

Delft University of Technology

Quality Gatekeepers
Investigating the Effects of Code Review Bots on Pull Request Activities
Wessel, Mairieli; Serebrenik, Alexander; Wiese, Igor Scaliante; Steinmacher, Igor; Gerosa, Marco Aurélio

DOI
10.1007/s10664-022-10130-9
Publication date
2022
Document Version
Final published version
Published in
Empirical Software Engineering

Citation (APA)
Wessel, M., Serebrenik, A., Wiese, I. S., Steinmacher, I., & Gerosa, M. A. (2022). Quality Gatekeepers:
Investigating the Effects of Code Review Bots on Pull Request Activities. Empirical Software Engineering,
27(5), Article 108. https://doi.org/10.1007/s10664-022-10130-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10664-022-10130-9
https://doi.org/10.1007/s10664-022-10130-9

Empirical Software Engineering (2022) 27:108
https://doi.org/10.1007/s10664-022-10130-9

Quality gatekeepers: investigating the effects of code
review bots on pull request activities

Mairieli Wessel1,2 ·Alexander Serebrenik3 · Igor Wiese4 · Igor Steinmacher4 ·
Marco A. Gerosa5

Accepted: 2 February 2022
© The Author(s) 2022

Abstract
Software bots have been facilitating several development activities in Open Source Software
(OSS) projects, including code review. However, these bots may bring unexpected impacts
to group dynamics, as frequently occurs with new technology adoption. Understanding
and anticipating such effects is important for planning and management. To analyze these
effects, we investigate how several activity indicators change after the adoption of a code
review bot. We employed a regression discontinuity design on 1,194 software projects from
GitHub. We also interviewed 12 practitioners, including open-source maintainers and con-
tributors. Our results indicate that the adoption of code review bots increases the number of
monthly merged pull requests, decreases monthly non-merged pull requests, and decreases
communication among developers. From the developers’ perspective, these effects are
explained by the transparency and confidence the bot comments introduce, in addition to
the changes in the discussion focused on pull requests. Practitioners and maintainers may
leverage our results to understand, or even predict, bot effects on their projects.

Keywords Software bots · GitHub bots · Code review · Automation ·
Open source software · Software engineering

1 Introduction

Open Source Software (OSS) projects frequently employ code review in the development
process (Baysal et al. 2016), as it is a well-known practice for software quality assur-
ance (Ebert et al. 2019). In the pull-based development model, project maintainers carefully
inspect code changes and engage in discussion wdraftrulesith contributors to understand

Communicated by: Zhenchang Xing and Kelly Blincoe

This article belongs to the Topical Collection: Software Maintenance and Evolution (ICSME)

The work was conducted while the author (Mairieli Wessel) was affiliated to University of São Paulo.

� Mairieli Wessel
m.wessel@tudelft.nl; mairieli@ime.usp.br

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10130-9&domain=pdf
http://orcid.org/0000-0001-8619-726X
mailto: m.wessel@tudelft.nl
mailto: mairieli@ime.usp.br

 108 Page 2 of 36 Empir Software Eng (2022) 27:108

and improve the modifications before integrating them into the codebase (McIntosh et al.
2014). The time maintainers spend reviewing pull requests is non-negligible and can affect,
for example, the volume of new contributions (Yu et al. 2015) and the onboarding of
newcomers (Steinmacher et al. 2013).

Software bots play a prominent role in the code review process (Wessel et al. 2018).
These automation tools serve as an interface between users and other tools (Storey and
Zagalsky 2016) and reduce the workload of maintainers and contributors. Accomplishing
tasks that were previously performed solely by human developers, and interacting in the
same communication channels as their human counterparts, bots have become new voices
in the code review conversation (Monperrus 2019). Throughout comments on pull requests,
code review bots guide contributors to provide necessary information before maintainers
triage the pull requests (Wessel et al. 2018).

Notoriously, though, the adoption of new technology can bring consequences that
counter the expectations of the technology designers and adopters (Healy 2012). Many
systems intended to serve the user ultimately add new burdens. Developers who a priori
expect technological developments to produce significant performance improvements can
be caught off-guard by a posteriori unanticipated operational complexities (Woods and Pat-
terson 2001). According to Mulder (2013), many effects are not directly caused by the new
technology itself, but by the changes in human behavior that it provokes. Therefore, it is
important to assess and discuss the effects of a new technology on group dynamics; yet, this
is often neglected when it comes to software bots (Storey and Zagalsky 2016; Paikari and
van der Hoek 2018).

In the code review process, bots may affect existing project activities in several ways.
For example, bots can provide poor feedback (Wessel et al. 2018; Wessel and Steinmacher
2020), as illustrated by a developer: “the comments of @<bot-name> should contain more
description on how to read the information contained and what one actually [understand]
from it. For a newcomer its not obvious at all.”1 In turn, this poor feedback may lead to
contributor drop-out—indeed, poor feedback on pull requests is known to discourage further
contributions (Steinmacher et al. 2018; Balali et al. 2018).

In this paper, we aim to understand how the dynamics of GitHub project pull requests
change following the adoption of code review bots. To understand what happens after the
adoption of a bot, we used a mixed-methods approach (Easterbrook et al. 2008) with a
sequential explanatory strategy (Creswell 2003), combining data analysis of GitHub data
with semi-structured interviews conducted with open-source developers. We used a Regres-
sion Discontinuity Design (RDD) (Thistlethwaite and Campbell 1960) to model the effects
of code review bot adoption across 1,194 OSS projects hosted on GitHub. We used RDD
since it can assess how much an intervention changed an outcome of interest, immediately
and over time, and also evaluate whether the change could be attributed to other factors
rather than the intervention. Afterward, to further shed light on our results, we conducted
semi-structured interviews with practitioners, including open-source project maintainers
and contributors experienced with code review bots.

We found that, after code review bot adoption, more pull requests are merged into the
codebase, and communication decreases between contributors and maintainers. Consider-
ing non-merged pull requests, after bot adoption projects have fewer monthly non-merged
pull requests, and faster pull request rejections. From the practitioners’ perspective, the bot
comments make it easier to understand the state and quality of the contributions and increase

1https://twitter.com/markusstaab/status/1048503185361555457

https://twitter.com/markusstaab/status/1048503185361555457

Empir Software Eng (2022) 27:108 Page 3 of 36 108

maintainers’ confidence in merging pull requests. According to them, contributors are likely
to make changes in the code without interacting with other maintainers, which also helps to
change the focus of developers’ discussions.

The main contributions of this paper are:

1. The identification of changes in project activity indicators after the adoption of a code
review bot.

2. The elucidation of how the introduction of a bot can impact OSS projects.
3. Open-source developers’ perspective on the impacts of code reviews bots.

These contributions aim to help practitioners and maintainers understand bots’ effects
on a project, especially to avoid the ones that they consider undesirable. Additionally, our
findings may guide developers to consider the implications of new bots as they design them.

This paper extends our ICSME 2020 paper entitled “Effects of Adopting Code Review
Bots on Pull Requests to OSS Projects” (Wessel et al. 2020b). In this extended version,
we further investigate the reasons for the change incurred by code review bot adoption,
considering the practical perspective of open-source developers. To do so, we adjusted
the methodology, results, and discussion, including a new research question (i.e., RQ2),
which is based on the qualitative analysis of interviews with 12 open-source developers. We
also present a more extensive related work section, where we discuss empirical works that
use Regression Discontinuity Design to model the effects of a variety of interventions on
development activities.

2 Exploratory Case Study

As little is known about the effects of code review bots’ adoption in the dynamics of pull
requests, we conducted an exploratory case study (Runeson and Höst 2009; Yin 2003) to
formulate hypotheses to further investigate in our main study. Figure 1 shows an overview
of the research design employed in this exploratory case study.

Case
Selection

Data Collection
and

Aggregation

Statistical
Analysis

GHTorrent
Dataset

Set of
Hyphoteses

Filtered
Dataset

Fig. 1 Case study design overview

 108 Page 4 of 36 Empir Software Eng (2022) 27:108

2.1 Code Review Bot on Pull Requests

According to Wessel et al. (2018), code review bots are software bots that analyze code
style, test coverage, code quality, and smells. As an interface between human developers and
other tools, code review bots generally report the feedback of a third-party service on the
GitHub platform. Thus, these bots are designed to support contributors and maintainers after
pull requests have been submitted, aiming to facilitate discussions and assist code reviews.
One example of a code review bot is the Codecov bot.2 This bot reports the code coverage
on every new pull request right after all tests have passed. As shown in Fig. 2, Codecov
bot leaves highly detailed comments, including the percentage of increased or decreased
coverage, and the impacted files.‘

2.2 Case Selection

To carry out our exploratory case study, we selected two projects that we were aware of
that used code review bots for at least a one year: the Julia programming language project3

and CakePHP,4 a web development framework for PHP. Both projects have popular and
active repositories—Julia has more than 26.1k stars, 3.8k forks, 17k pull requests, and
46.4k commits; while CakePHP has more than 8.1k stars, 3.4k forks, 8.6k pull requests,
40.9k commits, and is used by 10k projects. Both projects adopt Codecov bot, which
posted the first comments on pull requests to the Julia project in July 2016 and CakePHP
in April 2016.

2.3 Data Collection and Aggregation

After selecting the projects, we analyzed data from one year before and one year after bot
adoption, using the data available in the GHTorrent dataset (Gousios and Spinellis 2012).
During this time frame, the only bot adopted by Julia and CakePHP was the Codecov bot.
Similar to previous work (Zhao et al. 2017), we exclude 30 days around the bot’s adoption
to avoid the influence of instability caused during this period. Afterward, we aggregated
individual pull request data into monthly periods, considering 12 months before and after
the bot’s introduction. We choose the month time frame based on previous literature (Zhao
et al. 2017; Kavaler et al. 2019; Cassee et al. 2020). All metrics were aggregated based on
the month of the pull request being closed/merged.

We considered the same activity indicators used in the previous work by Wessel et al.
(2018):

Merged/non-merged pull requests: the number of monthly contributions (pull requests)
that have been merged, or closed but not merged into the project, computed over all
closed pull requests in each time frame.
Comments on merged/non-merged pull requests:the median number of monthly
comments—excluding bot comments—computed over all merged and non-merged pull
requests in each time frame.

2https://github.com/marketplace/codecov
3https://github.com/JuliaLang/julia
4https://github.com/cakephp/cakephp

https://github.com/marketplace/codecov
https://github.com/JuliaLang/julia
https://github.com/cakephp/cakephp

Empir Software Eng (2022) 27:108 Page 5 of 36 108

Fig. 2 Codecov bot comment example

Time-to-merge/time-to-close pull requests: the median of monthly pull request latency
(in hours), computed as the difference between the time when the pull request was closed
and the time when it was opened. The median is computed using all merged and non-
merged pull requests in each time frame.
Commits of merged/non-merged pull requests: the median of monthly commits com-
puted over all merged and non-merged pull requests in each time frame.

 108 Page 6 of 36 Empir Software Eng (2022) 27:108

For all activity indicators we use the median because their distribution is skewed.

2.4 Statistical Analysis

We ran statistical tests to compare the activity indicators distributions before and after the
bot adoption. As the sample is small, and there is no critical mass of data points around the
bot’s introduction, we used the non-parametric Mann-Whitney-Wilcoxon test (Wilks 2011).
In this context, the null hypothesis (H0) is that the distributions pre- and post-adoption are
the same, and the alternative hypothesis (H1) is that these distributions differ. We also used
Cliff’s Delta (Romano et al. 2006) to quantify the difference between these groups of obser-
vations beyond p-value interpretation. Moreover, we inspected the monthly distribution of
each metric to search for indications of change.

As aforementioned, the case studies helped us to formulate hypotheses for the main
study, which comprised more than one thousand projects. We formulated hypotheses when-
ever we observed changes in the indicators for at least one of the two projects we analyzed
in the case study.

2.5 Case Study Results

In the following, we discuss the trends in project activities after bot adoption. We report
the results considering the studied pull request activities: number of merged and non-
merged pull requests, median of pull request comments, time-to-merge and time-to-close
pull requests, and median of pull request commits.

2.5.1 Trends in the Number of Merged and Non-merged Pull Requests

The number of merged pull requests increased for both projects (Julia: p-value 0.0003,
δ = −0.87; CakePHP: p-value 0.001, δ = −0.76), whereas the non-merged pull requests
decreased for both projects (Julia: p-value 0.00007, δ = 0.87; CakePHP: p-value 0.00008,
δ = 0.95). Figure 3 shows the monthly number of merged and non-merged pull requests,
top and bottom respectively, before and after bot adoption for both projects. Based on these
findings, we hypothesize that:

H1.1 The number of monthly merged pull requests increases after the introduction of
a code review bot.

H1.2 The number of monthly non-merged pull requests decreases after the introduc-
tion of a code review bot.

2.5.2 Trends in the Median of Pull Request Comments

Figure 4 shows the monthly median of comments on merged and non-merged pull requests,
respectively. CakePHP showed statistically significant differences between pre- and post-
adoption distributions. The number of comments increased for merged pull requests (p-
value = 0.01, δ = −0.56) and also for non-merged ones (p-value = 0.03, δ = −0.50) with
a large effect size. Thus, we hypothesize that:

Empir Software Eng (2022) 27:108 Page 7 of 36 108

Fig. 3 Monthly merged and non-merged pull requests

H2.1 The adoption of code review bots is associated with an increase in the monthly
number of comments for merged pull requests.

H2.2 The number of monthly comments on non-merged pull requests increases after
the adoption of a code review bot.

2.5.3 Trends in the Time to Close Pull Request Comments

The median time to merge pull requests increased for both projects (Julia: p-value 0.0003,
δ = −1.00; CakePHP: p-value 0.000001, δ = −0.98). Considering non-merged pull
requests, the difference between pre- and post-adoption is statistically significant only for
Julia. For this project, the median time to close pull requests increased (p-value 0.00007)
with a large effect size (δ = −0.65). The distribution can be seen in Fig. 5. Therefore, we
hypothesize that:

H3.1 There is an increase in the monthly time to merge pull requests after the
introduction of code review bots.

H3.2 There is an increase in the monthly time to reject pull requests after the adoption
of a code review bot.

 108 Page 8 of 36 Empir Software Eng (2022) 27:108

Fig. 4 Monthly comments on merged and non-merged pull requests

2.5.4 Trends in the Median of Pull Request Commits

Investigating the number of pull request commits per month (see Fig. 6), we note that the
medians before the adoption are quite stable, especially for merged pull requests. In com-
parison, after adoption we observe more variance. The difference is statistically significant
only for CakePHP, for which the number of pull request commits increased for merged pull
requests (p-value = 0.002, δ = −0.58) and for non-merged pull requests (p-value = 0.002,
δ = −0.69) with a large effect size. Based on this, we posit:

H4.1 There is an increase in the monthly number of commits for merged pull requests
after code review bot adoption.

H4.2 There is an increase in the monthly number of commits for non-merged pull
requests after code review bot adoption.

Summary of the Case Study. Unlike Wessel et al. (2018), we observe statistically
significant differences for all four activity indicators we investigated in at least one of
the two projects. Based on these observations, we formulated hypotheses to be further
investigated in our main study, comprising a large number of projects, and employed
the regression discontinuity design.

Empir Software Eng (2022) 27:108 Page 9 of 36 108

Fig. 5 Monthly median time to merge and reject pull requests

3 Main Study Design

In this section, we describe our research questions (Section 3.1), the statistical approach and
data collection procedures (Section 3.2), and the qualitative approach (Section 3.3).

3.1 Research Questions

The main goal of this study is to investigate how and for what reasons, if any, the adoption
of code review bots affects the dynamics of GitHub project pull requests. To achieve this
goal, we investigated the following research questions:

RQ1. How do pull request activities change after a code review bot is adopted in a
project?

Extending the work of Wessel et al. (2018), we investigate changes in project activity
indicators, such as the number of pull requests merged and non-merged, number of com-
ments, the time to close pull requests, and the number of commits per pull request. Using
time series analysis, we account for how the bot adoption has impacted these project activity
indicators over time. We also go one step further, exploring a large sample of open-source
projects and focusing on understanding the effects of a specific bot category.

RQ2. How could the change in pull request activities be explained?

 108 Page 10 of 36 Empir Software Eng (2022) 27:108

Fig. 6 Monthly commits on merged and non-merged pull requests

Besides understanding the change incurred by bot adoption, we explore why it happens.
To do so, we interviewed a set of open-source developers who actually have been using
these bots.

Figure 7 illustrates an overview of the steps taken to address the research questions. Next,
we explain each step in order to justify the study design decisions.

3.2 Stage 1—Statistical Approach

Considering the hypotheses formulated in the case study, in our main study we employed
time series analysis to account for the longitudinal effects of bot adoption. We employed
Regression Discontinuity Design (RDD) (Thistlethwaite and Campbell 1960; Imbens and
Lemieux 2008), which has been applied in the context of software engineering in the
past (Zhao et al. 2017; Cassee et al. 2020). RDD is a technique used to model the extent of
a discontinuity at the moment of intervention and long after the intervention. The technique
is based on the assumption that if the intervention does not affect the outcome, there would
be no discontinuity, and the outcome would be continuous over time (Cook and Campbell
1979). The statistical model behind RDD is

yi = α + β · timei + γ · interventioni

+δ · time after interventioni + η · controlsi + εi

where i indicates the observations for a given project. To model the passage of time as well
as the bot introduction, we include three additional variables: time, time after intervention,
and intervention. The time variable is measured as months at the time j from the start to the

Empir Software Eng (2022) 27:108 Page 11 of 36 108

Stage 1 - Statistical Approach

Case Study
Hyphoteses

Selection of
Candidate
Projects

Data Collection
and

Aggregation

Filtering the
Datatset

Applying
RDD

GHTorrent
Dataset Candidate

Projects
Filtered
Projects

Bot Effects

Stage 2 - Qualitative Approach

Participants
Recruitment

Semi-structured
Interviews

Qualitative
Analysis

Bot Effects from
Statistical
Approach

Tim
e

Fig. 7 Main research design overview

end of our observation period for each project (24 months). The intervention variable is a
binary value used to indicate whether the time j occurs before (intervention = 0) or after
(intervention = 1) adoption event. The time after intervention variable counts the number
of months at time j since the bot adoption, and the variable is set up to 0 before adoption.

The controlsi variables enable the analysis of bot adoption effects, rather than con-
founding the effects that influence the dependent variables. For observations before the
intervention, holding controls constant, the resulting regression line has a slope of β, and
after the intervention it has an slop of β + δ. Further, the size of the intervention effect is
measured as the difference equal to γ between the two regression values of yi at the moment
of the intervention.

Considering that we are interested in the effects of code review bots on the monthly
trend of the number of pull requests, number of comments, time-to-close pull requests, and
number of commits over a pull request, and all these for both merged and non-merged pull
requests, we fitted eight models (2 cases × 4 variables). To balance false-positives and
false-negatives, we report the corrected p-values after applying multiple corrections using
the method of Benjamini and Hochberg (1995). We implemented the RDD models as a
mixed-effects linear regression using the R package lmerTest (Kuznetsova et al. 2017).

To capture project-to-project and language-to-language variability, we modeled project
name and programming language as random effects (Gałecki and Burzykowski 2013). By
modeling these features as random effects, we can account for and explain different behaviors
observed across projects or programming languages (Zhao et al. 2017). We evaluate the
model fit using marginal (R2

m) and conditional (R2
c) scores, as described by Nakagawa and

Schielzeth (2013). The R2
m can be interpreted as the variance explained by the fixed effects

alone, and R2
c as the variance explained by the fixed and random effects together.

In mixed-effects regression, the variables used to model the intervention along with the
other fixed effects are aggregated across all projects, resulting in coefficients useful for
interpretation. The interpretation of these regression coefficients supports the discussion of
the intervention and its effects, if any. Thus, we report the significant coefficients (p < 0.05)

 108 Page 12 of 36 Empir Software Eng (2022) 27:108

in the regression as well as their variance, obtained using ANOVA. In addition, we log
transform the fixed effects and dependent variables that have high variance (Sheather 2009).
We also account for multicollinearity, excluding any fixed effects for which the variance
inflation factor (VIF) is higher than 5 (Sheather 2009).

3.2.1 Selection of Candidate Projects

To identify open-source software projects hosted on GitHub that at some point had adopted
a code review bot, we queried the GHTorrent dataset (Gousios and Spinellis 2012) and
filtered projects in which at least one pull request comment was made by one of the code
review bots identified by Wessel et al. (2018). Following the method used by Zhao et al.
(2017) to assemble a time series, we considered only those projects that had been active for
at least one year before and one year after the bot adoption. We found 4,767 projects that
adopted at least one of the four code review bots identified by Wessel et al. (2018) (ansibot,
elasticmachine, codecov-io, coveralls). For each project, we collected data on all its merged
and non-merged pull requests. By analyzing these projects we noticed that 220 of them
adopted both codecov-io and coveralls, while the other 4,547 adopted only one of the code
reviews bots (coveralls: 3,269; codecov-io: 1,270; elasticmachine: 5; ansibot: 3).

3.2.2 Data Collection and Aggregation

Similar to the exploratory case study (see Section 2), we aggregated the project data in
monthly time frames and collected the four variables we expected to be influenced by the
introduction of the bot: number of merged and non-merged pull requests, median number of
comments, median time-to-close pull requests, and median number of commits. All these
variables were computed over pull requests that have been merged and non-merged in a
time frame.

We also collected six control variables, using the GHTorrent dataset (Gousios and
Spinellis 2012):

Project name: the name of the project, used to identify the project on GitHub. We
accounted for the fact that different projects can lead to different contribution patterns.
We used the project name as a random effect.
Programming language: the primary project programming language as automatically
determined and provided by GitHub. We considered that projects with different pro-
gramming languages can lead to different activities and contribution patterns (Zhao et al.
2017; Cassee et al. 2020). We used programming language as a random effect.
Time since the first pull request: in months, computed since the earliest recorded pull
request in the entire project history. We use this to capture the difference in adopting
the bot earlier or later in the project life cycle, after the projects started to use pull
requests (Zhao et al. 2017; Cassee et al. 2020).
Total number of pull request authors: as a proxy for the size of the project community,
we counted how many contributors submitted pull requests to the project.
Total number of commits: as a proxy for the activity level of a project, we computed the
total number of commits since the earliest recorded commit in the entire project history.
Number of pull requests opened: the number of contributions (pull requests) received
per month by the project. We expected that projects with a high number of contributions
also observe a high number of comments, latency, commits, and merged and non-merged
contributions.

Empir Software Eng (2022) 27:108 Page 13 of 36 108

3.2.3 Filtering the Final Dataset

After excluding the period of instability (30 days around the adoption), we inspected the
dataset and found 223 projects with no comments authored by any of the studied bots. We
manually checked 30% of these cases and concluded that some projects only added the bot
for a testing period and then disabled it. We removed these 223 projects from our dataset.

We also checked the activity level of the candidate projects, since many projects on
GitHub are inactive (Gousios et al. 2014). We excluded from our dataset projects without at
least a six month period of consistent pull request activity during the one-year period before
and after bot adoption. After applying this filter, a set of 1,740 GitHub software projects
remained. To ensure that we observed the effects of each bot separately, we also excluded
from our dataset 78 projects that adopted more than one of the studied bots and 196 projects
that used non-code review bots. In addition, we checked the activity level of the bots on
the candidate projects to remove projects that disabled the bot during the analyzed period.
We then excluded 272 projects that had not received any comments during the previous
four months. After applying all filters, 1,194 GitHub software projects remained. Table 1
shows the number of projects per bot. All of these four bots perform similar tasks on pull
requests—providing comments on pull requests about code coverage.

3.3 Stage 2—Qualitative Approach

As aforementioned, we also applied a qualitative approach aimed to understand the effects
evidenced by the statistical approach from the practitioners’ perspective. In the follow-
ing, we describe the participants recruitment, semi-structured interview procedures, and the
qualitative analysis.

3.3.1 Participants Recruitment

In this study, we employed several strategies to recruit participants. First, we advertised
the interview on social media platforms frequently used by developers (Singer et al. 2014;
Storey et al. 2010; Aniche et al. 2018), including Twitter, Facebook, and Reddit. We also
manually searched the projects that were part of the statistical analysis for pull requests
explicitly installing or (re)configuring the analyzed bots. We added a comment on some of
these pull requests to invite the pull request author to the interview. We also sent emails
to personal contacts who we knew had experience with these bots. In addition, we asked
participants to refer us to other qualified participants.

We continued recruiting participants till we came to an agreement that the last three
interviews had not provided any new findings. According to Strauss and Corbin (1997),
sampling can be discontinued once the data collection no longer unveils new information.
Additionally, the size of our participant set is in line with the anthropology literature, which

Table 1 An overview of the
studied bots Bot name GitHub user # of projects

Ansible’s issue bot ansibot 1

Elastic Machine elasticmachine 3

Codecov codecov-io 460

Coveralls coveralls 730

Total of 1,194 under study

 108 Page 14 of 36 Empir Software Eng (2022) 27:108

Table 2 Demographics of interviewees

mentions that a set of 10-20 knowledgeable people is sufficient to uncover and understand
the core categories in any study of lived experience (Bernard 2017).

3.3.2 Participants Demographics

In total, we interviewed 12 open-source developers experienced with code review bots—
identified here as P1–P12. Out of these twelve participants, one is an open-source
maintainer, two are contributors, and the other nine are both maintainers and contributors. In
addition, participants are geographically distributed across Europe (�50%), North America
(�25%), and South America (�25%). Snowballing was the origin of five of our partici-
pants. Personal contacts was the origin of four of our participants. The advertisements on
social media were the origin of the other three interviews. Table 2 presents the demographic
information of the interviewees.

3.3.3 Semi-structured Interviews

We conducted semi-structured interviews, comprising open- and closed-ended questions
designed to elicit foreseen and unexpected information and enable interviewers to explore
interesting topics that emerged during the interview (Hove and Anda 2005). Before each
interview, we shared a consent form with the participants asking for their agreement. By
participants’ requests, one interview (P11) was conducted via email. The other eleven inter-
views were conducted via video calls. The participants received a 25-dollar gift card as a
token of appreciation for their time.

We started the interviews with a short explanation of the research objectives and guide-
lines, followed by demographic questions to capture the familiarity of the interviewees
with open-source development and code review bots. We then described to the interviewee
the study we conducted and the main findings from the statistical approach and asked the
developers to conjecture about the reasons for the effects we observed:

Q1. After adopting a code review bot there are more merged pull requests, less communi-
cation between developers, fewer rejected pull requests, and faster rejections. We are
intrigued about these effects and would like to hear thoughts from developers who
actually use these bots. Could you conjecture the reasons why this happens?

Empir Software Eng (2022) 27:108 Page 15 of 36 108

We follow-up this question with more specific questions when participants have not men-
tioned reasons for any of the four observed effects. Afterwards, we asked two additional
questions:

Q2. Have you observed these effects in your own project?
Q3. What other effects did you observe in your project and attribute to the introduction of

the code review bot?

The detailed interview script is publicly available.5 Each interview was conducted
remotely by the first author of this paper and lasted, on average, 35 min.

3.3.4 Qualitative Analysis of Interviews

Each interview recording was transcribed by the first author of this paper. We then analyzed
the interview transcripts by applying open and axial coding procedures (Strauss and Corbin
1998; Stol et al. 2016) throughout multiple rounds of analysis. We started by applying open
coding, whereby we identified the reasons for bots’ effects. To do so, the first author of this
paper conducted a preliminary analysis, identifying the main codes. Then, the first author
discussed with fourth and fifth authors the coding in weekly hands-on meetings. These dis-
cussions aimed to increase the reliability of the results and mitigate bias (Strauss and Corbin
2007; Patton 2014). Afterwards, the first author further analyzed and revised the interviews
to identify relationships between concepts that emerged from the open coding analysis
(axial coding). During this process, we employed a constant comparison method (Glaser and
Strauss 2017), wherein we continuously compared the results from one interview with those
obtained from the previous ones. The axial coding resulted on grouping the participants’
answers into five categories.

For confidentiality reasons, we do not share the interview transcripts. However, we made
our complete code book publicly available. The code book includes the all code names,
descriptions, and examples of quotes.

4 Main Study Results

In the following, we report the results of our study by research question.

4.1 Effects of Code Review Bot Adoption (RQ1)

In this section, we discuss the effects of code review bot adoption on project activities
along four dimensions: (i) accepted and rejected pull requests, (ii) communication, (iii) pull
request resolution efficiency, and (iv) modification effort.

4.1.1 Effects in Merged and Non-merged Pull Requests

We start by investigating the effects of bot adoption on the number of merged and non-
merged pull requests. From the exploratory case study, we hypothesized that the use of code
review bots is associated with an increase in the number of monthly merged pull requests
and a decrease in the number of monthly non-merged pull requests. We fit two mixed-effect

5https://doi.org/10.5281/zenodo.4618498

https://doi.org/10.5281/zenodo.4618498

 108 Page 16 of 36 Empir Software Eng (2022) 27:108

Table 3 The effects of code review bots on PRs. The response is log(number of merged/non-merged PRs)
per month

Merged pull requests Non-merged pull requests

Coefficients SS Coefficients SS

Intercept −0.262*** −0.574***

TimeSinceFirstPullRequest 0.00004** 4.3 −0.0001*** 2.4

log(TotalPullRequestAuthors) −0.094*** 171.8 0.086*** 775.7

log(TotalCommits) 0.042*** 484.0 0.068*** 428.6

log(OpenedPullRequests) 0.494*** 8227.1 0.388*** 4958.5

log(PullRequestComments) 0.433*** 2954.3 0.389*** 2341.0

log(PullRequestCommits) 0.272*** 721.0 0.165*** 255.5

time 0.004*** 203.2 −0.004*** 376.1

interventionTrue 0.095*** 16.8 −0.163*** 48.4

time after intervention 0.004** 1.7 −0.004** 1.6

Marginal R2 0.68 0.67

Conditional R2 0.75 0.74

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”

Time series predictors in bold

RDD models, as described in Section 3.2. For these models, the number of merged/non-
merged pull requests per month is the dependent variable. Table 3 summarizes the results of
these two RDD models. In addition to the model coefficients, the table also shows the SS,
with a variance explained for each variable. We also highlighted the time series predictors
time, time after intervention, and intervention in bold.

Analyzing the model for merged pull requests, we found that the fixed-effects part fits
the data well (R2

m = 0.68). However, considering R2
c = 0.75, variability also appears from

project-to-project and language-to-language. Among the fixed effects, we observe that the
number of monthly pull requests explains most of the variability in the model. As expected,
this indicates that projects receiving more contributions tend to have more merged pull
requests, with other variables held constant.

Furthermore, the statistical significance of the time series predictors indicates that the
adoption of code review bots affected the trend in the number of merged pull requests.
Observing the time coefficient, we note an increasing trend before adoption. There is a
statistically significant discontinuity at adoption, since the coefficient for intervention is
statistically significant. Further, there is a positive trend after adoption (see time after inter-
vention) and the sum of the coefficients for time and time after intervention is positive; thus,
indicating that the number of merged pull requests increased even faster after bot adoption.

Similar to the previous model, the fixed-effect part of the non-merged pull requests
model fits the data well (R2

m = 0.67), even though a considerable amount of variabil-
ity is explained by random effects (R2

c = 0.74). We note similar results on fixed effects:
projects receiving more contributions tend to have more non-merged pull requests. All the
three time-series predictors for this model are statistically significant, showing a measurable
effect of the code review bot’s adoption on the time to review and accept a pull request. The
time coefficient shows a decreasing trend before adoption, intervention coefficient reports a
statistically significant discontinuity at the adoption time, and there is a slight acceleration

Empir Software Eng (2022) 27:108 Page 17 of 36 108

Table 4 The effect of code review bots on pull request comments. The response is log(median of comments)
per month

Merged pull requests Non-merged pull requests

Coefficients SS Coefficients SS

Intercept −0.096*** −0.123***

TimeSinceFirstPullRequest 0.00000 20.0 −0.00002* 24.4

log(TotalPullRequestAuthors) 0.053*** 163.6 0.069*** 621.1

log(TotalCommits) −0.014*** 36.6 −0.009** 106.0

log(OpenedPullRequests) 0.079*** 1002.8 0.072*** 1362.9

log(TimeToClosePullRequests) 0.093*** 3239.7 0.101*** 4615.5

log(PullRequestCommits) 0.093*** 55.0 0.123*** 119.4

time −0.001 1.0 −0.001 7.2

interventionTrue 0.023** 0.8 −0.025*** 1.1

time after intervention −0.002* 0.5 0.0001 0.0

Marginal R2 0.50 0.66

Conditional R2 0.56 0.70

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”

Time series predictors in bold

after adoption in the decreasing time trend seen before adoption observed since the sum of
the coefficients for time and time after intervention is negative.

Therefore, based on models for merged and non-merged pull requests, we confirm both
H1.1 and H1.2.

Effects in Merged and Non-merged Pull Requests. Overall, there are more monthly
merged pull requests and fewer monthly non-merged pull requests after adopting a code
review bot.

4.1.2 Effects on Developers’ Communication

In the exploratory case study, we hypothesized that bot adoption increases monthly human
communication on pull requests for both merged and non-merged pull requests. To statisti-
cally investigate this, we fit one model to merged pull requests and another to non-merged
ones. The median of pull request comments per month is the dependent variable, while
number of monthly pull requests, median of time-to-close pull requests, and median of pull
request commits are independent variables. Table 4 shows the results of the fitted models.

Considering the model of comments on merged pull requests, we found that the model
taking into account only fixed effects (R2

m = 0.50) fits the data well. However, there is also
variability from the random effects (R2

c = 0.56). We observe that time-to-close pull requests
explains the largest amount of variability in the model, indicating that communication dur-
ing the pull request review is strongly associated with the time to merge it. Regarding the
bot effects, there is a discontinuity at adoption time, followed by a statistically significant
decrease after the bot’s introduction.

As above, the model of non-merged pull requests fits the data well (R2
m = 0.66) and

there is also variability explained by the random variables (R2
c = 0.70). This model also

 108 Page 18 of 36 Empir Software Eng (2022) 27:108

Table 5 The Effect of Code Review bots on time-to-close PRs. The response is log(median of time-to-close
PRs) per month

Merged pull requests Non-merged pull requests

Coefficients SS Coefficients SS

Intercept 0.377** 0.221

TimeSinceFirstPullRequest 0.0002** 452 0.00001 891

log(TotalPullRequestAuthors) 0.208*** 2186 0.166*** 21320

log(TotalCommits) −0.145*** 824 −0.057** 4770

log(OpenedPullRequests) 0.120*** 34444 0.240*** 50376

log(PullRequestComments) 2.472*** 117571 3.326*** 176312

log(PullRequestCommits) 2.275*** 47117 1.721*** 26733

time 0.027*** 3007 0.012** 56

interventionTrue 0.256*** 128 −0.056 9

time after intervention 0.009 6 −0.028*** 66

Marginal R2 0.61 0.69

Conditional R2 0.67 0.72

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”

Time series predictors in bold

suggests that communication during the pull request review is strongly associated with
the time to reject the pull request. Table 4 shows that the effect of bot adoption on non-
merged pull requests differs from the effect on merged ones. The statistical significance of
the intervention coefficient indicates that the adoption of code review bots slightly affected
communication; however, there is no bot effect in the long run.

Since our model for merged pull requests shows a decrease in the number of comments
after bot adoption, we rejected H2.1. Still, given that our model for non-merged pull requests
could not observe any statistically significant bot effect as time passes, we cannot accept
H2.2.

Effects in Communication. On average, there is less monthly communication on
merged pull requests after adopting a code review bot. However, the monthly commu-
nication on non-merged pull requests does not change as time passes.

4.1.3 Effects in Pull Request Resolution Efficiency

In the exploratory case study, we found that the monthly time to close pull requests increased
after bot adoption. Next, we fitted two RDD models, for both merged and non-merged pull
requests, where median of time to close pull requests per month is the dependent variable.
The results are shown in Table 5.

Analyzing the results of the effect of code review bots on the latency to merge pull
requests, we found that combined fixed-and-random effects fit the data better than the fixed
effects only (R2

c = 0.67 vs R2
m = 0.61). Although several variables affect the trends of

pull request latency, communication during the pull requests is responsible for most of

Empir Software Eng (2022) 27:108 Page 19 of 36 108

the variability in the data. This indicates the expected results: the more effort contribu-
tors expend discussing the contribution, the more time the contribution takes to merge. The
number of commits also explains the amount of data variability, since a project with many
changes needs more time to review and merge them. Moreover, we observe an increas-
ing trend before adoption, followed by a statistically significant discontinuity at adoption.
After adoption, however, there is no bot effect on the time to merge pull requests since the
time after intervention coefficient is not statistically significant.

Turning to the model of non-merged pull requests, we note that it fits the data well
(R2

m = 0.69), and there is also a variability explained by the random effects (R2
c = 0.72).

As above, communication during the pull requests is responsible for most of the variability
encountered in the results. In this model, the number of received contributions is impor-
tant to explain variability in the data—projects with many contributions need more time to
review and reject them. The effect of bot adoption on the time spent to reject pull requests
differs from the previous model. Regarding the time series predictors, the model did not
detect any discontinuity at adoption time. However, the positive trend in the latency to reject
pull requests before bot adoption is reversed toward a decrease after adoption.

Thus, since we could not observe statistically significant bot effects as time passes, we
cannot confirm H3.1. Further, as the model of non-merged pull requests shows a decrease in
the monthly time to close pull requests, we reject H3.2.

Effects in PR Resolution Efficiency. After adopting the code review bot, on average
less time is required from maintainers to review and reject pull requests. However, the
time required to review and accept a pull request does not change after code review bot
adoption.

4.1.4 Effects in Commits

Finally, we studied whether code review bot adoption affects the number of commits made
before and during pull request review. Our hypothesis is that the monthly number of com-
mits increases with the introduction of code review bots. Again, we fitted two models for
merged and non-merged pull requests, where the median of pull request commits per month
is the dependent variable. The results are shown in Table 6.

Analyzing the model of commits on merged pull requests, we found that the com-
bined fixed-and-random effects (R2

c = 0.48) fit the data better than the fixed effects
(R2

m = 0.34), showing that most of the explained variability in the data is associated with
project-to-project and language-to-language variability, rather than with the fixed effects.
The statistical significance of the intervention coefficient indicates that the adoption of code
review bots affected the number of commits only at the moment of adoption. Additionally,
from Table 6, we can also observe that the number of pull request comments per month
explains most of the variability in the result. This result suggests that the more comments
there are, the more commits there will be, as discussed above.

Investigating the results of the non-merged pull request model, we found that the model
fits the data well and that the random effects are again important in this regard. We also
observe from Table 6 that the adoption of a bot is not associated with the number of commits
on non-merged pull requests, since intervention and time after intervention coefficients are
not statistically significant.

 108 Page 20 of 36 Empir Software Eng (2022) 27:108

Based on models for merged and non-merged pull requests, we could not observe sta-
tistically significant effects of bot adoption. Therefore, we cannot confirm both H4.1 and
H4.2.

Effects in Commits. After adopting a code review bot, the monthly trend in the median
of pull request commits does not change for both merged and non-merged pull requests.

4.2 Developers’ Perspective on the Reasons for the Observed Effects (RQ2)

As explained in Section 3.3, we presented to open-source developers the main findings
of our statistical approach: “After adopting a code review bot there are more merged pull
requests, less communication between developers, fewer rejected pull requests, and faster
rejections.” We asked them to conjecture on the possible reasons for each of these results.

We grouped the participants’ answers into 5 categories, as can be seen in Table 7. We
associate one of the effects with its correspondent reasons whenever participants explicitly
mentioned this relationship. We also added a mark () to highlight which effects are
explained by each one of the reasons, according to the participants’ responses.

More visibility and transparency of the contribution state. Most of the participants
claimed that when a project has bots that provide detailed information on code quality
metrics, especially in the sense of coverage metrics, both maintainers and contributors
can more quickly gain a general idea of the quality of the contributions. As stated by P6:
“bots are able to raise visibility, both for the contributor and for the maintainer. They
can make it more clear more quickly the state of that contribution.” More than obtain-
ing clarity on the quality of the code, it is also easy for maintainers to verify whether the
pull request contributors will improve their contribution toward achieving acceptance.

Table 6 The effect of code review bots on pull request commits. The response is log(median of Pull Request
commits) per month

Merged pull requests Non-merged pull requests

Coefficients SS Coefficients SS

Intercept 0.358*** 0.063

TimeSinceFirstPullRequest 0.0001*** 0.30 0.00002 5.7

log(TotalPullRequestAuthors) −0.144*** 0.02 −0.058*** 202.2

log(TotalCommits) 0.017*** 74.04 0.028*** 171.9

log(OpenedPullRequests) 0.163*** 1513.60 0.125*** 1502.9

log(PullRequestComments) 0.520*** 2375.74 0.600*** 3306.3

time 0.001 138.60 −0.003** 8.7

interventionTrue 0.137*** 33.57 0.003 0.0

time after intervention 0.001 0.05 0.001 0.1

Marginal R2 0.34 0.42

Conditional R2 0.48 0.50

*** p < 0.001, ** p < 0.01, * p < 0.05. SS stands for “Sum of Squares”

Time series predictors in bold

Empir Software Eng (2022) 27:108 Page 21 of 36 108

Thus, they conjecture that all bot effects we found during the statistical analysis might
be explained by this enhanced feedback given by the bot.

As soon as contributors submit their pull requests, the code review bot posts a detailed
comment regarding the code coverage. In the P7 experience, the “immediate feedback of
the quality of [code coverage] on the pull request” is closely related to the increasing
acceptance rate. If the pull request does not affect code coverage in a negative way,
then maintainers are able to “much more quickly judge whether or not it’s a reasonable
request” (P4). On the other side of the spectrum, if the pull requests fail the tests and
decreases the coverage, then the maintainers “will not bother with that pull request at
all, and just reject it” (P4). Also maintainers “are more inclined to directly reject the
pull request” since it does not respect the rules imposed by the project. In some cases,
maintainers expect that the contributor will take an action based on the bot comments, as
explained by P6: “if [contributors] are not following up and resolving the issue, it makes
it more clear to the maintainer that it’s not an acceptable contribution.”

Participants also recognize that these bots are usually “pretty good at explaining
very precisely” (P2) and not merely stating that “[maintainers] will not accept the pull
request” (P2) without further explanation. For example, if the coverage decreased, the
bot will post “your pull request dropped the test coverage from 95 to 94%. And these are
the lines you edit that are not covered. So, please add tests to cover these specific lines.”
(P2), which according to P2 is extremely useful for a contributor. According to P1, for
example, the visibility of the bot comments helps maintainers to make sure contributors
understand why the pull request has been rejected without the necessity of engaging in a
long discussion: “now the maintainer can just point at it and be like ‘you didn’t pass the
status check, because you didn’t write tests.’ It is more obvious”.
More confidence in the process in place. According to the participants, one of the rea-
sons for more pull requests being merged after the code review bot introduction is that
these bots act as quality gatekeepers. For example, P1 mentioned that “by having other
metrics, like code coverage, to be able to say ‘Great! I know that at least a test has been
written for that line of code’, there is some sort of gatekeeping.” Besides the effect of
merging more pull requests, participants also mentioned another effect: “accepting code

Table 7 Main reasons for the findings from the RDD models

 108 Page 22 of 36 Empir Software Eng (2022) 27:108

contributions can be much, much faster” (P2). Basically, code review bots are used as a
way to achieve “automatic verification” (P7). According to P7, if the bots confirm that
the change is correct, then “the developer is more convinced that the change is useful
and valid.” In the opposite way, if the bots shows that the change is incorrect, the pull
request will be rejected faster, as it does not require “human interaction to arrive at this
conclusion” (P7), which implies less communication between developers. Furthermore,
P4 also relates the confidence in the bot as one of the reasons for less communication
between developers: the fact that there is less communication between the contributors
and maintainers might be an effect that we can get a bit overdependent on bots, in the
sense you trust them too much.” Therefore, since maintainers trust the bots’ feedback,
they “ask fewer questions” (P2).
Bot feedback changes developers’ discussion focus. Participants recurrently mentioned
that bot comments enabled them to focus on other high-priority discussions, which led
to a decrease in the communication between the project maintainers and contributors
on pull requests. To some extent this decrease occurs since it’s not necessary anymore,
because a lot of that [comments] are [already] handled automatically by the bots” (P4).
In P3’s experience, maintainers “talk more for new developers, to text them usually things
like ‘Add new test please’ and then [maintainers] don’t have to [make] that kind of
comment[] anymore. That’s why there’s less communication.”

Moreover, when receiving non-human feedback, contributors are less likely to start a
broader discussion about the viability or necessity of software testing, as explained by P2:
“once you have set up the bots, and it is automated, people are less likely to argue about
it, which is just a nice effect of bots. Especially for bots that kind of point out failures. I
think it’s good to have that from bots, and not from people.” There are some exceptions,
however, when contributors experienced an increase in communication incurred by the
bot comments, especially when they do not understand how they might increase the cov-
erage rate. As posed by P9: In my experience, it causes a longer discussion, because then
I have to talk to the engineers like ‘hey, what kind of a test should I add such as coveralls
passes?”’
Bot feedback pushes contributors to take an action. Also related to the transparency
introduced by the bot comments, and in line with the idea of code review bots as quality
gatekeepers, these bots lead developers to take an action: “It gives me clear instructions
on what I have to do to resolve it. So, I’m very likely to act on it” (P2). These bots protect
developers from reducing the code’s coverage. Therefore, developers would consider
either closing the pull request, if it is not worth their time, or following up with the
necessary changes: you have this systematic check that says ‘okay, that’s not good.’ And
then the developer is saying, ‘okay, it won’t be accepted if I don’t provide the test’ ”(P3).
Bot feedback perceived as noise. Although less recurrent, participants mentioned that in
some cases bot comments might be perceived as noise by developers, which disrupts the
conversation in the pull request. On the one hand, “comments from code coverage bots
tend to give you more visibility and provide more context[]” (P6). On the other hand,
developers complain about the noise these comments introduce to the communication
channel. According to P7, the repetitive comments of code coverage bots are “disrupting
the conversation”, since “if you have to develop a certain conversation and you have a
bot message, this could have a negative impact on the conversation.” One of the conse-
quences of this noise incurred by the repetitive bot comments is that “[developers] pay
less attention to it” (P7), impacting the developers communication.

Empir Software Eng (2022) 27:108 Page 23 of 36 108

We also asked developers whether they have seen the observed effects on their own
projects, and what are the other effects they attribute to the code review bot adoption. The
most recurrent (8) observed effect was less communication. As stated by P10: “I remem-
ber one of the maintainers saying ‘the tests are missing here.’ She always had to post that
comment. Then, we adopted the bot to comment on the coverage and had no need for her
to comment anymore.” Also, 6 participants observed fewer pull requests rejections and
faster rejections, and 5 participants have observed more merged pull requests. Finally,
developers did not attribute any other effect to the bot introduction.

Summary of reasons. Project maintainers and contributors reported several reasons for
more merged pull requests, fewer comments, and fewer and faster rejections. According
to them, bot comments help them to understand the state and quality of the contribution,
making maintainers more confident to merge pull requests, which also changes the
focus of developer discussions.

5 Discussion

Adding a code review bot to a project often represents the desire to enhance feedback about
the contributions, helping contributors and maintainers, and achieving improved interper-
sonal communication, as already discussed by Storey and Zagalsky (2016). Additionally,
code review bots can guide contributors toward detecting change effects before maintainers
triage the pull requests (Wessel et al. 2018), ensuring high-quality standards. In this paper,
following the study of Wessel et al. (2018), we focused on monthly activity indicators that
are not primarily related to bot adoption, but might be impacted by it. We found that the bot
adoption has a statistically significant effect on a variety of activity indicators.

According to the regression results, the monthly number of merged pull requests
increased, even faster, after the code review bot adoption. In addition, the number of non-
merged pull requests continued to decrease, even faster, after bot adoption. These models
showed that after adopting the bot, maintainers started to deal with an increasing influx
of contributions ready to be further reviewed and integrated into the codebase. Also, these
findings confirm the hypothesis we formulated based on the exploratory case study. Accord-
ing to our participants, the increase in the monthly number of merged pull requests, as
well as the decrease in the monthly number of non-merged one, are explained by the trans-
parency introduced by the bot feedback. Contributors started to have faster and clearer
feedback on what they needed to do to have their contribution accepted. Further, participants
also mentioned that contributors have been pushed to enhance their pull requests based on
bot feedback.

In addition, we noticed that just after the adoption of the code review bot the median num-
ber of comments slightly increased for merged pull requests. The number of comments on
these pull requests could increase due to contributions that drastically reduced the coverage,
stimulating discussions between maintainers and contributors. This can happen especially
at the beginning of bot adoption, since contributors might be unfamiliar with bot feedback.
After that initial period, we found that the median number of comments on merged pull
requests decreased each month. According to our participants, less communication could
be explained by the transparency and confidence developers gain from bot feedback. Also,
developers mentioned that after bot adoption the focus of the developers discussion changed,

 108 Page 24 of 36 Empir Software Eng (2022) 27:108

since there is no need for certain discussions related to coverage. Considering non-merged
pull requests, there is no significant change in the number of comments as time passes.
These results differ from the case study results, indicating that individual projects reveal
different results, which are likely caused by other project-specific characteristics.

From the regression results, we also noticed an increase in the time spent to merge pull
requests just after bot adoption. It makes sense from the contributors’ side, since the bot
introduces a secondary evaluation step. Especially at the beginning of the adoption, the code
review bot might increase the time to merge pull requests due to the need to learn how to
meet all bot requirements and obtain a stable code. Maintainers might also deal with an
increase in the volume of contributions ready to review and merge, impacting the time spent
to review all of them. Further, the regression model shows a decrease in the time spent to
review and reject pull requests. Overall, according with our participants it indicates that
after the bot adoption maintainers stopped expending effort on pull requests that were not
likely to be integrated into the codebase.

As we found in the model of commits on merged pull requests, just after the adoption
of the bot the median number of pull request commits increased. The bot provides imme-
diate feedback in terms of proof of failure, which can lead contributors to submit code
modifications to change the bot feedback and have their contribution accepted. Overall,
the regression models reveal that the monthly number of commits did not change for both
merged and non-merged pull requests as time passed. These results differ from the case
study results. Nevertheless, even if there is an increase in the number of commits reported
in the case study, overall the monthly number of commits are quite stable. For example, for
CakePHP it varies from 1 to 2 for merged pull requests, and 1 to 4 for non-merged pull
requests. Additionally, in the main study, we account for control variables, rather than ana-
lyzing the monthly number of commits interdependently. As presented in Section 4.1.4, for
example, the number of comments on pull requests explains the largest amount of variabil-
ity in these models, indicating that the number of commits is strongly associated with the
communication during the pull request review.

6 Implications and FutureWork

In the following, we discuss implications and future work for researchers and practitioners
in light of our results and related literature.

6.1 Implications for Project Members

Projects need to make informed decisions on whether to adopt code review bots (or soft-
ware bots in general) and how to use them effectively. We found that the dynamics of pull
requests changed following the adoption of code review bots. Hence, besides understand-
ing the effects on code quality, practitioners and open-source developers should become
aware of other consequences of bot adoption and take countermeasures to avoid the unde-
sired ones. For example, our statistical findings show a decrease in the amount of discussion
between humans after the bot’s introduction. According to developers, this effect is likely to
be explained by more visibility and transparency, or the changes in the focus of the discus-
sions. However, developers might also perceive bot comments as noise, which disrupts the
conversation in the pull request. Thus, project members should be aware of these possible
side effects since noise is a recurrent problem when adopting bots on pull requests (Wes-
sel et al. 2021). For instance, they might consider re-configuring the bot to avoid some

Empir Software Eng (2022) 27:108 Page 25 of 36 108

behaviors, such as high frequency of actions—bots performing repetitive actions, such as
creating numerous pull requests and leaving dozen of comments in a row—and comments
verbosity—bots providing comments with dense information.

6.2 Implications for Researchers

For researchers interested in software bots, it is important to understand the role of code
review bots in the bot landscape. It is important to understand how such bots affect the inter-
play of developers in their effort to develop software, and our study provides the first step
in this direction. Considering that bot output is mostly text-based, how bots present con-
tent can highly impact developers’ perceptions (Liu et al. 2020; Chaves and Gerosa 2020).
Additional effort is necessary to investigate how the developers’ cognitive styles (Vorvore-
anu et al. 2019; Mendez et al. 2018) might influence the way developers interpret the bot
comments’ content. In this way, future research can investigate how people with differ-
ent cognitive styles handle bot messages and learn from them. Other social characteristics
of the bots can also be investigated in this context (Chaves and Gerosa 2020). Future
research can lead to a set of guidelines on how to design effective messages for different
cognitive styles and developer profiles. Further, developers complain about the informa-
tion overload caused by repetitive bot behavior on pull requests, which has received some
attention from the research community (Wessel et al. 2018; Wessel and Steinmacher 2020;
Erlenhov et al. 2016), but remains a challenging problem. In fact, there is room for improve-
ment on human-bot collaboration on social coding platforms. When they are overloaded
with information, teams must adapt and change their communication behavior (Ellwart
et al. 2015). Therefore, there is also an opportunity to investigate changes in develop-
ers’ behavior imposed by the effects of information overload. Additional research can also
investigate how to use code reviews bots to support the training of new software engineers
(Pinto et al. 2017).

Previous work by Wessel et al. (2018) has already mentioned that bot support for new-
comers is both challenging and desirable. In a subsequent study, Wessel et al. (2020a)
reported that although bots could make it easier for some newcomers to submit a high-
quality pull request, bots can also provide newcomers with information that can lead to
rework, discussion, and ultimately dropping out from contributing. It is reasonable to expect
that newcomers who receive friendly feedback will have a higher engagement level and thus
sustain their participation on the project. Hence, future research can help bot designers by
providing guidelines and insights on how to support new contributors. Additional effort is
also necessary to investigate the impact of code review bots’ feedback for newcomers, who
already face a variety of barriers (Balali et al. 2018; Steinmacher et al. 2015).

6.3 Implications for Code Review Bots

To avoid side effects of using code review bots, such as noise, bots should provide mech-
anisms to enable better configurable control over their actions, rather than just turn off bot
comments. It is important to have easy mechanisms so project maintainers can turn off or
pause a bot at any time. Further, these mechanisms need to be explicitly announced during
bot adoption (e.g., noiseless configuration, preset levels of information). It is essential to
provide a more flexible way for bots to interact, incorporating rich user interface elements
to better engage users.

 108 Page 26 of 36 Empir Software Eng (2022) 27:108

7 RelatedWork

In this section, we describe the studies related to the usage and impact of software bots. Fur-
ther, we summarize works that employed regression discontinuity design (RDD) to account
for the intervention effects on software development activities on GitHub.

7.1 Software Bots on Social Coding Platforms

Software bots are software applications that integrate their work with human tasks, serving
as interfaces between users and other tools (Storey et al. 2017; Lebeuf et al. 2017), and
providing additional value to human users (Lebeuf et al. 2019). Software bots frequently
reside on platforms where users work and interact with other users (Lebeuf et al. 2018).
On the GitHub platform, bots have user profiles to interact with the developers, executing
well-defined tasks (Wessel et al. 2018).

Bots support social and technical activities in software engineering, including commu-
nication and decision-making (Storey and Zagalsky 2016). Bots are particularly relevant
in social-coding platforms (Dabbish et al. 2012), such as GitHub, where the pull-based
model (Gousios et al. 2014) offers several opportunities for community engagement, but at
the same time increases the workload for maintainers (Gousios et al. 2016; Pinto et al. 2016).
Open-source communities have been adopting bots to reduce the workload with a variety
of automated repetitive tasks on GitHub pull requests (Wessel et al. 2018), including repair-
ing bugs (Urli et al. 2018; Monperrus 2019), refactoring source code (Wyrich and Bogner
2019), recommending tools (Brown and Parnin 2019), updating dependencies (Mirhosseini
and Parnin 2017), fixing static analysis violations (Carvalho et al. 2020; Serban et al. 2021),
suggesting code improvements (Phan-udom et al. 2020), and predicting defects (Khanan
et al. 2020).

Storey and Zagalsky (2016) and Paikari and van der Hoek (2018) highlight that the
potentially negative impact of task automation through bots is being overlooked. Storey and
Zagalsky (2016) claim that bots are often used to avoid interruptions to developers’ work,
but may lead to other, less obvious distractions. While previous studies provide recommen-
dations on how to develop bots and evaluate bots’ capabilities and performance, they do
not draw attention to the impact of bot adoption on software development or how software
engineers perceive the bots’ impact. Since bots are seen as new team members (Monper-
rus 2019), we expected that bots would impact group dynamics in a way that differs from
non-bot forms of automation.

Wessel et al. (2018) investigated the usage and impact of software bots to support con-
tributors and maintainers with pull requests. After identifying bots on popular GitHub
repositories, the authors classified them into 13 categories according to their tasks. Unlike
Wessel et al. (2018), we focused on understanding the effects of a specific bot type, which
is the most frequently used category of bots. In a preliminary study, Wessel et al. (2020a)
surveyed 127 open source maintainers experienced in using code review bots. While main-
tainers report that bots satisfy their expectations regarding enhancing developers’ feedback,
reducing maintenance burden, and enforcing code coverage, they also perceived unexpected
effects of having a bot, including communication noise, more time spent with tests, and new-
comers’ dropout. Our work extends this preliminary investigation by combining analysis of
GitHub data with semi-structured interviews conducted with open-source developers. This
study looks at how bots change the pull request dynamics and its reasons from practitioners’
perspectives.

Empir Software Eng (2022) 27:108 Page 27 of 36 108

7.2 Using RDD to Access the Effects of Interventions on Software Development

In the software engineering domain, several researchers have been applying Regression Dis-
continuity Design (RDD) to model the effects of a variety of interventions on development
activities over time. To understand the similarities between those studies, we conducted an
extensive search for empirical works that employed RDD to investigate interventions in
software development on GitHub in general. In Table 8 we summarize these studies, pre-
senting an overview of what interventions have been used (e.g., bots, CI), what dependent
variables have been studied, and what results have been obtained.

Zhao et al. (2017) introduced the RDD usage to study software development activities.
Zhao et al. (2017) focused on the impact of the Continuous Integration (CI) tool’s introduc-
tion on development practices. Conducting the statistical analysis on GitHub repositories,
they found that adopting Travis CI leads to an increase in the number of merge commits,
number of closed pull requests, and in pull request latency. With these results they also con-
firm earlier results about the benefits of CI, such as a better adherence to best practices.
Meanwhile, Cassee et al. (2020) studied the effects of Travis CI on conserving developers’
efforts during code review. Analyzing the pull requests’ general comments and the review
comments, which are associated with specific lines of code on the pull request, they found
that the communication decreased after the CI adoption. At the same time, the trends in
the commits after the creation of the pull requests remained unaffected. Also regarding CI,
Guo and Leitner (2019) investigated the impact of its adoption on the delivery time of pull
requests. They find no evidence of CI affecting the pull request delivery time in the studied
projects.

In addition to the studies of CI, prior work has also investigated the impact of other
automation tools designed to support developers during code review or while performing
other repetitive tasks on pull requests. Kavaler et al. (2019), for example, investigated the
impact of linters, dependency managers, and coverage reporter tools on GitHub projects
across time. The results of applying RDD showed that tools are associated with a decrease
in the monthly number of opened issues. Trockman et al. (2018) explored the impacts of
the usage badges on GitHub repositories. They found that badges displaying the build sta-
tus, test coverage, and up-to-dateness of dependencies are associated with more tests, more
quality pull requests, and fresher dependencies. Kinsman et al. (2021) studied the effect of
GitHub Action adoption by GitHub projects. The results revealed that introducing a GitHub
Action leads to an increase in the number of rejected pull requests and a decrease in the com-
mits in the merged pull requests. This differs from our results, which might be explained by
the variety of tasks performed by the GitHub Actions in the study, and consequently their
impacts on pull request activities.

Other studies have been investigating interventions that are not related to a tool adop-
tion. For example, Zimmermann and Artı́s (2019) investigated the impact of switching from
one bug tracker to another. They found that the switch induces an increase in issue report-
ing, particularly by the project core developers. Moreover, when moving from Bugzilla
to GitHub, the communication between maintainers and contributors in the issues also
increased. Moldon et al. (2020) focused on how developers’ behavior was impacted by the
removal of the daily activity streak counters from the user profile. The results show that the
developer activity decreased on weekends compared to weekdays. According to the authors,
the activity counters were influencing developers to contribute on days they would have oth-
erwise rested. Walden (2020) employed RDD to assess the impact of a major security event

 108 Page 28 of 36 Empir Software Eng (2022) 27:108
Ta
bl
e
8

L
ite

ra
tu

re
re

vi
ew

re
la

te
d

to
So

ft
w

ar
e

de
ve

lo
pm

en
ta

nd
R

D
D

on
G

itH
ub

selbairav
no

m
mo

C
noitnevretnI

ydutS

C
om

m
en
ts

C
om

m
it
s

Is
su
es

PR
la
te
nc
y

Pu
ll
re
qu

es
ts

Z
ha
o
et
al
.(
20
17

)
T
ra
vi
s
C
I
(a
do

pt
io
n)

M
er
ge

co
m
m
it
s

T
im

e
to

cl
os
e
PR

s
C
lo
se
d
PR

s

C
as
se
e
et
al
.(
20
20

)
T
ra
vi
s
C
I
(a
do

pt
io
n)

PR
co
m
m
en
ts

PR
re
vi
ew

co
m
m
en
ts

C
om

m
it
s
af
te
r

cr
ea
te
th
e
PR

G
uo

an
d
L
ei
tn
er
(2
01
9)

T
ra
vi
s
C
I
(a
do

pt
io
n)

T
im

e
to

de
liv

er
PR

s

K
av
al
er

et
al
.(
20
19

)
Q
ua
li
ty

as
su
ra
nc
e

to
ol
s
(a
do

pt
io
n)

O
pe
ne
d

W
es
se
le
ta
l.
(2
02
0b
)

C
od

e
re
vi
ew

bo
ts

(a
do

pt
io
n)

M
er
ge
d
PR

s
N
on

-m
er
ge
d

PR
s

M
er
ge
d
PR

s
N
on

-m
er
ge
d

PR
s

T
im

e
to

re
je
ct
PR

s

T
im

e
to

m
er
ge

PR
s

M
er
ge
d

PR

N
on

-m
er
ge
d

PR
s

K
in
sm

an
et
al
.(
20
21
)

C
od

e
re
vi
ew

bo
ts

(a
do

pt
io
n)

M
er
ge
d
PR

s
N
on

-m
er
ge
d

PR
s

M
er
ge
d
PR

s
N
on

-m
er
ge
d

PR
s

T
im

e
to

re
je
ct
PR

s

T
im

e
to

m
er
ge

PR
s

M
er
ge
d

PR
s

N
on
-m

er
ge
d

PR
s

T
ro
ck
m
an

et
al
.(
20
18
)

R
ep
os
it
or
y
ba
dg

es

(a
do

pt
io
n)

Z
im

m
er
m
an
n
an
d
A
rt
ı́s
(2
01
9)

B
ug

tr
ac
ke
r(
m
ov
e

fr
om

B
ug

zi
ll
a
to

G
it
H
ub

)

B
ug

tr
ac
ke
r/

Is
su
e
co
m
m
en
ts

O
pe
ne
d

M
ol
do
n
et
al
.(
20
20

)

G
am

if
ic
at
io
n

m
ec
ha
ni
sm

s

(r
em

ov
in
g

fr
om

G
it
H
ub

)

W
al
de
n
(2
02
0)

M
aj
or

Se
cu
ri
ty

E
ve
nt

(H
ea
rt
bl
ee
d)

M
er
ge

co
m
m
it
s

In
cr
ea
se

D
ec
re
as
e

D
oe
s
no
tc
ha
ng
e

Empir Software Eng (2022) 27:108 Page 29 of 36 108

on the evolution of a specific project called OpenSSL. As a result of the intervention, the
number of monthly commits increased and the code complexity decreased.

In short, we showed an overview of how RDD have been used in empirical software
engineering studies. As described in the Table 8, previous works investigated distinct vari-
ables. Even selecting related variables as “comments”, each study focused on different types
of comments (e.g. general pull requests comments, review comments, issue comments), or
comments applied to different scenarios (e.g. comments on merged and non-merged pull
requests). Our work extends this literature by providing a more in-depth investigation of the
effects of a specific type of automation, namely code review bot adoption.

8 Limitations and Threats to Validity

In this section, we discuss the limitations and potential threats to validity of our study, their
potential impact on the results, and how we have mitigated them (Wohlin et al. 2012).

External Validity: While our results only apply to OSS projects hosted on GitHub, many
relevant projects are currently hosted on this platform (Dias et al. 2016). Our selection
of projects also limits our results. Therefore, even though we considered a large number
of projects and our results indicate general trends, we recommend running segmented
analyses when applying our results to a given project. For replication purposes, we made
our data and source code publicly available.6

Construct Validity: One of the constructs in our study is the “first bot comment on a pull
request” as a proxy to the “time of bot adoption” on a project. A more precise definition
of this adoption time would have involved the integration date, which is not provided by
the GitHub API. Moreover, recent studies have observed ‘mixed’ GitHub accounts, i.e.,
accounts shared by a human and a bot Golzadeh et al. (2021) and Cassee et al. (2021),
e.g., exhibiting user name and avatar and posting both human-written and bot-generated
comments. A more precise definition of bot adoption should consider activity of the
‘mixed’ accounts as well. Hence, the validity of the “time of bot adoption” construct
might have been threatened by the definition. We reduce this threat by excluding the
period of 15 days immediately before and after adoption from all analyses. Moreover,
Kalliamvakou et al. (2014) stated that many merged pull requests appear non-merged,
which could also affect the construct validity of our study, since we consider the number
of merged pull requests. To increase construct validity and improve the reliability of our
qualitative findings, we employed a constant comparison method (Glaser and Strauss
2017). In this method, each interpretation is constantly compared with existing findings
as it emerges from the qualitative analysis.
Internal Validity: To reduce internal threats, we applied multiple data filtering steps to
the statistical models. To confirm the robustness of our models, we varied the data fil-
tering criteria, for example, by filtering projects that did not receive pull requests in all
months, instead of at least 6 months, and observed similar phenomena. Projects that dis-
abled the bot during the period we considered might be a threat. However, detecting
whether a project disabled the bot or not is challenging. The GitHub API does not provide
this information. We reduce this threat by removing from our dataset projects without
bot comments during the last four months of analysis. Additionally, we added several

6https://doi.org/10.5281/zenodo.4618498

https://doi.org/10.5281/zenodo.4618498

 108 Page 30 of 36 Empir Software Eng (2022) 27:108

controls that might influence the independent variables to reduce confounding factors.
However, in addition to the already identified dependent variables, there might be other
factors that influence the activities related to pull requests. These factors could include
the adoption of other code review bots, or even other types of bots and non-bot automa-
tion. To treat this, we removed projects that adopted more than one bot, based on the list
of bots provided by Wessel et al. (2018). To ensure information saturation, we continued
recruiting participants and conducting interviews until we came to an agreement that no
new significant information was found. As posed by Strauss and Corbin (1997), sam-
pling should be discontinued once the collected data is considered sufficiently dense and
data collection no longer generates new information.

9 Conclusion

In this work, we conducted an exploratory empirical investigation of the effects of adopting
bots to support the code review process on pull requests. While several code review bots
have been proposed and adopted by the OSS community, relatively little has been done to
evaluate the state of practice. To understand the impact on practice, we statistically analyzed
data from 1,194 open source projects hosted on GitHub. Further, we had a deep investiga-
tion into the reasons of the identified impacts. We interviewed 12 project maintainers and
contributors experienced with code review bots.

By modeling the data around the introduction of a code review bot, we notice different
results from merged pull requests and non-merged ones. We see that the monthly number of
merged pull requests of a project increases after the adoption of a code review bot, requiring
less communication between maintainers and contributors. At the same time, code review
bots can lead projects to reject fewer pull requests. Afterwards, when interviewing devel-
opers we found a comprehensive set of reasons for these effects. First of all, bot comments
help contributors and maintainers to be aware the state and quality of the contribution, mak-
ing maintainers more confident to merge pull requests, which also changes the focus of
developers’ discussions.

Practitioners and open-source maintainers may use our results to understand how group
dynamics can be affected by the introduction of a code review bot, and to design counter-
measurements to avoid undesired effects. Future work includes a qualitative investigation of
the effects of adopting a bot and the expansion of our analysis for other types of bots, activity
indicators, social coding platforms, and statistical approaches, such as counterfactual time
series (Murphy-Hill et al. 2019).

Acknowledgements This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal
de Nı́vel Superior – Brasil (CAPES) – Finance Code 001, CNPq (grant 141222/2018-2), and National Science
Foundation (grants 1815503 and 1900903). We also thank the Open Source developers who spent their time
to participate in our research.

Funding This work is partially supported by the National Science Foundation under Grant numbers
1815503, 1900903, CNPq grant # 313067/2020-1.

Availability of Data and Material We provided the supplementary material https://zenodo.org/record/
4618498

https://zenodo.org/record/4618498
https://zenodo.org/record/4618498

Empir Software Eng (2022) 27:108 Page 31 of 36 108

Declarations

Conflict of Interest The authors has no conflict of interest

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aniche M, Treude C, Steinmacher I, Wiese I, Pinto G, Storey MA, Gerosa MA (2018) How modern news
aggregators help development communities shape and share knowledge. In: ICSE’18, pp 499–510

Balali S, Steinmacher I, Annamalai U, Sarma A, Gerosa MA (2018) Newcomers’ barriers... is that all? An
analysis of mentors’ and newcomers’ barriers in oss projects. Computer Supported Cooperative Work
(CSCW) 27(3):679–714

Baysal O, Kononenko O, Holmes R, Godfrey MW (2016) Investigating technical and non-technical factors
influencing modern code review. Empir Softw Eng 21(3):932–959

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to
multiple testing. J R Stat Soc: Ser B (Methodol) 57(1):289–300

Bernard HR (2017) Research methods in anthropology: qualitative and quantitative approaches. Rowman &
Littlefield, Laham, Maryland

Brown C, Parnin C (2019) Sorry to bother you: designing bots for effective recommendations. In:
Proceedings of the 1st international workshop on bots in software engineering, BotSE

Carvalho A, Luz W, Marcı́lio D, Bonifácio R, Pinto G, Dias Canedo E (2020) c-3pr: a bot for fixing static
analysis violations via pull requests. In: 2020 IEEE 27th International conference on software analysis,
evolution and reengineering (SANER), pp 161–171

Cassee N, Vasilescu B, Serebrenik A (2020) The silent helper: the impact of continuous integration on code
reviews. In: 27th IEEE international conference on software analysis, evolution and reengineering. IEEE
Computer Society

Cassee N, Kitsanelis C, Constantinou E, Serebrenik A (2021) Human, bot or both? A study on the capa-
bilities of classification models on mixed accounts. In: 37th IEEE international conference on software
maintenance and evolution. IEEE, pp xx–xx

Chaves AP, Gerosa MA (2020) How should my chatbot interact? A survey on social characteristics in
human–chatbot interaction design. Int J Hum–Comput Interact 37:729–758

Cook T, Campbell D (1979) Quasi-experimentation: design and analysis issues for field settings. Houghton
Mifflin, Chicago

Creswell J (2003) Mixed methods procedures. Research design: qualitative, quantitative, and mixed methods
approaches 3:203–240

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in GitHub: transparency and collaboration in
an open software repository. In: Proceedings of the ACM 2012 conference on computer supported coop-
erative work, CSCW ’12. ACM, New York, pp 1277–1286. https://doi.org/10.1145/2145204.2145396.
http://doi.acm.org/10.1145/2145204.2145396

Dias LF, Steinmacher I, Pinto G, Costa DAD, Gerosa M (2016) How does the shift to GitHub impact project
collaboration? In: 2016 IEEE international conference on software maintenance and evolution (ICSME),
pp 473–477. https://doi.org/10.1109/ICSME.2016.78

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software engineering
research. In: Guide to advanced empirical software engineering. Springer, pp 285–311

Ebert F, Castor F, Novielli N, Serebrenik A (2019) Confusion in code reviews: reasons, impacts, and coping
strategies. In: 2019 IEEE 26th international conference on software analysis, evolution and reengineering
(SANER). IEEE, pp 49–60

Ellwart T, Happ C, Gurtner A, Rack O (2015) Managing information overload in virtual teams: effects of a
structured online team adaptation on cognition and performance. Eur J Work Org Psychol 24(5):812–826

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2145204.2145396
http://doi.acm.org/10.1145/2145204.2145396
https://doi.org/10.1109/ICSME.2016.78

 108 Page 32 of 36 Empir Software Eng (2022) 27:108

Erlenhov L, Gomes de Oliveira Neto F, Leitner P (2016) An empirical study of bots in software development–
characteristics and challenges from a practitioner’s perspective. In: Proceedings of the 2020 28th ACM
SIGSOFT international symposium on foundations of software engineering, FSE 2020

Gałecki A, Burzykowski T (2013) Linear mixed-effects models using R: a step-by-step approach. Springer
Science & Business Media

Glaser BG, Strauss AL (2017) Discovery of grounded theory: strategies for qualitative research. Routledge,
New York

Golzadeh M, Decan A, Constantinou E, Mens T (2021) Identifying bot activity in github pull request
and issue comments. In: 3rd IEEE/ACM international workshop on bots in software engineering,
botSE@ICSE 2021, Madrid, Spain, June 4, 2021. IEEE, pp 21–25. https://doi.org/10.1109/BotSE52550.
2021.00012

Gousios G, Spinellis D (2012) GHTOrrent: GitHub’s data from a firehose. In: 2012 9th IEEE working
conference on mining software repositories (MSR). IEEE, pp 12–21

Gousios G, Pinzger M, van Deursen A (2014) An exploratory study of the pull-based software development
model. In: Proceedings of the 36th international conference on software engineering. ACM, pp 345–355

Gousios G, Storey MA, Bacchelli A (2016) Work practices and challenges in pull-based development: the
contributor’s perspective. In: Proceedings of the 38th international conference on software engineering,
ICSE ’16. ACM, New York, pp 285–296. https://doi.org/10.1145/2884781.2884826. http://doi.acm.org/
10.1145/2884781.2884826

Guo Y, Leitner P (2019) Studying the impact of ci on pull request delivery time in open source projects—a
conceptual replication. PeerJ Computer Science 5:e245

Healy T (2012) The unanticipated consequences of technology. Nanotechnology: ethical and social Implica-
tions 155–173

Hove SE, Anda B (2005) Experiences from conducting semi-structured interviews in empirical software
engineering research. In: 11th IEEE international software metrics symposium (METRICS’05). IEEE,
p 10

Imbens GW, Lemieux T (2008) Regression discontinuity designs: a guide to practice. J Econ 142(2):615–635
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German DM, Damian D (2014) The promises and perils

of mining GitHub. In: Proceedings of the 11th working conference on mining software repositories,
MSR 2014. ACM, New York, pp 92–101. https://doi.org/10.1145/2597073.2597074.http://doi.acm.org/
10.1145/2597073.2597074

Kavaler D, Trockman A, Vasilescu B, Filkov V (2019) Tool choice matters: JavaScript quality assurance
tools and usage outcomes in GitHub projects. In: Proceedings of the 41st international conference on
software engineering. IEEE Press, pp 476–487

Khanan C, Luewichana W, Pruktharathikoon K, Jiarpakdee J, Tantithamthavorn C, Choetkiertikul M,
Ragkhitwetsagul C, Sunetnanta T (2020) Jitbot: an explainable just-in-time defect prediction bot. In:
2020 35th IEEE/ACM international conference on automated software engineering (ASE), pp 1336–
1339

Kinsman T, Wessel M, Gerosa M, Treude C (2021) How do software developers use github actions to
automate their workflows? In: Mining software repositories conference (MSR). IEEE

Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmertest package: tests in linear mixed effects models.
J Stat Softw 82(13):1–26

Lebeuf C, Storey MD, Zagalsky A (2017) How software developers mitigate collaboration friction with
chatbots. In: Talking with conversational agents in collaborative action workshop at the 20th ACM con-
ference on computer-supported cooperative work and social computing, CSCW ’17. http://arxiv.org/abs/
1702.07011

Lebeuf C, Storey MA, Zagalsky A (2018) Software bots. IEEE Softw 35(1):18–23
Lebeuf C, Zagalsky A, Foucault M, Storey MA (2019) Defining and classifying software bots: a faceted

taxonomy. In: Proceedings of the 1st international workshop on bots in software engineering, BotSE ’19.
IEEE Press, Piscataway, pp 1–6. https://doi.org/10.1109/BotSE.2019.00008

Liu D, Smith MJ, Veeramachaneni K (2020) Understanding user-bot interactions for small-scale automa-
tion in open-source development. In: Extended abstracts of the 2020 CHI conference on human
factors in computing systems, CHI EA ’20. Association for Computing Machinery, New York, pp 1–8.
https://doi.org/10.1145/3334480.3382998

McIntosh S, Kamei Y, Adams B, Hassan AE (2014) The impact of code review coverage and code review
participation on software quality: a case study of the qt, vtk, and itk projects. In: Proceedings of the 11th
working conference on mining software repositories, pp 192–201

Mendez C, Padala HS, Steine-Hanson Z, Hildebrand C, Horvath A, Hill C, Simpson L, Patil N, Sarma
A, Burnett M (2018) Open source barriers to entry, revisited: a sociotechnical perspective. In: 2018
IEEE/ACM 40th international conference on software engineering (ICSE), pp 1004–1015

https://doi.org/10.1109/BotSE52550.2021.00012
https://doi.org/10.1109/BotSE52550.2021.00012
https://doi.org/10.1145/2884781.2884826
http://doi.acm.org/10.1145/2884781.2884826
http://doi.acm.org/10.1145/2884781.2884826
https://doi.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/2597073.2597074
http://doi.acm.org/10.1145/2597073.2597074
http://arxiv.org/abs/1702.07011
http://arxiv.org/abs/1702.07011
https://doi.org/10.1109/BotSE.2019.00008
https://doi.org/10.1145/3334480.3382998

Empir Software Eng (2022) 27:108 Page 33 of 36 108

Mirhosseini S, Parnin C (2017) Can automated pull requests encourage software developers to upgrade
out-of-date dependencies? In: Proceedings of the 32nd IEEE/ACM international conference on auto-
mated software engineering, ASE 2017. IEEE Press, Piscataway, pp 84–94. http://dl.acm.org/citation.
cfm?id=3155562.3155577

Moldon L, Strohmaier M, Wachs J (2020) How gamification affects software developers: cautionary evidence
from a quasi-experiment on github. arXiv:200602371

Monperrus M (2019) Explainable software bot contributions: case study of automated bug fixes. In: Pro-
ceedings of the 1st international workshop on bots in software engineering, BotSE ’19. IEEE Press,
Piscataway, pp 12–15. https://doi.org/10.1109/BotSE.2019.00010

Mulder K (2013) Impact of new technologies: how to assess the intended and unintended effects of new
technologies. Handb Sustain Eng

Murphy-Hill E, Smith EK, Sadowski C, Jaspan C, Winter C, Jorde M, Knight A, Trenk A, Gross S (2019)
Do developers discover new tools on the toilet? In: Proceedings of the 41st international conference on
software engineering, ICSE ’19. IEEE Press, pp 465–475. https://doi.org/10.1109/ICSE.2019.00059

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining r2 from generalized linear
mixed-effects models. Methods Ecol Evol 4(2):133–142

Paikari E, van der Hoek A (2018) A framework for understanding chatbots and their future. In: Proceedings
of the 11th international workshop on cooperative and human aspects of software engineering, CHASE
’18. ACM, New York, pp 13–16. https://doi.org/10.1145/3195836.3195859. http://doi.acm.org/10.1145/
3195836.3195859

Patton MQ (2014) Qualitative research & evaluation methods: integrating theory and practice. Sage
Publications, Los Angeles

Phan-udom P, Wattanakul N, Sakulniwat T, Ragkhitwetsagul C, Sunetnanta T, Choetkiertikul M, Kula RG
(2020) Teddy: automatic recommendation of pythonic idiom usage for pull-based software projects. In:
2020 IEEE International conference on software maintenance and evolution (ICSME). IEEE, pp 806–
809

Pinto G, Steinmacher I, Gerosa MA (2016) More common than you think: an in-depth study of casual con-
tributors. In: 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering
(SANER), vol 1. IEEE, pp 112–123

Pinto GHL, Figueira Filho F, Steinmacher I, Gerosa MA (2017) Training software engineers using open-
source software: the professors’ perspective. In: 2017 IEEE 30th conference on software engineering
education and training (CSEE&T). IEEE, pp 117–121

Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: should
we really be using t-test and cohen’sd for evaluating group differences on the nsse and other surveys. In:
Annual meeting of the Florida Association of Institutional Research, pp 1–33

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131

Serban D, Golsteijn B, Holdorp R, Serebrenik A (2021) Saw-bot: proposing fixes for static analysis warnings
with github suggestions. In: Workshop on bots in software engineering. IEEE Computer Society

Sheather S (2009) A modern approach to regression with R. Springer Science & Business Media
Singer L, Figueira Filho F, Storey MA (2014) Software engineering at the speed of light: how developers

stay current using Twitter. In: 36th ICSE, pp 211–221
Steinmacher I, Wiese I, Chaves AP, Gerosa MA (2013) Why do newcomers abandon open source software

projects? In: 2013 6th international workshop on cooperative and human aspects of software engineering
(CHASE). IEEE, pp 25–32

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their
first contribution in open source software projects. In: Proceedings of the 18th ACM conference on
Computer supported cooperative work & social computing, pp 1379–1392

Steinmacher I, Pinto G, Wiese IS, Gerosa MA (2018) Almost there: a study on quasi-contributors in open
source software projects. In: Proceedings of the 40th international conference on software engineering,
ICSE ’18. ACM, New York, pp 256–266. https://doi.org/10.1145/3180155.3180208. http://doi.acm.org/
10.1145/3180155.3180208

Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical review and
guidelines. In: Proceedings of the 38th international conference on software engineering, pp 120–131

Storey MA, Zagalsky A (2016) Disrupting developer productivity one bot at a time. In: Proceedings of the
2016 24th ACM SIGSOFT international symposium on foundations of software engineering, FSE 2016.
ACM, New York, pp 928–931. https://doi.org/10.1145/2950290.2983989

Storey MA, Treude C, van Deursen A, Cheng LT (2010) The impact of social media on software engineering
practices and tools. In: FSE/SDP workshop on future of software engineering research, pp 359–364

http://dl.acm.org/citation.cfm?id=3155562.3155577
http://dl.acm.org/citation.cfm?id=3155562.3155577
http://arxiv.org/abs/200602371
https://doi.org/10.1109/BotSE.2019.00010
https://doi.org/10.1109/ICSE.2019.00059
https://doi.org/10.1145/3195836.3195859
http://doi.acm.org/10.1145/3195836.3195859
http://doi.acm.org/10.1145/3195836.3195859
https://doi.org/10.1145/3180155.3180208
http://doi.acm.org/10.1145/3180155.3180208
http://doi.acm.org/10.1145/3180155.3180208
https://doi.org/10.1145/2950290.2983989

 108 Page 34 of 36 Empir Software Eng (2022) 27:108

Storey MA, Zagalsky A, Filho FF, Singer L, German DM (2017) How social and communication channels
shape and challenge a participatory culture in software development. IEEE Trans Softw Eng 43(2):185–
204. https://doi.org/10.1109/TSE.2016.2584053

Strauss A, Corbin JM (1997) Grounded theory in practice. Sage, Los Angeles
Strauss AL, Corbin J (1998) Basics of qualitative research: techniques and procedures for developing

grounded theory sage publications. SAGE Publications, Los Angeles
Strauss A, Corbin JM (2007) Basics of qualitative research : techniques and procedures for developing

grounded theory, 3rd edn. SAGE Publications, Los Angeles
Thistlethwaite DL, Campbell DT (1960) Regression-discontinuity analysis: an alternative to the ex post facto

experiment. J Educ Psychol 51(6):309
Trockman A, Zhou S, Kästner C, Vasilescu B (2018) Adding sparkle to social coding: an empirical study

of repository badges in the npm ecosystem. In: Proceedings of the 40th international conference on
software engineering, pp 511–522

Urli S, Yu Z, Seinturier L, Monperrus M (2018) How to design a program repair bot?: insights from the
repairnator project. In: Proceedings of the 40th international conference on software engineering: soft-
ware engineering in practice, ICSE-SEIP ’18. ACM, New York, pp 95–104. https://doi.org/10.1145/
3183519.3183540. http://doi.acm.org/10.1145/3183519.3183540

Vorvoreanu M, Zhang L, Huang YH, Hilderbrand C, Steine-Hanson Z, Burnett M (2019) From gender biases
to gender-inclusive design: an empirical investigation. In: Proceedings of the 2019 CHI conference on
human factors in computing systems, CHI ’19. Association for Computing Machinery, New York, pp 1–
14. https://doi.org/10.1145/3290605.3300283

Walden J (2020) The impact of a major security event on an open source project: the case of openssl.
arXiv:200514242

Wessel M, Steinmacher I (2020) The inconvenient side of software bots on pull requests. In: Proceed-
ings of the 2nd international workshop on bots in software engineering, BotSE. https://doi.org/10.1145/
3387940.3391504

Wessel M, de Souza BM, Steinmacher I, Wiese IS, Polato I, Chaves AP, Gerosa MA (2018) The power
of bots: characterizing and understanding bots in OSS projects. Proc ACM Hum-Comput Interact
2(CSCW):182:1–182:19. https://doi.org/10.1145/3274451. http://doi.acm.org/10.1145/3274451

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA (2020a) What to expect from code review bots
on GitHub? a survey with OSS maintainers. In: SBES 2020—Ideias inovadoras e resultados emergentes

Wessel M, Serebrenik A, Wiese IS, Steinmacher I, Gerosa MA (2020b) Effects of adopting code review
bots on pull requests to oss projects. In: IEEE International conference on software maintenance and
evolution. IEEE Computer Society

Wessel M, Wiese I, Steinmacher I, Gerosa M (2021) Don’t disturb me: challenges of interacting with software
bots on open source software projects. In: Proceedings of ACM human-computer interaction (CSCW)

Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic Press, San Diego,
California

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media

Woods DD, Patterson ES (2001) How unexpected events produce an escalation of cognitive and coordinative
demands. In: Hancock PA, Desmond PA (eds) Stress, workload, and fatigue. L Erlbaum, Mahwah

Wyrich M, Bogner J (2019) Towards an autonomous bot for automatic source code refactoring. In: Pro-
ceedings of the 1st international workshop on bots in software engineering, BotSE ’19. IEEE Press,
Piscataway, pp 24–28. https://doi.org/10.1109/BotSE.2019.00015

Yin RK (2003) Design and methods. Case Study Research 3
Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B (2015) Wait for it: determinants of pull request evalua-

tion latency on GitHub. In: 2015 IEEE/ACM 12th working conference on mining software repositories,
pp 367–371. https://doi.org/10.1109/MSR.2015.42

Zhao Y, Serebrenik A, Zhou Y, Filkov V, Vasilescu B (2017) The impact of continuous integration on other
software development practices: a large-scale empirical study. In: Proceedings of the 32nd IEEE/ACM
international conference on automated software engineering. IEEE Press, pp 60–71

Zimmermann T, Artı́s AC (2019) Impact of switching bug trackers: a case study on a medium-sized open
source project. In: 2019 IEEE international conference on software maintenance and evolution (ICSME).
IEEE, pp 13–23

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/TSE.2016.2584053
https://doi.org/10.1145/3183519.3183540
https://doi.org/10.1145/3183519.3183540
http://doi.acm.org/10.1145/3183519.3183540
https://doi.org/10.1145/3290605.3300283
http://arxiv.org/abs/200514242
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3387940.3391504
https://doi.org/10.1145/3274451
http://doi.acm.org/10.1145/3274451
https://doi.org/10.1109/BotSE.2019.00015
https://doi.org/10.1109/MSR.2015.42

Empir Software Eng (2022) 27:108 Page 35 of 36 108

Mairieli Wessel is a Postdoctoral Associate at the Software Engi-
neering Research Group (SERG) of Delft University of Technology
(TU Delft). She obtained her Ph.D. in Computer Science from the
University of São Paulo, Brazil. Her main research interest is in
software engineering (SE) and computer-supported cooperative work
(CSCW), focused on software bots and open-source development.
Her research goal is to design intelligent support for developers by
leveraging bots’ capabilities.

Alexander Serebrenik is a Full Professor of Social Software Engi-
neering at the Software Engineering and Technology cluster of
Eindhoven University of Technology (TU/e). His research goal is
to facilitate the evolution of software by taking into account social
aspects of software development. His work tends to involve theo-
ries and methods both from within computer science (e.g., theory
of socio-technical coordination; methods from natural language pro-
cessing, machine learning) and from outside of computer science
(e.g., organizational psychology). The underlying idea of his work
is that of empiricism, i.e., that addressing software engineering chal-
lenges should be grounded in observation and experimentation, and
requires a combination of the social and the technical perspectives.
Prof. Serebrenik has co-authored a book, Evolving Software Systems
(Springer Verlag, 2014), and more than 100 scientific papers and
articles.

IgorWiese is an Associate Professor in the Department of Computing
at the Federal University of Technology—Parana, Brazil. He isinter-
ested in Mining Software Repositories, Human Aspects of Software
Engineering, and related topics. Wiese holds a PhD degree in Com-
puter Science from the University of São Paulo. More information is
available at www.igorwiese.com.

www.igorwiese.com

 108 Page 36 of 36 Empir Software Eng (2022) 27:108

Igor Steinmacher is an Assistant Professor in the School of Infor-
matics, Computing, and Cyber Systems at the Northern Arizona
University (NAU), and was previously at the Federal University of
Technology Paraná (UTFPR), Brazil. He received a Ph.D. in Com-
puter Science from the University of São Paulo (USP - Brazil). He
researches the intersections of Software Engineering (SE) and Com-
puter Supported Cooperative Work (CSCW). Currently, his research
focuses on the behavior of developers in Open Source Communities,
including support of newcomers, the impact of Bots in the commu-
nity, and gender bias in Open Source Software. His interests include
Open Source Software, Human Aspects of Software Engineering,
Empirical Software Engineering, and Mining Software Repositories
techniques.

Marco A. Gerosa is an Associate Professor at the Northern Arizona
University, USA and PhD advisor at the University of São Paulo,
Brazil. He researches Software Engineering and CSCW. Recent
projects include the development of tools and strategies to support
newcomers onboarding to open source software communities and the
design of bots and chatbots. He published more than 200 papers and
serves on the program committee (PC) of top-tier conferences, such
as FSE, MSR, and CSCW. For more information, visit http://www.
marcoagerosa.com.

Affiliations

Mairieli Wessel1,2 ·Alexander Serebrenik3 · Igor Wiese4 · Igor Steinmacher4 ·
Marco A. Gerosa5

Alexander Serebrenik
a.serebrenik@tue.nl

Igor Wiese
igor@utfpr.edu.br

Igor Steinmacher
igorfs@utfpr.edu.br

Marco A. Gerosa
marco.gerosa@nau.edu

1 Delft University of Technology, Delft, The Netherlands
2 University of São Paulo, São Paulo, Brazil
3 Eindhoven University of Technology, Eindhoven, The Netherlands
4 Universidade Tecnológica Federal do Paraná, Curitiba, Brazil
5 Northern Arizona University, Flagstaff, AZ, USA

http://www.marcoagerosa.com
http://www.marcoagerosa.com
http://orcid.org/0000-0001-8619-726X
mailto: a.serebrenik@tue.nl
mailto: igor@utfpr.edu.br
mailto: igorfs@utfpr.edu.br
mailto: marco.gerosa@nau.edu

	Quality gatekeepers: investigating the effects of code review bots on pull request activities
	Abstract
	Introduction
	Exploratory Case Study
	Code Review Bot on Pull Requests
	Case Selection
	Data Collection and Aggregation
	Statistical Analysis
	Case Study Results
	Trends in the Number of Merged and Non-merged Pull Requests
	Trends in the Median of Pull Request Comments
	Trends in the Time to Close Pull Request Comments
	Trends in the Median of Pull Request Commits

	Main Study Design
	Research Questions
	Stage 1—Statistical Approach
	Selection of Candidate Projects
	Data Collection and Aggregation
	Filtering the Final Dataset

	Stage 2—Qualitative Approach
	Participants Recruitment
	Participants Demographics
	Semi-structured Interviews
	Qualitative Analysis of Interviews

	Main Study Results
	Effects of Code Review Bot Adoption (RQ1)
	Effects in Merged and Non-merged Pull Requests
	Effects on Developers' Communication
	Effects in Pull Request Resolution Efficiency
	Effects in Commits

	Developers' Perspective on the Reasons for the Observed Effects (RQ2)

	Discussion
	Implications and Future Work
	Implications for Project Members
	Implications for Researchers
	Implications for Code Review Bots

	Related Work
	Software Bots on Social Coding Platforms
	Using RDD to Access the Effects of Interventions on Software Development

	Limitations and Threats to Validity
	Conclusion
	References
	Affiliations

