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 A B S T R A C T

This study presents a shaped reset feedback control strategy to enhance the performance of precision motion 
systems. The approach utilizes a phase-lead compensator as a shaping filter to tune the phase of reset instants, 
thereby shaping the nonlinearity in the first-order reset control. The design achieves either an increased phase 
margin while maintaining gain properties or improved gain without sacrificing phase margin, compared to 
reset control without the shaping filter. Then, frequency-domain design procedures are provided for both 
Clegg Integrator (CI)-based and First-Order Reset Element (FORE)-based reset control systems. Finally, the 
effectiveness of the proposed strategy is demonstrated through two experimental case studies on a precision 
motion stage. In the first case, the shaped reset control leverages phase-lead benefits to achieve zero overshoot 
in the transient response. In the second case, the shaped reset control strategy enhances the gain advantages of 
the previous reset element, resulting in improved steady-state performance, including better tracking precision 
and disturbance rejection, while reducing overshoot for an improved transient response.
1. Introduction

This study focuses on developing reset feedback control strate-
gies to enhance the performance of precision positioning systems. 
High-precision industries, such as semiconductor manufacturing and 
robotics, demand systems capable of delivering accurate positioning, 
effective disturbance and noise rejection, fast response times, stability, 
and robustness (Schmidt et al., 2020). To address these requirements, 
effective control strategies are crucial.

Linear feedback control, particularly the classical Proportional–
Integral–Derivative (PID) controller, remains widely used due to its 
simplicity and effectiveness (Han, 2009). To meet the demands of 
industrial precision motion control, the loop-shaping technique is com-
monly employed in linear control design. This technique focuses on 
maintaining high gain at low frequencies to ensure effective low-
frequency reference tracking and disturbance rejection (Fuller, 1976). 
At the same time, low gain at high frequencies is maintained to re-
duce sensitivity to high-frequency sensor noise and external distur-
bances (Schmidt et al., 2020). Additionally, achieving an appropriate 
phase margin around the system’s bandwidth is crucial for ensuring 
stability and a desired transient response (Chang & Han, 1990), thereby 
facilitating reliable and smooth operation.

However, linear controllers face fundamental frequency-domain 
constraints, such as the waterbed effect and the Bode gain-phase trade-
off (Chen et al., 2019). These limitations restrict their ability to meet 
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the increasingly stringent performance demands of precision motion 
systems (Saikumar et al., 2019). Consequently, advanced control strate-
gies are needed to overcome these trade-offs and achieve superior 
performance, addressing the evolving demands of precision motion 
systems.

Nonlinear control strategies, specifically reset feedback control, 
have emerged as a promising alternative (Banos & Barreiro, 2012). 
Reset control has been applied across diverse industries, including hard-
disk-drive systems (Guo et al., 2009, 2010), wafer stages (Hazeleger 
et al., 2016; Heertjes et al., 2016), undamped second-order plants with 
time delays (Banos & Vidal, 2007), minimum-phase relative degree 
one plants (Zhao et al., 2019), chemical process control (Banos & 
Barreiro, 2012; Carrasco & Baños, 2011), and mechatronic systems 
used in this study (Karbasizadeh & HosseinNia, 2022b; Saikumar et al., 
2019). The concept of reset control originated with the Clegg Integra-
tor (CI) in 1958, which resets the integrator’s output whenever the 
input crosses zero. Sinusoidal-Input Describing Function (SIDF) analysis 
demonstrates that the CI offers a 52◦ phase lead compared to a linear 
integrator while maintaining its gain properties (Clegg, 1958; Guo 
et al., 2009). Over time, other reset elements have been introduced 
to enhance system performance, such as the First-order Reset Element 
(FORE), Second-order Reset Element (SORE), reset elements with reset 
bands, and Fractional-order Reset Elements (FrORE), and Constant in 
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Gain Lead in Phase (CgLp) (Baños et al., 2011; Hazeleger et al., 2016; 
Horowitz & Rosenbaum, 1975; Krishnan & Horowitz, 1974; Saikumar 
& HosseinNia, 2017; Saikumar et al., 2019; Weise et al., 2019, 2020).

This study focuses on first-order reset controllers, including CI- and 
FORE-based reset elements such as PI+CI control systems (Baños & 
Vidal, 2007), reset PID controllers (Bisoffi et al., 2020; HosseinNia 
et al., 2013), and CgLp controllers. Leveraging their gain and phase 
advantages, first-order reset controllers have been extensively studied 
in the literature to enhance transient performance — by reducing over-
shoot and settling time—and steady-state performance — by improving 
tracking accuracy and disturbance rejection, particularly in precision 
motion systems (Beerens et al., 2019; Bisoffi et al., 2020; Chen et al., 
2019; Heertjes et al., 2016; Zhao et al., 2019; Zheng et al., 2000).

Motivated by the performance of first-order reset controllers, this 
study aims to further enhance their phase and gain characteristics. 
Reset control introduces both first-order and high-order harmonics in 
the frequency domain, and by adjusting reset instants, these harmonics’ 
characteristics can be tailored to improve overall system performance. 
In closed-loop reset feedback systems, the feedback error signal has 
traditionally been used as the reset-triggered signal that trigger reset 
actions. Recent studies have explored alternative reset-triggered signals 
to tune system performance further. For instance, research in Karba-
sizadeh et al. (2022) and Karbasizadeh and HosseinNia (2022a) devel-
oped strategies to modify reset actions to reduce high-order harmonics. 
However, these techniques focus on reducing high-order harmonics 
within specific frequency ranges, at the expense of sacrificing the phase 
and gain characteristics of both first-order and high-order harmonics 
in other frequency ranges. These limitations restrict the applicability 
of these methods. In contrast, this work contributes by optimizing the 
gain and phase of first-order harmonics while preserving the properties 
of high-order harmonics, thereby improving system performance. The 
main contributions are as follows:

• First, a linear time-invariant (LTI) phase lead component is pro-
posed as a shaping filter to tune the phase of reset instants, termed 
shaped reset control. This approach improves the phase-gain mar-
gin of the first-order harmonic performance while maintaining 
similar high-order harmonic characteristics compared to previous 
reset control strategies. Leveraging the enhanced phase-gain mar-
gin, it improves phase lead, resulting in better transient response, 
or it can be designed to optimize gain properties, leading to 
superior steady-state performance.

• Then, frequency-domain analysis and design procedures are pro-
vided for shaped CI- and FORE-based reset elements to achieve 
phase lead and gain improvements over previous reset control 
systems.

• Finally, two case studies on a precision motion stage experimen-
tally validate the effectiveness of the shaped reset control strat-
egy. In the first case, the shaped reset PID system introduces phase 
lead while retaining similar gain properties compared to the reset 
PID system. This phase lead benefit results in zero-overshoot 
transient performance, outperforming both the linear PID and 
reset PID systems. In the second case, the shaped CgLp-PID system 
is designed to preserve phase margin and high-frequency gain 
while achieving higher gain at low frequencies and increased 
bandwidth. These gain enhancements improve tracking precision 
and disturbance suppression compared to the CgLp-PID and linear 
PID systems.

The remainder of the paper is organized into four sections. Sec-
tion 2 presents an overview of reset control, covering its definition, 
stability and convergence conditions, the reset elements employed 
in this study, and the frequency-domain design objectives for reset 
control in precision motion systems. Section 3 presents the analysis 
and design procedure of the shaped reset control, highlighting its 
frequency-domain benefits in terms of phase lead and gain improve-
ments. Section 4 details experimental results conducted on a precision 
2 
Fig. 1. Block diagram of the closed-loop reset feedback control system, where the blue 
lines represent the reset action.  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

motion stage, validating the effectiveness of the shaped reset control 
systems compared with linear and reset control systems. Finally, Sec-
tion 5 summarizes the main findings and offers suggestions for future 
research directions.

2. Preliminaries

2.1. Definition of the reset control system

The reset controller, denoted by , is a time-invariant hybrid sys-
tem (Banos & Barreiro, 2012). Its state–space representation, with an 
input signal 𝑒(𝑡), an output signal 𝑣(𝑡), and a state vector 𝑥𝑟(𝑡) ∈ R𝑛𝑐×1, 
is defined as follows: 

 =

⎧

⎪

⎨

⎪

⎩

�̇�𝑟(𝑡) = 𝐴𝑅𝑥𝑟(𝑡) + 𝐵𝑅𝑒(𝑡), 𝑡 ∉ 𝐽 ,
𝑥𝑟(𝑡+) = 𝐴𝜌𝑥𝑟(𝑡), 𝑡 ∈ 𝐽 ,
𝑣(𝑡) = 𝐶𝑅𝑥𝑟(𝑡) +𝐷𝑅𝑒(𝑡).

(1)

The reset actions of  in (1) are triggered by the zero-crossings of a 
reset-triggered signal 𝑒𝑠(𝑡). Consequently, the jump set is defined as 
𝐽 ∶= {𝑡𝑖 ∣ 𝑒𝑠(𝑡𝑖) = 0, 𝑖 ∈ Z+}, representing an unbounded, monotonically 
increasing time sequence. For any 𝑖 ∈ Z+, it holds that 𝑡𝑖 < 𝑡𝑖+1 and 
lim𝑖→∞ 𝑡𝑖 → +∞. When 𝑡 ∈ 𝐽 , the jump map of  is determined by the 
matrix 𝐴𝜌, given by 

𝐴𝜌 =
[

𝛾
𝐼𝑛𝑐−1

]

,  where 𝛾 ∈ (−1, 1) ∈ R. (2)

When 𝑡 ∉ 𝐽 , the flow dynamics of  are defined by the matrices 
𝐴𝑅 ∈ R𝑛𝑐×𝑛𝑐 , 𝐵𝑅 ∈ R𝑛𝑐×1, 𝐶𝑅 ∈ R1×𝑛𝑐 , and 𝐷𝑅 ∈ R1×1. These matrices 
characterize the Base-Linear Controller (BLC) 𝑏𝑙, given by: 
𝑏𝑙(𝜔) = 𝐶𝑅(𝑗𝜔𝐼 − 𝐴𝑅)−1𝐵𝑅 +𝐷𝑅, 𝑗 =

√

−1, (3)

where 𝜔 ∈ R+ [rad/s] represents the angular frequency.
Fig.  1 depicts the block diagram of a closed-loop reset feedback 

control system used in this study. This system comprises a reset con-
troller  defined in (1), a LTI controller 𝛼 , and the plant  . The LTI 
system 𝑠 (where ∠𝑠(𝜔) ∈ (−𝜋, 𝜋]) is referred to as the “ shaping filter” 
used to shape the reset actions. Signals 𝑟, 𝑒, 𝑒𝑠, 𝑣, 𝑢, 𝑑, 𝑛, and 𝑦 denote 
the reference, error, reset triggered, reset output, control input, process 
disturbance, sensor noise, and system output signals, respectively.

2.2. Stability and convergence conditions for reset systems

This study focuses on the design of reset control system to en-
hance system performance. While the stability and convergence of reset 
systems are not the primary focus, they are essential for the frequency-
domain analysis and practical application of such systems. Therefore, 
the following two assumptions, based on previous literature, outline 
the necessary conditions to ensure stability and convergence of reset 
control.

If both 𝛥𝑖 = 𝑡𝑖+1 − 𝑡𝑖 = 𝛿 is a constant and 𝐴𝜌 ≡ 𝑀 is a constant 
matrix, then the reset controller  (1) under an input 𝑒(𝑡) = |𝐸| sin(𝜔𝑡+
∠𝐸), where |𝐸| and ∠𝐸 denote the magnitude and phase of the signal 
𝑒(𝑡) respectively, exhibits a globally asymptotically stable 2𝜋∕𝜔-periodic 
solution and converges globally if and only if (Zheng et al., 2007) 
|𝜆(𝑀𝑒𝐴𝑅𝛿)| < 1, ∀𝛿 ∈ R+, (4)
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where 𝜆(⋅) denotes the eigenvalue of (⋅).
To ensure the existence of a periodic stable solution for sinusoidal-

input reset systems, and thereby enable the sinusoidal-input frequency 
response analysis of the reset system, the following assumption is 
introduced: 

Assumption 1.  The reset system controller  satisfies the condition 
in (4). The LTI systems 𝛼 and 𝑠 are Hurwitz. 

Additionally, to ensure the stability and convergence of the closed-
loop reset system depicted in Fig.  1, Assumption  2 is introduced: 

Assumption 2.  The closed-loop reset control system is asymptotically 
stable in the absence of inputs, bounded-input bounded-output stable, 
and exponentially convergent. The reset controller 𝑟 in (1) has zero 
initial conditions, i.e., 𝑥𝑐 (0) = 0. Furthermore, there exist infinitely 
many reset instants 𝑡𝑖 such that lim𝑖→∞ 𝑡𝑖 = ∞, and the system does 
not exhibit Zeno behavior.

Note that the detailed stability and convergence conditions for reset 
control systems are beyond the scope of this paper, and they have 
been extensively studied in the literature, including the 𝐻𝛽 condi-
tion discussed in Beker et al. (2004); Guo et al. (2015) and other 
criteria presented in Dastjerdi et al. (2022). Furthermore, in prac-
tice, Assumption  2 can be satisfied by employing appropriate design 
considerations (Banos & Barreiro, 2012; Saikumar et al., 2021).

2.3. Reset elements used in this study

This study focuses on the first-order reset elements, including the 
CI- and FORE-based reset elements, which are widely applied in the 
literature and have proven effective for enhancing system performance. 
The state–space matrices for these reset elements are defined as follows.

2.3.1. Generalized Clegg Integrator (CI)
The generalized Clegg Integrator (CI) is characterized by the follow-

ing matrices: 

𝐴𝑅 = 0, 𝐵𝑅 = 1, 𝐶𝑅 = 1, 𝐷𝑅 = 0, 𝐴𝜌 = 𝛾 ∈ (−1, 1). (5)

When 𝛾 = 0, Eq. (5) characterizes the CI (Clegg, 1958).

2.3.2. First-Order Reset Element (FORE)
The FORE is designed as a Low-Pass Filter (LPF) with a reset 

mechanism, whose state–space matrices are defined as: 
𝐴𝑅 = −𝜔𝑟, 𝐵𝑅 = 𝜔𝑟, 𝐶𝑅 = 1, 𝐷𝑅 = 0,

𝐴𝜌 = 𝛾 ∈ (−1, 1), where 𝜔𝑟 ∈ R+.
(6)

2.3.3. Generalized FORE
In this study, since both the generalized CI in (5) and the FORE in 

(6) are first-order reset elements, we define a generalized FORE that 
collectively describes these elements, with its matrices expressed as: 
𝐴𝑅 = −𝜔𝛼 , 𝐵𝑅 = 𝜔𝛽 , 𝐶𝑅 = 1, 𝐷𝑅 = 0,

𝐴𝜌 = 𝛾 ∈ (−1, 1),where 𝜔𝛼 ≥ 0 ∈ R, 𝜔𝛽 ∈ R+.
(7)

In (7), a system with 𝜔𝛼 = 0 and 𝜔𝛽 = 1 corresponds to the generalized 
CI in (5), while a system with 𝜔𝛼 = 𝜔𝛽 > 0 corresponds to the FORE in 
(6).

This study aims to design the shaping filter 𝑠 to enhance the 
performance of generalized FORE (7)-based reset systems, guided by 
the frequency-domain objectives outlined in the following section.
3 
2.4. Frequency-domain design objective for generalized FORE

In linear systems, the SIDF is commonly employed for analyzing 
and designing controllers in the frequency domain to meet time-domain 
performance requirements.

Similarly, for nonlinear systems, where the output contains multi-
ple harmonics, the Higher-Order Sinusoidal Input Describing Function 
(HOSIDF) is used to perform frequency response analysis (Nuij et al., 
2006).

Consider a generalized FORE  as defined by (1) and (7), satisfying 
the condition in (4), with an input signal 𝑒(𝑡) = |𝐸| sin(𝜔𝑡) and a reset-
triggered signal 𝑒𝑠(𝑡) = |𝐸|⋅|𝑠(𝜔)| sin(𝜔𝑡+∠𝐸+∠𝑠(𝜔)), where ∠𝑠(𝜔) ∈
(−𝜋, 𝜋]. The HOSIDF for , denoted as 𝑛(𝜔), is given by (Zhang & 
HosseinNia, 2024): 

𝑛(𝜔) =
⎧

⎪

⎨

⎪

⎩

(𝛹 (𝜔) + 1) ⋅ 𝜔𝛽∕(𝜔𝛼 + 𝑗𝜔),  for 𝑛 = 1,
𝛹 (𝜔) ⋅ 𝜔𝛽∕(𝜔𝛼 + 𝑗𝑛𝜔) ⋅ 𝑒𝑗(𝑛−1)∠𝑠(𝜔),  for odd 𝑛 > 1,
0,  for even 𝑛 ≥ 2,

(8)

where 
𝛬(𝜔) = 𝜔2 + 𝜔2

𝛼 ,

𝛩(𝜔) = 𝑒−𝜋𝜔𝛼∕𝜔,

𝛹 (𝜔) = 2𝑗𝜔𝛺(𝜔)𝛼(𝜔)∕(𝜋𝛬(𝜔)),

𝛺(𝜔) = (1 − 𝛾) ⋅ (1 + 𝛩(𝜔))∕(1 + 𝛾𝛩(𝜔)),

𝛼(𝜔) = 𝑒𝑗∠𝑠(𝜔)[𝜔 cos(∠𝑠(𝜔)) + 𝜔𝛼 sin(∠𝑠(𝜔))].

(9)

From (8), the 𝑛th transfer function of the open-loop reset system shown 
in Fig.  1, which satisfies Assumption  1, is defined as follows: 
𝑛(𝜔) = 𝑛(𝜔)𝛼(𝑛𝜔)(𝑛𝜔). (10)

The bandwidth frequency 𝜔𝑐 ∈ R+ of a reset control system is defined 
as the frequency at which the magnitude of the first-order harmonic 
open-loop transfer function 1(𝜔), as given in (10), reaches 0 dB, 
mathematically expressed as: 
1(𝜔𝑐 ) = 0dB. (11)

In this study, the proposed shaped reset control element is designed 
to enhance the performance of precision motion systems by satisfying 
the first-order harmonic 1(𝜔) requirements specified in Remark  1, 
while preserving similar high-order harmonics 𝑛(𝜔) for 𝑛 > 1. 

Remark 1.  Inspired by the loop-shaping technique in linear precision 
motion control, the design of the first-order harmonic 1(𝜔) in (10) for 
open-loop reset feedback control systems aims to achieve the following 
key objectives:

(i) Ensuring a phase margin of ∠1(𝜔𝑐 ) + 180◦ at the bandwidth 
frequency 𝜔𝑐 defined in (11), to guarantee system stability and optimize 
transient performance.

(ii) Maintaining a high gain |1(𝜔)| at frequencies where 𝜔 < 𝜔𝑐
to ensure low-frequency reference tracking precision and disturbance 
rejection.

(iii) Achieving low gain |1(𝜔)| at frequencies where 𝜔 > 𝜔𝑐 to 
suppress high-frequency noise and improve robustness.

3. Frequency-domain analysis and design of the shaped reset feed-
back control system

In this section, we first present the phase properties of the gener-
alized FORE derived from its HOSIDF, as detailed in Remarks  2 and
3. Subsequently, Lemmas  1 and 2 outline the conditions necessary to 
enhance the phase margin of the generalized FORE while maintaining 
similar gain properties. To fulfill these conditions, Theorems  1 and 2 
establish the requirements for designing the shaping filter 𝑠 for CI and 
FORE elements. Finally, design procedures are provided for the shaped 
generalized FORE to improve system performance.
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3.1. Frequency-domain analysis of shaping filters to achieve phase lead in 
generalized FROE

From the HOSIDF expressions for the generalized FORE in (8) 
and (9), two key properties of 𝑛(𝜔) are identified. First, Remark  2 
highlights the impact of the shaping filter 𝑠(𝜔) on the HOSIDF 𝑛(𝜔). 

Remark 2.  The phase of the shaping filter, ∠𝑠(𝜔), and the HOSIDF of 
the generalized FORE, 𝑛(𝜔), are related by 𝑛(∠𝑠(𝜔)) = 𝑛(∠𝑠(𝜔) +
𝑘𝜋), where 𝑘 ∈ Z. Furthermore, the magnitude of the shaping filter, 
|𝑠(𝜔)|, has no effect on the HOSIDF.

The following Remark  3 derives the phase of the first-order har-
monic, ∠1(𝜔), at the bandwidth frequency 𝜔𝑐 in the generalized FORE. 

Remark 3.  From (8) and (9), the phase of the first-order harmonic 
1(𝜔) at the bandwidth frequency 𝜔𝑐 is expressed as: 

∠1(𝜔𝑐 ) =

{

𝜙𝜆(𝜔𝑐 ),  for 𝜔𝛼 = 0,
𝜙𝛼(𝜔𝑐 ) − arctan(𝜔𝑐∕𝜔𝛼),  for 𝜔𝛼 > 0.

(12)

where 
𝜅𝜁 (𝜔𝑐 ) = 𝜔𝑐 ⋅𝛺(𝜔𝑐 )∕(𝜋 ⋅ 𝛬(𝜔𝑐 )),

𝜙𝛼(𝜔𝑐 ) = arctan

(

1
(𝜅𝛾 (𝜔𝑐 ) ⋅ 𝜅𝜁 (𝜔𝑐 ))−1 − tan(∠𝑠(𝜔𝑐 ))

)

,

𝜙𝜆(𝜔𝑐 ) = arctan
(

sin(2∠𝑠(𝜔𝑐 )) − 𝜋(1 + 𝛾)∕(2(1 − 𝛾))
cos(2∠𝑠(𝜔𝑐 )) + 1

)

,

𝜅𝛾 (𝜔𝑐 ) = 𝜔𝑐 ⋅ cos(2∠𝑠(𝜔𝑐 )) + 𝜔𝛼 ⋅ sin(2∠𝑠(𝜔𝑐 )) + 𝜔𝑐 .

(13)

Functions 𝛬(𝜔) and 𝛺(𝜔) are defined in (9).
The performance of the generalized FORE is mainly influenced by 

three main parameters within the HOSIDF 𝑛(𝜔) as defined in (8), 
including: (1) the phase of the first-order harmonic at the bandwidth 
frequency 𝜔𝑐 : ∠1(𝜔𝑐 ) given in (12), (2) the magnitude of the first-order 
harmonic: |1(𝜔)|, and (3) the magnitude of the high-order harmonics: 
|𝑛(𝜔)|, for 𝑛 > 1.

In this study, the design of the shaping filter 𝑠 aims to provide 
a phase lead to the first-order harmonic at the bandwidth frequency, 
∠1(𝜔𝑐 ) as defined in (12), while preserving similar gain characteristics 
|𝑛(𝜔)| compared to the system without the shaping filter (i.e., 𝑠 = 1). 
To achieve this, Lemma  1 specifies the necessary conditions for the 
shaping filter to effectively provide the phase lead advantage. 

Lemma 1.  The phase of the first-order harmonic in the generalized FORE 
at the bandwidth frequency 𝜔𝑐 , represented as ∠1(𝜔𝑐 ) ∈ (−𝜋, 𝜋], is larger 
than that of the system without the shaping filter (i.e., 𝑠 = 1) if the phase 
of the shaping filter satisfies the following conditions: 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∠𝑠(𝜔𝑐 ) ∈
(

𝑘𝜋, 𝜋
2 − arctan

(

𝜋(1+𝛾)
4(1−𝛾)

)

+ 𝑘𝜋
)

,  for 𝜔𝛼 = 0,

∠𝑠(𝜔𝑐 ) ∈
(

𝑘𝜋, 𝜋
2 − arctan

(

𝜔𝑐
𝜔𝛼

)

+ 𝑘𝜋
)

,  for 𝜔𝛼 > 0,
(14)

where 𝑘 = −1, 0.

Proof.  The proof is provided in Appendix  A. □

The shaping filter can not only provide phase lead as demonstrated 
in Lemma  1, but for the generalized CI with 𝜔𝛼 = 0, as derived from 
(12), it can also be designed to ensure a phase greater than 0 by 
satisfying the condition outlined in the following Remark. 

Remark 4.  The phase of the first-order harmonic in the generalized 
CI at the bandwidth frequency 𝜔𝑐 exceeds 0, denoted as ∠1(𝜔𝑐 ) ∈
(0, 𝜋], provided that the phase of the shaping filter ∠𝑠(𝜔𝑐 ) satisfies the 
following conditions:
4 
∠𝑠(𝜔𝑐 ) ∈ (𝑘𝜋 + 𝜃𝑝, 𝑘𝜋 + 𝜋
2
− 𝜃𝑝), (15)

where 𝑘 = −1, 0, and 

𝜃𝑝 =
arcsin

(

𝜋(1+𝛾)
2(1−𝛾)

)

2
. (16)

Lemma  1 outlines the conditions required for ∠𝑠(𝜔𝑐 ) to achieve 
a phase lead. However, from (8), altering 𝑠(𝜔) modifies the gain 
properties of |𝑛(𝜔)|. To ensure a fair comparison, it is essential to 
limit these gain variations, which can be achieved by adhering to the 
constraints in Lemma  2. 

Lemma 2.  To limit the gain variation of |𝑛(𝜔)| in the generalized FORE 
with a shaping filter 𝑠 ≠ 1, compared to the system where 𝑠 = 1, the 
following condition must be satisfied: 
𝜅𝛼(𝜔) ∈ (1 − 𝜎, 1 + 𝜎),  for 𝜔 ≠ 𝜔𝑐 , (17)

where 𝜎 ∈ (0, 1) ⊂ R, and 
𝜅𝛼(𝜔) = | cos(∠𝑠(𝜔)) + sin(∠𝑠(𝜔)) ⋅ 𝜔𝛼∕𝜔|. (18)

Proof.  The proof is provided in Appendix  B. □

In practice, the value of 𝜎 ∈ (0, 1) should be kept small. Specifically, 
when 𝜎 = 0, the gain properties of the generalized FORE remain 
unchanged. By adhering to the constraints in Lemma  2 and choosing an 
appropriate 𝜎, the gain changes can be effectively restricted, ensuring 
similar gain properties. The selection of 𝜎 depends on the system’s gain 
requirements, as demonstrated in the case studies in Section 4.

To illustrate the effects of 𝜎, we examine the CI with a shaping 
filter that satisfies the constraints in Lemmas  1 and 2, referred to as 
the shaped CI. Fig.  2 presents the magnitude |1(𝜔)| and phase ∠1(𝜔)
of the first-order harmonic, along with the magnitude |3(𝜔)| of the 
third-order harmonic, for both the CI and the shaped CI with 𝛾 = 0. 
The analysis considers 𝜎 = 0.01, 0.05, 0.1, 0.2.

For clarity, higher-order harmonics |𝑛(𝜔)| for 𝑛 > 3 are omitted, 
as they exhibit the same trend as |3(𝜔)| but with smaller magnitudes 
and minimal variations. Additionally, the shaping filters used in this 
example, while selected to satisfy Lemmas  1 and 2, are not the only pos-
sible options. The design of 𝑠 will be further discussed in subsequent 
sections.

The results in Fig.  2 demonstrate a distinct phase lead in ∠1(𝜔)
with minimal variations in |𝑛(𝜔)| for 𝑛 = 1, 3. Specifically, for 𝜎 = 0.1, 
the phase lead at 100 Hz is 12.6 degrees, while the changes in |1(𝜔)|
and |3(𝜔)| are negligible. The minimal effects of these small changes 
will be further shown in the case studies presented in Section 4.

To summarize, Lemmas  1 and 2 outline the conditions for enhancing 
the phase margin of the generalized FORE while preserving similar gain 
benefits. To simultaneously meet these requirements, Theorems  1 and
2 specify the conditions for 𝑠(𝜔) in the generalized FORE, as defined 
in (7), for cases where 𝜔𝛼 = 0 (generalized CI) and 𝜔𝛼 > 0 (FORE), 
respectively.

Theorem 1.  In the generalized CI defined in (5), to achieve phase 
lead while maintaining similar gain properties compared to the system with 
𝑠 = 1, the shaping filter 𝑠, where ∠𝑠(𝜔) ∈ (−𝜋, 𝜋], needs to satisfy the 
following conditions: 
⎧

⎪

⎨

⎪

⎩

∠𝑠(𝜔𝑐 ) ∈
(

𝑘𝜋, 𝜋
2 − arctan

(

𝜋(1+𝛾)
4(1−𝛾)

)

+ 𝑘𝜋
)

,  for 𝜔 = 𝜔𝑐 ,

∠𝑠(𝜔) ∈ {𝜂1 ∪ 𝜂2 ∪ 𝜂3},  for 𝜔 ≠ 𝜔𝑐 ,
(19)

where 𝑘 = −1, 0, and 
𝜂1 = (− arccos(1 − 𝜎), arccos(1 − 𝜎)),

𝜂2 = (arccos(−1 + 𝜎), 𝜋], (20)

𝜂3 = [−𝜋,−arccos(−1 + 𝜎)), 𝜎 ∈ (0, 1) ⊂ R.
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Fig. 2. The magnitudes |1(𝜔)| and phases ∠1(𝜔) of the first-order harmonic, along 
with the magnitude |3(𝜔)| of the third-order harmonic, for both the CI and the shaped 
CI with 𝛾 = 0 considering 𝜎 = 0.01, 0.05, 0.1, 0.2.

The ranges of 𝜂1, 𝜂2, and 𝜂3 are visualized in Fig.  3.

Proof.  The proof is provided in Appendix  C. □

From (20), we have 

𝜂1 = {𝜂2 − 𝜋} ∪ {𝜂3 + 𝜋}. (21)

Since the effects of the shaping filter 𝑠(𝜔) on the HOSIDF of the 
generalized FORE are 𝜋-periodic, as noted in Remark  2, positioning 
∠𝑠(𝜔) within 𝜂2∪𝜂3 can be effectively achieved by positioning it within 
𝜂1. For reference, we plot a desired curve for ∠𝑠(𝜔) within 𝜂1 for 
𝜔 ≠ 𝜔𝑐 , while ∠𝑠(𝜔𝑐 ) satisfies the constraint outlined in Theorem  1. 
However, the choice of ∠𝑠(𝜔) is not unique; other curves for ∠𝑠(𝜔)
that remain within the specified bounds can also achieve phase lead 
and preserve similar gain.

Theorem 2.  In the FORE defined in (6), to achieve phase lead while 
maintaining similar gain properties compared to the system with 𝑠 = 1, 
the shaping filter 𝑠, where ∠𝑠(𝜔) ∈ (−𝜋, 𝜋], needs to satisfy the following 
conditions: 
{

∠𝑠(𝜔𝑐 ) ∈ (𝑘𝜋, 𝜋2 − arctan( 𝜔𝑐𝜔𝛼
) + 𝑘𝜋),  for 𝜔 = 𝜔𝑐 ,

∠𝑠(𝜔) ∈ {𝛽1 ∪ 𝛽2 ∪ 𝛽3 ∪ 𝛽4},  for 𝜔 ≠ 𝜔𝑐 ,
(22)

where 𝑘 = −1, 0, and 
𝛽1 = (arctan 𝜃𝛼 − arccos(𝜃𝛾 ), arctan 𝜃𝛼 − arccos(𝜃𝜂)),

𝛽2 = (arctan 𝜃𝛼 − arccos(−𝜃𝜂), arctan 𝜃𝛼 − arccos(−𝜃𝛾 )),

𝛽3 = 𝛽1 + 𝜋,

𝛽4 = 𝛽2 + 𝜋,

𝜃𝛼 =
𝜔𝛼
𝜔
,

𝜃𝛾 =
1 − 𝜎

√

1 + 𝜃2𝛼
, 𝜃𝜂 =

1 + 𝜎
√

1 + 𝜃2𝛼
, 𝜎 ∈ (0, 1) ⊂ R.

(23)

Note that the value of arccos(𝑥) is defined within the interval [0, 𝜋]. Addi-
tionally, the ranges of 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are visualized in Fig.  4.

Proof.  The proof is provided in Appendix  D. □

Similar to Fig.  3, a desired curve for ∠𝑠(𝜔) is plotted within the 
bounds of 𝛽1 ∪ 𝛽4 for 𝜔 ≠ 𝜔𝑐 , while ∠𝑠(𝜔𝑐 ) is constrained by the 
condition outlined in Theorem  2.
5 
3.2. Frequency-domain design of shaped generalized FROE to enhance 
system performance

While various shaping filters 𝑠 satisfying the constraints in Theo-
rems  1 and 2 can be selected to achieve phase lead while maintaining 
similar gain properties, this study adopts a derivative element: 

𝑠(𝑠) =
𝑠∕𝜔𝜁 + 1
𝑠∕𝜔𝜂 + 1

, where 𝜔𝜁 , 𝜔𝜂 ∈ R+, (24)

which aligns with the desired phase curve shapes of ∠𝑠(𝜔) illustrated 
in both Fig.  3 for the generalized FORE with 𝜔𝛼 = 0 and Fig.  4 for the 
generalized FORE with 𝜔𝛼 > 0, respectively.

However, implementing a single derivative element between the 
error signal 𝑒(𝑡) and the reset-triggered signal 𝑒𝑠(𝑡) can amplify high-
frequency harmonics for frequencies 𝜔 > 𝜔𝜂 in 𝑒𝑠(𝑡). In practical 
scenarios, especially when high-frequency noise from sensors or exter-
nal interference is present, this amplification can increase the system’s 
sensitivity to such noise, potentially compromising its steady-state per-
formance.

To address this issue, a low-pass filter 1
𝑠∕𝜔𝜓+1

 is needed to filter out 
high-frequency harmonics in the reset-triggered signal 𝑒𝑠(𝑡). Therefore, 
the transfer function of the shaping filter 𝑠(𝑠) is designed as: 

𝑠(𝑠) =
𝑠∕𝜔𝜁 + 1
𝑠∕𝜔𝜂 + 1

⋅
1

𝑠∕𝜔𝜓 + 1
, (25)

where 𝜔𝜁 , 𝜔𝜂 ∈ R+,  and 𝜔𝜓 ∈ R+ > 𝜔𝜂 . To mitigate excessive sensitiv-
ity of the shaped reset control to high-frequency noise, particularly at 
frequencies above the crossover frequency 𝜔𝑐 , the design of 𝜔𝜓  ensures 
that for all 𝜔 > 𝜔𝑐 , the condition |𝑠(𝜔)|∕|𝑠(𝜔𝑐 )| < 𝛿𝑛 holds, where 
𝛿𝑛 ∈ (1, 5) ⊂ R. The choice of 𝛿𝑛 is based on the noise characteristics 
and high-order harmonics in the practical shaped reset control systems. 
Iterative tuning may be required in cases of unmeasured noise. In this 
study, we set 𝛿𝑛 = 2.1, thereby limiting the shaping filter’s amplification 
of high-frequency noise to a factor below 2.1. This constraint has 
been validated to ensure robustness in the case studies, both through 
simulations with white noise of magnitude 1 × 10−5 and experimental 
validation.

Note that while using a second-order or higher-order phase-lead 
element as the shaping filter can also provide phase lead, but it may 
exacerbate the issue of high-frequency noise amplification in the reset-
triggered signal 𝑒𝑠(𝑡), making the system less robust to practical noise. 
The feasibility of using a higher-order lead element is outside the scope 
of this study and requires further investigation.

The reset control system with a shaping filter, defined in (25) and 
satisfying the conditions specified in Theorems  1 and 2, is referred to 
as the shaped reset control system in this study. The phase lead at the 
bandwidth frequency 𝜔𝑐 , provided by the shaping filter 𝑠, is calculated 
as described in Remark  5. 

Remark 5.  The phase lead of the shaped generalized FORE with 
the shaping filter 𝑠(𝑠) ≠ 1 compared to the generalized FORE where 
𝑠(𝑠) = 1 is given by: 

𝜙lead = ∠1(𝜔𝑐 ) − ∠0
1 (𝜔𝑐 ), (26)

where ∠1(𝜔𝑐 ) represents the phase of the shaped generalized FORE, 
which can be calculated using (12), and ∠0

1 (𝜔𝑐 ) represents the phase 
of the generalized FORE with 𝑠 = 1, as given by: 
∠0

1 (𝜔𝑐 ) =

⎧

⎪

⎨

⎪

⎩

arctan
(

−𝜋(1+𝛾)
4(1−𝛾)

)

,  for 𝜔𝛼 = 0,

arctan
(

2𝜔𝑐 ⋅ 𝜅𝜁 (𝜔𝑐 )
)

− arctan
(

𝜔𝑐
𝜔𝛼

)

,  for 𝜔𝛼 > 0,

(27)

with 𝜅 (𝜔 ) given in (13).
𝜁 𝑐
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Fig. 3. The three bounds, 𝜂1( ), 𝜂2( ), and 𝜂3( ), for ∠𝑠(𝜔) are depicted as shaded regions. The constraint on ∠𝑠(𝜔) at the bandwidth frequency 𝜔𝑐 is highlighted with 
blue double arrows (↔). The desired curve of ∠𝑠(𝜔) for the generalized CI is shown in red, adhering to the constraints.
Fig. 4. The four bounds, 𝛽1( ), 𝛽2( ), 𝛽3( ), and 𝛽4( ), for ∠𝑠(𝜔) are depicted as shaded regions. The constraint on ∠𝑠(𝜔) at the bandwidth frequency 𝜔𝑐 is highlighted 
with blue double arrows (↔). The desired curve of ∠𝑠(𝜔) for the FORE is shown in red, adhering to the constraints.
MATLAB code for calculating the phase lead 𝜙lead in (26) is avail-
able at this link to facilitate ease of use for readers. Next, Remark  6 
presents the maximum phase lead that can be achieved by the shaping 
filter under the constraints specified in Theorems  1 and 2. 

Remark 6.  From Lemma  1, the maximum phase of shaping filter 
∠𝑠(𝜔𝑐 ) ∈ (−𝜋, 𝜋] is given by 

max∠𝑠(𝜔𝑐 ) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜋
2 − arctan

(

𝜋(1+𝛾)
4(1−𝛾)

)

, for 𝜔𝛼 = 0,

𝜋
2 − arctan

(

𝜔𝑐
𝜔𝛼

)

, for 𝜔𝛼 > 0.
(28)

By substituting max∠𝑠(𝜔𝑐 ) from (28) into (26) and (27), the maximum 
phase lead, denoted as max𝜙lead, of the shaped generalized FORE 
(where 𝑠 ≠ 1) compared to the generalized FORE without the shaping 
filter (where 𝑠 = 1) can be determined.

Finally, summarizing the constraints in Theorems  1 and 2, along 
with conclusions in Remarks  5 and 6, the design procedure for the 
shaping filter ∠𝑠(𝑠) in the shaped generalized FORE-based reset control 
system, aimed at achieving a phase lead 𝜙𝑑 ∈ (0,max𝜙lead] compared 
to the generalized FORE-based reset control system with 𝑠 = 1, is 
outlined as follows:

(i) Design a generalized FORE-based reset control system without 
the shaping filter (i.e., 𝑠 = 1) and set the bandwidth frequency 
𝜔𝑐 .

(ii) Apply a shaping filter 𝑠 as defined in (25).
(iii) Choose 𝜎 ∈ (0, 1). Next, tune 𝜔𝜁 , 𝜔𝜂 , and 𝜔𝜓  in 𝑠(𝜔) to satisfy 

the conditions specified in Theorem  1 if 𝜔𝛼 = 0, and in Theorem 
2 if 𝜔𝛼 > 0.

(iv) Calculate the phase lead 𝜙lead provided by the shaping filter 
using (26). If 𝜙lead < 𝜙𝑑 , decrease 𝜔𝜁  or increase 𝜔𝜂 , and repeat 
from step (iii) until 𝜙lead = 𝜙𝑑 .

If the system requirements prioritize gain improvement over phase 
margin enhancement, the design procedure for shaping the filter  (𝑠)
𝑠

6 
involves first following the above steps to achieve phase lead, and then 
transferring this phase lead benefit to gain improvement by relaxing 
the gain constraint in Lemma  2 for frequencies 𝜔 ≠ 𝜔𝑐 . The design 
procedure to obtain gain benefits while maintaining phase margin 
compared to a generalized FORE-based reset control system with 𝑠 = 1
is outlined as follows:

(i) Design a shaped generalized FORE-based reset control system to 
provide a phase lead 𝜙lead.

(ii) Gradually adjust parameters such as 𝜔𝛼 and 𝛾 to increase the 
first-order harmonic gain |1(𝜔)| at frequencies below 𝜔𝑐 or 
reducing gain at higher frequencies. As gain benefits increase, 
the phase lead 𝜙lead diminishes; tuning continues until 𝜙lead = 0, 
where the shaped generalized FORE maintains phase margin 
while maximizing gain benefits.

For the generalized FORE with 𝜔𝛼 > 0, both 𝜔𝛼 and 𝛾 offer flexibility 
in tuning; in contrast, systems with 𝜔𝛼 = 0 rely solely on 𝛾. There-
fore, the FORE-based control systems with 𝜔𝛼 > 0 are preferable for 
providing enhanced gain benefits due to their greater tuning flexibility.

In Section 4, two case studies are presented to demonstrate the 
design procedure of shaped generalized FORE control systems, aiming 
to achieve phase and gain benefits, respectively.

4. Illustrative case studies

In this section, the experimental setup-a precision positioning stage-
is first introduced. Two case studies are then conducted on this stage 
to demonstrate the enhanced performance of the shaped generalized 
FORE-based reset control system:

• Case Study 1 uses a reset PID controller to showcase the phase 
lead advantages provided by the shaped reset control.

• Case Study 2 employs a CgLp-PID control system to emphasize 
the gain benefits, particularly achieving enhanced low-frequency 
gain.

https://github.com/XZ-TUD/Code_Phase_Lead.git
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Fig. 5. Experimental precision positioning setup.

Note that these cases may not represent optimal designs. Addition-
ally, the advantages of shaped reset control are not limited to the 
specific stages used in the case studies or the results presented in this 
section. Rather, the primary objective of these cases is to illustrate 
how the proposed shaped reset control improves upon conventional 
reset control and linear control systems within a fair comparison frame-
work. In both cases, the systems have been tested for stability and 
convergence.

4.1. Precision positioning setup

Fig.  5 illustrates the precision positioning setup utilized in this 
study. The system consists of a 3 Degree-Of-Freedom (DOF) stage 
mounted on a vibration isolation platform to minimize the impact of 
environmental disturbances. Control algorithms are implemented on 
an NI CompactRIO system equipped with FPGA modules, operating at 
a sampling frequency of 10 kHz. The voice coil actuation system is 
powered by a linear current source amplifier (with a power supply limit 
of 10 V), while position feedback is acquired using a Mercury M2000 
linear encoder (referred to as ‘‘Enc’’) with a resolution of 100 nm.

The 3 DOF precision positioning stage consists of three masses, 𝑀1, 
𝑀2, and 𝑀3, which are connected to the base mass 𝑀𝑐 via dual leaf 
flexures. Each of these masses is associated with an actuator: 𝐴1, 𝐴2, 
and 𝐴3, respectively. In this study, the collocated system comprising 
actuator 𝐴1 and mass 𝑀1 is utilized for control implementation and per-
formance evaluation. Fig.  6 presents the measured Frequency Response 
Function (FRF) of the system. To facilitate feedback control design, 
the system’s transfer function is approximated as an LTI model using 
Matlab’s system identification toolbox, which simplifies the system to 
a single-eigenmode mass–spring–damper configuration: 

(𝑠) = 6.615 × 105

83.57𝑠2 + 279.4𝑠 + 5.837 × 105
. (29)

4.2. Case Study 1: Phase lead benefit of shaped reset control resulting in 
transient performance improvement

In Case Study 1, a reset PID control system is designed to showcase 
the phase lead benefit of shaped reset control within the framework of 
the generalized FORE-based reset control when 𝜔𝛼 = 0. This design is 
informed by Theorem  1. The following content illustrates the design 
and comparison process.

By replacing the Proportional Integrator (PI) with the Proportional 
Clegg Integrator (PCI) in the PID control system, a Proportional Clegg 
Integrator Derivative (PCID) system is built. However, the closed-loop 
PCID system tends to exhibit a limit cycle behavior (HosseinNia et al., 
2013). To mitigate this issue, one effective strategy is to incorporate an 
7 
Fig. 6. Measured FRF data from actuator 𝐴1 to attached mass 𝑀1 of the precision 
positioning stage.

Fig. 7. Block diagram of the PCI-PID control system.

additional integrator, resulting in the PCI-PID system, whose block dia-
gram is shown in Fig.  7. The PID control system can be designed using 
both series and parallel structures. In each structure, the shaped CI can 
be applied to provide phase advantages over the linear integrator, as 
illustrated in Theorem  1 and Fig.  2. For ease of in implementation and 
illustration, this case employs the series PID control structure.

By designing the PCI reset element shown within the gray block in 
Fig.  7, the PCI-PID system can leverage gain benefits while maintaining 
the same phase characteristics as its base linear system, the PI2D 
system, as given by: 

PI2D = 𝑘𝑝 ⋅
(

𝑠 + 𝜔𝑖
𝑠

)2
⋅
𝑠∕𝜔𝑑 + 1
𝑠∕𝜔𝑡 + 1

⋅
1

𝑠∕𝜔𝑓 + 1
. (30)

The design parameters of the PCI-PID control system are: 𝜔𝑟 =
1.6×103 [rad/s], 𝑘𝑟 = 0.12, 𝑘𝑝 = 13.1, 𝜔𝑓 = 5.0×103 [rad/s], 𝜔𝑑 = 213.6
[rad/s], 𝜔𝑡 = 1.2 × 103 [rad/s], 𝜔𝑖 = 50.3 [rad/s], and 𝛾 = −0.3.

The frequency response plots of the first-order harmonics for the 
PCI-PID and PI2D control systems over the frequency range [1, 1000] Hz
are shown in Fig.  8. Compared to the PI2D controller, the PCI-PID 
controller maintains the same phase margin at the bandwidth frequency 
of 80 Hz but achieves a higher gain at frequencies lower than 80 Hz 
and a lower gain at frequencies higher than 80 Hz.

By designing a shaping filter for the PCI-PID control system, the 
objective is to achieve phase lead while controlling gain variations. 
Setting 𝜎 = 0.1 limits the gain variation. According to Theorem  1, the 
phase bounds for ∠𝑠(𝜔) are chosen as follows: 
{

∠𝑠(𝜔𝑐 ) ∈ (0, 67.08◦),  for 𝜔 = 𝜔𝑐 ,
∠𝑠(𝜔) ∈ 𝜂1 = (−25.84◦, 25.84◦),  for 𝜔 ≠ 𝜔𝑐 ,

(31)

The constraint for ∠𝑠(𝜔) where 𝜔 ≠ 𝜔𝑐 in (31) are depicted by the 
shaded green region in Fig.  9. To achieve the desired phase lead relative 
to the CI, a shaping filter 𝑠(𝑠) is implemented. The transfer function 
of 𝑠(𝑠) is designed as: 

𝑠(𝑠) =
𝑠∕950 + 1
𝑠∕3000 + 1

⋅
1

𝑠∕104 + 1
. (32)

Noted that alternative designs of 𝑠(𝑠) satisfying the conditions in (31) 
are feasible. The presented design in (32) serves as an example to 
demonstrate the effectiveness of the shaped reset control design.

As shown in Fig.  9, the shaping filter defined in (32) introduces a 
phase of 15.5◦ at the bandwidth frequency of 80 Hz. Since the PCI-PID 
control system is built upon the CI, the phase lead introduced by the 
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Fig. 8. Bode plots of the first-order transfer functions 1(𝜔) of open-loop linear PI2D, 
PCI-PID, and shaped PCI-PID controllers. From here on, black arrows in this study 
indicate the improvement of reset control over linear control, while green arrows 
represent the enhancement of shaped reset control compared to reset control.  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 9. Plot of ∠𝑠(𝜔) and its bound for the shaped PCI-PID control system.  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 10. Bode plots of the CI and the shaped CI with the shaping filter 𝑠 in (32), 
where 𝛾 = −0.3.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

shaping filter is initially applied to the CI and subsequently influences 
the entire PCI-PID control system. The Bode plots of the CI and the 
shaped CI, both with 𝛾 = −0.3, are presented in Fig.  10. The shaped CI 
maintains a gain profile similar to the CI while introducing a phase 
lead at frequencies below 665 Hz, as indicated by the green-shaded 
region. Specifically, at the bandwidth frequency of 80 Hz, the shaped 
CI achieves a phase margin of −10.1◦, providing a 12.8◦ phase lead 
compared to the −22.9◦ phase margin of the CI.

This designed shaped CI in Fig.  10 is incorporated into the PCI-
PID control system to form the shaped PCI-PID control structure in 
Fig.  7. In this configuration, the parameter 𝑘 = 0.13 is adjusted to 
𝑟

8 
Fig. 11. Bode plots of PI2D, PCI-PID, and shaped PCI-PID control systems. The third-
order harmonics of PCI-PID and shaped PCI-PID control systems are shown in dashed 
lines.

Fig. 12. Experimentally measured step responses of the PI2D, PCI-PID, and shaped 
PCI-PID control systems.

ensure the same gain as the PCI-PID control system at the 80 Hz 
bandwidth frequency. As shown in Fig.  8, the open-loop Bode plot of 
the shaped PCI-PID controller closely matches the gain profile of the 
PCI-PID system but provides a phase lead of 12.8◦.

Fig.  11 displays the Bode plots for the PI2D, PCI-PID, and shaped 
PCI-PID control systems, implemented on the stage shown in Fig.  5, 
including both the first- and third-order harmonics. All three systems 
share the same bandwidth frequency of 80 Hz. Compared to the PI2D 
system, the PCI-PID system maintains the same phase margin of 27.2◦
but demonstrates higher gain at low frequencies and lower gain at 
high frequencies. The shaped PCI-PID system behaves even better. It 
retains similar gain characteristics as the PCI-PID system but achieves 
a phase margin of 40◦, with an increased phase margin of 12.8◦ in the 
time domain. This 12.8◦ phase lead is expected to improve the tran-
sient response of the system, a benefit that will be validated through 
experiments.

Fig.  12 illustrates the experimentally measured step responses for 
the PI2D, PCI-PID, and shaped PCI-PID control systems. The overshoot 
of the PI2D and PCI-PID control systems are 64% and 36%, respectively, 
while the shaped PCI-PID achieve the zero overshoot performance. 
These results highlight the improved transient performance achieved 
with the shaped reset control, directly attributed to the enhancement 
in phase lead. It is important to emphasize that the designs presented in 
this section are not intended to achieve optimal transient performance, 
but rather serve as illustrative examples to validate Theorem  1, which 
demonstrates that phase lead enhancement can be achieved without 
compromising the open-loop gain performance. In contrast, if the sole 
objective were to optimize transient response without consideration 
for steady-state behavior, this could be accomplished using linear PID 
controllers with appropriately tuned phase margins. However, such an 
approach is irrelevant to the focus of this research.
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Fig. 13. Block diagram of the CgLp-PID control system.

Fig. 14. Bode plots of the first-order transfer functions 1(𝜔) for the open-loop linear 
PID, CgLp-PID, and shaped CgLp-PID controllers.

4.3. Case Study 2: Gain benefit of shaped reset control leading to steady-
state performance improvement

In Case Study 2, a reset CgLp-PID control system is designed to 
demonstrate the gain benefits of shaped reset control within the gen-
eralized FORE-based reset control when 𝜔𝛼 > 0. The design follows 
Theorem  2.

The CgLp reset element consists of a FORE combined with a lead 
element, as shown in Fig.  13. The transfer function of the PID controller 
is expressed as 

PID = 𝑘𝑝 ⋅
𝑠 + 𝜔𝑖
𝑠

⋅
𝑠∕𝜔𝑑 + 1
𝑠∕𝜔𝑡 + 1

, (33)

incorporating a Low-Pass Filter (LPF) given by 

LPF = 1
𝑠∕𝜔𝑓 + 1

, (34)

where 𝑘𝑝, 𝜔𝑖, 𝜔𝑑 , 𝜔𝑡, 𝜔𝑓 ∈ R+.
Compared to a linear PID controller, the CgLp-PID can maintain 

the same phase lead while benefiting from improved gain (Saikumar 
et al., 2019), as illustrated below. The design parameters for the CgLp-
PID controller are: 𝜔𝑟 = 160.2 [rad/s], 𝑘𝑟 = 1, 𝑘𝑝 = 6.5, 𝜔𝑑𝑟 = 336.8
[rad/s], 𝜔𝑡𝑟 = 3.14 × 104 [rad/s], 𝜔𝑓 = 3.1 × 103 [rad/s], 𝜔𝑑 = 143.9
[rad/s], 𝜔𝑡 = 685.6 [rad/s], 𝜔𝑖 = 31.4 [rad/s], and 𝛾 = −0.3. The design 
parameters for the PID controller are: 𝑘𝑝 = 3.0, 𝜔𝑑 = 81.9 [rad/s], 
𝜔𝑡 = 1.2 × 103 [rad/s], 𝜔𝑓 = 3.1 × 103 [rad/s], and 𝜔𝑖 = 31.4 [rad/s].

Fig.  8 presents the frequency response plots of the first-order har-
monics for these systems over the frequency range [1, 1000] Hz. The 
CgLp-PID matches the PID in both gain and phase at the bandwidth 
frequency 50 Hz, while exhibiting higher gain at frequencies lower than 
50 Hz and lower gain at frequencies higher than 50 Hz. The following 
content designs a shaped CgLp-PID controller that maintains the same 
phase and high-frequency gain properties as the CgLp-PID system while 
providing improved low-frequency gain and bandwidth benefits.

The CgLp-PID control system is built upon the FORE. To design a 
shaped FORE with phase lead, according to Theorem  2, by choosing 
𝜎 = 0.1, the bound of ∠𝑠(𝜔) is chosen as 
{

∠𝑠(𝜔𝑐 ) ∈ (0, 27.02◦),  for 𝜔 = 𝜔𝑐 , (35)

∠𝑠(𝜔) ∈ 𝛽1 ∪ 𝛽4,  for 𝜔 ≠ 𝜔𝑐 ,

9 
Fig. 15. Plot of ∠𝑠(𝜔) and its bounds for the shaped CgLp-PID control system.

Fig. 16. Bode plots of PID, CgLp-PID, and shaped CgLp-PID control systems. The third-
order harmonics of CgLp-PID and shaped CgLp-PID control systems are shown in dashed 
lines.

where 
𝛽1 = (arctan 𝜃𝛼 − arccos(𝜃𝛾 ), arctan 𝜃𝛼 − arccos(𝜃𝜂)),

𝛽4 = (arctan 𝜃𝛼 + arccos(𝜃𝜂), arctan 𝜃𝛼 + arccos(𝜃𝛾 )),

𝜃𝛼 =
𝜔𝑟
𝜔
, 𝜃𝛾 =

0.9
√

1 + 𝜃2𝛼
, 𝜃𝜂 =

1.1
√

1 + 𝜃2𝛼
.

(36)

The bound specified in (35) for 𝜔 ≠ 𝜔𝑐 is depicted in Fig.  15. A 
shaping filter 𝑠(𝑠) that adheres to this bound is designed as follows: 

𝑠(𝑠) =
𝑠∕950 + 1
𝑠∕2000 + 1

⋅
1

𝑠∕105 + 1
. (37)

As shown in Fig.  15, the ∠𝑠(𝜔) is 10◦ at the bandwidth frequency 
of 50 Hz. According to (26), the phase of ∠𝑠(𝜔𝑐 ) = 9.2◦ results in a 
𝜙lead = 5.9◦ phase lead in the shaped FORE, compared to the FORE 
with ∠𝑠 = 1.

Then, to achieve the desired gain performance while retaining 
the phase margin, the parameters of the shaped CgLp controller are 
adjusted to 𝜔𝑟 = 145.6 [rad/s], 𝑘𝑟 = 1.8, and 𝛾 = 0.08. The Bode plots 
of the shaped CgLp-PID control system are presented in Fig.  14.

Then, applying the PID, CgLp-PID, and shaped CgLp-PID controllers 
to the plant in (29), the resulting open-loop Bode plots are presented 
in Fig.  16. All three systems achieve an identical phase margin of 
50◦ and similar gain at frequencies higher than 50 Hz. However, the 
shaped CgLp-PID control system exhibits higher gain than the CgLp-
PID at frequencies below 50 Hz. Additionally, the shaped CgLp-PID 
system achieves a wider bandwidth of 61.6 Hz, compared to 50 Hz 
for the CgLp-PID system. Although higher-order harmonics show a 
slight increase at frequencies below 50 Hz, their magnitudes remain 
negligible relative to the first-order harmonics. The higher gain at low 
frequencies is expected to enhance precision in that frequency range, 
which will be further validated through experimental results.

4.3.1. Steady-state performance: Improved tracking precision
As shown in Fig.  16, the shaped CgLp-PID system is designed to 

have higher gain at frequencies lower than 50 Hz while maintaining 
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Fig. 17. Experimentally measured steady-state errors of PID, CgLp-PID, and shaped 
CgLp-PID control systems under reference signals 𝑟(𝑡) = 1×10−5 sin(2𝜋𝑡) [m], where 𝑓 =
(a) 3 Hz, (b) 5 Hz, (c) 10 Hz, (d) 30 Hz, and (e) 200 Hz.

Table 1
Maximum steady-state errors ||𝑒||∞ [m] for the CgLp-PID and shaped CgLp-PID control 
systems under reference signals 𝑟(𝑡) = 1 × 10−5 sin(2𝜋𝑡) [m], where 𝑓 = 3 Hz, 5 Hz, 
10 Hz, 30 Hz, and 200 Hz. The precision improvement achieved by the shaped CgLp-
PID compared to the CgLp-PID system are highlighted.
 Systems Frequency [Hz]
 3 5 10 30 200  
 PID 1.4 × 10−6 1.6 × 10−6 1.2 × 10−6 6.5 × 10−6 9.4 × 10−6 
 CgLp-PID 8.0 × 10−7 1.0 × 10−6 9.8 × 10−7 8.0 × 10−6 9.3 × 10−6 
 Shaped CgLp-PID 4.7 × 10−7 6.0 × 10−7 6.8 × 10−7 6.0 × 10−6 9.3 × 10−6 
 Precision improvement 41.3% 40.0% 30.6% 25.0% 0  

similar gain at frequencies higher than 50 Hz. Consequently, to com-
pare the tracking precision of the PID, CgLp-PID, and shaped CgLp-PID 
control systems, the steady-state errors at input frequencies of 3 Hz, 
5 Hz, 10 Hz, and 30 Hz are measured. Additionally, to validate the 
high-frequency performance is retained, the performance at a input 
frequency of 200 Hz is also tested.

Fig.  17 presents the measured steady-state errors for the three 
control systems when tracking a reference signal 𝑟(𝑡) = 1 × 10−5 sin(2𝜋𝑡)
[m] at frequencies of 3 Hz, 5 Hz, 10 Hz, 30 Hz, and 200 Hz. The 
maximum errors ‖𝑒‖∞ [m] for each system are summarized in Ta-
ble  1. The results indicate that the shaped CgLp-PID system achieves 
improvements in steady-state performancemeasured by the maximum 
error metricof 41.3%, 40.0%, and 30.6% at frequencies of 3 Hz, 5 Hz, 
and 10 Hz, respectively. An improvement of 25.0% is observed at 30 
Hz, while no improvement is evident at 200 Hz, relative to the baseline 
CgLp-PID system.

4.3.2. Steady-state performance: Improved tracking precision and distur-
bance rejection

To evaluate the disturbance rejection capability of the shaped CgLp-
PID control system, a disturbance signal 𝑑 (𝑡) = 1×10−8[75.0 sin(10𝜋𝑡)+
1

10 
Fig. 18. Experimentally measured steady-state errors of PID, CgLp-PID, and shaped 
CgLp-PID control systems under a disturbance signal 𝑑1(𝑡).

Table 2
Maximum steady-state errors ||𝑒||∞ [m] for the CgLp-PID and shaped CgLp-PID control 
systems under the disturbance signal 𝑑1(𝑡) and multiple inputs 𝑟2(𝑡) + 𝑑2(𝑡).
 Systems Inputs

 𝑑1(𝑡) 𝑟2(𝑡) + 𝑑2(𝑡) 
 PID 1.7 × 10−7 1.5 × 10−7  
 CgLp-PID 1.0 × 10−7 8.0 × 10−8  
 Shaped CgLp-PID 6.0 × 10−8 5.0 × 10−8  
 Precision improvement 40.0% 37.5%  

Fig. 19. Experimentally measured steady-state errors for PID, CgLp-PID, and shaped 
CgLp-PID control systems under multiple inputs: reference signal 𝑟2(𝑡) and disturbance 
signal 𝑑2(𝑡).

7.5 sin(20𝜋𝑡) + 1.5 sin(40𝜋𝑡)] [m] is applied to the three control systems. 
The measured steady-state errors for the PID, CgLp-PID, and shaped 
CgLp-PID control systems are displayed in Fig.  18. The maximum errors 
for each system are summarized in Table  2. The results show that the 
shaped CgLp-PID system achieves a precision improvement of 40.0% 
compared to the CgLp-PID system.

Then, to assess both reference tracking and disturbance rejection 
performance, a reference signal 𝑟2(𝑡) = 7.5×10−7 sin(10𝜋𝑡) [m] and a dis-
turbance signal 𝑑2(𝑡) = 1 × 10−8[19.1 sin(2𝜋𝑡) + 1.8 sin(4𝜋𝑡) + 3.3 sin(16𝜋𝑡)]
[m] are applied to the three control systems. The measured steady-state 
errors for the PID, CgLp-PID, and shaped CgLp-PID systems are shown 
in Fig.  19. The maximum errors for each system are summarized in 
Table  2. The results show that the shaped CgLp-PID system achieves a 
precision improvement of 37.5% compared to the CgLp-PID system.

These results highlight the improved steady-state precision of the 
shaped CgLp-PID control system, which is attributed to the gain benefits 
conferred by the shaping filter in the CgLp-PID design, as illustrated in 
Fig.  16.

4.3.3. Transient performance improvement: Reduced overshoot
In addition to enhancing steady-state performance, measurements 

of the step responses of the three systems, shown in Fig.  20, reveal that 
the shaped CgLp-PID reduces the overshoot observed in the CgLp-PID 
system, achieving a non-overshoot performance.

This transient performance improvement can be attributed to the 
introduction of the phase lead element between the error signal 𝑒(𝑡)
and the reset-triggered signal 𝑒𝑠(𝑡), as discussed in the research (Karba-
sizadeh & HosseinNia, 2022b).
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Fig. 20. Experimentally measured step responses of PID, CgLp-PID, and shaped CgLp-
PID control systems.

Fig. 21. Bode plots of the CI and the shaped CI with the shaping filter 𝑠 in (32), 
where 𝛾 = −0.632.

Thus, the phase-lead shaping filter not only contributes to better 
steady-state performance but also improves the transient response of 
the CgLp-PID system.

5. Conclusion and discussions

In conclusion, this study introduces a phase-lead shaping filter to 
improve phase and gain characteristics in CI-based and FORE-based 
reset control systems, referred to as shaped reset control. Frequency-
domain design procedures for both CI-based and FORE-based reset 
control systems are provided. Experimental validation on two reset 
control systems implemented on a precision motion stage demonstrated 
the effectiveness of the proposed approach. In the first case study, the 
shaped reset control enhances transient performance by achieving zero 
overshoot, benefiting from the phase lead. In the second case study, 
the shaped reset control improves steady-state precision in reference 
tracking and disturbance rejection tasks, due to the gain benefit.

However, the benefits of the phase lead shaping filter in (25) are 
limited by high-frequency noise in practical systems. The phase lead 
element can amplify high-frequency noise in the reset-triggered signal, 
making it necessary to integrate a low-pass filter into the shaping filter. 
While this low-pass filter mitigates noise amplification, it also reduces 
some of the benefits provided by the phase lead. When system noise 
is minimized, the low-pass filter in (25) can be removed, allowing 
the advantages of phase lead-shaped reset control to be more pro-
nounced. Future research could explore combining phase lead-shaped 
reset control with noise reduction techniques, such as the Kalman filter, 
to further enhance system performance. Investigating the potential of 
second-order phase lead shaping filters could also provide a promising 
direction for improvement.

Furthermore, the shaped CI can be designed to retain a similar 
negative gain slope as the integrator while achieving a positive phase 
11 
through appropriate design. For example, when using the shaping filter 
from (32), the shaped CI can attain a positive phase of 5◦ at 80 Hz 
with 𝛾 = −0.632, whereas the standard CI exhibits a phase of −10.1◦, 
as shown in Fig.  21. This result demonstrates promising potential for 
future applications, which will be explored further in our upcoming 
work.
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Appendix A. Proof of Lemma  1

Proof.  This proof derives the condition for the shaping filter 𝑠
to increase the phase of the first-order harmonic at the bandwidth 
frequency, denoted as ∠1(𝜔𝑐 ). The proof is divided into two steps: the 
first addresses the generalized CI when 𝜔𝛼 = 0, and the second focuses 
on the FORE when 𝜔𝛼 > 0.

Step 1: Condition for the generalized FORE where 𝜔𝛼 = 0.
To ensure that the generalized FORE with a shaping filter 𝑠 ≠ 1

exhibits a phase lead compared to the system with 𝑠 = 1, we need to 
ensure: 
∠1(𝜔𝑐 ) > ∠0

1 (𝜔𝑐 ), (A.1)

where ∠1(𝜔𝑐 ) is the phase of the shaped generalized FORE with the 
shaping filter 𝑠(𝑠) ≠ 1, and ∠0

1 (𝜔𝑐 ) is the phase of the generalized 
FORE with 𝑠(𝑠) = 1.

In the generalized FORE with 𝜔𝛼 = 0, from (12), we have ∠1(𝜔𝑐 ) =
𝜙𝜆(𝜔𝑐 ). Therefore, to meet the condition in (A.1), 𝜙𝜆(𝜔𝑐 ) needs to be 
larger than its value when 𝑠(𝑠) = 1. From (13), the following condition 
needs to be satisfied: 
sin(2∠𝑠(𝜔𝑐 )) − 𝜋(1 + 𝛾)∕(2(1 − 𝛾))

cos(2∠𝑠(𝜔𝑐 )) + 1
>

−𝜋(1 + 𝛾)
4(1 − 𝛾)

, (A.2)

where the right-hand side corresponds to the element in 𝜙𝜆(𝜔𝑐 ) when 
𝑠(𝑠) = 1.

Then, solving (A.2), and given the 𝜋-period properties of ∠𝑠(𝜔)
from Remark  2, the first condition for the ∠𝑠(𝜔𝑐 ) in (14) is derived.
Step 2: Condition for the generalized FORE where 𝜔𝛼 > 0.

In the generalized FORE with 𝜔𝛼 > 0, from (12), we have

∠1(𝜔𝑐 ) = 𝜙𝛼(𝜔𝑐 ) − arctan
(

𝜔𝑐
)

,

𝜔𝛼
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where 𝜙𝛼(𝜔𝑐 ) is an increasing function of 𝜅𝛾 (𝜔𝑐 ) ⋅ 𝜅𝜁 (𝜔𝑐 ), and
tan(∠𝑠(𝜔𝑐 )).

Given the conditions 𝜔 > 0, 𝜔𝛼 > 0, 𝜔𝛽 > 0, 𝛾 ∈ (−1, 1), and 𝜔 > 0, it 
follows from the definition of 𝜅𝛾 (𝜔𝑐 ) in (13) that 𝜅𝜁 (𝜔𝑐 ) > 0. To ensure 
that the generalized FORE with a shaping filter 𝑠 ≠ 1 achieves a phase 
lead, both the values of tan(∠𝑠(𝜔𝑐 )) and 𝜅𝛾 (𝜔𝑐 ) needs to exceed their 
respective values in the system where ∠𝑠 = 0. This can be achieved 
by satisfying the following conditions: 
∠𝑠(𝜔𝑐 ) ∈ (0, 𝑘 ⋅ 𝜋∕2), 𝑘 ∈ N, (A.3)

and 
𝜔𝑐 ⋅ cos(2∠𝑠(𝜔𝑐 )) + 𝜔𝛼 ⋅ sin(2∠𝑠(𝜔𝑐 )) > 𝜔𝑐 . (A.4)

Solving (A.3) and (A.4), and given the 𝜋-period properties of ∠𝑠(𝜔)
from Remark  2, the second condition for the ∠𝑠(𝜔𝑐 ) in (14) is
derived. □

Appendix B. Proof of Lemma  2

Proof.  This proof establishes the condition required to limit gain 
changes for a system with a shaping filter compared to a system without 
the shaping filter at frequencies 𝜔 ≠ 𝜔𝑐 .

From (8) and (9), the phase ∠𝑠(𝜔) determines the function 𝛼(𝜔), 
thereby influencing the HOSIDF 𝑛(𝜔). The function 𝛼(𝜔) for the gen-
eralized FORE with and without the shaping filter is given by 

𝛼(𝜔) =

⎧

⎪

⎨

⎪

⎩

𝜔, for ∠𝑠(𝜔) = 0,
𝑒𝑗∠𝑠(𝜔)[𝜔 cos(∠𝑠(𝜔))
+𝜔𝛼 sin(∠𝑠(𝜔))],  for ∠𝑠(𝜔) ≠ 0.

(B.1)

To limit gain changes of the generalized FORE at frequencies 𝜔 ≠ 𝜔𝑐 , 
the change in 𝛼(𝜔) should be minimized. To evaluate the change in 
𝛼(𝜔), the ratio of 𝛼(𝜔) for the generalized FORE with and without the 
shaping filter in (B.1) is defined as: 
𝛥𝛼(𝜔) = 𝑒𝑗∠𝑠(𝜔)[cos(∠𝑠(𝜔)) + 𝜔𝛼∕𝜔 sin(∠𝑠(𝜔))]. (B.2)

When 𝛥𝛼(𝜔) → 1 at frequencies 𝜔 ≠ 𝜔𝑐 , the gain properties of the 
generalized FORE tend to remain unchanged.

From (B.2), 𝛥𝛼(𝜔) consists of two components: the phase ∠𝛥𝛼(𝜔) =
∠𝑠(𝜔) and the magnitude given by 

𝜅𝛼(𝜔) = |𝛥𝛼(𝜔)| =
|

|

|

|

cos(∠𝑠(𝜔)) +
𝜔𝛼
𝜔

sin(∠𝑠(𝜔))
|

|

|

|

. (B.3)

To ensure that 𝛥𝛼(𝜔) approaches 1, two requirements must be met: 
First, the phase ∠𝛥𝛼(𝜔) = ∠𝑠(𝜔) should tend to 0. Based on Remark 
2, ∠𝑠(𝜔) affects 𝑛(𝜔) with a period of 𝜋, so ∠𝑠(𝜔) → 𝑘 ⋅ 𝜋, where 
𝑘 ∈ Z is required. Second, the magnitude 𝜅𝛼(𝜔) should tend to 1.

The constraint 𝜅𝛼(𝜔) ∈ (1 − 𝜎, 1 + 𝜎), where 𝜎 ∈ (0, 1) ⊂ R, ensures 
that both the phase and gain conditions are satisfied. Additionally, as 
𝜎 → 0, the change in |𝑛(𝜔)| tends to 0. This concludes the proof. □

Appendix C. Proof of Theorem  1

Proof.  This proof derives the conditions for ∠𝑠(𝜔) in the generalized 
CI where 𝜔𝛼 = 0 to meet the requirements specified in Lemmas  1 and
2.

In the generalized CI with 𝜔𝛼 = 0, from Lemma  1, the restriction on 
∠𝑠(𝜔) ∈ (−𝜋, 𝜋] at 𝜔𝑐 requires that ∠𝑠(𝜔𝑐 ) lies within the bounds:

∠𝑠(𝜔𝑐 ) ∈
(

𝑘𝜋, 𝜋
2
− arctan

(

𝜋(1 + 𝛾)
4(1 − 𝛾)

)

+ 𝑘𝜋
)

, 𝑘 = −1, 0.

From (18), the value of 𝜅𝛼(𝜔) is given by: 

𝜅 (𝜔) = | cos(∠ (𝜔))|. (C.1)
𝛼 𝑠

12 
From Lemma  2 and (C.1), at frequencies where 𝜔 ≠ 𝜔𝑐 , the following 
condition needs to be satisfied: 
(1 − 𝜎) < | cos(∠𝑠(𝜔))| < (1 + 𝜎), for 𝜔 ≠ 𝜔𝑐 . (C.2)

Given the inherent property of cos(∠𝑠(𝜔)) ∈ [−1, 1] and 𝜎 > 0, the 
condition from (C.2) is expressed as: 
(1 − 𝜎) < cos(∠𝑠(𝜔)) ≤ 1,  or

−1 ≤ cos(∠𝑠(𝜔)) ≤ −1 + 𝜎,  for 𝜔 ≠ 𝜔𝑐 .
(C.3)

Solving (C.3), the conditions for ∠𝑠(𝜔) ∈ (−𝜋, 𝜋] are given by 
∠𝑠(𝜔) ∈(− arccos(1 − 𝜎), arccos(1 − 𝜎))

∪ (arccos(−1 + 𝜎), 𝜋]

∪ [−𝜋,−arccos(−1 + 𝜎)),  for 𝜔 ≠ 𝜔𝑐 .

(C.4)

Defining 𝜂1, 𝜂2, and 𝜂3 as in (20) and substituting them into (C.4) 
concludes the proof. □

Appendix D. Proof of Theorem  2

Proof.  This proof derives the conditions for ∠𝑠(𝜔) ∈ (−𝜋, 𝜋] in the 
FORE where 𝜔𝛼 > 0 to meet the requirements specified in Lemmas  1
and 2.

From Lemma  1, at frequencies where 𝜔 = 𝜔𝑐 , the following condi-
tion needs to be satisfied: 

∠𝑠(𝜔𝑐 ) ∈
(

𝑘𝜋, 𝜋
2
− arctan

(

𝜔𝑐
𝜔𝛼

)

+ 𝑘𝜋
)

, 𝑘 = −1, 0. (D.1)

From (18), the function 𝜅𝛼(𝜔) can be written as 

𝜅𝛼(𝜔) = | cos(∠𝑠(𝜔)) +
𝜔𝛼
𝜔

sin(∠𝑠(𝜔))|

=
√

1 + 𝜃2𝛼
|

|

|

|

cos(∠𝑠(𝜔) − arctan 𝜃𝛼)
|

|

|

|

,
(D.2)

where 
𝜃𝛼 =

𝜔𝛼
𝜔
. (D.3)

From Lemma  2, at 𝜔 ≠ 𝜔𝑐 , the following condition needs to be satisfied: 

(1 − 𝜎) < 𝜅𝛼(𝜔) < (1 + 𝜎),  for 𝜔 ≠ 𝜔𝑐 . (D.4)

From (D.2) and (D.4), at 𝜔 ≠ 𝜔𝑐 , the following condition needs to be 
satisfied: 
0 <

(1 − 𝜎)
√

1 + 𝜃2𝛼
< cos(∠𝑠(𝜔) − arctan 𝜃𝛼) <

(1 + 𝜎)
√

1 + 𝜃2𝛼
,  or 

(−1 − 𝜎)
√

1 + 𝜃2𝛼
< cos(∠𝑠(𝜔) − arctan 𝜃𝛼) <

(−1 + 𝜎)
√

1 + 𝜃2𝛼
< 0,

(D.5)

Solving (D.5), the resulting conditions for ∠𝑠(𝜔) are given in (22). Note 
that arccos(𝑥) is defined within the interval [0, 𝜋]. This completes the 
proof. □
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