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Summary

With an increase of almost 63 percent in the last decade, Amsterdam Airport Schiphol is expanding
the number of passengers using the airport to get to or from their destination. One of the Airport’s
objectives is on-time flight schedules to facilitate a pleasant flight process. Delays impose significant
risks for the airport, even resulting in compensation claims by passengers at the airlines, which is the
primary concern of the airport. To ensure optimal flight processes, the main contractor of Schiphol
Airport started to condition-monitor one of the critical assets in the turnaround process at the airport,
the Passenger Boarding Bridge (PBB). However, until now, improving the reliability of the PBB when
in use, based on the monitored data, takes place after the fault has occurred. Which, therefore, does
not use the data’s possibilities to predict the future health state of the PBB to its maximum.

The PBB is classified as a critical asset in the turnaround process. By installing additional sensors at
three PBBs at Schiphol Airport, the goal is to enhance the current maintenance strategy and increase
the reliability of the PBBs. At Schiphol, corrective and preventive maintenance are executed. Cor-
rective maintenance is done when a sudden failure of the PBB happens, and a maintenance ticket
is sent to the maintenance mechanics of the main contractor, Volkerinfra. Preventive maintenance is
planned on a quarterly, half-year and yearly basis. To get more insight into the behavior of the PBB,
Volkerinfra installed extra sensors to monitor the bridge’s condition in real-time. However, the different
failure mechanisms must be made clear to better understand what needs to be predicted. Based on
the analysis of the Site Acceptance Test protocol and the maintenance tickets, it was found that the
PBB mostly fails due to technical causes instead of degradation failure. Furthermore, the conclusion
was drawn that the classifications of the maintenance tickets were too general to derive conclusions
from to know what caused the failure. Without the root cause of failure, an accurate prediction model
can not be made to predict and prevent the impending failure. It was, therefore, necessary to include
finding the root cause of the failure of the different sub-systems in the prediction model.

From the literature, it was found that the development of a predictive maintenance (PdM) strategy for
multi-component systems is still in the beginning phase compared to single-component models. As
the complexity increases with more components, it is critical to ensure an easy-to-understand solution.
Therefore, combinations of single-model approaches are recommended when developing a PdM strat-
egy. Here, the advantages of each model can be used to reduce the system’s complexity. Second, the
objective of a PdM strategy of a multi-component system could be conflicting within the system, and a
trade-off must be found. With the different components within the system, the relationships between
the components and predictions of the health uncertainties must be included to describe the system
accurately. PdM can be enhanced enormously with the upcoming Industry 4.0 and the nine pillars.
Especially in data-driven methods, Big Data and the use of sensors enable the monitoring of a system
at all points. However, this translates into enormous data storage and unnecessary data collection.
With the complexity and size of multi-component systems, a well-defined architecture is needed to en-
sure that the correct data is collected. From the Industry 4.0 pillars, the Cyber-Physical Systems (CPS)
architecture can be used to develop a PdM strategy.

This CPS architecture is used to develop the PdM strategy for the PBB. With the 5C architecture pre-
sented in the literature, a lower and higher-level model is created for a multi-component system. The
lower-level model consists of the connection, conversion and cyber layer. In the connection layer, the
root causes of failure are first determined before data collection occurs. It was found that Big Data
enables accessible data collection but can take enormous proportions in size. Therefore, a clear vi-
sion of what data to collect must be present. In the conversion layer, feature extraction and dimension
reduction take place. With this data to information part, the health status of each sub-system is de-
termined in the cyber layer and serves as the output of the lower-level model. The higher-level model
consists of the cognition layer and the configuration layer. In the cognition layer, the health status of
each sub-system is used to predict the system’s health status using a Dynamic Bayesian Network.
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Vi Summary

Lastly, decision-making to find the optimal time to maintain the system and the individual sub-systems
that occur in the higher-level model is executed in the configuration layer.

After developing the theoretical CPS architecture, the first step in implementing it on the PBB was done.
Due to the complexity of this multi-component system, it was impossible to implement the whole PBB
in the proposed architecture due to time constraints. Therefore, only the canopy is analyzed to prove
the proposed CPS architecture. The KPIs were defined as reliability, repair time and repair rate to
evaluate the benefits of the newly developed maintenance strategy. A base case was defined based
on historical data and the current maintenance situation to compare the newly developed maintenance
strategy to the current situation.

The base case input was used to determine the optimal maintenance moment for the sub-systems of
the canopy individually. After that, the global opportunistic model was used to determine the optimal
maintenance group together with the group’s optimal maintenance moment. It was shown that the
model can determine the optimal maintenance moment for the sub-system individually and for the op-
timal maintenance group by finding the lowest repair rate while respecting the availability constraints.
By implementing the synthetic dataset in the cognition layer, the DBN updates the failure probability
of the canopy drive and a new decision-making of the optimal maintenance moment is made. The
results show that the higher-level model can update the model’s reliability and choose the mainte-
nance moment with the lowest repair rate while respecting the availability constraint. When applying
the decision-making model to the synthetic dataset, the result shows that the optimal maintenance mo-
ment is shifted to a later bridge use. By determining this optimal maintenance moment, the proactive
repair time can be used, which is less than the corrective repair time. This proactive repair time is also
investigated in terms of how it influences the optimal maintenance moment and repair rate for the base
and synthetic dataset case. The results showed that the height of the proactive repair time can influ-
ence the outcome of the optimal time to do maintenance for one of the sub-systems. The influence of
the number of mechanics on the repair rate was significant; it was seen that increasing the mechanics
from only one to two already decreased the total repair rate but did not change the optimal maintenance
moment.

It was concluded that a predictive maintenance strategy could be developed by implementing a CPS
architecture, which can benefit the airport’s turnaround process. By addressing the root causes of
the system’s failure, adequate data collection can be done, enabling continuous health monitoring of
the bridge, its sub-system and its components. With these predictions, decision-making can occuir,
allowing proactive maintenance moments at which the repair rate is at its lowest while respecting the
availability constraints of aircraft stand. With this, the reliability of the PBB is justified and improved,
and unwanted downtime during the turnaround process is prevented.

For further research, it is recommended to focus on applying multi-model approaches and how to im-
plement this on a multi-component system to reduce the complexity and ease its usage in practice.
Second, it is recommended to explore further if a DBN is the right tool for the cognition layer, and if
so, more research must be done for the PBB and the conditional probabilities. Finally, validating the
decision-making model in the configuration layer is recommended before implementing it in the real
world.
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Introduction

The aviation industry has seen enormous growth (International Civil Aviation Organization, 2019). This
growth has led to the will of airports to expand in size and flight numbers (Niestadt, 2021). This in-
crease in capacity needs to be captured between the existing limits of the airport. With airports func-
tioning within the top of their limitations, delays impose a risk for the airports. Besides the passengers’
complaints and the inconvenience at moments of delays, the delays can induce significant costs for
the airlines, the primary concern of the airport company (de Alvear Cardenas et al., 2017). It was es-
timated that the average cost of aircraft block time, the time difference an aircraft goes into and out of
the blocks, also known as the turnaround time, in the United States was 80.52 dollars per minute delay
(Airlines for America, 2022). This resulted in an overall cost of 33 billion dollars due to delays in the
United States in 2019 (Federal Aviation Administration, 2020). The Passenger Boarding Bridge (PBB),
figure 1.1, is a critical asset in the turnaround process. The bridge ensures that passengers can walk
dry and in a comfortable climate regardless of the conditions outside.

Figure 1.1: The Passenger Boarding Bridge



1. Introduction

Figure 1.2 shows a close-up of the activities happening during the turnaround process. The red blocks
indicate the actions of the PBB, the scope of this research, and the blue blocks indicate the activities
outside the scope of the research. This figure shows that if the bridge fails after the aircraft goes into
the blocks, all activities after and including the passengers’ unloading, will be delayed. If the bridge
fails after boarding, the aircraft cannot leave the aircraft stand, and the turnaround time will again be

delayed.
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Figure 1.2: The turnaround process
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In figure 1.3, all the activities involved at the operational side for one flight process are shown. The high
number of relationships between the activities creates a rather complex situation. Different parties are
fulfilling these activities around the aircraft stand (ground handlers, cleaning staff, catering etc.) and
are involved during the handling of the aircraft, as seen in the figure. This results in that the turnaround
process also depends on their willingness to adapt to the situation when the PBB fails.
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1.1. Schiphol Airport 3

1.1. Schiphol Airport

The PBBs, which are the main subject of this thesis, are located at Schiphol Airport. Royal Schiphol
Group is the owner and operator of Amsterdam Airport Schiphol. Schiphol Group also owns and oper-
ates Rotterdam The Hague Airport, Lelystad Airport and has a stake in Eindhoven Airport. The airports
where Schiphol Group operates create value for society and the economy, where safety is the critical
enabler. As one of the oldest international airports, Schiphol landed her first airplane on 19 Septem-
ber 1916. In the following years, Schiphol Airport expanded and became a global hub for departures,
arrivals, and transfers (Schiphol, 2022). Today Schiphol aims to grow to be Europe’s preferred airport,
realizing this by being best in class with respect to asset management. This can only be achieved
through collaboration between Schiphol and its contractors (Verheijden, 2018). One of these contrac-
tors is VolkerWessels Infrastructuur (Volkerlnfra), which focuses on new construction, maintenance,
and renovation of Schiphol’s infrastructure and systems. As a main contractor of Schiphol, one of their
concerns is perceel 2 on Schiphol; see figure 1.4. Within perceel 2, Volkerinfra is crucial in ensuring
optimal availability of the infrastructure and all systems needed for managing the airplanes and the
aircraft stands, and thus the PBB. (VolkerWessels, 2021).
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Figure 1.4: Perceel 2 (green) at Schiphol Airport. Snapshot from Schiphol Maps (maps.schiphol.nl)

1.2. Problem definition

The growth of the aviation industry is also visible at Schiphol Airport. From 2010 to 2020, Schiphol Air-
port increased from 45 million to 72 million passengers using the airport. This is an increase of almost
63 percent more passengers using the airport to get from or to their destination (Centraal Bureau voor
de Statistiek, 2022). To facilitate a pleasant pre and after-flight experience, all operations on Schiphol
must run smoothly. With the airport functioning 24/7, a tight schedule is maintained, thus limiting space
for delays and a last-minute change of assets. Therefore, everything must work correctly to ensure
optimal passenger journeys and prevent flight delays. As the introduction mentions, the PBB is critical
in ensuring on-time flight processes. If an aircraft is delayed, passengers can claim compensation for
the imposed delay by the airline company. Also, a delay can have an influence on the operational
processes. A delay can result in the aircraft being unable to depart within its own time slot. Flight
time slots are used as timetables for the airport to regulate all the departing and arriving flights. Within
the designated time slot, usually 20 minutes (Schiphol Group, 2021), the airlines can use all airport
infrastructure (for example, taxi lanes and runways) necessary for the successful operation of the flight
(Airport Council International et al., 2020). However, when an aircraft misses its time slot, it must stay
on the ground until a new time slot has been found. Within a busy airport like Schiphol, the flight delay
will increase even more.
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Although all those passengers continuously board flights, the bridges are not continually used. An
example of the bridge use can be seen in figure 1.5. The blue bars indicate that aircraft handling
activities occur at the aircraft stand. The figure shows that there is significant time between each
bridge use, making it attractive to do maintenance in these time slots. The PBBs are not used yearly
for more than 500 hours of 3-hour time slots. In these 3-hour time slots, Volkerinfra does preventive
maintenance on a time-based schedule (van Barneveld & Verheijden, 2019).

00 AN 10:00 AM 00 AN 12:00 Ph

Figure 1.5: An example of the bridge use of stand D16

To get more insight into the failure mechanisms of the PBB, Volkerinfra installed sensors in 2019 on
three PBBs at Schiphol, located at stand D16, D18 and D51. Together with the data gathered from the
bridge Programmable Logic Controller (PLC), the data is visualized in Volkerinfra’s program Flexmoni-
toring to see if the PBB failure mechanism could be seen or predicted based on the data. An example
of visualized sensor data in Flexmonitoring is shown in figure 1.6.
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Figure 1.6: Example of the monitored data visualized in FlexMonitoring

If a prediction could be made about when the PBB will be ’out of order’ within a specific time range, this
would improve the turnaround process on two points:

« First, from an operational-based vision, a prediction model could predict if there is a high prob-
ability of failure during the in-time use of the bridge. If this is the case, maintenance activities
can be done during the time frame, the unused time slots described above, before the bridge is
used. Even if the prediction has a high likelihood of failure during the planned in-action time of
the bridge and no maintenance could occur before using the bridge, a gate change, leading to a
shift in aircraft stand, could be done. Resulting in no unnecessary downtime and delays.

» Secondly, from a cost perspective. The delay time will be prevented by proactively doing the main-
tenance described above or changing the gate stand. This will, therefore, reduce the associated
cost related to the delay.
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However, until now, the monitored data was looked into to see if the bridge’s failure could be related
to anomalies in the data after the failure occurred. This resulted in that only warnings have been im-
plemented, which will become active if certain thresholds are exceeded. Therefore, the potential of
using the sensor data in predicting a failure of the PBB before it occurs has not been reached yet.
Secondly, the time the operator uses to (de)connect the PBB varies between 40 seconds and more
than 5 minutes. Nevertheless, these are short periods of in-use time of the PBB, resulting in a more
complex situation than continuous monitoring of an asset used for hours, which is seen more often in
literature. This has led to the following problem statement:

Currently, improving the reliability of the Passenger Boarding Bridge when in use, based on the moni-
tored data, takes place after the fault has occurred. Which, therefore, does not use the data’s possibil-
ities to predict the future health state of the Passenger Boarding Bridge to its maximum.

1.2.1. Knowledge gap

The literature is investigated to find how a prediction model can be developed to implement a pre-
dictive maintenance strategy for the PBB. Until now, no papers have been found regarding predictive
maintenance or other maintenance strategies concerning the PBB. The PBB can be classified as a
multi-component system or asset within the airport. When consulting the literature regarding multi-
component systems or assets in combination with predictive maintenance, various papers could be
found within the production industry, for example, de Pater and Mitici (2021), Dinh et al. (2022), and
Rebaiaia and Ait-Kadi (2022), but besides papers on predictive maintenance of a baggage handling
systems (Gupta et al., 2023; Koenig et al., 2020; X. Zhang et al., 2022), none regarding an asset in the
airport infrastructure. Gashi and Thalmann (2020) state that the research in predictive maintenance
of multi-component systems is still in an early phase. According to the authors, research until now is
more theoretical than practical, and an investigation into applying theoretical knowledge in practice is
needed. Also, a new industry direction, Industry 4.0, is upcoming. The Industry 4.0 pillars can be used
within the predictive maintenance strategy, also known as predictive maintenance 4.0, and could add
value to the maintenance strategy of the PBB (Carvalho et al., 2019; Shin et al., 2022; Silvestri et al.,
2020). This thesis will, therefore, contribute to the literature on the following points:

» Developing a theoretical predictive maintenance strategy for a multi-component system in a prac-
tical setting.

* Applying and evaluating a theoretical predictive maintenance strategy in practice based on real-
world data.

» Adding knowledge of a predictive maintenance strategy in combination with Industry 4.0 of a
multi-component system in a practical setting.

1.3. Research goal and objectives

The research goal has been formulated based on the problem definition described above. The research
goal is to develop a prediction model to forecast an impending failure of the PBB to prevent downtime of
the PBB during in-time use. This forecast must then result in maintenance activities of the PBB being
done proactively, or a real-time gate switching could be suggested. All this together must lead to a
decrease in the time delay of the turnaround process of the aircraft, which is currently directly affected
if failure of the PBB occurs. The research goal can be divided into the following research objectives:

* The development of a prediction model for the PBB.

» The implementation of the developed prediction model into the current maintenance strategy of
the PBB.

+ Advice if predictive maintenance is beneficial for the turnaround process of Schiphol Airport and
how to expand the strategy to multiple PBBs.
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1.4. Research scope

At Schiphol Airport, 91 PBBs are located. 65 of them are CMIC Tianda passenger boarding bridges.
In this thesis, the maintenance tickets and related failures of the CMIC Tianda bridges will be used for
analysis. These maintenance tickets are from 1 April 2019 to 31 December 2022. The sensor data
from the sensors installed by Volkerinfra are monitoring three CMIC Tianda bridges. The passenger
boarding bridges are located at stands D16, D18 and D51, marked with yellow markers in figure 1.7.
This sensor data is gathered starting from 1 January 2020. Although both datasets were partially col-
lected during the COVID-19 pandemic and the number of flights significantly decreased at Schiphol
Airport (Schiphol, 2022), it can be expected that the number of maintenance tickets in regular opera-
tion numbers will be higher. However, the data is used for analyzing the failure mechanisms; therefore,
the data is assumed to be fit for this research.

An innovation proposal is currently under investigation regarding the bumpers that ensure a safe con-
nection with the aircraft. In this proposal, a new way has been found to decrease the issues when
connecting the bumper to the aircraft. If this proposal results in a positive outcome, this new method
will be rolled out on the PBBs. It was therefore decided in consultation with the company supervisors
to only describe the bumpers but not consider the bumper failures to predict its future state.

Real-time switching of aircraft stands when maintenance of the PBB is not possible can be the solution
if a failure of the PBB is predicted. Although an Internet of Things principle could be attractive between
the bridges when a shift of gates is needed, no research on the communication between different PBBs
will be conducted.

In this research, the objective of the predictive maintenance strategy will, besides predicting the future
health state of the system, be to increase the reliability of the PBB in in-time use to prevent a delay in the
turnaround process. This means that this research will look into decreasing unplanned maintenance
moments. Decreasing the planned maintenance moments, the preventive maintenance intervals, will
not be looked into in this research. The PBBs at Schiphol Airport are all but one human-operated. Only
maintenance tickets related to the bridge’s technical errors will be considered in this research. Human
operating errors will, therefore, not be considered in this research.

Figure 1.7: Location of stand D16, D18 and D51. Snapshot from Schiphol Maps (maps.schiphol.nl)



1.5. Research questions 7

1.5. Research questions
To fulfill the research goal and objectives, the following research question has been formulated:

How to realize a predictive maintenance strategy for Passenger Boarding Bridges to benefit the air-
port’s turnaround process?

To answer the research question, multiple sub-questions were composed:
* What are the failure mechanisms of the Passenger Boarding Bridge?
* What is the current state of maintenance activities of the Passenger Boarding Bridges?
* What are the state-of-the-art techniques regarding predictive maintenance?
* How can the prediction model be developed?

* How can the developed prediction model be implemented in the maintenance strategy of the
Passenger Boarding Bridge?

» How does the developed predictive maintenance strategy perform in relation to the turnaround
process?

1.6. Methodology & thesis outline

To investigate how a prediction model for a PBB can be realized, this chapter gave background infor-
mation regarding the problem. It defined the reason why this research will be conducted. To visualize
the research structure, a conceptual framework is presented in figure 1.8. In chapter 2, the current
situation of the PBB at Schiphol will be investigated. In this analysis, the working principle of the PBB
will be presented to know how the PBB is operated. From maintenance logs provided by Volkerinfra,
qualitative data is analyzed to find the root causes of failure. In the analysis, the maintenance logs
will be combined with the Failure Mode, Effect and Critical Analysis (FMECA) and the Site Acceptance
Testing (SAT) protocol of the PBB to link the failure mechanism to the sub-systems of the bridge. From
here, the bridge’s critical sub-systems regarding the operation of the PBB will be defined. In chapter 3,
literature research will be executed to investigate what has already been written about predictive main-
tenance. This will provide a clear overview of predictive maintenance and the knowledge needed about
state-of-the-art techniques for predictive maintenance. A Cyber-Physical System (CPS) architecture
will be used in this research (J. Lee et al., 2015; Song et al., 2021) and is presented in chapter 4. In
the first level, the connection level data will be gathered based on expert knowledge and maintenance
ticket analysis. At the conversion level, feature extraction and dimension reduction take place. At the
cyber level, the health status of each of the sub-systems is determined. This is done with a multi-model
approach. At the cognition level, the system is analyzed to determine the health status of the PBB via
a Dynamic Bayesian Network (DBN). Based on the health status of the sub-systems and the system,
decisions for actual maintenance activities for the system or the sub-systems are made at the config-
uration level. To prove the model, a simulation model will be used in chapter 5. Here, a base case
will be defined, and after implementing the model and verifying, a simulation will be done to see the
performance relative to the current maintenance strategy of the PBB. The results of this simulation will
be presented in chapter 6. After the simulation results, the benefits and drawbacks will be discussed
in chapter 7, followed by a conclusion in chapter 8. Possibilities concerning further research will be
presented in the recommendations.
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Figure 1.8: Conceptual framework of this research



Passenger Boarding Bridge

In this chapter, the PBBs at Schiphol Airport will be discussed. This chapter will answer the sub-
questions: "What are the failure mechanisms of the Passenger Boarding Bridge?” and "What is the
current state of maintenance activities of the Passenger Boarding Bridges?”. First, general information
about the PBB and the working principle will be described, followed by the current maintenance proce-
dure in section 2.3. In section 2.4, the failure mechanisms of the different sub-systems of the PBB will
be described.

2.1. CMIC-Tianda Passenger Boarding Bridges
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Figure 2.1: Schematic overview of the Passenger Boarding Bridge

The three PBBs are from the company CMIC-Tianda. Figure 2.1 shows a schematic overview of the
bridge. The bridge can be divided into different sub-systems. The rotunda is the connection between
the bridge and the main structure of the terminal building via a fixed link bridge. When operating the
rotunda column, floor, ceiling, and corridor wall panels adjacent to the terminal stay stationary, while
the rotunda’s rigid frame and roof rotate on the column. From the rotunda, two telescopic tunnels are
connected. As the name suggests, the tunnels have a telescopic crosssection over the length. This is
because the tunnels can slide over each other to extend or reduce size when the bridge is operated
to reach a specific location. The elevation system supports the outer tunnel. The elevation system
enables the bridge to be lowered or raised to achieve the same height as the aircraft doors. Due to the
variety of aircraft models and door heights, this height can not be preprogrammed into the bridge as
a constant value. The lowering and lifting are done hydraulically. The elevation system is connected
to the wheel bogies. The wheel bogie includes the frame, tires, wheel drive reducers and motors and
the safety systems for the wheels. The wheel bogie system ensures the bridge can drive towards any
location within the workspace. The elevation system and wheel bogies can be seen in figure 2.2.

9
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Figure 2.2: The wheel bogies and the elevation system of the PBB
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Figure 2.3: Schematic overview of the aircraft stand

The workspace of the PBB is a limited area within the aircraft stand, which is visualized in figure 2.3.
At the end of the telescoping tunnel, the cabin is connected, figure 2.4. This cabin can rotate to the
left or right to adjust to the plane. The operator panel is located within the cabin. From this panel,
all movements and actions of the bridge are controlled from here. The canopy connects to the cabin,
which acts as a roof between the cabin and the plane. Also connected to the cabin is the trim. The
trim ensures the bridge automatically levels with the aircraft when height changes. This is because
when the aircraft is unloaded, the aircraft will rise when the weight becomes less as the passengers

and luggage leave the aircraft (Aviation Learnings Team, 2020).
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Figure 2.4: The cabin of the PBB seen from the outside, the canopy and the trim arm

2.2. Working principle

The PBB is used in two situations: from the parking position, the left side in figure 2.5, towards a just
landed aircraft, and secondly, in the situation when connected to the plane, the right side in figure
2.5 and it needs to go back towards its parking position. In the following two paragraphs, the PBB
procedure in those two situations will be described. It is important to notice that the PBBs are all but
one human-operated.

Figure 2.5: The two starting situations of the PBB. On the left is the parking position, and on the right,
it is connected to the aircraft.

From starting position towards connection with the aircraft Before any operation with the PBB
occurs, the operator must check if the area around the PBB is clear of any obstacles or persons. Only
then can the operation of the PBB start to take place. First, a check must be done to see if all the lights
of the buttons are working. The PBB is then activated by pressing the button "HAND”. The button
"HAND” will light up, and the hydraulic pumps will be started. To drive the PBB and connect it to the
plane, the following conditions must be met:

» Both canopy switches need to be active; this means that the canopy is not extended
» The trim must be in the upward position

» The "trim on aircraft” warning must be off

All three bumper switches cannot be active

The roller door must be closed
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If all conditions stated above are met, the operator can operate the bridge towards the aircraft using
a joystick. The possible movements are the rotation of the cabin and the vertical and horizontal dis-
placement of the bridge. These can all be done simultaneously, and the automatic opening of the roller
door towards a half-opened stand will take place when the bridge is moved toward the aircraft. When
the bridge is 1.5 meters from the plane, the screen "aircraft detected” notification will pop up, and the
bridge will move at a lower speed. The bridge will stop moving forward when one of the three bumper
switches is activated. However, to correctly position the bridge with the aircraft, at least two bumper
switches must be active. If the aircraft detection and bumper switches are active, the button for the
trim lowering will be active. The trim will be lowered on the aircraft, and the notification "TRIM ON
AIRCRAFT” will be visible on the touchscreen. When the trim is active, the roller door will automatically
be opened. With the button "CANOPY DOWN?”, the canopy can be connected. Now, the bridge can be
used for loading and unloading of passengers.

From connected to the plane back to parking position Also, from this starting point, the surround-
ing area needs to be checked to be clear of obstacles and persons. The procedure begins with checking
the button lights. The green parking button must be pushed and held down within ten seconds. This
activates the automatic parking procedure. First, the roller door will close, and the canopy will be moved
in. Then, the trim will go back to the upright starting position. The wheel bogies will go towards the
same angle as the cabin to ensure the bridge will go backward from the plane in a straight line. The
bridge will drive back at low speed until the aircraft is no longer detected, 1.5 meters from the plane.
Then, the PBB will go at a normal pace to the preprogrammed parking position. When the bridge is at
its parking position, the parking button will light up, and the button can be released. Now, the PBB is
ready for the next handling.

2.3. Current maintenance situation

If there is a problem with the PBB, for instance, a malfunction of the bridge, complete failure or a strange
noise coming from the bridge, a maintenance mechanic of Volkerlnfra can come to inspect the situation.
A maintenance ticket needs to be made and sent to the mechanic. The maintenance ticket can originate
from three different sources, visualized in figure 2.6. The first way is that a problem occurs with the
bridge, and the operator stops the operation and calls business operations. At business operations, the
situation is assessed if a mechanic is necessary. If this is the case, a maintenance ticket will be sent
to the maintenance interface of Volkerlnfra. The maintenance tickets from this interface will be further
divided and sent to the assigned mechanics. In the second case, problems with the PBBs are noticed
by business operations via Schiphol’'s ASCM interface. This interface displays the current status of the
bridge; this interface can be seen in figure 2.7. If something is different than supposed, a notification
will be made in the ACSM system. Then, business operations must evaluate the report and, if needed,
create a maintenance ticket to be sent to VolkerInfra. To relieve business operations of checking the
notifications in ACSM, "smart tickets” are being implemented. These smart tickets directly transfer the
bridge’s problems into a maintenance ticket, instantly sent to Volkerinfra. However, the transition of
notifications in ACSM to smart tickets is still in progress. When the maintenance mechanic gets the
order to inspect the PBB, he or she must be at the PBB within 15 minutes if the handling of the aircraft
encounters a disturbance. Otherwise, this time to arrival is 60 minutes.

—»  Seenin ACSM

Mechanic needed

Moticed by the bridge
operator

An error occurs : 2 Volkerlnfra system e -
= = fing—————» 5
regarding the bridge Smart ticketing (Maximo) 4){ Maintenance tlcket}

Figure 2.6: Current maintenance ticket situation
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Figure 2.7: Snapshot of ACSM for the PBB (in Dutch)

2.3.1. FMECA
Besides the maintenance tickets associated with the malfunction and failure of the bridge, preventive
maintenance regarding the PBB is executed. The inspection, actions and the period of the preventive
maintenance activities are described in the FMECA. The FMECA “analyzes and ranks the risk associ-
ated with products and process, prioritizes them for remedial action, aiming to reduce their risks and to
provide information for making risk management decisions”(Martins et al., 2018). In figure 2.8, a part
of the FMECA document of the PBB is visualized.
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Figure 2.8: Snapshot of a part of the FMECA of the PBB (in Dutch)
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2.3.2. FlexMonitoring
To get more insight into the behavior of the PBB, VolkerInfra installed extra sensors to monitor the
bridge’s condition in real-time. This condition-based monitoring gives insight in:

» Three-phase current of the hydraulic motor

» Three-phase current of the left bogie motor
» Three-phase current of the right bogie motor
» The pressure of the hydraulic motor

* The outside temperature

* The cabin angle

* The bogie angle

* Rotonda angle

» Power supply

This real-time monitoring is different from the health status displayed in ACSM. The data coming from
the PLC to ACSM is transferred every 3 seconds. The data from the sensors are from a gateway
installed in the PLC, sampled at a frequency of 2000 Hertz. However, this is downsampled to 10
samples per second. Secondly, almost all data from the PLC, presented in appendix B, is simply a
zero or a one. If a signal needs to be a zero and it is one, the green button in the ACSM interface
of the PBB, seen in figure 2.7, will turn red. However, no indication of the cause of this error can
be derived. The data from extra sensors installed by VolkerInfra is continuous and visualized in their
monitoring program FlexMonitoring, as shown in figure 1.6. FlexMonitoring is developed and owned by
VolkerWessels company Asset.Insight. FlexMonitoring has already proved to be crucial in visualizing
the monitored data of railroads in the Netherlands. PWC conducted a maturity assessment of PdM on
VolkerInfra in 2022, and thanks to the use of FlexMonitoring, it was given a 3.8 on a scale of 0 to 4. This
was the reason why FlexMonitoring is also used in the case of the PBB. However, no arguments were
documented as to why the specific extra sensors were installed and why other data from the bridge
were excluded from the monitoring. Therefore, the next section will analyze the failure mechanisms of
the PBB and relate it to the different sub-systems to, in the end, evaluate if the current data is sufficient
for a prediction model or if extra data needs to be collected.

2.4. Failure mechanisms

To better understand what needs to be predicted, the different failure mechanisms have to be made
clear. Failure of the PBB is here defined as a problem of the PBB that results in a stoppage of aircraft
handling. A PBB malfunction can be defined as a situation where the bridge does not function as it
should, but no effect will be seen on the aircraft handling. In practice, failure notifications and some
malfunction notifications will both automatically be sent to VolkerInfra with a ticket for a mechanic to
inspect the PBB and do maintenance if necessary. In this thesis, all maintenance tickets are considered
to be related to a failure of the bridge. Furthermore, the data will not include the maintenance tickets
classified as operating errors. Although the operational errors result in a maintenance ticket, these
have no relationship with actual technical errors regarding the sub-systems and will not be included in
this research.

2.4.1. Analyzation of the SAT protocol

The SAT protocol of the PBB is used to check if the PBB fulfills its on-site functions before being put
into use after installation by the manufacturers. With different checks, the SAT protocol proves that
the various functions and sub-systems of the PBB work as contracted. This SAT protocol includes the
situations of the bridge where a deviation is described together with the possible technical causes. From
these situations, the deviations that will result in the bridge’s failure were extracted. It was concluded
that the deviations that will result in a failure of the bridge are caused by seven sub-systems of the
bridge: The telescopic tunnels, the elevation system, the wheel bogies, the cabin, the canopy, the trim
arm and the roller door. In the next section, the maintenance tickets will be analyzed to see if these
sub-systems can be linked to the different causes of the maintenance tickets.
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2.4.2. Maintenance tickets analysis

The maintenance tickets of the Tianda PBBs from 1 April 2019 to 31 December 2022 were provided
by Volkerinfra. Figure 2.9 shows the number of maintenance tickets per year. As mentioned in 1.4,
this research does not consider the maintenance tickets classified as operating errors. Therefore, the
numbers in figure 2.9 represent the maintenance tickets, excluding the human error maintenance tick-
ets. This resulted in 1067 maintenance tickets in 2019, 1019 in 2020, 1117 in 2021, 1273 in 2022 and
a total of 4476 maintenance tickets for the period 2019-2022.

Maintenance tickets of Tianda bridges (2019-2022)
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Figure 2.9: Amount of maintenance tickets from 2019 till 2022

The maintenance tickets are classified by Volkerinfra in a fault tree. The first layer of the fault tree is
the classification of the maintenance tickets in a specific category. The maintenance tickets can be
grouped into the following clusters:

* Bridge (control) does not work
» Bumper failure

+ Claxon does not work

» Parking button does not work
» Lifting/lowering failure

+ Canopy failure

* Lef/right movement failure

» Parking issue

+ Other defects/deviations

* Roller door failure

* Window heating not possible

» Cabin rotation failure
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* Driving failure

e Trim failure

Lights failure

Video system failure

Floor heating failure

From figure 2.10 and figure 2.12, the maintenance tickets per category can be seen. Claxon does not
work, parking button does not work, window heating not possible, lights failure, floor heating failure and
video system failure are not considered in this research due to the low number of tickets present in the
last four years compared to the other categories. The bumper failure maintenance tickets are also not
further investigated as explained in section 1.4.

Classification of the maintenance tickets 2019-2022

M Bridge (control) does not work
m Lifting/lowering failure
m Canopy failure
Left/right movement failure
M Parking issue
M Other defects/deviations
H Roller door failure
B Cabin rotation failure
M Driving failure
M Trim failure

Figure 2.10: Percentages of the maintenance tickets per classification

By clustering the maintenance tickets into their classifications, diagrams are made and presented in
appendix C. These diagrams contain the following layers of the fault tree, the causes clustered per
component and the general reason for failure. For the classifications: roller door, trim arm, canopy and
cabin can be linked to the sub-systems straightforwardly by having the same name. The lifting and
lowering classification can be assigned to the elevation system, the left/right and driving classifications
to the wheel bogie. For the classification bridge control and parking, a deeper look into the exact reason
for failure must be done. In the following paragraphs, the different classifications will be explained and
combined with the reasons for failure.

Based on the maintenance tickets for the left/right failures, figure C.5, almost half of the tickets, 30 out
of the 72, are related to obstacle detection being activated (42%). These maintenance tickets could
be hard to predict without any visual inspection system that checks the surroundings for obstacles.
However, when checking figure C.6, it can be seen that a technical failure causes 70 percent of the
maintenance tickets. Therefore, further investigation into the actual causes of these tickets needs to
be done.

Although the failures related to the cabin have not frequently occurred in the researched period, 117
out of the 4475 maintenance tickets resulted in failure of the PBB due to a failure of the cabin. The limit
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switch failed 48 percent of the time, followed by the failure while operating and a defect to the drive. In
terms of causes, a technical cause was reported for the classification 77 percent of the time.

For the lifting/lowering classification, 124 maintenance tickets were created. From C.3, ten different
causes were named for lifting or lowering failure, with failure while operating (30%), valve or relay fault
(23%) and tripped switch (25%) being the most occurring faults. From figure C.4, it can be seen that
72 percent of the classifications were related to technical causes in contrast to wear, which is only 2
percent of the causes.

Figure C.9 displays the maintenance tickets associated with the roller door failures. Here no distinct
primary cause of failure can be found. Also, for this type of failure, the primary cause of the mainte-
nance ticket is technical failures (73%).

The most frequent classifications for bridge control failure maintenance tickets are failure while oper-
ating (48%) and the system jammed (32%). From here, no conclusive answer can be given as to what
component the failures can be allocated. Also, the causes, figure C.2, cannot answer this question.
Further investigation into these failures is needed.

From 2019 to 2022, a failure related to the canopy resulted in 421 maintenance tickets. In figure C.17,
the classification of the maintenance tickets is almost equally split between a defect drive, a closing
error, or a limit switch deficiency. The causes, however, figure C.18, are mostly related to a technical
origin.

A functional trim arm is crucial to keep the bridge on height with the aircraft and prevent damage to
the aircraft. Nevertheless, a failure of the trim arm resulted in 442 maintenance tickets in the research
period. In figure C.15, it can be seen that half of the time, the trim arm is at the wrong position, followed
by fault while operating 39 percent and a faulty limit switch 8 percent of the time. Unlike the classifica-
tions analyzed so far, the cause of maintenance tickets is not entirely dominated by a technical cause.
Figure C.16 shows that an external cause for the trim arm causes 26 percent of the classifications.

From the 543 maintenance tickets related to driving failure, figure C.13, 29 percent were classified as
a defect of the drive, 28 percent there was a failure while operating and 34 percent of the time the colli-
sion protection was activated. Failures related to the limit switch and the emergency button used were
less frequent occurring. As said, 1/3 of the time, the ticket was related to the collision protection being
activated; however, for 77 percent of all maintenance tickets, figure C.14, the cause was a technical
failure. More research is needed on this failure.

With 15 percent of the maintenance tickets classified as parking issue, parking issue is the second most
occurring failure after other defects/deviations. For the maintenance tickets related to parking failures,
it can be seen that obstacle detection is less represented, only 11 percent. Furthermore, the system
jammed 11 percent of the tickets together with a failure while operating 16 percent of the time. The most
frequent ticket is a general position alarm. This classification means that somewhere in the procedure,
from disconnecting to the parking position, a procedure step took longer than the preprogrammed time
threshold.

When looking at the classification of the maintenance tickets, 28 percent, 1270 of the 4475, are classi-
fied in the category of other defects/deviations. This category is the most frequently used classification.
Investigating the different classifications within other defects/deviations, no specific class could be as-
signed. It is, therefore, impossible to retrain any information from this class. Hence, also here, more
research into the failure mechanism must be done.

2.4.3. Root causes of failure

In this section, the maintenance tickets from the last four years were analyzed. Based on the classi-
fications within the maintenance tickets, the following findings were made. In figure 2.11, the general
diagram is portraited. It can be seen that overall, 59 percent of the causes are technical causes com-
pared to 2 percent for wear. A conclusion could be drawn that degradation of the system is not a
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primary cause of failure, and therefore, prediction models based on life cycles are not of interest to this
research. However, this conclusion could be wrong. As explained in section 2.3, preventive mainte-
nance activities are present. It can, therefore, be said that failure due to degradation is prevented due
to this maintenance strategy. Nevertheless, the argument that the PBB has a short use interval and,
therefore, degradation of the PBB is not going rapidly can also be used. In the end, one of the goals
of predictive maintenance is to reduce the preventive maintenance intervals and only do maintenance
based on the monitored condition of the PBB. This results in maintenance activities based on degrada-
tion that could be present in the predictive maintenance strategy. Thus, a prediction model based on
life cycles must be included, either as a separate model or embedded, in the predictive maintenance
strategy.

Per sub-system, the reasons for the maintenance ticket were clustered by the fault tree of Volkerlnfra.
However, most of these classifications were too general to derive conclusions from to know what caused
the failure. With the root cause of failure, an accurate prediction model can be made to predict and
prevent the impending failure. To overcome this issue, the free text in the maintenance tickets the
maintenance logs, can be analyzed. In this free text, the maintenance mechanic can write what the
issue was and how the problem was solved. It is, therefore, necessary to see what information these
maintenance logs contain to find the root cause of the failure of the different sub-systems. This also
means that no evaluation of the monitored data based on the placed sensors can be done, as the root
causes of failure are unclear.

Causes classifications for the maintenance tickets 2019-2022

= Corrosion

M External cause
Extreme temperature/weather
Rain

= Damage

= Power supply failure

m System failure

W Technical cause

W Vandalism

W Wear

WFilth

W Third-party activities

= Wind

Figure 2.11: Causes classifications of the maintenance tickets 2019-2022

2.5. Conclusion

In this chapter, the research object has been investigated. From analyzing the current state of mainte-
nance activities, it is concluded that reactive and preventive maintenance are conducted now. Sensors
were installed at three PBBs to get insight into and overcome the sudden failure of the PBB during
in-time use. With these sensors, the data is visualized in VolkerInfra’'s software package, Flexmonitor-
ing. However, it is unclear how this data will prevent failure mechanisms and which ones. Therefore,
the maintenance tickets were analyzed to find the root causes of failure. From this analysis, it was
concluded that these tickets were too general to derive any root causes of failure. This results that in
the next chapter, literature will investigate what the current state-of-the-art techniques are concerning
predictive maintenance and how to develop a prediction model for application in practice.
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Predictive maintenance

In this chapter, a literature survey is presented. In this chapter, the sub-question: "What are the state-
of-the-art techniques regarding predictive maintenance?” is answered. In section 3.1, the different
maintenance strategies are briefly explained. In section 3.2, the predictive maintenance approaches
are explained, with the objectives in section 3.3. In section 3.4, the usage of Industry 4.0 in predictive
maintenance is introduced. At last, the combination of Industry 4.0 and predictive maintenance for
multi-component systems is presented in section 3.5.

3.1. Maintenance strategies

Maintenance can be described as the “combination of all technical, administrative and managerial ac-
tions during the life cycle of an item intended to retain it in, or restore it to, a state in which it can
perform the required function” (Schenkelberg et al., 2020). During the years, maintenance was seen
as an additional manner executed when the system failed, also called reactive or corrective mainte-
nance. As reactive maintenance was costly and resulted in unwanted downtime of the system, main-
tenance gained interest as it could help improve the performance and reliability of the system, and
preventive maintenance was introduced. Instead of doing maintenance after a failure, maintenance on
a time-scheduled basis was executed. From preventive maintenance, predictive maintenance arises
as maintenance is planned on the system’s condition. To in the end, not only predict the failure but also
control and solve the problem, predictive maintenance evolved into prescriptive maintenance (Achouch
et al., 2022; Nemeth et al., 2018). In the following subsections, the different maintenance strategies
are explained.

Reactive Preventive Predictive Prescriptive
maintenance maintenance maintenance maintenance

Figure 3.1: The evolution of the different maintenance strategies

3.1.1. Reactive maintenance

The oldest maintenance strategy is reactive maintenance. In reactive maintenance, the maintenance
happens when the fault is detected or when the error is notified (Zonta et al., 2020). With this run-
to-failure method, a company can use its products to their maximum and, as a result, have maximum
availability. Financially, this method could be attractive because the company does not spend any
money on maintenance until a breakdown occurs. However, this does not mean that the cost of repair-
ing or replacing the component would be less than applying maintenance along the way. Secondly,
spare parts should be available and in stock for critical components if a quick reaction to failure is
needed. Otherwise, the reliance on immediate delivery of spare parts is required, and the product will
encounter a downtime, which in the end has its influence on the availability of the system in the long
term (Ran et al., 2019; Shukla et al., 2022).

21
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3.1.2. Preventive maintenance

Preventive maintenance schedules maintenance at specific points in the future, also known as time-
based maintenance. The frequency of these time points or slots is determined by experience or sta-
tistical characteristics of the equipment. The bathtub curve is a frequently used graph for equipment
failure, presented in figure 3.2. In this curve, the equipment’s failure probability is assumed to be the
highest at the start of the lifetime, for example, after installation. After the start-up period, the probability
of failure will even out in the normal life period. After the normal life period, the chance of failure will
increase again. Preventive maintenance thus schedules maintenance activities always to maximize
the availability of the equipment based on the data of the lifetime. However, these planned activities
could be unnecessary because no problems could be discovered, and unwanted equipment downtime
is happening. Also, the chance of critical failures is present due to failure before planned maintenance
with unplanned downtime and possibly high cost of repairs (Ran et al., 2019; Selcuk, 2017; Shukla
et al., 2022).

Start up Normal life Wear down

F
v

Failure rate  ——
HEEEE N -------l_---

TiME — —

Figure 3.2: Example of a bathtub curve of a piece of equipment. Figure based on Ran et al. (2019)
and Shukla et al. (2022)

3.1.3. Predictive maintenance

The next phase in enhancing the maintenance strategy after preventive maintenance is predictive main-
tenance (PdM). PdM relies on the continuous monitoring of the actual status of the system. Based on
the data collected, a prediction will be made of the remaining time the component or the system will be
in function or is likely to fail. Then, a trade-off will be made between the condition of the component
and the maintenance frequency (Ran et al., 2019; W. Zhang et al., 2019). This proactive method will,
instead of time-based maintenance, only plan maintenance when needed and reduce unnecessary
downtime due to on-time failure detection (Carvalho et al., 2019; van Dinter et al., 2022). Within the
literature, the following terms can be found as different, overlapping, or even a result of each other
within the context of PAM. However, the terms will be explained separately to have a clear definition of
the terms when continuing with the research.

Condition-based maintenance

Condition-based maintenance (CBM) based its decisions on repair activities solely on the current con-
dition state of the system. Monitoring the system’s condition consists of a maintenance program of
three steps: data collection, data processing and maintenance decision-making. CBM can be used to
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activate alarms before a fault in the system occurs. By gathering continuous or periodic information
about the state of the system, the CBM model can monitor the health of the system and intervene with
repair activities before the system fails (Achouch et al., 2022).

Prognostics and Health Management

While CBM emerged and developed within the industry, Prognostics and Health Management (PHM)
originated in military aviation. Where CBM monitors the system condition, PHM tries to go one step
further and tries to manage the health of the system. However, this could include CBM as a monitoring
technique. PHM allows one to act proactively and take the needed steps to avoid system failure (Tinga
& Loendersloot, 2014). Achouch et al. (2022) describe PHM as "the ability to assess the development of
future degradation or errors of a system: it guarantees the operation of the system and is an important
step before being able to describe the different maintenance scenarios used for the prediction and
prevention of malfunctions.”

Remaining Useful Life

The Remaining Useful Life (RUL) is defined as the period that a component is alleged to be functioning
before maintenance activity needs to take place. This period can be in days, weeks, hours, operating
cycles or any other quantity. Although the prediction can provide early warnings of the failure of the
component, this prediction depends on the accuracy of the predicted RUL. This results in that the RUL
needs to be constructed together with a confidence measure to show the degree of certainty of the
RUL (Achouch et al., 2022).

To achieve a PdM strategy, the following steps need to be followed (Achouch et al., 2022; Selcuk,
2017):

First, the researched object needs to be understood. This means knowing how the system operates,
why the object fails, what is already measured, and what the goal of the strategy is. For effectively ap-
plying the strategy, the root cause of failure must be known instead of only addressing the symptoms of
failure. Second, data must be gathered, understood, and prepared for further use. Here, understand-
ing the object and knowing the root cause play a role, as gathering data about conditions that are not
used in the end should be avoided. Third, the data must be used in a model for predicting the upcoming
failure or the future health state of the object. Fourth, the model’s accuracy must be known to assess
how the model will perform. After that, the model should be deployed in the researched situation. If
the model is not first evaluated correctly, it will fail to give a proper description of the real world. In this
step, it also means that the steps explained above are executed properly and/or addressed otherwise
in the evaluation before deploying the model. The fifth, also the last step, is decision-making. Based
on the PdM goal, decision-making takes place based on the outcome of the used model.

3.1.4. Prescriptive maintenance

Prescriptive maintenance is the final phase in enhancing the maintenance strategy. Prescriptive main-
tenance not only forecasts the failure in the system but also uses state-of-the-art technologies, for
instance, Artificial Intelligence, to asses the cause of the problem and provide a framework to improve
and optimize the maintenance processes (Shukla et al., 2022; van Dinter et al., 2022). It aims to control
the problem instead of only predicting the occurrence (Nemeth et al., 2018). However, in this thesis,
prescriptive maintenance will not be investigated further.

3.2. Predictive maintenance approaches

Within the literature, three approaches for a prediction model can be classified, as well as a combination
of the three approaches, also known as a multi-model approach (Montero Jimenez et al., 2020). The
first approach is the physical-based approach, which relies on the mathematical modeling of the system
based on physical laws. The second approach is the knowledge-based approach, where the model
is based on the stored rules and expertise of the system (Cao et al., 2022). The last approach is the
data-driven approach; this approach is currently upcoming and gaining interest because these models
are implementing artificial intelligence in the form of machine learning to find patterns and anomalies
to predict the future state of the system (Shafiq et al., 2022). In the following three sections, the three
approaches are explained in more detail.
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3.2.1. Physical model based

The physical model relies upon the full understanding of the system translated into the physical, electri-
cal, chemical or mechanical stresses which act on the system and result in failure. This approach uses
knowledge about the physical behavior of the system and uses physical laws to predict the degradation
of the system or its components (Kwon et al., 2016). The physical behavior is translated into a math-
ematical representation of the system and reflects how the system responds to the different stresses
forced upon the system or its components. This can be on a macroscopic level or a microscopic level.
To formulate the physical model and obtain an accurate description of the system, it is vital to under-
stand the failure mechanisms of the system and relate them to the physical laws. This results in an
accurate and good estimation of the RUL. However, if the failure mechanism of the system can only
be partially understood or not fully linked to the physical laws, the prediction model will become more
unreliable (Cao et al., 2022).

3.2.2. Knowledge based

A knowledge-based prediction model relies on a knowledge base that stores the experience regarding
the system. This experience can be represented as rules, cases or facts about the system. This
experience can then be used to forecast failures or degradation of the system. Where the current
situation is compared with the data of an earlier situation, actions will be executed if necessary (Cao
et al., 2022). Knowledge-based approaches can be further divided into three subclasses (Cao et al.,
2022; Montero Jimenez et al., 2020); the first class is the case-based approach. In this approach,
situations are stored as cases. If a new problem arises, the most similar case is chosen from the stored
database, and the solution connected to the stored case is reused for the faced problem. If this solution
also solves the newly encountered problem, the database is updated with this new problem solution
case. However, finding the right characteristics to describe the cases can be challenging (Montero
Jimenez et al., 2020). Second is the rule-based approach. The rule-based approach performs based
on expert knowledge translated into a pre-determined set of rules, also known as an Expert System.
Domain knowledge of the system is extracted from domain experts in a set of situation-action rules.
The rules are expressed in the form of IF-THEN. IF a condition, mostly a fact, THEN a consequence
is happening. This consequence will affect the situation of the system (Cao et al., 2022; Ran et al.,
2019). The third is the fuzzy knowledge-based approach, and these models use the same structure
as the rule-based system. Where the rule-based system uses boolean logic, so only a true or false
proposition, fuzzy logic can use intermediate values to describe the truth or falsehood of a proposition
(Montero Jimenez et al., 2020). For knowledge-based models, acquiring accurate knowledge from
experience can limit the prognostic part of the predictions. Furthermore, another drawback can be
obtaining access to experts or sources to share knowledge about the systems. Also, dealing with
new situations and predicting them based on previous knowledge can affect the system’s reliability.
However, knowledge-based models are beneficial when explaining the steps taken. Using strict rules
and expert knowledge, the reasoning steps taken in this model can be explained and justified (Montero
Jimenez et al., 2020; Ran et al., 2019).

3.2.3. Data-driven

The third PdM approach is a data-driven model. Data-driven approaches use data analytics and ma-
chine learning to predict the system’s future state and detect anomalies in the data regarding the sys-
tem. This approach uses internal and/or external covariates to predict the system’s state. Sensors
present or placed within the system are used for internal covariates, such as vibration or current, and
are only active when the system operates. External covariates are present even if the system is not
running, for example, weather data (Kwon et al., 2016). Data-driven approaches can be further clas-
sified into the following subclasses: statistical, stochastic and machine learning. Statistical models
are used in PdM for analyzing the degradation of the system and predicting the remaining life of the
system. This degradation analysis compares the system’s behavior with the known behavior based
on the collected data (Montero Jimenez et al., 2020). Frequently used statistical models in PdM are
regression analysis, autoregressive models, and Bayesian models. An overview of identified applica-
tions can be found in Montero Jimenez et al. (2020). Stochastic models are the second classification of
a data-driven approach. As the name already suggests, stochastic models use stochastic processes
as the fundamentals of the prediction model (Montero Jimenez et al., 2020). From literature Montero
Jimenez et al. (2020) identify three stochastic diagnostics processes: Gaussian, Markov, and Levy.
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The potential advantages, drawbacks and related applications can be found in Montero Jimenez et al.
(2020). The authors state that stochastic models are generally highly suitable for degradation mod-
eling based on their regression capabilities. However, this is paired with high computational power,
uncertainty management and the need for advanced mathematical knowledge. The third data-driven
classification is the model incorporating machine learning. This classification uses data analytics in
combination with machine learning algorithms to detect anomalies in the data and make a prediction
based on the internal and external covariates (Kwon et al., 2016).

3.2.4. Multi-model approaches

The approaches stated above can be seen as single-model approaches. For a complex system, these
models only partly address the diagnostic and prognostic task of the system (Montero Jimenez et al.,
2020). Montero Jimenez et al. (2020) state that based on their literature study, the reviewed studies
mostly propose models to overcome the weak points of the system. With a complex system, the poten-
tial faults and failure modes will increase, as well as the number of data, resulting in more prognostic
and diagnostic tasks for the model made. A multi-model approach could be implemented to overcome
the complexity of the system. In figure 3.3, combinations of the approaches can be seen. Combinations
between knowledge-based models are not often used in literature. The combination still has the same
issues and challenges as the single-model approach. However, combining knowledge-based models
can reduce the complexity of the system through reasoning. With multiple data-driven models, neural
networks are the most used. Multiple physics-based combinations can be implemented to use the law
of physics to increase the accuracy of the output. However, the combination of multiple physics-based
models is not often seen; the reason for this is that implementing these models will require a high
amount of knowledge of the system in terms of physics, mathematics and the technical components of
the system. When combining knowledge-based models with data-driven models, the advantages of the
two models are combined. Resulting in the combination of the knowledge of human experts with the
diagnostic and prognostic strength of the data-driven model. This can help in analyzing heterogeneous
data sets coming from the system. Increasing the accuracy of a physics-based model can be achieved
by combining it with a knowledge-based model. Upcoming and most common in research is combining
a data-driven model with a physical-based model. The last combination for a multi-model approach
is the combination of the three single-model approaches. Here, the multi-model approach can benefit
from the strong points of every model. However, as it combines three models, it also increases the
complexity of this approach (Montero Jimenez et al., 2020).

Knowledge-based

v

S
KB+DD+PB ’OG

%,

DD+PB

Data-driven Physics-based

%

Figure 3.3: The possible combinations of single-model approaches, recreated from Montero Jimenez
et al. (2020)
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Besides the combinations that can be made between the different approaches, the architecture of the
multi-model approach is of importance. Figure 3.4 visualizes the possible architectures. The models
can be in series, parallel to each other, or a model can be embedded in another model.

Input Qutput
ﬂ)[M1J—>[M2Jﬂ)

a. Model 1 in serie with Model 2 b. Model 1 parallel with Model 2 b. Model 2 embedded in Model 1

Figure 3.4: Different architectures of a multi-model approach, recreated from Montero Jimenez et al.
(2020)

3.3. Predictive maintenance objectives

Although the primary goal of PdM is to predict the system’s future state and prevent unwanted down-
time, the optimization criteria can be different (Ran et al., 2019). Different optimization criteria can be
classified, such as cost minimization and availability, reliability optimization, or feasibility. In Ran et al.
(2019), the literature regarding optimizing PdM strategies is reviewed. From the paper, multi-objective
optimization can be of interest. From the reviewed articles, it could be seen that only one optimization
criterion is usually used as a single-objective optimization approach. However, as the authors state,
in the case of a multi-component system, this single objective could conflict with reality. For example,
the case of minimum cost objective is given. When aiming for a low cost, this could result in the com-
ponent’s reliability being too low to be acceptable. Therefore, they propose to use a multi-objective
approach in this case. A multi-component objective optimization problem tries to find the optimum de-
cision variables to minimize or maximize the different objective functions. However, in practice, finding
an optimum for all decision variables is often impossible. Therefore, a trade-off must be made between
the different optimization objectives values.

3.4. Predictive maintenance & Industry 4.0

As steam power was introduced for factories, the mechanization of the production processes formed
Industry 1.0. Industry 2.0 was realized by mass production systems, followed by developments in in-
formation technology and the use of computers for partial automation for Industry 3.0. With the arrival
of the internet and the rapid developments in technological innovations, a new era for the industry,
Industry 4.0, was arriving. First used in 2011 by the German government, Industry 4.0 is described by
the further developments of automation and information technologies (Cannavacciuolo et al., 2023).
With Industry 4.0, the physical world and cyberspace are not only connected but synchronized by a
digital model of the physical world. This leads to an environment where intelligent supervision and
autonomous decision-making processes can enhance the industry (Lesch et al., 2023).

From literature Silvestri et al. (2020) conclude that nine technical pillars drive Industry 4.0: Industrial
Internet of Things, Big Data and Analytics, Horizontal and vertical system integration, Simulation, Cloud
computing, Augmented Reality, Autonomous Robots, Additive manufacturing and Cyber Security. The
pillars are further elaborated in Silvestri et al. (2020). The Internet of Things (IoT) first appeared in 1997.
Over the years, loT evolved in networks where various distributed assets can be connected (Kwon et
al., 2016). Industrial loT further develops IoT by enabling factories to realize machine-to-machine in-
teraction without the intervention of humans. It realizes supply chains to be connected by the internet
using sensors and therefore having interconnections between the different physical objects (Silvestri
et al., 2020). Silvestri et al. (2020) state that according to the literature, 10T is the basis for CPS. CPS
enables the connection of physical objects with the virtual world and removes the boundaries between
them. Implementing the Industry 4.0 pillars in the maintenance activities realizes Maintenance 4.0.
By implementing and using these intelligent innovations to enhance the current situation, Maintenance
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Figure 3.5: Technologies for enabling PdM 4.0 (Werbinska-Wojciechowska & Winiarska, 2023)

4.0 aims to maximize the in-use time of the system (Silvestri et al., 2020; Werbinska-Wojciechowska &
Winiarska, 2023). According to the authors Werbinska-Wojciechowska and Winiarska (2023) "Mainte-
nance 4.0 encompasses a holistic view of data sources, how they are combined, collected, analyzed,
and are recommended actions to provide digital support to the function (reliability) and value (manage-
ment) of assets. As a result, a holistic approach enables effective plant-wide communication between
machine operators, maintenance and engineering teams, and management, allowing informed deci-
sions and better utilization of resources. In addition, implementing a holistic approach to PdM provides
that individual components are assessed for their value in the entire production chain, and sensors are
applied accordingly.” In figure 3.5, the technologies are presented that ensure the translation of PdM
to the combination of PdM and Industry 4.0, PdM 4.0. CPS can be used to integrate the Industry 4.0
pillars within PdM and link the physical object to cyberspace, which supports the direction of creating
PdM 4.0.

3.4.1. Big Data

Big data in Industry 4.0 is illustrated by the amount of data collected in quantity and variety of data.
Big data can be characterized by the five V’s, visualized in figure 3.6: Volume, variety, velocity, value
and validity. Based on this enormous amount of data, usually with heterogeneous sources, this data
is unworkable if directly combined to do a diagnosis or prognostic of the system. It is, therefore, key
to managing and processing these large data streams. This can be done by acquiring the knowledge
needed to develop the data analysis algorithms. With these analytics and technologies, the compre-
hension, analysis and real-time decision-making based on the data can improve the PdM strategy and
result in a more flexible and reliable monitored system (Achouch et al., 2022; Biard & Nour, 2021;
Fasuludeen et al., 2021; Kamble et al., 2018).
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Figure 3.6: The 5V’s of Big Data, reprinted from Achouch et al. (2022)
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3.4.2. Cyber-Physical Systems

According to J. Lee et al. (2015), the technological developments of the past decades have made
it easier and possible to use and effectively implement sensors and data acquisition systems. This
resulted in the development of big data. The authors use this pillar of Industry 4.0 to develop the CPS
further. This resulted in the author’s proposal of a 5C architecture, figure 3.7 for applying CPS in a
manufacturing application.
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Figure 3.7: 5C architecture for the implementation of CPS by J. Lee et al. (2015)

The first level of the 5C architecture is the connection level. This level ensures useful data collection
from the system and its components. This data can be collected by sensors, controllers, or enterprise
manufacturing systems. The authors consider two essential factors to consider at the first level. First,
the data coming from the sensors do not have to be in the same data type. Therefore, transferring all
the data to one central server point could get complex. Second, considering the system’s complexity,
selecting suitable sensors for describing the system later on in the digital world must be considered.
After collecting the data in the previous step, the next step is to translate this data into meaningful infor-
mation. The methodology for converting the data to, for instance, the RUL, can differ for each system
component. Frequently used is a PHM application. This level brings self-awareness to the system.
The cyber level is the central hub where all information is collected from the different connected agents
at the conversion level. At the cognition level, the CPS will ensure that the whole monitored system
is known. The gathered knowledge can then be presented and visualized to help in decision-making
tasks. The final level is the feedback from the cyber environment to the physical reality. Here, the
system can be made self-configured and self-adaptive.

With the introduction of Industry 4.0 and the defined pillars, research regarding this subject has gained
interest. With this growth in research, many interpretations of the terms related to Industry 4.0 have
arrived. As seen with PdM and using the terms CBM, PHM and RUL in different situations, the same
has happened with 1oT and CPS (Lesch et al., 2023). However, what is meant when using loT and
CPS? This question was investigated by Lesch et al. (2023). Based on their research, the authors
found six important terms that capture the concepts’ essence, as seen in figure 3.8. Based on these
terms, Lesch et al. (2023) came up with the following redefined definitions of loT and CPS and will be
used as the definition in this research:
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"The Internet of Things (loT) consists of physical entities (things) that were not necessarily intended
for communication with each other and with the environment. In loT, these things are able to identify
themselves, communicate, and interact via a network, based on Internet technologies. They can act
depending on external triggers or local logic.”

"CPS are systems consisting of tightly integrated physical and cyber components interconnected through
one or more networks. The cyber components consist of computing and communication facilities (local

or remote, e.g., embedded systems or cloud services) used for monitoring, automating and controlling

physical systems and processes. CPS are normally based on complex feedback and control loops,

where the physical components affect the cyber components and vice versa”

Term IoT CPS
Communication via a network Yes Yes
Integration of virtual and physical world No Yes
Computation/process No Yes
Control No Yes
Identification/interaction Yes No
Environment Yes No

Figure 3.8: Important terms for defining loT and CPS, reprinted from Lesch et al. (2023)

3.5. Multi-component systems

With the industry increasing continuously with the introduction of Industry 1.0-4.0, the equipment and
systems used are becoming more innovative but also more complex. With these systems containing
multiple components, finding a maintenance policy that reflects the actual state of the system becomes
challenging. A multi-component approach must thus include all the relationships between the com-
ponents to result in an accurate representation of the system. Here the multi-component approach
introduces the dependencies between different components of the system (Van Horenbeek & Pintelon,
2013). Secondly, because of the multi-component system, visualizing and reasoning can become hard
to understand. Therefore, it is key to result in a solution that is easy to explain and understand for the
people using it (Gashi & Thalmann, 2020).

3.5.1. Component dependencies

Due to the technological advances in Industry 3.0 and 4.0, multi-component systems are becoming
increasingly complex. With the complexity of multi-component systems, not considering the depen-
dencies between the components would lead to an inaccurate description of the system and result in
inefficient maintenance strategies (Van Horenbeek & Pintelon, 2013). The dependence between dif-
ferent components is defined in the research by Nicolai and Dekker (2008). The authors defined the
interdependence of the components into four classes: economic, stochastic, structural dependence
and resource dependence. Economic dependence implies that grouping the components either saves
cost, positive economic dependence, when the components are jointly maintained instead of individu-
ally. Or increase the maintenance cost, negative economic dependence, when maintaining in groups
is more expensive than maintaining each component separately. Stochastic dependence means that
the state of component 1 has an influence on the state of component 2. This state can be defined as a
condition measure, for example, deterioration or failure rate. Structural dependence between compo-
nents implies that if component 1 needs to be replaced, component 2 also be disassembled to replace
component 1. This can mean but is not limited to the components being part of each other. When
doing maintenance activities, the availability of resources is essential but often neglected in PdM re-
search to simplify the situation. Resource dependence needs to be taken into account when analyzing
multi-component systems to ensure that the model is actually doable. By knowing what resources are
needed and if always new parts are needed, or revision can take place, sustainability is also taken into
account (Gashi & Thalmann, 2020).
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3.5.2. Uncertainty

In the previous section, the dependency between components was explained to be considered in pre-
dicting the system’s health. The same as the dependency, uncertainty needs to be considered when
developing the system’s prediction model (Atamuradov et al., 2020). Atamuradov et al. (2020) state that
the following uncertainties must be quantified for health prognostics. Uncertainty in system parame-
ters: this uncertainty comes from the physical system itself, where the parameters could be influenced
by environmental or operational conditions. The uncertainty in translating the system condition to a
mathematical model: here the mathematical model to represent the system’s behavior could differ due
to assumptions made for the system. The third uncertainty is the uncertainty in the degradation model
used. When predicting the system’s health based on the degradation, a degradation model is used
based on a life test to compare the current situation with the literature. Here the obtained degradation
trend could differ from the literature. Also, the uncertainty in the prediction itself needs to be considered.
Although enough data could make the system accurate enough to predict, uncertainty is included. The
last uncertainty to consider in the system’s health is the failure thresholds used, which can differ over
time and operating conditions.

3.5.3. Bayesian networks

To account for the dependencies and uncertainty of the different components, Bayesian Networks (BN)
can be used to predict the system’s health. BN uses conditional probability and Bayes’ Theorem to rep-
resent the uncertainties and relations of the components, as seen in equation 3.1 (Gomes & Wolf, 2020).

P(E|H)P(H)

P(HIE) = =5

(3.1)

where

H is the hypothesis or event whose probability was determined.

E is the evidence or the new data that can affect the hypothesis.

P(H) is the prior probability or the probability of the hypothesis before the new data was available.
P(E) is the marginal likelihood and probability of the event occurring.

P(E|H) is the probability that event E occurs, given that event H has already occurred. It is also called
the likelihood.

P(H|E) is the posterior probability and determines the probability of even H when even E has occurred.
Hence, event E is the update required.

The dependencies between the components are displayed with an Acyclic Directed Graph (GDA), while
the knowledge of the components is displayed in conditional probability tables for discrete variables or
probability density functions for continuous variables (Gomes & Wolf, 2020). An example of a BN is
visualized in figure 3.9. Within the network, the investigated variables are represented as nodes. The
nodes in figure 3.9 are A, B and C. Here a variable can either be discrete or continuous. The link
between the nodes represents the dependence relation between the variables. In the BN, node (B) is
the parent of node (A) if there is a link from node B to node A. A is then the child of node B (and in
figure 3.9 also from node C). A node without parents is called a root node, and a node without a child is
called a leaf node. The conditional independence of the BN results in that the chain rule can be used
to calculate the joint probability of a node. This leads to the following formula:

P(X1, Xz, .., Xp) = iz, P(X;|pa(X;)) (3.2)
where pa(X;) is the set of parent nodes of X; (D. Lee & Pan, 2017)

To include time in a BN, a DBN can be used, figure 3.10. DBNs can model the temporal dependencies
between the variables. Here the model starts with a BN, and in the next time step, the network is
recreated to obtain a dynamic model. The relationship between variables in the same time frame is
called intra-slices, while the relationship of variables between different timeframes is called inter-slices.
The temporal dependencies are drawn as a dashed link between the variables in the other time slices
of the DBN, as presented in figure 3.10 (Zhao et al., 2020).



3.5. Multi-component systems 31

Figure 3.9: An example of a Bayesian Network

Dynamic Bayesian Network

Figure 3.10: An example of a Dynamic Bayesian Network

3.5.4. Grouping maintenance activities

Economic dependences between components can be included in the BN by enabling maintenance
grouping. In the paper of Hu et al. (2012), the authors propose an opportunistic PdM strategy at the
component and system levels based on economic dependencies. With these opportunistic strategies,
the optimal time to do maintenance is found based on the expected cost rate as shown in figure 3.11.

For local optimization, three types of cost rates need to be considered. First, the expected repair cost
rate represents the cost for all related to the repairment of the component, for example, spare parts
or manpower cost. The expected repair cost rate can be divided into two parts: corrective costs and
proactive costs. The corrective cost is the cost if the component fails before it is expected to fail and
thus immediately needs to be repaired. The proactive cost is the repair cost if the repair is scheduled.
Usually, the repair cost is more expensive if corrective costs must be considered due to not preparing
and expecting the repair job. The repair cost rate is determined as the sum of the expected corrective
and proactive repair cost divided by the time spent since the last maintenance moment At, where
At =t —tg:

RCEFi(t) + RCP (1 = Fy(6))
At

RC, () = (3.3)
where RCY is repair cost for corrective repair, RCip the cost for proactive repair, F; the failure probability
distribution of component i. It represents the cumulative distribution function of the random variable
“time to failure”. As the cost varies randomly according to the economic and labor resources, a distri-
bution function for the repair cost for corrective and proactive repair is used.
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Figure 3.11: Example of the expected cost rate

The cost of setting up the repair is the second part of the expected total cost rate. The set-up cost can,
for instance, contain the mobilization cost for the repair crew, tools, and machine disassembling. The
expected set-up cost rate is calculated as follows:

SC
SCr i(t) = Ar (3.4)

Here, SC stands for the set-up cost of the system and is also assumed to change randomly with a
normal distribution.

The third rate is based on the cost of production losses, the cost of not being able to run the system.
The production losses are divided into two parts: the losses for corrective repair activities and those
due to proactive repair activities. Here, also, the assumption is made that the losses for corrective
repair are greater than for proactive repair.

DT{LEF(t) + DTPLP (1 — Fy(t))

o (3.5)

p Lr_i (t) =

Where DTf is the out-of-order time due to corrective repair for component i, and DT? is the out-of-order
time due to proactive repair for componenti. L¢ and L? are the losses per unit of time. Also, here, the
variables are assumed to change randomly with a specific distribution.

Combining the three types of costs, the expected total cost rate for component i, will be:

Cr_i @® = RCr_i(t) + SCr_i(t) + PLr_i(t) (3.6)

RCFF;(t) + RCP (1 — Fi (b)) N sc N DTFLEF;(t) + DTFLP(1 — F;(t))

G = At At At (3.7)
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With this formula, the local optimal PdM time can be calculated by minimizing this objective function
for each component.

The global opportunistic PdM strategy by Hu et al. (2012) tries to group maintenance activities to save
money and time by doing maintenance activities jointly instead of separately. In this way, costs due
to the unavailability of the system and setup costs can be reduced. By using maintenance group G,
consisting of k components, the three cost rate functions of the local optimization strategy are adjusted
to:

YL (RCEF() + RCP (1 — Fy(£))

RC, (1) = A (3.8)
SC
SCr6(6) = 57 (3.9)

(Ci_, (@DTFLEF;(t) + BDTPLP (1 — Fy(£)))
At

PLy (t) = with 0<a<1 and 0<pf<1 (3.10)

a and B are here introduced as reduction coefficients due to the grouping of maintenance activities,
which results in fewer outage durations. Here, the authors assume that outages for group durations
are usually less than the summation of the outage durations of the components. Here a and g are
determined by historical data or expert knowledge. The total expected cost per unit of time for the
group G is calculated as:

Cr_G ® = RCr_G )+ SCT_G ®+ PLr_G ®) (3.11)

With these formulas, the optimal PdM strategy and the corresponding groups are determined as fol-
lows: First, the local opportunistic PdM time ¢;? is calculated for each component. This optimal time
sequence, t‘”’J = {t7P t;’p, ..... t“”} with NC as the number of components is then rearranged in ascend-
ing order: ty = {ty, toh, .. mNC} with t7F, = min{t;?, t;7, ...ty } and t . = max{t;?, t37, ..tye}.
Then, the first component with t.7, is placed in the maintenance group G, and the minimal maintenance
cost rate is calculated. Next, the second component j, with t-5,, in the sequence is placed in group G,
and the function is again minimized. With the components outside the group considered as repaired
independently, the expected total minimal maintenance cost rate is calculated as:

NC

Csystemrateop = Cr_G + Z Cﬁnfl (3.12)
i=j+1

If the expected total minimal maintenance cost rate is lower than the previously calculated expected
total cost rate, the maintenance group can be expended; otherwise, the optimal group is found, and
the corresponding maintenance time sequence can be determined as tsys = {tg", tin(j+1) ~tmnc}-

3.5.5. Imperfect maintenance

Although the maintenance mechanics are trying to do their maintenance work as best as possible, it
can not be assumed that after repairments, the probability of failure is zero percent. Therefore, Van
Horenbeek and Pintelon (2013) introduce imperfect maintenance in their model. Here, each mainte-
nance activity reduces the degradation level of a component by a factor (1-B), with 0 <B <1. With this
factor B, named the improvement factor, a more realistic maintenance approach can be used.
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3.6. Conclusion

In this chapter, a literature survey about maintenance strategies has been executed, focusing on PdM
and its relation to multi-component systems and Industry 4.0. As the complexity increases with more
components, it is critical to ensure an easy-to-understand solution. Therefore, combinations of the
three single-model approaches are recommended when developing a PdM strategy. Here, the ad-
vantages of each model can be used to reduce the system’s complexity. Second, the objective of a
PdM strategy of a multi-component system can be more than one. It could be that the objectives are
conflicting within the system, and a trade-off must be found. With the different components within the
system, the relationships between the components must be included to represent the system correctly.
These relationships and predictions of the health uncertainties must be included to know how accurate
the multi-component system model will be. Here, grouping maintenance activities and incorporating
imperfect maintenance will make the model more realistic. PdM can be enhanced with the upcoming
Industry 4.0 and the nine pillars. Especially in data-driven methods, big data and the use of sensors en-
able the monitoring of a system at all points. However, this translates into enormous data storage and
unnecessary data collection. With the complexity and size of multi-component systems, a well-defined
architecture is needed to ensure that the correct data is collected. From the literature, it became clear
that the development of a PdM strategy for multi-component systems is still in the beginning phase
compared to single-component models. As the complexity increases with more components, the lit-
erature focuses on parts of the system while making assumptions about the other parts to reduce the
complexity. This results in the use of mostly theoretical models, and the connection to the real world is
(partly) absent. This connection can be formed by combining the theoretical models with the pillars of
Industry 4.0.

Based on the literature survey, the gap in the literature is defined on the following points. First, no
papers regarding PdM for PBBs could be found. As the literature on PdM is still in the beginning phase
for multi-component systems, the number of papers regarding implementation in practice is also limited.
This results in a literature gap in developing a PdM strategy for multi-component systems in practice.
Also, the evaluation of this strategy based on real-world data is limited. Most literature uses preset
datasets where the data is already classified in the faulty and normal behavior of the system. However,
as was seen for the PBB, data can be collected by using sensors, but knowing what it will represent,
faulty or normal behavior, can be difficult. Finally, with the technological developments within Industry
4.0, it was concluded from the literature that it could enhance the PdM strategies in a data-driven way.
Here, the gap of combining this with a multi-component system can be overcome with this research.
In the following chapter, a CPS architecture for a multi-component system is introduced to overcome
the previously mentioned points.



CPS Architecture for a Multi-Component
System

In this chapter, the proposed architecture for a PdM strategy of a multi-component system is presented.
This chapter answers the sub-question: "How can the prediction model be developed?”. In the first
section, the choices made for the proposed architecture are explained. In the following sections, the
architecture is explained step by step.

4.1. Methodology selection

The proposed architecture uses the CPS architecture as presented in J. Lee et al. (2015). The choice
for a CPS architecture and not an IoT environment was based on the fact that, in the end, the system
can be autonomous by integrating computing, monitoring and control of the physical sub-systems. By
enabling the system to affect the health status of the sub-systems in the cyber part and to be able to
do maintenance activities for the physical part. The system enables itself to control its health. While
only using an loT environment, the feedback loop to the physical part is not made, and the potential
already incorporating the step to autonomous assets still needs to be made in the future. With the
CPS architecture, a PHM system is created to manage the system’s health. By choosing a PHM
system instead of only applying condition-based maintenance, the system is monitored and proactively
managed to acquire a reliable system. Within this PHM system, the choice has been made to use
a low-level model and a higher-level model. The lower-level model determines the health status of
the sub-systems. The choice for this lower-level model has been made because the PHM system
continuously tries to keep the health status as high as possible. Therefore, it cannot rely only on the
determined system health; insight must also be created into the sub-systems’ health. This is then
combined with that from the literature; it was found that to have integration in practice, it must be
explainable and easy to understand. Having insight into the sub-system health, the complex system will
be subdivided into multiple easier-to-understand sub-systems. To make the multi-component system
also less complex, section 3.2.4 showed that using a multi-model approach can reduce the complexity
by combining multiple models. As concluded in chapter 2, degradation is not the primary cause of
failure, and multiple failure mechanisms are in play. This results in multiple models that need to be
used to determine the health status of the sub-systems. Therefore, a multi-model approach is proposed.
With this approach, the complexity of the system and sub-systems are kept in mind before selecting
the methods for determining the health status. The higher-level model builds upon the lower-level
model and determines the health status of the system. A DBN is used to incorporate the sub-system
dependencies. By developing a DBN, insight is given into the system’s complexity, and an estimation
of the system’s health status can be given. Using the DBN, the failure mechanisms, which cannot be
linked to a sub-system directly, can be included in the network. By predicting the health status over
time, unknown influences can be modeled as interslice links between the system’s sub-systems. As
cost minimization is not the research goal, the PdM strategy object, as discussed in section 3.3, will
not have a cost optimization. In this research, the optimization criteria will be reliability and availability
optimization. This means that after the health status is determined, decision-making occurs in finding
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an optimum between minimizing the total out-of-order time of the system but limiting the maintenance
moments and thus maximizing the aircraft stand availability while maintaining a reliability threshold for
the PBB.

4.2. Connection layer

The first layer of the chosen CPS architecture is the connection layer. This layer collects data from
different sources to connect the physical object with the virtual world. When developing a PdM strat-
egy, what needs to be monitored to make a prediction, either on the sub-system level or on the system
level, must be known. When developing a prediction model for a single component, one can already
have a clear vision of what to monitor and what the possible failure mechanism is. However, as seen
in section 3.5, a multi-component system makes the prediction more complex. This is combined with
the fact that the investigated system is more likely to fail due to different reasons than degradation or
wear, as seen in section 2.4. Although the technological developments of Industry 4.0 have given an
enormous amount of data available, collecting all data that could be potentially of interest is a difficult
job. Therefore, the first step in the connection layer of the proposed CPS architecture consists of us-
ing the information from the analyzed maintenance tickets and experts’ knowledge to determine the
root causes of failure. The maintenance logs within the maintenance tickets are also interesting in the
proposed architecture. The maintenance logs are a free text box within the maintenance ticket where
the mechanic can write down what the root cause of the failure was and how the problem was solved.
The maintenance logs can be analyzed in multiple ways; the most straightforward way is analyzing all
maintenance logs by hand. However, analyzing by hand will also be time-consuming and impractical
in the context of Big Data. To be more time efficient, a Natural Language Processing (NLP) algorithm
can be used to analyze the maintenance logs (Akhbardeh et al., 2020; Sharp et al., 2017). NLP is a
part of artificial intelligence where computers derive understanding from human language by analyzing
it cleverly and usefully (Usuga-Cadavid et al., 2022). By using NLP, the first step is pre-processing the
maintenance log data. The maintenance logs are normalized by checking the text on stopwords and
punctuation, including lowercasing and removing special characters. Normalization needs to be done
because the logs are analyzed to obtain more insight into the reasons behind the bridge’s failure. It
is therefore not wanted to see that articles are the most frequently occurring words in the logs. This
results in the use of stopword removal. The same reason can be applied to the lower casing of the
logs and the removal of punctuation and special characters. Then, the logs are tokenized, and with
the Bag of Words principle, the most frequently occurring words or sequences can be extracted. As
stated, state-of-the-art technology that has seen a lift by Industry 4.0 is Artificial intelligence. A new
development in the field of Al is OpenAl. The OpenAl software, which can be used for the maintenance
logs analysis, uses a large language model (LLM). Prompt engineering techniques are used to use
this LLM and increase its functionality. A prompt is the instruction given to the LLM in which the model
finds the answer for (White et al., 2023). Prompt engineering is the methodology of finalizing the LLM
prompts to give the best (precise, coherent or accurate) output. With prompt engineering, the prompts
are fine-tuned to realize the output results, which are wanted (Lo, 2023).

A prompt can be constructed based on four elements: instruction, context, input data and output in-
dicator. The instruction part contains the specific goal the model needs to achieve. Context can be
provided to guide the model in the right direction. The input data is the input or question where a re-
sponse is necessary. Also, an output indicator can be given to tell the model how the output needs to
be displayed (DAIR.AI, 2023). Multiple techniques can be used for prompt engineering; an in-depth
overview of these techniques can be found in DAIR.AI (2023):

» Zero-shot prompting

» Few-shot prompting

Chain-of-Thought Prompting

Self-Consistency

Generate Knowledge Prompting

Automatic Prompt Engineer
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* Active-Prompt

+ Directional Stimulus Prompting
* ReAct

* Multimodal Chain-of-Thought
» Graph Prompting

For the experts’ knowledge, the maintenance mechanics can be consulted. They are constantly in-
volved in the maintenance activities of the system. They know from their daily operations what sub-
systems and related failure mechanisms are of interest when predicting the system’s health status.
Based on the maintenance logs and expert knowledge, data can be extracted from the available data
sources.

The second step in the connection layer is the actual data extraction from the different data sources.
Potential data sources are, for example, a PLC, historical data sources, sensors, and information re-
garding operational conditions from experts or maintenance logs. Cloud storage could be used to store
the data. In figure 4.1, the first layer of the proposed architecture is schematically displayed.

Connection layer PLC Historical data Maintenance fickets | | Expert knowledge

Data source n

Figure 4.1: The connection layer of the proposed architecture

4.3. Conversion layer

The data collected in the first layer are the raw signals directly coming from the system. These raw
signals are collected at a high frequency and are large in amount. Feature extraction and dimension
reduction ensure that the collected data becomes valuable information. First, the large amount of
collected data must be divided into smaller parts for signal analysis. For the analysis of the signals,
three domains for analyzation can be classified:

* Time domain
* Frequency domain
» Time-frequency domain

As the names already indicate, analyzation in the time and frequency domain looks at how the sig-
nal variates over time or frequency. The time-frequency domain is used for non-stationary signals,
where converted to the frequency domain, no information can be extracted if the assumption is made
that the frequency sub-systems do not vary over time (Calabrese et al., 2021; Gawde et al., 2023).
As each component under investigation can have a different reason for failure, the feature extraction
and dimensionally reduction techniques can differ from component to component. Therefore, only the
used feature extraction and dimensionality reduction methods will be explained in the next chapter; an
overview of different techniques can be found in Calabrese et al. (2021) and Gawde et al. (2023).
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Figure 4.2: The conversion layer of the proposed architecture

4.4. Cyber layer

From the analysis in the first layer, it became clear what needed to be monitored. These indicators
are then split into two categories. The first group is indicators of a component’s health. These compo-
nents are part of a sub-system. The second group is indicators that cannot be related to a sub-system
and, therefore, are classified in the model as general failure mechanisms and thus directly related to
the system’s health. Each sub-system’s health status prediction individually takes place in the cyber
layer. In this stage, no dependencies or correlations between different sub-systems will influence the
investigated sub-system’s predicted health status.

For the sub-systems, there can be many factors as to why the component(s) within fails. Therefore,
the sub-systems were analyzed in the first layer to state which sub-systems failed during the system’s
operation. Within this analysis, the second step was finding what components caused the sub-system
to fail. Because the system can also fail due to reasons outside only degradation of the sub-systems
based on life cycles, as seen in section 2.4, the failure mechanisms, either related to the sub-system or
directly to the system, must be monitored too. As the amount of data and models could increase with
the increment of the failure models, a multi-model approach, as presented in figure 3.2.4, is suggested.
However, this depends on the specific sub-system and failure modes. The first part of this multi-model
approach is based on the acquired data collected based on expert knowledge and the maintenance
ticket analysis. From this analysis, the possibility occurs where not one but multiple components of the
sub-system are responsible for the failure of the sub-system. The prediction model approaches, which
could be used in this part, are explained in section 3.2.

The second model within the multi-model approach for the sub-system’s health assessment is a data-
driven model to assess the degradation of the sub-system based on expert knowledge or a degradation
model from the literature. As discussed in section 2.4 for the PBB but also applicable for other systems
in the industry, it does not mean that degradation is not one of the causes of failure if these faults are not
occurring. As suggested for the PBB, it could be that the preventive maintenance activities are so well
executed that failures due to system aging are not present. However, one of the purposes of develop-
ing a PdM strategy is to, in the end, no longer have to execute the time-based preventive maintenance
strategies. Therefore, a model which assesses the sub-system health based on degradation is needed.

Within the cyber layer, the prediction model for assessing the sub-system’s health will be trained by
historical data to understand the behavior of the bridge. This results in the sub-system agents hav-
ing an offline and online phase within the cyber layer. Figure 4.3 depicts the framework for these two
phases.
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Figure 4.3: The cyber layer of the proposed architecture

4.5. Cognition layer

At the cognition level, the system as a whole will be evaluated to determine the health status. A BN,
introduced in chapter 3, will be used. First, the nodes need to be identified. The variables represented
by the nodes in the DBN can be categorized into four groups: component nodes, sub-system nodes,
failure mechanism nodes and system nodes. In this CPS architecture, the health status of the sub-
system based on the failure mechanism of the different underlying components is already determined
in the cyber layer. However, it could be possible that for some sub-systems, the health status could
not be determined due to hidden failure modes. Therefore, the sub-system is represented in the BN by
individual nodes. The failure mechanism nodes contain variables not linked to a specific sub-system
based on the maintenance ticket analysis or expert knowledge. Here, this node directly influences
the system’s health status. Second, the dependencies and correlations of the different sub-systems
must be considered. As explained in section 3.5, the dependencies between the different sub-systems
need to be considered to have an accurate description of the system. The relationships are added by
developing the network structure of the BN and adding the links between nodes. Now, the BN gives
an easy-to-understand overview of the complex system. At last, the CPTs of the variables need to be
determined. Here, the health status is already defined in the previous layer, and the other nodes can
be determined by historical data or expert knowledge to be, in the end, updated while running the model.

Next, the DBN will be created. A general indication of the timeslices is visualized in figure 4.4. The
approach for the DBN is based on the model of Gomes and Wolf (2020). This means that the DBN has
three timeframes. At the current time frame, evidence is presented to the system based on determining
the various health status in the cyber layer. This allows the DBN to estimate the current state of the
sub-systems and the system. This means that the current time frame is responsible for the diagnosis
part. It also uses the previous timeframes with the evidence given to the system at that timestep as
temporal evidence. The next timeslices are used for prognostic purposes. In this DBN model, temporal
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links are placed between each node in the same place at each timeslice to represent the degradation
of the components, sub-systems and system. Here, the estimation can be more accurate by providing
evidence to the system.

Dynamic Bayesian Network

Figure 4.4: Proposed three timeframes DBN model, based on Gomes and Wolf (2020)

4.6. Configuration layer

At the top level of the proposed CPS architecture, decisions are made for when to do maintenance.
Decision-making for the multi-component system can be done in various ways. The first way is decision-
making by an expert. Here, the predictions made on the sub-system and system levels are assessed,
and based on the displayed levels, the expert decides when to plan the maintenance activities. This
real-time decision-making can also be translated into an autonomous system based on expert knowl-
edge. In this case, the expert will give weight factors for the different sub-systems or cases so the
decision model becomes a knowledge-based model.

Also, the decision-making can be done autonomously based on the DBN network. To account for the
economic dependences between nodes, opportunistic PdM, the grouping of maintenance activities can
be done, as explained in section 3.5.4. However, in this model, the assumption each repair restores
the sub-system to the "as good as new” state is not made. The imperfect maintenance assumption is
already incorporated in the previous layer. As at each timestep the model updates the health statuses
based on evidence, it is directly seen from the output of the sensor if the repairment in the previous
timestep is executed well enough to overcome the failure. While the grouping of maintenance activities
can be done for economic reasons, the availability and reliability of the system are of interest in this
research. With the availability, the availability of the aircraft stand is meant. This availability of the
aircraft stand is of high value to Schiphol when scheduling flights. However, by only scheduling flights,
the reliability of the PBB will drop, and sudden failure can occur, thus causing a delay in the turnaround
process. Therefore, the opportunistic PdM strategy is reformed: The reliability of an element within
the DBN is set by establishing a threshold. The higher the threshold that will be used, the earlier the
maintenance activity must occur. To reform the cost model to prioritize the availability of the aircraft
stand and the reliability of the PBB, the cost objective function of Hu et al. (2012) is investigated per
cost part and transformed into an availability measure. As in the paper of Hu et al. (2012), first, an
opportunistic PdM strategy on the local scale will be created and then one at the global level. The
local opportunistic PdM strategy looks at the optimal time to maintain each sub-system individually.
The global opportunistic PdM strategy looks at the system as a whole to find the optimal time to do
maintenance.
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4.6.1. Local opportunistic decision-making

The expected repair cost rate will be replaced by the expected repair rate (RR), formulated in equation
4.1. The expected repair rate is related to the time it costs to repair the specific sub-system during
maintenance divided by the bridge uses that have passed since the last maintenance moment. The
expected repair rate can be distinguished into two elements: the corrective repair time (CRT) and the
proactive repair time (PRT). The corrective repair time is related to the repair time endured when sud-
den failure happens. The proactive repair time is associated with the repair time of the sub-system
during planned maintenance. Here, it is assumed that the proactive repair time is less than the correc-
tive repair time because when a sudden failure of the sub-system happens, an investigation needs to
be done into what caused the failure. The related materials need to be gathered where planned main-
tenance activities can be prepared beforehand. Multiplying the failure probability with the corrective
repair time reflects the expected maintenance duration when a failure occurs. The higher the proba-
bility, the more influential the impact of the corrective repair on the total out-of-order time. Multiplying
the proactive repair time with the complement of the failure probability, the influential impact on main-
tenance executed when still working is considered.

CRTL * Fi(t) + PRTL(t) * (1 - Fl(t))

(4.1)
where

i is the index for the sub-systems.
CRT; is the corrective repair time for sub-system i.
PRT; is the proactive repair time for sub-system i.
F; represents the failure probability distribution of sub-system i.
At is the time spent since the last maintenance moment.

The expected setup cost rate is replaced by the expected arrival rate (AR). The expected arrival rate
is related to the time it costs for the maintenance mechanism to arrive at the PBB, specified as AT,
divided by the time spent since the last maintenance moment. The arrival time needs to be included as
it is important to have the mechanic as fast as possible at the site to prevent delay due to slow response
time. By including the arrival time within the expected arrival rate, the influence of the mechanics re-
sponse can be captured within the model.

AT,
AR(®) = 4.2)

where

i isthe index for the sub-systems.
AT; is the arrival time for sub-system i.
At is the time spent since the last maintenance moment.

The expected loss of productivity is replaced with the time the system is out of order due to corrective
repair or proactive repair, which is the same as the expected repair rate. Therefore, the time of pro-
ductivity loss is not considered separate but included in the repair time.

Second, resource availability must be considered. For resource availability, the work schedule of the
maintenance mechanics can be incorporated into the model. The work schedule must specify how
many workers are available at each time step. Here, it is assumed that the capacity of the workers
available will differ over time. For the repair times, the assumption is made that a repair of one or
multiple sub-systems will be faster with multiple mechanics than with one. Here, a distinction is made
between repairs at the site and the time related to the sub-system repair time at the workshop. In the
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case of proactive repair, this can happen before the actual repairments are done. The different factors
for speeding up the process are alpha for the site and beta for the shop. The formula for the repair rate

is therefore expanded to:

CRT®  CRT"P
CRT;(t) = " *nll(t) + 3 *;n(t) (4.3)
where
i is the index for the sub-systems.
CRT? ¢ s the corrective repair time at the site for sub-system i.
a the reduction coefficient when using multiple mechanics at the site.
CRT"P s the corrective repair time at the shop for sub-system i.
B the reduction coefficient when using multiple mechanics at the shop.
m(t) is the amount of maintenance mechanics at timestep t
PRTf¢  PRT™P
PRT;(t) = . Trll(t) + 5 rln(t) (4.4)
where
i is the index for the sub-systems.
PRTS!¢ s the proactive repair time at the site for sub-system i.
a the reduction coefficient when using multiple mechanics at the site.
PRT;"P s the proactive repair time at the shop for sub-system i.
B the reduction coefficient when using multiple mechanics at the shop.
m(t) is the amount of maintenance mechanics at timestep t

In practice, it could be that instead of taking the sub-system out of the system and then to the work-
shop for a repair, the sub-system is replaced at the site to reduce the out-of-order time of the system.
Therefore, the time of the workshop part could be zero in this case.

Combining the expected repair rate with the expected arrival rate, the expected total out-of-order rate
for sub-system i (TR;) is represented by:

i.e.
CRTSite  cRTMOP F(t PRTfite  pRTSMP L— F(t
o 1 o ) FEO+ Com + e )" ¢ () AT; 46
TR;(t) = AL + AL (4.6)

By minimizing the expected total rate it takes to do the maintenance activities, the local optimal PdM
moment can be determined. With this minimization, the optimal time to do maintenance is found where
the expected total repair rate for each sub-system individually is at its lowest. Minimizing the repair
rate creates a trade-off between correcting the sudden failure and proactively maintaining the still-
working sub-systems. Including the multiplication of the proactive repair time times the complement of
the failure probability prevents the maintenance activities from being scheduled too early. If the failure
probability is low, executing maintenance activities too early could increase the overall maintenance
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time. However, when planning maintenance activities too late, the sub-systems’ failure probability will
be too high to be acceptable for the airport. Therefore, a preset reliability threshold will be used. By
including the expected arrival rate, the whole process from an assigned maintenance mechanic to a
functioning PBB is considered in the local opportunistic model.

4.6.2. Global opportunistic decision-making

At the system level, the global opportunistic PdM strategy, as introduced in Hu et al. (2012), is applied.
The local opportunistic PdM strategy looked at each sub-system individually and optimized the mainte-
nance moments for each sub-system. The global strategy looks at the system as a whole. By using the
opportunity to do maintenance not at one sub-system but at multiple sub-systems during one planned
maintenance activity, the out-of-order moments of the system are reduced. This results in maintenance
groups being formed. The maintenance group can consist of k sub-systems to do maintenance at one
moment, as explained in section 3.5.4. By grouping maintenance activities, there is the possibility that
the repair time is decreased due to the structural dependence of the sub-systems. More likely, there will
be no decrease in repair time but an increase due to the sum of the individual maintenance moments.
Therefore, a decision needs to be made to have multiple short periods of maintenance activities or one
more extended session but an increase in availability for the rest of the time. The procedure for finding
the system optimum and global PdM strategy is as follows: First, the formulas for the expected repair
rate of the group, the expected arrival rate of the group and the expected total rate will be explained for
group G. Thereafter, the procedure to determine the optimal group G.

First, the expected repair rate of the group (RRyroyp) is calculated. This will be done by summing up
the corrective and proactive repair times of the sub-systems k in optimal group G. A reduction coeffi-
cient omega is used. With this omega, the influence of grouping sub-systems where, due to structural
dependencies, the repair time could be reduced is taken into account.

Zf:l(wCRTCRTi(t) * Fi(t) + wprr PRT;(t) * (1 — Fi(1)))
At

RRgroup ® = (4.7)

where

i isthe index for the sub-systems.
k is the number of sub-systems in group G.
CRT; is the corrective repair time for sub-system i as presented in equation 4.3.
PRT; is the proactive repair time for sub-system i as presented in equation 4.4.
F; represents the failure probability distribution of sub-system i.
At is the time spent since the last maintenance moment.
w is the reduction coefficient when grouping sub-systems.

Second, the expected arrival rate of the group is calculated. Here, the arrival time for doing maintenance
activities for group G will be divided by the time spent since the last maintenance moment.

AT,

ARgroup(t) = % (4.8)
where
ATgroup is the arrival time for the group.

At is the time spent since the last maintenance moment.

The same as in the local strategy, the expected total rate of the group is the expected repair rate of the
group together with the expected arrival rate of the group. By minimizing the expected total rate, the
optimal time to do maintenance for the group can be found.
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TRgroup (t) = RRgroup (t) + ARgroup (t) (4-9)
where

RRgroup s the repair time rate for the group

ARgroup I8 the arrival time rate for group G.

From the local opportunistic strategy, the optimal time to do maintenance for each sub-system is deter-
mined and defined as t/*. The optimal time sequence to do maintenance is t°P = {t"” tg”, ..... tNC} with
NC as the number of sub systems is then rearranged in ascendlng order: tyy = {to, tohy, ety e} With
toh = min{t;?, 637, ...tye} and toh e = max{t;?, t37, ...tar}. To create the group, the first sub-system
with ¢, is placed in the maintenance group G, and the expected minimal total maintenance rate of
the group is calculated with equation 4.9. Next, the second sub-system j, with t.,, in the sequence is
placed in group G, and the function is again minimized. With the sub-systems outside the group con-
sidered as repaired independently, the expected total minimal maintenance rate (TR;,) of the system
is calculated with equation 4.10. If the expected total maintenance rate of the system based on the
new maintenance group consisting of the first and second sub-systems is less than the expected total
maintenance rate based on adding the total rates of the individual sub-systems, the next sub-system
with ¢, is added to the group and a new total rate is calculated. This procedure will be repeated until
the newly formed group has a higher total maintenance repair rate of the system than the current deter-
mined group. Then, the current group will be the optimal group for combining maintenance activities,
with the other sub-systems being repaired independently.

NC
TRgys = TR oup + Z TR{P* (4.10)
i=k+1

where

G is the index for the group.
k is the number of sub-systems in group G.
NC are the non-group sub-systems.

TRE%W, is the total repair rate for group G at the optimal time to do maintenance.

TR{P* s the total repair rate for sub-system i at the optimal time to do maintenance.

4.7. Conclusion

In this chapter, a CPS architecture is proposed for developing a predictive maintenance strategy for a
multi-component system. With the CPS architecture, a lower-level model and a higher-level model is
used. The lower-level model determines the health status of the sub-systems. By first addressing the
root causes of the system’s failure, adequate data collection can be done, enabling continuous health
monitoring of the sub-systems. The higher-level model builds upon the lower-level model and deter-
mines the health status of the system. A DBN is used to incorporate the sub-system dependencies
in the cognition layer. In the final layer of the CPS architecture, decision-making takes place. This
research prioritizes reliability and availability optimization over cost minimization. This means that after
the health status is determined, decision-making takes place in finding an optimum between minimizing
the total out-of-order time of the system but limiting the maintenance moments and thus maximizing the
system’s availability while maintaining a reliability threshold. In the next chapter, the proposed archi-
tecture is implemented to prove the architecture and to see how the developed predictive maintenance
strategy will perform in relation to the turnaround process.



Simulation model

In this chapter, a simulation model will be implemented to prove the architecture from the previous
chapter. A simulation model has been used to obtain results instead of an implementation at Schiphol
because of the lack of data and time constraints. However, with the results, the benefits of the proposed
architecture will be shown for a range of parameters. The simulation model is the process executed
in the higher level model with as input the output of the lower level model. A simplified model is used
for the lower-level model to provide maintenance decision-making. This chapter answers the sub-
question: "How can the developed prediction model be implemented in the maintenance strategy of
the Passenger Boarding Bridge?”.

5.1. Bounderies & Assumptions

In the current analysis, the seven main sub-systems of the PBB were defined by analyzing the FMECA
and the SAT protocol. The different clusters for the failures were seen by analyzing the maintenance
tickets. These fault classifications were then linked to the sub-systems. However, no decisive conclu-
sion could be drawn on the root cause or causes for these sub-systems’ failure. Therefore, in this chap-
ter, maintenance log analysis will take place. However, due to the complexity of this multi-component
system, it is impossible to deduct the maintenance log analysis and implement the whole bridge in the
proposed architecture of chapter 4 due to time constraints. Therefore, only the canopy will be analyzed
to prove the proposed CPS architecture. Assumptions when implementing the proposed architecture
are:

» The maintenance tickets provided by Volkerlnfra are assumed to be correct and filled in truthfully.

» The behavior of the PBBs equipped with extra sensors is the same for all other Tianda PBBs
when encountering the same type of aircraft.

» The components placed in the PBBs equipped with extra sensors are the same as the compo-
nents fulfilling the same purpose in the other Tianda PBBs.

» The model assumes that the reliability of the canopy and its sub-systems, before calculations are
done, is close to one.

5.2. Objective & KPI's

The research goal of this research is to develop a prediction model to forecast an impending failure of
the PBB to prevent downtime of the PBB during in-time use. This forecast must then result in mainte-
nance activities of the PBB being done proactively, or a real-time gate switching could be suggested.
All this together must lead to a decrease in the time delay of the turnaround process of the aircraft,
which is currently directly affected if failure of the PBB occurs. This means that to show the impact
of the model and thus indicate how the proposed PdM strategy is beneficial concerning the current
situation, the CPS architecture must provide the following output:

45
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In the lower-level model, the health status of the different sub-systems is determined based on various
failure mechanisms. Here, the output of the lower-level model will be the health status of the sub-
systems. The reliability of the sub-systems will be used to show the impact of the model and compare
it to the current situation. The research defines reliability as "the ability of a system or component to
perform its required functions under specified conditions for a period of time” (Wang et al., 2016). The
definition of failure in this research is: "the event or inoperable state, in which any item or part of an
item does not, or would not, perform as previously specified.” Reliability can also be stated as:

R(t) =1—-F(t) with F(t) the probability of failure (5.1)

Here, the cumulative probability of the failure is the probability the sub-system or system will fail over
time. As the different sub-systems have different failure mechanisms, the probability density function
can be different. Here, a conventional statistical distribution that can be used is the exponential distri-
bution. Here, the reliability of the sub-system can be described as:

R(t) = et (5.2)

Here 1 can be specified as
A= ! 5.3
~ MTBF (5-3)

Here, MTBF is the Mean Time Between Failures, which is used for repairable sub-systems; in this re-
search, it is assumed that all sub-systems are repairable.

With the health status monitored and proactive maintenance being scheduled, the MTBF is expected to
be enlarged. This then results in increased reliability. With the explanation of reliability as an indicator
of performance, the PdM strategy should improve the MTBF. This means the maintenance moments
must be planned on time before unexpected downtime occurs.

The second KPl is the maintenance repair time. Schiphol wants to have the availability of the aircraft
stand as well as the PBB as high as possible. An inoperable PBB is unwanted, and fast repairments
need to take place to have a functional PBB when the turnaround process starts. With the assumption
that proactive repairments will be faster than corrective repairments, this KPI indicates that the model’s
output should be a planning of proactive maintenance moments.

The higher-level model should plan maintenance moments when the aircraft stand is not in use to
reduce unexpected failures during in-time use. However, the availability of the aircraft stand is wanted
to be as high as possible. Therefore, the third KPI is the repair rate. This means that the repair time
over bridge uses is wanted to be as low as possible to execute maintenance activities.

5.3. Base case

To answer the following research question: "How does the developed PdM strategy perform in relation
to the turnaround process?” a base case is defined. First, the sub-system, the canopy, must be de-
fined. The canopy can be defined as a critical asset within the turnaround process. If the canopy fails,
the turnaround process will be influenced directly, and delay will be imposed. The following reasons
led to this conclusion: First, extending the canopy toward the plane is mandatory for some airlines. A
failure of the canopy while extending towards the aircraft will lead to a safety issue, and a maintenance
engineer must come. Second, a failure of the canopy while retracting results in a stop of auto park-
ing on the bridge. Nevertheless, the bridge can go 1.5 meters back from the plane if the canopy fails
halfway while moving in. However, a marshall needs to come to ensure everything is safe before the
pushback of the aircraft can start. Third, in all cases above, a maintenance ticket will be made, and a
maintenance engineer must come to the bridge to check the canopy and repair it if necessary.



5.3. Base case 47

Within the canopy, two segments are responsible for being able to extend or retract. One segment is
for the left side of the canopy, and one is for the right side. The segments can be divided into the drive,
the limit switches and the mechanical part. The three parts can be seen in figure 5.1.

(a) The canopy drive (b) The limit switch (c) The mechanical part

Figure 5.1: The components of the canopy

The canopy drive is a linear actuator. A limit switch is a mechanical device that requires the physical
contact of an object with the switch’s actuator to make the contact change state (open/closed). As the
object or target contacts the operator of the switch, it eventually moves the actuator to the “limit,” where
the contacts change state. In a normally closed circuit, this mechanical action opens the electrical
contacts and in a normally open circuit, it closes them. The contacts then start or stop the electrical
circuit's current flow. Within the segment, there are two limit switches. The limit switch ensures that
the canopy drive is shut down if the canopy is back at its starting position, and the limit switch ensures
a stop of extending if the canopy is over the aircraft. The mechanical part consists of the beams that
support the drive for extending and retracting and a gas spring. The gas spring ensures the canopy
stays at the desired height during movement and when fully extracted.

From the maintenance tickets provided by Volkerlnfra, the time between a failure is kept track of. The
MTBEF is calculated for the different failures of the canopy. The bathtub curve is used as a reliability tool
to model the reliability of the canopy over time, and the assumption is made that the canopy is in the
use-full life period, which means that the failure rate is constant. With this assumption, the exponential
distribution is used to model the reliability of the canopy. The MTBF and reliability are calculated over
the period 1 April 2019 - 31 December 2022 and indicated in table 5.1.

Table 5.1: The MTBF and failure rate of the canopy and its components

MTBF (days) | Failure rate

Canopy 671.7 0.001488
Drive 858.6 0.001164
Limit switch 858.0 0.001165
Gas spring 895.1 0.001117

To get a distribution of the corrective repair time for each component, historical data is used, and the
outliers are excluded from this research. With the use of the Python package fitter, the distribution for
the drive and the gas spring is a gamma distribution. With a lognormal distribution for the limit switch.
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The plots for the drive can be seen in figure 5.2; the limit switch and gas spring were done similarly.
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Figure 5.2: Drive repair time and distributions

The availability of the aircraft stand is determined via the data of D16, D18 and D51, assuming a normal
distribution with a mean of 76 minutes with a standard definition of 54 minutes. As of now, the mainte-
nance executed is unexpected downtime. Therefore, the maintenance moments during non-in-time use
are only the preventive planned maintenance moments. According to the FMECA, the preventive mea-
sures are quarterly, half-yearly, and yearly, which means four preventive maintenance moments yearly.

Now the objectives and base case are defined, a simulation model can be developed to show how
the architecture can be implemented on the PBB. From this implementation, the results of applying this
model will show what the impact of the model will be. In the next sections, the lower-level model will
be described first, followed by the higher-level model.

5.4. Lower-level model

In the lower-level model, the health status of the different sub-systems will be determined using the
connection, conversion and cyber layer. With the canopy only in scope, the system role will shift from
the PBB to the canopy. As for the canopy, the causes of failure are not clear yet; first, the preliminary
layer, as described in section 4.2, will start with maintenance log analysis and gaining knowledge from
experts.

The CLEAR Framework presented in Lo (2023) for prompt engineering will be used. The authors de-
veloped the CLEAR Framework to optimize the usage of LLM to enable the users to be more effective.
The CLEAR Framework stands for Concise, Logical, Explicit, Adaptive, and Reflective. Being concise
in constructing the prompt enables the language model to focus only on the parts for which an answer
needs to be found. Removing unimportant information and being clear in the instructions will result
in effective prompts. The second component of the framework is related to logical prompts. Logically
constructing the prompt helps the Al to understand the relationship between the components of the
prompt. This results in more precise and coherent output. For the third component, the prompt needs
to be explicit in what the output structure needs to be. To get the desired output, the prompt needs to
be specific about what kind of output format, scope, or content needs to be used. Flexibility is key while
designing the prompt. Experimenting with different formulations or temperature settings is needed to
find the optimal balance of the prompt regarding creativity and concentration. Thus, being adaptive in
reformulating the prompts is needed in prompt engineering. The last framework component is related
to being reflective in doing prompt engineering. Continuously evaluate the results and try to be critical
towards the given output results to improve in prompt engineering (Lo, 2023).

For the maintenance log analysis, the maintenance tickets from 1 April 2019 to 31 December 2022
are used. In appendix E, the Python code used is displayed. To use only the relevant data for the
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log analysis, the data set has been reduced to only contain information about the classification and
maintenance logs. Due to the structure of the data file, first, the four maintenance log columns need
to be combined into one column, which captures all the information. Then, the names of the mechan-
ics are removed from the logs to remove unnecessary information from the logs. Next, the column is
filtered on each failure classification, and the analysis for them is done separately. Now, the CLEAR
framework is used to design an effective prompt. This will result in a more structured way of designing
the prompt and getting the desired output. First, what is needed from the Al needs to be determined.
By filtering the canopy maintenance tickets in their specific fault classification, i.e., drive defect, limit
switch defect and closing error, a first step in narrowing down the search has been done. For the drive
defect, the interest is what caused the drive to fail. So, to be concise, we only need to ask the model
to find the cause of the drive failure. Second, the prompt needs to be logical. Here, the model will be
informed that each line contains a maintenance log where the cause of drive failure could be found.
Next, the model will be informed that if no cause can be found, this must be stated. Thirdly, the output
format needs to be known. Here, a decision must be made on display if dozens of logs will be analyzed.

From the results of using an LLM model, interesting results are seen. The model can provide a fast,
structured answer using only a simple prompt. However, after implementing the model on larger parts
of logs, a lot of hallucination in the output is seen. This can be solved by constantly evaluating the
output and adapting to the situation. However, perfecting the prompt engineering is impossible in this
research’s time frame. Secondly, creating an LLM capable of analyzing the maintenance logs is not
an objective of this research. Al is only used as a tool and gives a hopeful insight into the future. An
intelligent way of using new technology is by creating a model in which large parts of maintenance logs
can be analyzed and root cause analysis can be derived. The only uncertainty is the reliability of the
model. Using Al LLM, the black box between input and output makes it hard to verify the model. It
is unknown if the output is the actual output. Therefore, this way of maintenance log analysis can be
questionable.

As maintenance log analysis could not provide the root causes of failure for well-considered data collec-
tion, expert knowledge was consulted. In section 2.4.2, it was seen that the canopy maintenance tickets
were classified almost equally into three groups: failure related to the canopy drive, limit switches and
an opening and closing. For the drive failure, the maintenance ticket analysis showed that 1/3 of the
tickets could be assigned to this failure mechanism. From the maintenance logs, it was seen that the
whole canopy drive then needs to be replaced. From expert knowledge, it became clear that not the
drive as a whole but the torque limiter within the drive was the cause of failure. In general, torque lim-
iters transmit the torque from the inner shaft to the output shaft. When a preset torque limit is exceeded,
the two shafts slip with respect to each other to protect the parts of the drivetrain during overload. The
torque transmitted during the overload depends on the torque limiter used and the situation occurring.
The torque limiter used in the linear actuator of the canopy is a ball detent torque limiter. This type of
torque limiter uses a series of balls placed in indentations. A spring force is applied to keep the balls in
the indentation. If the preset torque limit is exceeded, the ball slips out of the groove and will slip until
it falls back in the indentation.

To determine the health of the canopy, the drive can be monitored in three non-destructive ways: tem-
perature, vibration and motor current (Hashemian, 2011). The first step was to start with monitoring
the drive’s motor current. This means that as a data source, the PLC data of the canopy is needed,
and the sensors need to be installed to measure the current draw of the canopy drives. On 13 July
2023, sensors were installed to monitor the current draw through the canopy drives. The sensors are
installed at aircraft stand D51, and the left canopy drive is measured. The choice for this stand is purely
logistic based due to the constant use of stands D16 and D18 due to the summer holidays. Stand D51
is a narrow-body VOP. This means that only aircraft types with a diameter below 4 meters can park
at this stand. Due to the almost identical shape of those narrow-body VOPs, the canopy’s motion is
assumed to be identical for each aircraft type; only the time can differ. Figure 5.3 shows the current
overtime for extracting and retracting the left canopy segment. This profile is for fully extending and
retracting without connecting to an aircraft. From figure 5.3, it can be seen that the current graph has
an offset of 0.23 A for retracting and 0.29 A for extending.
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1

Figure 5.3: Canopy extending and retracting current over time

From table 5.2, the offset could be related to the current draw at no load. However, from expert knowl-
edge, it was retrieved that no current is on the canopy when it is not in use. This offset could not be
explained by the experts. Also, the current draw at full load is too high when checking table 5.2. From
manual checks, it turned out that the current for extending and retracting is around 0.7 A. The scale
error, however, due to measurement from the sensor could not be explained by the experts. Although
anomaly detection could be implemented and a search for normal and faulty behavior could be done,
it was decided that due to time constraints and the two unexplainable deviations, no further research
was done into the relation of the current on the drive’s health.

Table 5.2: Specifications of the canopy drive

Specifications Value
Connection Flying Leads
End Play, Max 1 mm
Feedback No Feedback
Gear Reduction 10:1
IP Rating IP55
Manual Override No
Material Copper; Steel; Zinc; Aluminum; Plastic
Motor Control None
Stroke 609.6 mm
Protection, End-of-stroke Clutch
Protection, Overload Clutch
Screw Type Ball
Max. static load 18000 N
Current draw no load 0.5A
Current draw max. load 1.3A
Max. dynamic load 4500 N
Voltage 230 Vac
Weight 8.5 kg

To prove the architecture assumptions were made to have the output of the lower-level model serve as
input for the higher-level model:

» To prove the CPS architecture, the condition of the drive can be monitored by measuring the
temperature, current and vibration of the drive

» As CPS architecture is verified using a simplified model, the sensors that provide information
about the condition of the gas spring and the limit switch will be out of scope as this will be
modeled in the same way as the drive health indicators.
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» Due to the lack of data to directly estimate the drive’s health status based on the sensors, an
alternative approach is used. The sensors are considered nodes within the BN to demonstrate
their influence on the overall health state of the drive.

5.5. Higher-level model

Using a simplified lower-level input, the higher-level model can be modeled. The higher-level model
consists of building and verifying the cognition layer, the BN and DBN, and the configuration layer, the
decision-making code. As the cognition layer output is used as input for the configuration layer, it was
built and verified first before starting with the configuration layer.

5.5.1. Bayesian Network
For the DBN, first, the BN needs to be specified. The procedure in Schietekat et al. (2016) is used to
build the BN. The three questions that need to be answered are:

» What is the graph structure, the variables and their values/states?
* What are the parameters?

* What inference modes will be used?

The model is built in the software package GeNle 4.0 Academic (BayesFusion, 2023).

As the model structure should be the physical representation of the variable and the state, the variables
used in the BN are defined. Table 5.3 displays the variables’ descriptions. The states of the sensor
nodes Temperature, Current and Vibration are Normal (N) and Abnormal (AN). The states of the com-
ponent and sub-system nodes are Working (W) and Failure (F). For the life-cycle node, the states are
Low, Medium and High.

Table 5.3: The variable definitions

Variable Description
Canopy The health status of the canopy assuming the health status of the canopy drive, gas spring and temperature.
Gas spring | The health status of the canopy gas spring.
Drive The health status of the canopy drive, assuming the state of the temperature, the current, and the vibration of the drive.
Limit switch | The health status of the canopy limit switch.
Life cycles | The life cycles of the canopy.
Temperature | The temperature of the canopy drive in Celsius.
Current The current of the canopy drive in Ampere.
Vibration The vibration of the canopy drive in Hertz.

Next up is the values of the variables. The variables used in this model are discrete. The variables
temperature, current, drive, gas spring, life cycles, and limit switch are input variables, while drive and
canopy are output variables. The description of the reasoning for this model structure is cause-effect.
The probabilities used in the model are described in table 5.4. For the sensor nodes Temperature,
Current and Vibration, it is assumed that the sensor readings are in the normal operation region and a
small prior failure probability is present. This translates into the prior probabilities of 0.999 for a normal
operating state and a prior probability of 0.001 for an abnormal operating state.

For the sub-system nodes Limit switch and Gas spring, it is assumed that their prior probabilities for
failing are small. This results in a prior probability of working of 0.99 and for failing 0.01.

The conditional probability for the drive node based on the given state of the sensor node is determined
by expert knowledge and domain knowledge. For the temperature node, it is known that if the tem-
perature reaches abnormal regions, the drive automatically switches off due to a thermal switch. This
means that the probability of the failure state of the drive is high, given the state of current and vibration
in a normal operation state and the temperature in an abnormal operation state. To incorporate an
uncertainty measure, a failure probability of 0.99 is used. For the current sensor, a failure probability
of 0.2 is used if it is in abnormal regions and the vibration and temperature are in a normal operation
state. The torque limiter must ensure the drive will not fail or be damaged. However, it was seen that
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Table 5.4: Probability distribution requirements and descriptions

Variable Probability Description
Canopy P(canopy | gas spring, drive, limit switch, life cycles)
The chance that the canopy fails given evidence of the input variables
. P(gas spring)
Gas spring The chance that the gas spring fails
Drive P(drive | temperature, current, vibration)
The chance that the drive fails given evidence of the input variables
Limit switch P(limit switch)
The chance that the limit switch fails
Life cycles P(life cycles) . o -
The chance that the life cycles fall within a specific state
Temperature P(temperature)
The chance that the temperature is in normal state
Current P(current) —
The chance that the current is in normal state
Vibration P(vibration) S —
The chance that the vibration is in normal state

the quality of the torque limiter is not always as it is supposed to be. For the failure probability given a
failure of the vibration sensor, the failure probability is also 0.99. For the combination of temperature
and or vibration with current given in abnormal readings, the failure probability of 0.99 is used.

The conditional probability for the canopy is based on the state of the different sub-system nodes. Here,
it is assumed that if the drive and gas spring fail, the canopy fails. For the limit switch, it is assumed
that there is a 90% chance that the canopy will still function in low life cycles as the canopy shuts down
after 28 seconds while extracting takes approximately 21 seconds. This results in the canopy being
pushed into the wall for only 7 seconds, which will not directly result in the failure of the canopy when
it has a low life cycle. When more life cycles pass, the probability of failure increases to 30 percent in
the state Medium and 50 percent in the state High.

For the inference technique used in this model, the health status over time, based on evidence, is
needed. This means that forward inference is used. In GeNle, the clustering algorithm is used as
default.

5.5.2. Verification Bayesian Network

With verification of the model, the question of if the model is right is answered. This results in that it
must be checked if the model is built correctly and works properly. Verifying the model is an ongoing
process as the model is developed over time (Sargent, 2011).

To verify the Bayesian network, the structure must be according to table 5.3, and the arcs must repre-
sent the cause-effect relationship. In figure 5.4, the structure, including the arcs, is visualized. Here,
it is also seen that no loops are in the network, so the network is acyclic. The probabilities agree with
table 5.4. Second, to ensure that the conditional independence of the nodes is correctly tested, tests
have been executed with each parameter, and no influence on the conditional independence nodes is
seen. Third, the probability of the drive in the state working (P(D=W)) is calculated and checked with
the output of the GeNle model to see if the model performs as expected.
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Figure 5.4: The Bayesian Network used for verification

P(Drive = Working) = P(Drive = Working,Vibration = Normal, Current = Normal, Temperature = Normal)
+ P(Drive = Working,Vibration = Normal, Current = Normal, Temperature = Abnormal)

+ P(Drive = Working,Vibration = Normal, Current = Abnormal, Temperature = Normal)

+ P(Drive = Working,Vibration = Abnormal, Current = Normal, Temperature = Normal)

+ P(Drive = Working,Vibration = Normal, Current = Abnormal, Temperature = Abnormal)

+ P(Drive = Working,Vibration = Abnormal, Current = Normal, Temperature = Abnormal)

+ P(Drive = Working,Vibration = Abnormal, Current = Abnormal, Temperature = Normal)

+ P(Drive = Working,Vibration = Abnormal, Current = Abnormal, Temperature = Abnormal)

as

P(D=W)=P(D=W,V=N,C=N,T=N)
+P(D =W,V =N,C=N,T = AN)
+P(D =W,V =N,C=AN,T =N)
+P(D =W,V =AN,C=N,T =N)
+P(D =W,V =N,C =AN,T = AN)
+P(D =W,V =AN,C =N,T = AN)
+P(D =W,V =AN,C =AN,T =N)
+P(D =W,V =AN,C = AN,T = AN)
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with

P(D=W,V=N,C=N,T=N)=P(D=W|V=N,C=N,T=N)-P(V=N)-P(C=N)-P(T=N)
=0.99:0.999-0.999 - 0.999
= 0.987032969
P(D=W,V=N,C=N,T=AN)=P(D =W|V=N,C=N,T=AN)-P(V =N)-P(C =N)-P(T = AN)
=0.01:0.999-0.999-0.001
= 0.00000998
P(D=W,V=N,C=AN,T=N)=P(D =W|V =N,C = AN,T =N)-P(V = N)- P(C = AN) - P(T = N)
=0.8-0.999-0.001 - 0.999
= 0.0007984008
P(D=W,V =A4N,C=N,T=N)=P(D =W|V =4N,C =N,T =N)-P(V = AN) - P(C = N) - P(T = N)
=0.01-0.001-0.999-0.999
= 0.00000998
P(D=W,V=N,C=AN,T=AN)=P(D =W|V =N,C = AN,T = AN) - P(V = N) - P(C = AN) - P(T = AN)
=0.01-0.999-0.001-0.001
=999 x 10~°
P(D =W,V =A4N,C =N,T = AN) = P(D = W|V = AN,C = N,T = AN) - P(V = AN) - P(C = N) - P(T = AN)
=0.01-0.001-0.999-0.001
=999 x 107°
P(D =W,V =AN,C = AN, T =N) =P(D = W|V = AN,C = AN,T = N) - P(V = AN) - P(C = AN) - P(T = N)
=0.01-0.001-0.001-0.999
=999 x 107°
P(D =W,V = AN,C = AN,T = AN) = P(D = W|V = AN,C = AN,T = AN) - P(V = AN) - P(C = AN) - P(T = AN)
=0.01-0.001-0.001-0.001
=1x10"1

result in

P(Drive = Working) = 0.987851

which is the same as the output given in GeNle.

At last, a sensitivity analysis of the network has been done to test the robustness of the BN, figure 5.5.
The sensitivity analysis provided the impact on the canopy node if the underlying nodes have a 10%
increase or decrease. The figure shows that the Canopy node is sensitive to a change in the drive
node and its parent node, as the canopy fails directly if the drive fails. This also explains the sensitivity
to the gas spring node. It is, therefore, key to ensure that implementing this architecture has accurate
descriptions for these nodes. Based on the results, it is concluded that the BN is built correctly and can
be used as a basis for the DBN.
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Sensitivity for Canopy=Failure

Current value: 0.0328044 Reachable range: [0.0230348 .. 0.129524]

1: Gas_spring=\Vorking

2: Drive=Working | Temperature=Normal, Current=Normal, Vibration=Normal

B: Current=Normal

7: Ljmit_switch=Working

4. Temperature=Normal

5: Vibration=Normal

8: Canopy=Working | Life_cycles=Medium, Gas_spring=VWVorking, Drive=Working, Limit_switch=Working

9. Canopy=Working | Life_cycles=Low, Gas_spring=WWorking, Drive=Working, Limit_switch=Failure

10: Canopy=\Working | Life_cycles=High, Gas_spring=Working, Drive=\Working, Limit_switch=\Working

3: Canopy=Working | Life_cycles=Low, Gas_spring=Working, Drive=Working, Limit_switch=\Waorking

Figure 5.5: Sensitivity tornado of the Bayesian Network

5.5.3. Dynamic Bayesian Network
The input for the DBN is the BN combined with the transition of the states over time from the components
and canopy. For the time step, one aircraft handling is assumed to happen at a time step. This means
that the DBN predicts the health of the canopy for upcoming aircraft handling. The MTBF is calculated
in the base case. As the amount of aircraft processed daily differs per aircraft stand, a mean of five
has been chosen to prove the architecture. For the degradation over time, the MTBF is chosen. The
transition probability is calculated with equation 5.4.

F(D=N|D = N(t—1)) =1 —expA*20

with A = 1/MTBF

(5.4)

Since the nodes of the sensors are evidence nodes, no temporal arcs are placed on the nodes. Also, in
this model, it is assumed that the three components are solely responsible for the failure of the canopy.
The resulting DBN is visualized in figure 5.6.
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Figure 5.6: The Dynamic Bayesian Network used for verification
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5.5.4. Verification Dynamic Bayesian Network

For the DBN, the underlying BN is already verified. Here, only the temporal nodes and the degradation
over time provided evidence must be checked to see if they worked according to the expectations. As
the current health situation of the canopy is not known beforehand, the failure probability should not
start at zero, and it is also not seen. Further along, extreme cases in providing evidence are imple-
mented to see if the expected output corresponds with the output provided by the model. By inserting
evidence of failure in the nodes, all the nodes give failure as output, which is then correctly processed
by the already verified BN.

5.5.5. Decision-making
The output of the cognition level serves as input for the configuration layer. Here, decision-making will
be based on the formulas presented in section 4.6. The input for this is:

* Amount of components

* Failure probability components
 Corrective repair time components
* Proactive repair time components
* Arrival time

» Time step and period

+ Availability aircraft stand

» Mechanics schedule

* Reliability

* Alpha

* Beta

The components used are the drive, limit switch and gas spring. The failure probabilities come directly
from the output of the cognition layer and are used here as input. The corrective repair time is deter-
mined based on historical data from the maintenance tickets provided by Volker as presented in section
5.3. Here, the corrective repair for each fault is stated. A distribution is derived by plotting the different
repair times over their frequency. The proactive repair time is set on half the corrective repair time to
show the impact. The arrival time used in the decision-making model is also already defined in the
base case. For the period, 450 bridge uses have been chosen. A longer time step was not chosen
for predicting the future; there is too much uncertainty for a longer time frame. The same availability
is used as in the base case. The number of mechanics is set to 1, and it is assumed that the number
of mechanics does not change between timesteps. Alpha and beta are set to 1. The threshold for
reliability can differ per sub-system or asset and purpose. The threshold in this research is set at 0.1
for the drive, the limit switch, and the gas spring. It was further decided that for the system canopy, no
maintenance is executed if the reliability of the canopy is higher than 90 percent.

A synthetic data set will be used for the sensor readings of the first 100 aircraft handelings. With this
dataset, the impact of condition monitoring on predicting the health status of the different components
in the future will be shown. As the value of these readings varies during the in-time use of the PBB,
it is impossible to use only one value for the whole duration of aircraft handling. However, to show
the model’s potential, a generic value will be used to show the model can predict an upcoming failure
and that proactive maintenance will be scheduled. In figure 5.7, the relationship between the value
of the sensor nodes and the corresponding failure probability can be seen. The range for the current
and temperature sensor was based on the specifications of the canopy drive, for the range of the
vibration sensor no characteristics could be found in the specifications of the canopy drive. Within
vibration analysis, multiple techniques can be used to find the working frequency of the drive (Akbar
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et al., 2023), however, the goal of the synthetic dataset is to show the DBN can update its beliefs. This
resulted in it being assumed that the drive has a mid-frequency range and all frequencies below 50 hz
will indicate a failure of the drive. The assumption for all sensors was made that the failure probabilities
can be related to an exponential distribution. The synthetic dataset was generated, appendix D, and the
corresponding failure probabilities were calculated. Next, the failure probabilities were implemented in
GeNle. From here, the failure probability for the drive was recalculated.
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Figure 5.7: Sensor values with corresponding failure probability

To ensure the decision-making model is built correctly and works as intended, qualitative verification is
used throughout building the model. A separate section in the notebook environment of Visual Studio
Code has been used for each step of the decision-making process. In this way, the model is built
correctly. The Python code can be found in Appendix F.

5.6. Test plan

With the CPS architecture used for the PBB, the impact of this proposed solution will be shown with
the simulation model. The following tests will evaluate the KPIs of the base case versus the newly
designed situation. First, the base case will be implemented, and the optimal time to do maintenance
is shown. Second, the synthetic dataset is implemented, and a new prediction is presented. For both
of the predictions, the influence of the proactive repair time will also be investigated. As for the base
case, the proactive repair time is set at half the corrective repair time; in the test, the proactive repair
time will vary between 10 percent and 90 percent of the corrective repair time. As the proactive repair
time influences the expected repair rate of the system, it influences the outcome of the expected total
repair rate. However, the availability of the aircraft stand to do maintenance is set as a constraint. It
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can thus be the case that due to a higher proactive repair time, the availability constraint of the aircraft
stand is exceeded, and a new optimal maintenance moment needs to be found compared to a lower
proactive repair time. This will also be done with the number of maintenance mechanics to show the
impact on the availability versus the repair time and the repair rate.

5.7. Conclusion

This chapter partially implements the proposed CPS architecture for a multi-component system using
a simulation model. First, the assumptions and boundaries were defined, followed by the base case.
The base case is a reference to see how the proposed architecture relates to the current situation within
the turnaround process. The lower-level model was applied to the PBB, focussing on the sub-system
canopy. Due to time constraints and questions about the validity of the sensor data, a simplified output
was used to serve as the output of the lower-level model. With the canopy implemented on the higher
level model, the DBN was formulated and built to serve as input for the decision-making. The DBN
was verified, and a sensitivity analysis was done to show its robustness. It was seen that the DBN was
highly sensitive for the given prior probabilities. In the highest layer of the CPS, the decision-making
process was implemented for the canopy. A test plan was defined to see how the output behaves in
two scenarios. In the next chapter, the results from the test plan are presented.



Results

In this chapter, the results of the test plan introduced in section 5.6 will be elaborated. This chapter an-
swers the sub-question: "How does the developed predictive maintenance strategy perform in relation
to the turnaround process?”. In the first section, the base case results are presented, followed by the
results of the higher-level model based on the synthetic dataset. In the last sections, the influence of
the height of the proactive repair time and the mechanics on the decision-making output are shown.

6.1. Base case

The base case is used together with the input as presented in section 5.3. The DBN model calculated
the failure probabilities for the given period of 450 bridge uses. In figure 6.1, the failure probability of
the canopy as a system is plotted based on the results from the DBN. In the figure, it can be seen that
the failure probability crosses the reliability line, the dashed black line, at 23 bridge uses. As stated, no
maintenance will be executed if the reliability of the canopy is above 0.9.
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Figure 6.1: The failure probability of the canopy Figure 6.2: The failure probability of the sub-
systems of the canopy
Now, the sub-systems of the canopy can be looked at. Figure 6.2 shows the failure probabilities of the
different sub-systems, the components of the canopy: blue for the drive, orange for the limit switch and
green for the gas spring. The reliability threshold, the dashed black line, was set at 0.9; the points where
the failure probabilities exceed the threshold (1-0.9=0.1) are shown. The drive needs to be maintained
before the 49th bridge use, the limit switch before the 410th bridge use and the gas spring before the
428th bridge use. The local opportunistic strategy searched for the optimal moment to do maintenance
for each sub-system individually by choosing the maintenance moment where the expected total repair
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rate is at its lowest while respecting the availability and reliability threshold. To show that the decision
model respects the availability constraint, the drive repair time is plotted as an example in figure 6.3,
which is the expected proactive repair time plus the arrival time. The availability of the aircraft stand to
do maintenance is plotted in light gray. It can be seen that the total repair time is less than the avail-
ability of the aircraft stand for the given timesteps except between bridge use 43 and 44. However, as
plotted in figure 6.4, the expected total repair rate of the drive is at its lowest by doing maintenance
between bridge uses 44 and 45. This moment is, therefore, chosen by the model for the optimal time
to do maintenance. In table 6.1, the optimal time to perform maintenance is given together with the
corresponding expected repair rate. For the drive, the optimal time to do maintenance is between the
44th and 45th bridge use, for the limit switch between the 400th and 401th bridge use, and for the gas
spring between the 413th and 414th bridge use.

Table 6.1: The optimal maintenance moments and the expected total repair rate of the sub-systems

Sub-system | Optimal maintenance moment | The expected total repair rate
Drive Between bridge use 44-45 0.384
Limit switch Between bridge use 400-401 0.045
Gas spring Between bridge use 413-414 0.050

When applying the global opportunistic strategy, the decision-making algorithm searches for a main-
tenance group if it reduces the expected minimal total maintenance rate. By combining this with the
restriction that the combined repair time cannot exceed the availability of the aircraft stand, the search
for an optimal maintenance group can be started. Due to the optimal maintenance moment for the
drive and the limit switch to be more than 350 bridge uses away no optimal group could be found.
However, as can be seen from table 6.1, the optimal time to do maintenance for the limit switch and
gas spring are close to each other. Therefore, the maintenance decision code was slightly adapted
to see if combining the maintenance moment for the limit switch and gas spring together is beneficial
for the expected minimal total maintenance rate. From the results, it was seen that combining the limit
switch and gas spring in a maintenance group will drop the expected minimal total maintenance rate
from 0.479 to 0.453. Here the new optimal time to do maintenance for the group is between bridge use
395 and 396.
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Figure 6.3: The availability of the aircraft stand Figure 6.4: The expected total repair rate for the
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6.2. Synthetic dataset case

The synthetic data set is used to show the ability of the model to adapt to new information and what the
impact is on the failure probabilities, repair time, optimal maintenance time and expected repair rate.
As the synthetic data set does not influence the results of the limit switch and gas spring, these figures
and values are not included in this part of the results. In figure 6.5, the updated failure probability is
shown. By implementing the sensor readings as evidence for the sensor nodes in the DBN, the time
step at which the failure probability exceeds the threshold shifts. Maintenance of the drive must occur
before the 112th bridge use to comply with the reliability threshold. Figure 6.5 shows the expected total
repair rate of the drive in blue, with the optimal maintenance moment from the base case in black and
the newly determined optimal moment to do maintenance in red. The optimal maintenance moment is
shifted to between bridge use 108 and 109. Due to the model update based on evidence for every time
step, the previous 100 bridge uses, the expected total repair rate of the drive at the optimal time to do
maintenance dropped from 0.384 to 0.149. Although the optimal time to do maintenance for the drive
shifted to between bridge use 108 and 109, the gap between the maintenance moments of the limit
switch and gas spring was too big to form an optimal maintenance group in the global opportunistic
strategy.
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6.3. Influence of the proactive repair time on the decision-making

The proactive repair time was varied to show the impact on the model’s output. The failure probabilities
of the base case, presented in figure 6.2, are first used. Thereafter, the influence of the proactive
repair time is presented for the synthetic dataset case. Important to notice is that in the base case and
synthetic dataset results, as presented in the first two sections of this chapter, a proactive repair time
of 0.5 times the corrective repair time is used.

6.3.1. Influence on the base case

For the base case, a range of values for the proactive repair time was implemented. From the outcome
of the decision-making model, it was seen that the optimal maintenance moment was not shifted for
the drive and limit switch when using different values of the proactive repair time. However, for the
gas spring, the outcome showed that if the proactive repair time is higher than 0.6 times the corrective
repair time, the optimal time to do maintenance is shifted to almost 100 bridge uses earlier, namely
between bridge uses 336 and 337. In figure 6.7, the expected total repair rate for the gas spring is
plotted. In black, the expected total repair rate of the gas spring for in-between bridge use 413 and
414, and in red, the expected total repair rate for in-between bridge use 336 and 337. In this graph, it
can be seen that for a proactive repair time of 0.7 times the corrective repair time or higher, the total
expected repair rate is lower for in-between bridge use 336-337 than the optimal maintenance time
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of in-between bridge use 413-414. As the model searches for the maintenance moment where the
expected total repair rate of the sub-system is at its lowest, the optimal time to do maintenance for the
gas spring is chosen as in between bridge use 336 and 337 for a proactive repair time of 0.7, 0.8 and
0.9 times the corrective repair time.
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Figure 6.7: Effect of the proactive repair time on the expected total repair rate of the gas spring

In figure 6.8, the result of forming different maintenance groups is shown for the expected total repair
rate of the system at the determined optimal time(s) to do maintenance. In purple, the result of forming
a maintenance group as presented in the global opportunistic strategy procedure in 4.6 is shown. Com-
paring it with repairing all the sub-systems individually, indicated with black dots, it can be seen that for
each value of the proactive repair time, it is more beneficial to maintain the sub-systems individually.
However, as done in the base case, the limit switch and gas spring are combined into one maintenance
group, the red dots in the figure. It can be seen that for each value of the proactive repair time, it is
beneficial for the expected minimal total maintenance rate of the system to combine these two sub-
systems in the maintenance group. The figure shows that from a proactive repair time of more than 0.6
times the corrective repair time, the expected total repair rate for the maintenance group according to
the global opportunistic strategy is not linearly increasing for each group. This is because the optimal
time for maintenance for the gas spring is shifted towards bridge use 336 and 337. This results in that
the maintenance group formed is not the drive and limit switch but the drive and gas spring, which will
give a different result in the expected minimal total maintenance rate for the system.
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system
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6.3.2. Influence on the synthetic dataset case

The range of different values for the proactive repair time was applied in combination with the synthetic
dataset for the sensor readings of the drive. For the local opportunistic strategy for the drive, the
proactive repair time does not influence the optimal maintenance time, only the expected total repair
rate. As the proactive repair time increases, the expected total repair rate increases. The optimal
time to do maintenance for the drive is still between the 108th bridge use and the 109th. In figure 6.9,
the result of forming different maintenance groups is shown for the expected minimal total maintenance
rate of the system at the determined optimal time(s) to do maintenance, now updated with the synthetic
dataset. In this figure, it can be seen that the optimal moment for maintenance for the gas spring is
shifted to in-between bridge use 336 and 337. With a proactive repair time higher than 0.6 times
the corrective repair time, the gap between the optimal maintenance moment for the drive, between
bridge use 108 and 109, is decreased, and the expected total repair rate drops significantly. However,
maintaining the sub-systems individually or a maintenance group of the gas spring and the limit switch
is more beneficial for the expected minimal total maintenance rate of the system.
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Figure 6.9: Effect of the proactive repair time on the expected minimal total maintenance rate of the
system when the synthetic dataset is used

6.4. Influence of the mechanics on the decision-making

In this section, the number of mechanics varies to see its influence on the decision model’s output. In
this first section, the number of mechanics varies for the base case. In the second section, the number
of mechanics varies for the synthetic dataset case. Important to notice is that in the previous sections,
the number of mechanics was one.

6.4.1. Influence on the base case

The amount of mechanics was varied to show the impact on the model’s output. The failure probabilities
of the base case, presented in figure 6.2, are first used. With more mechanics and the assumption that
wcrr and wppr are one, the repair time of the sub-systems drops. Although the repair time is decreased
by having more mechanics, the optimal time to do maintenance for the different sub-systems is not
changed. Figure 6.10 shows the expected total repair rate of the different sub-systems. From the
figure, it can be seen that by increasing the mechanics, the expected total repair rate for the sub-
systems also drops. Having two mechanics repairing a sub-system, the repair rate drops 5.4 percent
compared with one mechanic for the drive to almost 14 percent for the gas spring. When applying the
global opportunistic strategy, although increasing the mechanics, no optimal maintenance group could
be formed due to the early maintenance of the drive. The same as in the base case, the maintenance
group of the limit switch and the gas spring is made, and the expected minimal total maintenance
rate of the system is plotted against the expected minimal total maintenance rate of the system when
maintaining the sub-systems individually. Also, for this maintenance group, the optimal time to do
maintenance is unchanged and stays between bridge use 395 and 396. By both graphs, visualized in
figure 6.11, the expected total repair rate will drop significantly by having two maintenance mechanics
instead of one.
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6.4.2. Influence on the synthetic dataset case

The number of maintenance mechanics was also varied in combination with the synthetic dataset for
the sensor readings of the drive. The same as in the proactive repair time experiments, the number
of mechanics varied in combination with the synthetic dataset did not influence the optimal time to
do maintenance. When looking at the global opportunistic strategy, the gap is still too big to form an
optimal group with the drive and the limit switch, as shown in figure 6.12. Here, the global opportunistic
strategy maintenance group is plotted in purple, and the individual maintenance system is plotted in
black. For each number of maintenance mechanics, the global opportunistic strategy gives a higher
expected minimal total maintenance rate of the system than combining the drive and limit switch in a
maintenance group while maintaining the gas spring individually. What is seen is a steep decrease in
the expected repair rate for the system if the global opportunistic strategy is used, a drop of 25 percent.
However, now the optimal time to do maintenance needs to take place before the 112 bridge use, which
is almost 250 bridge uses earlier than if the limit switch is maintained individually. Also, the limit switch
and gas spring are combined in a maintenance group to see if this is beneficial for the expected total
repair rate of the system. From the red points in figure 6.12, it can be seen that having more mechanics
and combining the drive and gas spring in a maintenance group is beneficial for the expected minimal
total maintenance rate of the system.
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6.5. Results conclusions

In this section, the output of the higher-level model was shown. First, the base case input was used
to determine the optimal maintenance moment for the sub-systems individually. After that, the global
opportunistic model was used to determine the optimal maintenance group together with the group’s
optimal maintenance moment. It was shown that the model can determine the optimal maintenance
moment for the component individually and for the optimal maintenance group by finding the lowest
repair rate while respecting the availability constraints. It was seen that the procedure to find the optimal
maintenance group by combining the first and second sub-systems placed for maintenance was, in this
case, not beneficial for the system as the time between them was too long. As the optimal time to do
maintenance of the limit switch and gas spring was only 13 bridge uses away, it was seen that if these
two sub-systems were combined in a maintenance group, the expected minimal total maintenance rate
of the system would be lower than maintaining these sub-systems individually. By implementing the
synthetic dataset in the cognition layer, the DBN updates the failure probability of the drive and a new
decision-making of the optimal maintenance moment is made. The results show that the higher-level
model can update the model’s reliability and choose the maintenance moment with the lowest repair
rate while respecting the availability constraint. By determining this optimal maintenance moment, the
proactive repair time can be used, which is less than the corrective repair time. This proactive repair
time is also investigated in terms of how it influences the optimal maintenance moment and repair rate
in the base and synthetic dataset case. The results showed that the height of the proactive repair time
can influence the outcome of the optimal time to do maintenance for the gas spring if a proactive repair
time of 0.7 or higher times the corrective repair time is used. For the global opportunistic model, the
height of the proactive repair time only influenced the outcome for a proactive repair time as the order of
maintenance is shifted due to the earlier optimal time to do maintenance for the gas spring. However, it
did not change that it was not beneficial to use the global opportunistic strategy to form a maintenance
group of the first and second sub-systems that require maintenance. The influence of the amount of
mechanics on the repair rate was significant; it was seen that increasing the mechanics from only one
to two already decreased the total repair rate from 5 to 14 percent for the local strategy of the gas spring
and 25 percent for the global strategy in the synthetic case. However, it did not change the optimal
maintenance moment.






Discussion

In this chapter, the results of this research are interpreted and discussed. This research proposes
a CPS architecture for developing a PdM strategy for a multi-component system. By developing this
architecture and running a simulation model, the impact of the model can be evaluated. In the following
sections, each layer of the CPS for the multi-component system, the PBB, is discussed. In this research,
validation and implementation were not reached, resulting in the thesis only focusing on the cyber part
of the CPS. Although suggestions for maintenance activities were made in the configuration layer, a
complete loop was not met.

7.1. Connection layer

The physical system is connected to the cyber part in the connection layer by collecting data from
various sources. In the first instance, the ability to collect data was thought to be simple. However,
collecting data without knowing what to predict was inefficient and time-consuming. A more concise
data collection could be present by including a preliminary layer where the root causes of failure were
first found. Within the preliminary layer, using maintenance log analysis and expert knowledge, the root
causes of failure could be found. Within the research, the assumption was made that the maintenance
tickets were correct and filled in truthfully. This assumption was made because manually correcting the
maintenance tickets was not feasible within this research time frame and was not a goal of this research.
Nevertheless, ensuring the data source is correct and truthful is crucial. As data can be collected from
almost all sources due to the evolution of Industry 4.0, it is a waste of time and money if (sub)systems
are monitored due to wrongly filled-in maintenance tickets and in the end, it is concluded that no faults
are happening. For the canopy, the maintenance tickets showed that the general classifications were
insufficient to find the root causes of failure and the maintenance logs were analyzed. With the use of
the LLM, the output showed that the maintenance tickets logs were too generally filled in, and the text
log, as how it was supposed to function, could not give the cause of failure and how it was solved. As
maintenance log analysis was promising but insufficient, expert knowledge was needed. Here, it was
seen that when implementing a theoretical architecture in practice, the mechanics working daily with
the PBB are essential. This resulted in the canopy failure’s root causes were found with the help of
expert knowledge. In this phase, especially, the collection of data and the execution of the preliminary
layer took more time than expected. Collecting data from the installed current sensor took much time
and resulted in doubts about whether it was meaningful. However, this layer and the newly defined
preliminary layer showed that the practical setting and the theoretical situation are not applicable one-
to-one. In reality, significant data collection could not be as easy as expected.

7.2. Conversion layer

The conversion layer converts data from the connection layer to information. Only the data from the
installed current sensors were used in the simulation. With this data, a first step was made to convert the
data to information regarding the health status of the canopy. Due to the time constraint and uncertainty
in the validity of the data, no further research was done on the current data and assumptions were made
to use a simplified lower model output. Therefore, this layer was not proven in this research. However,
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as various research in PHM systems based on sensor data can be found in the literature, the importance
of converting raw data to information can not be neglected.

7.3. Cyber layer

In the cyber layer, the different health statuses of the components come together to predict the sub-
system health. Due to the complexity and size of the PBB within the given time frame, the canopy
was used as a system, with the three components as sub-systems and life cycles as separate failure
mechanisms. Due to time constraints, no further research was done on the sub-systems limit switch
and gas spring. As the sub-system drive was started with three failure mechanisms, only one model
was used in the end due to time constraints. However, if we take one step back, if it is looked at as
a system as a whole, the canopy as a sub-system has three failure mechanisms, with all their own
models to assess the influence of the sub-system canopy health. The proposed solution of using a
multi-model approach by combining the data from the proposed sensors is reducing the complexity
instead of using three different data-driven models. If combined with that, each sub-system uses a
multi-model approach instead of individual models. The purpose of using a multi-model approach to
reduce the complexity in this layer can be said to be proven.

7.4. Cognition layer

The cognition layer serves as the medium for visualizing the whole system. In this layer, the system
as a whole is evaluated. The DBN was chosen to have a clear overview of the multi-component sys-
tem and visualize the dependencies between different components. From the implemented simulation
model, it was found that the DBN and BN can indicate and visualize the multi-component system in
an easy-to-understand way. This reduces the complexity of the system. With the DBN, a prediction
can be made on the failure probability of the different sub-systems and systems. From the test with a
synthetic dataset, the model provides an updated DBN for 100 bridge uses and can update the failure
probabilities. With the DBN, this layer can provide insight into the system’s reliability and corresponding
sub-systems. The sensor readings were randomly chosen as input for the synthetic dataset, and one
value was used for the whole bridge use. This is not the case in reality. However, in this research, the
sensors were chosen to be modeled as nodes to show their influence. When applying this architecture,
the sensor nodes are replaced with the health status based on the sensor output, and this assump-
tion is overcome. From the sensitivity analysis, it was found that the outcome of the DBN is highly
dependable on the prior probabilities and the CPTs for the child nodes. By having good insight into
these probabilities, an accurate description of the real world can be made. Unfortunately, the model
could only be implemented partly and with assumptions. This results in a synthetic representation
of reality. However, this layer proves the importance of visualizing the system and the need for an
easy-to-understand system representation. The DBN can indicate and visualize the multi-component
system. However, due to the importance of having correct values of the conditional probabilities of the
DBN, the choice to use it can be questionable.

7.5. Configuration layer

In the configuration layer, decision-making is conducted for the system. Based on the predicted failure
probabilities from the cognition layer, the model can calculate the optimal maintenance moment with
and without evidence. The opportunistic PdM strategy based on cost was reformed to an availability
objective. This resulted in a rate where repair time over bridge use was minimized to find the optimal
moment to do maintenance. Respecting the reliability threshold and the availability of the aircraft stand
to do maintenance, the local optimal moments to do maintenance were found. As the height of the input
values was respectively low, the expected total repair rate dropped fast to close to zero. The model
can form an optimal maintenance group for the global opportunistic strategy. However, as the optimal
maintenance moments for the limit switch and gas spring are almost 350 bridge uses further in the
period, forming maintenance groups is not ideal if the individual moments are not close. In this result, a
group of only the limit switch and gas spring and doing maintenance on the drive individually could have
suited better. When applying the decision-making model to the synthetic dataset, the result shows that
the optimal maintenance moment is shifted to a later bridge use. Due to the reliability threshold, the
drive needs maintenance within 12 bridge uses, and the optimal time to do maintenance is thereafter
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calculated as between the 107th and 108th. In this model, it is assumed that maintenance can be
planned and executed immediately. In reality, this does not have to be the case. In the tests for the
decision-making model, the value of the proactive repair time was also changed over a range of values
times the corrective repair time. Here, the range of proactive repair time was applied to the base case
and the synthetic dataset case. Here, it was seen that the value of the proactive repair time influences
the outcome. Therefore, the exact value of the proactive repair time must be known. The amount of
mechanics was also varied to see the effect on the decision-making model output. Here, mechanics
increased from one to two, showed a significant decrease in the expected repair rate. However, the
assumption was that if two mechanics worked on the same failure, it would reduce the repair time in
half. This will not always be the case in reality.






Conclusion and recommendations

In this section, the research question of this thesis is answered. In section 8.2, the limitations of this
research are stated, and a recommendation for further research is made. In the last section, the rec-
ommendations for Schiphol are listed.

8.1. Conclusion

In this thesis, research was conducted to find an answer to the following research question:
How to realize a predictive maintenance strategy for Passenger Boarding Bridges to benefit the air-
port’s turnaround process?

To answer the research question, the research sub-questions need to be answered. The first sub-
question was: What are the failure mechanisms of the Passenger Boarding Bridge? The failure mech-
anisms of the PBB were captured in the maintenance tickets of VolkerInfra. According to these tickets,
it became clear that degradation of the system based on life cycles was not the primary cause of fail-
ure. Here, a possible explanation could be well-executed preventive maintenance activities or that the
in-use time of PBB is short. With the provided maintenance tickets, the failure classifications already
determined by VolkerInfra could be used. It was concluded that preset classifications were too general
to derive the root cause of failure. The classifications only gave the symptoms of failure, for example,
system jam or failure while operating, instead of the root cause of failure, which prevents the start of
adequate monitoring to predict the failure from happening. With expert knowledge, the failure mecha-
nism of one sub-system of the PBB could be found, the failure mechanisms of the canopy. From here,
the sub-system was investigated to find the root cause of failure. For the canopy, the torque limiter
played a significant role in causing the maintenance tickets.

The second sub-question was: What is the current state of maintenance activities of the Passenger
Boarding Bridges? Firstly, reactive maintenance is executed when a PBB failure is reported through a
maintenance ticket. The maintenance mechanic will be sent to the PBB; if necessary, repairs are exe-
cuted to put the PBB back in use. Second, preventive maintenance is executed based on the FMECA.
Here, quarterly, half-yearly and yearly inspections are done. In addition, extra sensors were installed
to collect data and get insight into the PBB condition. However, no arguments were documented as to
why the specific extra sensors were installed and why other data from the PBB were excluded from the
monitoring. This results in that without having a clear overview of the root causes of failure, predictions
made based on the monitoring data could be impossible because no failure captured would be present
within the data.

The third sub-question was: What are the state-of-the-art techniques regarding predictive mainte-
nance? The development of PdM for multi-component systems is still in an early phase; nevertheless,
with the rise of Industry 4.0, the developments captured within will enhance the research of PdM for
multi-component systems. The use of data-driven methods in combination with Big Data enables the
monitoring of complex systems. Using a multi-model approach, this increasing complexity, as the sys-
tem will have more components, can be countered and made accessible and comprehensible. Combin-
ing this with a well-defined architecture, for instance, the CPS, the relationships and dependencies of
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the components are also included, and an accurate model can be constructed representing the reality.

The fourth sub-question was: How can the prediction model be developed? The prediction model
can be developed by using a CPS. With the CPS, an autonomous architecture is created where the
cyber part interacts with the physical part and vice versa. The CPS for the multi-component system
consists of a lower-level model and a higher-level model. Within the lower-level model, the root causes
of failure are first determined before data collection occurs. It was found that Big Data enables acces-
sible data collection but can take enormous proportions in size. Therefore, a clear vision of what data
to collect must be present. After that, data is collected together with feature extraction and dimension
reduction. With this data to information part, the health status of each sub-system can be determined
and serves as the output of the lower-level model. The higher-level model uses the health status of
each sub-system and predicts and visualizes the system’s health status using a DBN. At last, decision-
making to find the optimal time to maintain the system and the individual sub-systems occurs in the
higher-level model.

The fifth sub-question was: How can the developed prediction model be implemented in the mainte-
nance strategy of the Passenger Boarding Bridge? The developed prediction model could not be fully
implemented in the maintenance strategy of the PBB. In this research, only model verification has been
done, including a simulation of the model. The base case was determined based on the sub-system
canopy and its components. To account for uncertainties and unclarity, assumptions were made to
make the simulation model. The simulation model showed that the developed prediction model func-
tions as it should, regardless of the given input. Therefore, if the correct input data is available, the
model can be implemented in the current maintenance strategy.

The last sub-question was: How does the developed predictive maintenance strategy perform in
relation to the turnaround process? KPls were determined to see how the developed PdM strategy
performs. The KPIs were stated as reliability, the repair time and the repair rate. With the simulation
model and synthetic dataset, it can be concluded that the developed PdM strategy can monitor the
system under scope and predict its reliability within a certain period. By actively updating, based on
new information, the health status of each sub-system at a new time step, proactive maintenance can
be executed by choosing the optimal timestep based on the lowest repair rate. With these proactive
approaches, failures are prevented, and the MTBF increases, which increases the system’s reliability
during in-time use and prevents delays in the turnaround process from happening.

Combining the answers to the sub-questions, the research question How fo realize a predictive main-
tenance strategy for Passenger Boarding Bridges to benefit the airport’s turnaround process? can be
answered. It has been concluded that by developing a CPS architecture for the PBB, a predictive main-
tenance strategy can be realized, which can benefit the airport’s turnaround process. By addressing the
root causes of the system’s failure, adequate data collection can be done, enabling continuous health
monitoring of the bridge, its sub-system and its components. With these predictions, decision-making
can occur, allowing proactive maintenance moments at which the repair rate is at its lowest while re-
specting the availability constraints of aircraft stand. With this, the reliability of the PBB is justified and
improved, and unwanted downtime during the turnaround process is prevented.

8.2. Limitations and future research

As the usage of actual sensor data was limited due to the unclarity in the data and time limitation, the
system was simplified, and a synthetic dataset was used. This limited the research on the following
points. First, as the maintenance tickets and especially the maintenance logs could not give clear insight
into the root causes of failure for the different sub-systems of the PBB, only research was conducted
on the canopy. From here, the validity of the used type of component from the supplier was questioned
due to quality differences. Combining this with the data collection of the canopy was also questionable;
a simplified model was used for the lower-level model and its resulting output. This limited the model
at the cyber level. Therefore, It is recommended that future research focuses on applying multi-model
approaches and how to implement this on a multi-component system to reduce the complexity and
ease its usage in practice. Second, the higher-level model uses a DBN to indicate the relations and
dependencies between the sub-systems and to visualize the system. This research found that the
DBN works perfectly; however, determining the conditional probabilities was difficult. This resulted in
many assumptions and expert knowledge for this part. The sensitivity analysis shows that the DBN is
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highly sensitive to the outcome with different probabilities. It is therefore also recommended to explore
further if a DBN is the right tool for the cognition layer, and if so, more research must be done for the
PBB and the conditional probabilities. At last, within the decision-making model, the input values were
determined based on historical data and distributions were used to represent these values. Combining
this with the fact that the availability is only based on the time between aircraft handling in the past,
it is recommended to get the actual values for the input values of the decision-making model in the
configuration layer before implementing it in the real world.

8.3. Recommendations for Schiphol

In this section, the practical recommendations for Schiphol are listed. First, understand which data
needs to be collected. As Big Data and sensors can enable data collection of almost everything, this
can result in data collected that is not used afterward. Finding the root causes of failure and clearly
stating and documenting why and for which purpose, useful data can be collected. With this useful data,
information can be extracted to predict upcoming failures. Second, if this root cause analysis results
in the failure’s cause can not be predicted, this does not mean the search has ended. As PdM is not a
step but an enhancement in the maintenance strategy, other ways to prevent upcoming failures must
be used. Third, it was found that the maintenance tickets were not functioning as they were supposed
to. As the maintenance tickets serve as indicators of the failures happening and maintenance logs were
added to indicate what has happened and how it is solved, these tickets must be filled in correctly if
needed later on to do a root cause analysis. Fourth, the technical and data-driven parts come together
when implementing PdM from theory to practice. As itis easy to focus from a data-driven point of view, it
is easy to forget that there are mechanics that are working daily with the PBB. By having close contact
with the mechanics, the knowledge needed for the technical part could be more effortless to collect
and could even enhance the data-driven part. This is because they are the user of the maintenance
strategy and the people who need to understand it. Including them in an earlier phase could make
the process more convenient. By acknowledging and overcoming the abovementioned four points,
predictive maintenance is possible for the PBB. However, the complexity of the PBB, in combination
with suspicion of the high number of failures to predict or overcome, the feasibility of realizing the
predictive maintenance for the PBB within the busy world of Schiphol will be challenging.
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A. Scientific research paper

Towards a predictive maintenance strategy for Passenger Boarding Bridges at the

airport

L. Meijs, Dr. ir. Y. Pang, Prof. dr. R. R. Negenborn, O. Maan, J. van der Lee
Abstract - With Schiphol Airport’s flight numbers growing, working assets are essential to en-
sure on-time processes. The Passenger Boarding Bridge (PBB) is a critical asset in the airport’s
turnaround process. By ensuring that the asset is working properly, the operational processes can
run efficiently. Currently, improving the reliability of the PBB when in use happens after the fault
has occurred. With this maintenance strategy, the PBB data is not used to predict the future health
state of the PBB. Literature shows that the PBB can be classified as a multi-component system.
Research in the predictive maintenance strategy of multi-component systems is still in an early
phase. Research until now is more theoretical than practical, and an investigation into applying
theoretical knowledge in practice is needed. With the upcoming developments of Industry 4.0, a
Cyber-Physical System (CPS) architecture is proposed for a multi-component system. This archi-
tecture has been applied to the PBB to develop and use a predictive maintenance strategy for this
system. Based on the implementation of a simulation model, the output showed that the proposed
CPS architecture enabled the development of a predictive maintenance strategy for the PBB. With
this strategy, proactive maintenance is planned while the system’s reliability is held on a preset level

to ensure a working asset during in-time use.

I. INTRODUCTION
A. Research background

The aviation industry has seen enormous growth (In-
ternational Civil Aviation Organization, 2019). This
growth has led to the will of airports to expand in size and
flight numbers (Niestadt, 2021). This increase in capac-
ity needs to be captured between the existing limits of the
airport. With airports functioning within the top of their
limitations, delays impose a risk for the airports. Delays
induce significant costs for the airlines, the primary con-
cern of the airport company (de Alvear Cardenas et al.,
2017). It was estimated that the average price of aircraft
block time, the time difference an aircraft goes into and
out of the blocks, also known as the turnaround time,
in the United States was 80.52 dollars per minute delay
(Airlines for America, 2022). This resulted in an over-
all cost of 33 billion dollars due to delays in the United
States in 2019 (Federal Aviation Administration, 2020).
The PBB is a critical asset in the turnaround process.
The bridge ensures that passengers can walk dry and in
a comfortable climate regardless of the conditions out-
side.

B. Problem definition

The growth of the aviation industry is also visible at
Schiphol Airport. From 2010 to 2020, Schiphol Airport
increased from 45 million to 72 million passengers using
the airport. This is an increase of almost 63 percent
more passengers using the airport to get from or to their
destination (Centraal Bureau voor de Statistiek, 2022).
Everything must work correctly to ensure optimal
passenger journeys and prevent flight delays. If an
aircraft is delayed, passengers can claim compensation

for the imposed delay by the airline company. Also, a
delay can have an influence on the operational processes.
A delay can result in the aircraft being unable to depart
within its own time slot. Flight time slots are used as
timetables for the airport to regulate all the departing
and arriving flights. Within the designated time slot,
usually 20 minutes (Schiphol Group, 2021), the airlines
can use all airport infrastructure (for example, taxi lanes
and runways) necessary for the successful operation of
the flight (Airport Council International et al., 2020).
However, when an aircraft misses its time slot, it must
stay on the ground until a new time slot has been found.
Within a busy airport like Schiphol, the flight delay will
increase even more.

Through an innovation proposal started by Schiphol,
sensors were installed at three PBBs at Schiphol to
get more insight into the failure mechanisms of the
PBB. Together with the data gathered from the bridge
Programmable Logic Controller (PLC), the data is
visualized to see if the PBB’s failure mechanism could
be seen or predicted based on the data. If a prediction
could be made about when the PBB will be ’out of
order’ within a specific time range, the delays jeop-
ardizing the turnaround process would be reduced.
Until now, the obtained data has been analyzed on
anomalies after failure. This resulted in that only
warnings have been implemented, which will become
active if certain thresholds are exceeded. Therefore,
the potential of using the sensor data in predicting a
failure of the PBB before it occurs in the system has
not been reached yet. Secondly, the time the operator
uses to (de)connect the PBB varies between 40 seconds
and more than 5 minutes. Nevertheless, these are short
periods of in-use time of the PBB, resulting in a more
complex situation than continuous monitoring of an
asset used for hours, which is seen more often in lit-
erature. This has led to the following problem statement:
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Currently, improving the reliability of the Passenger
Boarding Bridge when in use, based on the monitored
data, takes place after the fault has occurred. Which,
therefore, does not use the data’s possibilities to predict
the future health state of the Passenger Boarding Bridge
to its marimum.

C. Research objective

The research goal has been formulated based on the
problem definition described above. The research goal is
to develop a prediction model to forecast an impending
failure of the PBB to prevent downtime of the PBB dur-
ing in-time use. This forecast must then result in main-
tenance activities of the PBB being done proactively, or
a real-time gate switching could be suggested. All this
together must lead to a decrease in the time delay of
the turnaround process of the aircraft, which is currently
directly affected if failure of the PBB occurs.

Combining the problem definition and research objec-
tive, the following research question is formulated and
answered in this paper: How to realize a predictive main-
tenance strategy for Passenger Boarding Bridges to ben-
efit the airport’s turnaround process?

D. Scope

This research’s scope is limited to the 65 CMIC Tianda
PBBs at Schiphol Airport, their maintenance tickets and
related failures. These maintenance tickets are from 1
April 2019 to 31 December 2022. The sensor data from
the sensors installed by the main contractor, VolkerIn-
fra, are from three CMIC Tianda bridges, located at
stands D16, D18 and D51. This sensor data is gath-
ered starting from 1 January 2020. Outside the scope
of this research are the maintenance tickets and sensor
data related to the bumper due to an already investi-
gated innovation proposal, real-time switching of aircraft
stands, the maintenance tickets related to human errors
and reducing the planned maintenance moments. The
latter is because this research will look into decreasing
the unplanned maintenance moments.

E. Methodology

The following methodology has been executed to an-
swer the research question. First, the current situation of
the PBB at Schiphol was investigated. In this analysis,
the working principle of the PBB is presented to know
how the bridge is operated. From maintenance logs pro-
vided by Volkerinfra, qualitative data is analyzed to find
the root causes of failure. In the analysis, the mainte-
nance logs are combined with the Failure Mode, Effect
and Critical Analysis (FMECA) and the Site Acceptance

Testing (SAT) protocol of the PBB to link the failure
mechanism to the sub-systems of the bridge. From here,
the bridge’s critical sub-systems regarding the operation
of the PBB were defined. Next, literature research was
executed to investigate what has already been written
about predictive maintenance. This will provide a clear
overview of predictive maintenance and the knowledge
needed about state-of-the-art techniques for predictive
maintenance. A CPS architecture was used in this re-
search (Lee et al., 2015; Song et al., 2021). After the
model was developed, verification of the model was done.
The model was simulated to see the performance relative
to the current maintenance strategy of the PBB.

II. RESEARCH OBJECT
A. Passenger Boarding Bridge

Figure 1 shows the research object in this paper,
the PBB. The PBB can be divided into seven sub-
components: the telescopic tunnels, the elevation system,
the wheel bogies, the cabin, the canopy, the trim arm and
the roller door. The PBB is used in two situations. The
first situation is the connection towards an arriving air-
craft. Here, the PBB is manually operated towards the
aircraft. The second situation is decoupling from the air-
craft. Although this is started manually by pressing the
parking button, the parking procedure is done automat-
ically towards a predefined parking position.

FIG. 1. The Passenger Boarding Bridge

B. Current maintenance situation

At Schiphol Airport, two maintenance strategies are
already used to maintain the PBB. The first is reactive
maintenance: if there is a problem with the PBB, a main-
tenance mechanic of VolkerInfra must come to inspect the
situation. A maintenance ticket needs to be made and
sent to the assigned mechanic. The maintenance ticket
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can originate from three sources: from the bridge’s op-
erator, business operations, or directly from the bridge
due to the current still-in-progress Smart Ticketing inno-
vation. When the maintenance mechanic gets the order
to inspect the PBB, they must be at the PBB within 15
minutes if the handling of the aircraft encounters a dis-
turbance. Otherwise, this time to arrival is 60 minutes.
The second maintenance strategy is the preventive main-
tenance strategy. These preventive inspection intervals
are determined by using the FMECA of the PBB. To get
more insight into the behavior of the PBB, VolkerInfra
installed extra sensors to monitor the bridge’s condition
in real-time. However, no arguments were documented
as to why the specific additional sensors were installed
and why other data from the bridge were excluded from
the monitoring. Therefore, the next section will analyze
the failure mechanisms of the PBB and relate it to the
different sub-systems to, in the end, evaluate if the cur-
rent data is sufficient for a prediction model or if extra
data needs to be collected.

C. Failure mechanisms

Failure of the bridge is defined as a problem of the
bridge that results in a stoppage of aircraft handling.
Based on the classifications within the maintenance tick-
ets, the following was concluded. First, when viewing
the causes of the different sub-system failure tickets, in
all cases, more than 59 percent are classified as techni-
cal causes compared to 2 percent for wear. A conclusion
could be drawn that degradation of the system is not a
primary cause of failure; therefore, it could be suggested
that prediction models based on life cycles are not of in-
terest to this research. However, this conclusion could
be wrong. It can be said that failure due to degradation
is prevented due to the preventive maintenance strategy.
Nevertheless, the argument that the PBB has a short use
interval and, therefore, degradation of the PBB is not go-
ing rapidly can also be used. For each sub-system, the
reason for the maintenance ticket was clustered by the
fault tree of VolkerInfra. However, most of these classi-
fications were too general to derive conclusions from to
know what caused the failure. Without the root cause of
failure, an accurate prediction model can not be made to
predict and prevent the impending failure. It was con-
cluded that no evaluation of the monitored data based
on the placed sensors could be done due to the unknown
root causes of failure.

III. PREDICTIVE MAINTENANCE

Predictive maintenance (PdM) relies on the continuous
monitoring of the actual status of the system. Based
on the data collected, a prediction will be made of the
remaining time the component or the system will be in
function or is likely to fail. Then, a trade-off will be

made between the condition of the component and the
maintenance frequency (Ran et al., 2019; Zhang et al.,
2019). This proactive method will thus, instead of time-
based maintenance, only plan maintenance when needed
and reduce unnecessary downtime due to on-time failure
detection (Carvalho et al., 2019; van Dinter et al., 2022).
To achieve a PAM strategy, the following steps need to be
followed (Achouch et al., 2022; Selcuk, 2017). First, the
researched object needs to be understood. This means
knowing how the system operates, why the object fails,
what is already measured, and what the goal of the strat-
egy is. For effectively applying the strategy, the root
cause of failure must be known instead of only address-
ing the symptoms of failure. Second, data must be gath-
ered, understood, and prepared for further use. Here,
understanding the object and knowing the root cause
play a role, as gathering data about conditions that are
not used in the end should be avoided. Third, the data
must be used in a model for predicting the upcoming
failure or the future health state of the object. Fourth,
the model’s accuracy must be known to assess how the
model will perform. After that, the model should be de-
ployed in the researched situation. If the model is not
first evaluated correctly, it will fail to describe the real
world properly. In this step, it also means that the steps
explained above are executed properly and/or addressed
otherwise in the evaluation before deploying the model.
The fifth, also the last step, is decision-making. Based
on the PdAM goal, decision-making takes place based on
the outcome of the used model.

Within the literature, three approaches for a predic-
tion model can be classified: physical-based, knowledge-
based and data-driven. A combination of the three ap-
proaches can also be used, also known as a multi-model
approach. For a complex system, these single-model ap-
proaches only partly address the diagnostic and prognos-
tic task of the system. A multi-model approach could be
implemented to overcome the complexity of the system.
In figure 2, combinations of the approaches can be seen.
Besides the combinations that can be made between the
different approaches, the architecture of the multi-model
approach is important. The models can be in series, par-
allel to each other, or a model can be embedded in an-
other model. (Montero Jimenez et al., 2020).

IV. CYBER-PHYSICAL SYSTEM
ARCHITECTURE

As presented in Lee et al. (2015), the CPS architecture
is proposed to develop a predictive maintenance strategy.
The choice for a CPS architecture was based on the fact
that the system can be autonomous by integrating com-
puting, monitoring and control of the physical compo-
nents. By enabling the system to affect the health status
of the components in the cyber part and to be able to do
maintenance activities for the physical part. The system
enables itself to control its health.
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FIG. 2. The possible combinations of single-model ap-
proaches, recreated from Montero Jimenez et al. (2020)

The first layer of the CPS architecture is the connec-
tion layer. This layer collects data from different sources
to connect the physical object with the virtual world.
The first step in the connection layer consists of using
the information from the analyzed maintenance tickets
and experts’ knowledge. With this information, the root
causes of failure can be determined. Then, the second
step in the connection layer is the data extraction from
different sources.

The data collected in the first layer are the raw signals
directly from the system. These raw signals are collected
at a high frequency and are large in amount. Feature ex-
traction and dimension reduction occur in the conversion
layer to ensure that the collected data becomes valuable
information.

Each sub-system’s health status prediction individu-
ally takes place in the cyber layer. In this stage, no de-
pendencies or correlations between different sub-systems
will influence the investigated sub-system’s predicted
health status. There can be many factors for the sub-
systems as to why the component fails. Therefore, the
sub-systems were analyzed in the first layer. Based on
the found root causes, a multi-model approach is sug-
gested as the amount of data and models could increase
with the increment of the failure models. However, this
depends on the specific sub-system and failure modes.
This is the first part based on the acquired data col-
lected. The second part within the multi-model approach
for the sub-system’s health assessment is a data-driven
model to assess the degradation of the sub-system based
on expert knowledge or a degradation model from the
literature. Within the cyber layer, the prediction model
for assessing the sub-system’s health will be trained by
historical data to understand the behavior of the bridge.
This results in an offline and online phase within the cy-
ber layer.

At the cognition level, the system as a whole will be
evaluated to determine the health status. A Bayesian
Network (BN) is used. The variables represented by the
nodes in the BN can be categorized into four groups:
component nodes, sub-system nodes, failure mechanism

nodes and system nodes. The failure mechanism nodes
contain variables not linked to a specific component
based on the maintenance ticket analysis or expert knowl-
edge. This means that this node directly influences the
system’s health status. Next, a Dynamic Bayesian Net-
work (DBN) is created. A general indication of the times-
lices is visualized in figure 3. The approach for the DBN
is based on the model of Gomes and Wolf (2020).

Dynamic Bayesian Network

tt t tk

FIG. 3. Proposed three timeframes DBN model, based on
Gomes and Wolf (2020)

At the top level of the proposed CPS architecture, deci-
sions are made for maintenance activities. The decision-
making model is based on the economic grouping model
presented in the paper of Van Horenbeek and Pintelon
(2013). However, in this research, the model is reformed
with the availability and reliability of the system as ob-
jectives. The expected repair cost rate will be replaced
by the expected repair rate (RR), equation 4.1. The
expected repair rate is related to the time it costs to re-
pair the specific sub-system during maintenance. The ex-
pected repair rate can be distinguished into two elements:
the corrective repair time and the proactive repair time.
It is assumed that the proactive repair time is less than
the corrective repair time because when a sudden failure
of the sub-system happens, an investigation needs to be
done into what caused the failure. The expected repair
rate is determined as the sum of the expected corrective
and proactive repair cost divided by the time spent since
the last maintenance moment At, where At = t — t.
F; the failure probability distribution of sub-system i.
It represents the cumulative distribution function of the
random variable ”time to failure”. The expected setup
cost rate is replaced by the expected arrival rate (AR).
The expected arrival rate is related to the time it costs
for the maintenance mechanism to arrive at the PBB,
specified as AT, divided by the time spent since the last
maintenance moment. The expected loss of productivity
is replaced with the time the system is out of order due to
corrective repair or proactive repair, which is the same as
the expected repair rate. Therefore, the time of produc-
tivity loss is not considered separate but included in the
repair time. Second, the maintenance slots and resource
availability must be considered. For resource availability,
the works schedule of the maintenance mechanics (m(t))
can be incorporated into the model, equations 4.3 and
4.4. The different factors for speeding up the process
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with multiple mechanics are alpha for the site and beta
for the shop. A distinction is made between repairs at
the site (CRT?"¢ and m(t)) and the time related to the
sub-system repair time at the workshop (CRT:"*P and
PRT"P).

R - CFT Fil) + PftTi(t) C=RO) ()
ARi(t) = ‘272 (4.2)

- o
P

Combining the expected repair rate with the expected
arrival rate, the expected total out-of-order rate for sub-
system i is represented by:

TR;(t) = RR;(t) + AR;(t) (4.5)
By minimizing the total time it takes to do the mainte-
nance activities, the local optimal PdAM moment can be
determined.

The global strategy looks at the system as a whole. By
using the opportunity to do maintenance not at one sub-
system but at multiple sub-systems during one planned
maintenance activity, the out-of-order moments of the
system are reduced. This results in maintenance groups
being formed. The maintenance group can consist of k
sub-systems to do maintenance at one moment, with the
sub-systems outside the group indicated as NC. First,
the expected repair rate of the group, equation 4.6, is
calculated. This will be done by summing up the correc-
tive and proactive repair times of the sub-systems k in
optimal group G. A reduction coefficient omega is used.
With this omega, the influence of grouping sub-systems
where, due to structural dependencies, the repair time
could be reduced is taken into account. Second, the ex-
pected arrival rate of the group is calculated in equation
4.7. Here, the arrival time for doing maintenance ac-
tivities for group G will be divided by the time spent
since the last maintenance moment. The same as in
the local strategy, the expected total rate of the group
is the expected repair rate of the group together with
the expected arrival rate of the group. By minimizing
the expected total rate of the group, equation 4.8, the
optimal time to do maintenance for the group can be
found. The procedure for finding the system optimum
and global PAM strategy follows the same approach as

presented in the paper of Van Horenbeek and Pintelon
(2013); if the expected total maintenance rate of the sys-
tem, equation 4.9, based on the new maintenance group
is less than the expected total maintenance rate based
on adding the total rates of the individual sub-systems,
the next sub-system is added to the group, and a new
total rate is calculated. This procedure will be repeated
until the newly formed group has a higher total mainte-
nance repair rate of the system than with the currently
determined group. Then, the current group will be the
optimal group for combining maintenance activities, with
the other sub-systems being repaired independently.

RRgToup(t) _ >k (wcrTCRT; (t)‘Fz(f)A-:wPRTPRTq t)-(1-Fi(t)))

(4.6)

ARy oup(t) = % (4.7)

TRyroup(t) = RRgroup(t) + ARgroup(t) (4.8)
NC

TRyys = TR, + > TR (4.9)

i=k+1

V. SIMULATION MODEL
A. Bounderies & Assumptions

Due to the complexity of this multi-component system,
it is impossible to implement the whole PBB in the pro-
posed architecture due to time constraints. Therefore,
only the canopy will be analyzed to prove the proposed
CPS architecture.

B. Objective & KPI’s

The CPS architecture must provide the following out-
put to show the model’s impact. In the lower-level model,
the health status of the different components is deter-
mined based on various failure mechanisms. Here, the
output of the lower-level model will be the health status
of the components. To show the impact of the model
and compare it to the current situation, the reliability
of the components will be used. The reliability is stated
as R(t) = 1 — F(t). F(t) is the cumulative probability
of the failure, the probability the component or system
will fail over time. The exponential distribution will be
used with one divided by the MTBF as lambda. With
the health status monitored and proactive maintenance
being done, the MTBF is expected to be enlarged. This
then results in increased reliability.



85

The second KPI is the maintenance repair time.
Schiphol wants to have the availability of the aircraft
stand as well as the PBB as high as possible. An in-
operable PBB is unwanted, and fast repairments need to
take place to have a functional PBB when the turnaround
process starts. With the assumption that proactive re-
pairments will be faster than corrective repairments, this
KPI indicates that the model’s output should be a plan-
ning of proactive maintenance moments.

The higher-level model should plan maintenance mo-
ments when the aircraft stand is not in use to reduce
unexpected failures during in-time use. However, the
availability of the aircraft stand is wanted to be as high as
possible. Therefore, the third KPI is the repair rate. This
means that the repair time over bridge uses is wanted to
be as low as possible to execute maintenance activities.

C. Model implementation

With the canopy only in scope, the system role
will shift from the PBB to the canopy. First, a base
case is defined. Within the canopy, two segments are
responsible for being able to extend or retract. One
segment is for the left side of the canopy, and one is for
the right side. The segments can be divided into the
drive, the limit switches and the mechanical part. From
the maintenance tickets provided by VolkerInfra, the
MTBEF, the reliability and corrective repair were deter-
mined. Second, the CPS architecture was implemented
on the canopy. As for the canopy, the causes of failure
are not clear yet. First, the preliminary step in the
connection layer will start with maintenance log analysis
and gaining knowledge from experts. It was concluded
that maintenance log analysis could not provide the
root causes of failure for well-considered data collection;
expert knowledge was consulted. For the canopy drive,
it became clear that not the drive as a whole but the
torque limiter within the drive was the cause of failure.
To determine the health of the canopy, the drive can be
monitored in three non-destructive ways: temperature,
vibration and motor current (Hashemian, 2011). Newly
installed current sensors were installed to collect data for
the connection layer. In the conversion layer, this data
was converted to information. However, due to questions
of data validity and time constraints, no further research
was done on the current data and assumptions were
made to use a simplified lower model output. To prove
the architecture, the following assumptions were made.
First, to prove the CPS architecture, the condition of the
drive can be monitored by measuring the temperature,
current and vibration of the drive. Second, as CPS
architecture is verified by using a simplified model, the
sensors that provide information about the condition
of the gas spring and the limit switch will be out of
scope as this will be modeled in the same way as the
drive health indicators. Third, an alternative approach
is used due to the lack of data to directly estimate the

drive’s health status based on the sensors. The sensors
are considered nodes within a BN to demonstrate their
influence on the overall health state of the drive.

Using a simplified lower-level input, the higher-level
model can be modeled. The higher-level model consists
of building and verifying the cognition layer and the con-
figuration layer. For the DBN, first, the BN needs to be
specified. The procedure in Schietekat et al. (2016) is
used to build the BN in the software package GeNle 4.0
Academic (BayesFusion, 2023), and its structure, vari-
ables and their states are visualized in figure 4. The
parameters’ prior probabilities are determined based on
expert knowledge. For the inference technique used in
this model, the health status over time, based on evi-
dence, is needed. This means that forward inference is
used. Afterward, the BN network was verified and used
as input for the DBN. The input for the DBN is the BN
combined with the transition of the states over time from
the components and canopy. For the time step, one air-
craft handling is assumed to happen at a time step. This
means that the DBN predicts the health of the canopy
for upcoming aircraft handling.

Drive
\
Temperature

FIG. 4. The Bayesian Network

The output of the cognition level serves as input for the
configuration layer. Here, decision-making will be based
on the formulas presented in the previous chapter.

VI. RESULTS & DISCUSSION

The base case input was used to determine the optimal
maintenance moment for the components individually.
After that, the global opportunistic model was used to
determine the optimal maintenance group together with
the group’s optimal maintenance moment. It was shown
that the model can determine the optimal maintenance
moment for the sub-systems individually and for the
optimal maintenance group by finding the lowest repair
rate while respecting the availability constraints. A
synthetic data set was used for the sensor readings of the
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first 100 aircraft handlings. Implementing the synthetic
dataset in the cognition layer, the DBN updates the fail-
ure probability of the drive, and a new decision-making
of the optimal maintenance moment is made. The results
show that the higher-level model can update the model’s
reliability and choose the maintenance moment with
the lowest repair rate while respecting the availability
constraint. When applying the decision-making model
to the synthetic dataset, the result shows that the
optimal maintenance moment is shifted to a later bridge
use. Due to the reliability threshold being otherwise
exceeded, the drive needs maintenance within 12 bridge
uses. In this case, the availability allows maintenance,
but this is not always true. Also, in this model, it is
assumed that maintenance can be planned and executed
immediately. In reality, this does not have to be the
case. It was seen that the procedure to find the optimal
maintenance group by combining the first and second
sub-systems placed for maintenance was, in this case, not
beneficial for the system as the time between them was
too long. As the optimal time to do maintenance of the
limit switch and gas spring was only 13 bridge uses away,
it was seen that if these two sub-systems were combined
in a maintenance group, the expected total repair rate
of the system would be lower than maintaining these
sub-systems individually. By determining this optimal
maintenance moment, the proactive repair time can be
used, which was assumed less than the corrective repair
time. This proactive repair time is also investigated
in terms of how it influences the optimal maintenance
moment and repair rate for the base and synthetic
dataset case. The results showed that the height of the
proactive repair time can influence the outcome of the
optimal time to do maintenance for the gas spring if a
proactive repair time of 0.7 or higher times the corrective
repair time is used. For the global opportunistic model,
the height of the proactive repair time only influenced
the outcome for a proactive repair time as the order
of maintenance is shifted due to the earlier optimal
time to do maintenance for the gas spring. However,
it did not change that it was not beneficial to use the
global opportunistic strategy to form a maintenance
group of the first and second sub-systems that require
maintenance. The influence of the number of mechanics
on the repair rate was significant; it was seen that
increasing the mechanics from only one to two already
decreased the total repair rate from 5 to 14 percent for
the local strategy of the gas spring and 25 percent for
the global strategy in the synthetic case. However, it
did not change the optimal maintenance moment.

VII. CONCLUSION & RECOMMENDATIONS
A. Conclusion

In this paper, an understandable architecture for a
predictive maintenance strategy for a multi-component
system at the airport is proposed. It has been found
that the development of a predictive maintenance
strategy for multi-component systems is still in an early
phase; nevertheless, with the rise of Industry 4.0, the
developments captured within will enhance the research
of predictive maintenance for multi-component systems.
The use of data-driven methods in combination with big
data enables the monitoring of complex systems. Using
a multi-model approach, this increasing complexity, as
the system will have more components, can be countered
and made accessible and understandable. This led to
the development of a CPS architecture for the PBB.
It is concluded that by implementing this architecture,
a predictive maintenance strategy can be developed,
which can benefit the airport’s turnaround process. By
addressing the root causes of the system’s failure, ade-
quate data collection can be done, enabling continuous
health monitoring of the bridge, its sub-system and its
components. With these predictions, decision-making
can occur, allowing proactive maintenance moments at
which the repair rate is at its lowest while respecting
the availability constraints of aircraft stand. With this,
the reliability of the PBB is justified and improved, and
unwanted downtime during the turnaround process is
prevented.

B. Recommendations for further research

The simulation model used was not the preferred
choice initially in this research. Due to questions about
the validity of the used data and assessed components,
a simplified model was used to show the impact of us-
ing a theoretical architecture in practice. It is therefore
recommended that future research focuses on applying
multi-model approaches and how to implement this on
a multi-component system to reduce the complexity and
ease its usage in practice. This research found that the
DBN works perfectly; however, determining the condi-
tional probabilities was difficult. This resulted in many
assumptions and expert knowledge for this part. The sen-
sitivity analysis shows that the DBN is highly sensitive to
the outcome with different probabilities. It is therefore
also recommended to explore further if a DBN is the right
tool for the cognition layer, and if so, more research must
be done for the PBB and the conditional probabilities.
At last, within the decision-making model, the input val-
ues were determined based on historical data and distri-
butions were used to represent these values. Combining
this with the fact that the availability is only based on
the time between aircraft handling in the past, it is rec-
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ommended to get the actual values for the input values
of the decision-making model in the configuration layer
before implementing it in the real world.
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B. PLC signals

PLC addres-:n PLC tag / beschrijving
10.0 Auto_lvl_Raise_Sig 10/1 055-001
10.1 I_Manual 10/1 055-002
10.2 Aute_lvl_Desc_Sig :D,’ 1 055-003
103 I_Auto 1071 055-004
10.4 Auta_lvi_up_Lim :l],’ 1 055-005
10.5 loystick_Forw '0/1 055-006
10.6 Auto_Ivl_low_lim '0f1 055-007
10.7 Joystick_Backw :D,I' i 055-008
11.0 Joystick_left_Rot 10/1 055-009
111 Cabin_left_Rot :D,I' L 055-010
11.2 joystick_right_Rot :D,’ 1 055-011
11.3 Cabin_right_Rot :D,I' L 055-012
11.4 Tunnel_Lift :l],’ 1 055-013
115 Canopy_Extend 01 055-014
116 Tunnel_Descent '0f1 055-015
117 Canopy_Retract 101 055-016
120 Environment_Temp 10/1 055-017
121 Joystick_Enable :D,I'l 055-018
122 Cabin_Floor_Heater :D,' 1 055-019
123 Emergency_Stop 1071 055-020
12.4 Glass_Heater 10f1 055-021
125 Stop_prox_switch_L '0/1 055-022
12.6 Claxon_Clax '0f1 055-023
127 Stop_prox_switch_M :D,I' i 055-024
13.0 Stop_prox_switch_R 10/1 055-025
13.1 Cab_Rot_lim_R :D,I' L 055-026
13.2 Ultra_spd_Red_L :D,’ 1 055-027
133 Left_Canopy_ext_Lim :D,I' 1 055-028
13.4 Ultra_spd_Red_R :l],’ 1 055-029
135 Left_Canopy_Pos_1 01 055-030
13.6 Cab_Rot_lim_L '0f1 055-031
137 Left_Canopy_Pos_2 : 0/1 055-032
14.0 Left_Canopy_retr_Lim :[I,' I 055-033
141 Right_Canopy_retr_Lim :D,I'l 055-034
14.2 Right_Canopy_ext_Lim :D,'l 055-035
143 Cabin_left_rot_Stop :D,I' 1 055-036
144 Right_Canopy_Pos_1 :l]_-' 1 055-037
145 Cabin_right_rot_Stop '0/1 055-038
14.6 Right_Canopy_Pos_2 '0f1 055-039
147 Roll_door_0Open :D,I' i 055-040
15.0 Roll_door_close 10/1 055-041
15.1 High_limit :D,I'l 055-042
15.2 A_L_Extend_limit :D,’l 055-043
153 Auto_leveling_arm_touch_airplane:ﬂ,l'l 055-044
154 A_L_Retract_limit :l],’ 1 055-045
155 Roll_door_window_protection 01 055-046
15.6 Low_Limit '0f1 055-047
157 Autoleveling_motor_trip :D,I'l 055-048
B SPRINERENIO 55 S e I S D D D 055-049
6.1 Sec_lim_Switch_R :D,I' 1 055-050
16.2 Auto_lv_arm_Gate 10/1 055-051
16.3 Left_Canopy_power_trip :D,I' 1 055-052
16.4 Sec_lim_Switch_L :l],’ 1 055-053
165 Right_Canopy_power_trip '0/1 055-054
16.6 Sec_lim_Switch_M '0f1 055-055
167 Auto_Parking :D,I'l 055-056
17.0 Lamp_Test 10/1 055-057
171 Roller_door_trip :D,I'l 055-058
7.2 Cabin_rot_motor_trip 0/1 055-059
173 Roller_door_open :D,I'l 055-060
17.4 Joystick_power_fail :l]_-'l 055-061
175 Roller_door_close 01 055-062
17.6 Floor_heater_trip '0f1 055-063
177 Window_heater_trip :D,I'l 055-064
18.0 Cabin_maotor_IS0 10/1 055-065
18.2 Left_Canopy 150 :D,I' 1 055-067
184 Right Canopy IS0 :l],'l 055-069

Figure B.1: The first part of signals coming from the PBB PLC



PLC adclres-:ﬂ PLC tag / beschrijving

18.6 Roll_door_IS0 10f1 055-071
110.0 EMS_Relay Active :D,’ i 055-081
1101 Alarm_power_trip '0f1 055-082
110.2 Main_power_Ctrl '0f1 055-083
110.3 Ctrl_power_trip :D,l' 1 055-0B4
110.4 Valve_power_trip 10/1 055-085
1106 EMS_power_trip :D,I' i 055-0B7
1107 Reset 0/1 055-088
1110 Password_cancel :D,I'l 055-089
1111 Bypass 01 055-090
1112 Auto_Ivl_arm_extend '0f1 055-0891
111.3 PBB_invalid '0/1 055-092
1114 Auto_Ivi_arm_retract :D,l'l 055-083
1115 Maintanance 10/1 055-094
1116 Travel_motor_brake_trip :D,I' i 055-085
1117 Arrester 0f1 055-096
1120 Converterl_fault :D,I'l 055087
1121 UPS_batt_low 01 055-098
1122 Main_power_fault '0f1 055-089
112.3 Glass_window_heater_trip '0f1 055-100
1124 UPS_batt_fault 10/1 055-101
1126 UPS_batt_supply :l],’ 1 055-103
1140 Extend_slow 10/1 055-113
1141 Ultimate_Extend_limit :D,’l 055-114
1142 Retract_slow :D,I' 1 055-115
1143 Ultimate_retract_limit :l],'l 055-116
1144 Full_extend_stop '0f1 055-117
114.6 Full_retract_stop '0/1 055-115%
115.0 Rotunda_left_lim 10/1 055-121
115.1 Up_slope_lim 10/1 055-122
1152 Rotunda_right_lim :D,I'l 055-123
___M53_ __ downslopelim ___________ R -
1154 Rotunda_left_stop :-D,I' 1 055-125
115.5 Tunnel_light_push_but :l],'l 055-126
1156 Rotunda_right_sto '0f1 055-127
117.0 EMS '0f1 055-137
1171 Ultimate_steer_lim_R :D,l'l 055-138
117.2 Steer_left_Stop 10/1 055-139
117.3 Pump_IS0 :D,I' 1 055-140
117.4 Steer_right_stop :l],’ 1 055-141
1175 Pump_motor_trip :D,I' 1 055-142
117.6 Ultimate_steer_lim_L :l],'l 055-143
177 0Qil_Temp_High '0f1 055-144
118.0 Qil_Press_High '0/1 055-145
118.1 VDGS_run 10/1 055-146
118.2 Inlet_Oil_filter_fault 10/1 055-147
118.3 VDG5S _prohibit :D,I'l 055-148
118.4 Qil_Ivl_Low :D,’ 1 055-149
1185 Bogie_string_switch :D,I' 1 055-150
118.6 Qutlet_0il_filter_fault :D,’ i 055-151
1187 Left_wheel_I50 '0f1 055-152
119.0 Right_wheel_I50 '0f1 055-153
1191 Maint_available :D,l'l 055-154
119.2 Maint_connection 10/1 055-155
119.3 Maint_lift :D,I'l 055-156
119.4 Maint_forward :l],’ 1 055-157
1195 Maint_Descent :D,I'l 055-158
119.6 Maint_Backward :l],'l 055-159
119.7 Maint_bogie_left_rot '0f1 055-160
120.0 Maint_bogie_right_rot '0/1 055-161
1202 Maint_cabin_left_rot :D,l'l 055-163
120.4 Maint_cabin_right_rot :l],’ 1 055-165
Q0.0 Heater_Floor_snable :D,I'l 055-169
Qo1 Q_Manual 10/1 055-170
ao2 Heater_Glass_enable :D,I'l 055-171
Q0.3 0 _Auto i0/1 055-172
o4 Park_Light_console '0/1 055-173

Figure B.2: The second part of signals coming from the PBB PLC
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PLC addres:ﬂ PLC tag [ beschrijving
Q0.6 Point_to_go_lamp '0f1 055-175
qlo Cabin_Rot L '0/1 055-177
Q1.1 Right_Canopy_Extend :Df 1 055-178
a1z Cabin_Rot R lof1 055-179
Qls Right_Canopy_Retract :Df 14 055-180
als Left_Canopy_Extend 01 055-181
als AL_Arm_Extend 10/1 055-182
ale Left_Canopy_Retract ;l]j' 1 055-183
QL7 AL_Arm_Retract 10/1 055-184
azo PBB_Fault '0/1 055-185
Q2.1 Roll_door_working :Dfl 055-186
Q22 Roll_door_open 01 055-187
Q2.3 Buzzer 1071 055-188
Qs Roll_door_closed 01 055-189 |
Q25 QObstacle_light_cabin :Dfl 055-190
26 Video_channel_change o 055-191 |

Q.7 Cabin_light 10/1 055-192
Q3.0 Video_camera_enable 0f1 055-193
as.1 Travel_light '0f1 055-194
Q3.2 Heater_glass_enable 01 055-195
a3.4 Heater_Floor_enable :Dfl 055-197
a36 Parking_position 01 055-199 |
Qs.0 Alarm_Reset 10/1 055-209
as5.1 Speed_change_gradually ;Dj'l 055-210
Q5.2 Free_stop '0f1 055-211
Q5.3 Quick_stop 0f1 055-212
as.4 Left_Converter_run 10/1 055-213
Q5.5 Bypass_guick_stop 01 055-214
Q5.6 Right_Converter_run 1071 055-215
Q60 Power_on 01 055-217
Q6.2 Bypass_Lamp 10/1 055-218
a6 PLC_OK 01 055-221
Q6.6 Tunnel_Lighting '0f1 055-223
Q100 Stairdoor_Light '0/1 055-249
010.2 Gate_brand '0f1 055-251
Q120 VDGS_Lamp 01 056-010
Q12.1 Travel_light 10/1 056-011
Q122 0il_pump_enable 01 056-012
Q124 Lift 10/1 056-014
ale Descent 01 056-016
W31 loystick_angle_Left_Right |Analoog Geheel getal (niet omgezet naar een werkelijke hoek)

W33 loystick_angle_Forward_Backwards Analoog Geheel getal (niet omgezet naar een werkelijke hoek)

W35 Cabin angle |Analoog Geheel getal [niet omgezet naar een werkelijke hoek)

W37 Height :Analoog Geheel getal (niet omgezet naar een werkelijke hoogte)

IW39 Rotunda_Angle \Analoog Geheel getal (niet omgezet naar een werkelijke hoek)

w43 Bogie_Angle \Analoog Geheel getal (niet omgezet naar een werkelijke hoek)

PID256 Length_1 :Analoog Geheel getal (niet omgezet naar een werkelijke lengte)

PID260 @7 ‘Onbekend / Niets

PID264 Length_2 |Analoog Geheel getal (niet omgezet naar een werkelijke lengte)

awalia Left Wheel_Speed Analoog Geheel getal (niet omgezet naar een werkelijke snelheid)

aw2le Right_Wheel_Speed |Analoog Geheel getal (niet omgezet naar een werkelijke snelheid)

PQD256 27 |Onbekend [ Niets

PQD260 7?7 \Onbekend / Niets

Figure B.3: The third part of signals coming from the PBB PLC
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94 C. Maintenance tickets analysis diagrams

Classifications bridge control failure maintenance tickets 2019-2022

M Failure while operating
m System jammed

m Emergency button used
i Cable defect

m Power supply defect

L

Figure C.1: Classifications bridge control failure maintenance tickets 2019-2022

Causes classifications for bridge control failure maintenance tickets 2019-2022

 External cause

m Damage

m Power supply failure
1 System failure

m Technical cause

m Vandalism

m Wear

mFilth

W Third-party activities

e

Figure C.2: Causes classifications for bridge control failure maintenance tickets 2019-2022
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Classifications lifiting/lowering failure maintenance tickets 2019-2022

M Failure while operating

m Cilinder defect

m Limit switch defect/does not switch
Inclination angle detector defect

M Valve or relay fault

u Low oil level

W Tripped switch

M Sensor (anti-collision) vertical fault.

W Emergency button used

m Power supply failure inclination detection

Figure C.3: Classifications lifting/lowering failure maintenance tickets 2019-2022

Causes classifications for lifting/lowering failure maintenance tickets 2019-
2022

| Corrosion

W External cause

m Power supply failure
System failure

m Technical cause

m Vandalism

m Wear

mFilth

W Third-party activities

Figure C.4: Causes classifications for lifting/lowering failure maintenance tickets 2019-2022
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Classifications left/right failure maintenance tickets 2019-2022

M Drive defect
m Obstacle detection activated
® Failure while operating

= Limit switch defect/does not switch

Figure C.5: Classifications left/right failure maintenance tickets 2019-2022

S .
Causes classifications for left/right failure maintenance tickets 2019-2022

m External cause
 System failure

® Technical cause

" Wear
® Filth
m Third-party activities

Figure C.6: Causes classifications for left/right failure maintenance tickets 2019-2022
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Classifications parking failure maintenance tickets 2019-2022

m Obstacle detection activated
m General position alarm

W Failure when operating

= System jammed

m Emergency button used

m Cable defect

m Power supply defect

Figure C.7: Classifications parking failure maintenance tickets 2019-2022

Causes classifications for parking failure maintenance tickets 2019-2022

M External cause

M Rain

W Damage

= Power supply failure
m System failure

m Technical cause

W Vandalism

W Wear

W Filth

W Third-party activities
m Wind

Figure C.8: Causes classifications for parking failure maintenance tickets 2019-2022



98 C. Maintenance tickets analysis diagrams

Classifications roller door failure maintenance tickets 2019-2022

m Drive defect

® Failure while operating
m Limit switch defect/does not switch
 Obstacle detection activated
m Roller door jammed

m Emergency button used

Figure C.9: Classifications roller door failure maintenance tickets 2019-2022

Causes classifications for roller door failure maintenance tickets 2019-2022

m External cause

W Damage

m System failure

 Technical cause

® Vandalism

u Wear

W Filth

W Third-party activities
m Wind

Figure C.10: Causes classifications for roller door failure maintenance tickets 2019-2022
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Classifications cabin failure maintenance tickets 2019-2022

m Drive defect

™ Failure while operating

m Limit switch defect/does not switch
= Roller door jamed

m Emergency button used

Figure C.11: Classifications cabin failure maintenance tickets 2019-2022

Causes classifications for cabin failure maintenance tickets 2019-2022

m Corrosion

M External cause

m Damage

1 System failure

M Technical cause

= Wear

W Filth

W Third-party activities

Figure C.12: Causes classifications for cabin failure maintenance tickets 2019-2022
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Classifications driving failure maintenance tickets 2019-2022

m Drive defect

m Collision protection activated

m Faulire while operating

= Limit switch defect/does not switch
m Other defects/deviations

m Emergency button used

Figure C.13: Classifications driving failure maintenance tickets 2019-2022

Causes classifications for driving failure maintenance tickets 2019-2022

m Corrosion

® External cause

® Damage

= Power supply failure
m System failure

® Technical cause

m Vandalism

m Wear

W Filth

W Third-party activities

— .

Figure C.14: Causes classifications for driving failure maintenance tickets 2019-2022
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| Classifications trim failure maintenance tickets 2019-2022

W Operating fault
® Limit switch defect/does not switch

m Trimarm at the wrong position

Figure C.15: Classifications trim failure maintenance tickets 2019-2022

| Causes classifications trim failure maintenance tickets 2019-2022

M External cause

m Damage

m System failure

= Technical cause

= Wear

® Filth

W Third-party activities
u Wind

W Rain

Figure C.16: Causes classifications for trim failure maintenance tickets 2019-2022



102 C. Maintenance tickets analysis diagrams

Classifications canopy failure maintenance tickets 2019-2022

m Canopy drive defect
m Limit switch defect/does not switch
m Canopy closing error

W Emergency button used

L 4

Figure C.17: Classifications canopy failure maintenance tickets 2019-2022

Causes classifications for canopy failure maintenance tickets 2019-2022

u Corrosion

m External cause

W Damage

= System failure

m Technical cause

® Vandalism

W Wear

W Filth

W Third-party activities
u Wind

e

Figure C.18: Causes classifications for canopy failure maintenance tickets 2019-2022




Synthetic dataset

In this appendix, the synthetic dataset used in the simulation model is presented in table D.1 and D.2.
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104 D. Synthetic dataset

Table D.1: Sensor readings and corresponding failure probability (part 1)

Time step Temperature in °C  Failure probability Current in Ampere Failure probability Vibration in Hertz  Failure probability

1 27.08713233 2.54E-05 0.683094323 0.003879104 35.65476999 0.005910919
2 31.29942653 5.89E-05 0.83527992 0.015260603 34.23702076 0.007848725
3 29.35990782 3.99E-05 0.753296457 0.007296709 36.08368834 0.005424998
4 26.36139635 2.19E-05 0.872247799 0.021284635 34.17332849 0.007949345
5 24.99972531 1.67E-05 0.578880492 0.001518434 34.13932259 0.008003595
6 32.93876206 8.17E-05 0.614786936 0.002097692 34.18381391 0.007932692
7 31.35210458 5.95E-05 0.766284607 0.008201497 36.71669589 0.004779883
8 30.66458442 5.19E-05 0.643618137 0.002719148 35.04366258 0.006679364
9 29.85271963 4.41E-05 1.067834761 0.123750585 34.45648954 0.007511667
10 27.55197375 2.78E-05 0.672703665 0.003532791 35.01085644 0.006723333
1 31.49617252 6.12E-05 0.631314369 0.002434118 35.13101194 0.00656369

12 27.25440054 2.62E-05 0.797346956 0.010846884 34.83996448 0.006957098
13 26.28242499 2.16E-05 0.745047674 0.006774627 35.89330242 0.00563555

14 32.59202218 7.62E-05 0.613333528 0.002070431 34.12379596 0.008028487
15 30.78669952 5.31E-05 0.70620982 0.004776192 35.99604899 0.005520925
16 28.81487127 3.58E-05 0.693285194 0.004251713 33.23078776 0.009598413
17 30.90953791 5.45E-05 0.580908687 0.001546406 32.82743835 0.010404804
18 27.80701089 2.93E-05 0.765999663 0.008180492 35.37697852 0.006248613
19 28.94319921 3.68E-05 0.693118358 0.004245334 35.23659982 0.006426534
20 29.74384084 4.31E-05 0.698164475 0.004442581 35.42154793 0.006193161
21 31.9672783 6.73E-05 0.563347606 0.001320333 34.09059719 0.008081972
22 33.71918262 9.55E-05 0.819319064 0.013218625 34.46828026 0.007493974
23 30.50768597 5.03E-05 0.525062959 0.000935496 33.69242021 0.008751904
24 30.49033317 5.01E-05 0.726500733 0.005733131 35.53836429 0.006050146
25 30.80284737 5.33E-05 0.563340072 0.001320243 34.04969931 0.00814835

26 34.2333906 0.000105868 0.731955224 0.006021596 35.66578878 0.005897907
27 31.36617431 5.97E-05 0.82433034 0.013828454 32.58061094 0.010931331
28 30.83613414 5.37E-05 0.652525757 0.002946114 35.79125786 0.005751747
29 26.17260889 2.11E-05 0.814892847 0.012702399 35.08453272 0.006624989
30 31.52355761 6.16E-05 0.825567864 0.013983332 36.11528423 0.005390825
31 34.87047555 0.000120254 0.497096245 0.000727327 34.19755638 0.007910919
32 28.35849089 3.27E-05 0.591881164 0.001706912 34.8183961 0.006987173
33 33.47897344 9.10E-05 0.576125466 0.001481247 34.81791299 0.006987848
34 30.78004077 5.31E-05 0.805352885 0.011657284 34.16771714 0.007958272
35 29.22270727 3.89E-05 0.570186789 0.001404156 36.99444272 0.004521604
36 30.00900929 4.55E-05 0.721316287 0.005471768 34.81069225 0.006997947
37 30.65360543 5.17E-05 0.75984439 0.007739637 35.44047272 0.006169765
38 24.21322387 1.43E-05 0.746455652 0.00686102 33.61849985 0.008882254
39 30.5919686 5.11E-05 0.80516921 0.01163803 36.91834794 0.004590944
40 32.25984622 7.13E-05 0.642986657 0.002703738 35.30257019 0.006342298
41 32.99869771 8.27E-05 0.733448135 0.006103049 35.94298035 0.005579835
42 27.8319365 2.94E-05 0.598853455 0.001817454 35.47232395 0.006130587
43 31.92081757 6.67E-05 0.598672596 0.001814498 34.83974867 0.006957398
44 31.05075497 5.60E-05 0.392297102 0.000283209 36.464124 0.005027538
45 28.49264755 3.36E-05 0.684868559 0.003941543 34.10395852 0.008060403
46 31.84095121 6.56E-05 0.701811572 0.004590824 35.38585427 0.006237531
47 27.61483992 2.82E-05 0.826355752 0.01408284 36.70942898 0.004786835
48 29.328393 3.97E-05 0.77279858 0.00869669 35.39274333 0.006228943

49 29.75967233 4.33E-05 0.690959813 0.004163656 35.28051187 0.00637034
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Table D.2: Sensor readings and corresponding failure probability (part 2)

Time step Temperature in °C  Failure probability

30.24751753
26.37519767
32.34861012
28.43226291
31.80240095
28.52100237
29.52081981
32.36144015
29.02239164
33.74091702
32.75729813
33.85720086
28.82932138
28.03200231
28.30734733
27.52972916
32.35954883
29.98175453
29.63441928
30.879586
29.50488324
28.64930833
27.60995497
28.68137501
30.90610374
31.29874609
27.09356163
28.64646133
32.39590397
32.72569852
29.98923445
32.93601631
29.79486175
29.44384079
29.38001516
32.67299547
28.36141522
26.93314409
28.27105102
27.57738778
32.00109515
30.2418928
28.53105351
26.80064197
30.62156466
27.71665008
32.88559796
32.40445312
33.42151417
31.88673183
30.65367361

4.77E-05
2.20E-05
7.26E-05
3.32E-05
6.51E-05
3.38E-05
4.13E-05
7.28E-05
3.73E-05
9.59E-05
7.88E-05
9.82E-05
3.59E-05
3.06E-05
3.24E-05
2.77E-05
7.28E-05
4.52E-05
4.22E-05
5.41E-05
4.11E-05
3.47E-05
2.81E-05
3.49E-05
5.44E-05
5.89E-05
2.54E-05
3.46E-05
7.33E-05
7.83E-05
4.53E-05
8.17E-05
4.36E-05
4.06E-05
4.01E-05
7.75E-05
3.27E-05
2.46E-05
3.21E-05
2.80E-05
6.77E-05
4.77E-05
3.38E-05
2.39E-05
5.14E-05
2.88E-05
8.09E-05
7.34E-05
9.00E-05
6.62E-05
5.17E-05

Current in Ampere
0.813644161
0.779099534
0.640004466
0.695262996
0.721401338
0.800219991
0.909529014
0.739072019
0.778731851
0.688533346
0.597936639
0.565522249
0.701329291
0.660490819
0.770193095
0.828752001
0.676835839
0.590726973
0.642864752
0.735759481
0.539205656
0.718542004
0.764602374
0.663715851
0.554661776
1.003899697
0.532115994
0.624039761
0.688489677
0.69879398
0.760690839
0.871010782
0.820110587
0.669015286
0.597850189
0.76569629
0.801724664
0.618359586
0.850038017
0.753356357
0.766569319
0.702302021
0.651634808
0.783349391
0.780880344
0.55300355
0.839362318
0.634221433
0.61590241
0.610240572
0.73474682

Failure probability

0.012560447
0.009204119
0.002632135
0.004328072
0.005475958
0.011131013
0.029770453
0.006419906
0.009173711
0.004073715
0.001802519
0.001346428
0.00457094

0.003165062
0.008495131
0.014389853
0.003666648
0.001689273
0.002700773
0.006231335
0.00106248

0.005336838
0.008078261
0.003258275
0.00122105

0.069606124
0.000996804
0.002279858
0.004072114
0.004467822
0.007798823
0.021048985
0.013313127
0.003417444
0.001801117
0.008158186
0.011282775
0.002166237
0.017428337
0.007300644
0.00822254

0.004611132
0.002922585
0.009562984
0.009352824
0.001202962
0.01583173

0.002498644
0.002118857
0.002013592
0.006174801

Vibration in Hertz  Failure probability

34.43929437
34.65471018
35.24745391
35.15847981
35.59765385
35.69704713
34.14037338
34.25987709
35.09033412
34.61424663
36.48247884
33.85360705
36.15344284
35.37103534
33.74577319
34.45965429
33.27454009
35.31793462
36.31769637
34.71472943
34.70074289
33.95655745
36.32086189
35.04606035
36.16700226
34.28216518
35.85418162
36.97388222
34.31651596
33.08802475
33.66463496
34.21093661
32.91002206
34.75128985
35.1008032

35.80469789
33.7418026

36.65445128
35.26041236
34.61795217
34.11661331
34.71082013
35.25117741
34.32666412
34.17522931
34.78198384
33.58898929
35.12229366
35.64573768
34.51613644
34.91998921

0.007537544
0.007219699
0.006412598
0.00652773
0.005978828
0.00586115
0.008001913
0.007812928
0.006617307
0.007278363
0.005009116
0.008474265
0.00534984
0.006256045
0.008659012
0.007506914
0.009514788
0.006322839
0.00517695
0.007133553
0.007153535
0.008301563
0.005173673
0.006676162
0.005335352
0.007778179
0.005679817
0.004540235
0.007724925
0.009876422
0.008800674
0.007889778
0.010234362
0.007081582
0.006603466
0.005736307
0.008665891
0.004839759
0.006396
0.007272971
0.008040028
0.007139132
0.006407824
0.007709262
0.007946324
0.007038243
0.008934833
0.006575144
0.005921606
0.00742259
0.006846636
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##libraries

import openai

import pandas as pd

import re

from time import time,sleep

from nltk.stem import WordNetLemmatizer

def open_file(filepath):
with open(filepath, 'r', encoding="utf-8') as infile:
return infile.read()

def save_file(filepath, content):
with open(filepath, 'w', encoding='utf-8') as outfile:
outfile.write(content)

# Load the excel file into a pandas DataFrame
df = pd.read_excel("preprocessed_data_new.xIsx")
df.head()

# Merge the columns "Oorzaak", "Oorzaak2", "Oorzaak3", and "Oorzaak4" into a single column "Oorzaak_merged"
df['Oorzaak_merged'] = df[df.columns[6:10]].apply(
lambda x: ' '.join(x.dropna().astype(str)),
axis=1
)
#merged_text = df['Oorzaak_merged'].str.cat(sep="")
# Drop the original columns "Oorzaak", "Oorzaak2", "Oorzaak3", and "Oorzaak4"
df = df.drop(['Oorzaak’, 'Oorzaak2', 'Oorzaak3', 'Oorzaak4'], axis=1)

# Make a new data set without the date of the maintenance ticket

data_set= df[["Geografische locatie omschrijving","Probleem (Storingsboom)", "Faalvorm (Storingsboom)", "Oorzaak (Storingsboom)",
"Herstelactie(Storingsboom)", "Oorzaak_merged"]]

data_set.head()

#Make a file containing stopwords source: https://github.com/lisanka93/text_analysis_python_101/blob/master/Railroad_incidents_USA2019.ipynb
stop_words_file = 'SmartStoplist.txt'

stop_words =[]

with open(stop_words_file, "r") as f:
for linein f:
stop_words.extend(line.split())

stop_words = stop_words

# Filtering of the stopwords from the maintenance logs
def preprocess(raw_text):

#iregular expression keeping only letters - more on them later

letters_only_text = re.sub("[*a-zA-Z]", " ", raw_text)

# convert to lower case and split into words -> convert string into list ( 'hello world' -> ['hello’, 'world'])
words = letters_only_text.lower().split()

cleaned_words =[]
lemmatizer = WordNetLemmatizer()

# remove stopwords
for word in words:
if word not in stop_words:
cleaned_words.append(word)

# #stemm or lemmatise words

# stemmed_words = []

# for word in cleaned_words:

# word = lemmatizer.lemmatize(word, pos=wordnet.NOUN)
# stemmed_words.append(word)

# converting list back to string
return " ".join(cleaned_words)

data_set['Oorzaak_merged'] = data_set['Oorzaak_merged'].apply(preprocess)

#Make a new data set to test openAl COT prompts on the Huif storing classification

storing_set = data_set.loc[(data_set['Probleem (Storingsboom)'] == 'Huif storing') & (data_set['Faalvorm (Storingsboom)'] == 'Eindschakelaar defect/schakelt
niet')].copy()

maintenance_logs = storing_set[['Oorzaak_merged']].copy()

maintenance_logs = maintenance_logs.reset_index()

maintenance_logs = maintenance_logs[['Oorzaak_merged']].copy()

subset_logs = maintenance_logs.iloc[75:130]
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textblock ="\n'.join(subset_logs['Oorzaak_merged'])

openai.api_type = "azure"

openai.api_base = "https://open-ai-pilot.openai.azure.com/"
openai.api_version = "2022-12-01"

openai.api_key = open_file('openaiapikey.txt')

def ai_implementation(prompt, engine= 'chat-gpt-base', temp=0.1, top_p=1, tokens=3000):
max_retry =1
retry=0
prompt = prompt.encode(encoding="ASCII',errors='ignore').decode()
while True:
try:
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=temp,
max_tokens=tokens,
top_p=top_p,
)
text = response|['choices'][0]['text'].strip()
#text = re.sub('\s+', ', text)
filename = 'switch_2.txt'
save_file('Huif/%s' % filename, prompt + '\n\n==========\n\n' + text)
return text
except Exception as oops:
retry +=1
if retry >= max_retry:
return "Al error: %s" % oops
print('Error communicating with OpenAl:', oops)
sleep(1)

# Replace the <<logs>> placeholder in the prompt file with textblock
prompt_file = 'prompt_one.txt'
with open(prompt_file, "r") as f:

prompt = f.read().replace('<<logs>>', textblock)

response = ai_implementation(prompt)
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F. Decision-making code

# Libraries

import gurobipy as gp

from gurobipy import GRB
import matplotlib.pyplot as plt
import random

import pandas as pd

import numpy as np

# ---- General Parameters ----

np.random.seed(2)

components = [1, 2, 3]

df = pd.read_csv('base.csv',delimiter=";', header=None)
CRT_shop =0, 0, 0]

PRT_shop = [0, 0, 0]

AT_value =15

time_step = list(range(1, 451))

mechanics = [random.choice([1,1]) for _in range(450)]
availability = [np.random.normal(loc=76, scale=54)for _ in range(450)]
availability = [max(0, value) for value in availability]
alpha=1

beta=1

reliability = [0.1, 0.1, 0.1]

# - Failure probabilities----

F_canopy = df.iloc[0, :].tolist()

F_gas = df.iloc[1, :].tolist()

F_drive= df.iloc[2, :].tolist()

F_limit= df.iloc[3, :].tolist()

F = [F_drive, F_limit, F_gas]

F_adap = [F_drive, F_limit, F_gas,F_canopy]
num_timesteps = len(time_step)
num_components = len(components)

# Make CRT and PRT matrices with zeros
CRT_site = np.zeros((num_timesteps, num_components))
PRT_site = np.zeros((num_timesteps, num_components))

for t in range(num_timesteps):
# Generate random values for d, |, and g for each time step

# Definition of the components

# Load failure probabilities in a pandas dataframe

# Corrective repair time for component i at the workshop
# Proactive repair time for component i at the workshop
# The arrival time of a mechanic

#Timestept

# The amount of mechanics at time step t

# The availability of the aircraft stand to do maintenance activities
# If the availability is lower than zero, set zero

# Reduction coefficient alpha

# Reduction coefficient beta

# The reliability treshold for component i

# Set the first row of df as failure probability of the gas spring
# Set the second row of df as failure probability of the drive
# Set the third row of df as failure probability of the limit switch

d = np.random.gamma(shape=0.6810321708199347, scale=95.1056707187164)
| = np.random.lognormal(mean=np.log(38.01132442922867), sigma=0.7863368878972384)
g = np.random.gamma(shape=3.7916764151620947, scale=9.075371045719955)

# Replace the zeros with the actual values
CRT_site[t] = [d, I, g]
PRT_site[t] = [d/2,1/2,8/2]

Local strategy

def calculate_AR(AT_value, time_step):
AR=1]
for t in range(len(time_step)):
AR_v = AT_value / time_step][t]
AR.append(AR_v)
return AR

def calculate_CRT(time_step, components, CRT_site, CRT_shop, alpha, beta, mechanics):

CRT =]

for t in range(len(time_step)):
CRT_time_step =[]
for i in range(len(components)):

CRT_value = (CRT_site[t][i] / (alpha * mechanics[t])) + (CRT_shopli] / (beta * mechanics[t]))

timestep t
CRT_time_step.append(CRT_value)
CRT.append(CRT_time_step)
return CRT

def calculate_PRT(time_step, components, PRT_site, PRT_shop, alpha, beta, mechanics):

PRT =]

for t in range(len(time_step)):
PRT_time_step =[]
for i in range(len(components)):

PRT_value = (PRT_site[t][i] / (alpha * mechanics[t])) + (PRT_shopli] / (beta * mechanics[t]))

timestep t
PRT_time_step.append(PRT_value)
PRT.append(PRT_time_step)
return PRT

def calculate_RR(time_step, F, CRT, PRT):
RR =]

# Definition of the arrival rate

# List to store the calculated arrival rate

# Iterate over each time step

# Calculate the arrival rate for each timestep

# Add the arrival time rate for the specific time step to the list
# Return the list of AR values

# Definition of the corrective repair time

# List to store the calculated corrective repair

# Iterate over each time step

# List to store the calculated corrective repair time for each time step

# Iterate over each component

# Calculate the corrective repair time for component i at

# Add the corrective repair time of component i at timestep t to the list
# Add the corrective repair time to the list
# Return the list of CRT values

# Definition of the proactive repair time

# List to store the calculated proactive repair time

# Iterate over each time step

# List to store the calculated proactive repair time for each time step

# Iterate over each component

# Calculate the proactive repair time for component i at

# Add the proactive repair time of component i at timestep t to the list
# Add the proactive repair time to the list
# Return the list of PRT values

# Definition of the repair rate
# List to store the calculated repair rate
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for t in range(len(time_step)): # Iterate over each time step
RR_time_step =[] # List to store the calculated repair rate for each time step
for i in range(len(components)): # Iterate over each component
RR_value = ((CRT[t][i] * (F[i][t])) + (PRT[t][i] * (1-F[i][t]))) / time_step[t] # Calculate the repair rate for component i at timestep t
RR_time_step.append(RR_value) # Add the repair rate of component i at timestep t to the list
RR.append(RR_time_step) # Add the repair rates to the list
return RR # Return the list of RR values
def calculate_TR(RR, AR,components): # Definition of the total repair rate
TR=1] # List to store the calculated total repair rate
for t in range(len(time_step)): # Iterate over each time step
TR_time_step =[] # List to store the calculated total repair rate for each time step
for i in range(len(components)): # Iterate over each component
TR_value = RR[t][i] + AR[t] # Calculate the total repair rate for component i at timestep t
TR_time_step.append(TR_value) # Add the total repair rate of component i at timestep t to the list
TR.append(TR_time_step) # Add the total repair rates to the list
return TR # Return the list of TR values
def calculate_repairtime(time_step,PRT, AT_value): # Definition of the actual total repair time
repairtime=[] # List to store the calculated repair time
for t in range(len(time_step)): # Iterate over each time step
repairtime_time_step =[] # List to store the calculated repair time for each time step
for i in range(len(components)): # Iterate over each component
repeartime_value = PRT[t][i] + AT_value # Add to the proactive repair time the arrival time
repairtime_time_step.append(repeartime_value) # Add the repair time of component i at timestep t to the list
repairtime.append(repairtime_time_step) # Add the repair time to the list
return repairtime # Return the list of repair time values

# Call the functions to get the results

AR= calculate_AR(AT_value, time_step)

CRT = calculate_CRT(time_step, components, CRT_site, CRT_shop, alpha, beta, mechanics)
PRT = calculate_PRT(time_step, components, PRT_site, PRT_shop, alpha, beta, mechanics)
RR= calculate_RR(time_step, F, CRT, PRT)

TR= calculate_TR(RR, AR,components)

repairtime= calculate_repairtime(time_step,PRT,AT_value)

# Convert component indices to strings for using in the loop
component_names = list(map(str, components))

# Create a dictionary to store the optimal time steps for each component individually
optimal_time_steps = {}
t_opt = {}

# Loop over all components to get the optimal time step
for i in range(len(components)):
row = F[i]
if any(element > reliability[i] for element in row):
model = gp.Model("time_step_minimization_" + component_names]i])

# Add variables time_step[t] for component [i]
time_step_vars = model.addVars(len(time_step), 1b=0, vtype=GRB.BINARY, name="time_step_" + component_names]i])

# Add binary variables to indicate if maintenance is scheduled at time step t
maintenance_scheduled = model.addVars(len(time_step), vtype=GRB.BINARY, name="maintenance_scheduled_" + component_names][i])

# Add objective function to minimize total repair time for component [i]
model.setObjective(gp.quicksum(TR[t][i] * time_step_vars[t] for t in range(len(time_step))), GRB.MINIMIZE)

# Add constraint sum of time_step[t] for this component ==
model.addConstr(time_step_vars.sum() == 1, name="time_step_sum_constraint_'

+ component_names]i])

# Add constraint for reliability threshold of component[i]
for tiin range(len(time_step)):
model.addConstr(reliability[i] >= time_step_vars[t] * F[i][t], name="reliability_constraint_" + component_names][i])

# Add constraint to check if maintenance time does not exceed availability
for tiin range(len(time_step)):
# maintenance_scheduled]t] is 1 if maintenance is scheduled at time step t
# Ensure that maintenance_scheduled[t] is greater than or equal to time_step_vars|[t]
model.addConstr(maintenance_scheduled[t] >= time_step_vars[t], name="maintenance_scheduled_constraint_" + component_names]i])

# The following constraint checks if maintenance time does not exceed availability

# Use a big M (M_big) to represent an upper bound on maintenance time

M_big = max(availability) * 2

model.addConstr(repairtime[t][i] - availability[t] * maintenance_scheduled[t] <= M_big * (1 - time_step_vars[t]), name="maintenance_time_constraint_"
+ component_namesli])

# Optimize the model
model.optimize()

# Check if the optimization is successful
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if model.status == GRB.OPTIMAL:
# Retrieve the optimal variable values for this component
optimal_vars = [time_step_vars[t].x for t in range(len(time_step))]
# Find the index of the optimal variable (time step)
optimal_time_step_index = optimal_vars.index(1)
# Store the optimal time step for this component
t_opt[component_names]i]] = time_step[optimal_time_step_index]
t_opt= {int(key): value for key, value in t_opt.items()}
else:
print("Optimization failed for component", component_names[i]+ ". Availibility schedule does not allow maintenance", ". Gurobi status:", model.status)
else:
print("Component " + component_names[i]+ " will not be above reliability treshhold this time period")

# Print the optimal time steps

for component, optimal_step in t_opt.items():
print("Optimal time step for", component, ":", optimal_step)

Global strategy

def calculate_AR_group(AT_value, time_step): # Definition of the group arrival rate
AR_group =] # List to store the calculated group arrival rate
for t in range(len(time_step)): # Iterate over each time step
AR_v_group = AT_value / time_step][t] # Calculate arrival rate for a group
AR_group.append(AR_v_group) # Add arrival rate to the group list
return AR_group # Return the list of AR values for each group
def calculate_RR_group(groups, time_step, F, CRT, PRT): # Definition of the group repair rate
RR_group = [[] for _in range(len(groups))] # List to store calculated repair rate for each group
for t in range(len(time_step)): # Iterate over each time step
for g, group_indices in enumerate(groups): # Iterate over each group

RR_sum = sum(((CRT[t][i-1] * F[i-1][t]) + PRT[t][i-1] * (1 - F[i-1][t])) for i in group_indices) / time_stepl[t] # Calculate the sum of CRT and PRT values for
components in the group

RR_group(g].append(RR_sum) # Add to the group's list
return RR_group # Return the list of RR values for each group
def calculate_TR_group(RR_group, AR_group, time_step): # Definition of the group total rate
TR_group =] # List to store the calculated group total rate
for t in range(len(time_step)): # Iterate over each time step
TR_value_group = RR_group[t] + AR_grouplt] # Calculate total repair rate for a group
TR_group.append(TR_value_group) # Add total repair rate to the group list
return TR_group # Return the list of TR values for each group
def calculate_Repairtime_group(time_step, PRT, AT_value, groups): # Definition of the total system repair time
repairtime_group = [[] for _in range(len(groups))] # List to store calculated repair time for each group
for t in range(len(time_step)): # Iterate over each time step
for g, group_index in enumerate(groups): # Iterate over each group
repairtime_group_sum = sum(PRT[t][i-1] for i in group_index) + AT_value # Calculate total repair time for a group
repairtime_group(g].append(repairtime_group_sum) # Add to the group's list
return repairtime_group # Return the list of repair times for each group

def calculate_optimal_group(t_opt, F, CRT, PRT, TR, AT_value):
sorted_t_opt = sorted(t_opt.items(), key=lambda x: x[1])
sorted_components = [item[0] for item in sorted_t_opt]
if len(sorted_components) >1:
def calculate_optimal_maintenance_time(time_step, t_opt, F, CRT, PRT, TR, AT_value):
# Create a sorted list of component indices based on t_opt values
sorted_t_opt = sorted(t_opt.items(), key=lambda x: x[1])
sorted_components = [item[0] for item in sorted_t_opt]
value_2 = sorted_t_opt[1][1]
value_3 = sorted_t_opt[2][1]
# Initialize variables
index =0

# Start forming a new group

component = sorted_components[index]

group = [component]

group_RR = calculate_RR_group([group], time_step, F, CRT, PRT)[0] # Calculate RR for the group

group_AR = calculate_AR_group(AT_value, time_step) # Use the same AT_value for the entire group
components_outside = [comp for comp in sorted_components if comp not in group]

# Calculate TT_group for the initial component

TR_group = calculate_TR_group(group_RR, group_AR, time_step)

#The actual repair time

repairtime_group = calculate_Repairtime_group(time_step,PRT,AT_value,[group])[0]

# Make the gurobi model
model = gp.Model("time_step_minimization_group")
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# Add variables time_step[t] for component [i]
time_step_group_vars = model.addVars(len(time_step), Ib=0, vtype=GRB.BINARY, name="time_step_group")

# Add binary variables to indicate if maintenance is scheduled at time step t
maintenance_scheduled_group = model.addVars(len(time_step), vtype=GRB.BINARY, name="maintenance_scheduled_group")

# Add objective function to minimize total repair time for component [i]
model.setObjective(gp.quicksum(TR_group(t] * time_step_group_vars[t] for t in range(len(time_step))), GRB.MINIMIZE)

# Add constraint sum of time_step[t] for this component == 1
model.addConstr(time_step_group_vars.sum() == 1, name="time_step_sum_constraint_group")

# Add constraint to check if maintenance time does not exceed availability

for t in range(len(time_step)):
# maintenance_scheduled|t] is 1 if maintenance is scheduled at time step t
# Ensure that maintenance_scheduled[t] is greater than or equal to time_step_vars[t]
model.addConstr(maintenance_scheduled_groupl[t] >= time_step_group_vars[t], name="maintenance_scheduled_constraint_group")

# The following constraint checks if maintenance time does not exceed availability

# Use a big M (M_big) to represent an upper bound on maintenance time

M_big = max(availability) * 2

model.addConstr(repairtime_grouplt] - availability[t] ¥ maintenance_scheduled_group[t] <= M_big * (1 - time_step_group_vars[t]),
name="maintenance_time_constraint_group")

# Add contraint for reliability threshold of component][i]
for t in range(len(time_step)):
model.addConstr(time_step_group_vars[t] * Fl[component-1][t] <= reliability[component-1], name="reliability_constraint_group")

# Optimize the model
model.optimize()

# Check if the optimization is successful
if model.status == GRB.OPTIMAL:
# Retrieve the optimal variable values for this component
optimal_group_vars = [time_step_group_vars[t].x for t in range(len(time_step))]
# Find the index of the optimal variable (time step)
optimal_time_step_index = optimal_group_vars.index(1)
# Store the optimal time step for this component
t_opt_group = time_step[optimal_time_step_index]
TR_sys = TR_group[t_opt_group-1] + TR[value_2-1][sorted_components[1]-1] + TR[value_3-1][sorted_components[2]-1]
print("TR_sys", TR_sys)
index_2=1
while index_2 < len(sorted_components):
#Choose the next component for the group
j = sorted_components[index + 1]
# Calculate TT_group for the new component
new_group = group + [j]
print("new_group =",new_group)
print("old group was =", group)
new_group_RR = calculate_RR_group([new_group], time_step, F, CRT, PRT)[0]
new_TR_group = calculate_TR_group(new_group_RR, group_AR, time_step)
components_outside_new =[comp for comp in sorted_components if comp not in new_group]

# Actual repair time for the existing group and the new group
repairtime_group = calculate_Repairtime_group(time_step,PRT,AT_value,[group])[0]
repairtime_group_new = calculate_Repairtime_group(time_step,PRT,AT_value,[new_group])[0]

# Make the gurobi model
model = gp.Model("time_step_minimization_group_new"

# Add variables time_step[t] for component [i]
time_step_group_vars_new = model.addVars(len(time_step), |b=0, vtype=GRB.BINARY, name="time_step_new")

# Add binary variables to indicate if maintenance is scheduled at time step t
maintenance_scheduled_group_new = model.addVars(len(time_step), vtype=GRB.BINARY, name="maintenance_scheduled_group_new")

# Add objective function to minimize total repair time for component [i]
model.setObjective(gp.quicksum(new_TR_groupl[t] * time_step_group_vars_new(t] for t in range(len(time_step))), GRB.MINIMIZE)

# Add constraint sum of time_step[t] for this component ==
model.addConstr(time_step_group_vars_new.sum() == 1, name="time_step_sum_constraint_group_new")

# Add constraint to check if maintenance time does not exceed availability
for tin range(len(time_step)):
# maintenance_scheduled]t] is 1 if maintenance is scheduled at time step t
# Ensure that maintenance_scheduled[t] is greater than or equal to time_step_vars][t]
model.addConstr(maintenance_scheduled_group_new[t] >= time_step_group_vars_new(t],
name="maintenance_scheduled_constraint_group_new")

# The following constraint checks if maintenance time does not exceed availability
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# Use a big M (M_big) to represent an upper bound on maintenance time
M_big = max(availability) * 2
model.addConstr(repairtime_group_new([t] - availability[t] * maintenance_scheduled_group_new([t] <= M_big * (1 -

time_step_group_vars_new([t]), name="maintenance_time_constraint_group_new")

# # Add contraint for reliability threshold of component][i]
for iin new_group:
for t in range(len(time_step)):
model.addConstr(time_step_group_vars_new(t] * F[i-1][t] <= reliability[i-1], name=f"reliability_constraint_group_new_{i}")
# Optimize the model
model.optimize()

# Check if the optimization is successful
if model.status == GRB.OPTIMAL:
# Retrieve the optimal variable values for this component
optimal_group_vars_new = [time_step_group_vars_new[t].x for t in range(len(time_step))]
# Find the index of the optimal variable (time step)
optimal_time_step_index_new = optimal_group_vars_new.index(1)
# Store the optimal time step for this component
t_opt_group_new = time_step[optimal_time_step_index_new]
if len(new_group) < 3:
TR_sys_new = new_TR_group[t_opt_group_new-1]+ TR[value_3-1][sorted_components[2]-1]
print("TR_sys for group of 2 components is: ", TR_sys_new)
else:
TR_sys_final = TR_group[t_opt_group_new-1]
print("TR_sys for group of 3 components is: ", TR_sys_final)
# If the new TT_sys is less than the existing one, update the group
if TR_sys > TR_sys_new:
group = new_group
group_RR = new_group_RR
TR_group = new_TR_group
components_outside = components_outside_new
repairtime_group = repairtime_group_new
index +=1
index_2 +=1
else:
new_group = group
components_outside_new = components_outside
repairtime_group_new = repairtime_group
index_2 = len(sorted_components)

print("The new group has a total maintenance rate for the system which is higher than the total maintenance rate of the system based on the

old group. Therefore no more calculations will be done.")

optimal_group, individually_maintained,sorted_components, t_opt_group_new = calculate_optimal_maintenance_time(time_step, t_opt=t_opt, F=F,

else:
print("error"

elif model.status == GRB.INFEASIBLE:

print("\n")

print("No groups can be formed due to unavailability of the site.")
print("Maintain each component individually.")

new_group=[]

components_outside_new =[]

t_opt_group_new =[]

return new_group, components_outside_new,sorted_components, t_opt_group_new

CRT=CRT, PRT=PRT, TR=TR, AT_value=AT_value)

else:

print("Only one component is maintained this time period, so no groups can be formed")
return optimal_group, individually_maintained,sorted_components, t_opt_group_new

optimal_group, individually_maintained,sorted_components, t_opt_group_new = calculate_optimal_group(t_opt, F, CRT, PRT, TR, AT_value)

Global strategy adjusted for group limit switch and gas spring

def calculate_optimal_group_individual(time_step, t_opt, F, CRT, PRT, TR, AT_value):
sorted_t_opt = sorted(t_opt.items(), key=lambda x: x[1])
sorted_components = [item[0] for item in sorted_t_opt]
value_2 = sorted_t_opt[1][1]
value_3 = sorted_t_opt[2][1]
# Initialize variables
index =0

# Start forming a new group

component = sorted_components[index]

group = [component]

group_RR = calculate_RR_group([group], time_step, F, CRT, PRT)[0] # Calculate RR for the group

group_AR = calculate_AR_group(AT_value, time_step) # Use the same AT_value for the entire group
# Calculate TT_group for the initial component

TR_group = calculate_TR_group(group_RR, group_AR, time_step)

F. Decision-making code
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#The actual repair time
repairtime_group = calculate_Repairtime_group(time_step,PRT,AT_value,[group])[0]

# Make the gurobi model
model = gp.Model("time_step_minimization_group")

# Add variables time_step[t] for component [i]
time_step_group_vars = model.addVars(len(time_step), 1b=0, vtype=GRB.BINARY, name="time_step_group")

# Add binary variables to indicate if maintenance is scheduled at time step t
maintenance_scheduled_group = model.addVars(len(time_step), vtype=GRB.BINARY, name="maintenance_scheduled_group")

# Add objective function to minimize total repair time for component [i]
model.setObjective(gp.quicksum(TR_group[t] * time_step_group_vars[t] for t in range(len(time_step))), GRB.MINIMIZE)

# Add constraint sum of time_step[t] for this component ==
model.addConstr(time_step_group_vars.sum() == 1, name="time_step_sum_constraint_group")

# Add constraint to check if maintenance time does not exceed availability

for t in range(len(time_step)):
# maintenance_scheduled|t] is 1 if maintenance is scheduled at time step t
# Ensure that maintenance_scheduled[t] is greater than or equal to time_step_vars][t]
model.addConstr(maintenance_scheduled_group(t] >= time_step_group_vars[t], name="maintenance_scheduled_constraint_group")

# The following constraint checks if maintenance time does not exceed availability

# Use a big M (M_big) to represent an upper bound on maintenance time

M_big = max(availability) * 2

model.addConstr(repairtime_grouplt] - availability[t] * maintenance_scheduled_group(t] <= M_big * (1 - time_step_group_vars|t]),
name="maintenance_time_constraint_group")

# Add contraint for reliability threshold of component][i]
for t in range(len(time_step)):
model.addConstr(time_step_group_vars[t] * F[component-1][t] <= reliability[component-1], name="reliability_constraint_group")

# Optimize the model
model.optimize()

# Check if the optimization is successful
if model.status == GRB.OPTIMAL:
# Retrieve the optimal variable values for this component
optimal_group_vars = [time_step_group_vars[t].x for t in range(len(time_step))]
# Find the index of the optimal variable (time step)
optimal_time_step_index = optimal_group_vars.index(1)
# Store the optimal time step for this component
t_opt_group = time_step[optimal_time_step_index]
TR_sys = TR_group[t_opt_group-1] + TR[value_2-1][sorted_components[1]-1] + TR[value_3-1][sorted_components[2]-1]
print("TR_sys", TR_sys)
else:
print("Error")
return TR_sys, t_opt_group

TR_sys, t_opt_group_individual = calculate_optimal_group_individual(time_step,t_opt, F, CRT, PRT, TR, AT_value)

def calculate_optimal_group_limit_gas_spring(time_step, t_opt, F, CRT, PRT, TR, AT_value):
sorted_t_opt = sorted(t_opt.items(), key=lambda x: x[1])
sorted_components = [item[0] for item in sorted_t_opt]
value_1 = sorted_t_opt[0][1]
index =0
j = sorted_components[index + 1]
j2 = sorted_components[index +2]
# Calculate TT_group for the new component
new_group = [j] + [j2]
print("new_group =",new_group)
group_AR = calculate_AR_group(AT_value, time_step)
new_group_RR = calculate_RR_group([new_group], time_step, F, CRT, PRT)[0]
new_TR_group = calculate_TR_group(new_group_RR, group_AR, time_step)
# Actual repair time for the existing group and the new group
repairtime_group_new = calculate_Repairtime_group(time_step,PRT,AT_value,[new_group])[0]

# Make the gurobi model
model = gp.Model("time_step_minimization_group_new")

# Add variables time_step[t] for component [i]
time_step_group_vars_new = model.addVars(len(time_step), Ib=0, vtype=GRB.BINARY, name="time_step_new")

# Add binary variables to indicate if maintenance is scheduled at time step t

maintenance_scheduled_group_new = model.addVars(len(time_step), vtype=GRB.BINARY, name="maintenance_scheduled_group_new")

# Add objective function to minimize total repair time for component [i]
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model.setObjective(gp.quicksum(new_TR_group[t] * time_step_group_vars_new(t] for t in range(len(time_step))), GRB.MINIMIZE)

# Add constraint sum of time_step[t] for this component ==
model.addConstr(time_step_group_vars_new.sum() == 1, name="time_step_sum_constraint_group_new")

# Add constraint to check if maintenance time does not exceed availability
for t in range(len(time_step)):
# maintenance_scheduled|t] is 1 if maintenance is scheduled at time step t
# Ensure that maintenance_scheduled[t] is greater than or equal to time_step_vars[t]
model.addConstr(maintenance_scheduled_group_new(t] >= time_step_group_vars_new(t], name="maintenance_scheduled_constraint_group_new")

# The following constraint checks if maintenance time does not exceed availability

# Use a big M (M_big) to represent an upper bound on maintenance time

M_big = max(availability) * 2

model.addConstr(repairtime_group_new(t] - availability[t] * maintenance_scheduled_group_new[t] <= M_big * (1 - time_step_group_vars_new[t]),

name="maintenance_time_constraint_group_new")

# # Add contraint for reliability threshold of component[i]
foriin new_group:

for tin range(len(time_step)):

model.addConstr(time_step_group_vars_new(t] * F[i-1][t] <= reliability[i-1], name=f"reliability_constraint_group_new_{i}")

# Optimize the model
model.optimize()

# Check if the optimization is successful
if model.status == GRB.OPTIMAL:
# Retrieve the optimal variable values for this component
optimal_group_vars_new = [time_step_group_vars_new[t].x for t in range(len(time_step))]
# Find the index of the optimal variable (time step)
optimal_time_step_index_new = optimal_group_vars_new.index(1)
# Store the optimal time step for this component
t_opt_group_new = time_step[optimal_time_step_index_new]
TR_sys_new = new_TR_group[t_opt_group_new-1] + TR[value_1-1][sorted_components[0]-1]
print("TR_sys for group of 2 components is: ", TR_sys_new)
else:
print("Error")
return TR_sys_new, t_opt_group_new, repairtime_group_new, new_TR_group

TR_sys_new, t_opt_lg, repairtime_group_lg, new_TR_group = calculate_optimal_group_limit_gas_spring(time_step, t_opt, F, CRT, PRT, TR, AT_value)
print("Optimal time to do maintenance for the group[limit switch, gas spring] is ", t_opt_|g)
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