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Abstract: Professional drivers need constant attention during long driving periods and sometimes
perform tasks outside the truck. Driving discomfort may justify inattention, but it does not explain
post-driving accidents outside the vehicle. This study aims to study the discomfort developed during
driving by analysing modified preferred postures, pressure applied at the interface with the seat,
and changes in pre- and post-driving gait patterns. Each of the forty-four volunteers drove for two
hours in a driving simulator. Based on the walking speed changes between the two gait cycles, three
homogeneous study groups were identified. Two groups performed faster speeds, while one reduced
it in the post-steering gait. While driving, the pressure at the interface and the area covered over
the seat increased throughout the sample. Preferred driving postures differed between groups. No
statistical differences were found between the groups in the angles between the segments (flexed and
extended). Long-time driving develops local or whole-body discomfort, increasing interface pressure
over time. While driving, drivers try to compensate by modifying their posture. After long steering
periods, a change in gait patterns can be observed. These behaviours may result from the difficulties
imposed on blood circulation by increasing pressure at this interface.

Keywords: drivers monitoring; prolonged sitting; interface pressure; driving posture; musculoskele-
tal disorders; gait parameters

1. Introduction

The automotive industry has continually enhanced vehicle interior and exterior designs
to increase the transport’s comfort, efficiency, and reliability. Nonetheless, injuries [1], work-
related musculoskeletal disorders [2], and even perceived discomfort [3] are still present
among professional drivers. De Looze et al. [3], and later Hiemstra-van Mastrigt et al. [4], cre-
ated models and explained the interaction between drivers’ anthropometric characteristics,
physical vehicle features and work-related tasks to describe driving comfort/discomfort.
However, even adapting drivers’ working environment to a wider range of individuals,
prolonged awkward driving strategies must be avoided. Considering exposure time when
assessing observed discomfort is crucial, knowing that discomfort or pain while driving
can arise and increase with time [5].

Driver’s seat must be adjustable and create a feeling of well-being, accommodating
and supporting around 70% of the total body weight [6]. The interface pressure at the
seat pan is mainly generated by bony prominences (ischial tuberosities, sacral coccygeal
area, and greater trochanter) and the lower limbs, muscles, and tendons [7]. For instance,
the interface pressure under ischial tuberosities bones could be up to 11 times greater [7]
compared to the rest of the buttocks/thigh surface, with the covered area by 18% [8].
Uneven pressure distribution in the lower limbs area with a higher dynamic load on the
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musculoskeletal system will manifest as a perception of pain, fatigue, soreness, tensions,
and numbness [9].

Individuals with different anthropometric attributes may have experienced different
discomfort ratings [10]. The percentage of fat tissue and the distance between ischial
tuberosities bones appears to be an essential factor considering interface pressure between
subject and seat [10]. There may be a difference between genders since females tend to have
a higher percentage of fat in the lower limbs area and more significant distance between
the bony prominence in the pelvic area [11]. In contrast, a person having a sharper ischial
tuberosity is more at risk of developing disorders caused by prolonged sitting [12].

Apart from work-related musculoskeletal disorders developed over the driving time,
acute work-related injuries caused by slips, trips, and falls are often correlated with pro-
fessional drivers [1]. Xia et al. [13] investigated the occurrence of injuries and diseases
caused by non-driving tasks among occupational drivers. As a mechanism of injuries, slips,
trips, and falls were reported in the range from 15 to 25% (with the highest prevalence
was among automobile drivers). It should be noted that all injuries were occurred walk-
ing on the same or different ground levels [13]. Gait performance and postural stability
depend on a complex relationship between the musculoskeletal, neurological, vestibular,
somatosensory, and visual systems [14]. Disturbing one of the mentioned systems, human
gait performances might change gait patterns, causing falls [15] or slips [16].

Moreover, subjects with developed fear or risk of falling might reduce walking speed
(WS), adopting shorter step length (SL), decreasing the range of motions in lower limb joint
angles, prolonging stance phase (SF) and shortening swing phase (SWF) [17]. The fact is
that the risk of falls is increased with age, whereas older subjects are more prone to fall [18].
Regarding this statement, older drivers might be at higher risk of acute injuries outside
vehicles [19].

The primary purpose of this study is to investigate if prolonged driving can influence
the gait pattern. The specific goals of this research are the following: (a) to reveal whether
the subjects can be classified by the pattern of changing in WS and if changes of WS
influence defined gait variables; (b) to examine whether the differences between groups in
walking strategies are related to different postures (angles between body segments) and
whether, as a result, they apply different interface pressures over the seat pan; (c) to define
whether the driving discomfort was developed, based on exceeded interface pressure
values and repositioned driving angles.

2. Materials and Methods
2.1. Participants

Forty-four subjects (22 female and 22 males) aged between 20 and 40 years old volun-
teered and agreed to participate in the study. None of the participants had any surgical
intervention, neurological disorder, or musculoskeletal injury in the lower limbs in the
past twelve months. Unusual walking patterns, inability to perform barefoot or shod walk
without assistance, poor balance, and incompetence to steer a driving simulator in a de-
manded virtual environment were considered as exclusion criteria. Before the experimental
process, informed consent was provided to every participant. This study was submitted
and approved by the Ethics Committee of the University of Porto and registered under
No84/CEUP/2019.

2.2. Instruments

Spatiotemporal variables were recorded using Walkway Pressure Assessment Systems
(Tekscan®, Boston, MA, USA). The sampling rate was defined at 100 Hz, with the pressure
range from 1 to 850 kPa. The mat calibration was accomplished before the data acquisi-
tion according to the manufacturer’s instructions and the Tekscan® software—Walkway
version 7.02.

Six Logitech C920 web-cameras (Logitech, Newark, NJ, USA) were used to record
preferred driving postures in full HD resolution (1920 × 1080 pixels), with a sampling rate
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at 30 Hz. Cameras were positioned and secured on tripods with 60 to 120 degrees between
each, taking the centre of the drivers’ seat as the reference point. Before each experiment,
the camera calibration was done using a rigid cube placed on top of the drivers’ seat pan.

2.3. Driving Simulator

The driving simulator was a modified Volvo 440 turbo vehicle installed with sensors
in the steering wheel, pedals, ignition key, and other technical elements. The virtual
environment was set to mimic the car movements on a two-lane highway. It included
other vehicles’ actions and behaviours in both traffic directions, with 60 frames per second
refresh rate.

2.4. Equipment Synchronisation

Each volunteer was instructed to press a specific region/button of the Tactilus® mat
to define a common event from which the data acquisition was synchronised. This action
triggered an LED light seen by all recording cameras while providing an input to the
sensing mat.

2.5. Characterisation of Driving Discomfort

Interface pressure distribution is often used as an objective measure to determine
variation between comfort and discomfort among different seats and materials and a
proven method for quantifying perceived comfort/discomfort [3,4,20]. Also, based on
previous studies [21,22], the interface pressure threshold was defined at 4.3 kPa applied
over the total seat area. Above this value, a perceived local or total bodily discomfort
would occur. Furthermore, suppose the pressure at the interface exceeds 6.4 kPa under
the buttocks area or exceeds 3 kPa under the thighs area. In that case, it will cause tissue
ischemia and affect sitting comfort [23].

Frequently repositioning preferred driving postures and perceived body discomfort
have proven their correlation [9] and will be considered a method to conclude developed
distress over the driving time.

2.6. Procedures

Participants’ age, body height, weight, and driving experience were recorded before
data collection. Eight reflective markers, with 2 cm diameter, were positioned on anatomical
landmarks corresponding to major joints: lateral metatarsal head (foot), lateral and medial
malleolus (ankle), lateral and medial epicondyle of the femur (knee), great trochanter (hip),
right and left acromion (shoulder), lateral epicondyle of the humerus (elbow), and radial
styloid process and heel of the ulna (wrist). The position of the markers allowed to record
the preferred driving postures by calculating the main joint angles.

Spatial and temporal data were acquired in two different periods—before and after
steering the driving simulator. The gait was performed on a marked pathway where the
pressure mat was included. The distance between the start line and the pressure mat
enabled sufficient space for a participant to perform two steps before contacting the mat
mentioned above. Participants were instructed to walk at a self-selected and comfortable
pace before and after finishing the driving tasks. Three valid and complete gait cycles were
performed for each assessment period.

The driving session demanded constant steering of the driving simulator for 120 min
(about half a work shift), with an average driving speed of 90 km/h (maximum road speed
limit in most countries).

Entering the driving simulator, participants adjusted the interior distances of the seat
according to their individual preferences. The interior dimensions could be adjusted on
horizontal points (changing distance between the heel and hip point) and backrest angles,
respecting the SAE J1100 [24]. The horizontal and vertical distances of the steering wheel
position could not be modified, being the same for all participants. The first five minutes
of steering were intended for familiarisation with the virtual environment. During the
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driving session, variables based on flexion/extension of main joint angles (ankle, knee,
hip, shoulder, elbow, and wrists), applied interface pressure, and the covered area on the
seat pan was acquired. A 10-s recording was performed at the 5th and 120th minute of the
driving session.

2.7. Data Processing

Both temporal and spatial gait parameters were collected and analysed using Walkway
software, version 7.02 (Tekscan®, Boston, MA, USA). An average value of the three gait
trials (pass over the Walkway Pressure Assessment System) per walking period was further
exported to Excel 2016 (Microsoft Corporation, Washington, DC, USA) spreadsheet.

Driving posture data were processed with the software SkillSpector® version 1.3.2.
(Video4Coach, Odense, Denmark). The biomechanical model was formed by linking
reflective markers placed on the subject’s body. The direct linear transformation was
precisely linked with the previously defined calibration. It was used to calculate the
coordinates and, therefore, to create the model. The left side of the driver’s posture, with
defined driving angles [25], was analysed considering the flexion/extension of the main
joint angles.

Applied interface pressure and covered area on the drivers’ seat pan were recorded
using Tactilus® software, version 8.1 (Tactilus®, New York, NY, USA). Two-dimensional
data referred to the entire seat pan surface was further assessed using the same software.
Average interface pressure represents an average peak pressure recorded during the whole
surface area. The contact area was defined by summarising activated cells of the interface
pressure equipment triggered during the driving session. Further examination of applied
average interface pressure was assessed for the following lower limb area: left bolster (LB),
left buttock (LBU), left thigh (LTH), right buttock (RBU), right thigh (RTH), right bolster
(RB) (Figure 1). Selected areas were modified for each participant separately, considering
different anthropometric attributes.
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2.8. Statistical Analysis

An absolute value, calculated from WS differences (difference = post-steering WS—
pre-steering WS), was further implemented as a single variable into the Hierarchical
clustering method to divide the study population into WS subgroups. From this point,
one of the hierarchical clustering procedures, Ward’s method, was chosen to define ap-
proximately equal subgroups members based on WS alternation between two gait periods.
The subgroups were classified based on visual assessment of the obtained clusters pre-
sented in the dendrogram respecting the Euclidean distance. The Shapiro-Wilk test was
performed to investigate whether the data was (not)normally distributed. Furthermore,
One-Way ANOVA was applied to examine whether the between-group comparison differs
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concerning personal characteristics. The Repeated Measures ANOVA with Tukey’s honest
significance test was performed to investigate the main effect of time on spatiotemporal
(before vs. after), interface pressure variables (5th vs. 120th minute of driving), and pre-
ferred driving postures (5th vs. 120th minute of driving). If a significant time effect was
found, the pairwise comparison with Bonferroni adjustment was accomplished. The critical
significant threshold was defined at α ≤ 0.05.

3. Results
3.1. Description of the Sample Size Based on the Cluster Classification

The Wards’ method identified three clusters based on an absolute value obtained on
WS alteration. Under cluster 1 (C1) and cluster 2 (C2) were selected participants with the
increased post-steering WS. Subjects categorised under cluster 3 (C3) reduced WS after 120
min of the driving process. Differences in pre-and post-driving WS were recognised for all
subgroups (p < 0.001) using Repeated Measures ANOVA.

The remaining variables, such as anthropometric attributes, driving experience, and
the time spent steering a vehicle per week was not established as significantly different
among the subgroups (Table 1).

Table 1. Description of personal characteristics and driving experience (data is represented as
mean ± standard deviation).

C1 C2 C3 p-Value

Number of participants (M/F) 26 (15/11) 10 (3/7) 8 (4/4) n.s.
WSD (cm/s) 2.8 ± 3.0 14.5 ± 3.3 −8.5 ± 6.3 <0.001
Age (years) 27.0 ± 4.8 27.0 ± 3.6 29.4 ± 5.6 n.s.

Body height (cm) 171.1 ± 8.1 168.1 ± 8.6 171.1 ± 9.2 n.s.
Weight (kg) 70.9 ± 15.4 66.1 ± 14.0 62.9 ± 11.0 n.s.

BMI (kg/m2) 24.2 ± 4.3 23.3 ± 3.8 21.3 ± 2.5 n.s.
Driving experience (years) 7.2 ± 4.6 8.6 ± 6.1 7.1 ± 2.8 n.s.
Driving per week (hours) 5.1 ± 4.2 4.7 ± 4.2 2.5 ± 2.9 n.s.

Note. M—Male; F—Female; WSD—walking speed differences (differences = post-walking speed—pre-waling
speed); BMI—Body mass index; n.s.—Not statistically significant.

3.2. Influence of Prolonged Driving on Spatiotemporal Characteristics

Spatial and temporal data differ between the subgroups in gait performed in two
walking periods (Table 2). The C1 adopted slightly (based on mean differences) faster-WS
(p < 0.001) with a higher Cadence (CA) (p = 0.002). Therefore, the walking strategy resulted
in a shorter TODST (p = 0.002). Statistical analysis indicated similar changes with the C2
subgroup, but with one difference. The C2 performed post-steering gait with higher WS
(p < 0.001) and higher CA (p < 0.001), and consequently, this walking strategy resulted in a
faster Gait cycle time (GCT) (p < 0.001) with lesser Terminal double support time (TDST)
(p < 0.001) and Total Double support time (TODST) (p < 0.001). Decreased WS (p < 0.001)
among the C3 participants culminated in lesser CA (p = 0.041) and prolonged TDST
(p = 0.002). Moreover, the newly selected walking strategy prolonged TODST (p < 0.001)
and increased the GCT as well (p = 0.010). Summarised gait outcomes accomplished before
the driving process (Table 2) did not indicate a statistically considerable difference between
the subgroups. The change in the walking strategy after steering showed a significant effect
on the results between C2 and C3, resulting in slower WS (p = 0.004) with prolonged GCT
(p = 0.016), TDST (p = 0.026), and TODST (p = 0.013) among the C3 participants.
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Table 2. Spatial and temporal data for pre- and post-steering gait (data reported in the mean ±
standard deviation).

Spatiotemporal Variable Period C1 C2 C3

WS (cm/s)
Pre 91.03 ± 9.79 96.61 ± 16.91 97.80 ± 14.62
Post 93.88 ± 10.84 111.08 ± 15.96 89.28 ± 17.48

p-value <0.001 <0.001 <0.001

SL (cm)
Pre 54.57 ± 5.09 54.93 ± 5.60 57.56 ± 5.12
Post 55.76 ± 8.36 57.66 ± 7.73 54.80 ± 4.72

p-value n.s. n.s. n.s.

CA (steps/min) Pre 101.05 ± 7.73 104.91 ± 9.50 102.40 ± 7.65
Post 104.55 ± 9.48 113.16 ± 7.14 98.30 ± 8.64

p-value 0.002 <0.001 0.041

SST (s)
Pre 0.44 ± 0.04 0.43 ± 0.04 0.44 ± 0.05
Post 0.43 ± 0.04 0.41 ± 0.03 0.45 ± 0.04

p-value n.s. n.s. n.s.

IDST (s)
Pre 0.17 ± 0.04 0.15 ± 0.04 0.15 ± 0.04
Post 0.16 ± 0.03 0.13 ± 0.03 0.17 ± 0.06

p-value n.s. n.s. n.s.

TDST (s)
Pre 0.17 ± 0.03 0.18 ± 0.04 0.16 ± 0.02
Post 0.16 ± 0.03 0.14 ± 0.03 0.20 ± 0.08

p-value n.s. <0.001 0.002

TODST (s)
Pre 0.34 ± 0.06 0.33 ± 0.05 0.31 ± 0.06
Post 0.32 ± 0.05 0.28 ± 0.05 0.37 ± 0.10

p-value 0.002 <0.001 <0.001

GCT
Pre 1.20 ± 0.08 1.21 ± 0.12 1.15 ± 0.13
Post 1.17 ± 0.10 1.10 ± 0.09 1.23 ± 0.10

p-value n.s. <0.001 0.010

STF (%)
Pre 64.37 ± 2.30 62.45 ± 4.77 65.36 ± 1.87
Post 64.00 ± 2.22 62.12 ± 3.50 65.65 ± 4.05

p-value n.s. n.s. n.s.

SWF (%)
Pre 35.63 ± 2.30 37.55 ± 4.77 34.64 ± 1.87
Post 36.00 ± 2.22 37.88 ± 3.50 34.35 ± 4.05

p-value n.s. n.s. n.s.
Note. C1—Cluster 1; C2—Cluster 2; C3—Cluster 3; WS—Walking speed; SL—Step length; CA—Cadence; SST—
Single support time; IDST—Initial double support time; TDST—Terminal double support time; TODST—Total double
support time; GCT—Gait cycle time; STF—Stance phase; SWF—Swing phase; n.s.—Not statistically significant.
Statistically significant difference is between pre-and post-steering gait indicated as (p < 0.05) or (p < 0.001).

Additionally, the multiple comparisons with applied Bonferroni correction also uncov-
ered that C2 participants increased SF (p = 0.044) and SWF (p = 0.044) compared to the C3
subgroup. A comparison between participants with increased post-steering gait showed
that the C2 had a higher WS (p = 0.004) and CA (p = 0.038) than the C1 subgroup, but there
were no differences in the remaining spatiotemporal variables.

3.3. Postures during Prolonged Driving

Transition in self-selected driving strategies between two driving periods is displayed
in Figure 2. Adopted driving postures by C2 and C3 participants did not change between
the two recording periods (5th and 120th minute of constant driving), while preferred
driving angles among the subgroup C1 were affected only in the wrist (p = 0.044), extending
it during the drive.
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Preferred driving angles among the subgroups do differ (Figure 2). C3 subjects
adopted flexed hip (p = 0.005) and knee (p = 0.049) postures at the initial recording compared
to the C2 subgroup. There was no significant between-group difference in preferred driving
postures among subgroups after 120 min of driving.

3.4. Average Interface Pressure and Covered Area on the Drivers’ Seat Pan
3.4.1. Interface Pressure Variables by Total Seat Pan Area

The mean of interface pressure variables and a significant difference between the two
periods are illustrated in Figure 3. The time spent steering the driving simulator affected
contact area (all p < 0.001) and applied interface pressure (all p < 0.001), linearly increasing
it over the driving time. Noteworthy, participants with decreased WS (C3) covered lesser
seat pan surface area at the initial recording compared with faster (C2; p = 0.045) and
slightly faster (C1; p = 0.034) walking subgroups.
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3.4.2. Average Interface Pressure by Defined Zones

The measurement of applied interface pressure was significantly increased over the
driving time in different seat pan areas (all p < 0.001). Further examination of interface
pressure and differences between recording times, considering the subgroups individually,
was reported in Figure 4.
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C3—Cluster 3; 5th minute of driving; 120th minute of driving; Statistically significant difference is indicated as * (p < 0.05)
and ** (p < 0.001).

The greatest increases in applied average interface pressure occurred under the but-
tocks area (left buttock C1 = 35.6%; C2 = 46.2%; C3 = 42.1%; right buttock C1 = 46.9%;
C2 = 80.7%; C3 = 60.7%; respectively). Increases in both thighs were reported after 120 min
of steering the driving simulator as well (left thigh C1 = 40.6%; C2 = 37.9%; C3 = 48.3%;
right thigh C1 = 48.4%; C2 = 74.1%; respectively). The lowest pressure comparing it
with the previously mentioned lower limbs areas, yet with significant difference between
two recording periods, were recorded at bolsters (left bolster C1 = 52.2%; C2 = 52.4%;
C3 = 33.33% and right bolster C1 = 47.1%; C2 = 86.7%; C3 = 63.6%, respectively).

Although the differences in percentage were variated among the subgroups, Tukey’s
HSD test did not indicate any substantial effect in the mean values by zones among
groups, except for the left bolster (LB), where C1 generated a higher interface pressure C3
group (p = 0.021).
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4. Discussion
4.1. Variation of Spatial and Temporal Data between Two Gait Cycles

The main goal of this study was to examine WS alterations between two walking
periods and determine whether the changes of performed gait were made by discomfort
developed over the driving time. The findings of this study indicate that participants’
self-selected WS has changed after the prolonged driving period. Interestingly, WS has
increased for two groups (C1 and C2 groups). At the same time, 18% of the sample reduced
WS (C3 group) after two hours of steering the driving simulator.

Higher WS directly contributes to higher muscle activity and dynamic musculoskeletal
load and the greater kinetics values in the joints of the lower limbs [14,26]. Furthermore, a
faster post-steering gait tends to affect the spatial and temporal variables [27], increasing
the SL [28] and spending less time in the GCT [29]. Aiming attention to participants with
faster WS after the long-time driving, the analysis of records indicated that the number of
walking steps increased. At the same time, the TODST decreased.

Furthermore, the applied statistical methods showed that the new self-selected WS
among the C2 group differs in shorter GCT, which is shorter, and in the TDST, increasing
the SL (the mean value increased by 2.73 cm) after the prolonged driving. The prolonged
driving process may trigger physiological and psychophysical responses, causing muscle
exertion during the extended time driving and provoking participants to lose control of
their self-selected comfort speed [14]. The different walking strategies might require more
muscle activity of the lower limbs, more musculoskeletal dynamic load, and probably,
dissimilar angular kinematics after two hours of the driving process [14,30,31].

Subgroup C3 opted for a different strategy, using a more cautious gait pattern, reduc-
ing the WS to counteract the postural instability [32]. The new walking pattern resulted
in a prolonged GCT, TDST, and TODST. Decreasing the WS is not an obvious sign for the
risk of falls since it is not clear whether individuals reduce it to prevent falling or decrease
their movement as an adaptation to fear of falling [28]. Indeed, decreasing WS by 10 cm/s
will increase the risk of falls by 7% [33]. The outcome indicated that the C3 reduced by
8.52 cm/s (on average) in the post-steering gait, potentially growing the risk of falling.
A strong association was established between the risk of falls and decreased SL [28]. In
their investigation, Verghese et al. [33] have concluded that reducing the SL by 3 cm will
undoubtedly affect gait stability. It appears that the C3 participants, along with slower WS,
tendentiously reduced the SL by on average 2.76 cm. Although the shorter SL was not
statistically significant, it should be considered since it can disturb postural stability among
the slower walking participants [33]. Additional factors responsible for the disturbance of
walking strategies are fatigue in the lower limb muscles caused by long-time driving [34]
and exposure to the higher amplitude of whole-body vibration, contributing to postural
instability [35].

4.2. Influence of the Driving Venue and Long-Time Driving on Preferred Driving Postures

Another element impacting drivers’ fatigability is the non-adjustable driving venue [10],
limiting participants to select their comfortable vertical distances of the seat and steering
wheel before the driving process. This issue might cause drivers to choose new, probably
not their preferred, driving postures. The lack of a driving space can directly provoke
discomfort among taller participants [36]. However, statistical analysis did not reveal any
anthropometric difference among the participants. At the initial recording, self-selected
driving strategies differ among slower (C3) and faster (C2) walkers in the knee and hip an-
gles. The C3 participants choose to adopt more flexed angles. Noteworthy, the changes did
not occur after 120 min of the driving process. Reposition of the preferred driving angles
can signify felt discomfort in a specific part of the body. This indicates a strategy to reduce
perceived discomfort in a body part, repositioning the body angle [37]. Subsequently, those
changes in driving angles were not statistically significant. The only statistically essential
difference was in the wrist among the C1 group, which could be recognised as perceived
discomfort [3] caused by long-time driving.
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4.3. Growth of Applied Interface Pressure Variables over the Driving Time

The first recordings of the covered area have indicated differences among the groups.
It has been shown that participants with reduced WS (C3) covered a lesser seat pan area
compared with the C2 (higher WS) group. This contrast in the covered area may be due
to the different driving strategies adopted by these two groups. The prolonged driving
process has subsequently influenced participants, and variation in the covered area was
also established for the minute 120th (Figure 3b). Moreover, several authors suggested
an interface pressure threshold value of 4.3 kPa below which capillary closure does not
occur [21,22]. This value of interface pressure on the buttock skin is often used as a
critical value of developing discomfort or in combination with long-term sitting deep tissue
injuries such as pressure ulcers [38]. Interface pressure distribution over the lower limbs
area did not exceed thresholds at the beginning of the driving process, except for the C1
group, where slightly higher values were reported under the thighs (LTH 3.12 ± 1.0 kPa;
RTH 3.18 ± 1.3 kPa) area than recommended [23]. After two hours of steering the driving
simulator, average interface pressure exceeded the defined threshold values (see Section 2.5)
for the lower limbs area and reported higher values for each zone (Figure 4). At the end of
the prolonged driving process, the most critical pressure values were under the thighs area,
which could speed up perceived local body discomfort [23] and influence gait performance.
As the result of the uniformity of the interface pressure distribution on the buttocks/thigh
area pain/discomfort, or in the worst-case scenario, tissue ischemia might happen [10,39],
which could speed up local body discomfort and influence performed walking strategies
after the long-term driving. Furthermore, studying the interface pressure cannot predict
the sub-dermal tissue strains and stresses [40] but could prevent skin injuries [12] and
long-time deep tissue damages [40].

4.4. Limitations

This study investigates several strengths and limitations that need to be considered
when interpreting its findings. Participants were composed of unprofessional, healthy,
and young drivers. Such classification of non-professional drives may narrow a range of
potential predictions, such as the influence of different anthropometric attributes and ages
on preferred driving strategies, applied pressure, physical condition, among others. An
additional limiting factor might be the influence of long-term exposure to a demanding
virtual environment and the possible impact on their walking pattern. On the other
side, the objective measurements indicated discomfort development and alteration in
performed walking strategies. More significant consequences should be expected among
older professional drivers based on the outcomes obtained in this study on healthy and
young drivers. Studies investigating the discomfort developed during long-time driving
and its influence on performed walking strategies were not identified. As the next step, it is
important to investigate changes in angular kinematics and centre of the pressure variation
to expand understanding of the influence of prolonged driving on gait pattern variation.

5. Conclusions

The present research showed that the applied interface pressure variables on the
drivers’ seat pan have increased over the driving time. Uneven pressure distribution has
been observed, with the highest prevalence under the buttocks and thighs area. Charac-
terised groups have shown signs of discomfort, reaching the threshold value of average
interface pressure over the total seat pan area at the 5th minute of driving. Average inter-
face pressure under the buttocks and thighs area has exceeded threshold values after two
hours of steering the driving simulator. Therefore, it can be expected that higher pressure
values under the lower limbs might hamper blood circulation and cause local discomfort
and therefore influence walking patterns.

There is strong evidence that physiological and psychophysical responses of the long-
driving process and developed driving discomfort triggered alteration in WS, increasing
it among most participants. Two hours of constant steering has influenced performed
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comfortable walking strategies among C3 participants. New walking strategy reflected
in slower WS with prolonged GCT and Terminal and double support time. Additionally,
preferred gait tended to reduce the SL new walking patterns among the C3 group.
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