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Maximum Likelihood Decoding for Channels With
Gaussian Noise and Signal Dependent Offset

Renfei Bu , Jos H. Weber , Senior Member, IEEE, and Kees A. Schouhamer Immink , Life Fellow, IEEE

Abstract— In many channels, the transmitted signals do not
only face noise, but offset mismatch as well. In the prior art,
maximum likelihood (ML) decision criteria have already been
developed for noisy channels suffering from signal independent
offset. In this paper, such ML criterion is considered for the
case of binary signals suffering from Gaussian noise and signal
dependent offset. The signal dependency of the offset signifies that
it may differ for distinct signal levels, i.e., the offset experienced
by the zeroes in a transmitted codeword is not necessarily the
same as the offset for the ones. Besides the ML criterion itself, also
an option to reduce the complexity is considered. Further, a brief
performance analysis is provided, confirming the superiority of
the newly developed ML decoder over classical decoders based
on the Euclidean or Pearson distances.

Index Terms— Maximum likelihood decoding, Gaussian noise,
offset mismatch, signal dependent offset.

I. INTRODUCTION

THE on-going data revolution demands that data is
communicated efficiently, stored reliably, and processed

robustly. Tackling the problem of data distortions such as
noise, intersymbol interference, offset mismatch, fading, clock
jitter, etc., is a fundamental and challenging topic in the theory
of channel coding. From these, we are interested in channels
with noise and offset mismatch.

Perhaps the best known examples of these channels are flash
memories. In flash memories, the number of electrons in a
cell decreases with time and some cells become defective over
time [1]. The amount of charge leakage, which can be modeled
as gain and/or offset mismatch, depends on various physical
parameters, such as the device temperature, the magnitude of
the charge, and the time elapsed between writing and reading
the data [2]. In digital optical recording, fingerprints and
scratches on the surface of discs result in offset variations
of the retrieved signal [3]. For direct conversion receivers,
the local oscillator is the primary source of dc-offset [4].

One would like to understand how these channels with
offset mismatch differ from the classical noisy ones. There
are conceptual connections, as well as important differences
between the noise distortion and the offset mismatch. Both of
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them are considered to be additive quantities to the transmitted
or stored signals. However, noise is a symbol-wise distortion,
which is usually independently distributed for each symbol,
and thus its value changes symbol by symbol. Offset, on the
contrary, is a type of block-wise distortion, which remains
constant within one block length, then may change to another
value and remains constant for another block length, and so
on. As a result, while Euclidean distance-based decoding is
known to be optimal if the transmitted or stored signals are
only disturbed by Gaussian noise [5], it may perform poorly
if there is offset as well.

Various methods have been proposed to address the offset
mismatch issues. One approach is accomplished by using pilot
sequences to estimate the unknown channel offset [6] and
then adjust the detector settings to match the actual values
of the channel parameters. A drawback of this method is a
rather high redundancy. Up to now, various coding techniques
have been applied to alleviate the detection in case of channel
mismatch; specifically, rank modulation [7], balanced codes
[8], and composition check codes [9]. These methods are
often considered to be too expensive in terms of redundancy
and complexity. For example, the redundancy of a full set of
balanced codewords is O(logm), where m is the number of
user bits [10].

A promising decoding technique with asymptotic zero
redundancy as the codeword length increases has been pro-
posed in [11], where it is shown that decoders using the
Pearson distance have immunity to offset and/or gain mis-
match. A study [12] has shown that a digital modulation
transceiver based on Pearson distance detection provides
excellent error performance for noisy channels with Rayleigh
fading. The use of the Pearson distance requires that the
set of codewords satisfies several specific properties. Such
sets are called Pearson codes, which have been attracting
a lot of interest [13]–[16]. In [13], optimal Pearson codes
are presented, in the sense of having the largest number of
codewords and thus minimum redundancy among all q-ary
Pearson codes of fixed length n. Properties of binary Pearson
codes are discussed in [14], where the Pearson noise distance
is compared to the well-known Hamming distance. A simple
systematic Pearson coding scheme, that maps sequences of
information symbols generated by a q-ary source to q-ary code
sequences, is proposed in [15]. Construction of a particular
kind of Pearson codes, i.e., T-constrained codes [11], using a
finite state machine, is introduced in [16].

Furthermore, a considerable amount of literature has grown
around the theme of detection schemes that tackle the offset
mismatch issues. In [17], a decoder has been proposed based
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on minimizing a weighted sum of Euclidean and Pearson
distances. A dynamic threshold detection (DTD) scheme is
proposed in [18], where the gain and offset are first estimated.
The estimates of the gain and offset are used to re-scale the
received signal within its normal range. Then, the re-scaled
signal, brought into its standard range, can be forwarded to
the final detection/decoding system, where optimum use can
be made of the distance properties of the code by applying,
for example, the Chase algorithm. A further improvement of
DTD by employing a neural network is investigated in [19].
Novel neural network detectors only need to be invoked when
the error correction code decoder fails, or periodically when
the system is in the idle state.

The above-summarized methods have improved the
resilience to the offset mismatch, or even established immunity
to it. However, the price paid for this benefit is a higher noise
sensitivity in comparison with the Euclidean decoder. It is
important and challenging to study the optimal (ML) decoding
solutions considering both noise and offset issues. Blackburn
has investigated an ML criterion for channels with Gaussian
noise and unknown gain and offset mismatch in [20]. In a sub-
sequent study, ML decoding criteria are derived for Gaussian
noise channels when assuming various distributions for the
offset in the absence of gain mismatch [21]. In [22], an ML
decoder is proposed for the channels with the assumption of
bounded noise and offset mismatch. A general framework of
ML decoding criteria for such channels is summarized in [23].

A common feature of these prior studies is the assumption
that the offset is independent of the signal levels. In this
paper, we take a different look, and model the offset mis-
match as a signal dependent parameter. Specifically, b0 is the
offset for the ‘0’ signal level and b1 is the offset for the
‘1’ signal level in the binary case we consider. The signal
dependent offset model is appropriate in many scenarios. For
example, the binary input user data is stored as the two
resistance states of a spin-torque transfer magnetic random
access memory (STT-MRAM) cell [24]. A signal dependent
offset model is reasonable when process variation causes an
asymmetric distribution of both the low and high resistance
states. The model is also appropriate for modeling the retention
of multilevel-cell phase-change memory, which is adversely
affected by resistance states dependent drift and noise [25].
Moreover, degradation of the data reliability can be modelled
as a signal dependent offset model, for the situation that
with the increase of temperature, the low signal level hardly
changes, while the high signal level decreases, leading to a
drift of the high signal level to the low signal level [26].
Cai et al. [27] have proposed and analyzed a k-means clus-
tering technique as a detection method, for channels where
the signal dependent offsets are assumed to be uncorrelated
stochastic variables with a uniform probability distribution.

In this paper, we study an ML decoding criterion for
channels with Gaussian noise and signal dependent offset. To
the best of our knowledge, this is the first paper investigating
an ML decoding criterion for such channels. The situation
of uniform noise and signal dependent offset is discussed
in [28]. The contribution of this work is two-fold. First,
an ML criterion for Gaussian distributed noise and signal

dependent offsets is derived, where the correlation between
different offset random variables is considered as well. Second,
we show that an ML criterion in the prior art can be derived
as a special case of our decoding criterion that is obtained
by letting offsets be identically fully correlated distributed.
Further, an option to effectively reduce the complexity is
considered for an example with uncorrelated offsets.

The remainder of the paper is organized as follows. In
Section II, we review two classical decoding methods and
introduce the channel model with noise and signal dependent
offset. We present, in Section III, the ML decoding criterion
for such channels, where the noise and signal dependent
offset are Gaussian distributed. Furthermore, in Section IV,
we focus on a special case when the offsets are identical,
followed by a complexity discussion in Section V. Finally,
a performance evaluation in Section VI and conclusions in
Section VII terminate the paper.

II. NOISY CHANNELS WITH SIGNAL DEPENDENT

OFFSET MISMATCH

In this section, we introduce the noisy channel with sig-
nal dependent offset mismatch. Further, we review classical
decoding criteria that will be compared to the ML decoding
criterion to be presented in this paper.

A. Channel Model

Let Q = {0, 1} denote the binary alphabet. We consider
transmitting a codeword x = (x1, x2, . . . , xn) from a
codebook S ⊆ Qn. We pursue the binary alphabet since it is
the most essential and fundamental case for data transmission
or storage. The extension of this channel model to a q-ary
alphabet will be investigated in future research.

The transmitted symbols xi are distorted by additive noise
vi and by signal dependent offsets bxi . In other words,
the received symbols read

ri = xi + vi + bxi , (1)

for i = 1, . . . , n. The offset bxi takes one of two values, b0 or
b1, depending on the value of xi. Let

bx = (bx1 , bx2, . . . , bxn)

denote the offset vector when x is transmitted. For example,
bx = (b0, b1, b0, b1) if x = (0, 1, 0, 1). These two values, b0
and b1, which neither the transmitter nor the receiver knows,
may vary from one transmitted codeword to the next one, but
they do not vary within a codeword length of n. The received
vector when a codeword x is transmitted is

r = x + v + bx, (2)

where the noise vector v = (v1, v2, . . . , vn) is such that the
vi are i.i.d. Gaussian random variables with zero mean and
variance σ2, i.e., vi ∼ N (0, σ2). The probability density
function of v is

τ(v) =
n∏

i=1

1
σ
√

2π
e−v2

i /(2σ2). (3)

Throughout the transmitted codeword, the noise is independent
of the offsets. Note that the noise value varies from symbol to
symbol, while the offsets b0 and b1 are assumed to be constant
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for all ‘0’ and ‘1’ symbols within a codeword, respectively.
We assume that the offsets, b0 and b1, are Gaussian distributed
with mean 0 and variances β2

0 and β2
1 , respectively. The

probability density functions of b0 and b1 are

ζ(bi) =
1

βi

√
2π
e−b2i /(2β2

i ), (4)

where i = 0, 1. The correlation between b0 and b1 is

ρ =
cov(b0, b1)
β0β1

,

where cov(b0, b1) is the covariance of b0 and b1. The correla-
tion is bounded by −1 ≤ ρ ≤ 1. We have ρ = 0 when b0 and
b1 are uncorrelated, ρ = 1 when they are fully correlated, and
ρ = −1 when they are completely anti-correlated.

B. Decoding Criteria

In this subsection, we discuss two decision criteria for
decoding purposes, which are the optimal decoding criteria
for variants of channel (2).

1) Euclidean Distance-Based Decoding (ED): A
well-known decoding criterion upon receipt of the vector r is
to choose a codeword x̂ ∈ S, which minimizes the (squared)
Euclidean distance between the received vector r and
candidate codeword x̂. In other words, a Euclidean decoder
outputs

argmin
x̂∈S

δE(r, x̂),

where

δE(r, x̂) =
n∑

i=1

(ri − x̂i)
2
. (5)

It is known to be ML with regard to handling Gaussian noise,
i.e., r = x + v, but not optimal in situations which require
resistance towards offset mismatch.

2) Modified Pearson Distance-Based Decoding (PD):
Immink and Weber [11] have advocated a modified Pearson
distance-based measure instead of the conventional Euclidean
distance for improving the resistance towards offset mismatch.
Define the vector average for any vector u ∈ R

n as

ū =
1
n

n∑
i=1

ui.

The modified Pearson distance, δ′P (r, x̂), between the
received vector r and a codeword x̂ ∈ S, is defined by

δ′P (r, x̂) =
n∑

i=1

(ri − x̂i + ¯̂x)2. (6)

Hence, (6) applies the squared Euclidean distance on code-
words which are normalized by subtracting their vector aver-
age value from each coordinate. A Pearson decoder chooses
a codeword minimizing this distance, i.e.,

argmin
x̂∈S

δ′P (r, x̂).

The use of the Pearson distance demands that the set of
codewords satisfies certain special properties. Those that can
be used for the decoder based on (6) are investigated in [13].

It can easily be verified that the minimization of δ′P (r, x̂)
is immune to offset that does not depend on the signal values.

This offset, denoted by b, is constant within a word of length
n, but it may vary word by word. In the case where there is no
noise and only an unknown offset, which is signal independent,
i.e., r = x + b1, where 1 is the all-one vector, a Pearson
decoder is the ML choice. However, in the situation where
there is noise as well or the offset is signal dependent, its
performance deteriorates [11].

References [20]–[23] have discussed ML decoding criteria
for noisy channels with offset, which is the same for all
signal levels. In contrast, this paper is concerned with ML
decoding methods for noisy channels with signal dependent
offset.

III. ML DECODING CRITERION FOR NOISY CHANNELS

WITH SIGNAL DEPENDENT OFFSET

If a vector r is received, optimum decoding must determine
a codeword x̂ ∈ S maximizing P(x̂ |r). If all codewords are
equally likely to be sent, then, by Bayes’ theorem, this scheme
is equivalent to maximizing P(r |x̂ ), that is, the probability
density value of the received vector r given the candidate
codeword x̂.

Based on the channel model (2), we define the total distor-
tion as

dx = v + bx = r− x.

Then the probability density function of dx is given by

ψ(dx) =
∫ ∞

−∞

∫ ∞

−∞
τ(dx − bx)ζ(b0)ζ(b1) db0 db1. (7)

An ML decoder should maximize P(r |x̂), which is equivalent
to choosing a codeword maximizing the probability density
function (7), that is,

arg max
x̂∈S

ψ(dx̂).

In the situation of zero-mean Gaussian noise samples and
signal dependent offset, dx̂ has a multivariate Gaussian distri-
bution with mean vector 0 and covariance matrix Σx̂. Since
the noise is independent of the offsets and the correlation
coefficient between the offset values is ρ, Σx̂ is an n × n
matrix with the (i, j)th entry specified by

Σx̂(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β2
0 if i �= j, i, j ∈ X̂(0),

β2
1 if i �= j, i, j ∈ X̂(1),

σ2 + β2
0 if i = j ∈ X̂(0),

σ2 + β2
1 if i = j ∈ X̂(1),

ρβ0β1 otherwise,

(8)

where X̂(1) and X̂(0) are index sets, indicating the positions
of the ones and zeroes in x̂, respectively. Thus, the probability
density function of dx̂ is

ψ(dx̂) =
exp(−dx̂Σ−1

x̂ dT
x̂/2)√

(2π)n(detΣx̂)
, (9)

where Σ−1
x̂ is the inverse matrix of Σx̂ and detΣx̂ is the

determinant of Σx̂.
Before working out this expression, we first introduce some

further notations. Let ω denote the weight of x̂, i.e., the size
of set X̂(1). Clearly, the size of set X̂(0) is n− ω. According
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to X̂(1) and X̂(0), we can cluster symbols of the received
vector. Specifically, symbols of the received vector at positions
where the values of x̂i are 0 are grouped in one category,
and the rest of the symbols form another category. We focus
on the average values of these two categories and define two
quantities, namely, the average value of received symbols in
the ‘1’ positions of x̂, i.e.,

r(1) =
1
ω

∑
i∈X̂(1)

ri, (10)

and the average value of received symbols in the ‘0’ positions
of x̂, i.e.,

r(0) =
1

n− ω

∑
i∈X̂(0)

ri. (11)

Finally, α0 and α1 are the ratios of noise variance to offset
variances, i.e.,

α0 = σ2/β2
0 , (12)

α1 = σ2/β2
1 . (13)

When the channels suffer from the signal dependent offsets,
the positions of the zeroes and the ones in a candidate
codeword x̂ are important factors for the ML decoding. The
weight of the codeword is a critical issue as well. Attention
is drawn to these factors in the following theorem, where we
present the ML decoding criterion for noisy channels with
signal dependent offsets.

Theorem 1: In the case that the i.i.d. noise vi ∼ N (0, σ2),
the offsets b0 ∼ N (0, β2

0), b1 ∼ N (0, β2
1), and the corre-

lation between b0 and b1 is ρ, ML decoding is achieved by
minimizing

log η +
1
σ2

[
δE(r, x̂) − α0 + (1 − ρ2)(n− ω)

η
ω2(r(1) − 1)2

− α1 + (1 − ρ2)ω
η

(n− ω)2r(0)
2

− 2ρ
√
α0α1

η
ω(n− ω)(r(1) − 1)r(0)

]
, (14)

over all candidate codewords x̂ ∈ S, where η = α1α0+ωα0+
(n− ω)α1 + ω(n− ω)(1 − ρ2).

Before proving this theorem, an example of the covariance
matrix (8) is given here.

Example 2: Consider a candidate codeword x̂ = (1, 0, 0, 1)
and a received vector r. Then

dx̂ = r − x̂ = (r1 − 1, r2, r3, r4 − 1).

For this example codeword, we have X̂(1) = {1, 4} and
X̂(0) = {2, 3}. Thus, based on (8), the covariance matrix
of dx̂ is

Σx̂ =

⎡
⎢⎢⎣
σ2 + β2

1 ρβ0β1 ρβ0β1 β2
1

ρβ0β1 σ2 + β2
0 β2

0 ρβ0β1

ρβ0β1 β2
0 σ2 + β2

0 ρβ0β1

β2
1 ρβ0β1 ρβ0β1 σ2 + β2

1

⎤
⎥⎥⎦ . (15)

Further, the average value of received symbols in the ‘1’
positions is

r(1) = (r1 + r4)/2

and the average value of received symbols in the ‘0’ positions
is

r(0) = (r2 + r3)/2.

Thus the ML measurement for x̂ = (1, 0, 0, 1) according to
Theorem 1 is

log η +
1
σ2

[
δE(r, x̂) − α0 + 2(1 − ρ2)

η
(r1 + r4 − 2)2

− α1 + 2(1 − ρ2)
η

(r2 + r3)2

−2ρ
√
α0α1

η
(r1 + r4 − 2)(r2 + r3)

]
,

where η = α1α0 + 2α0 + 2α1 + 4(1 − ρ2).
We may assume without loss of generality that x̂ is

rearranged such that x̂1 ≥ x̂2 ≥ . . . ≥ x̂n, as long as r
and thus dx̂ = r − x̂ are rearranged according to the same
permutation as x̂. We will do so throughout the rest of this
section, since it allows a more convenient representation of
the covariance matrix. In the example as just presented, one
possible permutation of x̂ is

(x̂1, x̂4, x̂2, x̂3) = (1, 1, 0, 0).

Then the corresponding representation of dx̂ is

(r1 − 1, r4 − 1, r2, r3),

and its covariance matrix yields

Σx̂ =

⎡
⎢⎢⎣
σ2 + β2

1 β2
1 ρβ0β1 ρβ0β1

β2
1 σ2 + β2

1 ρβ0β1 ρβ0β1

ρβ0β1 ρβ0β1 σ2 + β2
0 β2

0

ρβ0β1 ρβ0β1 β2
0 σ2 + β2

0

⎤
⎥⎥⎦ . (16)

Proof of Theorem 1: We start the evaluation of (9) by
considering the covariance matrix Σx̂ given in (8). Since
the entries of this matrix are assigned values according to
two index sets X̂(1) and X̂(0), each Σx̂ is interpreted being
subdivided into four blocks, that is,

Σx̂ =
[
A B
C D

]
,

where A is an ω × ω matrix with all entries on the main
diagonal equal to σ2 + β2

1 and all other entries equal to β2
1 ,

D is an (n−ω)× (n−ω) matrix with all entries on the main
diagonal equal to σ2 + β2

0 and all other entries equal to β2
0 ,

and B, C are matrices of sizes ω× (n−ω) and (n−ω)×ω,
respectively, with all entries equal to ρβ0β1. An example of
such a block structure can be found in (16).

If A and D−CA−1B are non-singular, then the inverse
and determinant of Σx̂ are [29, pp. 107-108][

A B
C D

]−1

=
[
A−1+A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

]
,

(17)

and

det
[
A B
C D

]
= (detA)(detX), (18)

where X = D − CA−1B. We first show that A and X are
non-singular matrices, and then use the above formulas to
calculate the inverse matrix and determinant of Σx̂.
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The determinant and the inverse matrix of A are
detA = σ2(ω−1)(σ2 + ωβ2

1)

and

A−1 =

⎡
⎢⎢⎢⎢⎣
s t · · · t
t s

...
...

. . . t
t · · · t s

⎤
⎥⎥⎥⎥⎦ ,

where s = σ2+(ω−1)β2
1

σ2(σ2+ωβ2
1)

and t = −β2
1

σ2(σ2+ωβ2
1)
. A is a

non-singular matrix since detA �= 0.
Next we investigate the matrix X. After simple calculations,

X can be written down as

X =

⎡
⎢⎢⎢⎢⎣
σ2 + γ γ · · · γ

γ σ2 + γ
...

...
. . . γ

γ · · · γ σ2 + γ

⎤
⎥⎥⎥⎥⎦ ,

where γ = α1+(1−ρ2)ω
α1+ω β2

0 . The determinant of X is

detX =
σ2(n−ω−1)β2

0η

α1 + ω
,

where η = α0α1 +ωα0 +(n−ω)α1 +ω(n−ω)(1−ρ2). The
matrix X is singular only when η = 0. However, α0α1 > 0
implies that η > 0 which means that X is a non-singular
matrix. Then the inverse matrix of X is

X−1 =

⎡
⎢⎢⎢⎢⎣
g h · · · h
h g

...
...

. . . h
h · · · h g

⎤
⎥⎥⎥⎥⎦ ,

where g = σ2+(n−ω−1)γ
σ2(σ2+(n−ω)γ) and h = −γ

σ2(σ2+(n−ω)γ) .
Since A and X are non-singular, we use (17) and (18) to

calculate the determinant and the inverse matrix of Σx̂. Let
γ′ be α0+(n−ω)(1−ρ2)

α0+(n−ω) β2
1 . Then we have

A−1 + A−1BX−1CA−1 =

⎡
⎢⎢⎢⎢⎣
g′ h′ · · · h′

h′ g′
...

...
. . . h′

h′ · · · h′ g′

⎤
⎥⎥⎥⎥⎦ ,

where g′ = σ2+(ω−1)γ′

σ2(σ2+ωγ′) and h′ = −γ′
σ2(σ2+ωγ′) . We also have

that

−A−1BX−1 and − X−1CA−1

are two matrices of sizes ω × (n − ω) and (n − ω) × ω,
respectively, with all entries equal to

−ρ
β0β1η

.

Since the logarithm function is strictly increasing on the
positive real numbers and ψ is a positive function, ML
decoding can also be achieved by maximizing the logarithm
of (9), i.e.,

logψ(dx̂) = −n
2

log(2π) − 1
2

log(detΣx̂) − 1
2
dx̂Σ−1

x̂ dT
x̂,

rather than maximizing (9) itself. By inverting the sign and
ignoring irrelevant terms, we find that maximizing logψ(dx̂)
is equivalent to minimizing

log
(

det
[
A B
C D

])
+

n∑
i=1

n∑
j=1

di

[
A B
C D

]−1

ij

dj , (19)

where di is the i-th term in the vector dx̂. By applying (18),
the first part of (19) is

log
(

det
[
A B
C D

])
= log(det(A) det(X))

= log η + log(σ2(n−2)β2
1β

2
0). (20)

By ignoring the last term, that is irrelevant to the optimization
process (independent of x̂), we have that minimizing (20) is
equivalent to minimizing log η. The second part of (19) is
more complicated, but we can use g− h = g′ − h′ = 1/σ2 to
simplify several terms. Since the average value of the first ω
symbols of dx̂ is r(1) − 1 and the average value of the other
symbols is r(0), we have

n∑
i=1

n∑
j=1

di

[
A B
C D

]−1

ij

dj

=

[
(g′ − h′)

ω∑
i=1

(di)2 + h′ω2(r(1) − 1)2
]

+

[
(g − h)

n∑
i=ω+1

(di)2 + h(n− ω)2(r(0))2
]

− 2ρ
β0β1η

ω∑
i=1

n∑
j=ω+1

didj

=
1
σ2

[
δE(r, x̂) − α0 + (1 − ρ2)(n− ω)

η
ω2(r(1) − 1)2

− α1 + (1 − ρ2)ω
η

(n− ω)2r(0)
2

− 2ρ
√
α0α1

η
ω(n− ω)(r(1) − 1)r(0)

]
. (21)

Finally, combining (20) and (21), we can conclude that
maximizing ψ(dx̂) is equivalent to minimizing (14), as
required. �

In the next section, we take a look at a special case where
the offsets are identical.

IV. SPECIAL CASE STUDY

We consider a special situation of (2), where b0 and b1 are
identical, i.e., b0 = b1 = b. This signal independent offset
b is still assumed to be Gaussian distributed with zero mean
and variance β2. By definitions (12) and (13), the ratio of the
noise and the offset variances is identical, i.e., α0 = α1 =
α = σ2/β2. The received vector is given by

r = x + v + b1. (22)

In Subsection V.A of [21], an ML decoding criterion for
channel model (22) is given. Here, we present this criterion in
the following corollary and show that it appears as a special
case of the result in Theorem 1.

Corollary 3: In the case of i.i.d. noise vi ∼ N (0, σ2)
and offset b ∼ N (0, β2), an ML decoding criterion for
channel model (22) is achieved by minimizing a weighted
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combination of the Euclidean distance (5) and the modified
Pearson distance (6), i.e.,

α

n+ α
δE(r, x̂) +

n

n+ α
δ′P (r, x̂), (23)

over all candidate codewords x̂.
Proof: Since the offset values for transmitted zeroes and

ones are both equal to b, an ML criterion for (22) can be
derived from Theorem 1 by substituting ρ = 1 and α0 =
α1 = α, which gives that the expression to be minimized is

log η +
1
σ2

[
δE(r, x̂) − αω2

η
(r(1) − 1)2 − α(n− ω)2

η
r(0)

2

−2αω(n− ω)
η

(r(1) − 1)r(0)

]

= log η +
1
σ2

[
δE(r, x̂) − (ω(r(1) − 1) + (n− ω)r(0))2

α+ n

]

= log η +
1
σ2

[
δE(r, x̂) − n2

α+ n
(r̄ − ¯̂x)2

]
,

where η = α2 + nα. Ignoring the irrelevant term log η and
dividing by 1/σ2 gives δE(r, x̂) − n2

α+n (r̄− ¯̂x)2. Substituting
n(r̄− ¯̂x)2 = δE(r, x̂)−δ′P (r, x̂)+nr̄2, which follows from (5)
and (6), and ignoring the irrelevant term −n2r̄2/(α + n),
gives (23).

Recall that the Euclidean decoder (5) is ML in the situation
that there is no offset, while the modified Pearson decoder (6)
is ML when signals suffer from identical offset. Here, the ML
decoding is shown to be a balanced combination of these two
criteria. In the offset dominant regime, i.e., β 	 σ and thus
α being very small, (23) essentially reduces to the modified
Pearson criterion from (6). On the other hand, in the noise
dominant regime, i.e., β 
 σ and thus α being very large,
(23) essentially reduces to the Euclidean criterion (5) [21].

V. COMPLEXITY REDUCTION

Minimization of (14) by an exhaustive search over all
candidate codewords x̂ ∈ S may be too complex for large
codebooks. In [11], it has been shown that the number of
computations in order to minimize (6) can be significantly
reduced by considering a structured codebook, which is the
union of a number of constant composition codes, and apply-
ing Slepian’s algorithm [30]. Such complexity reductions can
be explored for the setting under consideration here as well.
Below we will describe an example for a particular case of
channel model (2). Similar results can also be obtained for
the general case, but the corresponding formulas are more
complicated and less readable.

We assume that the offsets b0 and b1 are identically dis-
tributed with zero means and variances β2, and that they
are uncorrelated random variables, i.e., ρ = 0. By setting
α0 = α1 = α and ρ = 0 in Theorem 1, the ML decoding
criterion for such a situation is thus established by minimizing

δML(r, x̂)
= log(α+ ω) + log(α+ n− ω)

+
1
σ2

[
δE(r, x̂)− ω2

α+ ω
(r(1)−1)2− (n− ω)2

α+ n− ω
r(0)

2
]
,

(24)

where ω is the weight of the candidate codeword x̂.

Let Sω denote the set as

Sω = {x ∈ Qn :
n∑

i=1

xi = ω}, ω = 0, . . . , n.

Note that each of these Sω contains all the vectors of length
n and a particular weight ω. The codebook S under consid-
eration is the union of |V | of such sets, i.e.,

S =
⋃

ω∈V

Sω ,

where the index set V ⊆ {0, . . . , n}. Note that the index set
V is of size at most n+ 1.

By working out (5), (10), and (11), we obtain

δE(r, x̂) =
n∑

i=1

(ri − x̂i)
2 =

n∑
i=1

r2i + n¯̂x− 2
n∑

i=1

rix̂i,

r(1) =
∑n

i=1 rix̂i

n¯̂x
,

and

r(0) =
nr̄−∑n

i=1 rix̂i

n− n¯̂x
,

where the first equation is the squared Euclidean distance
between r and x̂, and the second and the third equations are
the average value of received symbols in the positions where
x̂ has ones and zeroes, respectively.

Now, we first investigate the minimization of (24) over all
candidate codewords x̂ ∈ Sω for a fixed value of ω ∈ V . For
any x̂ in Sω we have

δML(r, x̂)
= log(α+ ω) + log(α+ n− ω)

+
1
σ2

[
n∑

i=1

r2i + ω − 2
n∑

i=1

rix̂i

− ω2

α+ ω

(∑n
i=1 rix̂i

ω
− 1
)2

− (n− ω)2

α+ n− ω

(
nr̄ −∑n

i=1 rix̂i

n− ω

)2
]
,

= log(α+ ω) + log(α+ n− ω)

+
1
σ2

[
n∑

i=1

r2i + ω − d(r, x̂)

]
, (25)

where

d(r, x̂) =
(

1
α+ ω

+
1

α+ n− ω

)( n∑
i=1

rix̂i

)2

+
(

2α
α+ ω

− 2nr̄
α+ n− ω

) n∑
i=1

rix̂i

+
ω2

α+ ω
+

n2r̄2

α+ n− ω
. (26)

Since ML decoding is a minimization process of (25), we may
ignore irrelevant terms and delete scaling constants. Note that
ω equals the number of ones in x̂ and thus it does not depend
on the specific positions of ones in x̂. The only degree of
freedom the decoder has for minimizing (25) is permuting the
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Fig. 1. WER versus SNR of S∗ for channels with Gaussian noise and signal dependent offsets, that have standard deviations β0 = 0.2, β1 = 0.3, and
correlation (a) ρ = 0.75; (b) ρ = 0.15.

symbols in x̂ to maximize d(r, x̂). Hence, for the value of ω
under consideration, the ML decoding result is

xo,ω = arg max
x̂∈Sω

d(r, x̂).

Note from (26) that d(r, x̂) can be regarded as a quadratic
function of

∑n
i=1 rix̂i. Since the graph of the quadratic func-

tion is a convex parabola, the maximum value of (26) occurs
when

∑n
i=1 rix̂i is minimal or maximal among all x̂ ∈ Sω.

However, which of these two options leads to the maximum
value is not apparent from the expression. Therefore, both
the maximum and the minimum values of

∑n
i=1 rix̂i are

considered. Slepian [30] showed that the value of
∑n

i=1 rix̂i

can be maximized by matching the largest symbol of r with
the largest symbol of x̂, the second largest symbol of r
with the second largest symbol of x̂, etc. On the other hand,
the value of

∑n
i=1 rix̂i can be minimized by matching the

largest symbol of r with the smallest symbol of x̂, the second
largest symbol of r with the second smallest symbol of x̂,
etc. Hence, only two codewords from Sω under consideration
need to be evaluated. The n symbols of the received word,
r, are sorted, largest to smallest, in the same way as taught
in Slepian’s prior art. For every ω ∈ V , decide xo,ω by
maximizing the values of d(r, x̂ ∈ Sω) over two candidate
codewords, (1, . . . , 1︸ ︷︷ ︸

ω

, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
ω

) for a

fixed ω.
For the complete codebook S, ML decoding of the received

vector, r, can thus be accomplished by finding xo,ω as
described above for all ω ∈ V , and then minimizing
δ ML(r,xo,ω) over the |V | candidates, i.e.,

xo = arg min
ω∈V

δML(r,xo,ω).

The number of codewords to be evaluated in minimiz-
ing (24) is |S|, which is impractical for larger S, since it tends
to grow exponentially with n. By using the method presented
in this section, the number of words that needs to be evaluated
is reduced to only 2 |V |, i.e., twice the number of constant
composition codes that constitute the codebook S. The index
set V is of size at most n+1. Thus, the number of evaluations
grows at most linearly with n. For large codebooks, this is a

significant reduction compared to an exhaustive search among
all the candidate codewords. It should be mentioned that in
order to apply this method, the received vector needs to be
sorted and the resulting ML codeword needs to be inversely
permuted accordingly. However, sorting is well known to have
only moderate computational complexity in terms of the length
of the vector n, e.g., O(n logn) symbol swaps. We can thus
conclude that the overall complexity is still considerably lower
than for an exhaustive search.

VI. PERFORMANCE EVALUATION

In this section, we investigate the word error rate (WER)
performance of three decoders, namely, Euclidean distance-
based decoding (5), Pearson distance-based decoding (6), and
ML decoding (14). Simulated WER results are shown for the
example codebook

S∗ = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.
This simple codebook suffices to demonstrate some important
WER characteristics of the proposed method (14) in compar-
ison with the traditional methods (5) and (6).

A. WER Versus Signal to Noise Ratio (SNR)

Figure 1 shows the results of simulations for a range of noise
levels, where the signal to noise ratio (SNR) is defined as

SNR (dB) = −20 log10 σ.

In both Figs. 1a and 1b, each point was the result of 10,000 tri-
als. The signal dependent offsets b0 and b1 have zero means
and standard deviations β0 = 0.2 and β1 = 0.3, respectively.
The correlation ρ between b0 and b1 is set to be 0.75
in Fig. 1a and 0.15 in Fig. 1b. It can be observed from
these figures that the performance of Euclidean distance-based
decoding is close to ML decoding when the value of SNR is
small, for both ρ = 0.75 and ρ = 0.15. For high correla-
tion, Pearson distance-based decoding outperforms Euclidean
distance-based decoding at large SNR values, see Fig. 1a for
ρ = 0.75. However, for low correlation, the performance
of Pearson distance-based decoding is worse than that of
Euclidean distance-based decoding, as illustrated in Fig. 1b
for ρ = 0.15. ML decoding is always better than both of them
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Fig. 2. WER versus ρ of S∗ for channels with Gaussian noise and signal dependent offsets, that have standard deviations β0 = 0.2, β1 = 0.3, and signal
to noise ratio (a) SNR = 12 dB; (b) SNR = 17 dB.

as expected. By comparing the two figures, it can be seen
that the offset correlation, ρ, plays a crucial role in the WER
performances. The next subsection is concerned with WER
versus ρ.

B. WER Versus Correlation Between Offsets

The simulation results for a range of ρ values are shown
in Fig. 2. Each point was the result of 10,000 trials, in the
situation that the signal dependent offsets b0 and b1 are still
assumed to have zero means and standard deviations β0 = 0.2
and β1 = 0.3, respectively. Here, SNR is set to be 12 dB
in Fig. 2a and 17 dB in Fig. 2b.

WERs of all three decoding criteria decrease when ρ
increases from -1 to 1. Note that the value of ρ has only
little effect on the performance of Euclidean distance-based
decoding, but that it has a high impact on the results of Pearson
distance-based decoding and ML decoding, especially when
SNR is equal to 17 dB. The WER of ML decoding is always
better than that of the other two decoders as expected. These
results are in accordance with our earlier observations, which
showed that Pearson distance-based decoding outperforms
Euclidean distance-based decoding when ρ is close to 1 and
SNR is large, and that the ML decoding surpasses both of
them.

VII. CONCLUSION

In this paper, we have studied channels that are not only
distorted by Gaussian noise, but also by another important
channel impairment, offset. The offset is assumed to be depen-
dent on the signal levels. A maximum likelihood (ML) decod-
ing criterion has been derived for such channels, to improve
and strengthen the resilience to Gaussian noise and signal
dependent offset. We have shown that a previous result on ML
decoding in the case that the offsets are identical, i.e., signal
independent, appears as a special case of our proposed crite-
rion. For codebooks consisting of the union of constant weight
sets, it has been shown that significant complexity reductions
can be obtained. Finally, the superiority of the presented ML
decoder over classical decoders has been illustrated by a brief
performance analysis for a simple code.
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