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Message Passing-Based Sparse Channel Estimation

from Partially Coherent Measurement Vectors

Hamed Masoumi, Nitin Jonathan Myers
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Abstract—Phase jitter at oscillators in high-frequency wireless
systems perturbs the phase of the acquired channel measure-
ments. As a result, standard sparse channel estimation algorithms
that ignore phase errors fail. In this paper, we consider a frame
structure in which channel measurements are acquired over two
packets. Our model assumes that the phase errors are nearly
constant over a packet and they change considerably across the
packets, leading to partially coherent channel measurements. In
this paper, we develop a message-passing-based technique that
leverages the partially coherent structure in the measurements for
sparse channel estimation robust to unknown phase offset across
the packets. Simulation results show that our approach achieves
a lower mean-squared error in the reconstructed channel than
comparable benchmarks.

Keywords—Message passing, phase error, mmWave, terahertz,
channel estimation, compressed sensing.

I. INTRODUCTION

The high scattering at mmWave and THz frequencies leads
to channels that are approximately sparse in the angle domain
[1]. Compressive sensing (CS) leverages this sparsity to esti-
mate channels from sub-Nyquist measurements. In practice,
the measurements are corrupted by jitter at the oscillators
[2]. Standard CS-based channel estimation techniques [3], [4],
which assume no phase errors, fail due to a model mismatch.
The phase errors are more pronounced in mmWave and THz
frequency bands [5] than at lower frequencies [6].

In IEEE 802.11ad/ay systems, phase errors in channel
measurements are similar within a packet but can vary consid-
erably between packets [7]. Measurements acquired under such
phase errors are termed partially coherent CS measurements
[8]. Prior work on CS-based channel estimation [9]±[11]
addressed this issue by relying only on the magnitude of the CS
measurements for sparse recovery. These methods, however,
do not leverage the partially coherent phase error structure in
recovery. The work in [12] uses an extended Kalman filter
within CS to track phase errors and obtains a one-sparse
estimate of the channel. Such an estimate is usually insufficient
to configure hybrid beamformers. Lastly, the lifting technique
[13] was discussed in [7] to estimate the unknown phase
errors and the sparse signal. Lifting-based channel estimation
is computationally demanding, as it solves for the lifted signal
whose dimension is higher than the original sparse signal [7].

Several sparse recovery algorithms that leverage partial
phase coherence in CS measurements were developed in
[7], [8], [14]. In [8], [14], the partial coherence structure is
employed to first compute a coarse estimate of the sparse
angle-domain channel, which is then refined through iterative

updates. The work in [7] combines matching pursuit with
alternating optimization to jointly recover the sparse angle-
domain channel vector and the associated phase errors. The
approaches in [7], [8], [14], however, assume prior knowledge
of the number of non-zero elements in the sparse channelÐan
assumption that is impractical in real-world scenarios. We do
not make such an assumption to derive the proposed method.

In this paper, we develop a sparse channel estimation
method that exploits the partially coherent structure in the
phase perturbed measurements. In our approach, the phase
errors are absorbed into the sparse channel resulting in a pair
of phase mismatched sparse vectors. These vectors have the
same support and magnitude as the channel. We develop a mes-
sage passing-based algorithm that exploits the shared support
and magnitude structure across the phase mismatched sparse
vectors to reconstruct the channel. Although we consider
channel estimation using measurements from two packets, our
technique can also be extended to the multi-packet case by
considering two successive packets at a time. This extension,
however, is beyond the scope of this paper.

Notation: We use a, a and A to denote a scalar, vector,
and a matrix. We use (·)Tand (·)∗ to denote the transpose and
conjugate-transpose operators. The ith entry of a is indicated
by a[i]. We denote the (i, j)th entry of A by A(i, j). We use
x for a random variable and x for its realization, with p(x)
as the probability density function (PDF) of x evaluated at x.
Lastly, RN×1

+ is the set of N × 1 vectors with non-negative

real entries, and j =
√
−1.

II. SYSTEM MODEL

We consider an N × 1 half-wavelength spaced uniform
linear phased array (ULA) at the transmitter (TX) and a single
antenna receiver (RX). We use h to denote the N dimensional
spatial channel between the TX and RX. Let L denote the
number of propagation rays in the environment with the ℓth

ray having a complex gain of βℓ, an angle-of-departure (AoD)
θℓ. By defining the beamspace angle as ωℓ = π sin θℓ [15]
and the N × 1 Vandermonde vector aN (ω) as aN (ω) =
[

1, ejω, ej2ω, · · · , ej(N−1)ω
]T

, the baseband channel matrix h
is given by

h =

L
∑

ℓ=1

βℓaN (ωℓ) . (1)

The channel dimension N in typical mmWave or THz phased
arrays can be in the order of hundreds to thousands.

The high scattering at mmWave and THz frequencies
results in an approximately sparse channel in the angle domain
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Fig. 1. Channel measurements acquired over different packets in

IEEE 802.11ad/ay are partially coherent. Here, φ in (a) denotes the

relative phase offset introduced in the measurements of the second

packet. We notice from (b) that CS-based channel estimation with [17]

performs poor when the relative phase offset is ignored. Here, M =
40 measurements of a N = 256 dimension channel are acquired in

each packet and φ is uniformly distributed over [−α, α).

[16]. To exploit this property for channel reconstruction, the
channel h is transformed into the angle domain. Since we
assume a ULA at the TX, the DFT of h is used for its
angle-domain representation. Let UN denote the standard
N × N unitary DFT matrix and x denote the angle-domain
representation of h. Then, x and h are related as

h = UNx, (2)

where x is the unknown sparse vector to be estimated.

We use the frame structure shown in Fig. 1, inspired by
the signaling structure in IEEE 802.11ad/ay [18]. We consider
only 2 packets, and extending our method to measurements
acquired over multiple packets is beyond the scope of this
paper. We use M to denote the number of spatial channel
measurements acquired in each packet. The RX acquires one
spatial measurement of the channel when the TX applies a
beam training vector to its array. This spatial measurement is
corrupted by phase error due to hardware impairment, such
as the jitter at the oscillators [2]. The phase error depends
on the time interval between the measurements [2]. Since the
time interval between packets is typically large (e.g., 44 µs)
compared to the time needed to acquire each measurement
(e.g., 128 ns) [7], [14], the phase variations within each packet
can be ignored. The phase offsets across different packets,
however, are significant due to the large time lapse and cannot
be ignored.

We denote the relative phase error induced in the sec-
ond packet measurements as ϕ. Here, ϕ is modeled as a
uniformly distributed random variable U([−π, π)). We use
wℓ[m] ∈ C

N×1 to denote the beam training vector applied at
the TX in the ℓth packet, for the RX to obtain the mth spatial
channel measurement denoted by yℓ[m]. We use the random
variable qℓ[m] ∼ CN (0, σ2) to model the measurement noise
and qℓ[m] to denote a realization of qℓ[m]. The mth spatial
channel measurement acquired in packet 1 and 2 is

y1[m]= w∗

1[m]h+q1[m], y2[m]= ejϕw∗

2[m]h+q2[m]. (3)

Our goal is to estimate h from 2M phase-perturbed measure-
ments in (3) by exploiting its angle-domain sparsity. To this
end, we define Aℓ ∈ C

M×N as the CS matrix associated with
the M measurements acquired with (3) for the ℓth packet. The
mth row of Aℓ is w∗

ℓ [m]UN [19]. Let yℓ denote the vector
of M measurements {yℓ[m]}Mm=1 in (3) and qℓ contain the

corresponding measurement noise {qℓ[m]}Mm=1. Now, we can
write the measurement vector yℓ = [yℓ[1], · · · yℓ[M ]]T as

y1 = A1x+ q1, y2 = ejϕA2x+ q2. (4)

Here, {y1,y2} are acquired at the RX, and the CS matrices
{A1,A2} are known from the beams applied at the TX. Fur-
ther, x is the unknown to be estimated from the measurements
acquired under an unknown phase offset ϕ. As we observe
from Fig. 1(b), standard CS-based channel estimation with
[17], that is agnostic to the random phase offset ϕ, fails when
the standard deviation of the offset is large.

III. PROPOSED CHANNEL ESTIMATION METHOD

To solve (4) under a sparse prior on x, we absorb the
unknown phase offset into x and define a new unknown vector

z = ejϕx. (5)

Since z is just a non-zero scalar multiple of x, a sparse x

leads to a sparse z. Let Sx denote the support of x, i.e., Sx ≜

{n : x[n] ̸= 0}, and Sz denote the support of z. From (5), we
observe that z has the same support as x, i.e., Sz = Sx. In
addition, the entry-wise magnitudes of x and z are equal, i.e.,
|z| = |x|. We use (5) to rewrite y2 in (4) to obtain

y1 = A1x+ q1, y2 = A2z+ q2. (6)

By absorbing the phase error into the sparse vector, the mea-
surement model for y2 in (6) is a linear measurement model in
the unknown vector z. A naive approach to reconstruct x using
(6) is using standard CS over y1. This approach, referred to
as Packet-1-only baseline, is suboptimal as it could have used
y2 while exploiting the correlation between x and z.

Now, we propose two methods that exploit different levels
of correlation between x and z to reconstruct x from (6). The
first method exploits sparsity and the common support in x
and z, ignoring the shared magnitude |x| = |z|. We refer
to this method as Proposed SuppOnly, which is solved using
the multiple measurement vector approximate message passing
(MMV-AMP) algorithm from [20]. The focus of this paper is
on our second method, which not only exploits sparsity and
the shared support in z and x but also leverages their common
magnitude structure. Hence, we refer to the second method as
Proposed MagSupp.

A. Proposed SuppOnly method

This method reconstructs x by exploiting sparsity and the
common support structure using the MMV-AMP algorithm
[20]. To explain how MMV-AMP is used, we model z as a
realization of a random vector z and x as a realization of a
random vector x. We define s ∈ {0, 1}N as the N -dimensional
random binary vector, with independent and identically dis-
tributed (IID) entries, to model the support of z and x. We use
λ to denote the probability that x[n], which is equivalent to
the probability that z[n] is non-zero. Then,

p(s[n]) = λs[n] (1− λ)
1−s[n]

, s[n] ∈ {0, 1}. (7)

We use u to model the amplitude of the random vector x whose
entries are independently and identically distributed (IID) as a
zero mean Gaussian distribution with variance γ, i.e.,

p(u[n]) = CN (u[n]; 0, γ) . (8)
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Let v model the amplitude of the random vector z. Since the
entries of the amplitude of x are IID circularly symmetric
Gaussian distributed and the entries of z are just phase per-
turbed versions of the entries of x from (5), the entries of
the random vector v are also IID as a zero mean Gaussian
distribution with variance γ, i.e., p(v[n]) = CN (v[n]; 0, γ).

Now, x[n] and z[n] can be decomposed as the product of
their corresponding amplitude variable and the support variable
as x[n] = s[n]u[n] and z[n] = s[n]v[n], equivalently

p
(

x[n]
∣

∣

∣
s[n], u[n]

)

=δ(x[n]−s[n]u[n]) , (9)

p
(

z[n]
∣

∣

∣
s[n], v[n]

)

=δ(z[n]−s[n]v[n]) . (10)

From (9) and (10) we observe that x[n] = 0 and z[n] = 0 when
s[n] = 0, thereby aiding sparse priors. The shared support
structure between x and z is inherently incorporated as their
supports are modeled by a single random vector s.

To estimate x while leveraging its shared support with
z, the MMV-AMP algorithm from [20] can be employed.
The MMV-AMP uses the Bayes’ rule to factorize the joint
distribution of z, x, s, u, and v, in terms of the probabilities
in (7)±(9), {p(v[n])}Nn=1 and the likelihoods

p
(

y1[m]
∣

∣

∣
x
)

=CN
(

y1[m];A1(m, :)x, σ2
)

, (11)

p
(

y2[m]
∣

∣

∣
z
)

=CN
(

y2[m];A2(m, :)z, σ2
)

, (12)

where A1(m, :) and A2(m, :) denote the mth rows of A1 and
A2. Then, multiple message exchanges in the factor graph
corresponding to the factorization are performed to determine
the marginal posterior distribution of {x[n]}Nn=1. The marginal
posterior is finally used to compute the minimum mean squared
error (MMSE) estimate of x.

B. Proposed MagSupp method

Since MMV-AMP cannot leverage the shared magnitude
structure between x and z, we propose a new message-passing
method to address this limitation. In our method, the amplitude
random vectors u and v are decomposed into their magnitude
and phase to exploit the shared magnitude structure. To this
end, we use r[n] to model the magnitude of x[n] and z[n]. This
means that r[n] ∈ R+. Furthermore, we use Θ1[n] to model
the phase of the random variable x[n] and Θ2[n] to model the
phase of the random variable z[n]. Since u[n] and v[n] have a
complex Gaussian PDF with mean zero and variance γ, their
magnitude r[n] has the Rayleigh PDF

p(r[n]) = 2
r[n]

γ
e−r2[n]/γ , (13)

and their phase values are uniform IID over [−π, π), i.e.,

p(θ1[n]) = p(θ2[n]) =
1

2π
, {θ1[n], θ2[n]} ∈ [−π, π). (14)

We note that incorporating a common phase error across all
the elements of z is challenging as it leads to numerous loops
in the corresponding factor graph. Although θ1[n] − θ2[n] =
ϕ ∀n in our model due to a scalar phase offset, we assume
that θ1[n] and θ2[n] are independent for each n to develop a

tractable message-passing method. Finally, we express x[n] =
s[n]r[n]ejΘ1[n] and z[n] = s[n]r[n]ejΘ2[n], equivalently

f1[n] ≜ p
(

x[n]
∣

∣

∣
s[n], r[n], θ1[n]

)

=δ
(

x[n]−s[n]r[n]ejθ1[n]
)

,

(15)

f2[n] ≜ p
(

z[n]
∣

∣

∣
s[n], r[n], θ2[n]

)

=δ
(

z[n]−s[n]r[n]ejθ2[n]
)

.

(16)

As the supports of x and z are modeled by a single random
vector s and their magnitudes are modeled by a single random
vector r, our method inherently incorporates the shared support
and magnitude structure.

To develop our algorithm to estimate x, we use the Bayes’
rule and the dependencies between z, s, r, and {Θℓ}2ℓ=1 to
factorize their posterior joint PDF as

p
(

x, z, s, r, {θℓ}2ℓ=1

∣

∣

∣
{yℓ}2ℓ=1

)

∝
M
∏

m=1

p
(

y1[m]
∣

∣

∣
x
)

p
(

y2[m]
∣

∣

∣
z
)

N
∏

n=1

(

f1[n]f2[n]p(θ1[n])

p(θ2[n])p (s[n]) p (r[n])
)

,

(17)

where ∝ denotes equality up to a constant scale factor. The
dependencies among different variables in (17) are represented
by the factor graph shown in Fig. 2. This factor graph
consists of 2 planes, each containing a collection of round
nodes indicating the unknown variables and rectangular nodes
indicating probability distributions. In plane 1, standard AMP
is used to compute marginal posteriors on {x[n]}Nn=1 where
the sparsity is enforced through the messages from {f1[n]}Nn=1

and faithfulness to measurements through {p
(

y1[m]
∣

∣

∣
x

)

}Mm=1.

A similar procedure is performed in plane 2 to compute
marginal posteriors on {z[n]}Nn=1. We observe that the planes
are connected through {s[n]}Nn=1 and {r[n]}Nn=1. The messages
that are exchanged through these connections across the planes
make sure that x and z have the same support and magnitude.
After a few iterations of message exchanges between the nodes
in the factor graph, an estimate of the marginal posteriors
of {x[n]}Nn=1, conditioned on the observed measurements, is
obtained and its mean is calculated for the MMSE estimate.

We explain the messages exchanged in our factor graph
in Fig. 2. Let νi→j denote the message passed from node i
to node j. For ease of exposition, we focus on the messages
between nodes with index n. Similar to MMV-AMP [20], the
message exchanged between the factors fℓ[n] and the support
variable s[n] is a Bernoulli probability mass function (PMF),
e.g., νfℓ[n]→s[n] = (π⃗ℓ[n], 1− π⃗1[n]) where π⃗ℓ[n] is the belief
that s[n] is 1. In compact form, we denote this Bernoulli PMF
as νfℓ[n]→s[n] = π⃗ℓ[n]. Similarly, νs[n]→fℓ[n] = ⃗πℓ[n].

Initial message passes with plane 1: Message passing
starts with the messages sent from the support s[n], magnitude
r[n], and phase Θ1[n] variable nodes into f1[n] in plane 1. As
no side information is available for plane 1, these messages are
merely the priors of each variable. Since p(s[n]) is a Bernoulli
PMF from (7), p(r[n]) is a Rayleigh PDF from (13) and
p (Θ1[n]) is a uniform PDF over [−π, π), it follows from (15)
and the sum-product rule that νf1[n]→z1[n] has the Bernoulli-
Gaussian PDF

νf1[n]→x[n] = (1− λ)δ(x[n]) + λCN (x[n]; 0, γ) , (18)
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Fig. 2. Our factor graph to estimate x from the partially coherent

measurements {y1,y2} in (4). Standard AMP is performed in each

plane corresponding to a measurement vector. Our key idea is to use

posteriors from one plane as side-information for the other plane.

which is used as a local prior for x[n]. Next, these priors

and the likelihoods p
(

y1[m]
∣

∣

∣
x
)

s are used to perform standard

AMP. After AMP iterations, the estimated posterior of x[n]
based only on the measurements from packet 1 is obtained. We
use e1[n] to denote the mean and c1[n] to denote the variance
of this posterior. At the end of AMP iterations, the messages
{νx[n]→f1[n]}Nn=1 given by

νx[n]→f1[n] = CN (x[n]; e1[n], c1[n]) , (19)

are passed through the common support and magnitude vari-
able nodes s[n] and r[n] to plane 2 as side information.

Messages sent from plane 1 to plane 2 through the
magnitude variables: At this stage, the beliefs on r[n]s are
updated using the posteriors in (19) from plane 1. By the
sum-product algorithm, νf1[n]→r[n] is derived by first com-
puting the product of νs[n]→f1[n], the posterior from (19) and
νΘ1[n]→f1[n] = 1/(2π). This product is then integrated over
s[n] and Θ1[n] to write

νf1[n]→r[n] =(1− ⃗π1[n]) CN (0; e1[n], c1[n])

+
⃗π1[n]

2π

∫

θ1[n]

CN
(

r[n]ejθ1[n]; e1[n], c1[n]
)

.
(20)

The first term in (20), corresponding to s[n] = 0, is constant
with respect to the variable r[n] and this constant makes
νf1[n]→r[n] an improper distribution which does not integrate
to 1 [20]. To address this issue, we use the idea from [20] that
considers s[n] ∈ {ϵ, 1} in the limit ϵ → 0, and define

Ω ( ⃗π1[n]) =
ϵ2 ⃗π1[n]

(1− ⃗π1[n]) + ϵ2 ⃗π1[n]
. (21)

For a small ϵ, the message νf1[n]→r[n] in (20) is modified to

ν̄f1[n]→r[n] =

(1− Ω( ⃗π1[n]))

2π

∫

θ1[n]

CN
(

r[n]ejθ1[n];
1

ϵ
e1[n],

1

ϵ2
c1[n]

)

+
Ω( ⃗π1[n])

2π

∫

θ1[n]

CN (r[n]ejθ1[n]; e1[n], c1[n]), (22)

which can be shown to be a proper distribution. Now, by
using the identity

∫ π

−π
exp
(

ℜ
(

κe−jθ
))

dθ = 2πI0(|κ|) from

[21, 3.5.17] for any complex scalar κ with ℜ (κ) denoting its

real part and Ik(·) denoting the modified Bessel function of
the first kind and order k, we can simplify ν̄f1[n]→r[n] as

ν̄f1[n]→r[n] =

1− Ω ( ⃗π1[n])

πϵ−2c1[n]
exp

(

−r2[n] + ϵ−2|e1[n]|2
ϵ−2c1[n]

)

I0

(

2 |e1[n]|
ϵ−1c1[n]

r[n]

)

+
Ω( ⃗π1[n])

πc1[n]
exp

(

−r2[n] + |e1[n]|2
c1[n]

)

I0

(

2 |e1[n]|
c1[n]

r[n]

)

.

(23)

Now, we can apply the sum-product rule to compute the
message νr[n]→f2[n] as the product of the prior p(r[n]) and
the modified message ν̄f1[n]→r[n] from (23). This message can
be simplified to a weighted sum of two Rician PDFs [22]. To
this end, we define

τ ϵ1 [n] =
1

2

(

1

γ
+

1

ϵ−2c1[n]

)

−1

, ρϵ1[n] =
γϵ−1|e1[n]|
γ + ϵ−2c1[n]

, (24)

τ1[n]=
1

2

(

1

γ
+

1

c1[n]

)

−1

, ρ1[n]=
γ|e1[n]|
γ + c1[n]

. (25)

The message νr[n]→f2[n] is simplified to

νr[n]→f2[n]=(1−Ω( ⃗π1[n])) CN
(

0; ϵ−1e1[n],γ+ϵ−2c1[n]
)

× Rice(r[n]; ρϵ1[n], τ
ϵ
1 [n]) + Ω ( ⃗π1[n])

× CN (0; e1[n], γ+c1[n]) Rice(r[n]; ρ1[n], τ1[n]),

(26)

where

Rice (r[n]; ρ1[n], τ1[n]) =
r[n]

τ1[n]
exp

(

−r2[n] + ρ21[n]

2τ1[n]

)

× I0

(

ρ1[n]

τ1[n]
r[n]

)

,

(27)

denotes a Rice PDF [22] with parameters ρ1[n] and τ1[n].

Messages sent from plane 1 to plane 2 through the
support variables: Here, we first derive νf1[n]→s[n]. From
νΘ1[n]→f1[n] = 1/2π and the sum-product rule,

νf1[n]→s[n] =
1

2π

∫

x[n]

∫

r[n]

∫

θ1[n]

f1[n]νx[n]→f1[n]νr[n]→f1[n]. (28)

For the Bernoulli PMF νf1[n]→s[n], the belief that s[n] = 1 is

π⃗1[n] =
[νf1[n]→s[n]]s[n]=1

[νf1[n]→s[n]]s[n]=1 + [νf1[n]→s[n]]s[n]=0
. (29)

To compute [νf1[n]→s[n]]s[n]=1 from (28), similar steps in
deriving (26) can be employed to calculate the integrals with
respect to x[n] and θ1[n]. Noting that νr[n]→f1[n] is equal to the
Rayleigh PDF p(r[n]) at this stage, we can simplify the result
using a Rice PDF as in (26) and then compute the integral
with respect to r[n] to obtain

[νf1[n]→s[n]]s[n]=1 = CN (0; e1[n], γ+c1[n]). (30)

Similarly [νf1[n]→s[n]]s[n]=0 = CN (0; e1[n], c1[n]). Now, we
can obtain π⃗1[n] in (29) as

π⃗1[n] =
CN (0; e1[n], γ+c1[n])

CN (0; e1[n], γ+c1[n]) + CN (0; e1[n], c1[n])
. (31)
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Next, we apply the sum-product rule to compute the probability
associated with the Bernoulli PMF νs[n]→f2[n] as

⃗π2[n] =
λπ⃗1[n]

(1− λ) (1− π⃗1[n]) + λπ⃗1[n]
, (32)

where the probability derived in (31) is used for π⃗1[n].

(a) (b)

Approximated𝜈𝑓2 1 →𝑧 1
0.80.60.40.20

11.2

ℜ 𝑧 1

210
−12−ℑ

𝑧1 0.080.060.040.020

0.10.12

0 2ℜ 𝑧 12− 11−

210
−12−ℑ

𝑧1
0 22− 11−

Dirac Delta Dirac Delta

Fig. 3. As x and z share the same magnitude, the posterior of x can be

used to obtain a belief on z, and vice versa. This belief (νf2[n]→z[n])

has a donut-like structure in (a) due to the phase offset uncertainty.

We approximate this belief as a Bernoulli-Gaussian mixture in (b).

The dots on the donut are the means of the Gaussians in this mixture.

Computing the message νf2[n]→z[n]: This
message is computed by first evaluating the product
f2[n]νΘ2[n]→f2[n]νs[n]→f2[n]νr[n]→f2[n], where the individual
terms are listed in (16), (32) and (26). Then, the product is
integrated over r[n], s[n], and Θ2[n] to arrive at νf2[n]→z[n].
As this integration is challenging, we approximate it as a
Bernoulli-Gaussian Mixture (BGM) distribution. Such an
assumption aids computationally tractable messages for the
AMP procedure in plane 2. An example of the true νf2[n]→z[n]

and our BGM approximation is shown in Fig. 3. This belief,
originating from the preceding plane, comprises non-zero
probabilities concentrated on an annular region, as illustrated
in Fig. 3. The radius of this region is governed by the
magnitude prior on z[1], while its angular spread covers the
whole −π to π as Θ1[n] uniformly distributed within [−π, π).

Now, the BGM approximates of νf2[n]→z[n]s and the like-

lihoods p
(

y2[m]
∣

∣

∣
z
)

s are used to perform standard AMP. After

AMP iterations, the estimated posterior of z[n] based on the
measurements from packets 1 and 2 is obtained. We use
e2[n] to denote the mean and c2[n] to denote the variance
of this posterior. At the end of AMP iterations, the messages
{νz[n]→f2[n]}Nn=1 given by

νz[n]→f2[n] = CN (z[n]; e2[n], c2[n]) , (33)

are passed through the common support and magnitude vari-
able nodes s[n] and r[n] to plane 1 as side information to refine
the marginal posterior estimation of x[n]s. We note that all the
messages passed to plane 1 can be computed in the same way
as those derived up to this point with the exception of the
message νf2[n]→s[n]. This is because the message νr[n]→f2[n]

used to compute νf2[n]→s[n] is a superposition of two Rice
PDFs given in (26) while during the initial message passes
from plane 1 to plane 2 the message νr[n]→f1[n] used to
compute νf1[n]→s[n] had the Rayleigh PDF (13).

Computing the message νf2[n]→s[n]: By applying the sum-
product rule similar to νf2[n]→s[n], and the fact that νr[n]→f2[n]

is a superposition of two Rice distributions in (26), we derive

[νf2[n]→s[n]]s[n]=1=
(1−Ω( ⃗π1[n])) CN

(

0; ϵ−1e1[n],γ+ϵ−2c1[n]
)

2π |e2[n]|

× Rice

(

|e2[n]| ; ρϵ1[n],
2τ ϵ1 [n] + c2[n]

2

)

+
Ω( ⃗π1[n]) CN(0; e1[n],γ + c1[n])

2π |e2[n]|

× Rice

(

|e2[n]| ; ρ1[n],
2τ1[n] + c2[n]

2

)

.

(34)

We used [23, 10.43.28] in computing the integral with respect
to r[n] to derive (34). Similarly, [νfb[n]→s[n]]s[n]=0 is

νfb[n]→s[n]

∣

∣

s[n]=0
= CN (0; e2[n], c2[n])

×
(

(1− Ω( ⃗π1[n])) CN
(

0; ϵ−1e1[n], γ + ϵ−2c1[n]
)

+Ω( ⃗π1[n]) CN (0; e1[n], γ + c1[n])
)

.

(35)

Using (34) and (35), we compute π⃗2[n] similar to π⃗1[n].

Closing the loop for channel estimation: After repeated
exchange of messages from plane 1 to plane 2 (in Fig. 2) and
backwards, the marginal posteriors of {x[n]}Nn=1 converge. The
sparse channel estimate x̂ is the mean of this posterior.

IV. SIMULATION RESULTS

We consider a uniform linear array of N = 256 anten-
nas at the TX. The beam training vectors {w1[m]}Mm=1 and
{w2[m]}Mm=1 are distinct random circular shifts of Zadoff-Chu
sequences [19] applied at the ULA. Unlike [7] that assumes
a known sparsity level, we only assume known statistics for
x. The entries of sparse x in our simulations are random
realizations of a Bernoulli-Gaussian PDF (18) with sparsity

level λ = 0.04 and variance γ = 1.5. We use ĥ to denote the
estimated channel obtained from its angle-domain estimate x̂
by inverse DFT from (2). We define normalized mean squared

error (NMSE) as E[∥h − ĥ∥22/∥h∥22]. Signal-to-noise ratio
(SNR) is given by SNR =

(

∥A1x∥2 + ∥A2z∥2
)

/(2Mσ2).

We use SparseLift from [13] as one of the benchmark meth-
ods. SparseLift translates the unknowns x and ϕ into a higher
dimension as Γ = [x, ejϕx]T [7]. Then, Γ is estimated using

the AMP [17]. Finally, the estimate Γ̂ is decomposed to find x̂.
We consider another benchmark termed as ‘NoPhaseErrorº in
which ideal phase error-free measurements are used for sparse
recovery. This benchmark uses a linear model obtained by
stacking the CS matrices for the two packets and then employs
AMP [17] for sparse recovery.

From Fig. 4, we observe that our proposed MagSupp tech-
nique brings around 2 dB improvement in the NMSE compared
to SparseLift for small M . This is because our technique
leverages the structure in partially coherent measurements,
such as the common support and magnitude of the phase-
perturbed angle-domain channel and the original angle-domain
channel in the factor graph in Fig. 2. The gap between our
proposed technique and the SparseLift, however, is small at
large M . Next, by comparing the proposed SuppOnly with the
proposed MagSupp, we observe that exploiting the additional
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Fig. 4. NMSE with the number of CS measurements per packet for

SNR = 5 dB. With phase-perturbed CS measurements, the proposed

method results in a smaller NMSE than the benchmarks.

-5 0 5 10

SNR [dB]

-20

-15

-10

-5

N
o

rm
al

iz
ed

 M
S

E
 [

d
B

]

Proposed MagSupp

Proposed SuppOnly

SparseLift

Packet-1-only

NoPhaseError

Fig. 5. NMSE with SNR for M = 40. For a random phase offset, our

method results in a lower NMSE than the benchmarks at all SNRs.

common magnitude structure brings an improvement of up to 1
dB in the NMSE. The Packet-1-only method achieves the worst
NMSE among the methods as it ignores measurements from
the second packet. From Fig. 5, we observe that our proposed
MagSupp technique achieves a lower NMSE than the proposed
SuppOnly and SparseLift, especially at a low SNR. As SNR
increases, NMSE decreases with both the proposed methods
and SparseLift. The gap between the proposed MagSupp and
SparseLift decreases at high SNR.

V. CONCLUSIONS

In this paper, we developed a message-passing-based tech-
nique for sparse channel estimation using partially coherent
measurements. Our approach absorbs the phase errors into the
channel to define a pair of phase-perturbed sparse vectors. The
proposed method exploits the common support and magnitude
structure across this pair, in addition to channel sparsity. The
central idea is to use the posterior distribution of one phase-
perturbed vector to construct a prior for estimating the other
vector. After several such iterations, our method obtains the
MMSE estimate of the sparse channel.
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