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1.1. CARDIAC ANATOMY 5
Although the average life expectancy of humans has increased dramatically over

the last decades (Oeppen and Vaupel, 2002), and despite advances in cardiovascular
diagnosis and treatment, cardiovascular related deaths still remain the leading cause
of mortality worldwide. It is estimated that by 2030 almost 25 million people per year
will die from cardiovascular diseases (CVDs) (WHO, 2012). Generally, CVDs remain
unnoticed over a long period of time and when symptoms start appearing the disease
may have an advanced stage. Coronary artery diseases (CAD), is the CVD associated
with the highest mortality. CAD will ultimately result in reduced blood supply to
the cardiac muscle resulting in a permanent damage to the tissue (ischemia). The
development of CVD and the risk of a subject having a cardiovascular related event
in the near future can be predicted by monitoring risk factors associated to CAD e.g.
smoking, obesity, raised lipid levels, blood pressure, diabetes, etc.,

Advances in imaging technologies permit assessment of anatomical and functional
heart parameters which may be used to detect the presence of CAD, monitor
its progression, and predict the likeliness of future clinical events. Deriving this
information from image data either visually or manually can be an overwhelming
and tedious task. In order to facilitate the clinicians in the extraction of quantitative
information, there is large interest in activities in developing software programs for
automating this task.

In this thesis, we describe techniques that we developed and evaluated for
automatic extraction of quantitative imaging biomarkers for CVD. In the following
sections a brief introduction to cardiac anatomy (1.1), coronary artery disease
(1.2), cardiac imaging techniques (1.3), and quantitative imaging biomarkers for
cardiovascular disease (1.4) is provided. Lastly, the outline of the thesis is presented
in Section 1.5.

1.1 Cardiac anatomy

The heart is an essential organ that supplies blood to the rest of the body through a
network of blood vessels. The blood supply chain consists of a network of arteries
that originate from the aorta and carry blood from the heart, and a network of veins
that carry blood back to the heart. The heart is made up of four chambers: two atria
which receive blood coming back to the heart and two ventricles which pump blood
out of the heart. The blood coming in through the right atrium is oxygen deficit and
is pumped to the lungs via the right ventricle. In the lungs the blood gets enriched
with oxygen and returns back to the heart through the left atrium. The heart then
pumps this blood to other parts of the body via the left ventricle. Four different types
of valves are present between the chambers to maintain a unidirectional blood flow.
A web of nerve tissues conducts complex electrical signals that govern the contraction
and relaxation of the heart. A protective layer called the pericardial sac covers the
heart. Figure 1.1 shows a schematic view of the heart.

Since the heart in itself is made up of muscle tissue (cardiac muscle), it also needs
its own share of oxygen rich blood supply. Approximately 5% of the total blood
being pumped out of the heart is supplied back to the cardiac muscle through a
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Figure 1.1: Anatomy of the heart. (adapted from www.antranik.org)
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Figure 1.2: Resin cast of the Coronary Arteries (adapted from www.bodyworlds.com)



1.2. CORONARY ARTERY DISEASE 7
network of arteries called coronary arteries. The coronary arteries are divided into
two branches, the left branch and the right branch, which originate at the beginning
of the aorta. Both branches of the coronary arteries are further divided into smaller
arteries, eventually branching into capillaries. There are four main branches of the
coronary arteries: the left main (LM), the left anterior descending (LAD), the left
circumflex (LCX), and the right coronary artery (RCA). Figure 1.2 shows a cast of the
coronary arteries.

1.2 Coronary artery disease

CAD causes buildup of plaque in the walls of the arteries. This process is called
atherosclerosis. The coronary artery, which is smooth and elastic when healthy, starts
to become narrow and rigid due to the buildup of plaque. Plaque consists of fatty
substances like cholesterol and other materials such as calcium. Figure 1.3 shows the
evolution of atherosclerosis. Due to the narrowing of the artery, the flow of blood
is hindered which causes ischemia. If the ischemia is prolonged then a myocardial
infarction (heart attack) may occur. Hence it is very important to detect CAD in a very
early stage, so appropriate measures can be taken to prevent future cardiac events.

Atherosclerosis was thought to be a disease of modern times, but a recent study
conducted by Thompson et al. (Thompson et al., 2013) shows that atherosclerosis is
an ancient disease spanning more than 4000 years. The study was performed by CT
scanning of 137 mummies from four different geographical regions (ancient Egypt,
ancient Peru, the Ancestral Puebloans of south-west America, and the Unangan of the
Aleutian Islands) and inspecting the major arteries and the coronaries. It was found
that 34% of the mummies had clear deposits of calcium in the arteries, indicating the
presence of atherosclerosis.

1.3 Cardiac imaging techniques

Several imaging techniques are available for imaging the coronary arteries.
Conventional Coronary Angiography (CCA) is an X-ray projection technique

used to visually assess the coronary arteries. Contrast material is injected into the
arteries to increase the contrast within the vessel, for visualization of the lumen. The
contrast material is delivered at the origin of the coronary arteries via a catheter. The
catheter is usually inserted through the femoral artery in the thigh and advanced
into the ascending aorta. This imaging technique results in a two-dimensional (2D)
image which is used by a cardiologist to investigate luminal narrowing (stenosis)
in the arteries. The visualized stenosis can further be classified as significant if the
narrowing in the lumen is ≥ 50%. In current practice, CCA is the gold standard
imaging technique for diagnosing CAD. Figure 1.4 shows an example of the scanner.

Computed Tomography (CT) is a widely used technique to image the heart
and the coronary arteries. CT imaging uses a rotating X-rays source and detectors
to enable three-dimensional (3D) image reconstruction. X-rays passing through a
subject are partially attenuated depending on the composition of the tissues. The
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Figure 1.3: Progress of atherosclerosis over time and the different stages (source:
wikimedia).

transmitted X-rays are collected by a series of detectors. A 3D image is then digitally
reconstructed. Filtered back projection has traditionally been most widely used but
is increasingly replaced by iterative algebraic reconstruction techniques. Cardiac CT
images are commonly used to assess the presence of calcified lesions. Figure 1.5 shows
an example of a CT scanner.

Computed Tomography Angiography (CTA) is a technique where the same
principle as CT is used to acquire and reconstruct a 3D image after a iodine based
contrast material is injected intravenously. The presence of contrast material makes
it easier to visualize the cardiac chambers, coronary arteries and the other structures
within the heart. Cardiac CTA images are used to assess the cardiac anatomy and
coronary artery lumen. Information such as, lumen narrowing (stenosis), plaque
location and plaque composition can be obtained from CTA images. Figure 1.7 shows
an example of a CT and a CTA image, the difference due to the contrast material
between the two imaging modalities can easily be compared.
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(a) (b)

Figure 1.4: (a) A mono-plane X-ray system . The patient is placed on the table and
the C-arm with the X-ray source and the detector is positioned accordingly to acquire
the angiogram. (Image copyright Toshiba) (b) An example of the CCA image.

Single-Photon Emission Computed Tomography (SPECT) is a technique were a
small amount of radioactive material called radionuclide is intravenously injected into
the subject. Based on the type of radionuclide used, it gets bound to a specific tissue.
Due to its radioactive nature the radionuclide starts decaying by emitting gamma
radiation. These gamma radiations are detected by a gamma camera. Similar to
the CT imaging principle, one or more gamma cameras rotate around the subject,
acquiring multiple 2D images. A 3D image is then computationally reconstructed
by using a computer algorithm. SPECT is used in functional cardiac imaging called
myocardial perfusion imaging (MPI). Figure 1.8 shows an example of the scanner and
the SPECT image it produces.

1.4 Quantitative imaging biomarkers of cardiovascular disease

Biomarker is a term used for a detectable biological source that could indicate the
presence or state of a disease, or the response to a treatment. An imaging biomarker
is a feature that is detectable using an imaging modality. Accurate quantification of
these imaging biomarkers is of utmost importance, because not only the presence,
but also the (feature) distribution and the extent/severity of biomarkers may indicate
the stage of a disease, and can potentially be used for predicting the evolution of
the disease. Based on these findings the patients can be grouped into different risk
categories for disease management, i.e. suitable intervention or treatment planning.

In this thesis we mainly focus on quantitative imaging biomarkers for cardiovas-
cular diseases. The imaging biomarkers that we investigated are described in more
detail in the following paragraphs.
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Figure 1.5: A CT scanner. Subject is placed on the moving table. Rotating X-ray source
and detectors are placed within the circular encasing. (Image copyright Siemens AG)

-1000 HU +1000 HU0 HU-500 HU +500 HU

Air
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Water
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Fat Calcium

Figure 1.6: Houndsfield attenuation range for various tissue types.

Calcified lesions in the arteries indicate the presence of atherosclerosis. The
amount of calcified lesions in the coronary artery indicates the severity of CAD (Rosen
et al., 2009). Hence, calcified lesions are one of the important biomarkers of CAD.
Calcium can be easily visualized on a CT scan. Calcium lesions have the same
attenuation coefficient as that of bone (see Figure 1.6) and appear as bright objects on
the scan. They can be detected by setting a threshold level of 130 HU (Agatston et al.,
1990). The amount and location of calcium lesions in the coronary arteries indicate
the extent and severity of Atherosclerosis. The process of quantifying the amount of
calcifications in the arteries is called calcium scoring. There are three widely used
calcium scoring algorithms, Agatston score (Agatston et al., 1990), volume score
(Callister et al., 1998) and mass score (Hong et al., 2002). Based on the value of the
calcium scores and other factors such as the Framingham risk factors, subjects can be
assigned into various risk categories (Greenland et al., 2004; Shaw et al., 2003).
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(a) (b)

Figure 1.7: A randomly selected axial slice from a subject. (a) CT scan, (b)
corresponding CTA scan.

The Agatston score is the most widely used scoring technique and was originally
proposed for electron beam CT (EBCT) scanners and is defined as:

Ag =

n
∑

s=1

As ∗ws , (1.1)

where s is the the slice number of the lesion, A the area of the lesion on slice s and w

the weighting factor of the lesion. w is defined as:

w =









1 130HU ≤ Is < 200HU

2 200HU ≤ Is < 300HU

3 300HU ≤ Is < 400HU
4 400HU ≤ Is.

(1.2)

where, Is is the max intensity value of the calcification on slice s.
The aforementioned definition was used on EBCT scanners that had a slice

thickness of 3mm. To use this method on modern CT scanners, a normalized Agatston
score (Ohnesorge et al., 2002) is used:

Agn =
IN

SW

n
∑

s=1

As ∗ ws , (1.3)

where IN is the slice increment and SW the slice thickness. The total Agatston score
is computed by summing all the individual lesion scores.
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(a) (b)

Figure 1.8: (a) A SPECT scanner. The rectangle boxes in front of the circular encasing
(upgradable into a CT-SPECT scanner) are the two gamma cameras. (Image copyright
Siemens AG) (b) Example of a typical SPECT image.

Figure 1.9: A randomly selected axial CT slice. Green objects are the coronary artery
calcium lesions, pink objects have characteristics similar to calcium lesions but are
actually noise and calcium lesions outside the coronary arteries.
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Due to the non-linear scale of the weighting factor w in the Agatston score, a new

method was proposed by Callister et al., the so-called volume score:

V =

n
∑

i=1

Ni ∗ v , (1.4)

where i is the lesion index, N the number of segmented voxels and v is the volume of
the voxel.

The volume score does not measure the actual composition of the calcium plaque
but the relative volume. An absolute scoring method was proposed by Hong et al.
based on the hydroxyapatite density of the calcium lesion. This measure was called
the mass score and is defined as:

M =

n
∑

i=1

C T i ∗ vi ∗ C , (1.5)

where C T i is the mean intensity of the calcium lesion, vi the volume of the lesion and
C is the calibration factor for hydroxyapatite.

The main challenge for calcium quantification is the ability to distinguish true lesions

from noise. Since the calcium scoring CT protocol uses a very low radiation dose, the
images obtained are noisy. It is also difficult to distinguish the coronary arteries from
the surrounding tissue. This makes it more difficult to assign the detected calcium
lesion to a particular artery. An example is presented in Figure 1.9.

Epicardial fat is the adipose tissue found between the myocardium and the
visceral layer of the pericardium. This fat tissue directly surrounds the entire heart
and the coronary arteries. Increasing evidence suggests that the epicardial fat tissue
surrounding the coronary arteries contribute to the local production of inflammatory
factors, which in turn increases the risk of atherosclerosis (Cheng et al., 2007;
Iacobellis et al., 2005). Adipose tissue can be quantified on a CT scan, fat tissue
voxels appear on the scans with an attenuation value in the range between -200HU
to -30HU (Yoshizumi et al., 1999) (see Figure 1.6). A typical Cardiac CT scan has
three types of fat tissue within its FOV: Visceral fat (located around the abdomen),
Inter-thoracic fat (located between the chest wall and pericardium) and epicardial fat
(contained within the pericardium). Figure 1.10 shows an example of the different
fat tissues on an axial slice. The volume of epicardial fat voxels can be quantified by
first delineating the heart from the surrounding structures.

The main challenge lying in the quantification of epicardial fat is the ability

to accurately delineate the pericardium. The pericardium appears as a very thin
membrane around the heart. The scans used for epicardial fat quantification are
the same as those used for calcium scoring. Hence, we have to deal with the issues
regarding image noise and the absence of intravenous contrast material. Both issues
make it difficult to distinguish between the different cardiac structures.

Lumen narrowing or stenosis is caused due to the buildup of plaque as explained
in Section 1.2 (see Figure 1.3). It is important to accurately quantify the degree
of stenosis. The degree of stenosis indicates the presence of obstructive CAD.
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Figure 1.10: Adipose tissues overlaid on the CT scan. The red region indicates
epicardial fat tissue; The blue region represents the visceral and inter-thoracic fat
tissue. Due to partial volume effects some noise in the lung nodules is also picked up
as fat.

Figure 1.11: Example of the 17-segment model with stress and rest polar maps used
for interpretation.
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Obstructive CAD is directly associated with myocardial infarction. Hence, it is of
utmost importance to be able to accurately quantify the amount of luminal narrowing,
such that further preventive measures can be taken. Stenosis degree is measured
using the CCA scan which is considered to be the gold standard. The degree of
stenosis can also be quantified on a CTA scan. Additional information such as the
plaque composition can also be derived from the CTA scan. The presence of contrast
material within the coronary arteries makes it easier to visualize and quantify the
lumen morphology. Figure 1.12 shows a curved multi-planar reformatted image of a
coronary artery with a few stenoses.

The main challenge in quantifying the degree of stenosis is the ability to distinguish

between obstructive and non-obstructive luminal narrowing. A stenosis is said to be
obstructive when the lumen is more that 50% occluded. The radius of the lumen is
computed by segmenting the lumen. In order to compute the degree of stenosis of a
diseased vessel segment, the estimated radius of the healthy lumen is calculated from
the true radius by applying a regression approach.

Figure 1.12: A curved multi-planar reformatted image of a LAD coronary artery. It
can be observed that the presence of calcium lesions within the coronary artery causes
luminal narrowing.

Myocardial Perfusion is used to assess the function of the heart muscle
(myocardium). If the myocardium receives less blood supply due to an obstructive
stenosis caused by CAD, the myocardium is said to be diseased (myocardial ischemia).
The presence and extent of myocardial ischemia can be evaluated using Myocardial
Perfusion Imaging (MPI). The basic principle behind MPI is that when the myocardium
is under stress, less blood is supplied to the myocardium, hence small amounts of the
injected radionuclide is absorbed by the myocardium. Diagnosis is made by comparing
images obtained during rest and those obtained during stress.

The challenge in interpreting Myocardial Perfusion Imaging is being able to associate

the myocardial ischemia to a particular obstructive stenosis in a coronary artery. In
practice MPI is interpreted by mapping the information into a 17-segment model
called a bulls-eye plot, each one of this segment is associated to a particular coronary
artery (see Figure 1.11. Using the standardized 17-segment model does not always
correspond to the correct coronary artery, because the coronary anatomy is not the
same across the population. Thus, there is a need to develop a patient specific model,
by combining anatomical information obtained from CTA scans and the functional
information from MPI scans.
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1.5 Thesis outline

The work presented in this thesis belongs to the "Heart in 3D" project, a public-private
collaboration between three universities (TU Delft, Erasmus MC and LUMC) and
a consortium of companies (Medis Medical Imaging bv, Cardialysis bv, BioClinica,
Oldelft Ultrasound). The general aim of the project was to develop novel algorithms
and quantitative analysis tools on multimodal images, to support diagnosis and
disease staging in CVD. The Heart in 3D project involved three PhD students (Rahil
Shahzad, Hortense Kiri̧sli and Vikas Gupta). Hortense Kiri̧sli was mainly responsible
for the development and evaluation of a 3D cardiac chamber segmentation method,
the fusion of cardiac multi-modal images and the development of an evaluation
framework for (semi-) automatic stenosis detection and quantification. Vikas Gupta
was responsible for registration and segmentation methods in MR perfusion images,
quantification in SPECT perfusion images, and selection of SPECT, CT/CTA, and CCA
data for the validation of SMARTVis tool. The main focus of this thesis is to develop
methods to automatically quantify the cardiovascular imaging biomarkers mentioned
in the previous section, as well as to evaluate the accuracy of these methods in
clinical practise. The main contribution of the author, Rahil Shahzad are the design,
implementation and evaluation of: 1) an atlas based ’Coronary Density Estimate’, 2) a
pattern recognition based method for detecting and labelling coronary artery calcium
lesions, 3) an atlas based method for quantification of epicardial fat volume 4) an
automatic stenosis detection and quantification method by integrating and improving
pre-existing methods such as a new calcium suppression step, 5) investigating the
association of epicardial fat on 2370 subjects. Each of these contributions have been
presented in separate chapters.

In Chapter 2 a new atlas based method is presented that enables us to estimate
the locations of the coronary arteries on a cardiac CT scan. We call this feature
’Coronary Density Estimate’. It is derived by determining the anatomical variations of
the coronary arteries from a random population of 85 subjects.

In Chapter 3 a method for automatic calcium scoring is presented. The method
uses a pattern recognition approach in order to identify the true calcium objects
from the image noise. The method also assigns the identified calcium objects to
the corresponding artery using the ’Coronary Density Estimate’ feature described in
Chapter 2.

In Chapter 4 an atlas based segmentation approach for epicardial fat
quantification is presented. The method uses CTA atlas images in order to segment
the subject’s pericardium on CT scans. The method has been evaluated by comparing
the performance of the method with two manual observers.

In Chapter 5 we present a method for detection, quantification and segmentation
of stenosis. The method is based on centerline extraction, lumen segmentation
and a regression approach in order to estimate the healthy lumen diameter. The
performance of the method was evaluated using the Coronary Artery Stenosis Detection

and Quantification Evaluation Framework.
In Chapter 6 we present the Synchronized Multimodal heART Visualization

(SMARTVis) system to integrate perfusion information from SPECT-MPI and the
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coronary artery anatomy information from CTA. We investigated the additional
diagnostic value of fused CTA/SPECT-MPI analysis as compared to side-by-side
analysis, in patients with suspected coronary artery disease (CAD).

In Chapter 7 we investigate the association of epicardial fat volume with
atherosclerosis at multiple locations and assessed its risk factors in a large sample of
community-dwelling elderly. The epicardial fat volume was quantified automatically
using the method describe in Chapter 4. 2370 subjects were included in the study,
along with the epicardial fat volume, calcifications in the aorta, coronary and carotid
arteries were also quantified.

In Chapter 8 we conclude the thesis by providing the summary and general
discussion.
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Abstract

Purpose A reliable density estimate for the position of the coronary arteries in Computed
Tomography (CT) data is beneficial for many coronary image processing applications, such as
vessel tracking, lumen segmentations, and calcium scoring.

Methods We present a method for obtaining an estimate of the coronary artery location
in CT and CT angiography (CTA). The proposed method constructs a patient-specific coronary
density estimate using CTA atlas registration. The method is evaluated by quantifying the
overlap of the obtained density estimate with 24 manually annotated centrelines of the lumen.
Furthermore, the method is quantitatively evaluated when applied in automatic calcium scoring
of the coronary arteries, which is an important risk predictor of coronary artery disease. The
obtained results were compared to manual annotations on 170 CT datasets.

Results On the 24 CTA datasets it was observed that on average 82% of all the centerline
points in the RCA, 91% of the LAD centerline points and 58% of the LCX centerline points lie
within the respective patient-specific coronary artery density estimates. With respect to the
calcium scores obtained on the 170 CT data using the density estimates, a Pearson’s correlation
coefficient R of 0.93 was obtained.

Conclusions We present a method that allows construction of patient-specific coronary artery
estimates. The application of these estimates for the purpose of calcium scoring has been
demonstrated.
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2.1 Introduction

Cardiovascular disease (CVD) is the number one cause of death worldwide. It is
estimated that by 2030 around 23.6 million people will die from CVD (WHO, 2012).
Detection and quantification of atherosclerosis is essential for risk assessment of the
coronary artery disease (CAD).

The imaging modalities of choice for non-invasive quantification of atherosclerosis
in the coronary arteries are Computed Tomography (CT) and Computed Tomography
Angiography (CTA). Obtaining a strong position estimate of the coronary arteries in
CT and CTA data can be beneficial for several coronary image processing applications,
such as vessel tracking, lumen segmentations, and the quantification of the amount
of calcium, viz. Calcium Scoring (CS).

This chapter presents a method for obtaining a density estimate for the position
of the main coronary arteries, namely: right coronary artery (RCA), left anterior
ascending (LAD) and left circumflex (LCX), in CT and CTA data. The method is
quantitatively evaluated on CT images by using the density estimate for automatic
calcium scoring. Studies have shown that the amount of calcified plaque is directly
related to further coronary related events and are also a predictor for CAD (Wayhs
et al., 2002; Elkeles, 2008). A normal scanning protocol for the assessment of
atherosclerosis consist of a low resolution non contrast-enhanced native CT scan and
a high resolution contrast-enhanced CTA scan. The native scan is used for calcium
scoring whereas the CTA scan is used to visualize the morphology of the coronary
lumen and possibly neighbouring soft plaque.

The applicability of the method in CTA is evaluated by quantifying the overlap of
the obtained density estimate with 24 manually annotated lumen centrelines. The
method is evaluated quantitatively by comparing the results of automatic calcium
scoring to manual annotations in 170 CT datasets.

In the remainder of this chapter we discuss the construction of the atlas density
images and the application of these atlases for building patient-specific coronary
density estimates. We conclude with the evaluation results of the proposed method
on CTA and CT datasets.

2.2 Method

In an off-line stage, we build a number of CTA atlases with coronary density fields. The
steps towards building these atlases, atlas selection, centreline mapping, density field
generation and tuning the density fields inside the aorta, are detailed in section 2.2.1.
The application specific details for using the density estimates for calcium scoring are
described in Section 2.2.4.

2.2.1 Selection of atlases and density estimation

Atlas selection - From a training set of CTA datasets of 95 patients, a total of 10 CTA
atlases were selected. We chose CTA datasets to build the atlases, because in CTA
images the coronaries are clearly visible due to the presence of contrast agent. The
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contrast within these images gives a clear depiction of the heart chambers and the
main coronary vessels. The selection criteria for the atlases were based on the quality
of the images (no blurring and minimal noise), the anatomy of the heart (shape and
size) and field of view (large and small). The atlas images that were selected are
shown in Figure 2.1.

Figure 2.1: Axial slices of the 10 chosen atlases. The slices were selected
approximately at the centre of the heart.

Centerline mapping - Lumen centrelines in the three main coronary arteries
(RCA, LAD and LCX) were manually annotated in the remaining 85 CTA datasets
(Figure 2.2). Each of the three manually annotated centrelines (85) were transformed
to each of the CTA atlases (10). The transformations (85×10) were obtained by non-
rigid registration of the atlases to the CTA images. The 85 CTA data sets were used as
fixed images and the 10 atlases as the moving images. After the registration, each of
the 10 atlases had 255 centrelines (85× 3) mapped onto them.
Atlas centerline density estimation - The coronary density estimate for each voxel
of the atlases was determined in the following way. First for every voxel, the closest
point on each of the 85 centrelines for each of the three main arteries was determined.
Subsequently, Mean Shift (Comaniciu and Meer, 2002) was applied to these points.
The iterative Mean Shift algorithm is represented as:

xτ+1 =

M
∑

m=1

Gσ(
�

�xτ −µm

�

�)
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m′=1 Gσ(
�

�xτ −µm′
�

�)
µm , (2.1)

where µm represents the mth data point, Gσ a Gaussian kernel with bandwidth σ and
xτ being the mean shifted position at iteration τ. As the stopping criteria we used
x(τ+1 − xτ < ε. Once all the points had converged to their local mode, the shifted
points were clustered based on their mode. In this way, the cluster for each point and
the number of clusters was determined.

Next, for each of the clusters the covariance of the points in that mode was
determined, and the density at the voxel of interest was calculated by summing
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Figure 2.2: A Random CTA dataset with manually annotated centerlines. Different
colors of the dots represent centerlines from different coronary arteries

Figure 2.3: Schematic representation of the method. Top left: CTA data sets with
manual centreline annotation. Top right: Atlas images with mapped centrelines for
all 85 datasets. Bottom right: generation of the density field. Green, red and yellow
represent the RCA, LAD and LCX respectively. Bottom left: using the density estimate
on a patient CTA or CT image.
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the contributions of each of the clusters, where each cluster is represented by a
multivariate Gaussian:
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with d(x) the density for position x, Pm the number of points in the mode m, N the
dimension (in our case 3), Σm is the covariance matrix of all points in mode m and
Mm the mean of the mode.

Finally, the obtained density estimates lying within the aorta were reset to zero.
The aim of this work is to obtain an automatic density estimate for the location of
the arteries. However, due to anatomical variations between patients, the locations
of the start of the arteries at the aorta are not always the same. Furthermore, during
annotation the observers did not start the annotation exactly at the coronary’s ostium.
This causes some of the mapped arteries to lie partly in the aorta of the atlas, thereby
causing the density estimate to give a high value within the aorta. Therefore, we
included a separate automatic aorta segmentation step in our off-line calculation of
the density estimates, by updating the density field such that it is zero inside the
aorta. The automatic aorta segmentation is based on a multi-atlas based registration
approach, which is explained in detail in work of Kiri̧sli et al. (Kiri̧sli et al., 2010).
The aorta is detected and segmented in all the 10 atlases and the density field is set
to zero inside the segmented aorta region.

2.2.2 Patient specific coronary artery density estimation

In order to obtain a patient specific coronary artery density estimation, the density
fields obtained from the atlases are mapped onto either a CTA or CT image. This
is achieved by a non-rigid registration of the atlas images to the CT/CTA images,
transforming the density fields accordingly, and combining the density fields by
averaging them.

2.2.3 Implementation

All image registrations were performed using Elastix, a publicly available medical
image registration software package (Klein et al., 2010). We used a multi-stage
registration approach. Initially a multi-resolution coarse-to-fine affine registration
was performed in three steps. For each resolution level we applied 256 iterations of a
stochastic gradient descent optimizer (Klein et al., 2009). As cost function, the Mean
Square Difference (MSD) was calculated using 1028 image samples randomly chosen
in each iteration. The results of the affine registrations were used to initialize a B-
spline registration. A four step coarse-to-fine strategy was used, with 1024 iterations
of a stochastic gradient descent optimizer in each step. A B-spline grid was defined
by control points with 20 mm separation. The Mutual Information (MI) cost function
was calculated using 2048 randomly chosen image samples in each iteration.
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For the centreline density estimation, the Approximate Nearest Neighbour (Arya

et al., 1998) was used to determine the closest point on each centreline. To speed up
the processing, voxels for which all centrelines further away than 10 mm received a
density value of zero. In the Mean Shift clustering εwas set to 0.01 and the bandwidth
for the Gaussian kernel Gσ was set to 1 mm. A small offset of 0.6 mm was added to the
diagonal elements of the covariance matrix to guarantee invertability of this matrix.
For the calcium score calculation, to avoid noise being detected as a false calcification,
the connected components having a volume of less than 0.02 ml were removed.

2.2.4 Calcium scoring

In conventional calcium scoring, first candidate calcifications are selected by
thresholding (130 HU) followed by manual removal of false positives.

For our fully automated implementation of the automatic calcium scoring, first a
pre-processing step was performed on the CT images. Dense bony structures (ribs,
sternum and vertebra) were identified as objects having an intensity above 130 HU
and a volume exceeding 1 ml, the intensity of these objects were set to zero. This step
was performed to make the method more robust. The density field failed (for one
patient) to spatially differentiate the ribs lying very close to the coronaries (especially
LAD), thus intersecting the density field. The pre-processing step helped in removing
the rib being detected as coronary calcification.

Subsequently, a ROI was obtained for the vessels by averaging the density fields
from the 10 atlases, a threshold value of 0.01 was used. This threshold value was
empirically found by visual inspection on a separate set of CT datasets. Subsequently,
the CT image was thresholded at 130 HU to obtain all the calcifications. Calcium
scoring can be performed with several different methods. To evaluate the automatic
calcium scoring method on the CT dataset we use the most widely used method, the
Agatston score (Agatston et al., 1990). It is calculated as:

AS =

n
∑

i=1

Ai wi , (2.3)

where i is object’s slice number, Ai is the area of the lesion on the respective slice and
wi the weighting factor of the lesion on slice i. The value of wi is defined by:

w =









1 130HU ≤ Ii < 200HU

2 200HU ≤ Ii < 300HU

3 300HU ≤ Ii < 400HU

4 400HU ≤ Ii .

(2.4)

where Ii is the maximum intensity value of the calcification.
The Agatston scores of all the calcifications are summed to obtain the final

Agatston score. In the standardized Agatston score, CT images are resampled in the
z-direction to produce a slice thickness of 3 mm.
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2.3 Experiments

2.3.1 Data acquisition and manual annotations

All datasets used in this study were acquired at the Erasmus MC, Rotterdam, The
Netherlands. The scans were acquired on two different CT scanners (Somatom Defi-
nition and Somatom Sensation, Siemens Medical Solutions, Forchheim, Germany). A
tube voltage of 120 kV was used for both scanners. The CTA images were acquired
with ECG dose pulsing (Weustink et al., 2008) and reconstructed with B30f (medium
to smooth) or B46f (sharp) convolution kernels. The CTA datasets have an image
dimension of approximately 512×512×350 voxels and a voxel size of approximately
0.35× 0.35× 0.4 mm3. A total of 95 CTA images (10 atlas images and 85 centreline
images) and 24 additional CTA images were used for the quantitative evaluation of
our method. The manual annotation in the 85 CTA images for the density atlases and
24 CTA images for the quantitative evaluation was performed by trained observers.
Details about the manual annotation can be found in (Schaap et al., 2009a).

A total of 170 CT datasets were used for the evaluation on CT data. The datasets
have an image dimension of approximately 512× 512× 87 voxels and a voxel size of
approximately 0.35×0.35×1.5 mm3. The kernel used for constructing the CT images
was B35f (medium smooth).

2.3.2 CTA evaluation - Centerline detection

The averaged density fields were used on a set of 24 CTA images with manually
annotated centrelines to estimate the accuracy of the manual centrelines lying within
the obtained field. Statistical analysis was performed on these data sets to determine
whether centrelines lie in the field, by using a mask (by thresholding the density field)
for the ROI and determine the percentage of centreline in the ROI (Figure 2.5). The
results show that (average ± SD) 82± 31% of RCA, 92± 18% of LAD and 58± 44%
of LCX lie within the computed density fields.

2.3.3 CT evaluation - Calcium scoring

The automatically obtained Agatston scores for the 170 CT datasets were compared to
the manually obtained Agatston scores. The scores were found to be linearly related
with a Pearson regression coefficient R of 0.93. A scatter plot of the manual versus
the automatic scores is shown in Figure 2.4.

2.4 Discussion and conclusions

A method for automatically obtaining patient-specific coronary artery estimates in
CTA and CT has been proposed. The results show that the density estimates provide a
reasonable estimate for the locations of the main arteries in both CTA and CT images.
These estimates can be used for various cardiac image processing applications e.g.
fully automated calcium scoring as presented in this chapter.
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Figure 2.4: Scatter plot of the Manual versus the Automatic Agatston scores.

Figure 2.5: 3D image of the density fields with the manual centerline passing through
it. Green: RCA, Red : LAD, Yellow: LCX

The calcium scoring results are currently still different from the manual
quantification, but we believe the method can easily be made more accurate by
incorporating a classification technique which could differentiate between a calcium
spot and noise by using a appearance feature as presented in (Isğum et al., 2004).
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The elegance of the method used for calcium scoring is that it is possible to derive
calcium scores per vessel. Reporting the three calcium scores separately is expected
to give better insights about the calcified plaque. Other methods that could be used
to increase the accuracy of the calcium scoring method would be to use a wider set of
atlases, covering more anatomical variations. The density fields can be improved by
increasing the number of centrelines being mapped onto the atlases. The application
to CTA showed a good overlap of the density estimates with manual annotations.

When inspecting the cases where the automated approach was not very accurate,
often the registration of some of the atlases to the patient data had failed. We intend
to address this issue by a further tuning of the registration, and by incorporating
additional atlases and possibly an atlas selection scheme. We conclude that we
presented a method that allows construction of a patient-specific coronary vessel
estimate, and showed the application of this estimate in calcium scoring.
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Abstract

Purpose The aim of this study is to automatically detect and quantify calcium lesions for
the whole heart as well as per coronary artery on non-contrast-enhanced cardiac computed
tomographic images.

Methods Imaging data from 366 patients were randomly selected from patients who underwent
computed tomographic calcium scoring assessments between July 2004 and May 2009 at
Erasmum MC, Rotterdam. These data included data sets with 1.5 mm and 3.0 mm slice
spacing reconstructions and were acquired using four different scanners. The scores of manual
observers, who annotated the data using commercially available software, served as ground
truth. An automatic method for detecting and quantifying calcifications for each of the four
main coronary arteries and the whole heart was trained on 209 data sets and tested on 157
data sets. Statistical testing included determining Pearson’s correlation coefficients and Bland-
Altman analysis to compare performance between the system and ground truth. Wilcoxon’s
signed rank test was used to compare the interobserver variability to the system’s performance.

Results Automatic detection of calcified objects was achieved with sensitivity of 81.2% per
calcified object in the 1.5 mm data set and sensitivity of 86.6% per calcified object in the 3.0
mm data set. The system made an average of 2.5 errors per patient in the 1.5 mm data set and
2.2 errors in the 3.0 mm data set. Pearson’s correlation coefficients of 0.97 (P < .001) for both
1.5 mm and 3.0 mm scans with respect to the calcium volume score of the whole heart were
found. The average R values over Agatston, mass, and volume scores for each of the arteries
(left circumflex coronary artery, right coronary artery, and left main + left anterior descending
coronary arteries) were 0.93, 0.96, and 0.99, respectively, for the 1.5 mm scans. Similarly, for
3.0 mm scans, R values were 0.94, 0.94, and 0.99, respectively. Risk category assignment was
correct in 95% and 89% of the data sets in the 1.5 mm and 3 mm scans.

Conclusions An automatic vessel-specific coronary artery calcium scoring system was
developed, and its feasibility for calcium scoring in individual vessels and risk category
classification has been demonstrated.
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3.1 Introduction

Coronary artery disease (CAD) is one of the leading causes of mortality worldwide
(WHO, 2012). Many clinical studies have shown that the amount of calcium in
coronary artery plaques correlates with the risk of future cardiovascular events
(Budoff and Gul, 2008; Kondos et al., 2003; Raggi, 2002; Vliegenthart et al., 2005;
Elias-Smale et al., 2010; Detrano et al., 2008).

Calcium scoring is routinely performed on low-dose, non contrast-enhanced
computed tomography (CT) scans by manually annotating all calcium objects present
in the main vessels of the coronary artery tree viz. left main (LM), left circumflex
(LCX), left anterior descending (LAD) and right coronary artery (RCA). Subsequently,
based on all selected objects per patient, the Agatston (Agatston et al., 1990),
mass (Callister et al., 1998) or volume (Hong et al., 2002) scores are determined.
Recently, it has been suggested that vessel-specific calcium scoring or rather risk
assessment based on individual vessels is more informative compared to whole
heart calcium scoring (Qian et al., 2010). Similar findings were reported in other
large population studies, Williams et al. (Williams et al., 2008) observed that the
mortality rate of the patients they followed increased proportionally with the rise in
the number of calcified lesions and they also observed that all the patients who had
an Agatston score of ≥ 1000 in the LM died during the follow up. Mohlenkamp et al.
(Möhlenkamp et al., 2003) observed that LM disease was an independent predictor
of hard events. Vessel-specific scores also facilitate in better understanding calcium
progression in longitudinal studies. Budoff et al. (Budoff et al., 2007) found that
calcium approximately increases by 20%–30% each year. The MESA study (Rosen
et al., 2009) investigated the relationship between calcium scores at baseline and
stenosis in individual vessels. They reported a positive correlation between calcium
scores and vessel-specific scores in the individual artery beds.

Manual scoring is a time consuming task because it consists of drawing contours
to obtain the region of interest or clicking inside all calcium objects. Isgum et al.
(Isğum et al., 2004) have demonstrated the feasibility of automating this task, but
the feasibility of automatic per-vessel calcium scoring has not been demonstrated yet.

The purpose of our work is to develop and evaluate an automatic calcium scoring
system for ECG gated, non contrast-enhanced cardiac CT scans that yields scores for
the whole heart as well as for the individual coronary arteries. Our system uses an
atlas based estimate of the coronary artery locations, which permits the system to
assign calcium lesions to the correct coronary arteries (Shahzad et al., 2010), which
has been explained in more detail in Chapter 2. The system uses a machine learning
approach to discriminate true calcium objects from all detected candidate objects.

3.2 Materials and methods

3.2.1 Data description

We retrospectively selected a random subset of patients who underwent a cardiac non
contrast-enhanced CT scan for calcium score evaluation between July 2004 and May
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2009 at the Erasmus MC, and for whom the calcium scoring reports were electronically
available along with the scans in the picture archiving and communication system
(PACS). In total 366 scans (280 male and 86 female) were retrieved. The scans
were acquired on four different generations of Siemens scanners (Definition Flash,
Definition AS+, Sensation 64 and Definition, Siemens Medical Solutions, Forchheim,
Germany). A detailed description of the data characteristics is provided in Table 3.1.
A tube voltage of 120 kV was used for all scans. Two different slice spacings were
used in tomographic reconstruction: 234 scans have 1.5 mm slice spacing and 132
scans have 3.0 mm slice spacing, henceforth referred to as the 1.5 mm and 3.0 mm
scans respectively. Both types of scans have a slice thickness of 3.0 mm and a field of
view (FOV) of approximately 180 mm. The in-plane resolution was 0.35× 0.35 mm2

on average. Both the 1.5 mm and 3.0 mm scans were randomly divided into different
sets for designing, training, and testing of the calcium scoring system, as shown in
Figure 3.1. The age distribution of male and female patients over the datasets was
similar.

CT Scans (366)

1.5 mm spacing

Scans (234)

3 mm spacing

Scans (132)

Design

Set (74)

Training

Set (133)

Testing

Set (101)

Training

Set (76)

Testing

Set (56)

Figure 3.1: Schematic diagram showing the distribution of data sets used for
designing, training, and testing of the calcium scoring system.

3.2.2 System overview

The complete calcium scoring system consists of the following stages. First, candidate
calcium objects are determined from the CT scan. Subsequently, a classifier that
uses local image features is applied to determine which of the detected candidate
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Table 3.1: Details of the Data Sets. Data are expressed as number (percentage) or as
mean (range).

Variable Value

Data Sets

Total 366
Women 86 (23.5%)
Men 280 (76.5%)
Age, women (y) 57 (28-83)
Age, men (y) 57 (21-84)

Scanner type

Definition (3.0 mm scans) 132 (36.1%)
Sensation 64 205 (56%)
Definition Flash 16 (4.4%)
Definition AS+ 13 (3.5%)

objects are coronary artery calcifications. Finally, a coronary artery location estimate
is being used to assign the calcifications to one of the main coronary arteries. These
calcifications are used to compute the calcium scores. The following paragraphs
describe the candidate detection, the design of the classifier, including how it was
trained and which features are being used, and how the final calcium scores are
computed and presented. The workflow of our system including the calcified object
labelling is shown in Figure 3.2.

3.2.3 Candidate detection

Candidate calcium objects were obtained from the CT scans by thresholding at 130 HU
and discarding all objects with a size larger than 1500 mm3 and also those smaller than
1.5 mm3 which are assumed to correspond to bone and noise respectively (Callister
et al., 1998). The candidate objects consist of true calcified objects, including arterial
calcifications, aortic calcifications as well as calcifications in the valves and false
objects due to noise and imaging artefacts.

3.2.4 Classifier

We develop a classifier for the candidate objects that differentiates between arterial
calcium and the rest, based on local image information (features). The classifier is
trained using manually annotated CT data (the training set). We used the design set
to experimentally determine the optimal classifier and feature set. The image features
that were investigated, classifier selection and feature selection are presented in the
sections below. We built and trained two classifiers, one for the 1.5 mm data and
one for 3.0 mm data. The 1.5 mm training data had a total of 366,876 candidate
calcium objects out of which 1155 were true calcium objects. The 3.0 mm training
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Figure 3.2: An illustration showing the work flow of the system. (Top left) Non-
contrast enhanced computed tomographic (CT) image of a patient that needs to
be analysed. (Bottom left) Ten contrast-enhanced CT angiographic images used as
atlases to compute the coronary artery position estimate features. Using a registration
step, the CT angiographic atlas features are mapped onto the CT image. The detected
calcium objects are then labelled using the position estimates as shown by the image
on the right (red objects are assigned to the left anterior descending coronary artery
and the yellow object to the left circumflex coronary artery).

data had a total of 112,302 candidate calcium objects out of which 439 were true
calcium objects. The system automatically determines the slice spacing of the dataset
to be analysed and applies the appropriate classifier.

3.2.5 Features

A feature based classification (Theodoridis S, 2009) approach was adopted for
classifying candidate objects. In total 62 features were considered which are listed
in Table 3.2, and explained below.
Object based features - Five different types of object based features were computed:
volume of the candidate object, maximum and average intensity of the object, and
two shape features, blob likeness and plate likeness (Frangi et al., 1998).
Multi scale image derivatives - The intensity of the object at the maximum
intensity point after Gaussian image derivatives were computed at five different scales
(Gaussian standard deviation in-slice between 0.3 mm to 4.8 mm with one sample per
octave; between slices from 1.5 mm to 24 mm with one sample per octave) up to the
second order.



3.2. MATERIALS AND METHODS 35
Coronary artery location estimate - An atlas based method (Pham et al., 2000) was
used to determine a location estimate for the coronary artery locations. Coronary
artery locations from 85 different CT Angiographic (CTA) scans were used to build
ten atlases encoding the distribution of coronary arteries across the population. These
atlases were registered to the CT scan to obtain the patient-specific coronary artery
location estimate for each individual artery. The selection criteria of the 10 atlas
scans and the exact procedure to compute the artery location estimates are described
in detail in Chapter 2. (Shahzad et al., 2010). The artery location feature is used
both for the classification of candidate objects and for the calculation of calcium score
per artery.
Position based features - Positions (x, y, z) in actual image space and in a standardized
coordinate space were used. We introduced the standardized space to account for the
varying position of the heart in CT scans. This standardized space is constructed by
pair-wise registration of 10 atlas images (the same ten atlases that were used for
creating the coronary artery location estimates). Registration was performed in two
stages: an initial affine registration followed by a non-rigid registration using ElastiX,
a publicly available registration package (Klein et al., 2010). The standardized space
is then obtained by averaging the resulting deformations. The midpoint between the
right and left coronary ostium is defined as the origin in the standardized space. A
CT scan of a new patient is mapped into this standardized space, such that relative
positions in this standardized coordinate system can be used.

Table 3.2: Feature Description.

Feature Description Number of features

Volume of object mm3 1

Intensity of object: maximum and average 2

Position: x, y and z cordinates in image
space and mean space 6

Intensity of voxel at the maximum intensity point
after gaussian filtering at five different scales 5

Intensity of voxel at the maximum intensity point
after first-order gaussian derivatives in x, y and z
directions at five different scales 15

Intensity of voxel at the maximum intensity point
after second-order gaussian derivatives in xx, yy,
zz, xy, yz and zx directions at five different scales 30

Coronary artery position likelihood estimate 1

Shape 2
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3.2.6 Feature selection and classifier selection

On the design set, feature selection was performed to determine the set of features
that gives optimal performance in detecting calcified objects in the coronary arteries.
In our case, since the training set is limited (on average, there were only seven calcium
objects per dataset), it is also important to reduce the number of features to avoid the
curse of dimensionality i.e. having too few training samples in a high dimensional
feature space (Theodoridis S, 2009). Twenty one features were selected based on a
forward feature selection step. We also applied a backward feature selection algorithm
and observed that the selected feature set was identical.

We investigated the performance of the k-NN (k-Nearest Neighbour) classifier
for different number of neighbours k ranging from 1-15 (odd values), with forward
feature selection. We found that the best classifier for this problem is a 9-NN classifier,
as this classifier yielded the smallest classification error at the object level.

The set of 21 best features retained were: volume, maximum and average intensity,
position-z in the image and mean space, coronary artery position estimate, Gaussian
filter with scale 1, 2, 4 and 8, 1st order Gaussian derivative with scale 1, 8 and 16 in
z direction. 2nd order Gaussian derivative; with scale 1, 2 and 4 in the x direction
and also same scales in the y direction, z direction with scale 1 and 2. The unit of the
scale is 0.3 mm in the x and y direction and 1.5 mm in the z direction (corresponding
to size of a voxel in the 1.5 mm dataset).

3.2.7 Calcium scores

The system calculates Agatston, mass and volume scores for the detected calcium
objects (Ohnesorge et al., 2000). The system presents the scores for the whole heart
as well as the individual arteries. The assignment of the calcium object to one of the
arteries is achieved by using the coronary artery location estimate feature. Since we
use population based information from the atlases to compute the location estimates
of the coronary arteries and owing to the large anatomical variation in the length of
the LM artery we decided to label LM and LAD as one single vessel. The other two
vessels are labelled as LCX and RCA.

3.2.8 Risk categorization

Patients are assigned to different risk categories based on the whole heart Agatston
scores (Oudkerk et al., 2008; Polonsky et al., 2010). Hoff et al. studied the distribution
of calcium lesions on 35,246 patients with respect to age and gender and showed
that the calcium score distribution depends on the age and sex of the patient. They
proposed to present calcium scores as 10th, 25th, 50th, 75th and 90th percentile
rank groups (Hoff et al., 2001). Our system assigns the patients to the appropriate
risk category using this method, hence accounting for age and sex.

3.2.9 Reference standard

The reference standard calcium scores were obtained from the calcium scoring reports
that were stored in the PACS along with the patient scans. Calcium scoring for
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generating the reports was performed manually using the Syngo Calcium Scoring tool
(Siemens Medical Solutions, Forchheim, Germany). We reproduced the set of calcium
objects in the scans using the reports.

3.2.10 Statistical analysis

We report the system’s sensitivity and specificity with respect to object detection. To
evaluate the scores per patient, the Pearson correlation coefficient (R) was calculated
and Bland-Altman plots (Martin Bland and Altman, 1986) were created for the entire
heart as well as for individual arteries. The analysis was performed using MATLAB
7.9.0. (Natick, Massachusetts). A confusion matrix was used to report errors in
automatic risk categorization from the whole heart calcium scores. The accuracy of
the automatic method for calcium scoring was compared to inter-observer variability
on a subset of 50 patients; differences in total calcium scores (for Agatston, mass, and
volume scores) were analyzed by Wilcoxon signed rank test for which we report the
Z-statistic value to indicate the significance.

3.3 Results

3.3.1 Overall performance of the system for calcium object detection

1.5 mm scans - The system was tested on 101 datasets comprising 281,138 candidate
objects out of which 787 were true calcium objects. The system yields a per object
sensitivity of 81.2% and a specificity of 99.6%.
3 mm scans - The system was tested on 56 datasets comprising 64,555 candidate
objects out of which 300 were true calcium objects. The system has a per object
sensitivity of 86.7% and a specificity of 97.4%.

3.3.2 Performance of the system on the patient calcium scores

1.5 mm scans - On average the system made 1 false positive error and 1.5 false
negative errors per patient. We obtained a Pearson correlation R= 0.97, 0.95 and 0.97
(P < 0.001) between automatic and manual scoring on the whole heart with respect
to the Agatston, mass and volume scores. The corresponding correlation coefficients
for each of the arteries are shown in Table 3.3. Out of the 101 patients, five were
assigned to a different risk category; Two of them were off by two categories while
the others were off by one category. Note that cases close to a boundary can easily
move to the neighbouring category. The confusion matrix is shown in Table 3.4; 95%
of the scans were assigned to the correct risk percentile.
3 mm scans - On average the system made 1.5 false positive errors and 0.7 false
negative errors per patient. The correlation coefficients between automatic and
manual scoring with respect to the Agatston, mass and volume scores were all equal
to R = 0.96 (P < 0.001). The corresponding correlation coefficients for each of the
arteries are shown in Table 3.3. Out of the 56 patients, six were assigned to the wrong
risk category; Only one scan was off by two categories. The confusion matrix is shown
in Table 3.4; 89.3% of the scans were assigned to the correct risk percentile.
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The whole heart volume score correlations between the system and the manual

observers are presented in Figure 3.3 along with the explanation of the few
classification errors. The vessel-specific correlation curves on the 1.5 mm datasets
are shown in Figure 3.4, the corresponding correlation values for the 3.0 mm scans
are presented in Table 3.3. A few examples of misclassified objects are shown in
Figure 3.5.

Table 3.3: Results of Bland-Altman Analysis of Agatston, Mass, and Volume scores
for the Individual Arteries and Correlation between Automatic and Manual Scores for
Each of the Arteries after Discarding the Outliers (as Depicted in Figure 3.4).

Calcium Quantification 95% Limits of Correlation
(score) Bias Agreement (R)

3.0 mm scans

LCX
Agatston 14 -93 to 122 0.94
Mass 3 -18 to 24 0.94
Volume (mm3) 10 -84 to 104 0.93

RCA
Agatston -14 -211 to 184 0.93
Mass -3 -45 to 39 0.94
Volume (mm3) -14 -272 to 143 0.93

LM+ LAD
Agatston 11 -56 to 78 0.99
Mass 3 -12 to 17 0.99
Volume (mm3) 1 -41 to 39 0.99

1.5 mm scans

LCX
Agatston -8 -243 to 227 0.96
Mass -2 -60 to 56 0.93
Volume (mm3) -6 -187 to 175 0.96

RCA
Agatston -4 -175 to 167 0.98
Mass -1 -43 to 42 0.96
Volume (mm3) -4 -137 to 128 0.98

LM + LAD
Agatston -5 -113 to 103 0.99
Mass -1 -23 to 21 0.99
Volume (mm3) -6 -89 to 77 0.99
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(a) (b)

Figure 3.3: Scatter plot of calcium volume obtained with automatic and manual
methods. The largest errors are labelled and described below. (a) For 1.5 mm scans,
(1) and (3) denote calcified mitral valves that were mistaken for calcium in the left
circumflex coronary artery (LCX), (2) denotes an aortic calcification at the ostium
which was mistaken for calcium in the right coronary artery (RCA), (4) denotes a
calcium object at the distal part of the RCA that was missed, and (5) denotes an aortic
calcification at the ostium that was mistaken for calcium in the left main coronary
artery (LM). (b) For 3.0 mm scans, (1) a few calcium objects in the RCA were missed,
(2) a calcified mitral valve was mistaken for calcium in the LCX, (3) a calcified object
in the distal part of the RCA was missed, and (4) and (5) indicate a few objects that
were missed in the LCX.

3.3.3 Method performance on left dominant and balanced subjects

We performed an additional experiment to estimate the mislabelling errors made
by our method when quantifying calcium in left dominant and balanced subjects.
We randomly selected 100 subjects from our dataset and selected all the calcium
objects that are in the region that could possibly be supplied by the three different
side branches resulting from the different dominant systems. We could accurately
regionalize this area by using information from our standardized coordinate space.
We found 26 calcium lesions belonging to 20 subjects in this region, the total volume
of the lesions was found out to be 687.7 mm3. Using the knowledge that on average
13% of a population is not right dominant (Cademartiri et al., 2008), and assuming
a similar distribution over our subjects, we would make a total of 3.3 mislabelling
errors over the 100 subjects. The average mislabelling error made was 0.26 objects
and the volumetric error per left or balanced subject would thus be 6.8 mm3, which
is negligible compared to the average volumetric calcium score present in the main
branch.
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3.3.4 Inter-observer variability

The correlation coefficients R between the observers was 0.98 for all three scoring
methods, for the automatic method with respect to each of the observers the mean
value of R for the three scores was 0.97 and 0.95 (P<0.001). Table 3.5 describes the
Median values, Z-statistic value (based on the Wilcoxon signed ranks test) and the
Bland-Altman limits of agreement. From the Z-statistics it can be observed that the
system does not make a statistically significant error compared to each of the observer.

Table 3.4: Confusion Matrix for Assigning a Risk Percentile by the Automatic and
Manual Scores for 3.0 mm and 1.5 mm Scans.

3.0 mm Slice spacing Scans

Automatic\Manual 10% 25% 50% 75% 90%
10% 17 0 0 0 0
25% 1 5 0 0 0
50% 1 0 9 1 0
75% 0 0 1 8 1
90% 0 0 0 1 11

1.5 mm Slice spacing Scans

Automatic\Manual 10% 25% 50% 75% 90%
10% 15 0 0 0 0
25% 0 13 0 0 0
50% 1 0 22 1 0
75% 0 1 1 22 0
90% 0 0 0 1 24

3.4 Discussion

Our automatic system obtained a good sensitivity and a high specificity in detecting
calcified objects. We also found that the agreement between the automatic and
manual scores is very close to the inter observer agreement. Isgum et al. (Isğum
et al., 2004) reported a sensitivity of 73.8% with respect to object detection, obtained
by automatic whole heart calcium scoring on a cohort of only female patients, which
where sampled to obtain a slice spacing of 3.0 mm. This sensitivity is less than the
sensitivity obtained by our system which is 83.9% on the entire dataset. When we
compare the results of only female patients from our test set (42 in total), we obtain
a sensitivity of 82.2%.

The main advantage of our method is the automatic artery specific calcium
scoring, permitting large scale epidemiology or long term prognostic evaluation
studies (Budoff et al., 2007; Rosen et al., 2009) to better investigate the value of
individual artery calcium scoring as a risk predictor (Qian et al., 2010).
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(a) (b)

(c)

Figure 3.4: Scatter plot of automatic and manual volume scores for each of the
arteries on the 1.5-mm scans: (a) left circumflex coronary artery (LCX), (b) right
coronary artery (RCA), and (c) left main coronary artery (LM) and left anterior
descending coronary artery (LAD). We discarded five outliers (circled) in computing
the correlation for assessing the accuracy of the automatic vessel labelling.
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Figure 3.5: Axial slices showing cases in which the automatic method misclassified
calcium objects: false-positives (left) and false-negatives (right). (Top left) A 1.5 mm
scan from an 84-year-old man with an aortic calcification at the ostium. (Bottom left)
A 1.5 mm scan from a 57-year-old man with a calcified valve. (Top right) A 3.0 mm
scan from a 46-year-old woman with a lesion in the left circumflex coronary artery
(LCX). (Bottom right) A 3.0 mm scan from a 50 year-old man with a lesion in the LCX
very close to the mitral valve.

The atlases used for estimating in which coronary artery calcifications are located,
were derived from a random population of 85 subjects. We calculated the overall
spatial distribution of the individual coronary arteries and their branches over this
population. Thus we do not differentiate between left-dominant and right-dominant
subjects. Since the majority of the subjects in a given population are right dominant
(Cademartiri et al., 2008), our atlases will label the posterior descending artery (PDA)
as belonging to the RCA. This mislabelling of the vessels for the left dominant and
balanced subjects does have a negligible effect on the correlation graphs between the
automatic method and the ground truth, due to the small size of the calcium lesions
found in the smaller vessels. Hence we conclude that mislabelling error in the left
and balanced subjects by our method will not have a huge impact on vessel specific
calcium scoring.
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The automatic artery specific scores generated by our system correlate very well

with those obtained manually. The bias, obtained from the Bland-Altman analysis,
suggests that the system slightly underestimates the scores on 1.5 mm scans while the
scores are slightly overestimated on 3.0 mm scans. Most errors in the vessel labelling
were caused by incorrect object classification. The exceptions are some errors in the
LM and the proximal part of the LAD. Variability in LM and LAD anatomy hampers the
use of global information for separating the LM from the LAD, which is why we present
the scores for LM and LAD combined. The correlation coefficients for respectively LM
and LAD are 0.83 and 0.98 on 1.5 mm scans and 0.57 and 0.97 on 3.0 mm scans.
The errors made while distinguishing the LM from LAD can be resolved if we would
use image information from a corresponding contrast enhanced CT scan of the same
patient, where the arteries are clearly distinguishable. However, in our study we
assume that only non contrast-enhanced CT scans are available. Even though our
system made two errors per patient, this did not have adverse effects in categorizing
the patients into risk percentiles; only three patients were assigned to a risk percentile
which was off by two categories. Also, there were 27 patients in total who had a zero
calcium score. Our system correctly assigned a zero score to 18 patients, and the
average error made in the remaining scans was a score of 2.8 (Agatston). None of
these 27 patients were assigned to a different risk percentile.

The system is completely automatic. It can automatically provide the calcium
scores when viewing the image, provided that the reconstruction phase of the scan
was completed. The user may want to glance through the scan and correct for the
misclassified objects which on average is limited to two objects per scan. The process
of correcting the false positives, which generally occur around the aorta and the mitral
valve, can be made easier by assigning a separate colour to the suspicious objects.

A limitation of our study is that the patient scans were acquired on equipment from
only one vendor, Siemens. We did not investigate the performance of our system with
data acquired using scanners from other vendors. However, as our method learns
from example datasets we presume it can be adapted to data from other vendors or
protocols, provided that a set of training data is available for the learning step.

3.5 Conclusions

We developed an automatic vessel-specific coronary artery calcium scoring system and
demonstrated the feasibility of calcium scoring and risk category classification using
this system.
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Table 3.5: Coronary artery calcium score of the system and the observers O1 and O2 (Median); Pearson correlation coefficient
(R), Z-statistic value using the Wilcoxon signed ranks test (Z) and the Bland-Altman limits of agreement for the inter observer
and the system with respect to the observers(B-A). *P<0.001

Median (range) R* Z Statistics Bland-Altman

Score A O1 O2 Inter-O A-O1 A-O2 Inter-O A-O1 A-O2 Inter-O A-O1 A-O2

Volume 204(0–1700) 214(0–1769) 224(0–1727) 0.98 0.97 0.95 -4.4 -1.7 -2.1 -157–145 -220–198 -247–217

Mass 38(0–378) 39(0–389) 41(0–382) 0.98 0.96 0.94 -3.9 -1.0 -1.8 -36–37 -48–49 -59–58

Agatston 216(0–2117) 215(0–2177) 217(0–2136) 0.98 0.97 0.96 -3.5 -1.2 -1.7 -194–202 -243–237 -274–277
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Abstract

Purpose There is increasing evidence that epicardial fat (i.e. adipose tissue contained within
the pericardium) plays an important role in the development of cardiovascular disease.
Obtaining the epicardial fat volume from routinely performed non-enhanced cardiac CT scans
is therefore of clinical interest. The purpose of this work is to investigate the feasibility of
automatic pericardium segmentation and subsequent quantification of epicardial fat on non-
enhanced cardiac CT scans.

Methods Imaging data of 98 randomly selected subjects belonging to a larger cohort of
subjects who underwent a cardiac CT scan at our medical center were retrieved. The data were
acquired on two different scanners. Automatic multi-atlas based method for segmenting the
pericardium and calculating the epicardial fat volume has been developed. The performance
of the method was assessed by 1) comparing the automatically segmented pericardium to a
manually annotated reference standard, 2) comparing the automatically obtained epicardial
fat volumes to those obtained manually, and 3) comparing the accuracy of the automatic results
to the inter-observer variability.

Results Automatic segmentation of the pericardium was achieved with a Dice similarity
index of 89.1 ± 2.6% with respect to Observer 1 and 89.2 ± 1.9% with respect to Observer
2. The correlation between the automatic method and the manual observers with respect to
the epicardial fat volume computed as the Pearson’s correlation coefficient (R) was 0.91 (P<
0.001) for both observers. The inter-observer study resulted in a Dice similarity index of 89.0±
2.4% for segmenting the pericardium and a Pearson’s correlation coefficient of 0.92 (P<0.001)
for computation of the epicardial fat volume.

Conclusions We developed a fully automatic method that is capable of segmenting
the pericardium and quantifying epicardial fat on non-enhanced cardiac CT scans. We
demonstrated the feasibility of using this method to replace manual annotations by showing
that the automatic method performs as good as manual annotation on a large dataset.
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4.1 Introduction

Cardiovascular disease (CVD) is one of the leading causes of death worldwide. (WHO,
2012) Epicardial fat is the adipose tissue which is found between the myocardium
and the visceral layer of the pericardium, and thus directly surrounds the entire
heart as well as the coronary arteries. Increasing evidence implicates epicardial
fat in the etiology of CVD (Cheng et al., 2007; Iacobellis et al., 2005; Kortelainen,
2002). It is thought that through local production of inflammatory factors it may
directly contribute to the formation of coronary atherosclerosis (Mahabadi et al.,
2010; Bettencourt et al., 2011; Alexopoulos et al., 2010). Few studies have found
that epicardial fat is associated with cardiovascular risk factors (Rosito et al., 2008;
de Vos et al., 2008). Other studies have shown that epicardial fat is a dominant factor
in case of coronary artery disease (Sarin et al., 2008; Mahabadi et al., 2009; Harada
et al., 2011). A few population based studies have also been performed. Ding et al.
(Ding et al., 2009) investigated whether epicardial fat is an independent predictor of
future heart disease events as compared to conventional risk factors on 998 individuals
from the MESA study. Mahabadi et al. (Mahabadi et al., 2013) quantified epicardial
fat volume on 4093 subjects in order to determine if epicardial fat predicts coronary
events in the general population.

Several methods for epicardial fat quantification have recently been developed.
Most of these methods are completely manual, which is a tedious procedure to
perform. The manual methods are also prone to inter and intra-observer variability.
The objective of our study is to develop and evaluate a fully automatic method, which
can accurately and robustly segment the pericardium and quantify the amount of
adipose tissue contained within. To the best of our knowledge this is the first fully
automatic method presented in the literature. Hence, it has the potential to be applied
to large scale clinical or population based studies.

Most of the methods described previously require manual delineation of the
pericardium, which is subsequently used to quantify the volume of fat. Taguchi et al.
(Taguchi et al., 2001) traced the epicardial, subcutaneous and visceral fat. Wheeler et
al. (Wheeler et al., 2005) used landmark points to initialize the heart segmentation.
Rosito et al. (Rosito et al., 2008) traced the pericardium to delineate the heart from
the surrounding structures. Ding et al. (Ding et al., 2008) used a few landmark
points around the heart to enclose it in an envelope, similar to the method proposed
by Wheeler et al. (Wheeler et al., 2005).

More recently, a semi-automatic method was proposed by Dey et al. (Dey et al.,
2008, 2010). Their method needs two interactions. Firstly, the user needs to select the
top and the bottom slice in between which the heart is contained. Once this is done,
the method uses region growing and anatomical information to segment the heart.
Secondly, the user needs to select 5 to 7 control points on the axial slices to pinpoint
the location of the pericardium. The degree of interaction of this method is still
substantial. Population and clinical studies, as well as clinical workflow, would greatly
benefit from a precise and fully automatic method for epicardial fat quantification.
Ultimately, findings from such studies could further establish the role of epicardial fat
in the development of CVD.
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In this chapter, we present a method which is capable of automatically segmenting

the pericardium on non-enhanced cardiac CT scans and subsequently quantifying
the epicardial fat volume within the pericardium. Our method uses an atlas-
based segmentation approach in order to segment the pericardium. The atlas-based
segmentation approach is an adaptation of our previous work, where atlas-based
segmentation was evaluated with respect to segmenting the heart and its chambers
in a multi-center, multi-vendor contrast-enhanced CT (CTA) study. (Kiri̧sli et al.,
2010) Our method was evaluated on 98 CT scans with respect to 1) the accuracy
of pericardium segmentation 2) the accuracy of epicardial fat quantification and 3)
accuracy of the results with respect to the inter-observer variability. The evaluation
was conducted by comparing the performance of our method to two independent
manual observers.

The remaining of the chapter is organized as follows. Section 4.2 gives details
about the imaging data, overview of our method and the experiments we performed.
We present our results in Section 4.3, discussion and future work in Section 4.4 and
finally the conclusion is provided in Section 4.5.

4.2 Material and methods

4.2.1 Study population and imaging protocol

For this study, we randomly selected 98 subjects from the population-based Rotterdam
Study (Hofman et al., 2011), who underwent a multi-detector computed tomography
(MDCT) scan of the heart. This study was part of a larger MDCT-project involving
calcium-scoring in multiple vessel beds (Elias-Smale et al., 2011). The participants
were scanned on two different generations of Siemens scanners (Sensation 16 (n =
55) or Sensation 64 (n = 43), Siemens Medical Solutions, Forchheim, Germany).
The cardiac scan ranged from the apex of the heart to the tracheal bifurcation. The
Rotterdam Study was approved by the Institutional Review Board with additional
specific approval of the CT study. All participants gave written informed consent for
the CT examination.

Subject characteristics are provided in Table 4.1. Scan settings were as follows.
The scan reached from the apex of the heart to the tracheal bifurcation, no contrast
material was used. On the 16-slice MSCT scanner, consecutive non-overlapping 3.0
mm thick slices were acquired within a single breath hold. The collimation was 12
× 1.5 mm, the tube voltage was 120 kV, the effective tube current 30 mAs, and
prospective ECG triggering at 50% of the cardiac cycle was used. For the 64-slice
scanner, all parameters except the collimation and tube current changed. Collimation
was set to 32 × 0.6 mm and the tube current was adopted with respect to the body
weight (CARE DOSE, Siemens, Forcheim, Germany) with a reference value of 50,
100 and 190 mAs. The images from both scanners were reconstructed with a 3.0
mm increment and an average field of view (FOV) of 180 mm. The images were
reconstructed with a matrix of 512 × 512 using a b35f (medium sharp) kernel, and
contained on average 52 slices.
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Table 4.1: Characteristics of the subjects (n = 98). Values are mean ± stdev for
continuous variables and numbers (%) for dichotomous variables.

Variable Value

Women 46 (46.9%)
Age (years) 69.4 ± 5.6
BMI (kg/m2) 27.4 ± 3.9
Systolic blood pressure (mmHg) 147.8 ± 22.3
Diastolic blood pressure (mmHg) 82.2 ± 11.1
Smoking (ever) 69 (70.4%)
Diabetes 7 (7.1%)
Total cholesterol (mmol/L) 5.8 ± 0.9

4.2.2 Method overview

The quantification method consists of two steps: 1) pericardium segmentation, and
2) epicardial fat volume quantification. For pericardium segmentation, we used a
multi-atlas segmentation approach, as described in the work of Kiri̧sli et al. (Kiri̧sli
et al., 2010). In this approach, manually segmented CTA scans (atlases) are registered
to the subject’s CT scan. The segmentations of these atlases are mapped onto the
subject’s scan to be analyzed. The mapped segmentations from each of the atlases
are fused to obtain the final pericardium segmentation. This whole procedure is fully
automatic. The epicardial fat is subsequently quantified by applying a threshold of
-200 to -30 HU (Yoshizumi et al., 1999) to the segmented pericardium, followed
by connected component analysis. Details with respect to the atlases used, the
registration approach, and the fat quantification are presented in the subsequent
sections. Figure 4.1 shows an overview of all the steps involved in the automatic
method.

4.2.3 Atlas selection and surface computation

CTA scans were used as atlas images because of their higher resolution and the
better visibility of the cardiac chambers (due to the presence of contrast material).
This enables the observers to accurately delineate the pericardium manually. Eight
previously acquired CTA scans from different subjects were included in as the atlas
scans. Readers are referred to (Kiri̧sli et al., 2010) for detailed information on atlas
selection.

The manually obtained contours of the atlas scans were converted to 3D surfaces.
Figure 4.2 shows the resulting heart surfaces for the eight atlas scans.

4.2.4 Multi-atlas based segmentation

Multi-atlas segmentation (Rohlfing et al., 2005) is a process in which multiple
atlas images with corresponding manually annotated label images are individually
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Figure 4.1: Overview of the segmentation process. Top left: Eight CTA atlas scans
and the corresponding manually segmented 3D surfaces. Top right: CT scan to be
segmented. The atlas scans are registered and the 3D surfaces are transformed to
match the subject scan. Bottom right: The 3D surfaces are combined using majority
voting; the resulting segmentation is overlaid in blue. Bottom left: Resulting fat
voxels, obtained after thresholding and connected component analysis.

registered to the subject scans. The segmentation of the subject scans is then obtained
by fusing all the resulting transformed label images (Rohlfing et al., 2004). In this
work we use majority voting to fuse the label images.

Image registration (Maintz and Viergever, 1998) is used to spatially align the
atlas scans and the subjects scan. In the registration procedure, the transformation
parameters T that minimizes the cost function C(T ; I f , Im) between the fixed image
(I f ) and the a moving image (Im) are determined. The optimization problem can be
mathematically represented as:

T̂ = arg min
T

C
�

T ; I f , Im

�

. (4.1)

Detailed information on registration is provided elsewhere (Bankman, 2000; Suri
et al., 2005). The registration strategy used in our approach involves a two-stage
registration approach, where in the first stage Im and I f are roughly aligned using an
affine transformation and in the second stage a B-spline non-rigid transformation is
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applied. In both cases a multi-resolution strategy is used. The registration steps and
the parameters are explained in more detail in Section 4.2.8, where we also compare
the performance of registration with and without masking certain areas of the image.

The resulting transformations from the registration steps are used to map each
of the eight atlas surfaces onto the subject’s scan. Once this is done, the 3D surface
intensities are converted to binary masks and majority voting is applied to obtain the
final pericardium segmentation (See Figure 4.1 for a visual representation).

Figure 4.2: The eight pericardium atlas surfaces used for atlas-based segmentation
illustrating the encountered shape and size variations in the atlas images.

(a) (b)

Figure 4.3: (a) A random axial slice showing the result of a manually obtained
whole heart segmentation (with adjusted windowing level, for better visibility). (b)
Corresponding slice showing the voxels containing epicardial fat.
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4.2.5 Epicardial fat quantification

The automatically obtained pericardium segmentation is used as a region of interest
(ROI) to quantify the adipose tissue voxels. A threshold window of -200 to -30 HU
is applied to obtain the adipose tissue. A connected-component analysis (Samet and
Tamminen, 1988) is subsequently applied to all adipose tissue voxels using an 18-
neighbourhood rule, in order to remove regions smaller than 10 voxels (2.8 mm3) in
size, which we consider to be noise.

4.2.6 Reference standard

Two experienced observers (D.B. and A.R.), blinded to the patient information as
well as to the results of each other, manually traced the pericardium in each of
the CT scans, as shown in Figure 4.3a. A dedicated tool implemented in MeVisLab
(http://www.mevislab.de) was used by the observers for manual annotations.
Once the pericardium was delineated, a threshold window of -200 to -30 HU was
applied to the segmented region (Yoshizumi et al., 1999). Adipose tissue voxels were
then automatically extracted using connected-component analysis and the volume
of fat in milliliters (ml) was computed. The reference standard obtained this way
contains both pericardium segmentations and epicardial fat volume quantifications
(Figure 4.3b).

4.2.7 Statistical analysis

We report the Dice similarity index and the mean surface distance error between the
pericardial heart segmentation by the automatic method and each of the manually
obtained segmentations. To evaluate the performance of the fat quantification method
per patient, Pearson’s correlation coefficient (R) was calculated, linear regression was
performed, and Bland-Altman plots were created. Furthermore, the accuracy of the
method was compared to the inter-observer variability. The analyses were performed
using MATLAB version 7.9.0. (The MathWorks, Natick, MA) and IBM SPSS Statistics
version 20 (IBM Corp, Armonk, NY).

4.2.8 Experiments

Our method consists of segmenting non-enhanced CT scans with the help of contrast-
enhanced CT atlas scans. The registration problem we face here is that the fixed image
(I f ) and moving image (Im) have different characteristics, both in terms of contrast
and resolution. The CT scans in which we aim to quantify the epicardial fat has an
average in-plane resolution of 0.35 × 0.35 mm2 and a slice thickness of 3.0 mm,
whereas the CTA atlases have an average in-plane resolution of 0.32 × 0.32 mm2 and
a slice thickness of 0.4 mm. In order to obtain the optimal parameters to register the
CTA atlases and the CT subjects, we performed pilot experiments on a subset of 35
randomly selected CT datasets. Two registration strategies were investigated and the
segmentation results were compared to the results of one of the observers. In both
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Table 4.2: Table representing the results of the Registration Strategy. Values represent
mean ± stdev.

Strategy 1 Strategy 2

Dice Similarity Index % 90.0 ± 3.2 89.6 ± 1.9
Mean Surface Distance mm 3.4 ± 1.3 3.5 ± 0.8

strategies, the CTA atlas was used as the fixed image (I f ) and the subjects CT scan
was used as the moving image (Im).

Strategy one: The similarity metric was computed by randomly sampling intensity
values from the whole image.

Strategy two: The similarity metric was computed by randomly sampling intensity
values within the heart region only (by using a fixed heart mask).

As mentioned previously, a two-stage registration approach was used. In the first
stage an affine transformation was used. In the second stage, a non-rigid registration
using a B-spline transformation (Rueckert et al., 1999) was employed while using the
results of the affine transformation to initialize the registration. Mutual Information
(Mattes et al., 2003) was used as similarity measure for the cost function C in Eq. 4.1.
Optimization was performed using Adaptive Stochastic Gradient Descent, the number
of voxels sampled in each iteration was set to 2048 (Klein et al., 2009), and the
number of iterations were set to 512 for the affine transformation and 2048 for the B-
spline transformation. For further details about parameter selection and optimizations
readers are referred to our previous study (Kiri̧sli et al., 2010). All registrations were
performed using Elastix (Klein et al., 2010), a publicly available software package
(http://elastix.isi.uu.nl).

The heart mask was used in both stages of the registration approach. The main
purpose of using the fixed mask was to prevent the registration to be affected by tissues
surrounding the heart, such as the lungs, rib cage and the vertebra. Figure 4.4 shows
a random axial slice of one of the fixed masks used for the registration optimization.
The mask was created by dilating the original manually annotated pericardium by
1 cm. The masks were created once, only for the atlas scans and not the subject
scans. Hence, called the fixed mask. Table 4.2 shows the results obtained for both
the strategies. It can be observed that the average accuracy of both strategies was
very similar in terms of the mean, but using the mask resulted in a smaller standard
deviation. It was also confirmed visually that the accuracy of finding the pericardium
using strategy two was better than when using strategy one. Further experiments on
the entire dataset were thus performed using the registration with the mask.

4.3 Results

4.3.1 Agreement between the automatic method and the observers

A visual check showed that 95 out of 98 segmentations were successful. Three
segmentations failed due to registration errors caused by anatomical and FOV
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Figure 4.4: Random axial slice with the yellow overlay representing the fixed mask
used for the registration.

(a) (b)

(c)

Figure 4.5: Scatter plots of automatic versus manual fat quantification methods
and results from linear regression: (a) Correlation between the two observers. (b)
Correlation between observer 1 and the automatic method. (c) Correlation between
observer 2 and the automatic method.
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variations. These scans were excluded from further analysis.

The subjects had an average fat volume of 101 ± 38 ml according to Observer
1 and 113 ± 43 ml according to Observer 2. The automatic method found the
average fat volume to be 102 ± 34 ml. A Dice similarity index of 89.1% and
89.2% was obtained between the automatic segmentation and each of the manual
segmentations, respectively. The mean surface distance between the automatically
derived cardiac surface and the observer segmentations was 3.8 ± 1.1 mm and 3.5 ±
0.7 mm, respectively. A Pearson correlation R of 0.91 (P< 0.001) was obtained for fat
quantification results between the automatic segmentation and each of the manual
segmentations. The mean absolute difference between the automatic method and
each of the manual segmentations with respect to the amount of quantified fat was
11.6 ml and 16.6 ml, respectively. The linear regression plots are shown in Figure 4.5.
The numbers obtained from the Bland-Altman analysis and the confidence intervals
of the linear regression are shown in Table 4.3 with a graphical representation in
Figure 4.6. It can be noted that the bias from the Bland-Altman analysis with respect
to observer 1 is almost zero and the automatic method slightly underestimates the
volume of epicardial fat as compared to observer 2.

4.3.2 Inter-observer agreement

An average Dice similarity coefficient of 88.9% was found between the segmentations
of the observers. The mean surface distance between the two observers was 4.3 ±
1.0 mm over all datasets. With respect to the amount of quantified epicardial fat, the
mean absolute difference between the two observers was 15.6 ml, and the Pearson
correlation coefficient was 0.92 (P < 0.001). A Bland-Altman analysis of the data
showed that the limits of agreement were between -45.3 and 21.3 ml and a bias of
-12.1. Figure 4.5 and Figure 4.6 show the correlation graph and the Bland-Altman
analysis.

4.4 Discussion

In this study, we presented a fully automatic method for epicardial fat quantification.
The method is based on automatic pericardium segmentation. A good correlation
with manual quantification was observed, with differences very similar to the inter-
observer variability.

The Dice similarity index (overlap area) between the automatic pericardium
segmentation and each of the manual annotations was slightly better than the inter-
observer Dice similarity coefficient. The mean surface distance error between the
automatic and manual segmentations corresponds to 1.5 voxels in the slice direction,
which can be considered small. When the actual amount of fat volume quantified
using our method was compared to each of the observers, it resulted in a mean
absolute difference of 11.6 ml and 16.6 ml respectively. This difference in volume is
very close to the inter-observer agreement, which was 15.6 ml. The same conclusion
can be drawn from the correlation coefficient R obtained with respect to the quantified
fat volume of the automatic method and the manual observers.
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Table 4.3: Performance of the whole heart segmentation; comparing the automatic method to each of the observers and the
observers to each other.

Automatic Vs Automatic Vs Observer 1 Vs

Observer 1 Observer 2 Observer 2

Segmentation Measures

Dice Similarity Index (mean ± stdev)% 89.1 ± 2.6 89.2 ± 1.9 88.9 ± 2.5

Mean Surface Distance (mean ± stdev)mm 3.8 ± 1.1 3.5 ± 0.7 4.3 ± 1.0

Quantification Measures

Correlation R 0.91 0.91 0.92

Linear Regression (CI for β) 0.75 to 0.90 0.65 to 0.79 0.96 to 1.15

Bland-Altman Bias (95% CI) 0.8 (31 to -29) -11.3 (25 to -47) -12.1 (21 to -45)
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(a) (b)

(c)

Figure 4.6: Bland-Altman analysis: (a) Between observers. (b) Between automatic
method and observer 1. (c) Between automatic method and observer 2.

(a) (b)

Figure 4.7: Excluded subjects (a) Subject with lung removed (b) Segmentation
leaking into the ribcage due to rare anatomical variation in heart shape.
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Compared to the existing quantification methods, our method is the first that

is fully automatic. The methods proposed in (Ding et al., 2008, 2009; Mahabadi
et al., 2013; Rosito et al., 2008; Taguchi et al., 2001; Wheeler et al., 2005) either use
manual tracings of the different tissue types, or a manual approach to delineate the
pericardium, before quantifying the adipose tissue voxels. This is a tedious and time-
consuming task to perform. The semi-automatic method proposed in (Dey et al., 2008,
2010) needs two interactions, which could limit the use of the method in processing
a large number of datasets in an epidemiologic setting.

The three subjects that were excluded from the analysis had the following issues:
one subject underwent pneumonectomy (removal of a lung) causing a very unusual
position of the heart (see Figure 4.7a), the other had a heart shape anatomically quite
different from the others (see Figure 4.7b), the last one had a different field of view
compared to the atlas scans used. The large difference between the atlas scan and the
subject scan caused the registration to fail, which resulted in erroneous segmentation
of the pericardium.

There has been some confusion in the literature between the nomenclatures of
the adipose tissue contained within the pericardium (Thomas et al., 2010); some
studies call it epicardial fat tissue, whereas others call it pericardial fat tissue. Based
on the definition provided here (Iacobellis, 2012) we decided to denote the adipose
tissue contained within the pericardium as epicardial fat. In short, in this definition
epicardial fat is the adipose tissue between the myocardium and the visceral layer of
the pericardium.

We did not investigate to what extent the method can be used on multiple scanner
types; in this study, we only demonstrated the feasibility of using the method on two
generations of Siemens scanners. However, as our method is based on multi-atlas
segmentation, we are confident that the same approach would work on other scanner
types, as long as the subject scans and the atlas scans have a similar field of view. It
has been demonstrated in our previous study (Kiri̧sli et al., 2010), that atlas-based
segmentation of the pericardium was performed with a similar accuracy with respect
to multi-vendor/multi-center CTA datasets. If required, the method could utilize atlas
scans from the same scanner.

In the current setup, visual inspection was still required to check the accuracy of
the pericardium segmentation, which resulted in discarding the three scans on which
the segmentation failed. Instead of discarding these scans, or in case of small failures,
manual correction before fat quantification is an option. We did not integrate this in
our protocol, as the results were sufficiently accurate without adaptation.

4.5 Conclusions

We developed and evaluated an automatic method for pericardium segmentation
and subsequent epicardial fat quantification. We demonstrated that our automatic
approach achieved good correlation to manual quantifications. The automatic method
described in this paper could potentially be used on large clinical or population studies
in order to investigate the relationship between epicardial fat volume and CVD.
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Abstract

Purpose Accurate detection and quantification of coronary artery stenoses is an essential
requirement for treatment planning of patients with suspected coronary artery disease. We
present a method to automatically detect and quantify coronary artery stenoses in CTA.

Methods First, centerlines are extracted using a two-point minimum cost path approach
and a subsequent refinement step. The resulting centerlines are used as an initialization for
lumen segmentation, performed using graph cuts. Then, the expected diameter of the healthy
lumen is estimated by applying robust kernel regression to the coronary artery lumen diameter
profile. Finally, stenoses are detected and quantified by computing the difference between
estimated and expected diameter profiles. We evaluated our method using the data provided
in the Coronary Artery Stenoses Detection and Quantification Evaluation Framework.

Results Using 30 testing datasets, the method achieved a detection sensitivity of 29% and
a PPV of 24% as compared to QCA, and a sensitivity of 21% and a PPV of 23% as compared
to manual assessment based on consensus reading of CTA by 3 observers. The stenoses degree
was estimated with an absolute average difference of 31%, a root mean square difference of
39.3% when compared to QCA, and a weighted kappa value of 0.29 when compared to CTA.
A Dice of 68% and 65% was reported for lumen segmentation of healthy and diseased vessel
segments respectively. According to the ranking of the evaluation framework, our method
finished fourth for stenosis detection, second for stenosis quantification and second for lumen
segmentation.

Conclusions Coronary artery lumen can be automatically segmented with a precision similar
to the expert’s, but detection and quantification of coronary artery stenosis is still an unsolved
problem; discrimination between significant and non-significant lesions remains a challenge.
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5.1 Introduction

Coronary artery disease (CAD) is one of the leading causes of death worldwide (WHO,
2012; Roger et al., 2012). CAD induces plaque build-up in the coronary arteries,
which may cause luminal narrowing also known as stenosis. Stenoses may induce
myocardial infarction; it is therefore crucial to detect CAD at an early stage.

Many diagnostic tests are available for detection of CAD (Fayad and Fuster, 2001).
At present, invasive coronary angiography (ICA) is the reference standard imaging
technique for diagnosing CAD and quantitative coronary angiography (QCA) is used
to quantify the degree of stenosis. However, ICA is an invasive procedure and is limited
by its projective nature. Computed tomography coronary angiography (CTA) on the
other hand, is increasingly used to assess CAD and has the advantage over ICA of
being non-invasive. Furthermore, it provides high resolution three-dimensional (3D)
images of the coronary arteries. In addition to the detection and quantification of
coronary artery stenoses, CTA can also provide additional information regarding the
type of plaque (calcified, mixed or soft) (Weustink and de Feyter, 2011). It has been
shown that CTA scans can be used to accurately identify the presence and severity of
the stenoses in comparison to ICA in (Miller et al., 2008). However, interpreting CTA
images for the purpose of stenosis detection and quantification requires considerable
experience to prevent underestimating or overestimating obstructive plaque lesions
(Pugliese et al., 2009), and is therefore a tedious task. Whereas we are focusing on
stenosis grading, similar approaches may be relevant for CT fractional flow reserve
(FFR) as well, where the combination of computational flow models and accurate
segmentations may predict the hemodynamic significance of a lesion (Melchionna
et al., 2013; Min et al., 2012).

Consequently, the number of publications presenting and/or evaluating (semi-)
automatic coronary artery stenosis detection and quantification methods on cardiac
CTA have increased in recent years. An algorithm evaluation framework dedicated to
this problem has been introduced in 2012 (http://oronary.bigr.nl/stenoses)
(Kiri̧sli et al., 2013).

Different approaches have been proposed to address the challenge of (semi-)
automatically detecting and quantifying stenoses. These methods can be categorised
into two groups: 1) methods that depend on accurate lumen segmentation to
compute/estimate healthy and diseased lumen diameters in order to quantify stenoses
(Arnoldi et al., 2010; Halpern and Halpern, 2011; Khan et al., 2006; Kelm et al., 2011;
Wesarg et al., 2006; Xu et al., 2012) and 2) methods that use image features or pattern
recognition approaches to detect stenoses (Saur et al., 2008; Tessmann et al., 2009;
Zuluaga et al., 2011).

In this chapter, we present an automatic method for coronary artery lumen
segmentation, stenosis detection and quantification. The method aims at facilitating
and supporting the interpretation of cardiovascular CTA data by radiologists. The
method has been evaluated through the Coronary Artery Stenoses Detection and

Quantification Evaluation Framework (Kiri̧sli et al., 2013).
The remainder of this chapter is organized as follows. In Section 5.2, we describe

the data used, our method and the parameter values selection. Section 5.3 is
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(a) right coronary artery branch (b) left coronary artery branch

Figure 5.1: Extracted initial centerlines for one of the datasets.

dedicated to the evaluation of our approach. Results of our approach are discussed in
Section 5.4, as well as the limitations and possibilities for future studies. Conclusions
are given in Section 5.5.

5.2 Materials and method

5.2.1 Imaging data

The data used for this study was obtained from the publicly available Coronary Artery
Stenoses Detection and Quantification Evaluation Framework (http://oronary.bigr.nl/stenoses). The datasets provided by this framework were retrospectively
acquired in three university medical centers (Erasmus MC, University Medical
Center, Rotterdam, the Netherlands; University Medical Center Utrecht, Utrecht, the
Netherlands; and Leiden University Medical Center, Leiden, the Netherlands). The
patients underwent both CTA and QCA examinations. Below, we provide information
about the image acquisition, data selection and reference standards. Additional
information can be found on the website (http://oronary.bigr.nl/stenoses/about.php).
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The CTA data was acquired on : 1) a dual-source CT scanner (Somatom Definition,

Siemens, Forchheim, Germany) at the EMC, 2) a 64-slice CT scanner (Brillance 64,
Philips Medical Systems, Best, the Netherlands) at the UMCU, and 3) a 320-slice CT
scanner (Aquilion ONE 320, Toshiba Medical Systems, Tokyo, Japan) at the LUMC.
A non-enhanced CT scan was performed before the CTA; the total calcium score for
each patient was calculated using a dedicated software in each center.

A single image volume per patient was used, reconstructed at the mid-to-end
diastolic phase (350 ms before the next R-wave or at 65% to 70% of the R-R interval),
with either retrospective (Siemens and Philips data) or prospective (Toshiba data)
ECG gating.

Sixteen patients, distributed over five calcium categories in order to have a
representative population that undergoes CTA examination, were selected in each
of the three centers, resulting in 48 datasets. The calcium categories (Agatston et al.,
1990) are defined as follows : no calcium (11 patients, 23%), between 0.1 and 10 (6
patients, 10%), between 11 and 100 (14 patients, 31%), between 101 and 400 (11
patients, 23%), and above 400 Agatston score (6 patients, 12%). The population has
a mean age of 58.76 ± 8.71 (41-80) years old and consists of 30 males (63%).

Eighteen of the 48 CTA images, together with the CTA and QCA reference
standards, were made available for training; the remaining 30 datasets were used
for testing the algorithms. For testing, only the CTA images were made available. The
distribution of patients over the two sets is explained in detail in recent work of Kirisli
et al. (Kiri̧sli et al., 2013).

Three independent experienced observers from Erasmus MC, University Medical
Center Rotterdam, analysed the CTA datasets and provided the ground truth via
consensus reading. A dedicated tool implemented in MeVisLab (http://www.mevislab.de) was used by the observers for the annotations. QCA analysis was
performed by an independent observer blinded to the CTA results. The ground
truth data consists of quantification and stenosis detection on both the CTA and ICA
datasets, as well as lumen segmentation on the CTA dataset.

5.2.2 Method

The method described in this chapter consists of the following steps: 1) centerlines
are extracted using predefined start and end points in the arteries, 2) bifurcation
points of the extracted vascular tree are detected and the centerlines are subsequently
divided into segments 3) coronary artery lumen segmentation is performed using the
centerline segments as initialization, and 4) stenoses are detected and quantified using
an area based approach.

Centerline extraction

The centerlines of the coronary artery tree are extracted as follows.
First, for each branch of the coronary artery tree, an initial centerline is obtained,

by applying the minimum cost path extraction method presented in (Metz et al.,
2009). A 3D path with minimum cost is found between two manually placed seed
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points in the coronary arteries, located at the ostium and at the distal end of each
coronary artery. The cost image Cv(x), (with x a location in the image) used for
centerline extraction is based on a multi-scale vesselness measure V (x) (Frangi et al.,
1998) and a sigmoid like intensity threshold function T (x) (Metz et al., 2009), and
is defined as:

Cv(x) =
1

V (x)T (x) + ε
, (5.1)

where ε is a small positive value introduced to avoid singularities (See Section 5.2.3,
for parameter values).

However, the initial centerlines obtained are inaccurate at the bifurcations and
at calcified locations, where the centerline is attracted towards the calcified part of
the vessel due to relatively low cost values inside the calcifications. Therefore, the
centerlines are refined in a subsequent step.

In this second step, calcium lesions within the artery are suppressed, based on
the intensity profile of the contrast material along the initially extracted centerline.
In the ideal case, i.e. a healthy vessel presenting no calcified plaque, the intensity
profile is a smooth curve with a gradual decrease in intensity along the artery (see
Fig 5.2(a)) (Rybicki et al., 2008; Steigner et al., 2010). But, in the case that a
centerline passes through a calcified plaque, the intensity profile presents a spike,
indicating the presence of a high intensity object along the centerline path. In the case
where the contrast material is not evenly distributed throughout the artery, intensity
variations not corresponding to calcified plaques may also appear in the intensity
profile. In order 1) to differentiate true calcium objects from noise, and 2) to estimate
the intensity value of the contrast material within the coronary artery, we apply a cubic
fit to the intensity profile of the initially extracted centerline. Fig 5.2 shows examples
of intensity profiles along different artery segments.

Given an intensity profile for centerline points x ∈ X , where X is the set of
centerline points, point x is assigned as belonging to a calcium object if it obeys the
condition:

I(x)− F(x) |x∈X ≥ Tca , (5.2)

where I(x) is the CTA image intensity at position x along the centerline, F(x) is the
value at position x based on a fitted cubic polynomial and Tca is a predefined threshold
value (See Section 5.2.3).

All the centerline points x which satisfy Eq. 5.2 are treated as seedpoints to
initialize a region growing segmentation with a 3D 6-neighbourhood relation. If a
connected voxel has an intensity greater than equal to max x∈X (F(x)), it is classified
as belonging to a calcium object. The segmented calcium object is suppressed by
setting its intensity value to 1024 grayscale value (GV) (1024 GV = 0 Hounsfield
unit). Fig 5.3 shows an example where a calcium lesion is suppressed.

Subsequently, to move the centerlines running close to the border of the lumen
towards the vessel center, we generate a stack of multi-planar reformatted (MPR)
images, i.e. a stack of images perpendicular to the initial centerline. We then
apply a minimum cost path approach to this image stack, as proposed by Tang et
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(a) segment without calcium objects (b) segment with multiple calcium objects

(c) segment with a high density calcium
object

Figure 5.2: Plot of the intensity (in GV) as a function of position along the centerline
and the corresponding CMPR images for three coronary artery segments

al. (Tang et al., 2012). Using a modified cost image Cmv(x) based on both V (x) and
a medialness measure M(x) (Gülsün and Tek, 2008), defined as:

Cmv(x) =
1

V (x)M(x) + ε
. (5.3)

Fig 5.4 shows an example of an MPR image generated using the refined centerlines.

From centerlines to segments

To extract the lumen centerlines, a unique starting point (located in the ostium) and
multiple end points are used. As a consequence, the extracted centerlines present
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(a) (b)

Figure 5.3: A random cross-sectional image slice through a calcium lesion. (a) before
calcium suppression (b) after calcium suppression.

(a) (b)

Figure 5.4: (a) CMPR image before calcium object suppression and centerline
refinement (b) CMPR image after calcium object suppression and centerline
refinement. It can be observed from image (b) that the calcium object is much better
separated from the lumen.

multiple overlapping paths. At locations where a vessel bifurcates, a sudden drop in
the vessel diameter occurs. This influences the stenoses detection and quantification
step which is based on cross-sectional vessel area. In order to facilitate further
processing, we first filter the centerline points using Mean Shift filtering (Carreira-
Perpinan, 2007), such that matching co-linear centerlines are closer to each other.
Subsequently, we can merge centerlines representing the same segment, and detect
bifurcations at locations where centerlines are diverging.

For the filtering, each centerline Si=1...m (with m the total number of centerline
segments) is equidistantly resampled to a set of spatial points {x1 . . .xni

} with ni the
number of points of the centerline Si . We then filter the centerlines using the approach
proposed by van Walsum et al. (van Walsum et al., 2008), and subsequently build a
graph from these filtered centerlines representing the coronary tree structure.

The Mean Shift filtering algorithm used is represented as follows:

xτ+1
kl
=
∑

i j

ckl,i j φkl,i j Gs

��

�xτ
kl
− xi j

�

�

�

∑

i′ j′ ckl,i′ j′ φkl,i′ j′ Gs

��

�xτ
kl
− xi′ j′
�

�

� xi j , (5.4)

which states that in each iteration, point x is replaced with a weighted average of
the points of all centerlines. The subscripts i j, kl represent the j th point on the i th

centerline and the l th point on the kth centerline. Convergence is reached if the
distance between xτ and xτ+1 is less then a small threshold (δ).
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The weights in Eq. 5.4 have three components. ckl,i j is a correspondence term,

based on connectivities between points of different centerlines. It uses Dijkstra graph
search algorithm (Dijkstra, 1959) to determine the set of connections Dki = {dkl,i j}
between centerlines Sk and Si , with dkl,i j a connection between xkl and xi j . ckl,i j is
defined as:

ckl,i j =

�

0 if dkl,i j /∈ Dki
�

�

�

dkl,i j′
	�

�
−1

if dkl,i j ∈ Dki

(5.5)

with | · | the cardinality of the set.
φkl,i j decreases the weights for points with differently oriented tangents, and

prevents averaging over bifurcations. It is defined as:

φkl,i j = Gφ
�

acos
�

tkl · ti j

��

, (5.6)

with Gφ the Gaussian kernel with standard deviation σφ and ti j the (normalized)
tangent vector at xi j . This orientation factor is 1 when the tangents are parallel, and
less then 1 when the tangents diverge.

Gs is the Gaussian weighted distance with a standard deviation of σs to decrease
the influence of points far away.

Application of Eq. 5.4 to all points xi j of all centerlines Si yields shifted centerlines
S′

i
. The shifting process is followed by combining these shifted centerlines into a

directed graph representation. To this end, all centerlines are added to a graph
consecutively, where the initial graph is empty. For each centerline to be added,
the overlapping parts with the existing graph are determined, and the overlapping
parts are merged in the graph’s data structure. For each of the non-overlapping parts,
new edges are created in the graph. After merging all the centerlines into the graph,
each path and node (bifurcation point) of the graph structure contains references to
the corresponding parts of the (shifted) centerlines. Fig 5.5 shows an example of a
segmented and labelled coronary artery tree, where different colors indicate different
segments and the white balls represent the bifurcation points, start points and the end
points.

Lumen segmentation

The coronary lumen is segmented using a method combining graph-cuts and robust
kernel regression (Schaap et al., 2009b). The method is applied segment wise and
uses the refined centerline as initialization. The segmentation process is performed
on the MPR image stack.

The graph-cuts method uses an application specific unary term based on the image
intensities of the centerlines (voxel likelihood) and a binary term based on the image
gradient magnitude (edge term). Essentially, the voxel likelihood term assigns high
foreground weights and low background weights to voxels with similar intensities
as the centerline intensities, and vice versa for voxels that have dissimilar intensity
values. The voxel likelihood term is defined as:
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(a) Resulting right coronary artery tree (b) Resulting left coronary artery tree

Figure 5.5: Result of automatic bifurcation detection in which different colors
represent different segments.

Pr(Ix | fx = 1) = −0.5

�

0.75− 0.25 erf

�

Dx − Tin

σi

��

�

erf

�

Dx − Tout

σi

�

− 1

� (5.7)

with Dx = |Ix − Îx ′ | the absolute difference between the intensity of the voxel (Ix) and
the local intensity estimate( Îx ′), Tin the threshold parameter for intensities within the
lumen, Tout = λ(Mean(I) - Io) the difference between the mean intensity I along
the centerline and the intensity outside Io, i.e the threshold parameter for intensities
outside the lumen. Fig 5.6b shows an axial slice after the application of Eq 5.7.

The edge term uses the gradient magnitude at the boundary of two voxels. A
higher value corresponds to a high probability of the voxel label being switched. The
weight of a label switch between voxel x and y is defined as:

wx ,y = −log

�

1− exp

�

−|∇I |2(x , y)

2σ2
g

��

, (5.8)

After the graph-cut segmentation each voxel is assigned to the lumen or non-
lumen (see Fig 5.6c). Because this segmentation is discrete and because it can contain
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outliers, the segmentation is smoothed and outliers are removed with a robust kernel
regression approach. The graph-cut lumen boundary is first described in a cylindrical
coordinate system by finding, in each cross-section, the intersection between rays,
sampled at fixed angles from the centerline. This representation is subsequently
smoothed with a robust kernel regression approach, ensuring that both outliers are
removed and a smooth boundary representation is obtained (see Fig 5.6d).

(a) (b) (c) (d)

Figure 5.6: A cross-sectional image of a randomly selected coronary artery, presenting
a calcium lesion and a side branch. (a) Input image, (b) resulting image after applying
a lumen likelihood function, (c) binarized image after lumen segmentation using
graph cuts (lumen bright, background black), (d) the resulting lumen segmentation
(in white) after kernel regression.

Stenosis detection and quantification

From the coronary artery lumen segmentation (per segment of the coronary artery
tree), the cross-sectional area Ai of the vessel is computed at every position i along the
vessel centerline, i ∈ [1, n] with n being the number of positions along the centerline.
The radius is then derived as ri =

p

Ai/π.
To compute the degree of stenosis, the radius of a healthy vessel is needed as

a reference. We estimated the radius r̂ of the healthy vessel by applying a robust
weighted Gaussian kernel regression (Debruyne et al., 2008) to the 1D function r

describing the vessel radius along the centerline:

r̂i =

n
∑

i′=1

N(i′|i,σi)wi′ ri′

n
∑

i′=1

N(i′|i,σi)wi′

, (5.9)
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where,
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5.2.3 Parameter selection

Some of the parameters used in our method were optimized using the training datasets
provided by the framework. For others, the values were chosen identical to our
previous works the lower and upper scales for the multi-scale vesselness measure
(Vx) used in Eq. 5.1 and in Eq. 5.3 were set to 0.8 mm and 2 mm, with 3 intermediate
scales. The other parameters α,β , c (used in Vx), w1, w2, w3, as and bs (used in Tx

) from Eq. 5.1 were taken from (Metz et al., 2009) and are presented in Table 5.1.
The minimum and maximum scales for the medialness measure (Mx) used in Eq. 5.3
were set to 0.5 mm and 2 mm, the number of intermediate scale steps to 8 and the
number of angles to 24. The value of ε in both equations was set to 0.0001. The
value of Tca in Eq. 5.2 was set to 200 GV. The CMPR images were generated at 0.5
mm slice spacing and with a cross-sectional area of 10× 10 mm2, and a voxel size of
0.1× 0.1× 0.5 mm3. The parameters used for lumen segmentation in Section 5.2.2
were taken from (Schaap et al., 2009b). The value of σs and δ in Eq. 5.4 were set
to 0.5 and 0.01 respectively, σφ in Eq. 5.6 was set to 0.1. In Eqs. 5.9 and 5.10 of
the stenoses detection/quantification, the parameter σx (corresponding to centerline
longitudinal distance) was set to 8, σr (corresponding to radius) to 0.25, and σmax

to 200.

Table 5.1: Parameters used in computing the vesselness measure Vx and the threshold
function Tx

α β c w1 w2 w3 as bs

0.5 0.4 230 0.99 0.10 0.10 1028 GV 965 GV

As QCA is the reference standard, it was observed from the training experiments
that the CTA derived measure slightly overestimates the degree of stenosis in the mild
stenotic regions. This is probably due to the fact that QCA measurements are made
in 2D and our method quantifies the stenoses in 3D on the CTA image. Therefore,
we investigated the possibility to improve the quantification measure, correcting for
this bias. We performed a few pilot experiments and found out that improved stenoses
quantification matching between CTA and QCA can be achieved by applying an off-set
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(a) (b)

Figure 5.7: Stenoses detection and quantification. (a) Shows the reconstructed lumen
tree of a patient in which the red shade highlights narrowing of the lumen. (b) Various
curves as a function of centerline position showing: the true radius (black), estimated
radius (green), detected stenoses (blue) and the stenoses degree (black dotted). The
cross on the stenosis in (a) corresponds to the vertical line at the 18 mm mark in
(b). It can also be observed that two stenoses were detected and one of them was
significant.
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Figure 5.8: Stenoses detection and quantification. X-axis: our submission (SUB), y-
axis: the reference data (REF) - Results obtained on the 18 training datasets after
optimization of the parameters: 90% of the stenoses detected with our new method
are quantified either in the correct risk category or in the adjacent risk category
(yellow and green detections).
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value of −20 (represented as %) to all lesions detected on CTA with a degree between
20% and 50%.

Our method also overestimates the degree of stenosis on CTA in case of highly
calcified lesions, due to the blooming effect. We corrected the stenoses grade for due
to blooming as follows:







G′
CTA
= GCTA− 10, if I(x)− F(x)≥ 500

& GCTA ≥ 70%
G′

CTA
= GCTA, otherwise

where G′
CTA

is the refined CTA degree of stenosis, GCTA the initial one, and the
condition selects severe stenosis close to dense calcified objects. The values used in
the equation were obtained from the pilot experiments.

Using the above parameters, 90% of the training lesions detected by our method
on CTA images were estimated in the correct or adjacent class (Fig 5.8).

5.3 Results

Table 5.2, 5.3 and 5.4 present the training and testing results of our method with
respect to the performance of the three observers. The training set consists of 18
datasets and the testing set of 30 datasets.

Table 5.2: Detection - Our method’s performances compared with the three observers;
Sensitivity (Sens.), positive predictive value (PPV).

(%) Training Testing

Method QCA CTA QCA CTA
Sens. PPV Sens. PPV Sens. PPV Sens. PPV

Observer 1 72 49 92 57 86 40 83 61
Observer 2 76 66 82 73 75 51 70 81
Observer 3 52 68 63 74 64 43 66 60
Our method 48 63 37 56 29 24 21 23

The ability of a method to discriminate significant stenoses (i.e. stenoses ≥ 50%)
from non-significant ones was evaluated. Table 5.2 shows the average results of our
method and three observers for stenosis detection measures: sensitivity (Sens.) and
positive predictive value (PPV). The results show that on the testing datasets our
method obtains a QCA sensitivity of 29% and a PPV of 24%. With respect to CTA
we obtain a sensitivity of 21% and a PPV of 23%. In general, our results are not as
good as the averaged observers’ performance (sensitivity of 75%, PPV of 45% on QCA;
sensitivity of 73%, PPV of 67% on CTA). The ability of our method to discriminate
significant stenoses from non-significant ones remains very limited. However, as
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Table 5.3: Quantification - Our method’s performances compared with the three observers; Absolute difference (Abs Diff),
root mean square difference (RMS Diff).

Training Testing

Method QCA CTA QCA CTA

Abs Diff (%) RMS diff (%) Weighted κ Abs Diff (%) RMS diff (%) Weighted κ

Observer 1 29.7 35.1 0.71 30.1 35.2 0.74

Observer 2 25.5 31.8 0.84 31.1 36.5 0.77

Observer 3 29.1 35.1 0.73 30.6 36.9 0.73

Our method 26.3 34.8 0.37 31.0 39.3 0.29

Table 5.4: Segmentation - Our method’s performances as compared with the observers; Diseased (D) / Healthy (H) segments,
dice similarity index (Dice), mean surface distance (MSD), maximum surface distance (MAXD)

Training Testing

Method Dice (%) MSD (mm) MAXSD (mm) Dice (%) MSD (mm) MAXSD (mm)

D H D H D H D H D H D H

Observer 1 74 79 0.26 0.26 3.29 3.61 76 77 0.24 0.24 2.87 3.47

Observer 2 66 73 0.31 0.25 2.70 3.00 64 72 0.34 0.27 2.82 3.26

Observer 3 76 80 0.24 0.19 3.07 3.25 79 81 0.23 0.21 3.00 3.45

Our method 66 70 0.37 0.32 2.49 3.04 65 68 0.39 0.41 2.73 3.20
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compared to the current state-of-the art algorithms, our method ranks fourth out of
12 submissions on the test set.

Table 5.3 shows the average results of our method and three observers for stenosis
quantification measures. Despite the poor performance of our method to discriminate
the non-significant stenoses from significant ones (hard threshold at 50%), our
method was able to quantify the degree of stenosis as compared to the QCA with an
accuracy comparable to the experts. The quantification agreement obtained with the
proposed approach as compared to the CTA reference was fair. It should be pointed
out that, on the training set (κ = 0.37) 90% of the lesions were estimated in the
correct or adjacent class. An averaged absolute difference of 31%, an RMS difference
of 39%, and a weighted Kappa value κ = 0.29 were obtained on the test set. The
manual observers (on average) achieved an averaged absolute difference of 31%, an
RMS difference of 36% and κ = 0.75. Our method ranks second out of nine other
submissions on the test set.

Table 5.4 shows the average results of our method and three observers for
coronary artery lumen the similarity between our method and the observers were
measured by the Dice similarity index (Dice). The distance between the segmentations
was quantified by the root mean squared distance (RMSD) and maximum distance
(MAXD). Overall, the Dice and RMSD values obtained on healthy vessel segments
were better than the values obtained on diseased segments. The Dice and RMSD were
worse than the averaged observers’ performance, but the MAXD was better. Fig 5.9
present a few examples on longitudinal view of various coronary artery segments.
In comparison to those obtained by one of the three manual observers and the one
obtained using our previous approach (Shahzad et al., 2012a) (i.e. without the
calcium suppression step), It can be seen that our segmentation results are very close
to the ones obtained by the manual method. Our method ranks second out of six
other submissions.

5.4 Discussion

5.4.1 Evaluated algorithm

Although the coronary artery lumen can be automatically segmented with a precision
similar to the experts, there is still room for improvement for our stenoses
detection/quantification approach. In the current approach, the stenoses are
quantified solely based on the diameter profile of the segmented lumen. Therefore, in
case of diffuse disease or long stenoses, the degree of luminal narrowing is generally
underestimated. As the method does not detect a lot of false positives (41 FP’s over
48 datasets), it could be used in clinical practice for triage or as a second reader to
assist the radiologist.

The relatively low value of the Kappa statistic in the CTA stenoses quantification
measure may either be caused by a high number of false positives/negatives or by a
high number of lesions reported with more than one grade difference as compared to
the CTA reference, or by the linear weights which heavily penalize misclassifications.
On the training set, a weighted Kappa value of 0.37 was obtained, and only 10% of the
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stenoses had a quantification error of more than one grade (Fig 5.8). This highlights
that the linearly weighted Kappa is very sensitive to misclassification.

The majority of the stenoses detected with our approach were quantified with
an error of only one grade, and most of the misclassifications occured between the
mild (20-50%) and moderate (50-70%) grades. As 50% is the hard threshold used
to discriminate between significant and non-significant lesions, accurate detection of
significant stenoses remains a challenge. Considering that our method maybe used for
triage of patients or as a second reader, the use of a third group "may be significant", in
addition to the significant and non-significant group could be considered, to which all
the borderline (40-60% for instance) detected stenoses are assigned. The radiologists
would then have to inspect in more details those stenoses to make a final decision.

The results show that the additional centerline refinement step consisting of
calcium suppression from the cost image improves the segmentations compared to our
previous approach (Shahzad et al., 2012a). Previously, the centerline was attracted to
the calcified plaque and therefore, the plaque rather than the vessel was segmented.
A simple thresholding technique for removing calcium would not work very efficiently
on CTA scans as the intensity of the contrast material between different patients and
different vessels is quite dissimilar (Rybicki et al., 2008). Error in estimating a global
threshold value for a patient would result in either completely missing medium/small
calcium lesions or over segmenting the calcium lesion by including the surrounding
contrast material. We chose fitting the intensity profile with a cubic polynomial
based on the pilot experiments done on the training data set. Cubic polynomial
fitting provided us with a good estimate for a threshold to differentiate between the
background contrast intensity and the calcium objects. Higher order polynomials gave
us a very smooth fit, making it difficult to estimate the threshold value to separate
contrast material from calcium peaks.

The segmentations of the current approach are in better agreement with the
observer’s ones. The issue with calcified plaques is not completely solved. We were
able to prevent the centerlines from running into calcified objects, but for highly
calcified regions (Fig 5.9(d)(e), the method may have issues finding the correct lumen.
In such cases, our refined centerline tends to run at the very outer border of the lumen,
and the derived segmentation is of minimal radius size. However, in such extreme
cases, it is not always clear how to manually segment the lumen either, and the inter-
observer variability is therefore also high.

A limitation of our centerline extraction step is the need to initialize the start and
the end points of the coronary arteries. The Coronary Artery Stenoses Detection and

Quantification Evaluation Framework organizers provided the participants with the
start and the end points of all the vessels that were of interest. For new datasets,
the user has to annotate the start and the end point. The initialization process
can be simplified by automatically defining the start point in the aorta using the
method proposed by (Metz et al., 2009). Automatic processing can be further
improved by finding the end points using information from an atlas-based coronary
density estimate (Shahzad et al., 2010). However, our method can also be used
in combination with centerlines that have been automatically obtained (Kitamura
et al., 2012; Yang et al., 2012; Goldenberg et al., 2012; Zambal et al., 2008). The
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automatically obtained centerline could be used as the initial centerline in our method
and subsequently followed by calcium suppression, centerline refinement, lumen
segmentation, and stenoses detection and quantification.

5.4.2 Comparison with other evaluated algorithms

Nine of the eleven other evaluated algorithms were developed following a work-
flow similar to ours, consisting of 1) the computation of lumen segmentation, either
directly from the input CTA image or using previously extracted centerlines, and 2) the
subsequent detection (and quantification) of coronary artery stenoses. Only one of
the evaluated algorithms does not involve lumen segmentation, but is using features
extracted from the CTA image to detect plaques (Duval et al., 2012).

To detect and quantify lesions, six out of the nine algorithms estimated a healthy
lumen radius by applying various regression approaches to the segmented lumen
radius profile (linear for the approaches of (Cetin and Unal, 2012; Broersen et al.,
2012; Flórez-Valencia et al., 2012; Mohr et al., 2012; Öksüz et al., 2012), second-order
for the approach of (Eslami et al., 2012), robust for the approach of (Shahzad et al.,
2012a)). Only in the algorithm proposed by (Wang et al., 2012), the outer vessel wall
was segmented from the CTA image. The remaining two proposed algorithms analyze
intensity and geometry features (Lor and Chen, 2012; Melki et al., 2012).

Given an accurate lumen segmentations, our approach outperforms the algorithms
proposed by (Broersen et al., 2012) and (Wang et al., 2012) in the quantification stage,
and achieves the best (though fair) quantification agreement as compared to the CTA
reference standard. The results thus suggest that robust regression is a good approach
to quantify lesions following lumen segmentation. However, there is still room for
improvement. Refinement of the stenosis grades using additional morphological and
intensity features may lead to improvements in both the detection and quantification
steps.

5.5 Conclusions

We presented a method to automatically detect and quantify coronary arteries
stenoses, based on coronary artery lumen segmentation. The current results show
that the coronary artery lumen can be automatically segmented with a precision
similar to the experts. Quantification of the stenoses with respect to the QCA measure
can also be performed close to those obtained by the observes. However, automatic
discrimination between significant and non-significant lesions in CTA remains a
challenge.



5.5.CONCLUSIONS77

Figure 5.9: Coronary artery lumen segmentation examples in CMPR that are based on the manually annotated centerlines.
Our previous method (method without the calcium suppression step in the centerline refinement) (red), proposed method
(yellow), one of the observers (green). (a)(b)(c) Cases where our method (with the calcium suppression step in the centerline
refinement) achieves segmentation similar to the observer. (d) Case where the method avoids the calcified plaque and the
observer segmented the other side of the plaque. (e) Case where an issue with large calcified plaque remains. (f) Example of
segmentation of a coronary segment presenting a soft plaque. Discontinuities in the segmentation, such as the segmentations
in (d) and (e), are a visualization artefact: the segmentation runs out of the CMPR surface.
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Abstract

Purpose CT angiography (CTA) and SPECT myocardial perfusion imaging (SPECT/MPI)
are complementary imaging techniques to assess coronary artery disease (CAD). Spatial
integration and combined visualization of SPECT/MPI and CTA data may facilitate correlation
of myocardial perfusion defects and subtending coronary arteries, and thus offer additional
diagnostic value over either stand-alone or side-by-side interpretation of the respective data
sets from the two modalities. In this study, we investigate the additional diagnostic value of a
software-based CTA/SPECT/MPI image fusion system, over conventional side-by-side analysis,
in patients with suspected CAD.

Methods Seventeen symptomatic patients who underwent both CTA and SPECT/MPI
examination within a 90-day period were included in our study; seven of them also underwent
an invasive coronary angiography (ICA). The potential benefits of the Synchronized Multimodal
heART Visualization (SMARTVis) system in assessing CAD were investigated through a case-
study, involving four experts from two medical centers, where 1) a side-by-side analysis using
structured CTA and SPECT reports, and 2) an integrated analysis using the SMARTVis system
in addition to the reports, were performed.

Results The fused interpretation led to a more accurate diagnosis, reflected in an increase of
the individual observers’ sensitivity and specificity to correctly refer for invasive angiography
eventually followed by revascularization. For each of the four observers, the sensitivity
improved from (50%, 60%, 80%, 80%) to (70%, 80%, 100%, 100%), and the specificity from
(100%, 94%, 83%, 83%) to (100%, 100%, 94%, 83%) respectively. Additionally, the inter-
observer diagnosis agreement increased from 74% to 84%. The improvement was primarily
found in patients presenting CAD in more vessels than the number of reported perfusion defects.

Conclusions Conclusions Integrated analysis of cardiac CTA and SPECT/MPI using the
SMARTVis system results in an improved diagnostic performance.
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6.1 Introduction

Coronary artery disease (CAD) is a major cause of death worldwide (Roger
et al., 2012). Invasive coronary angiography (ICA) is regarded as the reference
standard imaging technique for diagnosing CAD (Levine et al., 2011); it enables
determining the location, the extent, and the severity of the vessel obstructions.
Computed tomography coronary angiography (CTA) imaging is rapidly gaining
clinical acceptance (Weustink and de Feyter, 2011); it non-invasively provides high-
resolution images of the cardiac and coronary artery anatomy and allows assessment
of the presence, extent and type of coronary stenoses. Still, neither CTA nor ICA
provides information on the functional implications of detected stenoses; a functional
test may therefore be required to evaluate presence and extent of myocardial
ischemia. Single photon emission computed tomography myocardial perfusion
imaging (SPECT/MPI) is widely used to noninvasively assess reversible myocardial
ischemia. In conventional side-by-side analysis, integration of CTA and SPECT/MPI
findings is mentally performed by using a standardized myocardial segmentation
model that allocates each myocardial segment to one of the three main coronary
arteries (Kalbfleisch and Hort, 1977; Cerqueira et al., 2002). However, individual
coronary anatomy does not always correspond with the standardized myocardial
distribution. In a study of 50 patients, Pereztol-Valdes et al. (Pereztol-Valdés
et al., 2005) demonstrated that only nine of the 17 AHA-segments are fed by a
single coronary artery, while the other eight segments may be fed by more than
one coronary artery. Spatial integration and combined visualization of anatomical
and functional data may facilitate correlation of myocardial perfusion defects and
subtending coronary arteries, and thus offer additional diagnostic value over either
stand-alone or side-by-side interpretation of the respective data sets (Peifer et al.,
1990; Schindler et al., 1999; Nakaura et al., 2005; Bax et al., 2007; Gaemperli et al.,
2007b,a, 2009; Santana et al., 2009; Slomka et al., 2009; Kaufmann, 2009; Sato
et al., 2010). The concept of three-dimensional (3D) fusion imaging to improve
the assignment of epicardial lesions to stress-induced ischemia originated from the
study of Peifer et al. (Peifer et al., 1990), and subsequently by Schindler et al.
(Schindler et al., 1999). In the latter, 3D models of the coronary artery tree generated
from coronary angiograms were combined with 3D models of the epicardial surface
generated from SPECT/MPI.

According to more recent studies (Nakaura et al., 2005; Bax et al., 2007;
Gaemperli et al., 2007b,a, 2009; Santana et al., 2009; Slomka et al., 2009; Kaufmann,
2009; Sato et al., 2010), hybrid cardiac imaging systems, physically combining the
CT and SPECT/PET acquisition, and software allowing fusion of images obtained
separately, are promising non-invasive techniques to assess CAD. It is expected that
such systems will gain in popularity in the future, to reduce the number of patients
unnecessarily referred for ICA examination. Here, we present the software-based
Synchronized Multimodal heART Visualization (SMARTVis) fusion system, which
allows comprehensive analysis of cardiac multimodal imaging data for assessment
of CAD. The aim of the present study is to investigate whether integrated analysis
of cardiac CTA and SPECT/MPI with the SMARTVis system improves diagnostic
performance, compared with side-by-side interpretation.
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2-vessel disease  (0)

3-vessel disease  (4) 

Figure 6.1: Patient’s selection and exclusion criteria.

6.2 Materials and methods

6.2.1 Study population

Seventy-one patients who underwent cardiac CTA and SPECT/MPI at the Leiden
University Medical Center (Leiden, The Netherlands) were randomly selected. After
applying exclusion criteria (Figure 6.1), seventeen patients were included in our
study; images from an invasive coronary angiography (ICA) procedure performed
within a 90-day period were available for seven of them. Patient characteristics are
presented in Table 6.1. The institutional review board approved this retrospective
study and the requirement to obtain informed consent was waived.

6.2.2 SPECT/MPI

Image acquisition - SPECT/MPI was performed using a two-day protocol starting
with the stress acquisition. The patients underwent bicycle ergometry or, when
contraindications were present, adenosine or dobutamine infusion to induce stress.
The radioisotope (500 MBq Tc-99m tetrofosmin) was injected either at peak exercise,
three minutes after starting adenosine perfusion or at peak heart rate during
dobutamine infusion. For both stress and rest scans, the images were acquired one
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Table 6.1: Patient characteristics (N=17)

Characteristics

Age (y) 61± 9
Males (N) 15 (90%)
Body Mass Index (kg/m2) 22.8± 4.4
Calcium score (Agatston) 494(IQR85− 1319; range0− 4797)

Medical history based on CTA N (%)

No significant disease 3(17)
1-vessel disease 2(12)
2-vessel disease 5 (29)
3-vessel disease 7 (42)

Cardiovascular risk factors N (%)

Current smoker 7(42)
Hypertension 11(65)
Diabetes mellitus 14(82)
Hypercholesterolemia 12(70)
Family history of CVD 4(24)

Imaging mean ± std [min,max]

Day-period between CTA and SPECT-MPI 31± 31[1,79]
Day-period between CTA and ICA (N=7) 45± 30[8,85]

hour after radioisotope injection. A triple-headed camera system (Toshiba CGA 9300,
Tokyo, Japan) and a low-energy high-resolution collimator were used. ECG gating
was performed at 16 frames per cardiac cycle, with a tolerance window of 50%. No
attenuation or scatter correction was applied.
Image interpretation - An experienced nuclear physicist, blinded to both CTA and
ICA results, analyzed the scans using the Corridor4DM software package (Version
6.1, INVIA Solutions, Ann Arbor, MI, USA) (Ficaro et al., 2007). SPECT/MPI images
were interpreted using oblique slices, polar maps and quantitative/functional values.
The SPECT/MPI interpretation was summarized into a report, following guidelines
presented in (Folks, 2002) the observer graded each of the 19 myocardial segments
as being normal (no perfusion defect) or abnormal (reversible or fixed defects), and
indicated the extent of myocardial infarction or ischemia.

6.2.3 Computed Tomography Angiography

Image acquisition - Five patients were scanned using a 64-slice CT scanner (Aquilion
64, Toshiba Medical Systems Corporation, Otawara, Japan) and the remaining twelve
patients were scanned using a 320-slice CT scanner (Aquilion ONE, Toshiba Medical
Systems Corporation, Otawara, Japan). In case the heart rate was higher than 65
beats/min, additional oral β -blockers (metoprolol 50 mg, single dose, one hour before
scan) were provided when tolerated. A prospectively triggered coronary calcium scan
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Figure 6.2: (a) Coronary segmentation diagram. Axial coronary anatomy definitions
derived, adopted, and adjusted from Austen et al. (1975). Left main (LM), left
anterior descending artery (LAD), right coronary artery (RCA), left circumflex artery
(LCX), diagonal branch (D), obtuse marginal branch (OM), posterior descending
artery (PDA), posterior lateral artery (PL) and intermediate branch (IMB). Proximal
(p), middle (m), distal (d). 1: p-RCA, 2: m-RCA, 3: d-RCA, 4: PDA, 5: LM, 6: p-LAD,
7: m-LAD, 8:d-LAD, 9: D1, 10: D2, 11: p-LCX, 12: OM1, 13: m-LCX, 14: OM2,
15: d-LCX, 16: IMB, 17: PL. (b) 19 myocardial segments model used to interpret the
SPECT-MPI.

(non-contrast CT scan) was performed before CTA acquisition. CTA images were
acquired with a collimation of 64×0.5 mm (resp. 320×0.5 mm), a tube rotation time
of 400 ms, and tube current of 300 mA at 120 kV for patients with normal posture (BMI
≤ 30 kg/m2). If a patient had a higher body mass index, tube current was increased
to 350 or 400 mA at 135 kV. The acquisition of imaging was prospectively triggered
at 75% of the R-to-R interval. Between 80 and 110 ml non-ionic contrast material
(Iomeron 400H, Bracco Atlanta Pharma, Konstanz, Germany) was administered with
a flow rate of 5 ml/sec depending on the total scan time. The timing of the scan
was determined using automated detection of peak enhancement in the aortic root.
Acquisition was conducted during an inspiratory breath hold of approximately 10 s.
Image interpretation - A single experienced reader, blinded to both SPECT/MPI and
ICA results, analyzed the scans using the syngo.via workstation (Siemens Healthcare,
Erlangen, Germany). CTA images were interpreted using trans-axial image stacks
and (curved) multi-planar reformatted images (MPR/cMPR). The CTA interpretation
per coronary segment (AHA Model (Austen et al., 1975)) was summarized into a
report, following guidelines presented in (Raff et al., 2009): the observer reported
the stenosis location (origin, proximal, mid, distal, end), the stenosis severity
(mild, moderate, severe, occluded), the stenosis plaque type (non-calcified, mixed,
calcified).
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6.2.4 Quantitative Coronary Angiography

ICA was performed accordingly to standard medical practice. One experienced
cardiologist, unaware of the CTA and SPECT-MPI scoring results, performed
quantitative coronary angiography (QCA) on the seven available angiograms. All
coronary segments were identified and analyzed using the modified 17-segment AHA
classification (Figure 6.2). Segments were visually classified as normal (smooth
parallel or tapering borders, visually ≤ 20% narrowing) or as having coronary
obstruction (visually ≥ 20% narrowing); the stenoses in these last segments were
quantified by a validated QCA algorithm (Reiber et al., 1985) (CAAS, Pie Medical,
Maastricht, The Netherlands). Stenoses were evaluated in the worst (available)
angiographic view and classified as significant if the lumen diameter reduction
exceeded 50%.

6.2.5 SMARTVis : a software-based CTA/SPECT-MPI fusion system

In this work, we extend the Synchronized Multimodal heART Visualization
(SMARTVis) system introduced in (Kiri̧sli et al., 2012) to fuse CTA with SPECT-
MPI nuclear myocardial perfusion imaging. An overview of the CTA and SPECT-
MPI processing and fusion is given on Figure 6.3. The SMARTVis system provides
comprehensive 2D and 3D fused visualizations of the anatomical and functional
information for relating coronary stenoses and perfusion defect regions (Figure 6.4).
The coronary artery tree extracted from CTA can be projected onto the 2D stress/rest
polar map (PMAP), and, similarly, the perfusion information visualized on a 3D
stress/rest PMAP can be fused with a 3D model of the heart and its coronary artery
tree. Furthermore, the SMARTVis system provides a list of automatically detected
and quantified coronary artery stenoses (Shahzad et al., 2012a). To further assist
the user in assigning a culprit lesion to a specific perfusion defect, a (distance-based)
estimation of the patient-specific coronary perfusion territories is provided. Last, the
2D and 3D PMAP viewers are synchronized with the CTA stenosis findings and images.

Beside the fused visualization, the SMARTVis system provides the opportunity
to inspect 1) the non-contrast CT image and its automatically calculated per-vessel
calcium scores (Shahzad et al., 2012b), 2) the CTA images and its automatically
detected stenoses, and 3) the SPECT-MPI polar maps and left ventricular function
curves. During the evaluation, only the fused visualizations were used by the
observers.

6.2.6 Study design

The additional diagnostic value of the SMARTVis system to assess CAD was
investigated through a case-study evaluation. An overview of the study design is
presented in Figure 6.5.

First, structured reports were created for CTA and SPECT-MPI, according to the
guidelines presented in Sections 6.2.3 and 6.2.2. Also, QCA analysis was performed
for 7 patients. A treatment strategy (i.e. medical treatment or revascularization of
specific coronary segment(s)) was further derived from QCA and SPECT-MPI findings
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Anatomical Information

from CTA

Fusion CTA with SPECT-MPI

Functional Information

from SPECT-MPI

Vessel centerline extraction

Vessel lumen segmentation

Stenosis detection

  and quanti!cation

Cardiac

segmentation

endo/epil LV shape from CTA

Iterative Closest Point spatial alignment

Analysis with

Corridor4DM software package

Export to .xml format

Functional information

Anatomical information

endo/epil LV shape from SPECT-MPI

Figure 6.3: Overview of image processing performed on CTA and fusion of
CTA/SPECT-MPI. The dashed box corresponds to semi-automatic process, while
the solid boxes correspond to fully automatic processes. Coronary artery stenoses
were detected and quantified on CTA using the method presented in (Shahzad
et al., 2012a); cardiac chamber shapes were obtained from CTA by applying
method presented in (Kiri̧sli et al., 2010). The SPECT-MPI left ventricle shape was
automatically provided by the Corridor4DM software, as well as landmark points
indicating the septal and apical positions. LV shapes and landmark points were
subsequently used to align CTA and SPECT-MPI data by applying iterative closest point
algorithm.
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Figure 6.4: Example of patient 16 (male, 59 y.o.), who presents fixed perfusion defects in the inferior and anterior wall on
SPECT-MPI and suspected triple-vessel disease on CTA. A complete occlusion was detected in the proximal RCA (a) and a
moderate mixed plaque was detected in the middle LAD (b). The QCA reveals a complete occlusion in proximal RCA (c) and
a 50% stenosis in the middle LAD (d). Comprehensive visualizations proposed in the SMARTVis system - (e)(f) 2D stress
and rest polar maps (PMAP) fused with projection of the coronary tree extracted from CTA. On the stress PMAP (e), coronary
arteries are color coded with the degree of stenosis; on the rest PMAP (f), coronary arteries are coded with the distance to the
epicardium: the more transparent the artery, the further it is from the epicardium. Patient-specific perfusion territories are
also projected: LAD in red, LCX in yellow, MO in green and RCA in blue. (g)(h) 3D model of the heart and coronary artery
tree extracted from CTA fused with 3D stress PMAP.
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Figure 6.5: Overview of the evaluation study design. First, structured reports
were created from CTA (ObsAD) and SPECT-MPI (ObsIAY), and QCA analysis was
performed on the 7 available ICA. Treatment planning was performed for those 7
patients, based on QCA and SPECT-MPI findings. Second, four experts from two
medical centers examined 17 patients with suspected CAD and performed 1) a side-
by-side analysis, using structured CTA and SPECT-MPI reports, and 2) an integrated
analysis, using the SMARTVis system in addition to the CTA and SPECT-MPI reports.
Both analyses were performed with an interval of 2 to 5 weeks.

and served as reference standard. As the guidelines recommend proof of ischemia
prior to revascularization of coronary stenoses (Levine et al., 2011), the expert
considered medical therapy indicated for significant lesions detected on QCA which
resulted in infarction and no further complaints.

Subsequently, four experts from two medical centers (Erasmus Medical Center,
Rotterdam, The Netherlands; Leiden University Medical Center, Leiden, The
Netherlands) took part in the study. All observers were experienced with both CTA and
SPECT-MPI. During individual sessions, they examined the 17 selected patients and
performed 1) a side-by-side analysis, using structured CTA and SPECT-MPI reports,
and 2) an integrated analysis, using the SMARTVis system in addition to the CTA and
SPECT-MPI reports. The side-by-side analysis was performed 2 to 5 weeks prior to the
integrated analysis, and the patients were analyzed in a different order, to minimize
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the chance of recalling patient cases. The SMARTVis system was introduced by the
first author to the observers during individual training sessions, using images of one
of the excluded patient datasets. The tool was then operated by the clinical expert
during the evaluation, under the supervision of the first author.

For each of the 17 coronary artery segments that presented at least one ≥ 20%
stenosis on CTA, the observer had first to indicate the correlation between stenoses
and perfusion defects. The stenoses present in the considered coronary segment could
either be related to a myocardial region presenting a perfusion defect on SPECT-MPI,
or be considered as hemodynamically not significant (i.e. not inducing a perfusion
defect). Subsequently, the observer had to indicate the most appropriate therapeutic
decision: medical therapy or revascularization of specific coronary segment(s).

6.2.7 Analysis

The revascularization decision strategy and target vessel selection of each observer
were compared with both the other observer’s decisions and the reference decision,
derived from interpretation of QCA and SPECT-MPI. The diagnostic performance of
CTA, SPECT-MPI and their fusion were compared on a per-vessel basis to determine
the therapeutic decision agreements, as well as the sensitivity and specificity.

For all 17 patients, an inter-observer therapeutic decision agreement percentage
was computed per patient p as follows:

Agreement
p

inter−obser ver
=

1

4
×

4
∑

v=1

ωv and ωv =







100 if all observers agree
50 if 3 observers agree
0 otherwise

with v the main arteries (RCA, LAD, LCX, IMB) and ωv the observer therapeutic
agreement for vessel v.

For the subset of 7 patients who underwent ICA, a therapeutic decision agreement
percentage with respect to the QCA/SPECT-MPI decision was computed per patient p

as follows:

Agreement
p

QCA =
1

4
×1

4

4
∑

obs=1

4
∑

v=1

ωobs,v andωobs,v =









if, for vessel v, obs
100 agree with the QCA/

SPECT/MPI decision
0 otherwise

with the QCA/SPECT-MPI decision.
Also, the sensitivity and specificity for revascularization of a coronary artery were
computed.

6.3 Results

First, the results of the mono-modality analyses are reported (Sections 6.3.1 to
6.3.3). Subsequently, we report on inter-observer agreement and agreement with
the reference standard (combined QCA/SPECT-MPI) for the conventional side-by-
side analysis (Section 6.3.4), and the integrated analysis (Section 6.3.5), respectively.
Finally, we compare the performance of integrated analysis of fused CTA/SPECT-MPI
with the side-by-side analysis (Section 6.3.6).
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Table 6.2: Findings from CTA, SPECT-MPI and ICA for the 17 patients, and inter-observer agreement results (+:improvement,
=:same, -:worse) when performing fused interpretation with the SMARTVis system in comparison of side-by-side
interpretation.

Patient Sex Age
CTA findings SPECT-MPI findings QCA findings CTA SPECT-MPI Inter-obs

Agatston score ≥ 50% stenosis Reversible Fixed ≥ 20% stenosis suspected suspected (+,=,-)

1 M 46 60.6 - inferior NA no single =

2 M 55 9.9 - Anterior-Anteroseptal Inferior-Inferolateral - no double =
mid mid-apical

3 M 63 15.6 - Anterior + Anterolateral + NA no double =
Apex Inferior + Inferoseptal

4 M 70 1932.5 8 Inferior + Inferolateral apical 8(100%) single single =

5 M 53 0 6,14 Anteroseptal mid NA double double +
Inferolateral basal-mid

6 M 59 1676.9 3,10,12,13,14 Anterior Inferior + Inferoseptal NA triple triple -
Antero/Infero-lateral

7 M 65 315.4 6,13,16 Anterior basal-mid Inferior NA double triple +
Antero/Infero-lateral apical
Antero/Infero-septal basal

8 M 61 819.6 11 Anterior basal-mid 5(38%),6(46%), single double +
Inferior mid-apical 11(63%)

9 M 60 493.8 4,12,13,16 Antero/Infero-lateral apical NA double single =

10 F 81 NA 2,4,16,17 Anterior + Anteroseptal NA double single +

11 M 68 962.3 1,6,8,9 Anterolateral mid NA double single +

12 M 60 373.8 1,2,6,7,14 Inferior 1(52%) triple single +
5(26%), 7(41%)

12(38%), 14(58%)

13 M 73 2840.5 1,2,3,7,8,9,10,11,12 Inferior mid-apical NA triple single =

14 F 49 109.3 4,7,8,9,13 Anterior apical NA triple single -

15 M 56 4797.4 3,4,8,9,11,12,13 Anterolateral basal Inferior 3(53%), 12(51%), triple double =
13(70%)

16 M 59 NA 1,2,6,7,9,12,16 Inferior + Inferoseptal 1(100%) triple double +
Anterior + Anteroseptal 6(50%)

17 M 58 727.8 4,7,8,9,11,13,16 Antero/Infero-lateral Inferior + Inferoseptal 1(40%), 2(76%) triple double =
basal-mid 7(46%)

13(70%), 16(58%)
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6.3.1 SPECT-MPI findings

Ten of the patients showed a reversible perfusion defect (58%), twelve had a fixed
perfusion defect (70%), and five patients (30%) revealed a mixed perfusion defect.
Eight patients (47%) showed a perfusion defect in a single coronary territory, seven
(41%) in two of them, and two (12%) in all three of territories. The exact locations
of the perfusion defects are listed in Table 6.3.

6.3.2 CTA findings

Image quality was excellent in 12 patients (70%) and moderate in 5 patients (30%).
The median Agatston score was 494 (IQR 85-1319; range 0-4797); 4 patients (24%)
had a calcium score above 1000. In total, 263 segments were evaluated and significant
stenoses were present in 66 of them (25%). The remaining 197 segments (75%) were
normal or contained only non-significant stenoses (≤ 50%). Among all segments,
eighteen coronary segments (7%) were qualified as blurred and six segments (2%)
were severely calcified. Three patients did not show any signs of CAD. In two patients
single-vessel disease was suspected, in five double-vessel disease and in seven triple-
vessel disease. The calcium scores and significant stenosis locations are listed in
Table 6.3.

6.3.3 QCA findings

In seven of the seventeen patients (41%), a conventional ICA was performed within
45± 30 days after the CTA study. In these 7 patients, 15 (resp. 26) of the 100 vessel
segments had a stenosis of more than 50% (resp. 20%) on ICA. One patient did
not show any CAD, one patient had single-vessel disease, three double-vessel disease
and two triple-vessel disease. The artery segment presenting ≥ 20% stenosis and
the QCA values are listed in Table 6.3. Based on the QCA and SPECT-MPI findings,
revascularization was advised in segment(s) of ten coronary arteries.

6.3.4 Findings of side-by-side analysis

Detection of coronary lesions requiring revascularization - For the seven patients
in whom QCA was available, there was on average 81% agreement with regard to
the therapeutic decision between the observers and the QCA/SPECT-MPI reference
standard. Over the 4 (vessels) x 7 (patients) = 28 therapeutic decisions, the four
observers agreed in fourteen cases (50%) with the QCA/SPECT-MPI therapeutic
decision and three observer agreed in nine cases (32%). For the remaining five cases
(18%), there was no consensus. The vessel-based sensitivities of the four observers to
correctly refer for revascularization were 80%, 80%, 50% and 60% respectively; the
vessel-based specificities were 83%, 83%, 100% and 84% respectively.
Inter-observer agreement - Over all patients, the averaged inter-observer therapeutic
decision agreement was 74%. Over the 4 (vessels) x 17 (patients) = 68 therapeutic
decisions, the four observers agreed in 41 cases (60%) and one observer disagreed in
19 cases (28%). For the remaining 8 cases (12%), no consensus was reached.
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6.3.5 Findings of fused analysis

Detection of coronary lesions requiring revascularization - For the seven patients
in whom QCA was available, there was on average 91% agreement with regard to
the therapeutic decision between the observers and the QCA/SPECT-MPI reference
standard. Over the 4 (vessels) x 7 (patients) = 28 therapeutic decisions, the four
observers agreed in 20 cases (72%) with the QCA/SPECT-MPI therapeutic decision
and three observers agreed in 6 cases (21%). For the remaining two cases (7%), there
was no consensus. The vessel-based sensitivities of the four observers to correctly refer
for revascularization were 100%, 90%, 70% and 80% respectively; the vessel-based
specificities were 94%, 83%, 100% and 100% respectively.
Inter-observer agreement - Over all patients, the averaged inter-observer therapeutic
decision agreement was 84%. Over the 4 (vessels) x 17 (patients) = 68 therapeutic
decisions, the four observers agreed in 53 cases (78%) and one of the observer
disagreed in 8 cases (12%). For the remaining 7 cases (10%), no consensus could
be reached.

6.3.6 Comparison of fused and side-by-side analysis

Table 6.3: Diagnostic performance for the side-by-side and fused CTA/SPECT-MPI
analysis.

Side-by-Side Fused CTA/SPECT-MPI

Patients with ICA (N=7)
QCA/SPECT-MPI agreement 81% 91%
Inter-observer agreement 66% 82%
Sensitivity (4 observers) 50% 60% 80% 80% 70% 80% 100% 90%
Specificity (4 observers) 100% 94% 83% 83% 100% 100% 94% 83%

All patients (N=17)
Inter-observer agreement 74% 84%

Detection of coronary lesions requiring revascularization - By analyzing the
integrated SPECT-MPI/CTA information using the SMARTVis system, the averaged
therapeutic decision agreement improved in 4 cases (patients 08, 12, 15, 16) and
remained the same in the remaining three cases (patients 02, 04, 17). For all
observers, it resulted in an increase of their sensitivity and specificity to correctly
refer for revascularization.

For example, the QCA analysis of patient 08 (61 y.o. male) revealed a
borderline stenosis in the mid-LAD coronary segment (46%) and a significant
stenosis in the proximal LCX segment (63%). The SPECT-MPI reports indicated
two reversible perfusion defects located in the anterior basal-mid and inferior mid-
apical walls (suspected double-vessel disease). Consequently, the expert cardiologist
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recommended revascularizing both coronary artery segments. Also, the CTA report
indicated one significant stenosis in p-LCX segment, and only mild (20-50%) stenoses
in the LAD (suspected single-vessel disease). During the side-by-side analysis, only
one observer conceded that a lesion in the mid-LAD was causing the hemodynamically
significant perfusion defect in the anterior basal-mid wall, and two observers judged
that the proximal LCX lesion was significant and that it required revascularization.
During the integrated analysis, all four observers agreed that the perfusion defect
in the anterior basal-mid wall was caused by a lesion requiring revascularization in
mid-LAD, and three observers conceded that the lesion in proximal LCX was inducing
a hemodynamically significant perfusion defect in the inferior mid-apical wall. This
perfusion defect was first incorrectly assigned by one observer to a mild lesion in
RCA during the side-by-side analysis. Here, the SMARTVis system primarily assisted
the observers in their interpretation by indicating the presence of a 52% stenosis
in the mid-LAD segment and by showing the patient-specific coronary territories.
Figure 6.6 shows the stenoses detected on CTA and QCA, and Figure 6.7 presents
some visualization of the SMARTVis system.
Inter-observer agreement - The inter-observer therapeutic decision agreement
increased in eight of the cases (patients 05, 07, 08, 10, 11, 12, 15, 16), remained
the same in seven of the cases (patients 01, 02, 03, 04, 09, 13, 17), and decreased in
two cases (patients 06, 14). Over all patients, the inter-observer agreement rose from
74% during the side-by-side analysis to 84% during the integrated analysis using the
SMARTVis system; over the 7 patients who underwent ICA, it increased from 66%
to 82%, suggesting that increased observer agreement is also towards more correct
therapeutic decisions using the SMARTVis system.
Territory disagreement - The disagreement in interpretation between side-by-
side and fused analysis was the highest for the basal/mid inferior/infero-lateral
myocardial regions (7 patients), which may be supplied by either the RCA or the LCX.
Disagreement was also reported for the basal/mid antero-lateral myocardial region
(2 patients), to which either the LAD, the LCX or the IMB may supply blood. Last, a
small disagreement was noticed in the mid antero/infero-septal myocardial region (1
patient), supplied by either the LAD or the RCA.
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Figure 6.6: Example of patient 08 (61 y.o. male). The CTA report indicates only
mild (20-50%) stenoses in the LAD (a) and one significant stenosis in p-LCX segment
(suspected single-vessel disease) (b). The QCA analysis reveals a 46% stenosis in the
proximal LAD coronary segment (c) and a 63% stenosis in the proximal LCX segment
(d).
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Figure 6.7: Example of patient 08 (61 y.o. male). (a) Stress polar map: the coronary
vessel tree is color-coded with the automatically estimated degree of stenosis. (b)
Rest polar map: the coronary arteries are coded with the distance to the epicardium:
the more transparent the artery, the further it is from the epicardium. Patient-specific
perfusion territories are also projected: LAD in red, LCX in yellow, MO in green and
RCA in blue. (c)(d) 3D model of the heart and coronary artery tree extracted from
CTA fused with 3D stress polar map.
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Figure 6.8: Example of patient 07 (65 y.o. male). (a) Stress polar map: the coronary
vessel tree is color-coded with the automatically estimated degree of stenosis. (b)
Rest polar map: the coronary arteries are coded with the distance to the epicardium:
the more transparent the artery, the further it is from the epicardium. Patient-specific
perfusion territories are also projected: LAD in red, LCX in yellow, MO in green and
RCA in blue. (c)(d) 3D model of the heart and coronary artery tree extracted from
CTA fused with 3D stress polar map.



6.4. DISCUSSION 97
For example, for patient 07 (65 y.o. male), the CTA report indicated the presence

of a severe mixed stenosis in the p-LAD segment, a moderate mixed stenoses in the m-
LCX segments, and multiple mild stenoses in the three main vessels (suspected double-
vessel disease). The SPECT-MPI report indicated three reversible perfusion defects
located in the anterior basal-mid, antero/infero-lateral apical and antero/infero-
septal basal walls, as well as a fixed perfusion defect in the inferior wall (suspected
triple-vessel disease). During the side-by-side analysis, all four observers agreed on
the necessity to revascularize the stenosis in LAD, which causes the reversible anterior
basal-mid defect. However, no consensus was reached for the therapeutic decision
concerning the LCX and the IMB: two observers advised to perform revascularization,
while the two others recommended taking medication. During the integrated analysis,
the four observers further agreed to treat the IMB with only medication. Also, though
all the observers linked the perfusion defect in the antero/infero-lateral basal wall
to the lesions in the LCX, only one observer advised to perform revascularization of
the LCX. Figure 6.8 presents some visualizations of the SMARTVis system. Here, the
integrated analysis of using the SMARTVis system resulted in an increase of the inter-
observer therapeutic decision agreement.

6.4 Discussion

6.4.1 Additional diagnostic value of cardiac CTA and SPECT-MPI fused

analysis

The results of our case-study, performed with four experts at two medical centers
in seventeen patients, demonstrated that in several cases, the integrated analysis of
cardiac CTA and SPECT-MPI has a clinical benefit, in the sense that both the inter-
observer agreement increased and the therapy planning decisions were in better
agreement with the reference standard.

Specifically, we found the tool to be of additional value in the diagnosis of
patients who have perfusion defect(s) in fewer coronary territories than suspected
vessel disease on CTA, i.e. who have a perfusion defect in one coronary territory
and suspected double-/triple-vessel disease on CTA (diagnosis of patients 10, 11
and 12 improved; diagnosis of patients 09 and 13 remained identical), a perfusion
defect in two coronary territories and suspected double-/triple-vessel disease on CTA
(diagnostic of patients 05, 08, 15 and 16 improved). In such cases, the relation
between the coronary territories with a perfusion defect and its supplying coronary
arteries is uncertain, thus making the use of the patient-specific SMARTVis system
helpful.

The case study further revealed that the image fusion as implemented in the
SMARTVis system does not have additional diagnostic value for patients with 1)
no coronary stenoses (diagnosis of patients 01, 02 and 03 remained identical), 2)
suspected single-vessel disease on both CTA and SPECT-MPI (diagnosis of patient 04
remained identical), and 3) triple-vessel disease (diagnosis of patient 17 remained
identical; diagnosis of patient 06 got worse). In fact, if a patient has no significant
stenoses reported, but the SPECT-MPI study reveals the presence of perfusion
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defect(s), the observers consider that the perfusion defect(s) is/are not cause by
obstruction in the epicardial coronary arteries, but may be the result of micro-vascular
disease or of artifact. In case of suspected single-vessel disease, it is clear which
coronary is causing the perfusion defect, and, thus, integrating information in a
patient-specific way leads to the same diagnosis as during side-by-side analysis. Also,
patients with suspected triple-vessel disease do not benefit from such a combined
approach.

To summarize, integrated analysis of cardiac CTA and SPECT-MPI using the
SMARTVis system results in an additional diagnostic value primarily for patients with
angiographic CAD that exceeds myocardial hypoperfusion on SPECT-MPI.

6.4.2 Comparison to previous studies

Our work differs from previously published ones (Nakaura et al., 2005; Gaemperli
et al., 2007b,a, 2009; Slomka et al., 2009; Kaufmann, 2009; Santana et al., 2009;
Sato et al., 2010) primarily by the way the information from CTA and SPECT-
MPI is fused, and how the evaluation has been carried out. Previously, CTA
images were registered (i.e. aligned) with SPECT-MPI images to provide fused 3D
SPECT/CT images. We introduce a comprehensive visualization system to fuse multi-
modal imaging data, and provide fused representations in both 2D and 3D for the
convenience of the observer. Such an integration of cardiac CTA and SPECT-MPI
anatomical and functional information into a single coordinated visual analysis tool is
novel, maximizing the diagnostic complementarities of CTA and SPECT-MPI imaging
modalities.

The results of the presented work are consistent with the conclusions presented in
previously published work on fusion of cardiac CTA and SPECT-MPI for assessment of
CAD, where fused CTA/SPECT-MI interpretation appears to provide added diagnostic
information on the hemodynamically relevance of coronary artery lesions.

Fusion of cardiac anatomical and functional information for the assessment of
CAD has been introduced by (Nakaura et al., 2005). Based on four cases, the study
suggested that fused interpretation improves the relationship of relevant coronary
arteries and abnormal perfusion territory. Also, (Sato et al., 2010) demonstrated that,
based on a population of 130 patients, side-by-side combined interpretation of CTA
and SPECT-MPI provides added diagnostic value, as compared to stand-alone CTA
interpretation. Recently, in (Gaemperli et al., 2007b,a, 2009), the authors further
investigated the incremental diagnostic value of fused CTA/SPECT-MPI interpretation.
In (Gaemperli et al., 2007b), thirty-eight patients who underwent both CTA and
SPECT-MPI (twenty-five additionally underwent ICA) and presented with at least one
perfusion defect on SPECT-MPI were included in an evaluation study similar to ours
(i.e. side-by-side vs. fused). The authors demonstrated that fused analysis provides
added diagnostic information on pathophysiologic lesion severity not obtained with
side-by-side analysis. The evaluations were performed by a consensus of two
observers. In our work, four independent observers were involved in the evaluation,
which allowed us to also investigate the added diagnostic value of fused analysis
to reduce inter-observer variability in revascularization strategy and target vessel
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selection decisions. Also, (Gaemperli et al., 2009) demonstrated that fusion of CTA
and SPECT-MPI allows accurate detection of flow-limiting coronary stenoses (i.e.
significant stenoses inducing ischemia) and that it is thus a potential gatekeeper
for ICA and coronary revascularization. In our work, we provide additional insights
concerning which patients are more likely to benefit from integrated analysis of fused
CTA/SPECT-MPI.

6.4.3 Limitations and strengths of the study design

One limitation of our study is the modest population size. However, results were
consistent among observers and datasets. A strength of our study was the use of four
independent observers in the evaluation study.

Whether integrated analysis of fused CTA/SPECT-MPI using the SMARTVis system
is more time-efficient than side-by-side interpretation remains to be investigated.
The interpretation using the SMARTVis system took from 3 minutes to 15 minutes,
depending on the complexity of the case and on the observer. In the current study, the
observers only had a training session of a few minutes using one excluded patient to
get familiar with the SMARTVis system. A reliable investigation of the time-efficiency
would require a substantial longer time of use in clinical practice.

Over all, the observers were enthusiastic about the presented integrated
visualization tool and some were eager to use the SMARTVis system in clinical
practice.

Further investigation also remains to be done to determine which patients
should undergo such examination (increased imaging costs and radiation dose versus
patient’s benefits). We do not recommend all patients to undergo both CTA and
SPECT-MPI examination, but underline that if both tests are performed, integrated
analysis is to be preferred.

6.5 Conclusion

Integrated analysis of fused cardiac CTA and SPECT-MPI using the SMARTVis system
primarily results in additional diagnostic value for patients presenting coronary artery
disease in more vessels than the number of reported perfusion defects. The SMARTVis
comprehensive visualization system can be effectively used to assess disease status
in multi-vessel CAD patients, offering valuable new options for the diagnosis and
management of these patients.
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Abstract

Purpose Epicardial fat is suggested to promote coronary artery atherosclerosis. It is yet unclear
whether it is also associated with atherosclerosis in other vessels, and thereby represents a
marker of systemic vascular risk. Hence, we investigated the association of epicardial fat
volume with atherosclerosis in four major vessel beds in a large sample of community-dwelling
elderly.

Methods From the population-based Rotterdam Study, 2,524 middle-aged and elderly
participants underwent non-enhanced cardiac computed tomography (CT). We quantified
epicardial fat volume in milliliters (ml) using a fully automatic method. Moreover, we
quantified atherosclerotic calcification in the coronary arteries, aortic arch, extracranial and
intracranial internal carotid arteries. We investigated the relationship between epicardial fat
volume and atherosclerotic calcification volume in each vessel bed using linear regression
models, adjusting for age and sex. Additionally we adjusted for cardiovascular risk factors.

Results We found that epicardial fat volume was positively correlated with calcification
volume in all four vessel beds. Most prominent associations were found for coronary
artery calcification and extracranial carotid artery calcification [fully-adjusted difference
in standardized calcification volume per SD increase in epicardial fat volume: 0.10 (95%C.I.:
0.05; 0.15), and 0.12 (95%C.I. 0.07; 0.18), respectively].

Conclusions Epicardial fat is not only a marker of local, coronary atherosclerosis, but it
also associates with extracranial carotid artery atherosclerosis. On the other hand, it is not
related with the amount of atherosclerosis in the aortic arch or intracranial carotid arteries.
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7.1 Introduction

The amount of epicardial fat is related to cardiovascular disease (Iacobellis and
Bianco, 2011; Iacobellis and Willens, 2009; Mahabadi et al., 2013). Epicardial fat
is defined as the adipose tissue located between the outer wall of the myocardium
and the visceral layer of pericardium (Iacobellis, 2012; Dey et al., 2012). This
anatomically close relationship with the coronary arteries may directly explain
its association with cardiovascular disease. Indeed, several studies have shown
an association between larger amounts of epicardial fat and the presence of
coronary artery atherosclerosis (Iacobellis and Willens, 2009; Dey et al., 2012,
2010; Rosito et al., 2008; Bettencourt et al., 2011). Epicardial fat might directly
influence the formation of coronary artery atherosclerosis through local secretion
of pro-atherogenic factors, and might thereby contribute to clinical coronary events
(Iacobellis and Willens, 2009; Dey et al., 2012, 2010; Rosito et al., 2008; Bettencourt
et al., 2011). Despite this, it remains unclear whether the amount of epicardial fat
also exerts a systemic effect on the development of atherosclerosis located in other
vessel beds.

Conventional cardiovascular risk factors are associated with both the amount of
epicardial fat (Mahabadi et al., 2013; Rosito et al., 2008), and with the amount
of atherosclerosis across vessel beds (Allison et al., 2004; Lusis, 2000; Odink
et al., 2009). It is therefore important to investigate whether any association
between epicardial fat and atherosclerosis is present independent of conventional
cardiovascular risk factors. Disentangling the role of epicardial fat in the etiology
of atherosclerosis may eventually serve as a basis for developing therapeutic or
preventive strategies for atherosclerosis.

In this study, we investigated risk factors that influence the amount of epicardial
fat, and we set out to investigate the relationship of the epicardial fat volume with
atherosclerotic calcification, as proxy of atherosclerosis, in the coronary arteries,
aortic arch, extracranial carotid arteries and intracranial carotid arteries, in a large
sample of participants from the population-based Rotterdam Study.

7.2 Materials and methods

7.2.1 Settings

This study is based on the population-based Rotterdam Study (Hofman et al., 2011),
which is an ongoing cohort study that started in 1990, with follow-up every 3-4 years.
Over 96% of Rotterdam Study participants is of white descent. From 2003 until 2006,
all participants who completed a regular visit at the research center were invited
to undergo multi-detector computed tomography (MDCT) of the coronary arteries,
aortic arch, extracranial carotid arteries and intracranial carotid arteries. In total,
2,524 participants were scanned. The medical ethical committee of the Erasmus MC
approved the study. All participants gave informed consent.
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Table 7.1: Population characteristics. Values are mean (standard deviation) for
continuous variables, percentages for dichotomous variables. * Median (interquartile
range).

Variable Value

Sample size 2298
Women 52.8%

Age, years 69.4 (6.6)
Obesity 23.9%

BMI, kg/m2 27.7 (4.0)
Hypertention 73.4%

Systolic blood pressure, mmHg 146.7 (20.0)
Diastolic blood pressure, mmHg 80.4 (10.7)

Diabetes 10.9%
Serum glucose, mmol/l 5.7 (1.2)

Hypercholesterolemia 48.6%
Serum total cholesterol, mmol/l 5.7 (1.0)

Low HDL, < 1.0 mmol/l 10.7%
Serum HDL-cholestrol, mmol/l 1.4 (0.4)

Past and current smokers 67.4%
Epicardial fat volume *, ml 101.5 (80.0 – 129.8)

7.2.2 Assessment of epicardial fat and atherosclerosis

CT-acquisition - A 16-slice (n= 785) or 64-slice (n= 1,739) MDCT-scanner (Somatom
Sensation, Siemens, Forcheim, Germany) was used to perform non-enhanced CT-
scanning. Using a cardiac scan and a scan that reached from the aortic arch to the
intracranial vasculature (1 cm above the sella turcica), the following vessel beds were
scanned: the coronary arteries, the aortic arch, the extracranial carotid arteries, and
the intracranial carotid arteries. Detailed information regarding imaging parameters
of both scans is provided in the work of Odink et al (Odink et al., 2007).
Quantification of epicardial fat - The cardiac scan was used for the quantification
of epicardial fat (Figure 7.1). We used a fully automatic tool for quantification of
epicardial fat in millilitres (ml) which has been explained in Chapter 4 (Shahzad
et al., 2013). Briefly, the quantification method consists of two steps: 1) whole
heart segmentation, and 2) epicardial fat volume quantification. For whole heart
segmentation, we used a multi-atlas based segmentation approach. Eight manually
segmented contrast-enhanced cardiac CTA images (atlases) were registered (spatially
aligned) with every participant’s CT image. Next, the segmentations of these atlases
were mapped onto the subjects scan to obtain the final segmentation. The fat was
quantified by applying a threshold of -200 to -30 Hounsfield Units to the segmented
heart region (Yoshizumi et al., 1999). A connected-component analysis was applied to
all adipose tissue voxels using an 18-neighbourhood rule, in order to remove regions
smaller than 10 voxels (2.8 mm3) in size, which we considered to be noise. This
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automatic method showed to be as good as manual quantification (Shahzad et al.,
2013).
Quantification of atherosclerotic calcification - Dedicated commercially available
software (Syngo CalciumScoring, Siemens, Germany) was used to automatically
quantify atherosclerotic calcification in the coronary arteries, the aortic arch and
the extracranial internal carotid arteries (Odink et al., 2007). Calcification in the
intracranial internal carotid arteries was quantified using a semi-automated method
(Bos et al., 2012; de Weert et al., 2009). Calcification volumes were expressed in
cubic millimeters (mm3).

7.2.3 Assessment of cardiovascular risk factors

Information on cardiovascular risk factors was obtained during a home-interview and
a visit to the research center (Odink et al., 2009; Hofman et al., 2011). Height and
weight were measured and the body mass index (BMI) [weight (kg)/height2(m)]was
calculated. Systolic and diastolic blood pressures were measured twice at the right
arm using a random zero-sphygmomanometer. The mean of the two measurements
was used for the analyses. Fasting blood samples were obtained and serum total
cholesterol and high-density lipoprotein (HDL) cholesterol were measured using an
automatic enzymatic procedure (Hitachi analyzer, Roche Diagnostics). Glucose was
determined enzymatically by the Hexokinase method. Diabetes was defined as fasting
serum glucose levels ≥ 7.0 mmol/l and/or the use of anti-diabetic therapy (ADA,
2013). Participants were categorized based on smoking status into "past or current
smoker" or "never smoker". Finally, information on the use of blood pressure lowering
medication and lipid-lowering medication was assessed by interview.

7.2.4 Population for analysis

Due to image artefacts (n = 189) or segmentation errors (n = 37), 226 from the
2,524 examinations were not gradable for either epicardial fat volume or calcification
volume in one of the four vessel beds. Hence, the current study population consists
of 2,298 participants with complete data on epicardial fat volume and calcification
volume in each of the four vessel beds.

7.2.5 Statistical analysis

Due to the right skewness of the distribution of epicardial fat volume, this measure
was natural log-transformed [ln(epicardial fat volume in ml)]. Using linear regression
we investigated the association, both uni-variable and multi-variable, of BMI, systolic
and diastolic blood pressure, total cholesterol, HDL cholesterol, diabetes, smoking,
use of blood pressure lowering medication, and use of lipid-lowering medication with
epicardial fat volume.

Next, we assessed the association of epicardial fat volume with atherosclerotic
calcification volumes. Atherosclerotic calcification volumes had a highly skewed
distribution. Therefore we used natural log-transformed values and added 1.0 mm3
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(a) (b)

(c)

Figure 7.1: Different degrees of epicardial fat volume. This figure shows epicardial
fat (red) on approximately the same slice in three different study participants. The
epicardial fat volume decreases from left to right.
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to the non-transformed values in order to deal with participants with a calcium
score of zero [ln (Calcification volume in mm3 + 1 mm3)]. We assessed the
relationship between epicardial fat volume (per standard deviation increase) and the
atherosclerotic calcification volume at each location using linear regression. Model
1 was adjusted for age and sex. In model 2, we additionally adjusted for all
abovementioned cardiovascular risk factors.

IBM SPSS Statistics version 20 (International Business Machines Corporation,
Armonk, New York) was used for statistical analyses.

7.3 Results

Table 7.1 shows the characteristics of the study population. The mean age was 69.4 ±
6.6 years and 52.8% was female. The median epicardial fat volume in the population
was 101.5 ml (interquartile range: 80.0 – 129.8 ml).

The associations between conventional cardiovascular risk factors and epicardial
fat volume are shown in Table 7.2. We found that all cardiovascular risk factors were
significantly associated with larger epicardial fat volume in the age and sex-adjusted
analyses. Yet, in the analyses which included all cardiovascular risk factors, systolic
and diastolic blood pressures were no longer related to epicardial fat volume.

Figure 7.2 depicts the median calcification volumes for each vessel bed, per
quartile of epicardial fat volume. Calcification volumes in all vessel beds increased
over the quartiles. We found that a larger epicardial fat volume was associated with
larger volumes of coronary, aortic, extracranial and intracranial internal carotid artery
calcification (Table 7.3, model 1). After adjusting for cardiovascular risk factors,
this association remained present for coronary artery calcification and extracranial
carotid artery calcification. The differences in calcification volume per SD increase
in epicardial fat volume: 0.10 (95% confidence interval (C.I.): [0.05; 0.15]), and
0.12 (95% C.I.: [0.07; 0.18]), respectively. The relationship between epicardial fat
and aortic arch calcification and intracranial carotid artery calcification completely
diminished (Table 7.3, model 2).

7.4 Discussion

In this large population-based study among middle-aged and elderly community
dwelling persons, we demonstrated that, apart from systolic and diastolic blood
pressure, all other conventional cardiovascular risk factors are associated with larger
epicardial fat volume. Moreover, we found that a larger epicardial fat volume is
associated with a larger amount of atherosclerotic calcification in both the coronary
arteries and the extracranial carotid arteries.

Strengths of this study include the population-based setting, and the image-based
quantification of both epicardial fat and atherosclerosis. Although the majority of
previous studies performed measurements of epicardial fat using ultrasound, CT
is superior in detecting and quantifying the amount of epicardial fat accurately
(Mahabadi et al., 2013; Nichols et al., 2008). Moreover, we were the first to
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Table 7.2: Values represent differences in standardized calcification volumes [Ln(calcification volume + 1 mm3)] with 95%
confidence intervals in each vessel bed, per standard deviation (SD) increase in epicardial fat volume. Model 1: Adjusted for
age and sex. Model 2: Additionally adjusted for cardiovascular risk factors.

Picardial fat volume Coronary artery Aortic arch Extracranial carotid artery Intracranial carotid artery
calcification calcification calcification calcification

Model 1, per SD increase 0.15 (0.11;0.20) 0.11 (0.07;0.15) 0.14 (0.10;0.18) 0.07 (0.03;0.11)
Model 2, per SD increase 0.10 (0.05;0.15) 0.03 (-0.02;0.08) 0.13 (0.07;0.18) 0.01 (-0.04;0.07)
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Figure 7.2: Distribution of atherosclerotic calcification over the quartiles of epicardial
fat volume. Median calcification volumes are displayed per quartile of epicardial fat
volume, for each of the four vessel beds.

develop and apply a fully automatic method to quantify epicardial fat volume on
non-enhanced CT-scans (Shahzad et al., 2013). Several potential limitations of our
study should also be addressed. First is the definition of epicardial fat which is
used in the literature (Mahabadi et al., 2013; Dey et al., 2010; Rosito et al., 2008;
Ding et al., 2008). Especially pericardial fat and epicardial fat are interchangeably
used, which may hamper the comparison of results. In our study we applied the
definition as proposed by Iacobellis et al (Iacobellis, 2012). Second, we were not able
to measure the complete atherosclerotic plaque with non-enhanced CT. Nonetheless,
there is strong evidence from autopsy studies that CT-based calcification quantification
provides a sensitive and reliable marker of the total underlying atherosclerotic burden
(Rumberger et al., 1995; Sangiorgi et al., 1998).

In agreement with others, we found that most conventional cardiovascular risk
factors are associated with the amount of epicardial fat (Mahabadi et al., 2013; Dey
et al., 2012; Rosito et al., 2008). Also our finding that systolic and diastolic blood
pressure were not associated with epicardial fat volume has been shown before from
a population-based perspective (Mahabadi et al., 2013).

We found a strong association between the amount of epicardial fat and larger
volumes of coronary artery calcification, which was independent of conventional
cardiovascular risk factors. The relationship between epicardial fat volume and the
amount of coronary artery calcification has been demonstrated previously (Mahabadi
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Table 7.3: Cardiovascular risk factors and epicardial fat volume. Values represent
differences in standardized Ln(epicardial fat volume) with 95% confidence intervals
per cardiovascular risk factor. Model 1: Adjusted for age and sex. Model 2: Addition-
ally adjusted for obesity, hypertension, diabetes mellitus, hypercholesterolemia, low
HDL-cholesterol, and smoking status.

Differences in epicardial fat volume

Model 1 Model 2

Age 0.02 (0.01;0.02) 0.02 (0.01;0.02)
Sex -0.80 (-0.88;-0.73) -0.80 (-0.88;-0.73)
Obesity 0.87 (0.79;0.95) 0.78 (0.70;0.87)
Hypertension 0.38 (0.29;0.46) 0.22 (0.14;0.30)
Diabetes mellitus 0.46 (0.35;0.58) 0.20 (0.09;0.31)
Hypercholesterolemia 0.18 (0.10;0.25) 0.14 (0.07;0.21)
HDL < 1 mmol/l 0.32 (0.20;0.44) 0.17 (0.06;0.28)
Smoking (ever vs. never) 0.25 (0.17;0.34) 0.18 (0.10;0.26)

et al., 2013; Rosito et al., 2008; Ding et al., 2008), and has been postulated to be due
to the production of inflammatory factors by epicardial fat, directly influencing the
formation of atherosclerotic plaques in the coronary arteries (Mahabadi et al., 2013;
Baker et al., 2006; Hirata et al., 2011). Yet, we also found an association between
epicardial fat with atherosclerosis at other locations, namely in the extracranial
carotid arteries. This was interesting, even more so because this relationship also
remained present after adjusting for cardiovascular risk factors. Although data on this
subject are scarce, it was demonstrated that in HIV-infected persons, epicardial fat is
related to carotid artery atherosclerosis, as measured with carotid ultrasound (intima-
media thickness) (Iacobellis et al., 2007). This suggests that, apart from a local effect
on the formation of atherosclerosis, epicardial fat also exerts systemic influence on
the formation of atherosclerosis in other vessel beds. A possible mechanism could
be through systemic inflammation. In persons suffering from coronary artery disease,
higher serum levels of certain adipocytokines (e.g. resistin, adiponectin), as produced
by epicardial fat, were found (Baker et al., 2006; Reilly et al., 2005). Through these
increased levels of inflammatory factors epicardial fat possibly also influences the
development of atherosclerosis at other locations. It should also be acknowledged that
there may be other factors, e.g. genetic, that influence both the amount of epicardial
fat and atherosclerosis.

Contrary to the finding with extracranial carotid artery calcification, we did not
find an association of epicardial fat with aortic arch or intracranial carotid artery
calcification after adjustment for cardiovascular risk factors. In other words, the
initial relationship we found between epicardial fat and calcification in these two
vessels is completely explained by the cardiovascular risk factors. These differences
in associations between epicardial fat and atherosclerotic calcification across various
vessel beds may partly be explained by location-specific differences in the etiology
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of atherosclerosis (Bos et al., 2013). Although atherosclerosis occurs systemically,
correlations between atherosclerosis across different vessel beds are only moderate
(Allison et al., 2004; Odink et al., 2007; Bos et al., 2011). Specifically for the
associations with epicardial fat, it might be that certain vessels are more susceptible to
the changes induced by epicardial fat than other vessel beds, where different factors
might play a more important role. Another explanation might lay in the composition
of plaques. Plaques in the aortic arch and intracranial carotid arteries tend to be
more calcified and consist of less non-calcified plaque components than plaques in
the extracranial carotid artery and the coronary arteries. Interestingly, epicardial fat
is specifically suggested to be related to low-density non-calcified plaque (Dey et al.,
2012). Yet, longitudinal research is needed to further disentangle the complex role of
epicardial fat in the development of atherosclerosis in multiple locations.

7.5 Conclusion

In this population-based study we found that, apart from blood pressure, all
conventional cardiovascular risk factors are associated with a larger amount of
epicardial fat volume. Furthermore, we demonstrated that the amount of epicardial
fat is associated with coronary atherosclerosis, and that it is related to extracranial
carotid artery atherosclerosis. This suggests that epicardial fat not only locally
influences the formation of atherosclerosis, but that it also exerts a systemic effect
on atherosclerosis development.
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8.1 Summary

In this thesis work, we developed and evaluated techniques for automatic extraction of
quantitative imaging biomarkers for cardiovascular diseases (CVDs) from CT imaging
data. The biomarkers considered were coronary artery calcium, epicardial fat volume
and coronary stenosis grade. Also, the relationship between epicardial fat volume
and atherosclerotic calcifications was investigated. In addition to the CT based
assessment, the additional diagnostic value of integrating cardiac anatomical and
functional biomarkers obtained from multi-modal imaging techniques was studied.

8.1.1 Technical developments

In Chapter 3, we presented a method that automatically quantifies calcium scores.
Calcium scores are relevant for treatment planning and monitoring the progression
of coronary artery disease (CAD). The method we presented not only provides the
commonly used whole heart calcium score but also vessel specific calcium scores,
which provide local information on the distribution of the disease over the coronary
arteries.

The calcium scoring method consists of two steps: calcium object candidate
detection, followed by classification of these object into calcium and non-calcium
objects. The classification method is based on a pattern recognition approach. We
investigated 62 different features that could help us categorize the candidate objects.
One of the key features used in our method, that not only helped us narrow down
our search for true calcium objects, but also helped us label the detected calcium
object to the respective artery was the so-called ’Coronary Density Estimate’. The
development and evaluation of this feature was the subject of Chapter 2. Briefly, this
feature estimates the likeliness that an object is located in a certain coronary artery,
by computing a probability density function of coronary artery locations from a large
set of images where the coronary artery locations are known.

Detection of calcified objects was achieved with a sensitivity of 81.2% per calcified
object in data with a slice thickness of 1.5 mm and with a sensitivity of 86.6% per
calcified object in data with a slice thickness of 3.0 mm. A larger slice thickness results
in scans with lower amounts of noise, hence resulting in lower number of candidate
objects being detected. This is the reason why the sensitivity on the 3.0 mm scans
is slightly better than that on the 1.5 mm scans. The method made an average of
2.3 errors per patient on the data sets. The average R values for Agatston, mass, and
volume scores for each of the arteries (left circumflex coronary artery, right coronary
artery, and left main+ left anterior descending coronary arteries) were 0.93, 0.96, and
0.99, respectively, for the 1.5 mm data sets. Similarly, for 3.0 mm data sets, R values
were 0.94, 0.94, and 0.99, respectively. Risk category assignment was correct in 95%
and 89% of the data sets in the 1.5 mm and 3.0 mm scans. Though the sensitivity on
the 3.0 mm scans is higher than the 1.5 mm scans, the accuracy of correctly assigning
the risk category on the 3.o mm scans is a bit lower, this could be due to the fact
that the subjects lying at the border of calcium quantification intervals could easily
be misclassified to an adjacent category, it should also be noted that we have twice as
many 1.5 mm testing scans compared to the 3.0 mm testing scans.
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In Chapter 4, we presented an atlas-based segmentation method to quantify the

amount of fat that surrounds the coronary arteries and the heart. There is increasing
evidence that suggests that fatty tissue around the coronary arteries facilitates local
production of inflammatory factors which may directly contribute to the formation
of coronary atherosclerosis. However, in order to validate this hypothesis, evaluation
on a large number of clinical datasets needs to be performed. Such an investigation
would benefit greatly from a fully automatic method.

The method developed uses eight CTA scans as atlases, in which the pericardium
was manually delineated by an expert. In order to segment the pericardium on
the CT scan, the eight atlases were spatially registered to the subject scan. The
resulting transformations obtained from the registration were used to propagate the
pericardium segmentation from the atlas scans to the subject’s scan; a majority vote
was applied to fuse the segmentations of the eight atlases into a single segmentation.
Once the final segmentation was obtained, a threshold window of -200 to -30 HU was
applied to obtain the epicardial fat volume.

Automatic segmentation of the pericardium was achieved with a Dice similarity
index of 89.1 ± 2.6% with respect to the first observer and 89.2 ± 1.9% with respect
to the second observer. The correlation between the automatic method and the
manual observers with respect to the epicardial fat volume computed as the Pearson’s
correlation coefficient (R) was 0.91 (P< 0.001) for both observers. The method
performed as good as the manual observers and could thus potentially be used in
clinical settings.

In Chapter 5, we presented an automatic method to detect and quantify coronary
artery stenoses from CTA data. The reference standard for coronary stenosis
quantification is conventional coronary angiography (CCA) which is of projective
nature and invasive. CTA scans are now also being routinely obtained to assess CAD.
CTA has the advantage that it is a 3D imaging modality, and that it is noninvasive. In
addition it can provide information on the plaque composition.

Extraction of coronary arteries from CTA data is a crucial step for accurate
visualization, and pathology detection and quantification. The method developed
by us consists of four stages: centerline extraction, bifurcation detection, lumen
segmentation and finally detection and quantification of stenoses. In the first step the
coronary centerline is obtained using a two stage minimum cost path approach, which
is complemented with a calcium suppression step in order to avoid the centerline from
running into calcium lesions. In the next stage coronary bifurcations of the coronary
arteries are detected and the centerlines divided into segments. The following step
delineates the lumen for each of the coronary artery segments, using the coronary
centerline as initialization. In the final step the stenoses are detected and quantified
from the segmented lumen, using the measured radius and estimated healthy radius
of the artery.

Quantitative evaluation on 30 datasets of the publicly available coronary artery

stenosis detection and evaluation framework showed, for the detection, a sensitivity of
29% and a PPV of 24% as compared to QCA, and a sensitivity of 21% and a PPV of 23%
when compared to manual assessment on CTA. The stenosis degree was estimated
with an absolute average difference of 31%, root mean square difference of 39.3%
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when compared to QCA, and a weighted kappa value of 0.29 when compared to CTA.
A Dice of 68% and 65% was reported for lumen segmentation of healthy and diseased
vessel segments respectively.

The results thus show that once detected, automatic stenosis quantification on CTA
can be performed with an accuracy close to those obtained by the observes. However,
automatic discrimination between significant and non-significant lesions in CTA, as
compared to QCA, remains a challenge.

8.1.2 Clinical applications

In Chapter 6, we presented the SMARTVis system to integrate perfusion information
from SPECT-MPI with anatomical information obtained from CTA. The work presented
in Chapter 3 and Chapter 5 has been integrated into the SMARTVis system.
We investigated the additional diagnostic value of fused CTA/SPECT-MPI analysis
compared to side-by-side analysis in patients with suspected CAD. A clinical evaluation
was performed, involving four experts from two medical centers and 17 patients
suspected of having single-, double- or triple-vessel disease. It was shown that
the SMARTVis comprehensive visualization system can effectively be used to assess
disease status in multi-vessel CAD patients, and thus is a valuable tool for the diagnosis
and management of these patients.

In Chapter 7, we used the technology developed in Chapter 4 to investigate
the relationship between epicardial fat volumes with atherosclerosis in other vessels
and the association of epicardial fat with cardiovascular risk factors. The study was
performed on 2298 middle-aged subjects from the population-based Rotterdam Study.
The automatic epicardial fat quantification method proposed in Chapter 4 was used to
obtain the epicardial fat volumes. It was visually observed that the automatic method
failed only on 37 out of the 2298 subjects corresponding to a rate of 1.6%. The study
demonstrated that epicardial fat volume was related to coronary and extracranial
carotid artery calcium volume. There was also a strong association between larger
epicardial fat volumes and conventional cardiovascular risk factors.

8.2 General discussion

For better management of cardiovascular disease, it is of utmost importance to
categorize subjects into different risk groups. This categorization can be made based
on cardiovascular risk factors including the family history of the subject. Imaging
techniques play an increasing role in cardiovascular risk prediction. In this thesis we
set out to develop and evaluate automatic techniques for the extraction of quantitative
imaging biomarkers for coronary artery disease.

One of the important cardiovascular risk factor is the presence of calcium in the
arteries. In Chapter 3 we presented an automatic method that can compute the
amount of calcium scores for the whole heart as well as for each of the coronary
arteries from CT data. The system also categorizes patients into different risk groups.
This vessel specific calcium lesion information can be used for treatment planning and
assessing progression of CAD in follow up studies. The possibility to assign calcium to
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individual coronary arteries was possible owing to the introduction of the ’Coronary
Density Estimate’ in Chapter 2. Next to automatic calcium scoring per artery, as
presented in Chapter 3, this method could e.g. also be used in the application of
automatic centerline extraction by providing a ROI for the algorithm, reducing the
computational time and avoiding manual interactions.

A second imaging biomarker we considered, which is receiving increasing interest
in CAD, is epicardial fat volume. In Chapter 4, we present a method that can
accurately quantify the amount of epicardial fat volume. It was demonstrated that
the method performs as good as the manual observers, hence has great potential to
be used in daily clinical practice. In a clinical study presented in Chapter 7 on 2298
subjects it was demonstrated that indeed larger volumes of epicardial fat volumes
were related to larger volumes of calcified lesions in the various vessel beds. The
potential of this biomarker will need to be established in multiple larger studies.

The third imaging biomarker in CAD considered in this thesis is coronary artery
stenosis grade. Accurate detection and quantification of coronary stenoses is of great
importance, as this information is very important for the clinician in order to make
accurate treatment selection and planning. In Chapter 5 we investigated the ability
of detecting and quantifying coronary stenoses from CTA data. We demonstrated that
the vessel lumen can be segmented with a precision similar to the human observers,
but that it is still a challenge to be able to distinguish between significant and non-
significant lesions.

Quantitative imaging biomarkers in CAD may provide both anatomical and
functional information, and are often obtained from different imaging modalities.
An important subject with respect to treatment planning is therefore the ability
to combine information from different modalities in an integrated display. This
would help the clinicians in better linking morphological (anatomical) and functional
information. In Chapter 6 the SMARTVis system was introduced, where anatomical
information from CTA scans and functional information from SPECT-MPI were
integrated into one visualization system. The integrated visualization proposed in the
SMARTVis system enables a one-stop-shop visual exploration of cardiac anatomical
and functional data, to maximally exploit the complementary information of multiple
imaging modalities. It has been confirmed that such comprehensive visualizations
allow to effectively relate perfusion defects and coronary lesions, and that fused
integrated analysis leads to a more accurate diagnosis.

The challenge of extracting imaging biomarkers not only lies in the image
processing methodology developed, but also on the quality of the imaging data
that can be acquired. CT and CTA have greatly increased our capabilities to non-
invasively assess different aspects of CAD. However, it has also caused serious concern
with respect to the ionizing radiation patients are exposed to. Recently, there has
been a lot of emphasis on decreasing dose levels in CT examinations. Previous
generation of scanners could deliver effective radiation doses ranging between 4 mSv
to 30 mSv. With new developments in scanner detectors, acquisition protocols, and
reconstruction algorithms the effective radiation dose can now be reduced to as low
as 1 mSv for an entire heart scan. However, there is always a trade-off between the
noise level of the scan and the effective radiation dose. Care should be taken that
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the scan obtained with really low radiation dose is still be of diagnostic quality. Here
also, the role of automatic image processing will play an increasingly important role.
Not only to extract relevant quantitative imaging biomarkers from CT imaging data,
but also establish with what accuracy they can be assessed. For a number of relevant
cardiovascular quantitative imaging biomarkers, this thesis has provided the required
methodology for that purpose.
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For better management of cardiovascular disease, it is of utmost importance to

categorize the subjects into different risk groups. This categorization can be made
based on cardiovascular risk factors including the family history of the subject.
Imaging techniques play an increasing role in order to assess cardiovascular risk
factors. In this thesis we set out to develop and evaluate automatic techniques for
the extraction of quantitative imaging biomarkers for coronary artery disease (CAD).

One of the important cardiovascular risk factor is the presence of calcium in
the arteries. We presented an automatic method that can compute the amount of
calcium scores for the whole heart as well as for each of the coronary arteries from
CT data. The system also categorizes patients into different risk groups. This vessel
specific calcium lesion information can be used for treatment planning and assessing
progression of CAD in follow up studies. The possibility to assign calcium to individual
coronary arteries was possible owing to the ’Coronary Density Estimate’.

The second imaging biomarker is epicardial fat volume. We present a method that
can accurately quantify the amount of epicardial fat volume. It was demonstrated that
the method performs as good as the manual observers, hence has great potential to be
used in daily clinical practice. In a clinical study on 2298 subjects it was demonstrated
that indeed larger volumes of epicardial fat volumes were related to larger volumes of
calcified lesions in the various vessel beds. The potential of this biomarker will need
to be established in multiple larger studies.

The third imaging biomarker in CAD considered in this thesis is coronary artery
stenosis grade. Accurate detection and quantification of coronary stenoses is of great
importance, as this information is very important for the clinician in order to make
accurate treatment selection and planning. We investigated the ability of detecting
and quantifying coronary stenoses from CTA data. We demonstrated that the vessel
lumen can be segmented with a precision similar to the human observers, but that
it is still a challenge to be able to distinguish between significant and non-significant
lesions.

Quantitative imaging biomarkers in CAD may provide both anatomical and
functional information, and are often obtained from different imaging modalities.
An important subject with respect to treatment planning is therefore the ability
to combine information from different modalities in an integrated display. The
SMARTVis system was introduced to fuse anatomical information from CTA scans
and functional information from SPECT-MPI into one display. The integrated
visualization proposed in the SMARTVis system enables a one-stop-shop visual
exploration of cardiac anatomical and functional data, to maximally exploit the
complementary information of multiple imaging modalities. It has been confirmed
that such comprehensive visualizations allow to effectively relate perfusion defects
and coronary lesions, and that fused integrated analysis leads to a more accurate
diagnosis.

Automatic image processing plays an increasingly important role. Not only to
extract relevant quantitative imaging biomarkers from CT imaging data, but also
establish with what accuracy they can be assessed. For a number of relevant
cardiovascular quantitative imaging biomarkers, this thesis has provided the required
methodology.
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Voor beter behandeling van cardiovasculaire aandoeningen is het belangrijk om de

patiënten in te delen in verschillende risicogroepen. Deze verdeling wordt gebaseerd
op risicofactoren voor hart- en vaatziekten, inclusief de familiegeschiedenis van de
patiënt. Beeldvormende technieken spelen een steeds grotere rol bij het bepalen van
deze risicofactoren. In dit proefschrift ontwikkelen en evalueren we automatische
technieken voor het bepalen van kwantitatieve biomarkers uit beelden voor ziekte
van de kransslagaders (KSZ).

Een van de belangrijkste biomarkers voor hart- en vaatziekte is de aanwezigheid
van calcium in de vaten. Wij hebben een automatische methode ontwikkeld om
de hoeveelheid calcium voor het hele hart en voor elk van de kransslagaders te
berekenen op basis van een CTA afbeelding. Deze informatie kan worden gebruikt
voor de behandeling, en ook voor voortgangsbeoordeling van KSZ. Om de hoeveelheid
calcium voor individuele kransslagaders te bepalen ontwikkelden we de ’Coronary
Density Estimate’.

De tweede biomarker is het vetvolume rondom het hart. Wij presenteren een
methode om dit nauwkeurig te meten. Gebleken is dat deze methode net zo goed
werkt als bestaande methodes, en dus een groot potentieel heeft om te worden
gebruikt in de dagelijkse klinische praktijk. Bij een klinische studie op 2298 patiënten
werd aangetoond dat een grotere hoeveelheid vet rondom het hart inderdaad
verband hield met grotere volumes van calcium in de verschillende vaatbedden.
De hoeveelheid vet kan dus gezien worden als een onafhankelijke biomarker. Het
belang van deze biomarker zal moeten worden vastgesteld in meerdere grote studies.
De derde biomarker voor KSZ is de mate van vernauwing van de kransslagader.
Nauwkeurige detectie en kwantificering van vernauwing in kransslagaders is van
groot belang, aangezien deze informatie noodzakelijk is voor een arts om de juiste
behandeling te kunnen kiezen. We onderzochten de mogelijkheid tot het opsporen en
kwantificeren van vernauw ingingen in kransslagaders in CTA beelden. We toonden
aan dat het lumen van het vat met onze methode net zo goed kan worden bepaald
als door menselijke waarnemers, maar dat het nog een uitdaging is om onderscheid
te maken tussen belangrijke en onbelangrijke vernauwingen.

Kwantitatieve biomarkers uit beelden in KSZ kunnen zowel anatomische en
functionele informatie verschaffen, en vaak van verschillende beeldvormende
modaliteiten worden verkregen. De mogelijkheid om informatie van verschillende
modaliteiten in een geïntegreerd display te combineren is daarom belangrijk voor
de behandeling. Het SMARTVis systeem werd ontwikkeld om een geÃŕntegreerde
visualisatie van anatomische informatie uit CTA beelden en functionele informatie uit
SPECT-MPI beelden mogelijk te maken, om zo het maximale te halen uit informatie
van meerdere beeldvormende modaliteiten. Het is gebleken dat dergelijke uitgebreide
visualisaties effectief tot een meer accurate diagnose kunnen leiden.

De automatische beeldverwerking speelt een steeds belangrijkere rol. Dit
proefschrift heeft de vereiste methodologie verstrekt om een aantal relevante
biomarkers voor hart- en vaatziekten uit beelden te kunnen bepalen.
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