜕
𝜕𝑡 �̂� = −𝑖

̂�̂��̂� (6)

Our rotation is given by:
�̂�′ = 𝑒−𝑖𝜔0𝑡 ̂̂𝐼𝑧 �̂� (7)

This follows from the Taylor series of infinitesimal rotations. Branson derives it in two dimensions, but
it is true in general [18].

Now we use this to see:

𝜕
𝜕𝑡 �̂�

′ = 𝜕
𝜕𝑡 (𝑒

−𝑖𝜔0𝑡 ̂̂𝐼𝑧) �̂� + 𝑒−𝑖𝜔0𝑡 ̂̂𝐼𝑧 𝜕𝜕𝑡 �̂�

= −𝑖𝜔0 ̂̂𝐼𝑧𝑒−𝑖𝜔0𝑡
̂̂𝐼𝑧 �̂� + 𝑒−𝑖𝜔0𝑡 ̂̂𝐼𝑧 𝜕𝜕𝑡 �̂�

Recognising �̂�′, and filling in equation 6 gives:

𝜕
𝜕𝑡 �̂�

′ = −𝑖𝜔0 ̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔0𝑡
̂̂𝐼𝑧 (−𝑖 ̂�̂��̂�)

= −𝑖 (𝜔0 ̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔0𝑡
̂̂𝐼𝑧 ̂�̂��̂�)

Now since ̂̂𝐼𝑧 is Hermitian, 𝑒+𝑖𝜔0𝑡 ̂̂𝐼𝑧𝑒−𝑖𝜔0𝑡 ̂̂𝐼𝑧 = 1. This allows us to write:

𝜕
𝜕𝑡 �̂�

′ = −𝑖 (𝜔0 ̂̂𝐼𝑧�̂�′ + 𝑒−𝑖𝜔0𝑡
̂̂𝐼𝑧 ̂�̂�𝑒+𝑖𝜔0𝑡 ̂̂𝐼𝑧𝑒−𝑖𝜔0𝑡 ̂̂𝐼𝑧 �̂�)

= −𝑖 (𝜔0 ̂̂𝐼𝑧 + 𝑒−𝑖𝜔0𝑡
̂̂𝐼𝑧 ̂�̂�𝑒+𝑖𝜔0𝑡 ̂̂𝐼𝑧) ̂𝜌′

This is again in the form of equation 6, with an effective Hamiltonian:

�̂�eff = 𝜔0 ̂𝐼𝑧 + 𝑒−𝑖𝜔0𝑡 ̂𝐼𝑧�̂�𝑒+𝑖𝜔0𝑡 ̂𝐼𝑧 (8)

The first term here is the fictitious term due to the rotation.

The second term changes the basis of the original Hamiltonian to the rotating frame. It is also writ-
ten with the rotation superoperator: ̂�̂�−𝜔0𝑡 ̂𝐼𝑧�̂�. Since this is a rotation around the �̂�-axis, we can see
that:

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑥 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑥𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑥′ cos(𝜔0𝑡) + ̂𝐼𝑦′ sin(𝜔0𝑡)

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑦 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑦𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑦′ cos(𝜔0𝑡) − ̂𝐼𝑥′ sin(𝜔0𝑡)

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑧 = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼𝑧𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = ̂𝐼𝑧′

(9)

This can also formally be proven by using the Taylor series of the exponential, and the fact that the
spin operators cyclically commute [19]. ̂𝐼𝑥′ , ̂𝐼𝑦′ and ̂𝐼𝑧′ are the spin operators in the rotating reference
frame.
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Using these expressions we can fill in equation 5 and get:

�̂�rot = ̂�̂�−𝜔0𝑡 ̂𝐼𝑧�̂� = −𝜔0 ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 cos(𝜔0𝑡)
̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑥

+ 𝜔1 sin(𝜔0𝑡) ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼𝑦 − 𝛾
̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

= −𝜔0 ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 cos(𝜔0𝑡) ( ̂𝐼𝑥′ cos(𝜔0𝑡) + ̂𝐼𝑦′ sin(𝜔0𝑡))
+ 𝜔1 sin(𝜔0𝑡) ( ̂𝐼𝑦′ cos(𝜔0𝑡) − ̂𝐼𝑥′ sin(𝜔0𝑡)) − 𝛾 ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

= −𝜔0 ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ + ̂𝐼𝑥′ (−𝜔1 cos2(𝜔0𝑡) − 𝜔1 sin2(𝜔0𝑡))

− 𝛾 ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)
= −𝜔0 ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

Finally we must add the fictitious term derived in equation 8:

�̂�eff = 𝜔0 ̂𝐼𝑧 + �̂�rot = 𝜔0 ̂𝐼𝑧′ + �̂�rot

= −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

In order to simplify the last term, we make use of the spin raising and lowering operators:

̂𝐼+ = ̂𝐼𝑥 + 𝑖 ̂𝐼𝑦 and ̂𝐼− = ̂𝐼𝑥 − 𝑖 ̂𝐼𝑦

These are the eigenoperators of this rotation (shown in the appendix):

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼+ = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼+𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = 𝑒−𝑖𝜔0𝑡 ̂𝐼+

̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼− = 𝑒−𝑖𝜔0𝑡
̂𝐼𝑧 ̂𝐼−𝑒𝑖𝜔0𝑡 ̂𝐼𝑧 = 𝑒𝑖𝜔0𝑡 ̂𝐼−

In other words, ̂𝐼′± = 𝐼±, and we only get a prefactor. Now since:

̂𝐼𝑥 =
1
2 (

̂𝐼+ + ̂𝐼−) and ̂𝐼𝑦 =
1
2𝑖 (

̂𝐼+ − ̂𝐼−)

we can write:

�̂�eff = −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2
̂�̂�−𝜔0𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ( ̂𝐼+ + ̂𝐼−) − 𝑖Δ𝐵𝑦(𝑡) ( ̂𝐼+ − ̂𝐼−))

= −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2
̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡))

− 𝛾2
̂�̂�−𝜔0𝑡 ̂𝐼𝑧 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))

= −𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2𝑒

−𝑖𝜔0𝑡 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) −
𝛾
2𝑒

𝑖𝜔0𝑡 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))

The Second Rotating Frame
We now have a situation that is very similar to relaxation in the lab frame: a large term �̂�′0 = −𝜔1 ̂𝐼𝑥′
that is constant in time, and smaller terms that change in time. This motivates us to move to a second
rotating frame, where we only retain the time-varying component.
This frame rotates with angular velocity −𝜔1 around the �̂�′ axis, and is also called the interaction frame.
A similar derivation as equation 8 gives:

�̂�′eff = 𝜔1 ̂𝐼𝑥′ + 𝑒−𝑖𝜔1𝑡
̂𝐼𝑥′ �̂�eff𝑒+𝑖𝜔1𝑡 ̂𝐼𝑥′ = 𝜔1 ̂𝐼𝑥′ + ̂�̂�−𝜔1𝑡 ̂𝐼𝑥′ �̂�eff

= 𝜔1 ̂𝐼𝑥′ + �̂�′rot
(10)
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Now we can calculate �̂�′rot:

�̂�′rot = ̂�̂�−𝜔1𝑡 ̂𝐼𝑥′(−𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1
̂�̂�−𝜔1𝑡 ̂𝐼𝑥′ ̂𝐼𝑥′ −

𝛾
2𝑒

−𝑖𝜔0𝑡 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡))

− 𝛾2𝑒
𝑖𝜔0𝑡 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)))

To find these rotations, it is convenient to do a coordinate substitution:

�̃� = 𝑦′ 𝑦 = 𝑧′ 𝑧 = 𝑥′

Then our rotation is now along the 𝑧-axis. Note that in general, if the rf-pulse is off-resonant, the static
component is not along one of the (𝑥′, 𝑦′, 𝑧′) axes. Then the (�̃�, 𝑦, 𝑧) coordinate system must be tilted
with respect to the (𝑥′, 𝑦′, 𝑧′) system. Then there is no such simple substitution.

Continuing on, we can now use the raising and lowering operators:

̂𝐼�̃� = ̂𝐼𝑥′
̂𝐼+̃ = ̂𝐼𝑥 + 𝑖 ̂𝐼𝑦 = ̂𝐼𝑦′ + 𝑖 ̂𝐼𝑧′
̂𝐼−̃ = ̂𝐼𝑥 − 𝑖 ̂𝐼𝑦 = ̂𝐼𝑦′ − 𝑖 ̂𝐼𝑧′

These are the eigenoperators of this rotation:

̂�̂�−𝜔1𝑡 ̂𝐼�̃� ̂𝐼�̃� = ̂𝐼�̃�
̂�̂�−𝜔1𝑡 ̂𝐼�̃� ̂𝐼+̃ = 𝑒−𝑖𝜔1𝑡 ̂𝐼+̃
̂�̂�−𝜔1𝑡 ̂𝐼�̃� ̂𝐼−̃ = 𝑒𝑖𝜔1𝑡 ̂𝐼−̃

(11)

And also of ̂�̂�
′
0 = −𝜔1 ̂̂𝐼𝑥′ = −𝜔1 ̂̂𝐼�̃�:

̂�̂�
′
0 ̂𝐼�̃� = 0 ⋅ ̂𝐼�̃�
̂�̂�
′
0 ̂𝐼+̃ = −𝜔1 ̂𝐼+̃
̂�̂�
′
0 ̂𝐼−̃ = 𝜔1 ̂𝐼−̃

(12)

Now with a little rewriting we can get

̂𝐼𝑥′ = ̂𝐼�̃� ̂𝐼𝑦′ =
1
2 (

̂𝐼+̃ + ̂𝐼−̃) ̂𝐼𝑧′ =
1
2𝑖 (

̂𝐼+̃ − ̂𝐼−̃)

̂𝐼+ = ̂𝐼𝑥′ + 𝑖 ̂𝐼𝑦′ = ̂𝐼�̃� +
𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃)

̂𝐼− = ̂𝐼𝑥′ − 𝑖 ̂𝐼𝑦′ = ̂𝐼�̃� −
𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃)

Filling this in, we get:

�̂�′rot = ̂�̂�−𝜔1𝑡 ̂𝐼�̃�(−𝛾Δ𝐵𝑧(𝑡)
1
2𝑖 (

̂𝐼+̃ − ̂𝐼−̃) − 𝜔1 ̂�̂�−𝜔1𝑡 ̂𝐼�̃� ̂𝐼�̃�

− 𝛾2𝑒
−𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) ( ̂𝐼�̃� +

𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃))

− 𝛾2𝑒
𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) ( ̂𝐼�̃� −

𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃)))
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Adding the fictitious term (from equation 10) allows us to write:

�̂�′rot = ̂�̂�−𝜔1𝑡 ̂𝐼�̃�(−𝛾Δ𝐵𝑧(𝑡)
1
2𝑖 (

̂𝐼+̃ − ̂𝐼−̃)

− 𝛾2𝑒
−𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) ( ̂𝐼�̃� +

𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃))

− 𝛾2𝑒
𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) ( ̂𝐼�̃� −

𝑖
2 (

̂𝐼+̃ + ̂𝐼−̃)))

Taking ̂�̂� = ̂�̂�−𝜔1𝑡 ̂𝐼�̃� for conciseness, we can rewrite this to:

�̂�′eff = −
𝛾
2
̂�̂� ̂𝐼�̃� (𝑒−𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) + 𝑒𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)))

+ 𝑖𝛾2
̂�̂� ̂𝐼+̃ (Δ𝐵𝑧(𝑡) −

1
2𝑒

−𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) +
1
2𝑒

𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)))

− 𝑖𝛾2
̂�̂� ̂𝐼−̃ (Δ𝐵𝑧(𝑡) +

1
2𝑒

−𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) −
1
2𝑒

𝑖𝜔0𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)))

Now taking these rotations, using equation 11, we finally get:

�̂�′eff = −
𝛾
2
̂𝐼�̃� ((Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒−𝑖𝜔0𝑡 + (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒𝑖𝜔0𝑡)

+ 𝑖𝛾2
̂𝐼+̃ (Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔1𝑡 −

1
2 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(𝜔0+𝜔1)𝑡 + 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(−𝜔0+𝜔1)𝑡)

− 𝑖𝛾2
̂𝐼−̃ (Δ𝐵𝑧(𝑡)𝑒𝑖𝜔1𝑡 +

1
2 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(𝜔0−𝜔1)𝑡 − 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(−𝜔0−𝜔1)𝑡)

This is now nicely in terms of the eigenoperators of ̂�̂�
′
0

�̂�′eff = 𝐹′0(𝑡)�̂�′0 + 𝐹′1(𝑡)�̂�′1 + 𝐹′−1(𝑡)�̂�′−1
with (using equation 12):

�̂�′0 = ̂𝐼�̃� �̂�′1 = ̂𝐼+̃ �̂�′−1 = ̂𝐼−̃
𝑒0 = ̂�̂�

′
0�̂�′0 = 0 𝑒1 = ̂�̂�

′
0�̂�′1 = −𝜔1 𝑒−1 = ̂�̂�

′
0�̂�′−1 = 𝜔1

𝐹′0(𝑡) = −
𝛾
2 ((Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖𝜔0𝑡 + (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒𝑖𝜔0𝑡)

𝐹′1(𝑡) =
𝑖𝛾
2 (Δ𝐵𝑧(𝑡)𝑒

−𝑖𝜔1𝑡 − 12 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(𝜔0+𝜔1)𝑡 + 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(−𝜔0+𝜔1)𝑡)

𝐹′−1(𝑡) = −
𝑖𝛾
2 (Δ𝐵𝑧(𝑡)𝑒

𝑖𝜔1𝑡 + 12 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(𝜔0−𝜔1)𝑡 − 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(−𝜔0−𝜔1)𝑡)
(13)

Relaxation Superoperator
The relaxation times can be found from the relaxation superoperator ̂Γ̂, which we define as:

̂Γ̂ = ∑
𝑞
𝐽𝑞 ̂�̂�−𝑞 ̂�̂�𝑞

with 𝐽𝑞 defined by:

𝐽𝑞 = ∫
∞

0
𝐺𝑞(𝜏)𝑑𝜏 = ∫

∞

0
𝐹−𝑞(𝑡′)𝐹𝑞(𝑡′ − 𝜏)𝑑𝜏
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Some methods add an additional 𝑒−𝑖𝑒𝑞𝑡 factor to 𝐽𝑞. This factor is a result of applying the transforma-
tions to the relaxation superoperator. Since we have already transformed the Hamiltonian, we do not
need to add this factor.

Starting with 𝑞 = 0:

𝐺0(𝜏) = 𝐹′0(𝑡)𝐹′0(𝑡 − 𝜏) =
𝛾2
4 ((Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖𝜔0𝑡 + (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒𝑖𝜔0𝑡)

⋅ ((Δ𝐵𝑥(𝑡 − 𝜏) − 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒−𝑖𝜔0(𝑡−𝜏) + (Δ𝐵𝑥(𝑡 − 𝜏) + 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒𝑖𝜔0(𝑡−𝜏))

The overline is omitted in the last part, but we still average this expression over time.
Rewriting this gives:

𝐺0(𝜏) =
𝛾2
4 ( (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) (Δ𝐵𝑥(𝑡 − 𝜏) − 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒−𝑖𝜔0(2𝑡−𝜏)

+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) (Δ𝐵𝑥(𝑡 − 𝜏) + 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒−𝑖𝜔0𝜏

+ (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) (Δ𝐵𝑥(𝑡 − 𝜏) − 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒𝑖𝜔0𝜏

+ (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) (Δ𝐵𝑥(𝑡 − 𝜏) + 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒𝑖𝜔0(2𝑡−𝜏))

Now we assume our fluctuating magnetic field follows:

⟨Δ𝐵𝑝(𝑡)Δ𝐵𝑞(𝑡 − 𝜏)⟩ = {
0 𝑝 ≠ 𝑞
𝐺(𝜏) = ⟨𝐵2⟩ 𝑒−|𝜏|/𝜏𝑐 𝑝 = 𝑞 (14)

This corresponds to a power spectrum:

𝐽(𝜔) = 1
⟨𝐵2⟩ ∫

∞

0
𝐺(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏 = ∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔𝜏𝑑𝜏 = 𝜏𝑐

1 + 𝜔2𝜏2𝑐
(15)

We can therefore neglect all the cross-terms (like Δ𝐵𝑥(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)) and find:

𝐺0(𝜏) =
𝛾2
4 (⟨𝐵

2
𝑥 ⟩ 𝑒−|𝜏|/𝜏𝑐 − ⟨𝐵2𝑦 ⟩ 𝑒−|𝜏|/𝜏𝑐) (𝑒−𝑖𝜔0(2𝑡−𝜏) + 𝑒𝑖𝜔0(2𝑡−𝜏))

+ 𝛾
2

4 (⟨𝐵
2
𝑥 ⟩ 𝑒−|𝜏|/𝜏𝑐 + ⟨𝐵2𝑦 ⟩ 𝑒−|𝜏|/𝜏𝑐) (𝑒−𝑖𝜔0𝜏 + 𝑒𝑖𝜔0𝜏)

(16)

Now this gives

𝐽0 = ∫
∞

0
𝐺0(𝜏)𝑑𝜏 =

𝛾2
4 ∫

∞

0
(⟨𝐵2𝑥 ⟩ − ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 (𝑒−𝑖𝜔0(2𝑡−𝜏) + 𝑒𝑖𝜔0(2𝑡−𝜏))

+ (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 (𝑒−𝑖𝜔0𝜏 + 𝑒𝑖𝜔0𝜏) 𝑑𝜏

= 𝛾2
4 (⟨𝐵

2
𝑥 ⟩ − ⟨𝐵2𝑦 ⟩) (∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔0(2𝑡−𝜏)𝑑𝜏 + ∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒𝑖𝜔0(2𝑡−𝜏)𝑑𝜏)

+ 𝛾
2

4 (⟨𝐵
2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔0𝜏𝑑𝜏 + ∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒𝑖𝜔0𝜏𝑑𝜏)

We can recognize the power spectrum of Δ𝐵 (equation 25), to see:

𝐽0 =
𝛾2
4 (⟨𝐵

2
𝑥 ⟩ − ⟨𝐵2𝑦 ⟩) (𝑒−𝑖𝜔02𝑡𝐽(−𝜔0) + 𝑒𝑖𝜔02𝑡𝐽(𝜔0))

+ 𝛾
2

4 (⟨𝐵
2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (𝐽(𝜔0) + 𝐽(−𝜔0))

Now we can see from the definition (equation 25) that 𝐽(−𝜔) = 𝐽(𝜔), which allows us to write:

𝐽0 =
𝛾2
4 (⟨𝐵

2
𝑥 ⟩ − ⟨𝐵2𝑦 ⟩) 2 cos(𝜔02𝑡)𝐽(𝜔0) +

𝛾2
4 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 2𝐽(𝜔0)
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The former term averages to zero over time, giving the final result:

𝐽0 =
𝛾2
2 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔0) = 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0)

This almost agrees with the slides, but is still a factor 2 too large

For 𝑞 = 1 we see

𝐹−1(𝑡)𝐹1(𝑡 − 𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)𝑒

𝑖𝜔1𝑡 + 12 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(𝜔0−𝜔1)𝑡 − 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒

−𝑖(−𝜔0−𝜔1)𝑡)

⋅ (Δ𝐵𝑧(𝑡 − 𝜏)𝑒−𝑖𝜔1(𝑡−𝜏) −
1
2 (Δ𝐵𝑥(𝑡 − 𝜏) − 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒

−𝑖(𝜔0+𝜔1)(𝑡−𝜏)

+ 12 (Δ𝐵𝑥(𝑡 − 𝜏) + 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒
−𝑖(−𝜔0+𝜔1)(𝑡−𝜏))

Rewriting this, separating the Δ𝐵 components:

𝐹−1(𝑡)𝐹1(𝑡 − 𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)𝑒

𝑖𝜔1𝑡 + 12Δ𝐵𝑥(𝑡) (𝑒
−𝑖(𝜔0−𝜔1)𝑡 − 𝑒−𝑖(−𝜔0−𝜔1)𝑡)

− 𝑖
2Δ𝐵𝑦(𝑡) (𝑒

−𝑖(𝜔0−𝜔1)𝑡 + 𝑒−𝑖(−𝜔0−𝜔1)𝑡))

⋅ (Δ𝐵𝑧(𝑡 − 𝜏)𝑒−𝑖𝜔1(𝑡−𝜏) +
1
2Δ𝐵𝑥(𝑡 − 𝜏) (−𝑒

−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏))

+ 𝑖
2Δ𝐵𝑦(𝑡 − 𝜏) (𝑒

−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏)))

From equation 24, we see that eventually the Δ𝐵-crossterms (like Δ𝐵𝑥Δ𝐵𝑦) will disappear. In the next
step we thus neglect them:

𝐹−1(𝑡)𝐹1(𝑡 − 𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

𝑖𝜔1𝜏

+ 14Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) (𝑒
−𝑖(𝜔0−𝜔1)𝑡 − 𝑒−𝑖(−𝜔0−𝜔1)𝑡) ⋅ (𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏) − 𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏))

+ 14Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) (𝑒
−𝑖(𝜔0−𝜔1)𝑡 + 𝑒−𝑖(−𝜔0−𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏)))

= 𝛾2
4 (Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

𝑖𝜔1𝜏 + 14Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) ⋅ I+
1
4Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) ⋅ II)

The last expression defines I and II, so that we can calculate these separately:

I = (𝑒−𝑖(𝜔0−𝜔1)𝑡 − 𝑒−𝑖(−𝜔0−𝜔1)𝑡) ⋅ (𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏) − 𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏))
= 𝑒−𝑖(𝜔0−𝜔1)𝑡𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏) − 𝑒−𝑖(𝜔0−𝜔1)𝑡𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏)

− 𝑒−𝑖(−𝜔0−𝜔1)𝑡𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0−𝜔1)𝑡𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏)

= 𝑒𝑖(−𝜔0+𝜔1)𝜏 − 𝑒−𝑖2𝜔0𝑡𝑒𝑖(𝜔0+𝜔1)𝜏 − 𝑒−𝑖(−2𝜔0)𝑡𝑒𝑖(−𝜔0+𝜔1)𝜏

+ 𝑒𝑖(𝜔0+𝜔1)𝜏

We neglect the terms that oscillate in time, as these should average out to zero. We thus have:

I = 𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏
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For II we see:

II = (𝑒−𝑖(𝜔0−𝜔1)𝑡 + 𝑒−𝑖(−𝜔0−𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏))
= 𝑒−𝑖(𝜔0−𝜔1)𝑡𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(𝜔0−𝜔1)𝑡𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏)

+ 𝑒−𝑖(−𝜔0−𝜔1)𝑡𝑒−𝑖(𝜔0+𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0−𝜔1)𝑡𝑒−𝑖(−𝜔0+𝜔1)(𝑡−𝜏)

= 𝑒−𝑖2𝜔0𝑡𝑒𝑖(𝜔0+𝜔1)𝜏 + 𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏

+ 𝑒−𝑖(−2𝜔0)𝑡𝑒𝑖(−𝜔0+𝜔1)𝜏

Here the first and last term oscillate, giving:

II = 𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏 = I

Filling this in gives:

𝐺1(𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

𝑖𝜔1𝜏 + 14Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) (𝑒
𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏)

+ 14Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) (𝑒
𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏))

Using equation 24, we see:

𝐺1(𝜏) =
𝛾2
4 (⟨𝐵

2
𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐𝑒𝑖𝜔1𝜏 +

1
4 ⟨𝐵

2
𝑥 ⟩ 𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏)

+ 14 ⟨𝐵
2
𝑦 ⟩ 𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏))

Integrating this equation:

𝐽1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒𝑖𝜔1𝜏𝑑𝜏 + 𝛾

2

16 ⟨𝐵
2
𝑥 ⟩∫

∞

0
𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏) 𝑑𝜏

+ 𝛾
2

16 ⟨𝐵
2
𝑦 ⟩∫

∞

0
𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(−𝜔0+𝜔1)𝜏 + 𝑒𝑖(𝜔0+𝜔1)𝜏) 𝑑𝜏

Recognizing the power spectrum of the fluctuations (equation 25):

𝐽1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝐽(−𝜔1) +

𝛾2
16 ⟨𝐵

2
𝑥 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(−𝜔0 − 𝜔1)) +

𝛾2
16 ⟨𝐵

2
𝑦 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(−𝜔0 − 𝜔1))

Assuming 𝐽(−𝜔) = 𝐽(𝜔), and 𝜔0 ≥ 𝜔1 ≥ 0, we can rewrite this to only positive frequencies:

𝐽1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1) +

𝛾2
16 ⟨𝐵

2
𝑥 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1)) +

𝛾2
16 ⟨𝐵

2
𝑦 ⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1))

Which agrees with the ̂̂𝐼−̃ ̂̂𝐼+̃ term in ̂Γ̂ in the Spielman lectures.
If we further assume that ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩.

𝐽1 =
𝛾2
4 ⟨𝐵

2⟩ 𝐽(𝜔1) +
𝛾2
8 ⟨𝐵

2⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1))

and that 𝜔0 ≫ 𝜔1:

𝐽1 =
𝛾2
4 ⟨𝐵

2⟩ 𝐽(𝜔1) +
𝛾2
4 ⟨𝐵

2⟩ 𝐽(𝜔0) =
𝛾2
4 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0))

Note that this also agrees with the Spielman lectures, as there they rewrite:

̂̂𝐼−̃ ̂̂𝐼+̃ = ̂̂𝐼+̃ ̂̂𝐼−̃ = ̂̂𝐼𝑥 ̂̂𝐼𝑥 + ̂̂𝐼𝑦 ̂̂𝐼𝑦
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and thus get an extra factor 2.

Finally, for 𝑞 = −1, we see:

𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)𝑒

−𝑖𝜔1𝑡 − 12 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(𝜔0+𝜔1)𝑡

+ 12 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) 𝑒
−𝑖(−𝜔0+𝜔1)𝑡) ⋅ (Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔1(𝑡−𝜏)

+ 12 (Δ𝐵𝑥(𝑡 − 𝜏) − 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒
−𝑖(𝜔0−𝜔1)(𝑡−𝜏) − 12 (Δ𝐵𝑥(𝑡 − 𝜏) + 𝑖Δ𝐵𝑦(𝑡 − 𝜏)) 𝑒

−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))

Grouping by the Δ𝐵 terms gives:

𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2
4 (Δ𝐵𝑧(𝑡)𝑒

−𝑖𝜔1𝑡 + 12Δ𝐵𝑥(𝑡) (𝑒
−𝑖(−𝜔0+𝜔1)𝑡 − 𝑒−𝑖(𝜔0+𝜔1)𝑡)

+ 𝑖
2Δ𝐵𝑦(𝑡) (𝑒

−𝑖(−𝜔0+𝜔1)𝑡 + 𝑒−𝑖(𝜔0+𝜔1)𝑡)) ⋅ (Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔1(𝑡−𝜏)

+ 12Δ𝐵𝑥(𝑡 − 𝜏) (𝑒
−𝑖(𝜔0−𝜔1)(𝑡−𝜏) − 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))

− 𝑖
2Δ𝐵𝑦(𝑡 − 𝜏) (𝑒

−𝑖(𝜔0−𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏)))

Multiplying this out, once again neglecting the cross-terms gives:

𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2
4 Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

−𝑖𝜔1𝜏

+ 𝛾
2

16Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) (𝑒
−𝑖(−𝜔0+𝜔1)𝑡 − 𝑒−𝑖(𝜔0+𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0−𝜔1)(𝑡−𝜏) − 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))

+ 𝛾
2

16Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) (𝑒
−𝑖(−𝜔0+𝜔1)𝑡 + 𝑒−𝑖(𝜔0+𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0−𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))

= 𝛾2
4 Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

−𝑖𝜔1𝜏 + 𝛾
2

16Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) ⋅ I+
𝛾2
16Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) ⋅ II

With

I = (𝑒−𝑖(−𝜔0+𝜔1)𝑡 − 𝑒−𝑖(𝜔0+𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0−𝜔1)(𝑡−𝜏) − 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))
= 𝑒−𝑖0𝑡𝑒𝑖(𝜔0−𝜔1)𝜏 − 𝑒−𝑖(−2𝜔0)𝑡𝑒𝑖(−𝜔0−𝜔1)𝜏 − 𝑒−𝑖2𝜔0𝑡𝑒𝑖(𝜔0−𝜔1)𝜏

+ 𝑒𝑖(−𝜔0−𝜔1)𝜏

Neglecting rapidly fluctuating terms:

I = 𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏

and, similarly

II = (𝑒−𝑖(−𝜔0+𝜔1)𝑡 + 𝑒−𝑖(𝜔0+𝜔1)𝑡) ⋅ (𝑒−𝑖(𝜔0−𝜔1)(𝑡−𝜏) + 𝑒−𝑖(−𝜔0−𝜔1)(𝑡−𝜏))
= 𝑒−𝑖(0)𝑡𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒−𝑖(−2𝜔0)𝑡𝑒𝑖(−𝜔0−𝜔1)𝜏 + 𝑒−𝑖2𝜔0𝑡𝑒𝑖(𝜔0−𝜔1)𝜏

+ 𝑒𝑖(−𝜔0−𝜔1)𝜏 ⇒
II = 𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏

Filling this in:

𝐺−1(𝜏) = 𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2
4 Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒

−𝑖𝜔1𝜏

+ 𝛾
2

16Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) (𝑒
𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏)

+ 𝛾
2

16Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏) (𝑒
𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏)
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Filling in the correlation of Δ𝐵 then gives:

𝐺−1(𝜏) = 𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔1𝜏

+ 𝛾
2

16 ⟨𝐵
2
𝑥 ⟩ 𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏)

+ 𝛾
2

16 ⟨𝐵
2
𝑦 ⟩ 𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏)

= 𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔1𝜏 +

𝛾2
16 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 (𝑒𝑖(𝜔0−𝜔1)𝜏 + 𝑒𝑖(−𝜔0−𝜔1)𝜏)

Again integrating and recognizing the fluctuating power spectrum gives:

𝐽−1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1) +

𝛾2
16 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (𝐽(𝜔1 − 𝜔0) + 𝐽(𝜔1 + 𝜔0))

Using 𝐽(−𝜔) = 𝐽(𝜔) we see:

𝐽−1 =
𝛾2
4 ⟨𝐵

2
𝑧 ⟩ 𝐽(𝜔1) +

𝛾2
16 (⟨𝐵

2
𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔1 + 𝜔0)) = 𝐽1

And thus the ̂̂𝐼+̃ ̂̂𝐼−̃ term is exactly the same as the ̂̂𝐼−̃ ̂̂𝐼+̃ term in ̂Γ̂. This also agrees with the Spielman
lectures.

Putting it all together, we obtain:

̂Γ̂ = 𝐽0 ̂̂𝐼�̃� ̂̂𝐼�̃� + 𝐽1 ̂̂𝐼−̃ ̂̂𝐼+̃ + 𝐽−1 ̂̂𝐼+̃ ̂̂𝐼−̃

= 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0) ̂̂𝐼�̃� ̂̂𝐼�̃� +
𝛾2
4 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0)) ( ̂̂𝐼−̃ ̂̂𝐼+̃ + ̂̂𝐼+̃ ̂̂𝐼−̃)

Relaxation Times
The relaxation times can be found by inner products of the relaxation operator:

1
𝑇1𝜌

= ⟨ ̂𝐼�̃�| ̂Γ̂ | ̂𝐼�̃�⟩ = 𝐽−1 ⟨ ̂𝐼�̃�| ̂̂𝐼+̃ ̂̂𝐼−̃ | ̂𝐼�̃�⟩ + 𝐽1 ⟨ ̂𝐼�̃�| ̂̂𝐼−̃ ̂̂𝐼+̃ | ̂𝐼�̃�⟩ + 𝐽0 ⟨ ̂𝐼�̃�| ̂̂𝐼�̃� ̂̂𝐼�̃� | ̂𝐼�̃�⟩

= 𝐽−1 Tr ( ̂𝐼�̃� ̂̂𝐼+̃ ̂̂𝐼−̃ ̂𝐼�̃�) + 𝐽1 Tr ( ̂𝐼�̃� ̂̂𝐼−̃ ̂̂𝐼+̃ ̂𝐼�̃�) + 𝐽0 Tr ( ̂𝐼�̃� ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼�̃�)

Calculating these commutators we get:

1
𝑇1𝜌

= 2𝐽−1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) + 2𝐽1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) = 2(𝐽−1 + 𝐽1)

Where we assumed the trace of these operators was normalized. Filling in 𝐽1 and 𝐽−1 gives:

1
𝑇1𝜌

= 2(𝛾
2

4 ⟨𝐵
2⟩ (𝐽(𝜔1) + 𝐽(𝜔0)) +

𝛾2
4 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0)))

= 𝛾2 ⟨𝐵2⟩ (𝐽(𝜔1) + 𝐽(𝜔0))

Which matches the result from the Spielman lectures.

For 𝑇2𝜌 , we can use many different expressions:

1
𝑇2𝜌

= ⟨ ̂𝐼𝑥| ̂Γ̂ | ̂𝐼𝑥⟩ = ⟨ ̂𝐼𝑦| ̂Γ̂ | ̂𝐼𝑦⟩ = ⟨ ̂𝐼+̃| ̂Γ̂ | ̂𝐼+̃⟩ = ⟨ ̂𝐼−̃| ̂Γ̂ | ̂𝐼−̃⟩
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For us, the ̂𝐼𝑥 expression is simplest. We can see this after a little simplification. First we see 𝐽1 =
𝐽−1:

̂Γ̂ = 𝐽0 ̂̂𝐼�̃� ̂̂𝐼�̃� + 𝐽1 ̂̂𝐼−̃ ̂̂𝐼+̃ + 𝐽−1 ̂̂𝐼+̃ ̂̂𝐼−̃
= 𝐽0 ̂̂𝐼�̃� ̂̂𝐼�̃� + 𝐽1 ( ̂̂𝐼−̃ ̂̂𝐼+̃ + ̂̂𝐼+̃ ̂̂𝐼−̃)

Now by working out the product, we can see:

̂̂𝐼−̃ ̂̂𝐼+̃ + ̂̂𝐼+̃ ̂̂𝐼−̃ = 2 ̂̂𝐼𝑥 ̂̂𝐼𝑥 + 2 ̂̂𝐼𝑦 ̂̂𝐼𝑦

This gives:

̂Γ̂ = 𝐽0 ̂̂𝐼�̃� ̂̂𝐼�̃� + 2𝐽1 ( ̂̂𝐼𝑥 ̂̂𝐼𝑥 + ̂̂𝐼𝑦 ̂̂𝐼𝑦)

This allows us to find 𝑇2𝜌 :

1
𝑇2𝜌

= ⟨ ̂𝐼𝑥| ̂Γ̂ | ̂𝐼𝑥⟩ = 𝐽0 Tr ( ̂𝐼𝑥 ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼𝑥) + 2𝐽1 (Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥 ̂̂𝐼𝑥 ̂𝐼𝑥) + Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 ̂̂𝐼𝑦 ̂𝐼𝑥))

Calculating these commutators gives (assuming the traces are normalized):

Tr ( ̂𝐼𝑥 ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼�̃�𝑖 ̂𝐼𝑦) = Tr ( ̂𝐼𝑥𝑖 (−𝑖 ̂𝐼𝑥)) = Tr ( ̂𝐼𝑥 ̂𝐼𝑥) = 1

Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥 ̂̂𝐼𝑥 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥0) = Tr (0) = 0

Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 ̂̂𝐼𝑦 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 (−𝑖 ̂𝐼�̃�)) = Tr ( ̂𝐼𝑥 (−𝑖) 𝑖 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂𝐼𝑥) = 1

And therefore:

1
𝑇2𝜌

= 𝐽0 + 2𝐽1 (17)

Filling in 𝐽0 and 𝐽1:

1
𝑇2𝜌

= 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0) +
𝛾2
2 ⟨𝐵

2⟩ (𝐽(𝜔1) + 𝐽(𝜔0))

= 𝛾2
2 ⟨𝐵

2⟩ (𝐽(𝜔1) + 3𝐽(𝜔0))

To check this, I calculated ⟨ ̂𝐼𝑦| ̂Γ̂ | ̂𝐼𝑦⟩ = 𝐽0 + 2𝐽1 as well.





Appendix C: Derivation of the Relaxation
Times for Time-Independent

Off-Resonance

In this appendix, we provide the detailed calculation of the relaxation times while an RF-pulse is trans-
mitted at a frequency 𝜔rf ≠ 𝜔0, independent of time. This can, for instance, happen when 𝐵0 inhomo-
geneity causes different𝜔0 for different spins. The derivation is mostly the same as in the on-resonance
case, (given in appendix A) until the second rotating frame.

Deriving the Hamiltonian
We once again take as a starting point

�̂� = −𝛾 ( ̂𝐼𝑥𝐵𝑥(𝑡) + ̂𝐼𝑦𝐵𝑦(𝑡) + ̂𝐼𝑧𝐵𝑧(𝑡))

The main magnetic field 𝐵0𝐵0𝐵0 and the fluctuations Δ𝐵Δ𝐵Δ𝐵 remain the same. The spin-lock pulse now rotates
at 𝜔rf instead:

𝐵0𝐵0𝐵0 = 𝐵0�̂�
𝐵1𝐵1𝐵1 = 𝐵1 (cos(𝜔rf𝑡)�̂� − sin(𝜔rf𝑡)�̂�)
Δ𝐵Δ𝐵Δ𝐵 = Δ𝐵𝑥(𝑡)�̂� + Δ𝐵𝑦(𝑡)�̂� + Δ𝐵𝑧(𝑡)�̂�

With still the assumption Δ𝐵 ≪ 𝐵0.
Filling in these fields gives:

�̂� = −𝛾𝐵0 ̂𝐼𝑧 − 𝛾𝐵1 (cos(𝜔rf𝑡) ̂𝐼𝑥 − sin(𝜔rf𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦

Rearranging terms, and using the Larmor frequencies 𝜔0 = 𝛾𝐵0, 𝜔1 = 𝛾𝐵1:

�̂� = −𝜔0 ̂𝐼𝑧 − 𝜔1 (cos(𝜔rf𝑡) ̂𝐼𝑥 − sin(𝜔rf𝑡) ̂𝐼𝑦) − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧 − 𝛾Δ𝐵𝑥(𝑡) ̂𝐼𝑥 − 𝛾Δ𝐵𝑦(𝑡) ̂𝐼𝑦 (18)

The First Rotating Frame
In this case, we rotate our frame by 𝜔rf𝑡 around the �̂�-axis. This gives a fictitious term (derived in
appendix A):

�̂�eff = 𝜔rf ̂𝐼𝑧 + 𝑒−𝑖𝜔rf𝑡 ̂𝐼𝑧�̂�𝑒+𝑖𝜔rf𝑡 ̂𝐼𝑧 (19)

We again get a new basis:

̂�̂�−𝜔rf𝑡 ̂𝐼𝑧
̂𝐼𝑥 = 𝑒−𝑖𝜔rf𝑡 ̂𝐼𝑧 ̂𝐼𝑥𝑒𝑖𝜔rf𝑡 ̂𝐼𝑧 = ̂𝐼𝑥′ cos(𝜔rf𝑡) + ̂𝐼𝑦′ sin(𝜔rf𝑡)

̂�̂�−𝜔rf𝑡 ̂𝐼𝑧
̂𝐼𝑦 = 𝑒−𝑖𝜔rf𝑡 ̂𝐼𝑧 ̂𝐼𝑦𝑒𝑖𝜔rf𝑡 ̂𝐼𝑧 = ̂𝐼𝑦′ cos(𝜔rf𝑡) − ̂𝐼𝑥′ sin(𝜔rf𝑡)

̂�̂�−𝜔rf𝑡 ̂𝐼𝑧
̂𝐼𝑧 = 𝑒−𝑖𝜔rf𝑡 ̂𝐼𝑧 ̂𝐼𝑧𝑒𝑖𝜔rf𝑡 ̂𝐼𝑧 = ̂𝐼𝑧′

Which allows us to write:

�̂�rot = −𝜔0 ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔rf𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

41
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Finally we must add the fictitious term derived in equation 19:

�̂�eff = 𝜔rf ̂𝐼𝑧 + �̂�rot = 𝜔rf ̂𝐼𝑧′ + �̂�rot

= −(𝜔0 − 𝜔rf) ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔rf𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)
= −Ω ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ − 𝛾 ̂�̂�−𝜔rf𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ̂𝐼𝑥 + Δ𝐵𝑦(𝑡) ̂𝐼𝑦)

Where we defined Ω = 𝜔0 − 𝜔rf the off-resonance.

We still have:

̂�̂�−𝜔rf𝑡 ̂𝐼𝑧
̂𝐼+ = 𝑒−𝑖𝜔rf𝑡 ̂𝐼+

̂�̂�−𝜔rf𝑡 ̂𝐼𝑧
̂𝐼− = 𝑒𝑖𝜔rf𝑡 ̂𝐼−

So we can rewrite:
̂𝐼𝑥 =

1
2 (

̂𝐼+ + ̂𝐼−) and ̂𝐼𝑦 =
1
2𝑖 (

̂𝐼+ − ̂𝐼−)

To get:

�̂�eff = −Ω ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2
̂�̂�−𝜔rf𝑡 ̂𝐼𝑧 (Δ𝐵𝑥(𝑡) ( ̂𝐼+ + ̂𝐼−) − 𝑖Δ𝐵𝑦(𝑡) ( ̂𝐼+ − ̂𝐼−))

= −Ω ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡) ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′ −
𝛾
2𝑒

−𝑖𝜔rf𝑡 ̂𝐼+ (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) −
𝛾
2𝑒

𝑖𝜔rf𝑡 ̂𝐼− (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))
(20)

The Second Rotating Frame
The static component of our Hamiltonian is now:

�̂�′0 = −Ω ̂𝐼𝑧′ − 𝜔1 ̂𝐼𝑥′

Themagnetic field corresponding to this static component is called the effectivemagnetic field𝐵𝐵𝐵′eff.

We now wish to align this effective field with the 𝑧-axis in a new frame. Since the static component is
no longer aligned to one of the axes, we can’t just interchange the axis labels. Instead, we must create
a new frame (𝑥″, 𝑦″, 𝑧″) that is tilted with respect to (𝑥′, 𝑦′, 𝑧′).

Figure 1: 𝐵𝐵𝐵′eff in the first rotating frame

From figure 1 we see that we must tilt our frame by an angle 𝛼 around the 𝑦′-axis. We can also see in
this figure that:

tan(𝛼) = 𝜔1
Ω

Using the fact that:

sin(arctan(𝑥)) = 𝑥
√1 + 𝑥2

cos(arctan(𝑥)) = 1
√1 + 𝑥2

(21)
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We can see

cos(𝛼) = 1

√1 + (𝜔1Ω )
2
= Ω
√𝜔21 + Ω2

sin(𝛼) =
(𝜔1Ω )

√1 + (𝜔1Ω )
2
= 𝜔1
√𝜔21 + Ω2

These equations allow us to rewrite the spin operators in the new basis:

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑥′ = ̂𝐼𝑥″ cos(𝛼) + ̂𝐼𝑧″ sin(𝛼) =
1

√𝜔21 + Ω2
(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″) =

1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″)

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑦′ = ̂𝐼𝑦″

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑧′ = ̂𝐼𝑧″ cos(𝛼) − ̂𝐼𝑥″ sin(𝛼) =
1

√𝜔21 + Ω2
(Ω ̂𝐼𝑧″ − 𝜔1 ̂𝐼𝑥″) =

1
𝜔eff

(Ω ̂𝐼𝑧″ − 𝜔1 ̂𝐼𝑥″)

⇒ ̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼+ =
̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑥′ + 𝑖

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑦′ =
1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″) + 𝑖 ̂𝐼𝑦″

= 1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ + 𝑖𝜔eff ̂𝐼𝑦″)

⇒ ̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼− =
̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑥′ − 𝑖

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑦′ =
1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″) − 𝑖 ̂𝐼𝑦″

= 1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ − 𝑖𝜔eff ̂𝐼𝑦″)

(22)

Where we set 𝜔eff = √𝜔21 + Ω2, as this is the frequency corresponding to the effective field.

We can now write the effective Hamiltonian (equation 20) in this new basis:

�̂�eff = −Ω ̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑧′ − 𝛾Δ𝐵𝑧(𝑡)
̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑧′ − 𝜔1

̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼𝑥′

− 𝛾2𝑒
−𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) ̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼+ −

𝛾
2𝑒

𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) ̂�̂�𝛼 ̂𝐼𝑦′ ̂𝐼−

= −Ω 1
𝜔eff

(Ω ̂𝐼𝑧″ − 𝜔1 ̂𝐼𝑥″) − 𝛾Δ𝐵𝑧(𝑡)
1
𝜔eff

(Ω ̂𝐼𝑧″ − 𝜔1 ̂𝐼𝑥″) − 𝜔1
1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″)

− 𝛾2𝑒
−𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡))

1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ + 𝑖𝜔eff ̂𝐼𝑦″)

− 𝛾2𝑒
𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡))

1
𝜔eff

(Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ − 𝑖𝜔eff ̂𝐼𝑦″)

Multiplying both sides by 𝜔eff, and simplifying, gives:

�̂�eff𝜔eff = (−Ω − 𝛾Δ𝐵𝑧(𝑡)) (Ω ̂𝐼𝑧″ − 𝜔1 ̂𝐼𝑥″) − 𝜔1 (Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″)

− 𝛾2𝑒
−𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) (Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ + 𝑖𝜔eff ̂𝐼𝑦″)

− 𝛾2𝑒
𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) (Ω ̂𝐼𝑥″ + 𝜔1 ̂𝐼𝑧″ − 𝑖𝜔eff ̂𝐼𝑦″)

In the next step we will rotate this Hamiltonian by 𝜔eff𝑡 around the 𝑧″ axis. This is easier if we rewrite
this in terms of the eigenoperators of this rotation:

̂𝐼𝑧″ = ̂𝐼𝑧″

̂𝐼+″ = ̂𝐼𝑥″ + 𝑖 ̂𝐼𝑦″ ⇒ ̂𝐼𝑥″ = (
1
2
̂𝐼+″ +

1
2
̂𝐼−″)

̂𝐼−″ = ̂𝐼𝑥″ − 𝑖 ̂𝐼𝑦″ ⇒ ̂𝐼𝑦″ = (
1
2𝑖
̂𝐼+″ −

1
2𝑖
̂𝐼−″)
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Rewriting to these operators gives:

�̂�eff𝜔eff = (−Ω − 𝛾Δ𝐵𝑧(𝑡)) (Ω ̂𝐼𝑧″ − 𝜔1 (
1
2
̂𝐼+″ +

1
2
̂𝐼−″)) − 𝜔1 (Ω(

1
2
̂𝐼+″ +

1
2
̂𝐼−″) + 𝜔1 ̂𝐼𝑧″)

− 𝛾2𝑒
−𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) − 𝑖Δ𝐵𝑦(𝑡)) (Ω(

1
2
̂𝐼+″ +

1
2
̂𝐼−″) + 𝜔1 ̂𝐼𝑧″ + 𝑖𝜔eff (

1
2𝑖
̂𝐼+″ −

1
2𝑖
̂𝐼−″))

− 𝛾2𝑒
𝑖𝜔rf𝑡 (Δ𝐵𝑥(𝑡) + 𝑖Δ𝐵𝑦(𝑡)) (Ω(

1
2
̂𝐼+″ +

1
2
̂𝐼−″) + 𝜔1 ̂𝐼𝑧″ − 𝑖𝜔eff (

1
2𝑖
̂𝐼+″ −

1
2𝑖
̂𝐼−″))

= ̂𝐼𝑧″ (−Ω2 − 𝜔21 − Ω𝛾Δ𝐵𝑧(𝑡) −
𝜔1𝛾
2 Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 − 𝜔1𝛾2 Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

+ 12
̂𝐼+″(𝜔1𝛾Δ𝐵𝑧(𝑡) −

𝛾
2 (Ω + 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 − 𝛾2 (Ω − 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

+ 12
̂𝐼−″(𝜔1𝛾Δ𝐵𝑧(𝑡) −

𝛾
2 (Ω − 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 − 𝛾2 (Ω + 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

Where we substitute Δ𝐵+(𝑡) = Δ𝐵𝑥(𝑡)+𝑖Δ𝐵𝑦(𝑡) and Δ𝐵−(𝑡) = Δ𝐵𝑥(𝑡)−𝑖Δ𝐵𝑦(𝑡) to shorten the equations
somewhat.

We rotate by an angle 𝜔eff𝑡, to finally get rid of the static component. These spin operators rotate
as:

̂�̂�−𝜔eff𝑡 ̂𝐼𝑧″
̂𝐼𝑧″ = ̂𝐼𝑧″

̂�̂�−𝜔eff𝑡 ̂𝐼𝑧″
̂𝐼+″ = 𝑒−𝑖𝜔eff𝑡 ̂𝐼+″

̂�̂�−𝜔eff𝑡 ̂𝐼𝑧″
̂𝐼−″ = 𝑒𝑖𝜔eff𝑡 ̂𝐼−″

We also get an additional fictitious term (given by equation 8):

�̂�″eff = 𝜔eff ̂𝐼𝑧″ + �̂�″rot ⇒ �̂�″eff𝜔eff = 𝜔2eff ̂𝐼𝑧″ + 𝜔eff�̂�″rot
⇒ �̂�″eff𝜔eff = (Ω2 + 𝜔21) ̂𝐼𝑧″ + 𝜔eff�̂�″rot

Filling this in gives the effective Hamiltonian in the second rotating frame:

�̂�″eff𝜔eff = ̂𝐼𝑧″ (−Ω𝛾Δ𝐵𝑧(𝑡) −
𝜔1𝛾
2 Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 − 𝜔1𝛾2 Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

+ 12
̂𝐼+″(𝜔1𝛾Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔eff𝑡 − 𝛾2 (Ω + 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf+𝜔eff)𝑡 − 𝛾2 (Ω − 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf−𝜔eff)𝑡)

+ 12
̂𝐼−″(𝜔1𝛾Δ𝐵𝑧(𝑡)𝑒𝑖𝜔eff𝑡 − 𝛾2 (Ω − 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf−𝜔eff)𝑡 − 𝛾2 (Ω + 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf+𝜔eff)𝑡)

This is now nicely in terms of the eigenoperators of ̂�̂�
′
0:

�̂�′eff = 𝐹′0(𝑡)�̂�′0 + 𝐹′1(𝑡)�̂�′1 + 𝐹′−1(𝑡)�̂�′−1
with:

�̂�′0 = ̂𝐼𝑧″ �̂�′1 = ̂𝐼+″ �̂�′−1 = ̂𝐼−″

𝐹′0(𝑡) =
−𝛾
2𝜔eff

(2ΩΔ𝐵𝑧(𝑡) + 𝜔1Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 + 𝜔1Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

𝐹′1(𝑡) =
𝛾

4𝜔eff
(2𝜔1Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔eff𝑡 − (Ω + 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf+𝜔eff)𝑡 − (Ω − 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf−𝜔eff)𝑡)

𝐹′−1(𝑡) =
𝛾

4𝜔eff
(2𝜔1Δ𝐵𝑧(𝑡)𝑒𝑖𝜔eff𝑡 − (Ω − 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf−𝜔eff)𝑡 − (Ω + 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf+𝜔eff)𝑡)

(23)
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As a check, we calculate the limit with no off-resonance:

Ω → 0 so 𝜔rf → 𝜔0 and 𝜔eff → 𝜔1

�̂�′0 = ̂𝐼𝑧″ �̂�′1 = ̂𝐼+″ �̂�′−1 = ̂𝐼−″

𝐹′0(𝑡) = −
𝛾
2 (Δ𝐵−(𝑡)𝑒

−𝑖𝜔0𝑡 + Δ𝐵+(𝑡)𝑒𝑖𝜔0𝑡)

𝐹′1(𝑡) =
𝛾
2(Δ𝐵𝑧(𝑡)𝑒

−𝑖𝜔1𝑡 − 12Δ𝐵−(𝑡)𝑒
−𝑖(𝜔0+𝜔1)𝑡 + 12Δ𝐵+(𝑡)𝑒

𝑖(𝜔0−𝜔1)𝑡)

𝐹′−1(𝑡) =
𝛾
2(Δ𝐵𝑧(𝑡)𝑒

𝑖𝜔1𝑡 + 12Δ𝐵−(𝑡)𝑒
−𝑖(𝜔0−𝜔1)𝑡 − 12Δ𝐵+(𝑡)𝑒

𝑖(𝜔0+𝜔1)𝑡)

And indeed (up to a phase difference in the transverse plane, due to different orientation of the axes)
this agrees with the on-resonance result.

Relaxation Superoperator
Once again the relaxation matrix is defined by:

̂Γ̂ = ∑
𝑞
𝐽𝑞 ̂�̂�−𝑞 ̂�̂�𝑞

with:
𝐽𝑞 = ∫

∞

0
𝐺𝑞(𝜏)𝑑𝜏 = ∫

∞

0
𝐹−𝑞(𝑡)𝐹𝑞(𝑡 − 𝜏)𝑑𝜏

We once again assume our fluctuations follow:

⟨Δ𝐵𝑝(𝑡)Δ𝐵𝑞(𝑡 − 𝜏)⟩ = {
0 𝑝 ≠ 𝑞
𝐺(𝜏) = ⟨𝐵2⟩ 𝑒−|𝜏|/𝜏𝑐 𝑝 = 𝑞 (24)

With a power spectrum:

𝐽(𝜔) = 1
⟨𝐵2⟩ ∫

∞

0
𝐺(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏 = ∫

∞

0
𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔𝜏𝑑𝜏 = 𝜏𝑐

1 + 𝜔2𝜏2𝑐
(25)

As for our Δ𝐵+(𝑡) and Δ𝐵−(𝑡), we can see that (neglecting crossterms, which must all be zero):

Δ𝐵±(𝑡)Δ𝐵+(𝑡 − 𝜏) = Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) ∓ Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)
Δ𝐵±(𝑡)Δ𝐵−(𝑡 − 𝜏) = Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) ± Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)

(26)

Of course, all the combinations with Δ𝐵𝑧 consist entirely of cross-terms and are thus zero.

Starting with 𝑞 = 0, we see:

𝐺0(𝜏) = 𝐹′0(𝑡)𝐹′0(𝑡 − 𝜏) =
𝛾2
4𝜔2eff

(2ΩΔ𝐵𝑧(𝑡) + 𝜔1Δ𝐵−(𝑡)𝑒−𝑖𝜔rf𝑡 + 𝜔1Δ𝐵+(𝑡)𝑒𝑖𝜔rf𝑡)

⋅ (2ΩΔ𝐵𝑧(𝑡 − 𝜏) + 𝜔1Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖𝜔rf(𝑡−𝜏) + 𝜔1Δ𝐵+(𝑡 − 𝜏)𝑒𝑖𝜔rf(𝑡−𝜏))

Multiplying this out, neglecting the Δ𝐵𝑥,𝑦,𝑧 cross-terms:

𝐺0(𝜏) =
𝛾2
4𝜔2eff

(4Ω2Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏) + 𝜔21Δ𝐵+(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒𝑖𝜔rf(2𝑡−𝜏)

+ 𝜔21Δ𝐵+(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒𝑖𝜔rf𝜏 + 𝜔21Δ𝐵−(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒−𝑖𝜔rf𝜏

+ 𝜔21Δ𝐵−(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖𝜔rf(2𝑡−𝜏))
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The second and the last term have an complex exponential in 𝑡 and thus average out to zero. We can
simplify the remaining terms by noting that:

Δ𝐵+(𝑡)Δ𝐵−(𝑡 − 𝜏) = Δ𝐵−(𝑡)Δ𝐵+(𝑡 − 𝜏) = Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) + Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)
So that:

𝐺0(𝜏) =
𝛾2
4𝜔2eff

(4Ω2Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏) + 𝜔21 (Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) + Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)) ⋅ (𝑒𝑖𝜔rf𝑡 + 𝑒−𝑖𝜔rf𝑡))

Filling in the correlation of the fluctuations (equation 24):

𝐺0(𝜏) =
𝛾2
4𝜔2eff

(4Ω2 ⟨𝐵2𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐 + 𝜔21 (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 ⋅ (𝑒𝑖𝜔rf𝑡 + 𝑒−𝑖𝜔rf𝑡))

We can now calculate the power spectrum:

𝐽0 = ∫
∞

0
𝐺0(𝜏)𝑑𝜏 =

𝛾2
4𝜔2eff

(4Ω2 ⟨𝐵2𝑧 ⟩∫
∞

0
𝑒−|𝜏|/𝜏𝑐𝑑𝜏

+ 𝜔21 (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩)∫
∞

0
𝑒−|𝜏|/𝜏𝑐 ⋅ (𝑒𝑖𝜔rf𝑡 + 𝑒−𝑖𝜔rf𝑡) 𝑑𝜏)

We can now recognize the power spectrum of the fluctuations (equation 25) to get:

𝐽0 = ∫
∞

0
𝐺0(𝜏)𝑑𝜏 =

𝛾2
4𝜔2eff

(4Ω2 ⟨𝐵2𝑧 ⟩ 𝐽(0) + 𝜔21 (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) (𝐽(−𝜔rf) + 𝐽(𝜔rf)))

= 𝛾2Ω2
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(0) +
𝛾2𝜔21
2𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf)

If we assume ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩ (equal fluctuation size in all directions):

𝐽0 =
𝛾2Ω2
𝜔2eff

⟨𝐵2⟩ 𝐽(0) + 𝛾
2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf)

= 𝛾2Ω2
𝜔21 + Ω2

⟨𝐵2⟩ 𝐽(0) + 𝛾2𝜔21
𝜔21 + Ω2

⟨𝐵2⟩ 𝐽(𝜔rf)

And taking the on-resonance limit gives:

𝐽0 = 𝛾2 ⟨𝐵2⟩ 𝐽(𝜔0)
Which is equal to our earlier result.

Continuing with 𝑞 = 1, we get:

𝐺1(𝜏) = 𝐹−1(𝑡)𝐹1(𝑡 − 𝜏) =
𝛾2

16𝜔2eff
(2𝜔1Δ𝐵𝑧(𝑡)𝑒𝑖𝜔eff𝑡 − (Ω − 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf−𝜔eff)𝑡

− (Ω + 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf+𝜔eff)𝑡) ⋅ (2𝜔1Δ𝐵𝑧(𝑡 − 𝜏)𝑒−𝑖𝜔eff(𝑡−𝜏)

− (Ω + 𝜔eff) Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖(𝜔rf+𝜔eff)(𝑡−𝜏) − (Ω − 𝜔eff) Δ𝐵+(𝑡 − 𝜏)𝑒𝑖(𝜔rf−𝜔eff)(𝑡−𝜏))

Multiplying this out:

𝐺1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔eff𝜏

+ (Ω + 𝜔eff)(Ω − 𝜔eff)Δ𝐵+(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒𝑖2𝜔rf𝑡𝑒−𝑖(𝜔rf−𝜔eff)𝜏

+ (Ω + 𝜔eff)2Δ𝐵+(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒𝑖(𝜔rf+𝜔eff)𝜏

+ (Ω − 𝜔eff)2Δ𝐵−(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒−𝑖(𝜔rf−𝜔eff)𝜏

+ (Ω − 𝜔eff)(Ω + 𝜔eff)Δ𝐵−(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖2𝜔rf𝑡𝑒𝑖(𝜔rf+𝜔eff)𝜏)
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Neglecting the terms that oscillate in 𝑡:

𝐺1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔eff𝜏 + (Ω + 𝜔eff)2Δ𝐵+(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒𝑖(𝜔rf+𝜔eff)𝜏

+ (Ω − 𝜔eff)2Δ𝐵−(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒−𝑖(𝜔rf−𝜔eff)𝜏)

Filling in equation 26 to get rid of 𝐵±:

𝐺1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔eff𝜏

+ (Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) + Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏)) ⋅ ((Ω + 𝜔eff)2𝑒𝑖(𝜔rf+𝜔eff)𝜏 + (Ω − 𝜔eff)2𝑒−𝑖(𝜔rf−𝜔eff)𝜏))

We can now fill in the correlation of the fluctuating fields:

𝐺1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21 ⟨𝐵2𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐𝑒𝑖𝜔eff𝜏

+ (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 ((Ω + 𝜔eff)2𝑒𝑖(𝜔rf+𝜔eff)𝜏 + (Ω − 𝜔eff)2𝑒−𝑖(𝜔rf−𝜔eff)𝜏))

Integrating, and recognizing the power spectrum of the fluctuations, gives:

𝐽1 =
𝛾2

16𝜔2eff
(4𝜔21 ⟨𝐵2𝑧 ⟩ 𝐽(−𝜔eff)

+ (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) ⋅ ((Ω + 𝜔eff)2𝐽(−𝜔rf − 𝜔eff) + (Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff)))

= 𝛾2𝜔21
4𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff) +
𝛾2(Ω + 𝜔eff)2

16𝜔2eff
(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf + 𝜔eff)

+ 𝛾
2(Ω − 𝜔eff)2
16𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf − 𝜔eff)

Assuming equal fluctuation size in all directions:

𝐽1 =
𝛾2𝜔21
4𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff) +
𝛾2(Ω + 𝜔eff)2

8𝜔2eff
⟨𝐵2⟩ 𝐽(𝜔rf + 𝜔eff)

+ 𝛾
2(Ω − 𝜔eff)2
8𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf − 𝜔eff)

Taking the on-resonance limit:

𝐽1 =
𝛾2
4 ⟨𝐵

2⟩ 𝐽(𝜔1) +
𝛾2
8 ⟨𝐵

2⟩ 𝐽(𝜔0 + 𝜔1) +
𝛾2
8 ⟨𝐵

2⟩ 𝐽(𝜔0 − 𝜔1)

= 𝛾2
4 ⟨𝐵

2⟩ 𝐽(𝜔1) +
𝛾2
8 ⟨𝐵

2⟩ (𝐽(𝜔0 − 𝜔1) + 𝐽(𝜔0 + 𝜔1))

Again agrees with our earlier result.

Finally taking 𝑞 = −1 gives:

𝐺−1(𝜏) = 𝐹1(𝑡)𝐹−1(𝑡 − 𝜏) =
𝛾2

16𝜔2eff
(2𝜔1Δ𝐵𝑧(𝑡)𝑒−𝑖𝜔eff𝑡 − (Ω + 𝜔eff) Δ𝐵−(𝑡)𝑒−𝑖(𝜔rf+𝜔eff)𝑡

− (Ω − 𝜔eff) Δ𝐵+(𝑡)𝑒𝑖(𝜔rf−𝜔eff)𝑡) ⋅ (2𝜔1Δ𝐵𝑧(𝑡 − 𝜏)𝑒𝑖𝜔eff(𝑡−𝜏)

− (Ω − 𝜔eff) Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖(𝜔rf−𝜔eff)(𝑡−𝜏) − (Ω + 𝜔eff) Δ𝐵+(𝑡 − 𝜏)𝑒𝑖(𝜔rf+𝜔eff)(𝑡−𝜏))
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Rearranging the non-zero terms gives:

𝐺−1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒−𝑖𝜔eff𝜏

+ (Ω − 𝜔eff)(Ω + 𝜔eff)Δ𝐵+(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒𝑖2𝜔rf𝑡𝑒−𝑖(𝜔rf+𝜔eff)𝜏

+ (Ω − 𝜔eff)2Δ𝐵+(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒𝑖(𝜔rf−𝜔eff)𝜏

+ (Ω + 𝜔eff)2Δ𝐵−(𝑡)Δ𝐵+(𝑡 − 𝜏)𝑒−𝑖(𝜔rf+𝜔eff)𝜏

+ (Ω + 𝜔eff)(Ω − 𝜔eff)Δ𝐵−(𝑡)Δ𝐵−(𝑡 − 𝜏)𝑒−𝑖2𝜔rf𝑡𝑒𝑖(𝜔rf−𝜔eff)𝜏)

Neglecting the time-oscillating terms, and filling in Δ𝐵± gives:

𝐺−1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21Δ𝐵𝑧(𝑡)Δ𝐵𝑧(𝑡 − 𝜏)𝑒−𝑖𝜔eff𝜏 + (Δ𝐵𝑥(𝑡)Δ𝐵𝑥(𝑡 − 𝜏) + Δ𝐵𝑦(𝑡)Δ𝐵𝑦(𝑡 − 𝜏))

⋅ ((Ω − 𝜔eff)2𝑒𝑖(𝜔rf−𝜔eff)𝜏 + (Ω + 𝜔eff)2𝑒−𝑖(𝜔rf+𝜔eff)𝜏))

Filling in the correlation of the fluctuations:

𝐺−1(𝜏) =
𝛾2

16𝜔2eff
(4𝜔21 ⟨𝐵2𝑧 ⟩ 𝑒−|𝜏|/𝜏𝑐𝑒−𝑖𝜔eff𝜏

+ (⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝑒−|𝜏|/𝜏𝑐 ⋅ ((Ω − 𝜔eff)2𝑒𝑖(𝜔rf−𝜔eff)𝜏 + (Ω + 𝜔eff)2𝑒−𝑖(𝜔rf+𝜔eff)𝜏))

Integrating this, and recognizing the power spectrum of the fluctuations, and that 𝐽(𝜔) = 𝐽(−𝜔):

𝐽−1 =
𝛾2𝜔21
4𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff) +
𝛾2

16𝜔2eff
(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) ((Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff) + (Ω + 𝜔eff)2𝐽(𝜔rf + 𝜔eff)))

And we see now that this is equal to the 𝐽1 we derived in this section. We thus also see that in the limit
this agrees with the 𝐽−1 for the on-resonance case, as in that case 𝐽−1 = 𝐽1 as well, and we already
showed this limit for 𝐽1.

Relaxation Times
The relaxation times can be found by inner products of the relaxation operator:

1
𝑇1𝜌

= ⟨ ̂𝐼�̃�| ̂Γ̂ | ̂𝐼�̃�⟩ = 𝐽−1 ⟨ ̂𝐼�̃�| ̂̂𝐼+̃ ̂̂𝐼−̃ | ̂𝐼�̃�⟩ + 𝐽1 ⟨ ̂𝐼�̃�| ̂̂𝐼−̃ ̂̂𝐼+̃ | ̂𝐼�̃�⟩ + 𝐽0 ⟨ ̂𝐼�̃�| ̂̂𝐼�̃� ̂̂𝐼�̃� | ̂𝐼�̃�⟩

= 𝐽−1 Tr ( ̂𝐼�̃� ̂̂𝐼+̃ ̂̂𝐼−̃ ̂𝐼�̃�) + 𝐽1 Tr ( ̂𝐼�̃� ̂̂𝐼−̃ ̂̂𝐼+̃ ̂𝐼�̃�) + 𝐽0 Tr ( ̂𝐼�̃� ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼�̃�)

Calculating these commutators we get:
1
𝑇1𝜌

= 2𝐽−1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) + 2𝐽1 Tr ( ̂𝐼�̃� ̂𝐼�̃�) = 2(𝐽−1 + 𝐽1)

We once again have 𝐽−1 = 𝐽1, and fill this in to get:
1
𝑇1𝜌

= 4𝐽1

= 𝛾2𝜔21
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff) +
𝛾2(Ω + 𝜔eff)2

4𝜔2eff
(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf + 𝜔eff)

+ 𝛾
2(Ω − 𝜔eff)2
4𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf − 𝜔eff)

= 𝛾2𝜔21
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff) +
𝛾2
4𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) ((Ω + 𝜔eff)2𝐽(𝜔rf + 𝜔eff) + (Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff))

(27)
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For ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩:

1
𝑇1𝜌

= 𝛾2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff) +
𝛾2
2𝜔2eff

⟨𝐵2⟩ ((Ω + 𝜔eff)2𝐽(𝜔rf + 𝜔eff) + (Ω − 𝜔eff)2𝐽(𝜔rf − 𝜔eff))

To find 𝑇2𝜌 , we take an inner product in the transverse plane (we could have also used the inner product
with ̂𝐼𝑦, or a combination of the two):

1
𝑇2𝜌

= ⟨ ̂𝐼𝑥| ̂Γ̂ | ̂𝐼𝑥⟩ = 𝐽0 Tr ( ̂𝐼𝑥 ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼𝑥) + 2𝐽1 (Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥 ̂̂𝐼𝑥 ̂𝐼𝑥) + Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 ̂̂𝐼𝑦 ̂𝐼𝑥))

Calculating these commutators gives (assuming the traces are normalized):

Tr ( ̂𝐼𝑥 ̂̂𝐼�̃� ̂̂𝐼�̃� ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼�̃�𝑖 ̂𝐼𝑦) = Tr ( ̂𝐼𝑥𝑖 (−𝑖 ̂𝐼𝑥)) = Tr ( ̂𝐼𝑥 ̂𝐼𝑥) = 1

Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥 ̂̂𝐼𝑥 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼𝑥0) = Tr (0) = 0

Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 ̂̂𝐼𝑦 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂̂𝐼𝑦 (−𝑖 ̂𝐼�̃�)) = Tr ( ̂𝐼𝑥 (−𝑖) 𝑖 ̂𝐼𝑥) = Tr ( ̂𝐼𝑥 ̂𝐼𝑥) = 1

And therefore:

1
𝑇2𝜌

= 𝐽0 + 2𝐽1 =
𝛾2Ω2
𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(0) +
𝛾2𝜔21
2𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf) +
𝛾2𝜔21
2𝜔2eff

⟨𝐵2𝑧 ⟩ 𝐽(𝜔eff)

+ 𝛾
2(Ω + 𝜔eff)2
8𝜔2eff

(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf + 𝜔eff) +
𝛾2(Ω − 𝜔eff)2

8𝜔2eff
(⟨𝐵2𝑥 ⟩ + ⟨𝐵2𝑦 ⟩) 𝐽(𝜔rf − 𝜔eff)

(28)

For ⟨𝐵2𝑥,𝑦,𝑧⟩ = ⟨𝐵2⟩:

1
𝑇2𝜌

= 𝛾2Ω2
𝜔2eff

⟨𝐵2⟩ 𝐽(0) + 𝛾
2𝜔21
𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf) +
𝛾2𝜔21
2𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔eff)

+ 𝛾
2(Ω + 𝜔eff)2
4𝜔2eff

⟨𝐵2⟩ 𝐽(𝜔rf + 𝜔eff) +
𝛾2(Ω − 𝜔eff)2

4𝜔2eff
⟨𝐵2⟩ 𝐽(𝜔rf − 𝜔eff)
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